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Preface

The Springer Handbook of Engineering Statistics, al-
together 54 chapters, aims to provide a comprehensive
state-of-the-art reference volume that covers both funda-
mental and theoretical work in the areas of engineering
statistics including failure time models, accelerated life
testing, incomplete data analysis, stochastic processes,
Bayesian inferences, data collection, Bootstrap models,
burn-in and screening, competing risk models, cor-
related data analysis, counting processes, proportional
hazards regression, design of experiments, DNA se-
quence analysis, empirical Bayes, genetic algorithms,
evolutionary model, generalized linear model, geo-
metric process, life data analysis, logistic regression
models, longitudinal data analysis, maintenance, data
mining, six sigma, Martingale model, missing data,
influential observations, multivariate analysis, multi-
variate failure model, nonparametric regression, DNA
sequence evolution, system designs, optimization, ran-
dom walks, partitioning methods, resampling method,
financial engineering and risks, scan statistics, semi-
parametric model, smoothing and splines, step-stress life
testing, statistical process control, statistical inferences,
statistical design and diagnostics, process control and
improvement, biological statistical models, sampling
technique, survival model, time-series model, uniform
experimental designs, among others.

The chapters in this handbook have outlined into six
parts, each contains nine chapters except Part E and F, as

Prof. Hoang Pham

follows:
Part A Fundamental Statistics

and Its Applications
Part B Process Monitoring

and Improvement
Part C Reliability Models

and Survival Analysis
Part D Regression Methods

and Data Mining
Part E Statistical Methods

and Modeling
Part F Applications in Engineering Statistics
All the chapters are written by over 100 outstanding

scholars in their fields of expertise. I am deeply indebted
and wish to thank all of them for their contributions and
cooperation. Thanks are also due to the Springer staff
for their patience and editorial work. I hope that prac-
titioners will find this Handbook useful when looking
for solutions to practical problems; researchers, statis-
ticians, scientists and engineers, teachers and students
can use it for quick access to the background, recent
research and trends, and most important references re-
garding certain topics, if not all, in the engineering
statistics.

January 2006 Hoang Pham
Piscataway, New Jersey
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Part A provides the concepts of fundamental statistics
and its applications. The first group of five chapters
exposes the readers, including researchers, practi-
tioners and students, to the elements of probability,
statistical distributions and inference and their prop-
erties. This comprehensive text can be considered as
a foundation for engineering statistics. The first chap-
ter provides basic statistics-related concepts, including
a review of the most common distribution functions
and their properties, parameter-estimation methods
and stochastic processes, including the Markov pro-
cess, the renewal process, the quasi-renewal process,
and the nonhomogeneous Poisson process. Chapter 2
discusses the basic concepts of engineering statis-
tics and statistical inference, including the properties
of lifetime distributions, maximum-likelihood esti-
mation, the likelihood ratio test, data modeling and
analysis, and system reliability analysis, followed by
variations of the Weibull and other related distribu-
tions, parameter estimations and hypothesis testing,
and their applications in engineering. Chapter 4 de-
scribes the basic concept of characterizing functions
based on random samples from common univariate dis-
crete and continuous distributions such as the normal,
exponential, Poisson, and multivariate distributions, in-
cluding the Marshall–Olkin bivariate exponential and
multivariate normal distributions. Chapter 5 discusses
two-dimensional approaches to failure modeling, with

applications in reliability and maintenance such as min-
imal repair and imperfect repair, and compares this
through applications with the one-dimensional case.

The following four chapters cover the basic con-
cepts in engineering statistics in specific topics such
as reliability growth, warranty, marked point pro-
cesses and burn-in. Chapter 6 presents the derivation
of the prediction intervals for the time to detect the
next fault for a small sample size by combining the
Bayesian and frequentist approaches. It also provides
examples to explain the predictions of the models,
as well as their strengths and weaknesses. Chapter 7
gives an overview of various existing warranty models
and policies and a summary of the issues in quantita-
tive warranty modeling such as warranty cost factors,
warranty policies, the warranty cost of multicompo-
nent systems, the benefits of warranties, and optimal
warranty policy analysis. Chapter 8 discusses the
concept of a random market point process and its
properties, including two-sided market point pro-
cesses, counting processes, conditional intensity, the
Palm distribution, renewal processes, stationary se-
quences, and time-homogeneous Poisson processes,
while Chapt. 9 focuses on the yield, multilevel burn-
in and reliability modeling aspects for applications
in semiconductor manufacturing, considering various
infant-mortality issues with the increased complexity
of integrated circuits during manufacturing processes.
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Basic Statistic1. Basic Statistical Concepts

This brief chapter presents some fundamental
elements of engineering probability and statistics
with which some readers are probably already
familiar, but others may not be. Statistics is the
study of how best one can describe and analyze
the data and then draw conclusions or inferences
based on the data available. The first section of
this chapter begins with some basic definitions,
including probability axioms, basic statistics and
reliability measures.

The second section describes the most common
distribution functions such as the binomial,
Poisson, geometric, exponential, normal, log
normal, Student’s t, gamma, Pareto, Beta,
Rayleigh, Cauchy, Weibull and Vtub-shaped
hazard rate distributions, their applications and
their use in engineering and applied statistics.

The third section describes statistical inference,
including parameter estimation and confidence
intervals. Statistical inference is the process
by which information from sample data is
used to draw conclusions about the population
from which the sample was selected that
hopefully represents the whole population.
This discussion also introduces the maximum
likelihood estimation (MLE) method, the method
of moments, MLE with censored data, the statistical
change-point estimation method, nonparametic
tolerance limits, sequential sampling and Bayesian
methods.

The fourth section briefly discusses stochas-
tic processes, including Markov processes,
Poisson processes, renewal processes, quasi-
renewal processes, and nonhomogeneous Poisson
processes.
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1.1.1 Probability Axioms .................... 4
1.1.2 Basic Statistics .......................... 4
1.1.3 Reliability Measures .................. 5

1.2 Common Probability Distribution
Functions............................................ 7
1.2.1 Discrete Random Variable

Distributions............................. 7
1.2.2 Continuous Distributions ............ 9

1.3 Statistical Inference and Estimation ...... 17
1.3.1 Parameter Estimation ................ 18
1.3.2 Maximum Likelihood

Estimationwith Censored Data .... 20
1.3.3 Statistical Change-Point

Estimation Methods................... 23
1.3.4 Goodness of Fit Techniques ........ 25
1.3.5 Least Squared Estimation ........... 26
1.3.6 Interval Estimation .................... 27
1.3.7 Nonparametric Tolerance Limits .. 30
1.3.8 Sequential Sampling.................. 30
1.3.9 Bayesian Methods ..................... 31

1.4 Stochastic Processes ............................. 32
1.4.1 Markov Processes ...................... 32
1.4.2 Counting Processes .................... 37

1.5 Further Reading .................................. 42

References .................................................. 42

1.A Appendix: Distribution Tables ............... 43

1.B Appendix: Laplace Transform................ 47

Finally, the last section provides a short list of
books for readers who are interested in advanced
engineering and applied statistics.

1.1 Basic Probability Measures

We start off this chapter by defining several useful terms:

1. Outcome: A result or observation from an experi-
ment, which cannot be predicted with certainty.

2. Event: Subset of a set of all possible outcomes.

3. Probability: The relative frequency at which an
event occurs in a large number of identical experi-
ments.

4. Random variable: A function which assigns real
numbers to the outcomes of an experiment.
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4 Part A Fundamental Statistics and Its Applications

5. Statistics: A function (itself a random variable) of
one or more random variables, that does not depend
upon any unknown parameters.

1.1.1 Probability Axioms

Now let C be a subset of the sample space (C ⊂ Z).
A probability set function, denoted by P(C), has the
following properties:

1. P(Z) = 1, P(C) ≥ 0
2. P(C1∪C2∪ . . . ) = P(C1)+ P(C2)+ . . .

where the subsets Ci have no elements in common (i. e.,
they are mutually exclusive).

Let C1 and C2 be two subsets of the sample space Z .
The conditional probability of getting an outcome in C2
given that an outcome from C1 is given by

P(C2/C1) = P(C2∩C1)

P(C1)
.

Let C1,C2, . . . ,Cn be n mutually disjoint subsets of
the sample space Z . Let C be a subset of the union of
the Cis; that is

C ⊂
n⋃

i=1

Ci .

Then

P(C) =
n∑

i=1

P(C/Ci )P(Ci ) (1.1)

and

P(Ci/C) = P(C/Ci )P(Ci )
n∑

i=1
P(C/Ci )P(Ci )

.

Equation (1.1) is known as the law of total probability.

1.1.2 Basic Statistics

The cumulative distribution function (cdf) F is a unique
function which gives the probability that a random vari-
able X takes on values less than or equal to some value
x. In other word, F(x) = P(X ≤ x).

The probability density function (pdf) f is the
probability that X takes on the value x; that is,
f (x) = P(X = x).

The pdf satisfies the following two relations for
discrete and continuous random variables, respectively,

∑

all x

f (x) = 1

and
∞∫

−∞
f (x)dx = 1.

In the continuous case, the pdf is the derivative of the
cdf:

f (x) = ∂F(x)

∂x
.

The expected value of a random variable X is given by

E(X) =
∑

all x

x f (x)

in the discrete case, and by

E(X) =
∞∫

−∞
x f (x)dx

in the continuous case. Similarly, the variance of a ran-
dom variable X, denoted by σ2, is a measure of how
the values of X are spread about the mean value. It is
defined as

σ2 = E (X−µ)2 .

It is calculated for discrete and continuous random
variables, respectively, by

σ2 =
∑

all x

(x−µ)2 f (x)

and

σ2 =
∞∫

−∞
(x−µ)2 f (x)dx.

The standard deviation of X, denoted by σ , is the square
root of the variance.

The skewness coefficient of a random variable X is
a measure of the symmetry of the distribution of X about
its mean value µ, and is defined as

Sc = E(X−µ)3

σ3 .

The skewness is zero for a symmetric distribution,
negative for a left-tailed distribution, and positive for
a right-tailed distribution.

Similarly, the kurtosis coefficient of a random vari-
able X is a measure of how much of the mass of the
distribution is contained in the tails, and is defined as

Kc = E(X−µ)4

σ4 .
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Basic Statistical Concepts 1.1 Basic Probability Measures 5

Obviously, kurtosis is always positive; however, larger
values represent distributions with heavier tails.

Assume there are n random variables X1, X2, . . . ,
Xn which may or may not be mutually independent. The
joint cdf, if it exists, is given by

P(X1 ≤ x1, X2 ≤ x2, . . . Xn ≤ xn)

=
xn∫

−∞

xn−1∫

−∞
..

x1∫

−∞
f (t1, t2, .., tn)dt1 dt2..dtn

If the n random variables are mutually statistically inde-
pendent, then the joint pdf can be rewritten as

f (x1, x2, . . . , xn) =
n∏

i=1

f (xi ).

The conditional distribution of a random variable Y
given that another random variable X takes on a value x
is given by:

f (y/X = x) = f (x, y)

f1(x)
,

where

f1(x) =
∞∫

−∞
f (x, y)dy.

Given a random sample of size n from a distribution,
the sample mean and sample variance are defined as,
respectively,

X̄ = 1

n

n∑

i=1

Xi

and

S2 = 1

n−1

n∑

i=1

(Xi − X̄)2.

1.1.3 Reliability Measures

Definitions of reliability given in the literature vary ac-
cording to the practitioner or researcher. The generally
accepted definition is as follows.

Definition 1.1
Reliability is the probability of success or the probability
that the system will perform its intended function under
specified design limits.

More specifically, reliability is the probability that
a product or system will operate properly for a specified
period of time (design life) under the design operating
conditions (such as temperature, voltage, etc.) without
failure. In other words, reliability can be used as a mea-
sure of the system’s success at providing its function
properly. Reliability is one of the quality characteristics
that consumers require from manufacturers.

Mathematically, reliability R(t) is the probability
that a system will be successful in the interval from
time 0 to time t:

R(t) = P(T > t), t ≥ 0, (1.2)

where T is a random variable denoting the time-to-
failure or failure time.

Unreliability, or the cdf F(t), a measure of failure,
is defined as the probability that the system will fail by
time t.

F(t) = P(T ≤ t), t ≥ 0.

In other words, F(t) is the failure distribution function.
If the time-to-failure random variable T has a density
function f (t), then

R(t) =
∞∫

t

f (s)ds

or, equivalently,

f (t) =− d

dt
[R(t)].

The density function can be mathematically described
in terms of T :

lim
∆t→0

P(t < T ≤ t+∆t).

This can be interpreted as the probability that the failure
time T will occur between the operating time t and the
next interval of operation t+∆t.

Consider a new and successfully tested system that
operates well when put into service at time t = 0. The
system becomes less likely to remain successful as the
time interval increases. The probability of success for an
infinite time interval is, of course, zero. Thus, the system
starts to function at a probability of one and eventually
decreases to a probability of zero. Clearly, reliability is
a function of mission time. For example, one can say
that the reliability of the system is 0.995 for a mission
time of 24 h.
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6 Part A Fundamental Statistics and Its Applications

Example 1.1: A computer system has an exponential
failure time density function

f (t) = 1

9000
e−

t
9000 , t ≥ 0.

The probability that the system will fail after the war-
ranty (six months or 4380 h) and before the end of the
first year (one year or 8760 h) is given by

P(4380 < T ≤ 8760) =
8760∫

4380

1

9000
e−

t
9000 dt

= 0.237.

This indicates that the probability of failure during the
interval from six months to one year is 23.7%.

Consider the Weibull distribution, where the failure
time density function is given by

f (t) = βtβ−1

θβ
e−(

t
θ )

β

, t ≥ 0, θ > 0, β > 0.

Then the reliability function is

R(t) = e−(
t
θ )

β

, t ≥ 0.

Thus, given a particular failure time density function or
failure time distribution function, the reliability function
can be obtained directly. Section 1.2 provides further
insight for specific distributions.

System Mean Time to Failure
Suppose that the reliability function for a system is given
by R(t). The expected failure time during which a com-
ponent is expected to perform successfully, or the system

Table 1.1 Results from a twelve-component life duration
test

Component Time to failure (h)

1 4510

2 3690

3 3550

4 5280

5 2595

6 3690

7 920

8 3890

9 4320

10 4770

11 3955

12 2750

mean time to failure (MTTF), is given by

MTTF =
∞∫

0

t f (t)dt (1.3)

or, equivalently, that

MTTF =
∞∫

0

R(t)dt. (1.4)

Thus, MTTF is the definite integral evaluation of the
reliability function. In general, if λ(t) is defined as the
failure rate function, then, by definition, MTTF is not
equal to 1/λ(t).

The MTTF should be used when the failure time
distribution function is specified because the reliability
level implied by the MTTF depends on the underlying
failure time distribution. Although the MTTF measure
is one of the most widely used reliability calcula-
tions, it is also one of the most misused calculations.
It has been misinterpreted as a “guaranteed minimum
lifetime”. Consider the results given in Table 1.1 for
a twelve-component life duration test.

A component MTTF of 3660 h was estimated using
a basic averaging technique. However, one of the com-
ponents failed after 920 h. Therefore, it is important to
note that the system MTTF denotes the average time
to failure. It is neither the failure time that could be ex-
pected 50% of the time nor is it the guaranteed minimum
time of system failure, but mostly depends on the failure
distribution.

A careful examination of (1.4) will show that two
failure distributions can have the same MTTF and yet
produce different reliability levels.

Failure Rate Function
The probability of a system failure in a given time in-
terval [t1, t2] can be expressed in terms of the reliability
function as

t2∫

t1

f (t)dt =
∞∫

t1

f (t)dt−
∞∫

t2

f (t)dt

= R(t1)− R(t2)

or in terms of the failure distribution function (or the
unreliability function) as

t2∫

t1

f (t)dt =
t2∫

−∞
f (t)dt−

t1∫

−∞
f (t)dt

= F(t2)− F(t1).
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Basic Statistical Concepts 1.2 Common Probability Distribution Functions 7

The rate at which failures occur in a certain time interval
[t1, t2] is called the failure rate. It is defined as the
probability that a failure per unit time occurs in the
interval, given that a failure has not occurred prior to t1,
the beginning of the interval. Thus, the failure rate is

R(t1)− R(t2)

(t2− t1)R(t1)
.

Note that the failure rate is a function of time. If we
redefine the interval as [t, t+∆t], the above expression
becomes

R(t)− R(t+∆t)

∆tR(t)
.

The rate in the above definition is expressed in fail-
ures per unit time, but in reality the time units might
instead correspond to miles, hours, trials, etc. The haz-
ard function is defined as the limit of the failure rate
as the interval approaches zero. Thus, the hazard func-
tion h(t) is the instantaneous failure rate, and is defined

by

h(t)= lim
∆t→0

R(t)− R(t+∆t)

∆tR(t)

= 1

R(t)

[
− d

dt
R(t)

]

= f (t)

R(t)
. (1.5)

The quantity h(t)dt represents the probability that a de-
vice of age t will fail in the small interval of time t to
(t+ dt). The importance of the hazard function is that
it indicates the change in the failure rate over the life
of a population of components by plotting their hazard
functions on a single axis. For example, two designs may
provide the same reliability at a specific point in time,
but the failure rates up to this point in time can differ.

The death rate, in statistical theory, is analogous to
the failure rate, as the nature of mortality is analogous
to the hazard function. Therefore, the hazard function,
hazard rate or failure rate function is the ratio of the pdf
to the reliability function.

1.2 Common Probability Distribution Functions

This section presents some of the most common dis-
tribution functions and several hazard models that are
applied in engineering statistics [1.1].

1.2.1 Discrete Random Variable
Distributions

Binomial Distribution
The binomial distribution is one of the most widely
used discrete random variable distributions in reliability
and quality inspection. It has applications in reliabil-
ity engineering, for example when one is dealing with
a situation in which an event is either a success or
a failure.

The binomial distribution can be used to model
a random variable X which represents the number of
successes (or failures) in n independent trials (these are
referred to as Bernoulli trials), with the probability of
success (or failure) being p in each trial. The pdf of the
distribution is given by

P(X = x) =
(

n

x

)
px (1− p)n−x, x = 0, 1, 2, . . . , n,

(
n

x

)
= n!

x!(n− x)! ,

where n = number of trials, x = number of successes,
p = single trial probability of success.

The mean of the binomial distribution is n p and the
variance is n p(1− p). The coefficient of skewness is
given by

Sc = 1−2p√
n p(1− p)

and the coefficient of kurtosis is

Kc = 3− 6

n
+ 1

n p(1− p)
.

The reliability function R(k) (i. e., at least k out of n
items are good) is given by

R(k) =
n∑

x=k

(
n

x

)
px(1− p)n−x .

Example 1.2: Suppose that, during the production of
lightbulbs, 90% are found to be good. In a random sam-
ple of 20 lightbulbs, the probability of obtaining at least
18 good lightbulbs is given by

R(18) =
20∑

x=18

(
20

18

)
(0.9)x(0.1)20−x

= 0.667.
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8 Part A Fundamental Statistics and Its Applications

Poisson Distribution
Although the Poisson distribution can be used in a man-
ner similar to the binomial distribution, it is used to
deal with events in which the sample size is unknown.
A Poisson random variable is a discrete random variable
distribution with a probability density function given by

P(X = x) = λx e−λ

x! for x = 0, 1, 2, . . . (1.6)

where λ= constant failure rate; x = is the number of
events. In other words, P(X = x) is the probability that
exactly x failures occur.

A Poisson distribution is used to model a Poisson
process. A Poisson random variable has a mean and
a variance both equal toλwhereλ is called the parameter
of the distribution. The skewness coefficient is

Sc = 1√
λ

and the kurtosis coefficient is

Kc = 3+ 1

λ
.

The Poisson distribution reliability up to time t, R(k)
(the probability of k or fewer failures), can be defined as
follows

R(k) =
k∑

x=0

(λt)x e−λt

x! .

This distribution can be used to determine the number
of spares required for a system during a given mission.

Example 1.3: A nuclear plant is located in an area suscep-
tible to both high winds and earthquakes. From historical
data, the mean frequency of large earthquakes capable of
damaging important plant structures is one every 50 y.
The corresponding frequency of damaging high winds
is once in 25 y. During a strong earthquake, the prob-
ability of structure damage is 0.1. During high winds,
the damage probability is 0.05. Assume that earthquakes
and high winds can be described by independent Poisson
random variables and that the damage caused by these
events are independent. Let us answer the following
questions:

1. What is the probability of having strong winds but
not large earthquakes during a 10y period?

2. What is the probability of having strong winds and
large earthquakes in the 10y period?

3. What is the probability of building damage during
the 10y period?

Considering the first question, let the random vari-
ables X and Y represent the number of earthquakes and
the number of occurrences of high winds, respectively.
We assume that the two random variables are statistically
independent. The means of X and Y are, respectively,
given by

λX = 1

50 y
(10 y)= 0.2

and

λY = 1

25 y
(10 y)= 0.4 .

The conditional damage probabilities are given as fol-
lows:

P(damage/earthquake) = 0.1

and

P(damage/wind) = 0.05.

Let event
A = {strong winds and no earthquakes},
B = {strong winds and large earthquakes},
C = {building damage}.
Assuming that the winds and earthquakes are inde-

pendent of each other, the probability of having strong
winds but not earthquakes during the 10 y period can be
written as

P(A) = P(winds)P(no earthquakes)

= [1− P(no winds)]P(no earthquakes)

Therefore, we obtain

P(A) = (1− e−0.4)(e−0.2) = 0.27

For the second question, the probability of having strong
winds and earthquakes during the 10 y period can be
obtained from

P(B)= P(winds)P(earthquakes)

= [1− P(no winds)][1− P(no earthquakes)]
= (1− e−0.4)(1− e−0.2) = 0.06 .

Finally, for the third question, we assume that multiple
occurrences of earthquakes and high winds do not oc-
cur during the 10 y period. Therefore, the probability of
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Basic Statistical Concepts 1.2 Common Probability Distribution Functions 9

building damage can be written as

P(C) = P(damage/earthquakes)P(earthquakes)

+ P(damage/wind)P(wind)

− P(damage/earthquakes and wind)

P(earthquake and wind)

= P(damage/earthquakes)P(earthquakes)

+ P(damage/wind)P(wind)

− P(damage/earthquakes)P(damage/wind)

P(earthquake and wind)

= (1− e−0.2)(0.1)+ (1− e−0.4)(0.05)

− (0.05)(0.1)(0.06)

= 0.0343 .

Geometric Distribution
Consider a sequence of independent trials where each
trial has the same probability of success, p. Let N be
a random variable representing the number of trials until
the first success. This distribution is called the geometric
distribution. It has a pdf given by

P(N = n) = p (1− p)n−1 , n = 1, 2, . . . .

The corresponding cdf is

F(n) = 1− (1− p)n , n = 1, 2, . . . .

The expected value and the variance are, respectively,

E(N ) = 1

p
and

V (N ) = 1− p

p2
.

Hypergeometric Distribution
The hypergeometric distribution is a discrete distribution
that arises in sampling, for example. It has a pdf given
by

f (x) =

(
k

x

)(
N − k

n− x

)

(
N

n

) x = 0, 1, 2, . . . , n. (1.7)

Typically, N will be the number of units in a finite pop-
ulation; n will be the number of samples drawn without
replacement from N ; k will be the number of failures in
the population; and x will be the number of failures in
the sample.

The expected value and variance of the hypergeo-
metric random variable X are, respectively

E(X) = nk

N
and

V (X) = k(N − k)n(N −n)

N2(N −1)
.

1.2.2 Continuous Distributions

Exponential Distribution
The exponential distribution plays an essential role in
reliability engineering because it has a constant failure
rate. It has been used to model the lifetimes of electronic
and electrical components and systems. This distribution
is applicable to the case where a used component that
has not failed is as good as a new component – a rather
restrictive assumption. It should therefore be used care-
fully, since there are numerous situations where this
assumption (known as the “memoryless property” of
the distribution) is not valid.

If the time to failure is described by an exponential
failure time density function, then

f (t) = 1

θ
e−

t
θ , t ≥ 0, θ > 0 (1.8)

and this will lead to the reliability function

R(t) =
∞∫

t

1

θ
e−

s
θ ds = e−

t
θ , t ≥ 0,

where θ = 1/λ > 0 is an MTTF’s parameter and λ≥ 0
is a constant failure rate.

The hazard function or failure rate for the exponen-
tial density function is constant, i. e.,

h(t)= f (t)

R(t)
=

1
θ

e− 1
θ

e− 1
θ

= 1

θ
= λ.

The failure rate for this distribution is λ, a constant,
which is the main reason for this widely used distribu-
tion. Because of its constant failure rate, the exponential
is an excellent model for the long flat “intrinsic failure”
portion of the bathtub curve. Since most parts and sys-
tems spend most of their lifetimes in this portion of the
bathtub curve, this justifies frequent use of the exponen-
tial distribution (when early failures or wearout is not
a concern). The exponential model works well for in-
terarrival times. When these events trigger failures, the
exponential lifetime model can be used.

Part
A

1
.2



10 Part A Fundamental Statistics and Its Applications

We will now discuss some properties of the expo-
nential distribution that can be used to understand its
characteristics and when and where it can be applied.

Property 1.1
(Memoryless property) The exponential distribution is
the only continuous distribution that satisfies

P{T ≥ t} = P{T ≥ t+ s|T ≥ s} for t > 0, s > 0.
(1.9)

This result indicates that the conditional reliability func-
tion for the lifetime of a component that has survived to
time s is identical to that of a new component. This term
is the so-called “used as good as new” assumption.

Property 1.2
If T1, T2, . . . , Tn , are independently and identically
distributed exponential random variables (r.v.’s) with
a constant failure rate λ, then

2λ
n∑

i=1

Ti ∼ χ2(2n), (1.10)

where χ2(2n) is a chi-squared distribution with 2n de-
grees of freedom. This result is useful for establishing
a confidence interval for λ.

Uniform Distribution
Let X be a random variable with a uniform distribution
over the interval (a, b) where a < b. The pdf is given by

f (x) =
⎧
⎨

⎩
1

b−a a ≤ x ≤ b

0 otherwise
.

The expected value and variance are, respectively,

E(X) = a+b

2

and

V (X) = (b−a)2

12
.

Normal Distribution
The normal distribution plays an important role in clas-
sical statistics due to the Central Limit Theorem. In
production engineering, the normal distribution primar-
ily applies to measurements of product susceptibility
and external stress. This two-parameter distribution is
used to describe mechanical systems in which a failure

results from some wearout effect. The normal distribu-
tion takes the well-known bell shape. This distribution
is symmetrical about the mean and the spread is meas-
ured by the variance. The larger the value, the flatter the
distribution. The pdf is given by

f (t) = 1

σ
√

2π
e
− 1

2

(
t−µ
σ

)2

, −∞< t <∞,

where µ is the mean value and σ is the standard devia-
tion. The cumulative distribution function (cdf) is

F(t) =
t∫

−∞

1

σ
√

2π
e
− 1

2

(
s−µ
σ

)2

ds.

The reliability function is

R(t) =
∞∫

t

1

σ
√

2π
e
− 1

2

(
s−µ
σ

)2

ds.

There is no closed-form solution for the above equation.
However, tables for the standard normal density function
are readily available (see Table 1.6 in Sect. 1.A) and can
be used to find probabilities for any normal distribution.
If

Z = T −µ

σ

is substituted into the normal pdf, we obtain

f (z) = 1√
2π

e−
z2
2 , −∞< Z <∞.

This is a so-called standard normal pdf, with a mean
value of 0 and a standard deviation of 1. The standardized
cdf is given by

Φ(t)=
t∫

−∞

1√
2π

e−
1
2 s2

ds, (1.11)

where Φ is a standard normal distribution function.
Thus, for a normal random variable T , with mean µ

and standard deviation σ ,

P(T ≤ t)= P

(
Z ≤ t−µ

σ

)
=Φ

(
t−µ

σ

)
,

where Φ yields the relationship required if standard
normal tables are to be used.

It should be noted that the coefficent of kurtosis in the
normal distribution is 3. The hazard function for a nor-
mal distribution is a monotonically increasing function
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Basic Statistical Concepts 1.2 Common Probability Distribution Functions 11

of t. This is easily shown by proving that h′(t) ≥ 0 for
all t. Since

h(t)= f (t)

R(t)

then

h′(t) = R(t) f ′(t)+ f 2(t)

R2(t)
≥ 0.

One can attempt this proof by using the basic definition
of a normal density function f .

Example 1.4: A component has a normal distribution
of failure times with µ= 2000 h and σ = 100 h. The
reliability of the component at 1900 h is required.

Note that the reliability function is related to the
standard normal deviate z by

R(t) = P

(
Z >

t−µ

σ

)
,

where the distribution function for Z is given by (1.11).
For this particular application,

R(1900) = P

(
Z >

1900−2000

100

)

= P(z >−1).

From the standard normal table in Table 1.6 in Sect. 1.A,
we obtain

R(1, 900) = 1−Φ(−1) = 0.8413.

The value of the hazard function is found from the
relationship

h(t) = f (t)

R(t)
= Φ

( t−µ
σ

)

σR(t)
,

where Φ is the pdf of the standard normal density. Here

h(1900) = Φ(−1.0)

σR(t)
= 0.1587

100(0.8413)
= 0.0019 failures/cycle.

The normal distribution is flexible enough to make it
a very useful empirical model. It can be theoretical
derived under assumptions matching many failure mech-
anisms. Some of these are: corrosion, migration, crack
growth, and failures resulting from chemical reactions
or processes in general. That does not mean that the nor-
mal distribution is always the correct model for these
mechanisms, but it does perhaps explain why it has been
empirically successful in so many of these cases.

Log Normal Distribution
The log normal lifetime distribution is a very flexible
model that can empirically fit many types of failure data.
This distribution, when applied in mechanical reliability
engineering, is able to model failure probabilities of re-
pairable systems, the compressive strength of concrete
cubes, the tensile strength of fibers, and the uncer-
tainty in failure rate information. The log normal density
function is given by

f (t) = 1

σt
√

2π
e
− 1

2

(
ln t−µ

σ

)2

, t ≥ 0, (1.12)

where µ and σ are parameters such that −∞<µ<∞,
and σ > 0. Note that µ and σ are not the mean and
standard deviations of the distribution.

Its relationship to the normal (just take natural log-
arithms of all of the data and time points and you have
“normal” data) makes it easy to work with many good
software analysis programs used to treat normal data.

Mathematically, if a random variable X is defined as
X = ln T , then X is normally distributed with a mean of
µ and a variance of σ2. That is,

E(X) = E(ln T ) = µ

and

V (X) = V (ln T ) = σ2.

Since T = eX , the mean of the log normal distribu-
tion can be found via the normal distribution. Consider
that

E(T ) = E(eX ) =
∞∫

−∞

1

σ
√

2π
e

[
x− 1

2

(
x−µ
σ

)2
]

dx.

By rearranging the exponent, this integral becomes

E(T ) = eµ+
σ2
2

∞∫

−∞

1

σ
√

2π
e−

1
2σ2

[
x−(µ+σ2)

]2

dx.

Thus, the mean of the log normal distribution is

E(T ) = eµ+
σ2
2 .

Proceeding in a similar manner,

E(T 2) = E(e2X ) = e2(µ+σ2)

so the variance for the log normal is

V (T ) = e2µ+σ2
(eσ

2 −1).
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12 Part A Fundamental Statistics and Its Applications

The coefficient of skewness of this distribution is

Sc = e3σ2 −3eσ
2 +2

(
eσ2 −1

) 3
2

.

It is interesting that the skewness coefficient does not
depend on µ and grows rapidly as the variance σ2

increases.
The cumulative distribution function for the log

normal is

F(t) =
t∫

0

1

σs
√

2π
e
− 1

2

(
ln s−µ

σ

)2

ds

and this can be related to the standard normal deviate Z
by

F(t)= P(T ≤ t)= P(ln T ≤ ln t)

= P

(
Z ≤ ln t−µ

σ

)
.

Therefore, the reliability function is given by

R(t) = P

(
Z >

ln t−µ

σ

)
(1.13)

and the hazard function would be

h(t) = f (t)

R(t)
=

Φ
(

ln t−µ
σ

)

σtR(t)

where Φ is the cdf of standard normal density.
The log normal lifetime model, like the normal,

is flexible enough to make it a very useful empirical
model. It can be theoretically derived under assumptions
matching many failure mechanisms, including corro-
sion, migration, crack growth and failures resulting from
chemical reactions or processes in general. As with the
normal distribution, this does not mean that the log nor-
mal is always the correct model for these mechanisms,
but it suggests why it has been empirically successful in
so many of these cases.

Student’s t Distribution
Student’s t probability density function of a random
variable T is given by:

f (t) =
Γ

(
r+1

2

)

√
πΓ

( r
2

) (
1+ t2

r

) r+1
2

for −∞< t <∞.

(1.14)

In other words, if a random variable T is defined as

T = W√
V
r

,

where W is a standard normal random variable and V
has a chi-square distribution with r degrees of freedom,
and W and V are statistically independent, then T is
Student’s t-distributed, and parameter r is referred to as
the degrees of freedom (see Table 1.7 in Sect. 1.A).

The F Distribution
Let us define the random variable F is as follows

F = U/r1

V/r2
,

where U has a chi-square distribution with r1 degrees
of freedom, V is also chi-square-distributed, with r2
degrees of freedom, and U and V are statistically inde-
pendent, then the probability density function of F is
given by

f (t) =
Γ

( r1+r2
2

) ( r1
r2

) r1
2

(t)
r1
2 −1

Γ
( r1

2

)
Γ

( r2
2

) (
1+ r1t

r2

) r1+r2
2

for t > 0.

(1.15)

The F distribution is a two-parameter – r1 and r2 –
distribution where the parameters are the degrees of
freedom of the underlying chi-square random variables
(see Table 1.8 in Sect. 1.A).

It is worth noting that if T is a random variable with
a t distribution and r degrees of freedom, then the ran-
dom variable T 2 has an F distribution with parameters
r1 = 1 and r2 = r. Similarly, if F is F-distributed with
r1 and r2 degrees of freedom, then the random variable
Y , defined as

Y = r1 F

r2+r1 F

has a beta distribution with parameters r1/2 and r2/2.

Weibull Distribution
The exponential distribution is often limited in appli-
cability owing to its memoryless property. The Weibull
distribution [1.2] is a generalization of the exponen-
tial distribution and is commonly used to represent
fatigue life, ball-bearing life and vacuum tube life. The
Weibull distribution is extremely flexible and appropri-
ate for modeling component lifetimes with fluctuating
hazard rate functions and is used to represent various
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Basic Statistical Concepts 1.2 Common Probability Distribution Functions 13

types of engineering applications. The three-parameter
probability density function is

f (t) = β(t−γ )β−1

θβ
e
−
(

t−γ
θ

)β
, t ≥ γ ≥ 0, (1.16)

where θ and β are known as the scale and shape pa-
rameters, respectively, and γ is known as the location
parameter. These parameters are always positive. By us-
ing different parameters, this distribution can follow the
exponential distribution, the normal distribution, etc. It
is clear that, for t ≥ γ , the reliability function R(t) is

R(t) = e
−
(

t−γ
θ

)β
for t > γ > 0, β > 0, θ > 0

(1.17)

hence,

h(t)= β(t−γ )β−1

θβ
, t > γ > 0, β > 0, θ > 0.

(1.18)

It can be shown that the hazard function decreases
for β < 1, increases for β > 1, and is constant when
β = 1.

Note that the Rayleigh and exponential distributions
are special cases of the Weibull distribution at β = 2,
γ = 0, and β = 1, γ = 0, respectively. For example,
when β = 1 and γ = 0, the reliability of the Weibull
distribution function in (1.17) reduces to

R(t) = e−
t
θ

and the hazard function given in (1.18) reduces to 1/θ,
a constant. Thus, the exponential is a special case of the
Weibull distribution. Similarly, when γ = 0 and β = 2,
the Weibull probability density function becomes the
Rayleigh density function. That is,

f (t) = 2

θ
t e−

t2
θ for θ > 0, t ≥ 0.

Other Forms of Weibull Distributions
The Weibull distribution is widely used in engineering
applications. It was originally proposed in order to rep-
resent breaking strength distributions of materials. The
Weibull model is very flexible and has also been ap-
plied in many applications as a purely empirical model,
with theoretical justification. Other forms of Weibull
probability density function include, for example,

f (x) = λγxγ−1 e−λtγ . (1.19)

When γ = 2, the density function becomes a Rayleigh
distribution.

It is easy to show that the mean, variance and relia-
bility of the above Weibull distribution are, respectively:

Mean = λ
1
γ Γ

(
1+ 1

γ

)
;

Variance = λ
2
γ

{
Γ

(
1+ 2

γ

)
−
[
Γ

(
1+ 1

γ

)]2
}
;

Reliability = e−λtγ . (1.20)

Example 1.5: The time to failure of a part has a Weibull
distribution with 1

λ
= 250 (measured in 105 cycles) and

γ = 2. The part reliability at 106 cycles is given by:

R(106) = e−(10)2/250 = 0.6703.

The resulting reliability function is shown in Fig. 1.1.

Gamma Distribution
The gamma distribution can be used as a failure prob-
ability function for components whose distribution is
skewed. The failure density function for a gamma dis-
tribution is

f (t) = tα−1

βαΓ (α)
e−

t
β , t ≥ 0, α, β > 0, (1.21)

where α is the shape parameter and β is the scale pa-
rameter. In this expression, Γ (α) is the gamma function,
which is defined as

Γ (α) =
∞∫

0

tα−1 e−t dt for α > 0.

Hence,

R(t) =
∞∫

t

1

βαΓ (α)
sα−1 e−

s
β ds.
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Fig. 1.1 Weibull reliability function versus time
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14 Part A Fundamental Statistics and Its Applications

If α is an integer, it can be shown by successive integra-
tion by parts that

R(t) = e−
t
β

α−1∑

i=0

(
t
β

)i

i! (1.22)

and

h(t) = f (t)

R(t)
=

1
βαΓ (α) tα−1 e

− t
β

e
− t

β
α−1∑
i=0

(
t
β

)i

i!

. (1.23)

The gamma density function has shapes that are very
similar to the Weibull distribution. At α= 1, the gamma
distribution becomes the exponential distribution with
a constant failure rate 1/β. The gamma distribution
can also be used to model the time to the nth fail-
ure of a system if the underlying failure distribution
is exponential. Thus, if Xi is exponentially distributed
with parameter θ = 1/β, then T = X1+ X2+· · ·+ Xn
is gamma-distributed with parameters β and n.

Example 1.6: The time to failure of a component has
a gamma distribution with α= 3 and β = 5. Obtain the
reliability of the component and the hazard rate at 10
time units.

Using (1.22), we compute

R(10) = e−
10
5

2∑

i=0

(
10
5

)i

i! = 0.6767 .

The hazard rate is given by

h(10)= f (10)

R(10)
= 0.054

0.6767
=0.798 failures/unit time.

The other form of the gamma probability density func-
tion can be written as follows:

f (x) = βαtα−1

Γ (α)
e−tβ, t > 0. (1.24)

This pdf is characterized by two parameters: the
shape parameter α and the scale parameter β. When
0 < α < 1, the failure rate monotonically decreases;
when α > 1, the failure rate monotonically increases;
when α= 1 the failure rate is constant.
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Fig. 1.2 Gamma reliability function versus time

The mean, variance and reliability of the gamma
random variable are:

Mean (MTTF) = α

β
;

Variance = α

β2 ;

Reliability=
∞∫

t

βαxα−1

Γ (α)
e−xβ dx.

Example 1.7: A mechanical system time to failure is
gamma-distributed with α= 3 and 1/β = 120. The sys-
tem reliability at 280 h is given by

R(280) = e
−280
120

2∑

k=0

(
280
120

)2

k! = 0.851 19

and the resulting reliability plot is shown in Fig. 1.2.

The gamma model is a flexible lifetime model that
may offer a good fit to some sets of failure data. Although
it is not widely used as a lifetime distribution model for
common failure mechanisms, the gamma lifetime model
is commonly used in Bayesian reliability applications.

Beta Distribution
The two-parameter beta density function f (t) is given
by

f (t) = Γ (α+β)

Γ (α)Γ (β)
tα−1(1− t)β−1 ,

0 < t < 1, α > 0, β > 0 , (1.25)

where α and β are the distribution parameters. This
two-parameter beta distribution is commonly used
in many reliability engineering applications and also
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Basic Statistical Concepts 1.2 Common Probability Distribution Functions 15

plays an important role in the theory of statistics.
Note that the beta-distributed random variable takes
on values in the interval (0, 1), so the beta distri-
bution is a natural model when the random variable
represents a probability. Likewise, when α = β = 1,
the beta distribution reduces to a uniform distribu-
tion.

The mean and variance of the beta random variable
are, respectively,

E(T ) = α

α+β

and

V (T ) = αβ

(α+β+1) (α+β)2
.

Pareto Distribution
The Pareto distribution was originally developed to
model income in a population. Phenomena such as city
population size, stock price fluctuations and personal in-
comes have distributions with very long right tails. The
probability density function of the Pareto distribution is
given by

f (t) = αkα

tα+1 , k ≤ t ≤∞. (1.26)

The mean, variance and reliability of the Pareto distri-
bution are:

Mean = k/(α−1) for > 1;
Variance = αk2/[(α−1)2(α−2)] for α > 2;

Reliability=
(

k

t

)α

.

The Pareto and log normal distributions are com-
monly used to model population size and economical
incomes. The Pareto is used to fit the tail of the distri-
bution, and the log normal is used to fit the rest of the
distribution.

Rayleigh Distribution
The Rayleigh model is a flexible lifetime model that can
apply to many degradation process failure modes. The
Rayleigh probability density function is

f (t) = t

σ2 exp

(−t2

2σ2

)
. (1.27)
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Fig. 1.3 Rayleigh reliability function versus time

The mean, variance and reliability of the Rayleigh func-
tion are:

Mean = σ
(π

2

) 1
2 ;

Variance =
(

2− π

2

)
σ2;

Reliability= e
−σt2

2 .

Example 1.8: Rolling resistance is a measure of the en-
ergy lost by a tire under load when it resists the force
opposing its direction of travel. In a typical car travel-
ing at sixty miles per hour, about 20% of the engine
power is used to overcome the rolling resistance of the
tires. A tire manufacturer introduces a new material
that, when added to the tire rubber compound, signif-
icantly improves the tire rolling resistance but increases
the wear rate of the tire tread. Analysis of a laboratory
test of 150 tires shows that the failure rate of the new
tire increases linearly with time (h). This is expressed
as

h(t)= 0.5 × 10−8t.

The reliability of the tire after one year (8760 h) of use
is

R(1 y) = e−
0.5
2 ×10−8×(8760)2 = 0.8254.

Figure 1.3 shows the resulting reliability function.

Vtub-Shaped Hazard Rate Distribution
Pham recently developed a two-parameter lifetime dis-
tribution with a Vtub-shaped hazard rate, known as
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Fig. 1.4 Probability density function for various values of
α with a = 2

a loglog distribution with a Vtub-shaped hazard rate
or a Pham distribution for short [1.3].

Note that the loglog distribution with a Vtub-
shaped hazard rate and the Weibull distribution with
bathtub-shaped failure rates are not the same. For the
bathtub-shaped failure rate, after an initial “infant mor-
tality period”, the useful life of the system begins.
During its useful life, the system fails at a constant rate.
This period is then followed by a wearout period during
which the system failure rate slowly increases with the
onset of wearout. For the Vtub-shaped, after the infant
mortality period, the system experiences a relatively low
but increasing failure rate. The failure rate increases due
to aging.

The Pham probability density function is given as
follows [1.3]:

f (t) = α ln atα−1atα e1−atα

for t > 0, a > 0, α > 0. (1.28)

The Pham distribution and reliability functions are

F(t) =
t∫

0

f (x)dx = 1− e1−atα

and

R(t) = e1−atα

, (1.29)

respectively. The corresponding failure rate of the Pham
distribution is given by

h(t) = α ln atα−1atα . (1.30)

40 321
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Fig. 1.5 Probability density function for various values of
a with α= 1.5

Figures 1.4 and 1.5 describe the density functions and
failure rate functions for various values of a and α.

Two-Parameter Hazard Rate Function
This is a two-parameter function that can have increasing
and decreasing hazard rates. The hazard rate h(t), the
reliability function R(t) and the pdf are, respectively,
given as follows

h(t) = nλtn−1

λtn +1
for n ≥ 1, λ > 0, t ≥ 0, (1.31)

R(t) = e− ln(λt N+1)

and

f (t) = nλtn−1

λtn +1
e− ln(λtn+1), n ≥ 1, λ > 0, t ≥ 0,

where n = shape parameter; λ= scale parameter.

Three-Parameter Hazard Rate Function
This is a three-parameter distribution that can have in-
creasing and decreasing hazard rates. The hazard rate
h(t) is given as

h(t)=λ(b+1)[ln(λt+α)]b
(λt+α)

,

b ≥ 0, λ > 0, α ≥ 0, t ≥ 0. (1.32)

The reliability function R(t) for α= 1 is

R(t) = e−[ln(λt+α)]b+1
.

The probability density function f (t) is

f (t) = e−[ln(λt+α)]b+1 λ(b+1)[ln(λt+α)]b
(λt+α)

,
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Basic Statistical Concepts 1.3 Statistical Inference and Estimation 17

where b = shape parameter; λ= scale parameter, and
α= location parameter.

Extreme-Value Distribution
The extreme-value distribution can be used to model
external events such as floods, tornadoes, hurricanes
and high winds in risk applications. The cdf of this
distribution is given by

F(t) = e−ey
for −∞< t <∞. (1.33)

Cauchy Distribution
The Cauchy distribution can be applied when analyzing
communication systems where two signals are received
and one is interested in modeling the ratio of the two
signals. The Cauchy probability density function is given
by

f (t) = 1

π(1+ t2)
for −∞< t <∞. (1.34)

It is worth noting that the ratio of two standard normal
random variables is a random variable with a Cauchy
distribution.

1.3 Statistical Inference and Estimation

The problem of “point estimation” is that of estimating
the parameters of a population, such as λ or θ from an ex-
ponential,µ and σ2 from a normal, etc. It is assumed that
the type of population distribution involved is known, but
the distribution parameters are unknown and they must
be estimated using collected failure data. This section is
devoted to the theory of estimation and discusses sev-
eral common estimation techniques, such as maximum
likelihood, method of moments, least squared estima-
tion, and Bayesian methods. We also discuss confidence
interval and tolerance limit estimation. For example, as-
sume that n independent samples are drawn from the
exponential density function f (x; λ)= λe−λx for x > 0
and λ > 0. Then the joint probability density function
(pdf) or sample density (for short) is given by

f (x1, λ) · f (x1, λ) · · · f (x1, λ) = λn e
−λ

n∑
i−1

xi

.

(1.35)

The problem here is to find a “good” point esti-
mate of λ, which is denoted by λ̂. In other words, we
want to find a function h(X1, X2, . . . , Xn) such that,
if x1, x2, . . . , xn are the observed experimental values
of X1, X2, . . . , Xn , the value h(x1, x2, . . . , xn) will be
a good point estimate of λ. By “good”, we mean that it
possesses the following properties:

• unbiasedness,• consistency,• efficiency (minimum variance),• sufficiency.

In other words, if λ̂ is a good point estimate of λ,
then one can select a function h(X1, X2, . . . , Xn) where
h(X1, X2, . . . , Xn) is an unbiased estimator of λ and the

variance of h(X1, X2, . . . , Xn) is a minimum. We will
now present the following definitions.

Unbiasedness. For a given positive integer n, the
statistic Y = h(X1, X2, . . . , Xn) is called an unbiased
estimator of the parameter θ if the expectation of Y is
equal to a parameter θ; that is,

E(Y ) = θ.

Consistency. The statistic Y is called a consistent esti-
mator of the parameter θ if Y converges stochastically
to a parameter θ as n approaches infinity. If ε is an ar-
bitrarily small positive number when Y is consistent,
then

lim
n→∞ P(|Y − θ| ≤ ε) = 1.

Minimum Variance. The statistic Y is called the mini-
mum variance unbiased estimator of the parameter θ if
Y is unbiased and the variance of Y is less than or equal
to the variance of every other unbiased estimator of θ.
An estimator that has the property of minimum variance
in large samples is said to be efficient.

Sufficiency. The statistic Y is said to be sufficient for θ
if the conditional distribution of X, given that Y = y, is
independent of θ.

This is useful when determining a lower bound on
the variance of all unbiased estimators. We now establish
a lower bound inequality known as the Cramér–Rao
inequality.

Cramér–Rao Inequality. Let X1, X2, . . . , Xn denote
a random sample from a distribution with pdf f (x; θ)
for θ1 < θ < θ2, where θ1 and θ2 are known. Let Y =
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18 Part A Fundamental Statistics and Its Applications

h(X1, X2, . . . , Xn) be an unbiased estimator of θ. The
lower bound inequality on the variance of Y , Var(Y ), is
given by

Var(Y ) ≥ 1

nE

[(
∂ ln f (x;θ)

∂θ

)2
] = 1

−nE
(
∂2 ln f (x;θ)

∂θ2

) .

(1.36)

Theorem 1.1
An estimator θ̂ is said to be asymptotically efficient if√

nθ̂ has a variance that approaches the Cramér–Rao
lower bound for large n; that is,

lim
n→∞Var(

√
nθ̂) = 1

−nE
(
∂2 ln f (x;θ)

∂θ2

) . (1.37)

1.3.1 Parameter Estimation

We now discuss some basic methods of parameter esti-
mation, including the method of maximum likelihood
estimation (MLE) and the method of moments. The
assumption that the sample is representative of the pop-
ulation will be made both in the example and in later
discussions.

Maximum Likelihood Estimation Method
In general, one deals with a sample density

f (x1, x2, . . . , xn) = f (x1; θ) f (x2; θ) . . . f (xn; θ),

where x1, x2, . . . , xn are random, independent observa-
tions of a population with density function f (x).

For the general case, we would like to find an esti-
mate or estimates, θ̂1, θ̂2, . . . , θ̂m (if such exist), where

f (x1, x2, . . . , xn; θ1, θ2, . . . , θm) >

f (x1, x2, . . . , xn; θ ′1, θ ′2, . . . , θ ′m).

The notation θ ′1, θ ′2, . . . , θ ′n refers to any other estimates
different to θ̂1, θ̂2, . . . , θ̂m .

Consider a random sample X1, X2, . . . , Xn from
a distribution with a pdf f (x; θ). This distribution has
a vector θ = (θ1, θ2, . . . , θm)′ of unknown parameters
associated with it, where m is the number of unknown
parameters. Assuming that the random variables are in-
dependent, then the likelihood function, L(X; θ), is the
product of the probability density function evaluated at
each sample point

L(X, θ) =
n∏

i=1

f (Xi; θ), (1.38)

where X= (X1, X2, . . . , Xn). The maximum likelihood
estimator θ̂ is found by maximizing L(X; θ) with re-
spect to θ. In practice, it is often easier to maximize
ln[L(X; θ)] in order to find the vector of MLEs, which
is valid because the logarithmic function is monotonic.
The log likelihood function is given by

ln L(X, θ) =
n∑

i=1

ln f (Xi; θ) (1.39)

and is asymptotically normally distributed since it con-
sists of the sum of n independent variables and the
central limit theorem is implied. Since L(X; θ) is a joint
probability density function for X1, X2, . . . , Xn , its
integral must be 1; that is,

∞∫

0

∞∫

0

· · ·
∞∫

0

L(X; θ)dX = 1.

Assuming that the likelihood is continuous, the partial
derivative of the left-hand side with respect to one of the
parameters, θi , yields

∂

∂θi

∞∫

0

∞∫

0

· · ·
∞∫

0

L(X; θ)dX

=
∞∫

0

∞∫

0

· · ·
∞∫

0

∂

∂θi
L(X; θ)dX

=
∞∫

0

∞∫

0

· · ·
∞∫

0

∂ log L (X; θ)
∂θi

L(X; θ)dX

= E

(
∂ log L (X; θ)

∂θi

)

= E[Ui (θ)] for i = 1, 2, . . . ,m,

where U(θ) = [U1(θ),U2(θ), . . .Un(θ)]′ is often called
the score vector, and the vector U(θ) has components

Ui (θ) = ∂[log L (X; θ)]
∂θi

for i = 1, 2, . . . ,m

(1.40)

which, when equated to zero and solved, yields the MLE
vector θ.

Suppose that we can obtain a nontrivial function
of X1, X2, . . . , Xn , say h(X1, X2, . . . , Xn), such that,
when θ is replaced by h(X1, X2, . . . , Xn), the likelihood
function L will achieve a maximum. In other words,

L[X, h(X)] ≥ L(X, θ)
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for every θ. The statistic h(X1, X2, . . . , Xn) is called
a maximum likelihood estimator of θ and will be denoted
as

θ̂ = h(x1, x2, . . . , xn). (1.41)

The observed value of θ̂ is called the MLE of θ. In
general, the mechanics for obtaining the MLE can be
obtained as follows:

Step 1. Find the joint density function L(X, θ)
Step 2. Take the natural log of the density ln L
Step 3. Find the partial derivatives of ln L with respect

to each parameter
Step 4. Set these partial derivatives to “zero”
Step 5. Solve for parameter(s).

Example 1.9: Let X1, X2, . . . , Xn , denote a random
sample from the normal distribution N(µ, σ2). Then the
likelihood function is given by

L(X, µ, σ2) =
(

1

2π

) n
2 1

σn e
− 1

2σ2

n∑
i=1

(xi−µ)2

and

ln L =−n

2
log(2π)− n

2
log σ2− 1

2σ2

n∑

i=1

(xi −µ)2.

Thus, we have

∂ ln L

∂µ
= 1

σ2

n∑

i=1

(xi −µ) = 0,

∂ ln L

∂σ2 =− n

2σ2 −
1

2σ4

n∑

i=1

(xi −µ)2 = 0.

Solving the two equations simultaneously, we obtain

µ̂=

n∑
i=1

xi

n
,

σ̂2 = 1

n

n∑

i=1

(xi − x̄)2.

Note that the MLEs, if they exist, are both sufficient
and efficient estimates. They also have an additional
property called invariance – in other words, for an MLE
of θ, µ(θ) is the MLE of µ(θ). However, they are not
necessarily unbiased (i. e., E(θ̂) = θ). In fact, the point

is that

E(σ̂2) =
(

n−1

n

)
σ2 �= σ2.

Therefore, for small n, σ2 is usually adjusted to account
for this bias, and the best estimate of σ2 is

σ̂2 =
(

1

n−1

) n∑

i=1

(xi − x̄)2.

Sometimes it is difficult, if not impossible, to obtain
maximum likelihood estimators in a closed form, and
therefore numerical methods must be used to maximize
the likelihood function.

Example 1.10: Suppose that X1, X2, . . . , Xn is a random
sample from the Weibull distribution with pdf

f (x, α, λ) = αλxα−1 e−λxα . (1.42)

The likelihood function is

L(X, α, λ)= αnλn
n∏

i=1

xα−1
i e

−λ
n∑

i=1
xαi
.

Then

ln L = n logα+n logλ+ (α−1)
n∑

i=1

log xi

−λ

n∑

i=1

xαi ,

∂ ln L

∂α
= n

α
+

n∑

i=1

log xi −λ

n∑

i=1

xαi log xi = 0,

∂ ln L

∂λ
= n

λ
−

n∑

i=1

xαi = 0.

As noted, solutions of the above two equations for α

and λ are extremely difficult to obtain and require the
application of either graphical or numerical methods. It
is sometimes desirable to use a quick method of esti-
mation, which leads to a discussion of the method of
moments.

Method of Moments
Here one simply sets the sample moments equal to the
corresponding population moments. For example, for
the gamma distribution, the mean and the variance of
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the distribution are, respectively, α
β

and α
β2 . Therefore,

one has the following two equations in two unknowns:

X̄ = α

β
,

S2 = α

β2
.

Solving these two equations simultaneously, we obtain

α= X̄2

S2
,

β = X̄

S2 .

1.3.2 Maximum Likelihood Estimation
with Censored Data

Censored data arises when we monitor for a random
variable of interest – unit failure, for example – but the
monitoring is stopped before measurements are com-
plete (i. e. before the unit fails). In other words, censored
observation contains only partial information about the
random variable of interest. In this section, we consider
two types of censoring. The first type of censoring is
called Type I censoring, where the event is only ob-
served if it occurs prior to some prespecified time. The
second type of censoring is Type II censoring, in which
the study continues until the failure of the first r units
(or components), where r is some predetermined integer
(r < n).

Examples of Type II censoring are often used when
testing equipment life. Here our items are tested at the
same time, and the test is terminated when r of the n
items have failed. These approaches may save time and
resources because it may take a very long time for all of
the items to fail. Both Type I and Type II censoring arise
in many reliability applications.

For example, let’s say that we have a batch of tran-
sistors or tubes. We begin to test them all at t = 0, and
record their times to failure. Some transistors may take
a long time to burn out, and we will not want to wait that
long to end the experiment. We might stop the experi-
ment at a prespecified time tc, in which case we have
Type I censoring. On the other hand, we might not know
what fixed value to use for the censoring time before-
hand, so we decide to wait until a prespecified number
of units have failed, r, in which case we have Type II
censoring.

Censoring times may vary from individual to in-
dividual or from application to application. We now
discuss a general case known as multiple-censored data.

Parameter Estimate
with Multiple-Censored Data
The likelihood function for multiple-censored data is
given by

L = f (t1,f, . . . , tr,f, t1,s, . . . , tm,s)

= C
r∏

i=1

f (ti,f)
m∏

j=1

[1− F(t j,s)], (1.43)

where C is a constant, f (.) is the density function and
F(.) is the distribution function. There are r failures
at times t1,f, . . . , tr,f and m units with censoring times
t1,s, . . . , tm,s.

Note that we obtain Type-I censoring by simply set-
ting ti,f = ti,n and t j,s = t0 in the likelihood function in
(1.43). The likelihood function for Type II censoring is
similar to Type I censoring except t j,s = tr in (1.43). In
other words, the likelihood function for the first r obser-
vations from a sample of size n drawn from the model
in both Type I and Type II censoring is given by

L = f (t1,n, . . . , tr,n) = C
r∏

i=1

f (ti,n)[1− F(t∗)]n−r ,

(1.44)

where t∗ = t0, the time of cessation of the test for Type I
censoring and t∗ = tr , the time of the rth failure for
Type II censoring.

Example 1.11: Consider a two-parameter probability
density distribution with multiple-censored data and
a distribution function with bathtub shaped failure rate,
as given by [1.4]:

f (t) = λβtβ−1 exp[tβ+λ(1− etβ )], t, λ, β > 0
(1.45)

and

F(t) = 1− exp[λ(1− etβ )], t, λ, β > 0, (1.46)

respectively.
Substituting the functions f (t) and F(t) into (1.45)

and (1.46) into (1.44), we obtain the logarithm of the
likelihood function:

ln L = ln C+r lnλ+r lnβ+
r∑

i=1

(β−1) ln ti

+ (m+r)λ+
r∑

i=1

tβi −
⎡

⎣
r∑

i=1

λetβi +
m∑

j=1

λetβj

⎤

⎦ .

The function ln L can be maximized by setting the partial
derivative of ln L with respect to λ and β equal to zero,
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and solving the resulting equations simultaneously for
λ and β. Therefore, we obtain

∂ ln L

∂λ
= r

λ
+ (m+r)−

r∑

i=1

etβi −
m∑

j=1

etβj ≡ 0,

∂ ln L

∂β
= r

β
+

r∑

i=1

ln ti +
r∑

i=1

tβi ln ti

−λ

⎛

⎝
r∑

i=1

etβi tβi ln ti +
m∑

j=1

etβj tβj ln t j

⎞

⎠≡ 0.

This implies that

λ̂= r(
r∑

i=1
etβ̂i +

m∑
j=1

etβ̂j

)
−m−r

(1.47)

and that β̂ is the solution of

r

β̂
+

r∑

i=1

ln ti +
r∑

i=1

tβ̂i ln ti

= r(
r∑

i=1
etβ̂i +

m∑
j=1

etβ̂j

)
−m−r

⎛

⎝
r∑

i=1

etβ̂i tβ̂i ln ti +
m∑

j=1

etβ̂j tβ̂j ln t j

⎞

⎠ . (1.48)

We now discuss two special cases.
Case 1: Type I or Type II censored data
From (1.44), the likelihood function for the first r

observations from a sample of size n drawn from the
model in both Type I and Type II censoring is

L = f (t1,n, . . . , tr,n) = C
r∏

i=1

f (ti,n)[1− F(t∗)]n−r ,

where t∗ = t0, the test cessation time for Type I censor-
ing, and t∗ = tr , the time of the rth failure for Type II
censoring. Equations (1.47) and (1.48) become

λ̂= r
r∑

i=1
etβ̂i + (n−r)etβ̂∗ −n

,

r

β̂
+

r∑

i=1

ln ti +
r∑

i=1

tβ̂i ln ti

= r
r∑

i=1
etβ̂i + (n−r)etβ̂∗ −n

×

⎛

⎝
r∑

i=1

etβ̂i tβ̂i ln ti +
m∑

j=1

etβ̂j tβ̂j ln t j

⎞

⎠

Case 2: Complete censored data
Simply replace r with n in (1.47) and (1.48) and ig-

nore the t j portions. The maximum likelihood equations
for the λ and β are given by

λ̂= n
n∑

i=1
etβ̂i −n

,

n

β̂
+

n∑

i=1

ln ti +
n∑

i=1

tβ̂i ln ti

= n
n∑

i=1
etβ̂i −n

×
n∑

i=1

etβ̂i tβ̂i ln ti .

Confidence Intervals of Estimates
The asymptotic variance–covariance matrix for the pa-
rameters (λ and β) is obtained by inverting the Fisher
information matrix

Iij = E

(
− ∂2L

∂θi∂θ j

)
, i, j = 1, 2, (1.49)

where θ1, θ2 = λ or β [1.5]. This leads to
(

Var(λ̂) Cov(λ̂, β̂)

Cov(λ̂, β̂) Var(β̂)

)

=
⎛

⎝
E
(
− ∂2 ln L

∂2λ
|
λ̂,β̂

)
E
(
− ∂2 ln L

∂λ∂β
|
λ̂,β̂

)

E
(
− ∂2 ln L

∂β∂λ
|
λ̂,β̂

)
E
(
− ∂2 ln L

∂2β
|
λ̂,β̂

)

⎞

⎠ . (1.50)

We can obtain approximate (1−α)100% confidence
intervals for the parameters λ and β based on the asymp-
totic normality of the MLEs [1.5] as:

λ̂± Zα/2

√
Var(λ̂) and β̂± Zα/2

√
Var(β̂), (1.51)

where Zα/2 is the upper percentile of the standard normal
distribution.
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Application 1. Consider the lifetime of a part from a he-
licopter’s main rotor blade. Data on lifetime of the part
taken a system database collected from October 1995 to
September 1999 [1.3] are shown in Table 1.2. In this ap-
plication, we consider several distribution functions for
this data, including Weibull, log normal, normal, and
loglog distribution functions.

The Pham pdf with parameters a and α is

f (t) = α(ln a)tα−1atα e1−atα

for t > 0, α > 0, a>1

and its corresponding log likelihood function (1.39) is

log L(a, α) = n logα+n ln(ln a)

+ (α−1)

(
n∑

i=1

ln ti

)

+ ln a ·
n∑

i=1

tαi +n−
n∑

i=1

atαi .

Table 1.2 Main rotor blade data

Part code Time to failure (h)

xxx-015-001-107 1634.3

xxx-015-001-107 1100.5

xxx-015-001-107 1100.5

xxx-015-001-107 819.9

xxx-015-001-105 1398.3

xxx-015-001-107 1181

xxx-015-001-107 128.7

xxx-015-001-107 1193.6

xxx-015-001-107 254.1

xxx-015-001-107 3078.5

xxx-015-001-107 3078.5

xxx-015-001-107 3078.5

xxx-015-001-107 26.5

xxx-015-001-107 26.5

xxx-015-001-107 3265.9

xxx-015-001-107 254.1

xxx-015-001-107 2888.3

xxx-015-001-107 2080.2

xxx-015-001-107 2094.3

xxx-015-001-107 2166.2

xxx-015-001-107 2956.2

xxx-015-001-107 795.5

xxx-015-001-107 795.5

xxx-015-001-107 204.5

xxx-015-001-107 204.5

xxx-015-001-107 1723.2

Part code Time to failure (h)

xxx-015-001-107 403.2

xxx-015-001-107 2898.5

xxx-015-001-107 2869.1

xxx-015-001-107 26.5

xxx-015-001-107 26.5

xxx-015-001-107 3180.6

xxx-015-001-107 644.1

xxx-015-001-107 1898.5

xxx-015-001-107 3318.2

xxx-015-001-107 1940.1

xxx-015-001-107 3318.2

xxx-015-001-107 2317.3

xxx-015-001-107 1081.3

xxx-015-001-107 1953.5

xxx-015-001-107 2418.5

xxx-015-001-107 1485.1

xxx-015-001-107 2663.7

xxx-015-001-107 1778.3

xxx-015-001-107 1778.3

xxx-015-001-107 2943.6

xxx-015-001-107 2260

xxx-015-001-107 2299.2

xxx-015-001-107 1655

xxx-015-001-107 1683.1

xxx-015-001-107 1683.1

xxx-015-001-107 2751.4

We then determine the confidence intervals for param-
eter estimates a and α. From the above log likelihood
function, we can obtain the Fisher information matrix H

as H =
(

h11 h12

h21 h22

)
, where

h11 = E

(
−∂2 log L

∂a2

)
,

h12 = h21 = E

(
−∂2 log L

∂a∂α

)
,

h22 = E

(
−∂2 log L

∂α2

)
.

The variance matrix V can be obtained as follows:

V = (H)−1 =
(
v11 v12

v21 v22

)
. (1.52)

The variances of a and α are

Var(a) = v11 Var(α) = v22.
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One can approximately obtain the (1−β)100% con-
fidence intervals for a and α based on the normal
distribution as

[
â− z β

2

√
v11, â+ z β

2

√
v11

]
and

[
α̂−

z β
2

√
v22, α̂+ z β

2

√
v22

]
, respectively, where vij is given

in (1.52) and zβ is (1− β
2 )100% of the standard

normal distribution. Having obtained â and α̂, the
MLE of the reliability function can be computed
as

R̂(t) = e1−âtα̂

. (1.53)

Let us define a partial derivative vector for reliability
R(t) as:

v[R(t)] =
(
∂R(t)

∂a

∂R(t)

∂α

)

Then the variance of R(t) can be obtained
as

Var [R(t)] = v[R(t)]V (v[R(t)])T ,

where V is given in (1.52).
One can approximately obtain the (1−β)100% con-

fidence interval for R(t) is
[

R̂(t)− zβ
√

Var [R(t)], R̂(t)+ zβ
√

Var [R(t)]
]
.

The MLE parameter estimations for the loglog distribu-
tion and its corresponding parameters, based on the data
set shown in Table 1.2, are:

α̂= 1.1075, Var(α̂) = 0.0162,

95% CI for α̂ : [0.8577, 1.3573];
â = 1.0002, Var(â) = 2.782e−08,

95% CI for a : [0.9998, 1.0005].
Similarly, the C.I. for R(t) can be obtained directly
using (1.53).

1.3.3 Statistical Change-Point Estimation
Methods

The change-point problem has been widely studied in re-
liability applications in areas such as biological sciences,
survival analysis and environmental statistics.

Assume that there is a sequence of random vari-
ables X1, X2, . . . , Xn , that represents the inter-failure
times, and that an index change-point τ exists, such that
X1, X2, . . . , Xτ have a common distribution F with
a density function f (t) and Xτ+1, Xτ+2, . . . , Xn have
a distribution G with a density function g(t), where
F �= G. Consider the following assumptions:

1. There is a finite but unknown number of units N to
be tested.

2. At the beginning, all of the units have the same life-
time distribution F. After τ failures are observed,
the remaining (N−τ) items have the distribution G.
The change-point τ is assumed unknown.

3. The sequence {X1, X2, . . . , Xτ } is statistically in-
dependent of the sequence {Xτ+1, Xτ+2, . . . , Xn}.

4. The lifetime test is performed according to the
Type II censoring approach, in which the number
of failures n is predetermined.

Note that the total number of units to put up for
testing N can be determined in advance in hardware re-
liability testing. However, in software reliability testing,
the parameter N can be defined as the initial number of
faults in the software, and it can be considered to be an
unknown parameter. Let T1, T2, . . . , Tn be the arrival
times for sequential failures. Then

T1 = X1,

T2 = X1+ X2,

...

Tn = X1+ X2+· · · Xn . (1.54)

The failure times T1, T2, . . . , Tτ are the first τ order
statistics of a sample of size N from the distribution F.
The failure times Tτ+1, Tτ+2, . . . , Tn are the first (n−τ)
order statistics of a sample of size (N − τ) from the
distribution G.

Example 1.12: The Weibull change-point model of
the lifetime distributions F and G with parameters
(λ1, β1) and (λ2, β2), respectively, can be expressed
as

F (t)= 1− exp
(−λ1tβ1

)
, (1.55)

G (t)= 1− exp
(−λ2tβ2

)
. (1.56)

Assume that the distributions belong to parametric
families {F(t | θ1), θ1 ∈Θ1} and {G(t | θ2), θ2 ∈Θ2}.
Assume that T1, T2, . . . , Tτ are the first τ order statis-
tics of a sample of size N from the distribution
{F(t | θ1), θ1 ∈Θ1} and that Tτ+1, Tτ+2, . . . , Tn are the
first (n− τ) order statistics of a sample of size (N − τ)
from the distribution {G(t | θ2), θ2 ∈Θ2}, where N is
unknown. The log likelihood function can be expressed
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as follows [1.6]:

L(τ, N, θ1, θ2 | T1, T2, . . . , Tn)

=
n∑

i=1

(N − i+1)+
τ∑

i=1

f (Ti | θ1)

+
n∑

i=τ+1

g(Ti | θ2)+ (N − τ) log [1− F(Tτ | θ1)]

+ (N −n) log [1−G(Tn | θ2)] . (1.57)

If the parameter N is known in which where
hardware reliability is commonly considered for
example, then the likelihood function is given
by

L(τ, θ1, θ2 | T1, T2, . . . , Tn)

=
τ∑

i=1

f (Ti | θ1)+
n∑

i=τ+1

g(Ti | θ2)

+ (N − τ) log [1− F(Tτ | θ1)]+ (N −n)

log [1−G(Tn | θ2)] .

The maximum likelihood estimator (MLE) of the
change-point value τ̂ and (N̂, θ̂1, θ̂2) can be obtained
by taking partial derivatives of the log likelihood
function in (1.57) with respect to the unknown param-
eters that maximize the function. It should be noted
that there is no closed form for τ̂ , but it can be
obtained by calculating the log likelihood for each
possible value of τ , 1 ≤ τ ≤ (n−1), and selecting
the value that maximizes the log likelihood func-
tion.

Application 2: A Software Model
with a Change Point
In this application, we examine the case where the sam-
ple size N is unknown. Consider a software reliability
model developed by Jelinski and Moranda in 1972, often
called the Jelinski–Moranda model. The assumptions of
the model are as follows:

1. There are N initial faults in the program.
2. A detected fault is removed instantaneously and no

new fault is introduced.
3. Each failure caused by a fault occurs independently

and randomly in time according to an exponential
distribution.

4. The functions F and G are exponential distributions
with failure rate parameters λ1 and λ2, respectively.

Based on these assumptions, the inter-failure times
X1, X2, . . . , Xn are independently exponentially dis-
tributed. Specifically, Xi = Ti −Ti−1, i = 1, 2, . . . τ , are

exponentially distributed with parameter λ1 (N − i+1),
where λ1 is the initial fault detection rate of the
first τ failures, and X j = Tj − Tj−1, j = τ +1, τ+
2, . . . n are exponentially distributed with parameter
λ2 (N − τ− j+1), where λ2 is the fault detection rate
of the first n− τ failures. If λ1 = λ2, it means that
each fault removal is the same and that the change-
point model becomes the Jelinski–Moranda software
reliability model [1.7].

The MLEs of the parameters (τ, N, λ1, λ2) can be
obtained by solving the following equations simultane-
ously:

λ̂1 = τ
∑τ

i=1 (N̂ − i+1)xi
, (1.58)

λ̂2 = (n− τ)
∑n

i=τ+1 (N̂ − i+1)xi
, (1.59)

n∑

i=1

1

(N̂ − i+1)
= λ̂1

τ∑

i=1

xi + λ̂2

n∑

i=τ+1

xi . (1.60)

To illustrate the model, we use the data set
shown in Table 1.3 to obtain the unknown parameters
(τ, N, λ1, λ2) using (1.58)–(1.60). The data in Ta-
ble 1.3 [1.8] shows the successive inter-failure times
for a real-time command and control system. The table
reads from left to right in rows, and the recorded times
are execution times, in seconds. There are 136 failures
in total. Figure 1.6 plots the log-likelihood function ver-
sus the number of failures. The MLEs of the parameters
(τ, N, λ1, λ2) with one change point are given by

τ̂ = 16, N̂ = 145, λ̂1 = 1.1 × 10−4,

λ̂2 = 0.31 × 10−4.

–964

–966

–968

–970

–972

–974
0 20 40 60 80 100 120

Log likelihood function

Change-point

Fig. 1.6 The log likelihood function versus the number of
failures
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Table 1.3 Successive inter-failure times (in s) for a real-time command system

3 30 113 81 115 9 2 91 112 15

138 50 77 24 108 88 670 120 26 114

325 55 242 68 422 180 10 1146 600 15

36 4 0 8 227 65 176 58 457 300

97 263 452 255 197 193 6 79 816 1351

148 21 233 134 357 193 236 31 369 748

0 232 330 365 1222 543 10 16 529 379

44 129 810 290 300 529 281 160 828 1011

445 296 1755 1064 1783 860 983 707 33 868

724 2323 2930 1461 843 12 261 1800 865 1435

30 143 108 0 3110 1247 943 700 875 245

729 1897 447 386 446 122 990 948 1082 22

75 482 5509 100 10 1071 371 790 6150 3321

1045 648 5485 1160 1864 4116

If we do not consider a change point in the model, the
MLEs of the parameters N and λ, can be given as

N̂ = 142, λ̂= 0.35 × 10−4.

From Fig. 1.6,
it is clear that it is worth considering change points

in reliability functions.

1.3.4 Goodness of Fit Techniques

The problem discussed here is one of comparing an
observed sample distribution with a theoretical distri-
bution. Two common techniques that will be discussed
are the χ2 goodness-of-fit test and the Kolmogorov–
Smirnov “d” test.

Chi-Squared Test
The following statistic

χ2 =
k∑

i=1

(
xi −µi

σi

)2

(1.61)

has a chi-squared (χ2) distribution with k degrees of
freedom. The procedure used for the chi-squared test is:

1. Divide the sample data into mutually exclusive cells
(normally 8–12) such that the range of the random
variable is covered.

2. Determine the frequency, fi , of sample observations
in each cell.

3. Determine the theoretical frequency, Fi , for each
cell (the area under density function between cell
boundaries Xn – total sample size). Note that the
theoretical frequency for each cell should be greater

than 1. This step normally requires estimates for the
population parameters, which can be obtained from
the sample data.

4. Form the statistic

A =
k∑

i=1

( fi − Fi )2

Fi
. (1.62)

5. From the χ2 tables, choose a value of χ2 with the
desired significance level and degrees of freedom
(= k−1− r, where r is the number of population
parameters estimated).

6. Reject the hypothesis that the sample distribution is
the same as the theoretical distribution if

A > χ2
1−α,k−1−r ,

where α is called the significance level.

Example 1.13: Given the data in Table 1.4, can the
data be represented by the exponential distribution with
a significance level of α?

From the above calculation, λ̂ = 0.002 63, Ri =
e−λti and Qi = 1− Ri . Given that the significance level
α is 0.1, from (1.62), we obtain

A =
11∑

i=1

( fi − Fi )2

Fi
= 6.165 .

From Table 1.9 in Sect. 1.A, the value of χ2 with nine
degrees of freedom and α= 0.1 is 14.68; that is,

χ2
9,0.1 = 14.68 .

Since S = 6.165 < 14.68, we would not reject the hy-
pothesis of an exponential with λ= 0.002 63.
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Table 1.4 Sample observations for each cell boundary

Cell
boundaries

fi Qi = (1− Ri ) 60 Fi = Qi − Qi−1

0−100 10 13.86 13.86

100−200 9 24.52 10.66

200−300 8 32.71 8.19

300−400 8 39.01 6.30

400−500 7 43.86 4.85

500−600 6 47.59 3.73

600−700 4 50.45 2.86

700−800 4 52.66 2.21

800−900 2 54.35 1.69

900−1000 1 55.66 1.31

> 1000 1 58.83 2.17

If in the statistic

A =
k∑

i=1

(
fi − Fi√

Fi

)2

,

(
fi − Fi√

Fi

)

is approximately normal for large samples, then A also
has a χ2 distribution. This is the basis for the goodness
of fit test.

Kolmogorov-Smirnov d Test
Both the χ2 and “d” tests are nonparametric tests.
However, the χ2 test largely assumes sample nor-
mality of the observed frequency about its mean,
while “d” assumes only a continuous distribution. Let
X1 ≤ X2 ≤ X3 ≤ . . .≤ Xn denote the ordered sample
values. Define the observed distribution function, Fn(x),
as:

Fn(X) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ x1

i
n for xi < x ≤ xi+1

1 for x > xn

.

Assume the testing hypothesis

H0 : F(x) = F0(x),

where F0(x) is a given continuous distribution and F(x)
is an unknown distribution. Let

dn = sup
−∞<x<∞

|Fn(x)− F0(x)|.

Since F0(x) is a continuous increasing function, we can
evaluate |Fn(x)− F0(x)| for each n. If dn ≤ dn,α, then
we will not reject the hypothesis H0; otherwise, we will
reject it when dn > dn,α. The value of dn,α can be found
in Table 1.10 in Sect. 1.A, where n is the sample size
and a is the level of significance.

1.3.5 Least Squared Estimation

One common approach to curve fitting, which is unre-
lated to normal regression theory and MLE estimates
of coefficients but uses identical formulae, is called the
method of least squares. This method is based on min-
imizing the sum of the squared distances from the best
fit line to the actual data points. It just so happens that
finding the MLEs for the coefficients of the regression
line also involves this sum of squared distances.

Normal Linear Regression
Regression considers the distribution of one variable as
a function of another when the other variable is fixed
at each of several levels. In the normal bivariate case,
consider the distribution of X as a function of given
values of Z where X = α+βZ. Consider a sample of n
observations (xi , zi ). We can obtain the likelihood and
its natural log for the normal distribution as follows:

f (x1, x2, . . . , xn)

= 1

2π
n
2

(
1

σ2

) n
2

e
− 1

2σ2

n∑
i=1

(xi−α−βzi )2

,

ln L =− n

2
log 2π− n

2
log σ2

− 1

2σ2

n∑

i=1

(xi −α−βzi )
2.

Taking the partial derivatives of ln L with respect to α

and β, we have

∂ ln L

∂α
=

n∑

i=1

(xi −α−βzi )
2 = 0,

∂ ln L

∂β
=

n∑

i=1

zi (xi −α−βzi ) = 0.

The solutions to the simultaneous equations are

α̂= X̄−β Z̄,

β̂ =

n∑
i=1

(Xi − X̄)(Zi − Z̄)

n∑
i=1

(Zi − Z̄)2
. (1.63)

Least Squared Straight Line Fit
Assume that there is a linear relationship between X
and E(Y |x); that is, that E(Y |x) = a+bx. Given a set
of data, we want to estimate the coefficients a and b
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that minimize the sum of the squares. Suppose that the
desired polynomial, p(x), is written as

m∑

i=0

ai x
i ,

where a0, a1, . . . , am are to be determined. The method
of least squares chooses as “solutions” those coefficients
that minimize the sum of the squares of the vertical (y)
distances from the data points to the presumed polyno-
mial. This means that the “best” polynomial is the one
whose coefficients minimize the function L , where

L =
n∑

i=1

[yi − p(xi )]2.

Here, we will only treat the linear case, where X =
α+βZ. The procedure for higher order polynomials is
identical, although the computations become much more
tedious. Assume a straight line of the form X = α+βZ.
For each observation (xi , zi ) : Xi = α+βZi , let

Q =
n∑

i=1

(xi −α−βzi )
2.

We wish to find estimates for α and β that minimize Q.
Taking partial differentials, we obtain

∂Q

∂α
=−2

n∑

i=1

(xi −α−βzi ) = 0,

∂Q

∂β
=−2

n∑

i=1

zi (xi −α−βzi ) = 0.

Note that the above are the same as the MLE equations
for normal linear regression. Therefore, we obtain the
following results:

α̂= x̄−βz̄,

β̂ =

n∑
i=1

(xi − x̄)(zi − z̄)

n∑
i=1

(zi − z̄)2
. (1.64)

The above gives an example of least squares applied
to a linear case. The same pattern applies for higher-
order curves with 3, 4 and so on solutions.

1.3.6 Interval Estimation

A point estimate is sometimes inadequate at providing
an estimate for an unknown parameter, since it rarely

coincides with the true value of the parameter. An alter-
native way is to obtain a confidence interval estimation
of the form [θL, θU] where θL is the lower bound and θU
is the upper bound.

Point estimates can become more useful if some
measure of their error is given; in other words, if
some kind of tolerance for their high and low values
is given. Thus, if an interval estimator is [θL, θU] with
a given probability (1−α), then θL and θU are called
the 100 (l−α) % confidence limits for the given param-
eter θ, and the interval between them is a 100 (l−α) %
confidence interval, while (1−α) is called the confi-
dence coefficient.

Confidence Intervals for Normal Parameters
The one-dimensional normal distribution has two pa-
rameters: mean µ and variance σ2. The simultaneous
employment of both parameters in a confidence state-
ment concerning percentages of the population will be
discussed in the next section on tolerance limits. Hence,
individual confidence statements about µ and σ2 will be
discussed here.

Confidence Limits for a Mean µ with a Known σ2. It
is easy to show that the statistic

Z = X̄−µ

σ/
√

n

is a standard normal distribution, where

X̄ = 1

n

n∑

i=1

Xi .

Hence, a 100 (l−α) % confidence interval for the
mean µ is given by

P

[
X̄− Z α

2

σ√
n
<µ< X̄+ Z α

2

σ√
n

]
= 1−α.

(1.65)

In other words,

µL = X̄− Z α
2

σ√
n

and µU = X̄+ Z α
2

σ√
n
.

Example 1.14: Draw a sample of size 4 from a nor-
mal distribution with a known variance = 9, say x1 = 2,
x2 = 3, x3 = 5, x4 = 2. Determine the location of the
true mean (µ). The sample mean can be calculated as

x̄ =

n∑
i=1

xi

n
= 2+3+5+2

4
= 3.
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Assuming that α= 0.05 and, from the standard nor-
mal distribution (Table 1.6 in Sect. 1.A), Z0.025 = 1.96,
then we obtain

P

[
3−1.96

3√
4
<µ< 3+1.96

3√
4

]
= 0.95,

P[0.06 <µ< 5.94] = 0.95.

This example shows that there is a 95% probability that
the true mean is somewhere between 0.06 and 5.94.
Now, µ is a fixed parameter and does not vary, so how
do we interpret the probability? If samples of size 4 were
to be repeatedly drawn, a different set of limits would
be constructed each time. If this is the case, the interval
becomes the random variable and the interpretation is
that, for 95% of the time, the interval constructed in this
way will contain the true (fixed) parameter.

Confidence Limits for a Mean µ with an Unknown σ2.
Let

S =
√√√√ 1

n−1

n∑

i=1

(Xi − X̄)2. (1.66)

It can be shown that the statistic

T = X̄−µ

S√
n

has a t distribution with (n−1) degrees of freedom
(see Table 1.7 in Appendix A). Thus, for a given sample
mean and sample standard deviation, we obtain

P
[
|T |< tα

2 ,n−1

]
= 1−α.

Hence, a 100 (l−α) % confidence interval for the
mean µ is given by

p

[
X̄− tα

2 ,n−1

S√
n
<µ< X̄+ tα

2 ,n−1

S√
n

]

= 1−α. (1.67)

Example 1.15: The variability of a new product was in-
vestigated. An experiment was run using a sample of size
n = 25; the sample mean was found to be X̄ = 50 and
the variance σ2 = 16. From Table 1.7 in Appendix A,
t α

2 ,n−1 = t0.025,24 = 2.064. The 95% confidence limit for
µ is given by

P

[
50−2.064

√
16

25
<µ

< 50+2.064

√
16

25

]
= 0.95 ,

P[48.349 <µ< 51.651]x = 0.95 .

Note that, for one-sided limits, one should choose tα, or
t1−α.

Confidence Limits on σ2. Note that nσ̂2/σ2 has a χ2

distribution with (n−1) degrees of freedom. Correcting
for the bias in σ̂2, it is clear that (n−1)σ̂2/σ2 has this
same distribution. Hence,

P

[
χ2

α
2 ,n−1

<
(n−1)S2

σ2
< χ2

1−α
2 ,n−1

]
= 1−α

or

P

⎡

⎣
∑

(xi − x̄)2

χ2
1−α

2 ,n−1

< σ2 <

∑
(xi − x̄)2

χ2
α
2 ,n−1

⎤

⎦= 1−α.

(1.68)

Again, for one-sided limits, one should choose χ2(α) or
χ2(1−α).

Confidence Intervals
for Exponential Parameters
The pdf and cdf for the exponential distribution are

f (x) = λe−λx, x > 0, λ > 0

and

F(x) = 1− e−λx,

respectively. It was shown that the distribution of a func-
tion of the estimate

λ̂= r
n∑

i=1
xi + (n−r)xr

(1.69)

derived from a test of n identical components with com-
mon exponential failure density (failure rate λ), whose
testing was stopped after the rth failure, was chi-squared
(χ2), i. e.,

2r
λ

λ̂
= 2λT

(χ2 distribution with 2r degrees of freedom),

where T is the total time accrued by all units. Knowing
the distribution of 2λT allows us to obtain the confidence
limits on the parameter as:

P

[
χ2

1−α
2 ,2r

< 2λT < χ2
α
2 ,2r

]
= 1−α

or, equivalently, that

P

⎡

⎣
χ2

1−α
2 ,2r

2T
< λ <

χ2
α
2 ,2r

2T

⎤

⎦= 1−α.
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Table 1.5 Confidence limits for θ

Confidence
limits

Fixed number of
failures

Fixed time

One-sided lower
limit

2T
χ2
α,2r

2T
χ2
α,2r+2

One-sided upper
limit

2T
χ2

1−α,2r

2T
χ2

1−α,2r

Two-sided limits 2T
χ2
α/2,2r

, 2T
χ2

1−α/2,2r

2T
χ2
α/2,2r+2

, 2T
χ2

1−α/2,2r

This means that in (1–α)% of the samples of a given
size n, the random interval

⎛

⎝
χ2

1−α
2 ,2r

2T
,

χ2
α
2 ,2r

2T

⎞

⎠

will contain a population of constant failure rate. For θ =
1/λ or the MTBF, the above confidence limits change
to

P

⎡

⎣ 2T

χ2
α
2 ,2r

< θ <
2T

χ2
1−α

2 ,2r

⎤

⎦= 1−α.

If testing is stopped at a fixed time rather than a fixed
number of failures, the number of degrees of freedom
in the lower limit increases by two. Table 1.5 shows
the confidence limits for θ, the mean of the exponential
density.

Confidence Intervals for Binomial Parameters
Consider a sequence of n Bernoulli trials with k suc-
cesses and (n−k) failures. We now determine one-sided
upper and lower and two-sided limits on the parameter p,
the probability of success. For the lower limit, the bino-
mial sum is set up such that the probability of k or more
successes with a true p as low as pL is only α/2. This
means that the probability of k or more successes with
a true p higher than pL is

(
1− α

2

)
.

n∑

i=k

(
n

i

)
pi

L(1− pL)n−i = α

2
.

Similarly, the binomial sum for the upper limit is
n∑

i=k

(
n

i

)
pi

U(1− pU)n−i = 1− α

2

or, equivalently,

k−1∑

i=0

(
n

i

)
pi

U(1− pU)n−i = α

2
.

Solving for pL and pU in the above equations,

P[pL < p < pU] = 1−α.

For one-sided limits, merely change α/2 to α.

Example 1.16: Given n = 100 with 25 successes, and 75
failures, an 80% two-sided confidence limit on p can be
obtained as follows:

100∑

i=25

(
100

i

)
pi

L(1− pL)100−i = 0.10,

24∑

i=0

(
100

i

)
pi

U(1− pU)100−i = 0.10.

Solving the above two equations simultaneously, we
obtain

pL ≈ 0.194 and pU ≈ 0.313,

P[0.194 < p < 0.313] = 0.80.

Continuing with Example 1.16 above, we now find an
80% one-sided confidence limit on p.

We start by setting the top equation to 0.20 and
solving for pL. It is then easy to obtain pL = 0.211 and
P[p > 0.211] = 0.80.

Let us now define p̄= k/n, the number of successes
divided by the number of trials. For large values of n and
if n p > 5 and n(1− p) > 5, and from the central limit
theorem [1.9], the statistic

Z = ( p̄− p)√
p̄(1− p̄)

n

approximates to the standard normal distribution. Hence

P[−z α
2
< Z < z α

2
] = 1−α.

Then

P

[
p̄− z α

2

√
p̄(1− p̄)

n
< p

< p̄+ z α
2

√
p̄(1− p̄)

n

]
= 1−α.

Example 1.17: Find the two-sided confidence limit for
n = 900, k = 180, and α = 0.05. Then we obtain p =
180/900 = 0.2 and

P

[
0.2−1.96

√
0.2(0.8)

900
< p

< 0.2+1.96

√
0.2(0.8)

900

]
= 0.95,

P[0.174 < p < 0.226] = 0.95.
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Confidence Intervals for Poisson Parameters
Limits for the Poisson parameters are completely anal-
ogous to those for the binomial distribution except that
the sample space is denumerable instead of finite. The
lower and upper limits can be solved simultaneously in
the following equations:

∞∑

i=k

λi
L e−λL

i! = α

2
,

∞∑

i=k

λi
U e−λU

i! = 1− α

2
,

or, equivalently,
∞∑

i=k

λi
L e−λL

i! = α

2
,

k−1∑

i=0

λi
U e−λU

i! = α

2
.

The one-sided limits are constructed in the same way as
for binomial limits.

1.3.7 Nonparametric Tolerance Limits

Nonparametric tolerance limits are based on the small-
est and largest observation in the sample, designated
XS and XL, respectively. Due to their nonparametric
nature, these limits are quite insensitive, and obtaining
precisions similar to the parametric methods necessi-
tates much larger samples. An interesting question here
is to determine the sample size required to include at
least 100 (l−α) % of the population between XS and
XL with a given probability y.

For two-sided tolerance limits, if (1−α) is the min-
imum proportion of the population contained between
the largest observation XL and the smallest observation
XS with a confidence (1−γ ), then it can be shown that

n(1−α)n−1− (n−1)(1−α)n = γ.

Therefore, the number of observations required is given
by

n =
(

(2−α)

4α
χ2

1−γ,4+
1

2

)
+1,

where a value ofχ2
1−γ,4 is given in Table 1.8 of Sect. 1.A.

Example 1.18: Determine the tolerance limits that in-
clude at least 90% of the population with probability
0.95. Here,

α= 0.1, γ = 0.95 and χ2
0.05,4 = 9.488.

Therefore, a sample of size

n =
[

(2−0.1)

4(0.1)
(9.488)+ 1

2

]
+1 = 46

is required. For a one-sided tolerance limit, the number
of observations required is given by

n =
(

log(1−γ )

log(1−α)

)
+1.

Example 1.19: As in Example 1.18, we wish to find
a lower tolerance limit; that is, the number of obser-
vations required such that the probability is 0.95 that
at least 90% of the population will exceed XS. This is
given by

n =
(

log(1−0.95)

log(1−0.1)

)
+1 = 30.

One can easily generate a table containing the sample
size required to include a given percentage of the pop-
ulation between XS and XL with a given confidence, or
the sample size required to include a given percentage of
the population above or below XS or XL, respectively.

1.3.8 Sequential Sampling

A sequential sampling scheme is one in which items are
drawn one at a time and the results at any stage deter-
mine whether sampling or testing should stop. Thus, any
sampling procedure for which the number of observa-
tions is a random variable can be regarded as sequential
sampling. Sequential tests derive their name from the
fact that the sample size is not determined in advance,
but allowed to “float” with a decision (accept, reject, or
continue test) after each trial or data point.

In general, let us consider the hypothesis

H0 : f (x) = f0(x) versus H1 : f (x) = f1(x).

For an observational test, say X1, if X1 ≤ A, then we
will accept the testing hypothesis [H0 : f (x)= f0(x)]; if
X1 ≥ A we will reject H0 and accept HI : f (x)= f1(x).
Otherwise, we will continue to perform at least one more
test. The interval X1 ≤ A is called the acceptance region.
The interval X1 ≥ A is called the rejection or critical
region.

A “good” test is one that makes the α and β errors as
small as possible. However, there is not much freedom
to do this without increasing the sample size. A common
procedure is to fix the β error and then choose a critical
region to minimize the error or to maximize the “power”

Part
A

1
.3



Basic Statistical Concepts 1.3 Statistical Inference and Estimation 31

(power = 1−β) of the test, or to choose the critical
region so as to equalize the α and β errors to reasonable
levels.

One criterion (similar to the MLE) used to construct
tests is called the “probability ratio”, which is the ratio
of the sample densities under H1/H0. Consider the ratio
of probabilities

λm =

n∏
i=1

f1(xi )

n∏
i=1

f0(xi )
> k.

Here, x1, x2, . . . , xn are n independent random obser-
vations and k is chosen to give the desired a error.

Recall from the MLE discussion in Sect. 1.3.1
that f1(x1), f1(x2), . . . , f1(xn) are maximized under
H1 when the parameter(s), e.g. θ = θ1 and simi-
larly f0(x1), f0(x2), . . . , f0(xn), are maximized when
θ = θ0. Thus, the ratio will become large if the the sample
favors H1 and will become small if the sample favors H0.
Therefore, the test will be called a sequential probability
ratio test if we

1. stop sampling and reject H0 as soon as λm ≥ A;
2. stop sampling and accept H0 as soon as λm ≤ B;
3. continue sampling as long as B < λm < A, where

A > B.

The selection of A and B using the above test, as
suggested by Wald (see [1.9]), can be determined as
follows:

B = β

1−α
and A = 1−β

α

The bases for α and β are therefore:

P[λm > A|H0] = α

P[λm < A|H1] = β

1.3.9 Bayesian Methods

The Bayesian approach to statistical inference is based
on a theorem first presented by Thomas Bayes. To
demonstrate the approach, let X have a pdf f (x), which
is dependent on θ. In the traditional statistical infer-
ence approach, θ is an unknown parameter, and hence
is a constant. We now describe our prior supposition for
the value of θ by a pdf of h(θ). This amounts to quantita-
tively assessing subjective judgment and should not be

confused with the so-called objective probability assess-
ment derived from the long-term frequency approach.
Thus, θ will now essentially be treated as a random
variable θ with a pdf of h(θ).

Consider a random sample X1, X2, . . . , Xn from
f (x) and define a statistic Y as a function of this random
sample. Then there exists a conditional pdf g(y|θ) of Y
for a given θ. The joint pdf for y and θ is

f (θ, y) = h(θ)g(y|θ).

If θ is continuous, then

f1(y) =
∫

θ

h(θ)g(y|θ)dθ

is the marginal pdf for the statistic y. Given the infor-
mation y, the conditional pdf for θ is

k(θ|y) = h(θ)g(y|θ)

f1(y)
for f1(y) > 0

= h(θ)g(y|θ)∫

θ

h(θ)g(y|θ)dθ

If θ is discrete, then

f1(y) =
∑

k

P(θk)P(y|θk)

and

P(θi |yi ) = P(θk)P(yi |θi )∑
k

P(θk)P(y j |θk)

where P(θ j ) is the prior probability of event θi and
P(θ j |y j ) is the posterior probability of event y j given
θi . This is simply a form of Bayes’ theorem. Here, h(θ) is
the prior pdf that expresses our belief about the value of
θ before the data (Y = y) became available. Then k(θ|y)
is the posterior pdf, given the data (Y = y).

Note that the difference in the shape of the prior
pdf h(θ) compared to the posterior pdf k(θ|y) due to
the information is a result of the product of g(y|θ) and
h(θ), because fl(y) is simply a normalization constant
for a fixed y. The idea of reliability is to take “prior”
data and combine it with current data to gain a better
estimate or confidence interval or test than would be
possible with either on their own. As more current data
is acquired, the prior data is “washed out” [1.1].
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1.4 Stochastic Processes

Stochastic processes are used to describe the operation
of a system over time. There are two main types of
stochastic processes: continuous and discrete. A com-
plex continuous process is a process describing a system
transition from state to state. The simplest process that
will be discussed here is a Markov process. In this case,
the future behavior of the process does not depend on its
past or present behavior. In many systems that arise in
practice, however, past and present states of the system
influence the future states, even if they do not uniquely
determine them.

1.4.1 Markov Processes

In this section, we will discuss discrete stochastic pro-
cesses. As an introduction to the Markov process, let us
examine the following example.

Example 1.20: Consider a parallel system consisting of
two components. From a reliability point of view, the
states of the system can be described by

State 1: Full operation (both components operating);
State 2: One component is operating and one component

has failed;
State 3: Both components have failed.

Define

Pi (t) = P[X(t) = i]
= P[system is in state i at time t]

and

Pi (t+ dt) = P[X(t+ dt) = i]
= P[system is in state i at time t+ dt].

Define a random variable X(t) which can assume the
values 1, 2, or 3 corresponding to the states mentioned
above. Since X(t) is a random variable, one can discuss
P[X(t) = 1], P[X(t) = 2] or the conditional probabil-
ity P[X(t1) = 2|X(t0) = 1]. Again, X(t) is defined as
a function of time t, while the conditional probability
P[X(t1)= 2|X(t0) = 1] can be interpreted as the proba-
bility of being in state 2 at time t1, given that the system
was in state 1 at time t0. In this example, the “stage
space” is discrete, i. e., 1, 2, 3, etc., and the parameter
space (time) is continuous. The simple process described
above is called a stochastic process: a process that de-
velops over time (or space) in accordance with some
probabilistic (stochastic) laws. There are many types of
stochastic processes.

Here we emphasize the Markov process, which is
a special type of stochastic process. Let the system be
observed at discrete moments of time tn , where n =
0, 1, 2, . . . , and let X(tn) denote the state of the system
at time tn .

Definition 1.2
Let t0 < t1 < . . . < tn . If

P[X(tn) = xn|X(tn−1)

= xn−1, X(tn−2) = xn−2, . . . , X(t0) = x0]
= P[X(tn) = xn|X(tn−1) = xn−1]

then the process is called a Markov process.

From the definition of a Markov process, given the
present state of the process, its behavior in the future
does not depend on its behavior in the past. Many sys-
tems have this property, which is called the Markov
property, and systems that have this property are called
Markov chains. The Markov property is precisely de-
fined by the following requirement:

P[X(tn) = xn|X(tn−1)

= xn−1, X(tn−2) = xn−2, . . . , X(t0) = x0]
= P[X(tn) = xn|X(tn−1) = xn−1].

The essential characteristic of a Markov process is
that it is a process that has no memory; its future is de-
termined by the present and not the past. If, in addition
to having no memory, the process is such that it depends
only on the difference (t+ dt)− t = dt and not the value
of t – in other words P[X(t+ dt)= j|X(t)= i] is inde-
pendent of t – then the process is Markov with stationary
transition probabilities or is homogeneous in time. This
is the same property noted in exponential event times;
in fact, referring back to the graphical representation of
X(t), the times between state changes are exponential if
the process has stationary transition probabilities.

Thus, a Markov process which is homogeneous in
time can describe processes with exponential event oc-
currence times. The random variable of the process is
X(t), the state variable rather than the time to failure used
in the exponential failure density. To illustrate the types
of processes that can be described, we now review the
exponential distribution and its properties. Recall that,
if X1, X2, . . . , Xn , are independent random variables,
each with exponential density and a mean of 1/λi , then
min{X1, X2, . . ., Xn} has an exponential density with
a mean of

(∑
λi
)−1.
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The significance of this property is as follows:

1. The failure behavior of components operated simul-
taneously can be characterized by an exponential
density with a mean equal to the reciprocal of the
sum of the failure rates.

2. The joint failure/repair behavior of a system where
components are operating and/or undergoing repair
can be characterized by an exponential density with
a mean equal to the reciprocal of the sum of the
failure and repair rates.

3. The failure/repair behavior of a system similar to
that described in (2) above but further complicated
by active and dormant operating states and sensing
and switching can be characterized by an exponential
density.

The above property means that almost all relia-
bility and availability models can be characterized by
a time-homogeneous Markov process if the various fail-
ure times and repair times are exponential. The notation
for the Markov process is {X(t), t > 0}, where X(t) is dis-
crete (state space) and t is continuous (parameter space).
By convention, this type of Markov process is called
a continuous-parameter Markov chain.

From a reliability/availability viewpoint, there are
two types of Markov processes. These are defined as
follows:

1. Absorbing process: Contains an “absorbing state”,
which is a state that, once entered, the system can
never leave (e.g. a failure which aborts a flight or
a mission).

2. Ergodic process: Contains no absorbing states,
meaning that X(t) can move around indefinitely (e.g.
the operation of a ground power plant where failure
only temporarily disrupts the operation).

Pham ([1.1], p. 265) presents a summary of Markov
processes broken down into absorbing and ergodic cat-
egories. Both the reliability and the availability can be
described in terms of the probability of the process or
system being in defined “up” states, e.g. states 1 and 2
in the initial example. Likewise, the MTBF can be de-
scribed as the total time spent in the “up” states before
proceeding to the absorbing state or failure state.

Define the incremental transition probability as

Pij (dt) = P[X(t+ dt)= j|X(t) = i].
This is the probability that the process [random variable
X(t)] will move to state j during the increment t to
(t+ dt), given that it was in state i at time t. Since we
are dealing with time-homogeneous Markov processes

(exponential failure and repair times), the incremental
transition probabilities can be derived from an analysis
of the exponential hazard function. It was shown that
the hazard function for an exponential with a mean of
1/λ was just λ. This means that the limiting (as dt → 0)
conditional probability of an event occurring between t
and t+ dt, given that an event had not occurred at time t,
is simply λ, in other words:

h(t)= lim
dt→0

P[t < X < t+ dt|X > t]
dt

= λ.

The equivalent statement for the random variable X(t)
is

h(t)dt = P[X(t+ dt) = j|X(t) = i] = λdt.

Now, h(t)dt is in fact the incremental transition prob-
ability, so Pij (dt) can be stated in terms of the basic
failure and/or repair rates.

Returning to Example 1.20, it is easy to construct
a state transition showing the incremental transition
probabilities between all possible states for the process:

State 1: Both components operating;
State 2: One component up and one component down;
State 3: Both components down (absorbing state).

The loops in Pham ([1.1], p. 265) indicate the prob-
ability of remaining in the present state during the dt
increment

P11(dt) = 1−2λdt P12(dt)= 2λdt

P21(dt) = 0 P22(dt)= 1−λdt

P31(dt) = 0 P32(dt)= 0

P13(dt) = 0

P23(dt) = λdt

P33(dt) = 1

The zeros for Pij , i > j show that the process cannot go
backwards: this is not a repair process. The zero on P13
shows that, for a process of this type, the probability of
more than one event (e.g. failure, repair, etc.) occurring
in the incremental time period dt approaches zero as dt
approaches zero.

Except for the initial conditions of the process (the
state in which the process starts), the process is com-
pletely specified by incremental transition probabilities.
The reason that this is useful is that assuming ex-
ponential event (failure or repair) times allows us to
characterize the process at any time t, since the process
depends only on what happens between t and (t+ dt).
The incremental transition probabilities can be arranged
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into a matrix in a way that depicts all possible statewide
movements. Thus, for parallel configurations,

[pij (dt)] =

⎛
⎜⎜⎜⎝

1 2 3

1−2λdt 2λdt 0

0 1−λdt λdt

0 0 1

⎞
⎟⎟⎟⎠

for i, j = 1, 2, or 3. The matrix [Pij (dt)] is called the
incremental, one-step transition matrix. It is a stochas-
tic matrix (the rows sum to 1.0). As mentioned earlier,
this matrix, along with the initial conditions, completely
describes the process.

Now, [Pij (dt)] gives the probabilities of remaining
or moving to all of the various states during the interval
t to t+ dt; hence,

P1(t+ dt) = (1−2λdt)P1(t)

P2(t+ dt) = 2λdtP1(t)(1−λdt)P2(t)

P3(t+ dt) = λdtP2(t)+ P3(t)

By algebraic manipulation, we have

[P1(t+ dt)− P1(t)]
dt

=−2λP1(t),

[P2(t+ dt)− P2(t)]
dt

= 2λP1(t)−λP2(t),

[P3(t+ dt)− P3(t)]
dt

= λP2(t).

Taking limits of both sides as dt → 0, we obtain

P′
1(t) =−2λP1(t),

P′
2(t) = 2λP1(t)−λP2(t),

P′
3(t) = λP2(t).

The above system of linear first-order differential equa-
tions can be easily solved for P1(t) and P2(t), meaning
that the reliability of the configuration can be obtained:

R(t) =
2∑

i=1

Pi (t).

Actually, there is no need to solve all three equations,
only the first two, because P3(t) does not appear and also
P3(t) = [1− P1(t)]− P2(t). The system of linear, first-
order differential equations can be solved by various
means, including both manual and machine methods. We
use manual methods employing the Laplace transform

(Appendix B) here.

L[Pi (t)] =
∞∫

0

e−st Pi (t)dt = fi (s),

L[P ′
i (t)] =

∞∫

0

e−st P
′
i (t)dt = s fi (s)− Pi (0).

Application of the Laplace transform will allow us to
transform the system of linear, first-order differential
equations into a system of linear algebraic equations
that can easily be solved, and solutions of Pi (t) can be
determined via the inverse transforms.

Returning to the example, the initial condition of
a parallel configuration is assumed to be “fully up”,
such that

P1(t = 0) = 1, P2(t = 0) = 0, P3(t = 0) = 0.

Transforming the equations for P′
1(t) and P′

2(t) gives

s f1(s)− P1(t)|t=0 =−2λ f1(s),

s f2(s)− P2(t)|t=0 = 2λ f1(s)−λ f2(s).

Evaluating P1(t) and P2(t) at t = 0 gives

s f1(s)−1 =−2λ f1(s),

s f2(s)−0 = 2λ f1(s)−λ f2(s),

from which we obtain

(s+2λ) f1(s) = 1,

−2λ f1(s)+ (s+λ) f2(s) = 0.

Solving the above equations for f1(s) and f2(s), we have

f1(s) = 1

(s+2λ)
,

f2(s) = 2λ

[(s+2λ)(s+λ)] .

From the inverse Laplace transforms in Appendix B,

P1(t) = e−2λt,

P2(t) = 2e−λt −2e−2λt,

R(t) = P1(t)+ P2(t) = 2e−λt − e−2λt .

The example given above is that of a simple absorb-
ing process where we are concerned about reliability.
If a repair capability were added to the model in the
form of a repair rate µ, the methodology would re-
main the same, with only the final result changing. With
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a repair rate µ added to the parallel configuration, the
incremental transition matrix would be

[Pij (dt)] =
⎛
⎜⎝

1−2λdt 2λdt 0

µdt 1− (λ+µ)dt λdt

0 0 1

⎞
⎟⎠ .

The differential equations would become

P′
1(t) =−2λP1(t)+µP2(t),

P′
2(t) = 2λP1(t)− (λ+µ)P2(t),

and the transformed equations would become

(s+2λ) f1(s)−µ f2(s) = 1,

−2λ f1(s)+ (s+λ+µ) f2(s) = 0.

Hence, we obtain

f1(s) = (s+λ+µ)

(s− s1)(s− s2)
,

f2(s) = 2λ

(s− s1)(s− s2)
,

where

s1 = −(3λ+µ)+√
(3λ+µ)2−8λ2

2
,

s2 = −(3λ+µ)−√
(3λ+µ)2−8λ2

2
. (1.70)

Using the Laplace transform, we obtain

P1(t) = (s1+λ+µ)e−s1t

(s1− s2)
+ (s2+λ+µ)e−s2t

(s2− s1)
,

P2(t) = 2λe−s1t

(s1− s2)
+ 2λe−s2t

(s2− s1)
,

where s1 and s2 are given in (1.70).
Thus, the reliability of two components in a parallel

system is given by

R(t) = P1(t)+ P2(t)

= (s1+3λ+µ)e−s1t − (s2+3λ+µ)e−s2t

(s1− s2)
(1.71)

System Mean Time Between Failures
Another parameter of interest for absorbing Markov pro-
cesses is the MTBF. Recalling the previous example
of a parallel configuration with repair, the differential
equations P′

1(t) and P′
2(t) describing the process were

P′
1(t) =−2λP1(t)+µP2(t),

P′
2(t) = 2λP1(t)− (λ+µ)P2(t).

Integrating both sides of the above equations yields

∞∫

0

P′
1(t)dt =−2λ

∞∫

0

P1(t)dt+µ

∞∫

0

P2(t)dt,

∞∫

0

P
′
2(t)dt = 2λ

∞∫

0

P1(t)dt− (λ+µ)

∞∫

0

P2(t)dt.

For the repairable system and from (1.4),

∞∫

0

R(t)dt = MTBF.

Similarly,

∞∫

0

P1(t)dt = mean time spent in state 1, and

∞∫

0

P2(t)dt = mean time spent in state 2.

Designating these mean times as T1 and T2, respectively,
we have

P1(t)dt|∞0 =−2λT1+µT2,

P2(t)dt|∞0 = 2λT1− (λ+µ)T2.

But P1(t) = 0 as t →∞ and P1(t) = 1 for t = 0. Like-
wise, P2(t)= 0 as t →∞ and P2(t)= 0 for t = 0. Thus,

−1 =−2λT1+µT2,

0 = 2λT1− (λ+µ)T2,

or, equivalently,
(
−1

0

)
=

(
−2λ µ

2λ −(λ+µ)

)(
T1

T2

)
.

Therefore,

T1 = (λ+µ)

2λ2 , T2 = 1

λ
,

MTBF = T1+T2 = (λ+µ)

2λ2 + 1

λ
= (3λ+µ)

2λ2 .

The MTBF for unmaintained processes is developed in
exactly the same way as just shown.

The last case to consider for absorbing processes is
that of the availability of a maintained system. The dif-
ference between reliability and availability is somewhat
subtle for absorbing processes. A good example is that
of a communications system where the mission would
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continue if such a system failed temporarily, but if it
failed permanently the mission would be aborted. Con-
sider a cold-standby system consisting of two units: one
main unit and one spare unit [1.1]:

State 1: Main unit operating and the spare is OK;
State 2: Main unit out and restoration underway;
State 3: Spare unit is installed and operating;
State 4: Permanent failure (no spare available).

The incremental transition matrix is given by

[Pij (dt)] =

⎛
⎜⎜⎜⎝

1−λdt λdt 0 0

0 1−µdt µdt 0

0 0 1−λdt λdt

0 0 0 1

⎞
⎟⎟⎟⎠ .

We obtain

P′
1(t) =−λP1(t),

P′
2(t) = λP1(t)−µP2(t),

P′
3(t) = µP2(t)−λP3(t).

Using the Laplace transform, we obtain the following
results.

The probability of full-up performance P1(t) is given
by

P1(t) = e−λt .

The probability of a down system that is under repair
P2(t) is

P2(t) =
(

λ

(λ−µ)

) (
e−µt − e−λt) .

Similarly, the probability of a fully up system with no
spare available P3(t) is

P3(t) =
(

λµ

(λ−µ)2

)
[e−µt − e−λt − (λ−µ)t e−λt].

Hence, the point availability A(t) is given by

A(t) = P1(t)+ P3(t).

If average or interval availability is required, this is
achieved by

(
1

t

) T∫

0

A(t)dt =
(

1

t

) T∫

0

[P1(t)+ P3(t)]dt,

where T is the interval of concern.
Ergodic processes, as opposed to absorbing pro-

cesses, do not have any absorbing states, and hence

movement between states can go on indefinitely. For
the latter reason, availability (point, steady-state, or in-
terval) is the only meaningful measure. As an example
of an ergodic process, we will use a ground-based power
unit configured in parallel.

The parallel units are identical, each with expo-
nential failure and repair times with means 1/λ and
1/µ, respectively. Assume a two-repairmen capability
if required (both units down), then

State 1: Fully up (both units operating);
State 2: One unit down and under repair (other unit up);
State 3: Both units down and under repair.

It should be noted that, as in the case of failure events,
two or more repairs cannot be made in the dt interval.

[Pij (dt)] =
⎛
⎜⎝

1−2λdt 2λdt 0

µdt 1− (λ+µ)dt λdt

0 2µdt 1−2µdt

⎞
⎟⎠ .

Case I: Point Availability – Ergodic Process. For
an ergodic process, as t →∞ the availability settles
down to a constant level. Point availability allows us
to study the process before this “settling down”, and
it reflects the initial conditions in the process. We can
obtain a solution for the point availability in a similar
way to that for absorbing processes, except that the last
row and column of the transition matrix must be retained
and entered into the system of equations. For example,
the system of differential equations becomes

⎛
⎜⎝

P′
1(t)

P′
2(t)

P′
3(t)

⎞
⎟⎠=

⎛
⎜⎝
−2λ µ 0

2λ −(λ+µ) 2µ

0 λ −2µ

⎞
⎟⎠

⎛
⎜⎝

P1(t)

P2(t)

P3(t)

⎞
⎟⎠ .

Similar to the absorbing case, the Laplace transform can
be used to solve for P1(t), P2(t) and P3(t); the point
availability A(t) is given by

A(t) = P1(t)+ P2(t).

Case II: Interval Availability – Ergodic Process. This
is the same as the absorbing case, with integration over
the time period T of interest. The interval availability,
A(T ), is

A(T ) = 1

T

T∫

0

A(t)dt.

Case III: Steady State Availability – Ergodic Process.
Here, the process is examined as t →∞, with complete
“washout” of the initial conditions. By letting t →∞,
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the system of differential equations can be transformed
into linear algebraic equations. Thus,

lim
t→∞

⎛
⎜⎝

P′
1(t)

P′
2(t)

P′
3(t)

⎞
⎟⎠

= lim
t→∞

⎛
⎜⎝
−2λ µ 0

2λ −(λ+µ) 2µ

0 λ −2µ

⎞
⎟⎠

⎛
⎜⎝

P1(t)

P2(t)

P3(t)

⎞
⎟⎠ .

As t →∞, Pi (t) → constant and P′
i (t) → 0. This leads

to an unsolvable system, namely,
⎛
⎜⎝

0

0

0

⎞
⎟⎠=

⎛
⎜⎝
−2λ µ 0

2λ −(λ+µ) 2µ

0 λ −2µ

⎞
⎟⎠

⎛
⎜⎝

P1(t)

P2(t)

P3(t)

⎞
⎟⎠ .

To avoid the above difficulty, an additional equation is
introduced:

3∑

i=1

Pi (t) = 1.

With the introduction of the new equation, one of the
original equations is deleted and a new system is formed:

⎛
⎜⎝

1

0

0

⎞
⎟⎠=

⎛
⎜⎝

1 1 1

−2λ µ 0

2λ −(λ+µ) 2µ

⎞
⎟⎠

⎛
⎜⎝

P1(t)

P2(t)

P3(t)

⎞
⎟⎠

or, equivalently,
⎛
⎜⎝

P1(t)

P2(t)

P3(t)

⎞
⎟⎠=

⎛
⎜⎝

1 1 1

−2λ µ 0

2λ −(λ+µ) 2µ

⎞
⎟⎠

−1 ⎛
⎜⎝

1

0

0

⎞
⎟⎠ .

We now obtain the following results:

P1(t) = µ2

(µ+λ)2 ,

P2(t) = 2λµ

(µ+λ)2 ,

and

P3(t) = 1− P1(t)− P2(t),

= λ2

(µ+λ)2
.

Therefore, the steady state availability A(∞) is given by

A3(∞) = P1(t)+ P2(t)

= µ(µ+2λ)

(µ+λ)2
.

Note that Markov methods can also be employed when
failure or repair times are not exponential but can be
represented as the sum of exponential times with identi-
cal means (an Erlang distribution or gamma distribution
with integer-valued shape parameters). Basically, the
method involves introducing “dummy” states which, al-
though being of no particular interest in themselves,
change the hazard function from constant to increasing.

1.4.2 Counting Processes

Among various discrete stochastic processes, counting
processes are widely used in engineering statistics to
describe the appearance of events in time, such as fail-
ures, the number of perfect repairs, etc. The simplest
counting process is a Poisson process. The Poisson pro-
cess plays a special role in many applications related to
reliability [1.1]. A classic example of such an applica-
tion is the decay of uranium. Here, radioactive particles
from nuclear material strike a certain target in accor-
dance with a Poisson process of some fixed intensity.
One well-known counting process is the so-called re-
newal process. This process is described as a sequence
of events where the intervals between the events are in-
dependent and identically distributed random variables.
In reliability theory, this type of mathematical model is
used to describe the number of occurrences of an event
over a time interval. In this section, we also discuss the
quasi-renewal process and the nonhomogeneous Poisson
process.

A non-negative, integer-valued stochastic process
N(t) is called a counting process if N(t) represents
the total number of occurrences of an event in the
time interval [0, t] and satisfies these two proper-
ties:

1. if t1 < t2, then N(t1) ≤ N(t2),
2. if t1 < t2, then N(t2)−N(t1) is the number of occur-

rences of the event in the interval [t1, t2].

For example, if N(t) equals the number of persons
who have entered a restaurant at or prior to time t, then
N(t) is a counting process in which an event occurs
whenever a person enters the restaurant.

Poisson Processes
One of the most important counting processes is the
Poisson process.

Definition 1.3
A counting process N(t) is said to be a Poisson process
with intensity λ if
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1. the failure process N(t) has stationary independent
increments;

2. the number of failures in any time interval of length
s has a Poisson distribution with a mean of λs; in
other words

P{N(t+ s)− N(t) = n} = e−λs(λs)n

n!
n = 0, 1, 2, . . . ; (1.72)

3. the initial condition is N(0) = 0.

This model is also called a homogeneous Poisson pro-
cess, indicating that the failure rate λ does not depend
on time t. In other words, the number of failures that oc-
cur during the time interval (t, t+ s] does not depend on
the current time t, only the length of the time interval s.
A counting process is said to possess independent incre-
ments if the number of events in disjoint time intervals
are independent.

For a stochastic process with independent incre-
ments, the autocovariance function is

Cov[X(t1), X(t2)]

=
⎧
⎨

⎩
Var[N(t1+ s)− N(t2)] for 0 < t2− t1 < s

0 otherwise
,

where

X(t)= N(t+ s)− N(t).

If X(t) is Poisson-distributed, then the variance of the
Poisson distribution is

Cov[X(t1), X(t2)]

=
⎧
⎨

⎩
λ[s− (t2− t1)] for 0 < t2− t1 < s

0 otherwise
.

This result shows that the Poisson increment process is
covariance stationary. We now present several properties
of the Poisson process.

Property 1.3
The sum of independent Poisson processes N1(t),N2(t),
. . . , Nk(t) with mean values λ1t, λ2t, . . ., λkt, respec-

tively, is also a Poisson process with mean

(
k∑

i=1
λi

)
t.

In other words, the sum of the independent Poisson pro-
cesses is also a Poisson process with a mean that is
equal to the sum of the means of the individual Poisson
processes.

Property 1.4
The difference between two independent Poisson pro-
cesses, N1(t), and N2(t), with mean λ1t and λ2t,
respectively, is not a Poisson process. Instead, it has
a probability mass function of

P[N1(t)− N2(t) = k]

= e−(λ1+λ2)t
(
λ1

λ2

) k
2

Ik
(
2
√
λ1λ2t

)
, (1.73)

where Ik(.) is a modified Bessel function of order k.

Property 1.5
If the Poisson process N(t) with mean λt is filtered such
that not every occurrence of the event is counted, then the
process has a constant probability p of being counted.
The result of this process is a Poisson process with mean
λpt[].

Property 1.6
Let N(t) be a Poisson process and Yn a family of in-
dependent and identically distributed random variables
which are also independent of N(t). A stochastic pro-
cess X(t) is said to be a compound Poisson process if it
can be represented as

X(t) =
N(t)∑

i=1

Yi .

Renewal Processes
A renewal process is a more general case of the Poisson
process in which the inter-arrival times of the process
or the times between failures do not necessarily follow
the exponential distribution. For convenience, we will
call the occurrence of an event a renewal, the inter-
arrival time the renewal period, and the waiting time the
renewal time.

Definition 1.4
A counting process N(t) that represents the total num-
ber of occurrences of an event in the time interval (0, t]
is called a renewal process if the times between the fail-
ures are independent and identically distributed random
variables.
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The probability that exactly n failures occur by time t
can be written as

P[N(t)= n] = P[N(t) ≥ n]− P[N(t) > n]. (1.74)

Note that the times between the failures are
T1, T2, . . ., Tn , so the failures occurring at time Wk are

Wk =
k∑

i=1

Ti

and

Tk = Wk −Wk−1.

Thus,

P[N(t)= n] = P[N(t) ≥ n]− P[N(t) > n]
= P[Wn ≤ t]− P[Wn+1 ≤ t]
= Fn(t)− Fn+1(t),

where Fn(t) is the cumulative distribution function for
the time of the nth failure and n = 0, 1, 2, . . . .

Example 1.21: Consider a software testing model for
which the time at which an error is found during the
testing phase has an exponential distribution with a fail-
ure rate of X. It can be shown that the time of the nth
failure follows the gamma distribution with parameters
k and n. From (1.74), we obtain

P[N(t) = n] = P[N(t) ≤ n]− P[N(t) ≤ n−1]

=
n∑

k=0

(λt)k

k! e−λt −
n−1∑

k=0

(λt)k

k! e−λt

= (λt)n

n! e−λt for n = 0, 1, 2, . . . .

Several important properties of the renewal function are
given below.

Property 1.7
The mean value function of the renewal process, denoted
by m(t), is equal to the sum of the distribution functions
for all renewal times, that is,

m(t) = E[N(t)]

=
∞∑

n=1

Fn(t).

Property 1.8
The renewal function m(t) satisfies the following equa-
tion:

m(t) = Fa(t)+
t∫

0

m(t− s)dFa(s), (1.75)

where Fa(t) is the distribution function of the inter-
arrival time or the renewal period.

In general, let y(t) be an unknown function to be
evaluated and x(t) be any non-negative and integrable
function associated with the renewal process. Assume
that Fa(t) is the distribution function of the renewal
period. We can then obtain the following result.

Property 1.9
Let the renewal equation be

y(t) = x(t)+
t∫

0

y(t− s)dFa(s). (1.76)

Then its solution is given by

y(t) = x(t)+
t∫

0

x(t− s)dm(s),

where m(t) is the mean value function of the renewal
process.

The proof of the above property can be easily de-
rived using the Laplace transform. Let x(t) = a. Thus,
in Property 1.9, the solution y(t) is given by

y(t) = x(t)+
t∫

0

x(t− s)dm(s)

= a+
t∫

0

a dm(s)

= a{1+ E[N(t)]}.

Quasi-Renewal Processes
In this section we discuss a general renewal process: the
quasi-renewal process. Let {N(t), t > 0} be a counting
process and let Xn be the time between the (n−1)th and
the nth event of this process, n ≥ 1.
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Definition 1.5
[1.10]: If the sequence of non-negative random variables
{X1, X2, . . . } is independent and

Xi = αXi−1 (1.77)

for i ≥ 2 where α > 0 is a constant, then the counting
process {N(t), t ≥ 0} is said to be a quasi-renewal pro-
cess with parameter α and the first inter-arrival time
X1.

When α = 1, this process becomes the ordinary re-
newal process. This quasi-renewal process can be used
to model reliability growth processes in software test-
ing phases and hardware burn-in stages for α > 1, and
in hardware maintenance processes when α ≤ 1.

Assume that the probability density function, cumu-
lative distribution function, survival function and failure
rate of random variable X1 are f1(x), F1(x), s1(x) and
r1(x), respectively. Then the pfd, cdf, survival func-
tion, and failure rate of Xn for n = 1, 2, 3, . . . are,
respectively, given below [1.10]:

fn(x) = 1

αn−1 f1

(
1

αn−1 x

)
,

Fn(x) = F1

(
1

αn−1
x

)
,

sn(x) = s1

(
1

αn−1
x

)
,

fn(x) = 1

αn−1 r1

(
1

αn−1 x

)
.

Similarly, the mean and variance of Xn is given as

E(Xn) = αn−1 E(X1),

Var(Xn) = α2n−2Var(X1).

Because of the non-negativity of X1, and the fact that
X1 is not identically 0, we obtain

E(X1) = µ1 �= 0.

It is worth noting that the shape parameters for Xn are
the same for n = 1, 2, 3, . . . for a quasi-renewal pro-
cess if X1 follows the gamma, Weibull, or log normal
distribution.

This means that the shape parameters of the inter-
arrival time will not change after “renewal”. In software
reliability, the assumption that the software debugging
process does not change the error-free distribution seems
reasonable. Thus, if a quasi-renewal process model is
used, the error-free times that occur during software

debugging will have the same shape parameters. In this
sense, a quasi-renewal process is suitable for modeling
the increase in software reliability. It is worth noting that

lim
n→∞

E(X1+ X2+· · ·+ Xn)

n
= lim

n→∞
µ1(1−αn)

(1−α)n
,

= 0 if α < 1,

=∞ if α > 1.

Therefore, if the inter-arrival time represents the
error-free time of a software system, then the average
error-free time approaches infinity when its debugging
process has been operating for a long debugging time.

Distribution of N(t). Consider a quasi-renewal pro-
cess with parameter α and a first inter-arrival time X1.
Clearly, the total number of renewals N(t) that occur
up to time t has the following relationship to the arrival
time of the nth renewal SSn :

N(t)≥ n if and only if SSn ≤ t.

In other words, N(t) is at least n if and only if the nth
renewal occurs prior to time t. It is easily seen that

SSn =
n∑

i=1

Xi =
n∑

i=1

αi−1 X1 for n ≥ 1. (1.78)

Here, SS0 = 0. Thus, we have

P{N(t)= n} = P{N(t) = n}− P{N(t)≥ n+1}
= P{SSn ≤ t}− P{SSn+1 ≤ t}
= Gn(t)−Gn+1(t),

where Gn(t) is the convolution of the inter-arrival times
F1, F2, F3, . . ., Fn . In other words,

Gn(t) = P{F1+ F2+· · ·+ Fn ≤ t}.
If the mean value of N(t) is defined as the renewal
function m(t), then

m(t) = E[N(t)]

=
∞∑

n=1

P{N(t) ≥ n}

=
∞∑

n=1

P{SSn ≤ t}

=
∞∑

n=1

Gn(t).
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The derivative of m(t) is known as the renewal density

λ(t) = m′(t).

In renewal theory, random variables representing inter-
arrival distributions assume only non-negative values,
and the Laplace transform of its distribution F1(t) is
defined by

L{F1(s)} =
∞∫

0

e−sx dF1(x).

Therefore,

LFn(s) =
∞∫

0

e−an−1st dF1(t) =LF1(αn−1s)

and

Lmn(s) =
∞∑

n=1

LGn(s)

=
∞∑

n=1

LF1(s)LF1(αs) · · · ·LF1(αn−1s).

Since there is a one-to-one correspondence between dis-
tribution functions and its Laplace transform, it follows
that the first inter-arrival distribution of a quasi-renewal
process uniquely determines its renewal function.

If the inter-arrival time represents the error-free time
(time to first failure), a quasi-renewal process can be
used to model reliability growth in both software and
hardware.

Suppose that all software faults have the same
chance of being detected. If the inter-arrival time of
a quasi-renewal process represents the error-free time
of a software system, then the expected number of soft-
ware faults in the time interval [0, t] can be defined by
the renewal function, m(t), with parameter α > 1. De-
noted by mr(t), the number of remaining software faults
at time t, it follows that

mr(t) = m(Tc)−m(t)

where m(Tc) is the number of faults that will eventually
be detected through a software lifecycle Tc.

Nonhomogeneous Poisson Processes
The nonhomogeneous Poisson process model (NHPP),
which represents the number of failures experienced
up to time t, is a nonhomogeneous Poisson process
{N(t) with t ≥ 0}. The main issue with the NHPP model

is to determine an appropriate mean value function to
denote the expected number of failures experienced up
to a certain time.

Different assumptions mean that the model will end
up with different functional forms of the mean value
function. Note that the exponential assumption for the
inter-arrival time between failures is relaxed in a renewal
process, and the stationary assumption is relaxed in the
NHPP.

The NHPP model is based on the following assump-
tions:

• The failure process has an independent increment; in
other words, the number of failures during the time
interval (t, t+ s) depends on the current time t and
the length of the time interval s, and does not depend
on the past history of the process.• The failure rate of the process is given by

P{exactly one failure in (t, t+∆t)}
= P{N(t+∆t)− N(t)= 1}
= λ(t)∆t+o(∆t),

where λ(t) is the intensity function.• During a small interval ∆t, the probability of more
than one failure is negligible; that is,

P{two or more failures in (t, t+∆t)} = o(∆t),

• The initial condition is N(0) = 0.

Based on these assumptions, the probability that ex-
actly n failures occur during the time interval (0, t) for
the NHPP is given by

Pr{N(t) = n} = [m(t)]n
n! e−m(t) n = 0, 1, 2, . . . ,

(1.79)

where m(t) = E[N(t)] =
t∫

0
λ(s)ds and λ(t) is the inten-

sity function. It is easily shown that the mean value
function m(t) is nondecreasing.

The reliability R(t), defined as the probability that
there are no failures in the time interval (0, t), is given
by

R(t) = P{N(t) = 0}
= e−m(t).

In general, the reliability R(x|t) – the probability that
there are no failures in the interval (t, t+ x) – is given
by

R(x|t) = P{N(t+ x)− N(t)= 0}
= e−[m(t+x)−m(t)]
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and its density is given by

f (x) = λ(t+ x)e−[m(t+x)−m(t)],

where

λ(x) = ∂

∂x
[m(x)].

The variance of the NHPP can be obtained as follows:

Var[N(t)] =
t∫

0

λ(s)ds

and the autocorrelation function is given by

Cor[s] = E[N(t)]E[N(t+ s)− N(t)]+ E[N2(t)]

=
t∫

0

λ(s)ds

t+s∫

0

λ(s)ds+
t∫

0

λ(s)ds

=
t∫

0

λ(s)ds

⎡

⎣1+
t+s∫

0

λ(s)ds

⎤

⎦ .

Example 1.22: Assume that the intensity λ is a random
variable with pdf f (λ). Then the probability that exactly
n failures occur during the time interval (0, t) is given
by

P{N(t)= n} =
∞∫

0

e−λt (λt)n

n! f (λ)dλ.

If the pdf f (λ) is given as the following gamma density
function with parameters k and m:

f (λ) = 1

Γ (m)
kmλm−1 e−kλ for λ≥ 0

then it can be shown that

P{N(t)= n} =
(

n+m−1

n

)
pmqn n = 0, 1, 2, . . .

(this is also called a negative binomial density function),
where

p = k

t+ k
and q = t

t+ k
= 1− p.

1.5 Further Reading

The reader interested in a deeper understanding of
advanced probability theory and stochastic processes

should note the following citations, which refer to highly
recommended books: [1.9, 11–13]
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1.A Appendix: Distribution Tables

Table 1.6 Cumulative areas under the standard normal distribution

Z 0 1 2 3 4 5 6 7 8 9

−3.0 0.0013 0.0010 0.0007 0.0005 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000

−2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

−2.2 0.0139 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110

−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0238 0.0233

−1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0300 0.0294

−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0570 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0722 0.0708 0.0694 0.0681

−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

−0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148

−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
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Table 1.6 (cont.)

Z 0 1 2 3 4 5 6 7 8 9

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9430 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9648 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9700 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9874 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.000

Table 1.7 Percentage points for the t-distribution (tα,r )

r / α 0.100 0.050 0.025 0.01 0.005 0.0025 0.001

1 3.078 6.314 12.706 31.821 63.657 127.32 318.310

2 1.886 2.920 4.303 6.965 9.925 14.089 23.326

3 1.638 2.353 3.182 4.541 5.841 7.453 10.213

4 1.533 2.132 2.776 3.747 4.604 5.598 7.173

5 1.476 2.015 2.571 3.365 4.032 4.773 5.893

6 1.440 1.943 2.447 3.143 3.707 4.317 5.208

7 1.415 1.895 2.365 2.998 3.499 4.029 4.785

8 1.397 1.860 2.306 2.896 3.355 3.833 4.501

9 1.383 1.833 2.262 2.821 3.250 3.690 4.297

10 1.372 1.812 2.228 2.764 3.169 3.581 4.144

11 1.363 1.796 2.201 2.718 3.106 3.497 4.025

12 1.356 1.782 2.179 2.681 3.055 3.428 3.930

13 1.350 1.771 2.160 2.650 3.012 3.372 3.852

14 1.345 1.761 2.145 2.624 2.977 3.326 3.787

15 1.341 1.753 2.131 2.602 2.947 3.286 3.733

16 1.337 1.746 2.120 2.583 2.921 3.252 3.686

17 1.333 1.740 2.110 2.567 2.898 3.222 3.646

18 1.330 1.734 2.101 2.552 2.878 3.197 3.610

19 1.328 1.729 2.093 2.539 2.861 3.174 3.579

20 1.325 1.725 2.086 2.528 2.845 3.153 3.552

21 1.323 1.721 2.080 2.518 2.831 3.135 3.527

22 1.321 1.717 2.074 2.508 2.819 3.119 3.505

23 1.319 1.714 2.069 2.500 2.807 3.104 3.485

24 1.318 1.711 2.064 2.492 2.797 3.091 3.467
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Table 1.7 (cont.)

r / α 0.100 0.050 0.025 0.01 0.005 0.0025 0.001

25 1.316 1.708 2.060 2.485 2.787 3.078 3.450

26 1.315 1.706 2.056 2.479 2.779 3.067 3.435

27 1.314 1.703 2.052 2.473 2.771 3.057 3.421

28 1.313 1.701 2.048 2.467 2.763 3.047 3.408

29 1.311 1.699 2.045 2.462 2.756 3.038 3.396

30 1.310 1.697 2.042 2.457 2.750 3.030 3.385

40 1.303 1.684 2.021 2.423 2.704 2.971 3.307

60 1.296 1.671 2.000 2.390 2.660 2.915 3.232

120 1.289 1.658 1.980 2.358 2.617 2.860 3.160

∞ 1.282 1.645 1.960 2.326 2.576 2.807 3.090

Table 1.8 Percentage points for the F-distribution F0.05, ν2/ν1

ν2 / ν1 1 2 3 4 5 6 7 8 9 10

1 161.40 199.50 215.70 224.60 230.20 234.00 236.80 238.90 240.50 241.90

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

4 7.71 6.94 6.59 6.39 9.26 9.16 6.09 6.04 6.00 5.96

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.95 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83
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Table 1.9 Percentage points for the χ2 distribution

ν / χ2
α χ2

0.99 χ2
0.975 χ2

0.95 χ2
0.90 χ2

0.10 χ2
0.05 χ2

0.025 χ2
0.01

1 0 0.00 0.00 0.02 2.71 3.84 5.02 6.64

2 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21

3 0.12 0.22 0.35 0.58 6.25 7.82 9.35 11.35

4 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28

5 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09

6 0.87 1.24 1.64 2.20 10.65 12.59 14.45 16.81

7 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48

8 1.65 2.18 2.73 3.49 13.36 15.51 17.54 20.09

9 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67

10 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21

11 3.05 3.82 4.58 5.58 17.28 19.68 21.92 24.73

12 3.57 4.40 5.23 6.30 18.55 21.92 23.34 26.22

13 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69

14 4.66 5.63 6.57 7.79 21.06 23.69 26.12 29.14

15 5.23 6.26 7.26 8.57 22.31 25.00 27.49 30.58

16 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00

17 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41

18 7.02 8.23 9.39 10.87 25.99 28.87 31.53 34.81

19 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19

20 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57

21 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93

22 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29

23 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64

24 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98

25 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31

26 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64

27 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96

28 13.57 15.31 16.93 18.94 37.92 41.34 44.46 48.28

29 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59

30 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89

35 18.48 20.56 22.46 24.81 46.03 49.80 53.21 57.36

40 22.14 24.42 26.51 29.07 51.78 55.76 59.35 63.71

50 29.69 32.35 34.76 37.71 63.14 67.50 71.42 76.17

60 37.47 40.47 43.19 46.48 74.37 79.08 83.30 88.39

70 45.43 48.75 51.74 55.35 85.50 90.53 95.03 100.44

80 53.53 57.15 60.39 64.30 96.55 101.88 106.63 112.34

90 61.74 65.64 69.12 73.31 107.54 113.15 118.14 124.13

100 70.05 74.22 77.93 82.38 118.47 124.34 129.57 135.81

110 78.45 82.86 86.79 91.50 129.36 135.48 140.92 147.42

120 86.91 91.57 95.70 100.65 140.20 146.57 152.22 158.96
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Table 1.10 Critical values dn,α for the Kolmogorov–Smirnov test

n / α 0.2 0.1 0.05 0.02 0.01

1 0.900 0.950 0.975 0.990 0.995

2 0.684 0.776 0.842 0.900 0.929

3 0.565 0.636 0.708 0.785 0.829

4 0.493 0.565 0.624 0.689 0.734

5 0.447 0.509 0.563 0.627 0.669

6 0.410 0.468 0.519 0.577 0.617

7 0.381 0.436 0.483 0.538 0.576

8 0.358 0.410 0.454 0.507 0.542

9 0.339 0.387 0.430 0.480 0.513

10 0.323 0.369 0.409 0.457 0.489

11 0.308 0.352 0.391 0.437 0.468

12 0.296 0.338 0.375 0.419 0.449

13 0.285 0.325 0.361 0.404 0.432

14 0.275 0.314 0.349 0.390 0.418

15 0.266 0.304 0.338 0.377 0.404

n / α 0.2 0.1 0.05 0.02 0.01

16 0.258 0.295 0.327 0.366 0.392

17 0.250 0.286 0.318 0.355 0.381

18 0.244 0.279 0.309 0.346 0.371

19 0.237 0.271 0.301 0.337 0.361

20 0.232 0.265 0.294 0.329 0.352

21 0.226 0.259 0.287 0.321 0.344

22 0.221 0.253 0.281 0.314 0.337

23 0.216 0.247 0.275 0.307 0.330

24 0.212 0.242 0.264 0.301 0.323

25 0.208 0.238 0.264 0.295 0.317

26 0.204 0.233 0.259 0.290 0.311

27 0.200 0.229 0.254 0.284 0.305

28 0.197 0.225 0.250 0.279 0.300

29 0.193 0.221 0.246 0.275 0.295

30 0.190 0.218 0.242 0.270 0.281

1.B Appendix: Laplace Transform

If a function h(x) can be obtained from some prescribed
operation on a function f (x), then h(x) is often called
a transform of f (x). For example,

h(x) =√
2+ f (x),

h(x) = ∂

∂x
f (x).

The Laplace transform of f (t) is the function f ∗(s),
where

f ∗(s) =
∞∫

0

e−st f (t)dt.

The Laplace transform is often denoted by f ∗(s) or
L( f (t)) or L( f ). The results of the Laplace transform
for a few simple functions are presented below.

Results

1.

L(1) =
∞∫

0

e−st dt = 1

s
;

2.

L(e−at) =
∞∫

0

e−st e−at dt =
∞∫

0

e−(s+a)t dt

= 1

s+a
.

3. If f (t) = 1
a e− t

a , then

L[ f (t)] =
∞∫

0

e−st 1

a
e−

t
a dt = 1

1+ sa
.

4. If f (t) = t eat , then

L[ f (t)] =
∞∫

0

e−st t eat dt = 1

(s−a)2
.

5. If f (t) = 1
a (eat −1), then

L[ f (t)] =
∞∫

0

e−st 1

a
(eat −1)dt = 1

s(s−a)
.

6. If f (t) = (1+at)eat , then

L[ f (t)] =
∞∫

0

e−st(1+at)eat dt = s

(s−a)2 .

Similarly, we can obtain the following results:
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7. If f (t) = aeat−bebt

a−b , then

L[ f (t)] = s

(s−a)(s−b)
for a �= b.

8. If f (t) = αktk−1 e−at

Γ (k) then

L[ f (t)] =
(

α

α+ s

)k

.

9. If f (t) = eat−ebt

a−b , for a �= b, then

L[ f (t)] = 1

(s−a)(s−b)
.

10. If f (t) = λe−λt , then

L[ f (t)] = λ

λ+ s
.

11.

L[c1 f1(t)+ c2 f2(t)]

=
∞∫

0

e−st[c1 f1(t)+ c2 f2(t)]dt

= c1L[ f1(t)]+ c2L[ f2(t)] .

12. If fi (t) = λi e−λi t , then

L

[
n∑

i=1

fi (t)

]
=

n∑

i=1

λi

λi + s
.

13.

L

[
n∑

i=1

fi (t)

]
=

n∑

i=1

L [ fi (t)].

14.

L[ f ′(t)] =
∞∫

0

e−st f ′(t)dt

= f (t)e−st
∞|
0
+s

∞∫

0

f (t)e−st dt

=− f (0+)+ s f ∗(s)

=− f (0+)+ sL[ f (t)].
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Statistical Rel2. Statistical Reliability with Applications

This chapter reviews fundamental ideas in
reliability theory and inference. The first part of the
chapter accounts for lifetime distributions that are
used in engineering reliability analysis, including
general properties of reliability distributions that
pertain to lifetime for manufactured products.
Certain distributions are formulated on the basis
of simple physical properties, and other are more
or less empirical. The first part of the chapter
ends with a description of graphical and analytical
methods to find appropriate lifetime distributions
for a set of failure data.

The second part of the chapter describes
statistical methods for analyzing reliability data,
including maximum likelihood estimation and
likelihood ratio testing. Degradation data are
more prevalent in experiments in which failure is
rare and test time is limited. Special regression
techniques for degradation data can be used
to draw inference on the underlying lifetime
distribution, even if failures are rarely observed.

The last part of the chapter discusses reliability
for systems. Along with the components that
comprise the system, reliability analysis must
take account of the system configuration and
(stochastic) component dependencies. System
reliability is illustrated with an analysis of logistics
systems (e.g., moving goods in a system of product
sources and retail outlets). Robust reliability
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design can be used to construct a supply chain that
runs with maximum efficiency or minimum cost.

2.1 Introduction and Literature Review

In every day use, words like reliability and quality
have meanings that vary depending on the context.
In engineering, reliability is defined as the ability of
an item to perform its function, usually measured in
terms of probability as a function of time. Quality
denotes how the item conforms to its specifications,
so reliability is a measure of the item’s quality over
time.

Since the time of Birnbaum and Sanders [2.1], when
system reliability emerged as its own discipline, research
has centered on the operation of simple systems with

identical parts working independently of each other.
Today’s systems do not fit this mold; system representa-
tion must include multifaceted components with several
component states that can vacillate between perfect op-
eration and terminal failure. Not only do components
interact within systems, but many systems are dynamic
in that the system configuration can be expected to
change during its operation, perhaps due to component
failures or external stresses. Computer software, for ex-
ample, changes its failure structure during the course of
design, testing and implementation.
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Statistical methods for reliability analysis grew from
this concept of system examination, and system reliabil-
ity is often gauged through component lifetime testing.
This chapter reviews the current framework for statis-
tical reliability and considers some modern needs from
experimenters in engineering and the physical sciences.

Statistical analysis of reliability data in engineering
applications cannot be summarized comprehensively in
a single book chapter such as this. The following books
(listed fully in the reference section) serve as an excellent
basis for a serious treatment of the subject:

1. Statistical Theory of Reliability and Life Testing by
Barlow and Proschan [2.2]

2. Practical Methods for Reliability Data Analysis by
Ansell and Phillips [2.3]

3. Reliability: Probabilistic Models and Statistical
Methods by Leemis [2.4]

4. Applied Reliability by Tobias and Trindade [2.5]
5. Engineering Reliability by Barlow [2.6]
6. Reliability for Technology, Engineering and Man-

agement by Kales [2.7]
7. Statistical Methods for Reliability Data by Meeker

and Escobar [2.8]
8. Reliability Modeling, Prediction, and Optimization

by Blischke and Murthy [2.9]
9. Statistical Methods for the Reliability of Repairable

Systems by Rigdon and Basu [2.10] and
10. Modern Reliability Analysis: A Bayesian Perspec-

tive by Johnson et al. [2.11]

Some of the books in this list focus on reliabil-
ity theory, and others focus exclusively on reliability
engineering. From the more inclusive books, [2.8]

provides a complete, high-level guide to reliability
inference tools for an engineer, and most examples
have an engineering basis (usually in manufacturing).
For reliability problems closely associated with mater-
ials testing, Bogdanoff and Kozin [2.12] connects the
physics of degradation to reliability models. Sobczyk
and Spencer [2.13] also relate fatigue to reliability
through probability modeling. For reliability prediction
in software performance, Lyu [2.14] provides a compre-
hensive guide of engineering procedures for software
reliability testing, while a more theoretical alternative by
Singpurwalla and Wilson [2.15] emphasizes probability
modeling for software reliability, including hierarchical
Bayesian methods. Closely related to reliability model-
ing in engineering systems, Bedford and Cooke [2.16]
goes over methods of probabilistic risk assessment,
which is an integral part of reliability modeling for large
and complex systems.

Other texts emphasize reliability assessment in
a particular engineering field of interest. For statisti-
cal reliability in geotechnical engineering, Baecher and
Christian [2.17] is recommended as it details statisti-
cal problems with soil variability, autocorrelation (i. e.,
Kriging), and load/resistance factors. Ohring [2.18] pro-
vides a comprehensive guide to reliability assessment for
electrical engineering and electronics manufacturing, in-
cluding reliability pertaining to degradation of contacts
(e.g., crack growth in solder), optical-fiber reliability,
semiconductor degradation and mass-transport-induced
failure. For civil engineering, Melchers’ [2.19] reliabil-
ity text has a focus on reliability of structural systems
and loads, time-dependent reliability and resistance
modeling.

2.2 Lifetime Distributions in Reliability

While engineering research has contributed a great deal
of the current methods for reliability life testing, an
equally great amount exists in the biological sciences, es-
pecially relating to epidemiology and biostatistics. Life
testing is a crucial component to both fields, but the bio-
related sciences tend to focus on mean lifetimes and nu-
merous risk factors. Engineering methods, on the other
hand, are more likely to focus on upper (or lower) per-
centiles of the lifetime distribution as well as the stochas-
tic dependencies between working components. Another
crucial difference between the two research areas is that
engineering models are more likely to be based on prin-
ciples of physics that lead to well-known distributions
such as Weibull, log–normal, extreme value and so on.

The failure-time distribution is the most widely
used probability tool for modeling product reliabil-
ity in science and industry. If f (x) represents the
probability density function for the product’s failure
time, then the its reliability is R(x) = ∫∞

x f (u)du,
and R(t) = 1− F(t) where F is the cumulative
distribution function (CDF) corresponding to f . A quan-
tile is the CDF’s inverse; The p-th quantile of
F is the lifetime value tp such that F(tp) = p.
To understand the quality of a manufactured prod-
uct through these lifetime probability functions, it
is often useful to consider the notion of ag-
ing. For example, the (conditional) reliability of
a product that has been working t units of time
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is

R(x|t) = R(t+ x)

R(t)
, if R(t) > 0 . (2.1)

The rate of change of R(x|t) is an important met-
ric for judging a product’s quality, and the conditional
failure rate function h(t) is defined as

h(t) = lim
x→∞ x−1 R(t)− R(t+ x)

R(t)
= f (t)

R(t)
. (2.2)

The cumulative failure rate (sometimes called the
hazard function) is H(t) = ∫ t

0 h(u)du, and has many
practical uses in reliability theory because of its mono-
tonicity and the fact that H(t)=− log R(t).

The failure rate clearly communicates how the prod-
uct ages during different spans of its lifetime. Many
manufactured products have an increasing failure rate,
but the rate of increase is rarely stable throughout
the product’s lifetime. If r(t) remains constant, it is
easy to show the lifetime distribution is exponential[

f (x) = θ exp (−θx), x > 0
]

and the product exhibits
no aging characteristics. Many electronic components
and other manufactured items have brief initial period
when failure rate is relatively high and decrease toward
a steady state, where it stays until aging causes the rate
to increase. This is called a bath-tub failure rate. The
period in which early failures occur (called infant mor-
tality) is called the burn-in period, and is often used by
manufacturers to age products and filter out defectives
(early failures) before being making it available to the
consumer.

2.2.1 Alternative Properties
to Describe Reliability

The failure rate function, reliability function, cumula-
tive hazard function, and probability density describe
different aspects of a lifetime distribution. The expected
lifetime, or mean time to failure (MTTF) is an impor-
tant measure for repairable systems. Several alternatives
for characterizing properties of the lifetime distribution
include:• Mean residual life = L(t) = EX (X− t|X ≥ t) is the

expected residual life of a component that has al-
ready lasted t units of time. If L(t) is less than the
expected lifetime µ, the product is exhibiting aging
by the time t.• Reversed hazard rate = ν(t) = f (x)/F(x) provides
a different aspect of reliability: the conditional fail-
ure frequency at the time just before t given that the
product failed in (0, t] (see Chapt. 1 of [2.20], for
example).

• Percentile residual life = Qα = F−1
[
1− (1−α)×

R(t)
]− t is the α quantile of the residual life (the

conditional lifetime distribution given that the prod-
uct has lasted t units of time). The median residual
life, where α= 1/2 compares closely to L(t).• Mill’s ratio = R(x)/ f (x) = 1/h(x), used in eco-
nomics, is not an ordinary way to characterize
reliability, but it is worth noting because of its close
connection to failure rate.

2.2.2 Conventional Reliability
Lifetime Distributions

So far, only one distribution (exponential) has been
mentioned. Rather than presenting a formal review of
commonly used reliability distributions, a summary of
commonly applied lifetime distributions is presented
in Table 2.1, including the exponential, gamma, Weibull,
log–normal, logistic, Pareto and extreme value. In the
table, Γ (t) = ∫∞

0 xt−1 e−x dx is the ordinary gamma
function, and IG(t, x) represents the corresponding in-
complete Gamma function.

For manufacturing centers and research laboratories
that conduct lifetime tests on products, lifetime data is
an essential element of reliability analysis. However,
a great deal of reliability analysis is based on field data,
or reliability information sampled from day-to-day us-
age of the product. In many of these instances, lifetime
data is a luxury not afforded to the reliability inference.
Instead, historical event data and inspection counts are
logged for the data analysis. Consequently, several dis-
crete distributions (e.g., Poisson, binomial, geometric)
are important in reliability applications. Chapter 4 has
a more detailed discussion of these and other statistical
distributions applied in engineering problems.

2.2.3 From Physics to Failure Distributions

Many of the distributions in Table 2.1 are derived based
on physical principles. For example, Weibull [2.21] de-
rived the distribution that takes his name to represent
the breaking strength of materials based on the idea
that some components are comparable to a chain that
is no stronger than its weakest link. From this premise,
the distribution can be derived from properties of min-
imums, in contrast to the extreme value distribution,
which can be derived through the properties of maxi-
mums (see [2.22], for example). In a short time after its
introduction, the Weibull distribution was successfully
applied to numerous modeling problems in engineering
and has become the hallmark distribution in applied re-
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Table 2.1 Common lifetime distributions used in reliability data analysis

Distribution f (t), t > 0 h(t) µ σ2 Parameter space

Exponential θ e−θt θ 1/θ 1/θ2 θ > 0

Weibull λκtκ−1 e−λtκ λκtκ−1 λ−1/κΓ

(
1+ 1

κ

)
λ−2/κ

[
Γ

(
1+ 2

κ

)
κ > 0, λ > 0

−Γ 2
(
1+ 1

κ

) ]

Gamma λrΓ−1(r)tr−1 e−λt λr tr−1 e−λt

Γ (r) [1− IG(r, λt)]
r/λ r/λ2 r > 0, λ > 0

Log–
normal

1

σ
√

2π
e
−(log t−µ)2

2σ2 f (t)/R(t) eµ+σ2/2 e2µ+2σ2 −
e2µ+σ2

−∞<µ<∞, σ > 0

Logistic
e−(t−λ)/β

β
(
1+ e−(t−λ)/β

)2

[
β
(

1+ e−(t−λ)/β
)]−1

λ (βπ)2/3 −∞< λ <∞, β > 0

Pareto
mθm

tm+1

m

t

mθ

m−1

mθ2

(m−1)2(m−2)
t > θ,m > 0

Extreme
value

exp[−(t−a)/b]
b exp[− exp(−(t−a)/b)]

exp[−(t−a)/b]
b exp[− exp(−(t−a)/b)]−1

a−bΓ ′(1) (bπ)2/6 −∞< a <∞, b > 0

liability. A primary reason for its suitability to lifetime
analysis is its flexible failure rate; unlike other distri-
butions listed in Table 2.1, the Weibull failure rate is
simple to model, easy to demonstrate and it can be ei-
ther increasing or decreasing. A mixture of two Weibull
distributions can be used to portray a bath-tub failure
rate (as long as only one of the shape parameters is less
than one). Mudholkar et al. [2.23] introduce a new shape
parameter to a generalized Weibull distribution that al-
lows bath-tub-shaped failure rates as well as a broader
class of monotone failure rates.

For materials exposed to constant stress cycles with
a given stress range, lifetime is measured in number
of cycles until failure (N). The Whöler curve (or S–N
curve) relates stress level (S) to N as NSb = k, where
b and k are material parameters (see [2.13] for ex-
amples). By taking logarithms of the S–N equation,
we can express cycles to failure as a linear function:
Y = log N = log k−b log S. If N is log–normally dis-
tributed, then Y is normally distributed and regular
regression models can be applied for predicting cycles
to failure (at a given stress level). In many settings,
the log–normal distribution is applied as the failure
time distribution when the corresponding degradation
process based on rates that combine multiplicatively.
Despite having a concave-shaped (or upside-down bath-
tub shape) failure rate, the log–normal is especially
useful in modeling fatigue crack growth in metals and
composites.

Birnbaum and Saunders [2.1] modeled the dam-
age to a test item after n cycles as Bn = ζ1+· · ·+ ζn ,

where ζi represents the damage amassed in the i-th cy-
cle. If failure is determined by Bn exceeding a fixed
damage threshold value B∗, and if the ζi are identically
and independently distributed,

P(N ≤ n) = P(Bn > B∗) ≈Φ

(
B∗ −nµ

σ
√

n

)
, (2.3)

where Φ is the standard normal CDF. This results be-
cause Bn will be approximately normal if n is large
enough. The reliability function for the test unit is

R(t) ≈Φ

(
B∗ −nµ

σ
√

n

)
(2.4)

which is called the Birnbaum–Saunders distribution.
It follows that

W = µ
√

N

σ
− B∗

σ
√

N
(2.5)

has a normal distribution, which leads to accessible im-
plementation in lifetime modeling (see [2.24] or [2.12]
for more properties).

2.2.4 Lifetime Distributions
from Degradation Modeling

These examples show how the product’s lifetime distri-
bution can be implied by knowledge of how it degrades
in time. In general, degradation measurements have great
potential to improve lifetime data analysis, but they
also introduce new problems to the statistical inference.
Lifetime models have been researched and refined for
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many manufactured products that are put on test. On
the other hand, degradation models tend to be empirical
(e.g., nonparametric) or based on simple physical prop-
erties of the test item and its environment (e.g., the Paris
crack law, Arrhenius rule, power law) which often lead
to obscure lifetime models. Meeker and Escobar [2.8]
provide a comprehensive guide to degradation model-
ing, and show that many valid degradation models will
not yield lifetime distributions with closed-form solu-
tions. Given the improving computational tools available
to researchers, this is no deterrent to using degrada-
tion analysis; users of the S-plus programming software
can access advanced tools for degradation analysis from
SPLIDA (S-plus functions for life data analysis) devel-
oped by Meeker [2.25].

In a setting where the lifetime distribution is known,
but the degradation distribution is unknown, degrada-
tion information does not necessarily complement the
available lifetime data. For example, the lifetime data
may be distributed as Weibull, but conventional degra-
dation models will contradict the Weibull assumption
(actually, the rarely used reciprocal Weibull distribution
for degradation with a fixed failure threshold leads to
Weibull lifetimes).

In selecting a degradation model based on longitudi-
nal measurements of degradation, monotonic models are
typically chosen under the assumption that degradation
is a one-way process. In some cases, such as the meas-
ured luminosity of light displays (vacuum fluorescent
displays, plasma display devices), the degradation is not
necessarily monotonic because, during the first phase
of product life, impurities inside the light display’s vac-
uum are slowly burned off and luminosity increases.
After achieving a peak level, usually before 100 hours
of use, the light slowly degrades in a generally mono-
tonic fashion. See Bae and Kvam [2.26, 27] for details
on the modeling of non-monotonic degradation data.
Degradation data analysis is summarized in Sect. 2.3.3.

2.2.5 Censoring

For most products tested in regular-use conditions (as
opposed to especially harsh conditions), the allotted test
time is usually too short to allow the experimenter to
witness failure times for the entire set that is on test.
When the item is necessarily taken off test after a cer-
tain amount of test time, its lifetime is right censored.
This is also called type I censoring. Type II censor-
ing corresponds to tests that are stopped after a certain
number of failures (say k out of n, 1 ≤ k ≤ n) occur.

Inspection data are lifetimes only observed at fixed
times of inspection. If the inspection reveals a failed test
item, it must be left censored at that fixed time. Items
that are still working at the time of the last inspection
are necessarily right censored. This is sometimes called
interval censoring.

Censoring is a common hindrance in engineering
applications. Lifetime data that are eclipsed by censoring
cause serious problems in the data analysis, but it must
be kept in mind that each observation, censored or not,
contributes information and increases precision in the
statistical inference, overall.

2.2.6 Probability Plotting

Probability plotting is a practical tool for checking the
adequacy of a fitted lifetime distribution to a given set
of data. The rationale is to transform the observed data
according to a given distribution so a linear relation-
ship exists if the distribution was specified correctly.
In the past, probability plotting paper was employed to
construct the transformation, but researchers can find
plotting options on many computer packages that fea-
ture data analysis (e.g., SAS, S-Plus, Matlab, Minitab,
SPSS) making the special plotting paper nearly obso-
lete. Despite the applicability of this technique, few
engineering texts feature in-depth discussion on proba-
bility plotting and statistics texts tend to focus on theory
more than implementation. Rigdon and Basu [2.10]
provide a thorough discussion of basic probability
plotting, and Atkinson [2.28] provides a substantial
discussion of the subject in the context of regression di-
agnostics. Advanced plotting techniques even allow for
censored observations (see Waller and Turnbull [2.29],
for example).

To illustrate how the plot works, we first linearize
the CDF of the distribution in question. For example, if
we consider the two-parameter Weibull distribution, the
quantile function is

tp =
(− log p

λ

)1/κ

, (2.6)

which implies that the plot of log t has a linear rela-
tionship with the log–log function of p = F(t). Hence,
Weibull probability plots are graphed on log–log prob-
ability paper. Figure 2.1 shows a Weibull plot (using
Minitab) for the fatigue life of 67 alloy specimens that
failed before n = 300 000 cycles. This data set is from
Meeker and Escobar [2.8] and the plot also includes 95%
confidence bands that identify the uncertainty associ-
ated with the plot. In this case the curvature (especially

Part
A

2
.2



54 Part A Fundamental Statistics and Its Applications

2.3 Analysis of Reliability Data

Once the lifetime distribution of a test item is de-
termined, the data can be used to estimate important
properties of the distribution, including mean, standard
deviation, failure rate, reliability (at a fixed time t) and
upper or lower quantiles that pertain to early or late
failure times.

There are two fundamental methods for approach-
ing the analysis of lifetime data: Bayesian methods and,
for the lack of an optimal term, non-Bayesian meth-
ods. Although Bayesian methods are accepted widely
across many fields of engineering and physical science,
non-Bayesian statistics, mostly frequentist and likeli-
hood methods, are still an industry standard. This chapter
will not detail how methods of statistical inference are
derived in various frameworks of statistical ideology.
Accelerated life testing, an important tool for designing
reliability experiments, is discussed in detail in Chapt. 22
and is only mentioned in this chapter. Instead, a sum-
mary of important procedures is outlined for statistical
estimation, confidence intervals and hypothesis tests.

2.3.1 Maximum Likelihood

Parametric likelihood methods examine a family of
probability distributions and choose the parameter com-
bination that best fits the data. A likelihood function
is generally defined by the observed probability model;
if the lifetime data X1, . . . , Xn are independently and
identically (i.i.d.) distributed with density function
fX (x; θ), the likelihood function is

L(θ)=
n∏

i=1

fX (xi; θ) (2.7)

and the maximum likelihood estimator (MLE) is the
value of θ that maximizes L(θ). Single-parameter dis-
tributions such as the exponential generate easily solved
MLEs, but distributions with two or more parameters
are not often straightforward. Samples that are not IID
lead to complicated likelihood functions and numeri-
cal methods are usually employed to solve for MLEs.
If an observation x represents a right-censoring time,
for example, then P(censor) = R(x) and this informa-
tion contributes the term R(x) to the likelihood instead
of f (x). Leemis [2.4] provides a thorough introduction
to likelihood theory for reliability inference.

For most parametric distributions of interest, the
MLE (θ̂) has helpful limit properties. As the sample

size n →∞,
√

n(θ̂− θ) → N
[
0, i(θ)−1

]
, where

i(θ) = E

[(
∂

∂θ
log f

)2
]
=−E

(
∂2

∂θ2
log f

)
(2.8)

is the estimator’s Fisher information. For other parame-
ters of interest, say ψ(θ), we can construct approximate
confidence intervals based on an estimated variance
using the Fisher information:

σ̂2
[
ψ(θ̂)

]
≈ 1

ψ(θ̂)2i(θ̂)
. (2.9)

This allows the analyst to make direct inference for the
component reliability

[
ψ(θ; t)= Rθ (t), for example

]
.

Example. MLE for failure rate with exponen-
tial data (X1, . . . , Xn): the likelihood is based on
f (x) = θ exp (−θx) and is easier to maximize in its
natural-log form

log L(θ) = log

(
n∏

i=1

θ e−θxi

)
= n log θ− θ

n∑

i=1

xi .

The maximum occurs at θ̂ = 1/x̄, and the Fisher
information i(θ) = n/θ2, so an approximate (1−α) con-
fidence interval is

1

x̄
± z α

2
i(θ̂)−1/2 = 1

x̄
± z α

2

θ̂√
n
= 1

x̄
± z α

2

(
x̄
√

n
)−1

.

(2.10)

In this case, the approximation above is surpassed by
an exact interval that can be constructed from the statistic
2θ(X1+· · ·+ Xn) which has a chi-squared distribution
with 2n degrees of freedom. The confidence state-
ment P

[
χ2

2n(1−α/2) ≤ (X1+· · ·+ Xn) ≤ χ2
2n(α/2)

]

= 1−α, where χ2
2n(α) represents the α quantile of the

chi-squared distribution with 2n degrees of freedom,
leads to a 1−α confidence interval for θ of

(
χ2

2n(1−α/2)

2nx̄
,
χ2

2n(α/2)

2nx̄

)
. (2.11)

2.3.2 Likelihood Ratio

Uncertainty bounds, especially for multidimensional
parameters, are more directly computed using the like-
lihood ratio (LR) method. Here we consider θ to have p
components. Confidence regions are constructed by
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actual contours (in p-dimensions) of the likelihood func-
tion. Define the LR as

Λ(θ, θ̂) = L(θ)

L(θ̂)
, (2.12)

where θ̂ is the MLE of L . If θ is the true value of the
parameter, then

−2 logΛ∼ χ2
p ,

where χ2
p is the chi-squared distribution with p degrees

of freedom. A (1−α) confidence region for θ is
{
θ : −2 logΛ(θ, θ̂) ≤ χ2

p(α)
}
, (2.13)

where χ2
p(α) represents the 1−α quantile of the χ2

p
distribution.

Example. Confidence region for Weibull parameters:
In this case, the MLEs for θ = (λ, r) must be computed
using numerical methods. Many statistical software
packages compute such estimators along with confi-
dence bounds. With (λ̂, r̂), L(λ̂, r̂) standardizes the
likelihood ratio so that 0 ≤Λ(θ, θ̂) ≤ 1 and Λ peaks
at (λ, r) = (λ̂, r̂). Figure 2.2 shows 50%, 90% and 95%
confidence regions for the Weibull parameters based on
a simulated sample of n = 100.

Empirical likelihood provides a powerful method
for providing confidence bounds on parameters of in-
ference without necessarily making strong assumptions
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Fig. 2.1 Weibull probability plot for alloy T7987 fatigue
life [2.8]

about the lifetime distribution of the product (i. e., it is
nonparametric). This chapter cannot afford the space
needed to provide the reader with an adequate descrip-
tion of its method and theory; Owen [2.30] provides
a comprehensive study of empirical likelihood including
its application to lifetime data.

2.3.3 Degradation Data

As an alternative to traditional life testing, degradation
tests can be effective in assessing product reliability
when measurements of degradation leading to failure are
observable and quantifiable. Meeker and Escobar [2.8]
provide the most comprehensive discussion on modeling
and analyzing degradation data for manufactured items
that have either a soft failure threshold (i. e., an arbitrary
fixed point at which the device is considered to have
failed) or items that degrade before reaching a failed
state. In the electronics industry, product lifetimes are
far too long to test in a laboratory; some products in the
lab will tend to become obsolete long before they actu-
ally fail. In such cases, accelerated degradation testing
(ADT) is used to hasten product failure. In the manufac-
ture of electronic components, this is often accomplished
by increasing voltage or temperature. See Chapt. 22 for
a review of recent results in ALT.

If the degradation path is modeled as

yi (t) = ηi (t)+ εi (t) , (2.14)

2.5

5

1.5

1

0.5

1 2 3 4 5 6 7 8

Fig. 2.2 1−α = 0.50, 0.90, 0.95 confidence regions for
Weibull parameters (λ, r) based on simulated data of size
n = 100
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where ηi is the path of the i-th tested unit (i = 1, . . . , n)
and εi represents an error term that has a distribu-
tion H(ε;Σ) with parameter Σ unknown. Failure would
be declared once yi (t) passes a certain degradation
threshold, say y∗. The lifetime distribution can be
computed as (assuming degradation is an increasing
function)

F(t) = P
[
y(t) > y∗

]= P
[
εi (t) > y∗ −ηi (t)

]
.

(2.15)

If η is a deterministic function, the lifetime distribution
is driven completely by the error term. This is not alto-
gether realistic. In most cases, item-to-item variability
exists and the function η contains random coefficients;
that is, η(t)= η(t, λ, θ), where λ is a vector of unknown
parameters (common to all units) and θ is a vector
of random coefficients which have a distribution G
(with further unknown parameters β) so that realiza-
tions of θ change from unit to unit. With an accumulated
set of unknown parameters (λ, β, Σ), this makes for
a difficult computation of the lifetime distribution. Nu-
merical methods and simulations are typically employed
to generate point estimates and confidence statements.

Least squares or maximum likelihood can be used
to estimate the unknown parameters in the degrada-
tion model. To estimate F(t0), one can simulate M
degradation curves (choosing M to be large) from the es-
timated regression by generating M random coefficients
θ1, . . . , θM from the estimated distribution G(θ; β̂).
Next compute the estimated degradation curve for yi
based on the model with θi and λ̂: yi (t) = ηi (t; λ̂, θi ).
Then F̂(t0) is the proportion of the M generated curves
that have reached the failure threshold y∗ by time t0.

Meeker and Escobar use bootstrap confidence in-
tervals for measuring the uncertainty in the lifetime
distribution estimate. Their method follows the general
algorithm for nonparametric bootstrap confidence in-

tervals described in Efron and Tibshirani [2.31]. There
are numerous bootstrap sampling methods for various
uncertainty problems posed by complex models. This
algorithm uses a nonparametric bootstrap sampling pro-
cedure which resamples n of the sample degradation
curves with replacement (i. e., so some curves may not
be represented in the sample while others may be rep-
resented multiple times). This resampled set will be
termed the bootstrap sample in the following procedure
for constructing confidence intervals.

1. Compute estimates of the parameters β, λ, Σ.
2. Use simulation (as above) to construct F̂(t0).
3. Generate N ≥ 1000 bootstrap samples, and for each

one, compute estimates F̂(1)(t0), . . . , F̂(N )(t0). This
is done as before except now the M simulated degra-
dation paths are constructed with an error term
generated from H(η; Σ̂) to reflect variability in any
single degradation path.

4. With the collection of bootstrap estimates from
step 3, compute a 1−α confidence interval for F(t0)
as

[
F̂l(t0), F̂u(t0)

]
, where the indexes 1 ≤ l ≤ u ≤ N

are calculated as l/N = Φ[2Φ−1/2(p0)+Φ−1/2 ×
(α/2)] and u/N = Φ[2Φ−1/2(p0)+Φ−1/2 × (1−
α/2)], and p0 is the proportion of bootstrap estimates
of F(t0) less than F̂(t0).

Procedures based on realistic degradation models
can obviously grow to be computationally cumbersome,
but for important applications the increase in statistical
efficiency can be dramatic. In the past, these compu-
tations have impeded degradation analysis from being
a feature of reliability problem solving. Such analyses
are easier to implement now, and the reliability ana-
lyst need not be coerced into using an overly simplistic
model—for instance, a linear model that does not allow
for random coefficients.

2.4 System Reliability

A system is an arrangement of components that work
together for a common goal. So far, the discussion has
fixated on the lifetime analysis of a single component,
so this represents an extension of single-component
reliability study. At the simplest level, a system con-
tains n components of an identical type that are assumed
to function independently. The mapping of compo-
nent outcomes to system outcomes is through the
system’s structure function. The reliability function de-

scribes the system reliability as a function of component
reliability.

A series system is such that the failure of any
of the n components in the working group causes
the system to fail. If the probability that a single
component fails in its mission is p, the proba-
bility the system fails is 1− P(system succeeds)
= 1− P(all n components succeed) = 1− (1− p)n .
More generally, in terms of component reliabili-
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ties (p1, . . . , pn), the system reliability function Ψ

is

Ψ (p1, . . . , pn) =
n∏

i=1

(1− pi ) . (2.16)

A parallel system is just the opposite; it fails only
after every one of its n working components fail. The
system failure probability is then

Ψ (p1, . . . , pn) = 1−
n∏

i=1

pi . (2.17)

The parallel system and series system are special cases
of a k-out-of-n system, which is a system that works as
long as at least k out of its n components work. Assum-
ing pi = p, i = 1, . . . , n, the reliability of a k-out-of-n
systems is

Ψ (p) =
n∑

i=k

(
n

i

)
(1− p)i pn−1 . (2.18)

Of course, most component arrangements are much
more complex that a series or parallel system. With just
three components, there are five unique ways of arrang-
ing the components in a coherent way (that is, so that
each component success contributes positively to the
system reliability). Figure 2.3 shows the system structure
of those five arrangements in terms of a logic diagram
including a series system (1), a 2-out-of-3 system (3),
and a parallel system (5). Note that the 2-out-of-3 sys-
tem cannot be diagrammed with only three components,
so each component is represented twice in the logic dia-
gram. Figure 2.4 displays the corresponding reliabilities,
as a function of the component reliability 0 ≤ p ≤ 1 of
those five systems. Fundamental properties of coherent
systems are discussed in [2.2] and [2.4].

2.4.1 Estimating System
and Component Reliability

In many complex systems, the reliability of the system
can be computed through the reliability of the compo-
nents along with the system’s structure function. If the
exact reliability is too difficult to compute explicitly, re-
liability bounds might be achievable based on minimum
cut sets (MCS) and minimum path sets (MPS). An MPS
is the collection of the smallest component sets that are
required to work in order to keep the system working.
An MCS is the collection of the smallest component sets
that are required to fail in order for the system to fail.
Table 2.2 shows the minimum cuts sets and path sets for
the three-component systems from Fig. 2.3.

In most industrial systems, components have dif-
ferent roles and varying reliabilities, and often the
component reliability depends on the working status of
other components. System reliability can be simplified
through fault-tree analyses (see Chapt. 7 of [2.16], for
example), but uncertainty bounds for system reliability
are typically determined through simulation.

In laboratory tests, component reliabilities are de-
termined and the system reliability is computed as
a function of the statistical inference of component life-
times. In field studies, the tables are turned. Component
manufacturers seeking reliability data outside laboratory

Table 2.2 Minimum cut sets and path sets for the systems
in Fig. 2.3

System Minimum path sets Minimum cut sets

1 {A,B,C} {A}, {B}, {C}
2 {A,B}, {C} {A,C}, {B,C}
3 {A,B}, {A,C}, {B,C} {A,B}, {A,C}, {B,C}
4 {A,B}, {A,C} {A}, {B,C}
5 {A}, {B}, {C} {A,B,C}

A B C

A B
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A B

A C

B C

B
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Fig. 2.3 Five unique systems of three components: (1) is
series, (3) is 2-out-of-3 and (5) is parallel
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Fig. 2.4 System reliabilities of five system configurations
in Fig. 2.3 from the series system (1) to the parallel system
(5)

tests look to component lifetime data within a working
system. For a k-out-of-n system, for example, the system
lifetime represents an order statistic of the underlying
distribution function. That is, if the ordered lifetimes
form a set of independent and identically distributed
components (X1:n ≤ X2:n ≤ · · · ≤ Xn:n), then Xn−k+1:n
represents the k-out-of-n system lifetime. The density
function for Xr:n is

fr:n(t) = r

(
n

r

)
F(t)r−1 [1− F(t)]n−r f (t), t > 0 .

(2.19)

Kvam and Samaniego [2.32] derived the nonpara-
metric maximum likelihood estimator for F(t) based on
a sample of k-out-of-n system data, and showed that the
MLE F̂(t) is consistent. If the i-th system (i = 1, . . . ,m)
observed is a ki -out-of-ni system, the likelihood can be
represented as

L(F) =
m∏

i=1

fki :ni (ti ) (2.20)

and numerical methods are employed to find F̂.
Huang [2.33] investigated the asymptotic properties of
this MLE, and Chen [2.34] provides an ad hoc estimator
that examines the effects of censoring.

Compared to individual component tests, observed
system lifetimes can be either advantageous or disadvan-
tageous. With an equal number of k-out-of-n systems at
each 1 ≤ k ≤ n, Takahasi and Wakimoto [2.35] showed
that the estimate of MTTF is superior to that of an equal
number of individual component tests. With an unbal-
anced set of system lifetimes, no such guarantee can be
made. If only series systems are observed, Kvam and

Samaniego [2.36] show how the uncertainty in F̂(t) is
relatively small in the lower quantiles of F (where sys-
tem failures are observed) but explodes in the upper
quantiles.

2.4.2 Stochastic Dependence
Between System Components

Almost all basic reliability theory is based on systems
with independently operating components. For realistic
modeling of complex systems, this assumption is of-
ten impractical; system components typically operate at
a level related to the quality and operational state of the
other system components.

External events that cause the simultaneous failure of
component groups is a serious consideration in reliabil-
ity analysis of power systems. This can be a crucial point
in systems that rely on built-in component redundancy
to achieve high target system reliability. Shock models,
such as those introduced by Marshall and Olkin [2.37],
can be employed to demonstrate how multiple compo-
nent failures can occur. An extra failure process is added
to the otherwise independent component failure pro-
cesses, representing the simultaneous failure of one or
more components, thus making the component lifetimes
positively dependent. This is the basis for most de-
pendent failure models in probabilistic risk assessment,
including common cause failure models used in the nu-
clear industry (alpha-factor model, beta-factor model,
binomial failure rate model). See Chapt. 8 of Bedford
and Cooke [2.16] for discussion about how these models
are used in risk assessment.

In dynamic systems, where system configurations
and component reliability can change after an external
event or a failure of one or more of the system com-
ponents, the shock model approach cannot be applied
effectively. In some applications, a load-share model
applies.

Early applications of the load-share system models
were investigated by Daniels [2.38] for studying the re-
liability of composite materials in the textile industry.
Yarns and cables fail after the last fiber (or wire) in the
bundle breaks, thus a bundle of fibers can be considered
a parallel system subject to a constant tensile load. An
individual fiber fails in time with an individual rate that
depends on how the unbroken fibers within the bundle
share the load of this stress. Depending on the physical
properties of the fiber composite, this load sharing has
different meanings in the failure model. Yarn bundles
or untwisted cables tend to spread the stress load uni-
formly after individual failures which defines an equal
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load-share rule, implying the existence of a constant sys-
tem load that is distributed equally among the working
components.

As expected, a load-sharing structure within a sys-
tem can increase reliability (if the load distribution saves
the system from failing automatically) but reliability in-
ference is hampered even by the simplest model. Kvam
and Peña [2.39] show how the efficiency of the load-
share system, as a function of component dependence,
varies between that of a series system (equivalent to shar-
ing an infinite load) and a parallel system (equivalent to
sharing zero load).

2.4.3 Logistics Systems

Numerous studies have examined fundamental prob-
lems in network reliability [2.40], system performance
degradation and workload rerouting for telecommuni-
cation, power and transportation networks [2.41,42]. In
comparison, the literature on modeling logistics sys-
tem reliability or performance degradation is scarce.
Logistics systems that transport goods, energy (e.g.,
electricity and gas), water, sewage, money or informa-
tion from origins to destinations are critical to every
nation’s economic prosperity. Unlike the hub in the typ-
ical Internet or telecommunication or network, where the
messages are not mixed together, logistics distribution
centers (DCs) tend to mix products from various sources
for risk-pooling purposes [2.35]. Past studies [2.43] of
road-network reliability mainly addressed connectiv-
ity and travel-time reliability. These developments have
limited use in providing a first-cut analysis for system-
level planning that involves robust logistics network
design to meet reliability requirements or supply-chain
cost and delivery-time evaluation for contract decisions
[2.44].

Consider a logistics network consisting of many sup-
pliers providing goods to several DCs, which support
store operations to meet customer demands. The relia-
bility of such a network can be evaluated in terms of the
probability of delivering goods to stores in a prespecified
time limit t0. Traveling time in transport routes contains
uncertainty, as does the processing time for products
shipped through DCs. Random traveling time is a func-
tion of routing distances, road and traffic conditions
and possible delays from seaport or security checkpoint
inspections. Traveling distance depends on the config-
uration of logistics networks. Some retail chains use
single-layer DCs, but others use multiple-layer DCs sim-
ilar to airline hubs (e.g., regional DCs and global DCs)
in aggregating various types of goods. Vehicle routing

procedures typically involve trucks that carry similar
products to several stores in an assigned region. Different
products are consolidated in shipment for risk-pooling
purposes and to more easily control delivery-time and
store-docking operations.

When one DC cannot meet the demands from its
regional stores (due to demand increase or the DC’s
limited capability), other DCs provide backup support
to maintain the overall network’s service reliability.
Focusing on the operations between DCs and stores,
Ni et al. [2.45] defined the following network reliabil-
ity as a weighted sum of the individual reliabilities from
each DC’s operations:

r∗system,k =
⎡

⎣
M∑

i=1,i �=k

di P
(
T∗

m,i < t0
)

+
M∑

i=1,i �=k

pidk P
(
T∗

m,k,i < t0
)
⎤

⎦
/ M∑

i=1

di ,

(2.21)

where di is the demand aggregated at the i-th DC, T∗
m,i is

the motion time defined as the sum of traveling time from
DCi to its assigned stores (including material processing
time at DCi ), pi is the proportion of products rerouted
from DCk through DCi due to the limited capability in
DCk and T∗

m,k,i is the modified motion time including
the rerouted traveling time.

For modeling the aggregated demand di and cal-
culating routing distance, Ni et al. [2.45] proposed
a multiscale approximation model to quantify demand
patterns at spatially located clustered stores. Then, they
evaluated product rerouting strategies for maintaining
system service reliability, defined in (2.19). Based on
the store locations of a major retail chain, several exam-
ples show the importance of designing a robust logistics
network to limit service reliability degradation when a
contingency (e.g., multiple DC failure) occurs in the
network. Future work includes:

1. Modeling the low-probability but high-impact con-
tingency in the DCs [2.45] and routes for calculating
their relative importance to network reliability

2. Examining the tradeoff between the cost of adding
more DCs and the improvement of service reliability

3. Resolving the domino effect when the added work-
load to DCs after a local DC failure causes further
DC failures due to faulty predetermined rules of
rerouting to maintain system reliability (e.g., the
2003 electricity blackout in the Northeastern region
of the US).
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2.4.4 Robust Reliability Design
in the Supply Chain

Past studies of robust parameter design [2.46] focused
on product quality issues and assumed that all the
controllable variables are under single ownership. Re-
cent outsourcing trends in automobile and electronic
manufacturing processes motivate the presentation in
this section. In an automobile manufacturing enter-
prize system, various parts suppliers have control of
variables determining quality and reliability. Most of
the automobile supply-chain systems assemble these
parts into a subsystem and then move these systems
to other locations owned by different partners for the fi-
nal system-level assembly and testing. Every segment
of the assembly operation controls a subset of vari-
ables leading to different levels of system reliability.
Because the warranty policy is addressed to all of the
part manufacturing and assembly processes in making
the final product, it is important to extend the robust
parameter design concept to the supply-chain-oriented
manufacturing processes.

Supply-chain partners have their own operation ob-
jectives (e.g., maximize the profit of manufacturing parts
to supply several automobile companies). Some of the
objectives are aligned to manufacturing a specific type

of product, but there are many potential situations with
conflicting objectives. When there is no single owner-
ship of all controllable variables in the manufacturing
processes, negotiation is needed to resolve potential
conflicts. Game theory [2.47] is commonly used in
supply-chain contract decisions. Following the frame-
work of Chen and Lewis [2.48], we can decompose the
set of controllable variables into a few subsets owned
by distinct partners and formulate the objectives of
these partners. The supply-chain manager can define the
product quality and reliability measures and build mod-
els to link them to the controllable and uncontrollable
variables that are seen in robust parameter design.

Different negotiation situations (e.g., the final prod-
uct assembly company has more bargaining power than
other partners) will lead to distinct levels selected for
the controllable variables (see Charoensiriwath and
Lu [2.49] for examples in negotiations). As a result,
the reliability of the final product can vary. Designing
a supply-chain system that leads to the most reli-
able products (with minimum cost) presents an acute
challenge, and warranty policies can be designed cor-
respondingly. Because parts and subsystems are made
by various partners, warranty responsibilities for certain
parts are distributed among partners under the negotiated
supply-chain contracts.
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Weibull Distri3. Weibull Distributions and Their Applications

Weibull models are used to describe various
types of observed failures of components
and phenomena. They are widely used in
reliability and survival analysis. In addition
to the traditional two-parameter and three-
parameter Weibull distributions in the reliability
or statistics literature, many other Weibull-related
distributions are available. The purpose of this
chapter is to give a brief introduction to those
models, with the emphasis on models that
have the potential for further applications. After
introducing the traditional Weibull distribution,
some historical development and basic properties
are presented. We also discuss estimation problems
and hypothesis-testing issues, with the emphasis
on graphical methods. Many extensions and
generalizations of the basic Weibull distributions
are then summarized. Various applications in
the reliability context and some Weibull analysis
software are also provided.
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The Weibull distribution is one of the best-known life-
time distributions. It adequately describes observed
failures of many different types of components and phe-
nomena. Over the last three decades, numerous articles
have been written on this distribution. Hallinan [3.1]
gives an insightful review by presenting a number of his-
torical facts, the many forms of this distribution as used
by practitioners, and possible confusions and errors that
arise due to this non-uniqueness. Johnson et al. [3.2]
devote a comprehensive chapter to a systematic study
of this distribution. More recently, Murthy et al. [3.3]
presented a monograph that contains nearly every facet
relating to the Weibull distribution and its extensions.

In Sect. 3.1, we first define the three-parameter
Weibull distribution and then look at its historical devel-
opment and relations to other distributions. Section 3.2
studies the properties of the Weibull distribution, in
particular those relevant to reliability. A brief discus-
sion on simulation of Weibull variates is also included.

We consider estimation problems and hypothesis testing
in Sect. 3.3. In particular, we emphasize the graphical
methods as a tool for selection and parameter estimation
of a Weibull model. We devote Sect. 3.4 to Weibull-
derived models, which includes many extensions and
generalizations. Finally, in Sect. 3.5, we outline various
applications, especially those in the reliability context.
Because of the vast literature, we are unable to refer to
all the source authors and we apologize in advance for
any omissions in this regard.

Symbols and Abbreviations.

T Random variable
F(t) CDF, cumulative distribution function
f (t) PDF, probability density function
h(t) Failure rate function (hazard rate)
α, β, τ Parameters
WPP Weibull probability plot
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3.1 Three-Parameter Weibull Distribution

According to Hallinan [3.1] the Weibull distribution has
appeared in five different forms. The two common forms
of the distribution function are as follows:

F(t) = 1− exp

[
−

(
t− τ

α

)β
]
, t ≥ τ (3.1)

and

F(t) = 1− exp
[
λ(t− τ)β

]
, t ≥ τ . (3.2)

The parameters of the distribution are given by the set
θ = {α, β, τ} with α > 0, β > 0 and τ ≥ 0; where α is
a scale parameter, β is the shape parameter that deter-
mines the appearance or shape of the distribution and
τ is the location parameter. The parameter λ combines
both scale and shape features as λ= α−β .

Although one should use F(t, θ) instead of F(t),
where θ = (α, β, τ) denotes the vector of parameters,
for notational convenience we suppress the parameter
and use F(t) to denote F(t, θ) in this chapter. Also, we
do not intend to give an exhaustive review. Rather, we
confine our discussion to aspects that are of relevance to
the context of reliability theory.

For τ = 0, (3.1) and (3.2) become the two-parameter
Weibull distribution with

F(t)= 1− exp

[
−

(
t

α

)β
]
, t ≥ 0 (3.3)

and

F(t) = 1− exp
(−λtβ

)
, t ≥ τ . (3.4)

Murthy et al. [3.3] refer to this as the standard Weibull
model, Johnson et al. [3.2] refer to a standard Weibull
when α= 1 (or λ= 1) in (3.3), (3.4).

3.1.1 Historical Development

The Weibull distribution is named after its originator, the
Swedish physicist Waloddi Weibull, who in 1939 used
it to model the distribution of the breaking strength of
materials [3.4] and in 1951 for a wide range of other ap-
plications [3.5]. The distribution has been widely studied
since its inception. It has been known that Weibull may
not be the first to propose this distribution. The name
Fréchet distribution is also sometimes used due to the
fact that it was Fréchet [3.6] who first identified this dis-
tribution to be an extremal distribution (later shown to be
one of the three possible solutions by Fisher and Tippett
[3.7]). According to Hallinan [3.4], it was Weibull who
suggested a scale parameter and a location parameter
that made the distribution meaningful and useful.

3.1.2 Relations to Other Distributions

The Weibull distribution includes the exponential
(β = 1) and the Rayleigh distribution (β = 2) as
special cases. If X denotes the Weibull vari-
able, then −X has a type 3 extreme-value dis-
tribution [3.8, Chapt. 22]. A simple log trans-
formation will transform the Weibull distribution
into the Gumbel distribution (type 1 extreme-value
distribution).

The Burr XII distribution, is given by

F(t) = 1−
[

1+
(

t

α

)]−k

, t ≥ 0 ; k , α > 0 . (3.5)

Let k = α; as k →∞, then the Burr distribution ap-
proaches the Weibull (see, for example, [3.9]).

3.2 Properties
3.2.1 Basic Properties

Density Function
The probability density functions (PDF) (Fig. 3.1) of
(3.1) and (3.2) are

f (t) = βα−β(t− τ)β−1 exp

[
−

(
t− τ

α

)β
]
, t ≥ τ

(3.6)

and
f (t) = βλ(t− τ)β−1 exp

[−λ(t− τ)β
]
, t ≥ τ . (3.7)

Mode
It follows from (3.6) that the mode is at t =
α((β−1)/β)1/β+ τ for β > 1 and at τ for 0 < β ≤ 1.

Median
It follows from (3.3) that the median of the distribution
is at α(log 2)1/β+ τ .

Moments
Let T denote the random variable from the three-
parameter Weibull distribution given by (3.1). Then
the transformed variable T ′ = (T − τ)/α, is the stan-
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dard form (in the sense of Johnson et al. [3.2]) with the
density function given by

f (t) = βtβ−1 exp
(−tβ

)
, x > 0 , β > 0 . (3.8)

The moments of T (about zero) are easily obtained from
the moments of T ′ which are given below:

µ
′
r = E(T ′r ) = Γ

(
r

β
+1

)
, (3.9)

from which we get

E(T ′) = Γ

(
1

β
+1

)
, (3.10)

Var(T ) = Γ

(
2

β
+1

)
−
[
Γ

(
1

β
+1

)]2

. (3.11)

Skewness and Kurtosis
The distribution is positively skewed for small values
of β. The skewness index

√
β1 decreases and equals

zero for β = 3.6 (approximately). Thus, for values of β
in the vicinity of 3.6, the Weibull distribution is simi-
lar in shape to a normal distribution. The coefficient of
kurtosis β2 also decreases with β and then increases,
β2 has a minimum value of about 2.71 when β = 3.35
(approximately).

Order Statistics
Let T1, T2, · · · , Tn denote n independent and identically
distributed three-parameter Weibull random variables
with density function given in (3.6) and cumula-
tive distribution function (CDF) in (3.1). Further, let
T(1) ≤ T(2) ≤ · · · ≤ T(n) denote the order statistics from
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Fig. 3.1 Two-parameter Weibull density plots

a sample of n observations. The probability density
function of T(1), is given by

f(1)(t) = n[1− F(t)]n−1 f (x)

= nβ

α

(
t− τ

α

)β−1

e−n[(t−τ)/α]β , t ≥ τ .

(3.12)

It is obvious from (3.12) that T(1) is also distributed as
a Weibull random variable, except that α is replaced by
αn−1/β .

The density function of T(r)(1 ≤ r ≤ n) is given by

f(r)(t) = n!
(r−1)!(n−r)!

(
1− e−[(t−τ)/α]β)r−1

e−[(t−τ)/α]β(n−r+1)βα−β(t− τ)β−1, t ≥ 0 .

(3.13)

It can be shown that

E
[
(T(r))

k
]
=

k∑

i=0

τ iαk−iωk−i
(r) , (3.14)

where

ωk
(r) =

n!
(r−1)!(n−r)!Γ

(
1+ k

β

)

×
r−1∑

i=0

(−1)r
(r−1

i

)

(n−r+ i+1)1+(k/β) .

3.2.2 Properties Related to Reliability

In this section, we consider only the first form of the
Weibull distribution.

The survival function of the Weibull distribution is

F̄(t) = 1− F(t)= exp

[
−

(
t− τ

α

)β
]
, t ≥ τ .

(3.15)

Note that at t = τ+α, F̄(τ+α) = 1− e−1 ≈ 0.3679.

Failure Rate
The failure rate function (also known as the hazard rate)
for the three-parameter Weibull is

h(t)= f (t)

F̄(t)
= β

α

(
t− τ

α

)β−1

. (3.16)

For the two-parameter case, it is given by

h(t)= f (t)

F̄(t)
= β

α

(
t

α

)β−1

. (3.17)
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It is obvious that h(t) is a decreasing function when
β < 1, constant when β = 1 (the exponential case), and
an increasing function when β > 1. Because of the
behaviour of the failure rate function, the Weibull dis-
tribution often becomes suitable when the conditions
for strict randomness of the exponential distribution
are not satisfied, with the shape parameter β having
a value depending upon the fundamental nature being
considered.

In some way, having a failure rate function of mono-
tonic shape has limitations in reliability applications.
For this reason, several generalized or modified Weibull
distributions have been proposed (see Sect. 3.4 for more
details). Figure 3.2 shows plots of the failure rate func-
tions for some selected parameters values.

Mean Residual Life
The mean residual life (MRL) of a lifetime random
variable T is defined as

µ(t) = E(T − t|T > t)=
∫∞

t F̄(x)dx

F̄(t)
. (3.18)

For the Weibull distribution, the MRL is complicated
except for the two special cases β = 1 (exponential) and
β = 2 (Rayleigh distribution). Assuming the location
parameter τ = 0, the MRL of the Rayleigh distribution
with scale parameter α=√

2σ is

µ(t) =√
2πσ [1−Φ(t/σ)] e

1
2σ2 t2

, t > 0 ,

(3.19)

where Φ(t/σ) denotes the distribution function of the
standard normal variable.

Relative Ageing of Two Two-Parameter Weibull Dis-
tributions
Suppose we have two Weibull random variables X and Y
with distribution functions F(x) and G(y), respectively,
given by

F(x) = 1− exp
[−(x/α2)β2

]
,

G(y) = 1− exp
[−(y/α1)β1

]
. (3.20)

We say that X ages faster than Y if the ratio of the failure
rate of X over the failure rate of Y is an increasing
function of t. This ratio is given by

α1β2

α2β1
×
α
β2−1
1

α
β1−1
2

tβ2−β1 (3.21)

which is an increasing function of t if β2 > β1.
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Failure rate function
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Fig. 3.2 Two-parameter Weibull failure rate functions

Suppose E(X) = E(Y ), i. e., α2Γ (1+ 1/β2) =
α1Γ (1+ 1/β1). Lai and Xie [3.10] show that
Var(X) ≤ Var(Y ).

Effectiveness of Parallel Redundancy –
The Weibull Case
Denote the lifetime of one component by T and
the lifetime of a parallel system of two such in-
dependent components by Tp. The effectiveness of
parallel redundancy of the component is defined
by [3.11]

ep = [E(Tp)− E(T )]/E(T ) . (3.22)

Suppose that T is a two-parameter Weibull distribution
with shape parameter β and scale parameter α. Xie and
Lai [3.11] show that

ep = 1−2−1/β , (3.23)

which decreases as β increases. Thus, a parallel redun-
dancy is more effective for β < 1.

3.2.3 Simulation

The two-parameter Weibull distribution with parameters
β and λ has the probability density function

f (x) = λβxβ−1 e−λxβ . (3.24)

The simple inverse-probability integral-transform
method applied to the standard Weibull distribu-
tion (λ = 1) is quite efficient. The formula is
simply

x = (− log u)1/β ,
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where u is a uniform number between 0 and 1. Of course,
an acceptance/rejection method could also be used to
avoid the evaluation of the logarithm in the distribution

function. The standard Weibull variate is then scaled by
λ−(1/β) to obtain a two-parameter Weibull observation
with density (3.24).

3.3 Modeling Failure Data

Failure data can be classified into two types: complete
and incomplete (censored). For complete data, the actual
realized values are known for each observation in the
data set, whereas for censored data, the actual realized
values are not known for some or all of the observations.
Further, there are at least two types of censoring, details
of which may be found Lawless [3.12] and Nelson [3.13].

In their introduction, Murthy et al. [3.3] point out that
the two different approaches to building mathematical
models are as follows.

1. Theory-based modeling: here, the modeling is based
on the established theories for component failures.
This kind of model is also called a physics based
model or white-box model.

2. Empirical modeling: here, the data available forms
the basis for the model building. This kind of model
is also called a data-dependent model or black-box
model.

In empirical modeling, the type of mathematical
formulations needed for modeling is dictated by a pre-
liminary analysis of data available. If the analysis
indicates that there is a high degree of variability, then
one needs to use models that can capture this variabil-
ity. This requires probabilistic and stochastic models to
model a given data set.

The process of black box modeling involves the
following steps:

• Step 1 – Model selection,• Step 2 – Parameter estimation,• Step 3 – Model validation.

To select a model out of many possible models, one
requires a good understanding of their different prop-
erties. This often is a trial-and-error process. Liao and
Shimokawa [3.14] consider goodness-of-fit testing as
a key procedure for selecting the statistical distribution
that best fits the observed data. To execute the remaining
two steps, we need various tools and techniques.

A large number of Weibull-related models have been
derived in the literature. In Sect. 3.4, various such mod-
els are grouped into several categories. Selecting an
appropriate model from the family of Weibull-related
distributions can often be based on some of the proba-

bility plots to be discussed below. Moreover, they can
provide crude estimates of model parameters. There are
many different statistical tests for validating a model and
we postpone this discussion until the next section.

3.3.1 Probability Plots

Weibull Probability Plot
Weibull probability plots (WPP) can be constructed in
several ways [3.15]. In the early 1970s a special paper
was developed for plotting the data in the form of F(t)
versus t on a graph paper with a log–log scale on the ver-
tical axis and a log scale on the horizontal axis. A WPP
plotting of data involves computing the empirical dis-
tribution function, which can be estimated in different
ways; the two standard methods are:

• F̂(ti ) = i/(n+1), the “mean rank” estimator, and• F̂(ti ) = (i−0.5)/n, the “median rank” estimator.

Here, the data consists of successive failure times ti ,
t1 < t2 < . . . tn . For censored data (right-censored or
interval), the approach to obtain the empirical distri-
bution functions needs to be modified; see, for example,
Nelson [3.13].

These days, most computer reliability software
packages contain programs to produce these plots au-
tomatically given a data set. A well-known statistical
package Minitab provides a Weibull probability plot
under the Graph menu � Probability Plot.

We may use an ordinary graph paper or spreadsheet
software with unit scale for plotting. Taking logarithms
twice of both sides of each of the CDF in (3.3) yields

log[− log F̄(t)] = β log(t− τ)−β logα . (3.25)

Let y = log
[
− log F̄(t)

]
and x = log(t− τ). Then we

have

y = βx−β logα . (3.26)

The plot is now on a linear scale.

Weibull Hazard Plot
The hazard plot is analogous to the probability plot,
the principal difference being that the observations are
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plotted against the cumulated hazard (failure) rate rather
than the cumulated probability value. Moreover, this is
designed for censored data.

Let H(t) denote the cumulative hazard rate, then
F̄(t) = exp[−H(t)], so

H(t) =− log F̄(t) =
(

t− τ

α

)β

, (3.27)

H(t)1/β/α= (t− τ) . (3.28)

Let y = log(t− τ) and x = log H(t), then we have

y = logα+ 1

β
x . (3.29)

Rank the n survival times (including the censoreddata)
in ascending order and let K denote the reverse ranking
order of the survival time, i. e., K = n for the smallest
survival time and K = 1 for the largest survival time.
The hazard is estimated from 100/K (a missing value
symbol is entered at a censored failure time). The cu-
mulative hazard is obtained by cumulating the hazards.
The Weibull hazard plot is simply the plot arising from
(3.29). See Nelson [3.16] for further details.

3.3.2 Estimation and Hypothesis Testing

Parameter estimation is the second step of our model-
ing process. We consider both graphical and statistical
methods for the three-parameter Weibull distribution.

Graphical Methods
Graphical plots are designed not just to assess if the
data follows a Weibull population, they are also useful
for estimating Weibull parameters (at least for initial
estimates). These can be obtained from the smooth fit
to a WPP plot of data and involve exploiting properties
such as asymptotes, intersection points, slope, or points
of inflection.

Estimation of Location Parameter. The determination
of a suitable location parameter τ is not a simple task.
If a data set graphs as a straight line on a WPP, then the
data set is indeed adequately described by a Weibull dis-
tribution. However, an incorrect selection of τ will yield
a curved plot of data that is in fact Weibull-distributed.

If the graph of a set of data appears concave upward,
then the plot can be straightened by decreasing the value
of τ . Conversely, if the data are concave downward, then
the plot can be straightened by increasing the value of τ .
The value of τ cannot be chosen larger than the smallest
failure-time value, say T(1), in the sample. It is generally

suggested to set the initial value of τ = T(1) and then
adjust this estimate to achieve a straight line. We also
note that it is common for τ to be 0.

Estimation of the Shape Parameter. It follows from
(3.26) that the shape parameter can be estimated from the
slope of the WPP. However, care needs need to be given
because possible confusion may arise due to several
possible forms of the Weibull distribution.

Estimation of the Scale Parameter. To estimate the
scale parameter, we first observe from the standard
Weibull that, when t is at the 63.2 percentile, F(t)= 1−
e−1, i. e., F̄(t) = e−1. Or equivalently, for t = τ+α,
F̄(τ+α) = e−1 (so τ+α is the 63.2 percentile). It
now follows from (3.26) that log(t− τ) = logα so that
α̂= t− τ̂ , where t is the 63.2 percentile. Hence the scale
parameter is simply estimated from the x-intercept of
the plot (3.26): α̂= e(x-intercept).

Under the probability plot option, Minitab not only
gives a WPP, but also provides an estimate for the scale
and shape parameters α and β.

Figure 3.3 illustrates how a WPP plot appears in
a Minitab graph with α̂= 9.062 and β̂ = 1.661.

Statistical Methods of Estimation
There are several statistical methods for estimating the
model parameters. These include the method of moment,
the method of percentile, the method of maximum like-
lihood, and the Bayesian method. The estimates can be
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Fig. 3.3 A typical Weibull probability plot
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either point estimates or interval estimates. The details of
these methods can be found, for example, in Kalbfleisch
and Prentice [3.17].

We note that these methods may not be appropriate
for small data sets. Hence, the estimates obtained from
the WPP plot may be taken as the final estimates when
the data size is small.

Moment Estimation. By equating the first three mo-
ments of the Weibull distribution to the first three sample
moments and solving, it is possible to find the moment
estimators of α, β and τ . Now, the first moment ratio√
β1 depends only on the shape parameter β, and hence

once
√
β1 has been estimated from the sample coef-

ficient of skewness, β̂ can be determined numerically.
Using β̂, α̂ can be determined from the standard devia-
tion, and lastly τ̂ is determined from the sample mean.
If τ is known, then β can be estimated from the ratio
(standard deviation/(mean-τ).

For modified moment estimation, see Cohen
et al. [3.18].

Maximum-Likelihood Method. Maximum-likelihood
methods for the three-parameter Weibull distribution
have been reviewed by Zanakis and Kyparisis [3.19];
see also Johnson et al. [3.2, Chapt. 21] for other details.

The most common situation is when the location
parameter τ is known. Without loss of generality, we
may assume that τ = 0 so that the model becomes the
two-parameter Weibull distribution.

The maximum-likelihood estimators, β̂ and α̂ of β

and α, respectively, satisfy the equations

α̂=
(

1

n

n∑

i=1

X β̂
i

)1/β̂

(3.30)

and

β̂ =
⎡

⎣
(

n∑

i=1

X β̂
i log Xi

)(
n∑

i=1

X β̂
i

)−1

−1

n

n∑

i=1

log Xi

⎤

⎦
−1

, (3.31)

where Xi , i = 1, 2, . . . n are n independent observations
from the two-parameter Weibull distribution. If τ �= 0,
then each Xi is replaced by Xi − τ in the above equa-
tions. The value β̂ needs to be solved from (3.31) and
then (3.30) is used to obtain α̂.

Suppose the location parameter τ is also unknown,
then the maximum-likelihood estimates α̂, β̂ and τ̂ sat-

isfy the following equations

α̂=
[

1

n

n∑

i=1

(Xi − τ̂)β̂
]1/β̂

(3.32)

β̂ =
{[

n∑

i=1

(Xi − τ̂)β̂ log(Xi − τ̂)

]

×

[
n∑

i=1

(X− τ̂)β̂
]−1

− 1

n

n∑

i=1

log(Xi − τ̂)

}−1

(3.33)

and

(β̂−1)
n∑

i=1

(Xi − τ̂)−1 = β̂α̂−β̂
n∑

i=1

(Xi − τ̂)β̂−1 .

(3.34)

If the value τ̂ satisfying (3.32)–(3.34) is larger than X1 =
min Xi , then it is the maximum-likelihood estimate of τ .
Otherwise, we set that τ̂ = X1 and then (3.32) and (3.33)
must be solved for α̂ and β̂.

The method is suitable for large data sets because
of its asymptotic properties. Modifications of these es-
timates can be found, for example, in Johnson et al.
[3.2].

The reader may consult Chapt. 21 of Johnson et al.
[3.2] and Chapt. 4 of Murthy et al. [3.3] for the following
methods of estimation,

• Best linear unbiased estimation,• Percentile estimator,• Bayesian estimator,• Interval estimation,• Minimum quantile distance estimation.

For the two-parameter Weibull distribution (i. e., τ = 0),
methods of inference can be obtained via the type 1
extreme-value distribution.

3.3.3 Hypothesis Testing

Goodness-of-Fit Tests for the Weibull Distribution
There are other general goodness-of-fit tests based on the
empirical distribution functions derived. For example,
the chi-square test, Kolmogorov–Smirnov test, Cramer–
von Mises test and Anderson–Darling test, and so on,
could also be used to test the goodness of fit of the
Weibull model.

Generally, a goodness-of-fit test for Weibull distri-
bution can be described as: H0: the population follows
a Weibull model, versus H1: the Weibull model is not
suitable.
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Minitab under probability plot gives the Anderson–
Darling statistic as well as the confidence bands.

Lawless [3.12] summarizes the goodness-of-fit tests
for the Weibull or extreme-value distribution. Four tests
(the likelihood ratio test as a sub-model of the gamma
distribution, Mann–Scheuer–Fertig test, Tiku test and
Cramer–von Mises test) are discussed in detail. Dodson
[3.20] also includes and compares some goodness-of-
fit tests for Weibull distributions in Chapt. 4 of his
book. Liao and Shimokawa [3.14] construct a new
goodness-of-fit test for the two-parameter Weibull and

its power is compared with other traditional goodness-
of-fit tests.

Hypothesis Testing
Hypothesis testing of Weibull parameters may be per-
formed by the likelihood ratio, score and Wald tests.
It is well known that all these tests are asymptotically
optimal.

For testing Weibull versus the exponential distribu-
tion, we test α= 1 (or λ= 1 of the second form) versus
α �= 0.

3.4 Weibull-Derived Models

There are many extensions, generalizations and modi-
fications to the Weibull distribution. They arise out of
the need to model features of empirical data sets that
cannot be adequately described by a three-parameter
Weibull model: for example, the monotonic property of
the Weibull, which is unable to capture the behaviour
of a data set that has a bathtub-shape failure rate. Xie
et al. [3.21] review several Weibull-related distributions
that exhibit bathtub-shaped failure rates. Plots of mean
residual life from several of these Weibull-derived mod-
els are given in Lai et al. [3.22]. For simplicity, we
simply refer to these Weibull-related models as Weibull
models.

3.4.1 Taxonomy for Weibull Models

According to Murthy et al. [3.3], the taxonomy for
Weibull models involves seven types, each of which
divided into several sub-types. These models can be
grouped into three groups:

1. Univariate models (types I–V),
2. Multivariate models (type VI),
3. Stochastic process models (type VII).

In this chapter we confine our discussion to
univariate and stochastic process models, while
Murthy et al. [3.23] looks at bivariate models (a special
case of multivariate models). In this chapter, only some
selective models will be included. We refer our readers
to the book by Murthy et al. [3.3] for more details.

3.4.2 Univariate Models

The starting point is the two-parameter Weibull model
with distribution function F(t). Let G(t) denote the de-

rived Weibull model. T is a random variable from F(t)
and Z is a random variable from G(t).

Type I Models
(Transformation of Weibull Variable)
Here Z and T are related by a transformation. The
transformation can be either linear or nonlinear. These
include the following:

Reflected Weibull Distribution.

G(t) = exp

[
−

(
τ− t

α

)β
]

,−∞< t < τ . (3.35)

This is also known as a type 3 extreme-value distribution
(see Johnson et al. [3.8], Chapt. 22).

Double Weibull Distribution.

g(t)= β(1/2) |t|(β−1) exp(− |t|β) ,−∞< t <∞ .

(3.36)

This is an obvious extension to include the negative real
line as its support.

Log Weibull Distribution. The distribution is de-
rived from the logarithmic transformation of the
two-parameter Weibull distribution. The distribution
function is

G(t) = 1− exp

[
− exp

(
t− τ

α

)]
,−∞< t <∞ .

(3.37)

This is also known as a type 1 extreme-value distribution
or Gumbel distribution. In fact, it is the most commonly
referred to in discussions of extreme-value distributions
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(see [3.8], Chapt. 22). The density function is

g(t) = 1

α
exp

(
t− τ

α

)
exp

[
− exp

(
t− τ

α

)]
,

and the failure rate function is quite simple and given by

h(t) = 1

α
exp

(
t− τ

α

)
.

Inverse (or Reverse) Weibull Model. Let Z = α2/T ,
where T has a two-parameter Weibull distribution, then
the distribution function of T is

G(t) = exp[−(t/α)−β] , t ≥ 0 . (3.38)

This is also known as a type 2 extreme-value distribution
or Fréchet distribution (see [3.8], Chapt. 22). The failure
rate function is as follows:

h(t)= βαβt−β−1 e−(α/t)β

1− e−(α/t)β
.

Type II Models (Modification/Generalization
of the Weibull Distribution)
Here G(t) is related to F(t) by some relationship.

Extended Weibull Distribution [3.24].

G(t) = 1− ν e−(λt)β

1− (1−ν)e−(λt)β
. (3.39)

The failure rate function is

h(t)= νβ(λt)β−1

[
1− (1−ν)e−(λt)β

] .

The failure rate function is increasing if ν ≥ 1, β ≥ 1 and
decreasing if ν ≤ 1, β ≤ 1.

Modified Weibull Distribution [3.25].

G(t) = 1− exp(−λtβ eνt) , t ≥ 0 (3.40)

with

h(t)= λ(β+νt)tβ−1 exp(νt) . (3.41)

For ν = 0, this reduces to a Weibull distribution. For
0 <β< 1, h(t) is initially decreasing and then increasing
in t, implying that the failure rate function has a bathtub
shape. When β > 1, h(t) is increasing in t.

Exponentiated Weibull Distribution [3.26].

G(t) = [F(t)]ν = {1− exp[−(t/α)β]}ν , t ≥ 0 .

(3.42)

The density function is

g(t)= βν

αβ
tβ−1 e−(t/α)β

{
1− e−(t/α)β

}ν−1
.

For an appropriate choice of the parameter set, it will
give rise to a bathtub-shaped failure function. Jiang and
Murthy [3.27] use a graphical approach to study this
distribution. The failure rate function is given by

h(t)= βν

αβ
tβ−1 e−(t/α)β

(
1− e−(t/α)β

)ν−1

[
1− (1− e−(t/α)β )ν

] .

Four-Parameter Weibull Distribution [3.28].

G(t) = 1− exp

[
−λ

(
t−a

b− t

)β
]

,

0 ≤ a ≤ t ≤ b <∞ . (3.43)

Doubly Truncated Weibull Distribution.

G(t) = F(t)− F(a)

F(b)− F(a)
,

0 < a ≤ t ≤ b <∞ . (3.44)

Modified Weibull Extension [3.29].

G(t) = 1− exp
[
−λα

(
e(t/α)β −1

)]
,

t ≥ 0, α, β, λ > 0 . (3.45)

This is known as the generalized exponential power
model originally studied by Smith and Bain [3.30]. The
case of α= 1 is also studied in Chen [3.31]. The failure
rate function is

h(t)= λβ(t/α)β−1 exp
[
(t/α)β

]
. (3.46)

It approaches to a two-parameter Weibull distribution
when λ→∞ with α in such a manner that αβ−1/λ is
held constant.

Type III Models
(Models Involving Two or More Distributions)
These are univariate models derived from two or more
distributions with at least one being either the standard
Weibull model or a distribution derived from it.
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n-Fold Mixture Model.

G(t) =
n∑

i=1

pi Fi (t) , pi ≥ 0 ,

n∑

i=1

pi = 1 . (3.47)

Jiang and Murthy [3.32, 33] categorize the possible
shapes of the failure rate function for a mixture of any
two Weibull distributions in terms of five parameters.
Gurland and Sethurama [3.34] also consider a mix-
ture of the Weibull distribution with failure rate λβtβ−1

and the exponential distribution with failure rate λ1. For
β > 1, the Weibull distribution is IFR (Increasing failure
rate). They found that the resulting mixture distribution
is ultimately DFR (Decreasing failure rate). In fact, the
mixture has a failure rate with an upside-down bathtub
shape.

n-Fold Competing Risk Model.

G(t) = 1−
n∏

i=1

[1− Fi (t)] . (3.48)

Jiang and Murthy [3.35] also give a parametric study
of a competing risk model involving two Weibull
distributions.

n-Fold Multiplicative Model
(Complementary Risk Model).

G(t) =
n∏

i=1

Fi (t) . (3.49)

The multiplicative model involving two Weibull distri-
bution is considered in Jiang and Murthy [3.36].

n-Fold Sectional Model.

G(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k1 F1(t) , 0 ≤ t ≤ t1 ,

1− k2 F̄2(t) , t1 < t ≤ t2 ,

. . .

1− kn F̄n(t) , t > tn−1 ,

(3.50)

where the sub-populations Fi (t) are two- or three-
parameter Weibull distributions and the tis (called
partition points) are an increasing sequence. Jiang and
Murthy [3.37] and Jiang et al. [3.38] consider the case
n = 2 in details.

Type IV Models
(Weibull Models with Varying Parameters)
For models belonging to this group, the parameters of the
model are either functions of the independent variable (t)
or some other variables (such as the stress level s, etc.),
or are random variables.

Arrhenius Weibull Model.

α(S) = exp(γ0+γ1S) . (3.51)

Power Weibull Model.

α(S) = eγ0

Sγ1
. (3.52)

These types of models have been used extensively in
accelerated life testing [3.39] in reliability theory. As
a result, they are referred to as accelerated failure
models.

Weibull Proportional Hazard Models.

h(t)= ψ(S)h0(t) , (3.53)

where h0(t) is called the baseline hazard for a two-
parameter Weibull distribution. The only restriction on
the scalar function ψ(S) is that it be positive. Many dif-
ferent forms for ψ(S) have been proposed. One such is
the following:

ψ(S) = exp

(
b0+

k∑

i=1

bisi

)
. (3.54)

For more on such models, see Cox and Oakes [3.39] and
Kalbfleisch and Prentice [3.17].

Type V Models (Discrete Weibull Models)
Here T can only assume non-negative integer values and
this defines the support for F(t).

Model 1 [3.40].

F(t) =
⎧
⎨

⎩
1−qtβ t = 0, 1, 2, 3 · · · ,
0 t < 0 .

(3.55)

Model 2 [3.41]. The cumulative hazard function is given
by

H(t)=
⎧
⎨

⎩
ctβ−1 t = 1, 2, · · · ,m

0 t < 0 ,
(3.56)

where m is given by

m =
⎧
⎨

⎩
int

(
c−[1/(β−1)]) if β > 1 ,

∞ if β ≤ 1 ,
(3.57)

and int(•) represents the integer part of the quantity
inside the brackets.
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Model 3 [3.42].

F(t) = 1− exp

[
−

t∑

i=1

r(i)

]

= 1− exp

[
−

t∑

i=1

ciβ−1

]
, t = 0, 1, 2, · · · .

(3.58)

3.4.3 Type VI Models
(Stochastic Point Process Models)

These are stochastic point process models with links to
the standard Weibull model.

Power Law Process (Bassin [3.43])
This is a point process model with the intensity function
given by

λ(t) =
(
βtβ−1

αβ

)
. (3.59)

This model has been called by many different names:
power law process; Rasch–Weibull process; Weibull in-
tensity function); Weibull–Poisson process and Weibull
process. We note that the inter-event times do not have
Weibull distributions. For further discussion on the

Weibull process, see for example, Bain and Engelhart
[3.44, Chapt. 9].

Proportional Intensity Model
(Cox and Oaks [3.45])
The intensity function is given by

λ(t; S)= λ0(t)ψ(S) , t ≥ 0 , (3.60)

whereλ0(t) is of the form given above andψ(S) is a func-
tion of the explanatory variables S. The only restriction
on ψ(S) is that ψ(S) > 0.

Ordinary Renewal Process (Yannaros [3.46])
Here the point process is a renewal process with the
time between events being independent and identically
distributed with the distribution function given by the
standard Weibull distribution.

Modified Renewal Process
Here the distribution function for the time to first
event, F0(t), is different from that for the subsequent
inter-event times, which are identical and independent
random variables with distribution function F(·). Note
that F0(t) and/or F(t) are standard Weibull distributions.
When F0(t)= F(t), this reduces to the ordinary renewal
process.

3.5 Empirical Modeling of Data

We have seen a large number of Weibull-related models
which we simply refer as Weibull models. They ex-
hibit a wide range of shapes for the density and failure
rate functions, which make them suitable for modeling
complex failure-data sets.

Recall, we mention that empirical modeling usu-
ally involves three steps: model selection, estimation of
model parameters and model validation. In the context
of Weibull models, a selection procedure may be based
on WPP plots. This is possible due to the availability of
WPP or generalized WPP plots for all the Weibull mod-
els of types I–III. Of course, the shape of the density and
failure rate functions will also be valuable in the selec-
tion step. An added advantage of the WPP plots is that
they provide crude estimates of model parameters; these
serve as a starting point for steps 2 and 3.

It has been suggested that an alternative method to
estimate model parameters is through a least-squares
fit. Basically speaking, this involves selecting the pa-
rameters the parameters to minimize a function given

99

Data set 2
0.1 1.0

90
80
70
60
50
40
30

20

10

5

3
2

1
10.0 100.0

99.9

1000.0

Probability (%)

Shape 1.015
Scale 30.33
N 50
AD 0.891
P-Value 0.021

Fig. 3.4 Probability plot of data set from Table 3.1
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Table 3.1 Data set of failure test (data set 2)

0.12 0.43 0.92 1.14 1.24 1.61 1.93 2.38 4.51 5.09

6.79 7.64 8.45 11.90 11.94 13.01 13.25 14.32 17.47 18.10

18.66 19.23 24.39 25.01 26.41 26.80 27.75 29.69 29.84 31.65

32.64 35.00 40.70 42.34 43.05 43.40 44.36 45.40 48.14 49.10

49.44 51.17 58.62 60.29 72.13 72.22 72.25 72.29 85.20 89.52

by

J(θ) =
n∑

i=1

[y(ti; θ)− yi]2 , (3.61)

where y(ti; θ) uses the vector parameter θ and yi is
the corresponding value obtained from the data. The
optimization can be carried out using any standard op-
timization package. The least-squares method not only
furnishes us with parameter estimates, but also helps to
select a Weibull model. If one of the potential candi-
dates has a value for J(θ) which is considerably smaller
than that for the other models, then this can undoubtedly
be accepted as the most appropriate model for model-
ing the given data set. If two or more Weibull models
give rise to roughly the same value of J(θ), one would
need to examine additional properties of the WPP plots
to decide on the final model. Other approaches such as
bootstrap and jackknife may be employed for the final
selection. For more on this, see Murthy et al. [3.3, 47].

A couple of comments on step 3 of our empirical
modeling may be in order. There are many statistical

tests for validating a model. These generally require
data that is different from the data used for model selec-
tion and parameter estimation. A smaller data set may
pose a problem, as there will be no separate data left af-
ter model selection and parameter estimation. Various
solutions have been proposed in the case of a small data
set. We refer the readers to the book by Meeker and
Escobar [3.48] for further details.

Example 3.1:
50 items are tested to failure. The failure times are auto-
matically recorded and given in Table 3.1. The Weibull
probability plot indicates that the two-parameter Weibull
model is not appropriate.

Based on the plot, we observe that the plot shows
a decreasing slope at the beginning, and an increasing
slope at the end. This is an indication of a distribution
with a bathtub-shaped failure-rate function. Some of the
models of type II or type III can be used. One possibility
is to fit the early part and last part of the plot with separate
lines (Fig. 3.4). This will result in a two-fold competing
risk model (3.48).

3.6 Applications

3.6.1 Applications in Reliability

Product reliability depends on the design, development
and manufacturing decisions made prior to the launch
(pre-launch stage) of the product and it in turn affects
the failures when the product is put into operation after
launch (post-launch stage).

The pre-launch stage involves several phases. In the
feasibility phase, study is carried out using the specified
target value for product reliability. During the design
phase, product reliability is assessed in terms of part and
component reliabilities. Product reliability increases as
the design is improved. However, this improvement has
an upper limit. If the target value is below this limit,
then the design using available parts and components
achieves the desired target value. If not, then a program
to improve the reliability through test–fix–test cycles is

carried out during the development phase. Here the pro-
totype is tested until a failure occurs and the causes of the
failure are analyzed. Based on this, design changes are
made to overcome the identified failure causes. This pro-
cess is continued until the reliability target is achieved.
The reliability of the items produced during manufac-
turing tends to vary from the design target value due
to variations resulting from the manufacturing process.
Through proper process and quality control during the
manufacturing phase, these variations are controlled.

In the post-launch stage, the reliability of an item
decreases due to deterioration resulting from age and/or
usage. This deterioration is affected by several factors,
including the environment, operating conditions and
maintenance. The rate of deterioration can be controlled
through effective preventive maintenance actions. Poor
reliability results in higher maintenance cost for the
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Table 3.2 A sample of reliability applications

Author(s) Topic

Weibull [3.5] Yield strength of steel, fatigue life of steel

Keshevan et al. [3.49] Fracture strength of glass

Sheikh et al. [3.50] Pitting corrosion in pipes

Quereshi and Sheikh [3.51] Adhesive wear in metals

Durham and Padget [3.52] Failure of carbon-fiber composites

Almeida [3.53] Failure of coatings

Fok et al. [3.54] Failure of brittle materials

Newell et al. [3.55] Failure of composite materials

Li et al. [3.56] Concrete components

buyer. It also leads to higher warranty cost for the manu-
facturer resulting from the cost of rectifying all failures
within the warranty period subsequent to the sale of the
product.

Most products are composed of several components
and the failure of the product is due to failure of its com-
ponents. Weibull models (the two- and three-parameter
models as well as a variety of types I–III Models) have
been used to model the failures of many components
and the literature is vast. A very small sample of the
literature follows.

These models allow the determination of product
reliability in terms of component reliabilities during the
design phase.

During the development phase, it is often necessary
to use accelerated testing to hasten the process leading
to component failures. A variety of type IV models have
been used for the design of experiments to carry out this
testing. For more on such models, see Nelson [3.39] and
Meeker and Escobar [3.48].

The improvement in reliability (also referred to as
reliability growth) during the development phase has
been modeled in many different ways. Duane [3.57]
used a Weibull intensity model formulation to model
the improvement in failure rate as a function of the
development time. The breakthroughs leading to im-
provements can be viewed as random points along
the time axis. Crow [3.58] modeled this by a Weibull
power-law process (type VI Weibull model). For mod-
els that are modification of this model, see Murthy
et al. [3.3].

In the manufacturing phase, the fraction of noncon-
forming items is small when the process is in-control
while it increases significantly when the process
goes out-of-control. The Weibull distribution has been

used to model the in-control duration in the de-
sign of control charts to detect the change from
in-control to out-of-control. For more on this, see
Rahim [3.59], Costa and Rahim [3.60], and Chen and
Yang [3.61]. Nelson [3.62] deals with control charts
for items with Weibull failure distributions where
conforming and nonconforming items differ in the
scale parameter but have the same shape parameter.
Murthy et al. [3.63] and Djamaludin et al. [3.64]
deal with lot production and look at optimal lot
size to control the occurrence of nonconforming
items.

When the failure rate has a bathtub shape, it is prone
to early failure. For products modeled by Weibull models
exhibiting bathtub failure rates, burn-in is a technique
that can be used to weed out such failures and improve
product reliability before it is released for sale. For more
on burn-in, see, e.g., Kececioglu and Sun [3.65].

Warranty cost analysis for products with a Weibull
failure distribution has received a lot of attention. For
more on this, see, e.g., Blischke and Murthy [3.66, 67]
and Murthy and Djamaludin [3.68].

Preventive maintenance of products with a Weibull
failure distribution has received considerable attention.
In the age policy, an item is replaced preventively when it
reaches some specified age and Tadikmalla [3.69] deals
with this in the context of the Weibull failure distribution.
In the block policy, items are replaced preventively at set
clock times and Blischke and Murthy [3.70] deals with
this in the context of the Weibull failure distribution.

3.6.2 Applications in Other Areas

Weibull distribution has been used as a model in diverse
disciplines to study many different issues. There are
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Table 3.3 A sample of other applications

Discipline Topic Author(s)

Geophysics Wind-speed data analysis Al-Hasan [3.71]

Earthquake magnitude Huillet and Raynaud [3.72]

Volcanic occurrence data Bebbington and Lai [3.73]

Low-flow analysis Durrans [3.74]

Regional flood frequency Heo et al. [3.75]

Food science Sterility in thermal preservation method Mafart et al. [3.76]

Social science Unemployment duration Roed and Zhang [3.77]

Environment Environment radioactivity Dahm et al. [3.78]

Nature Ecological application Fleming [3.79]

Medical science Survival data Carroll [3.80]

several thousand papers and we give a very small sample
of this vast literature

3.6.3 Weibull Analysis Software

In any analysis of statistical data, computer software is
required. In addition to standard statistical software such
as Minitab, SPSS, SAS, etc., or spreadsheet software
such as Excel, some specialized Weibull analysis soft-
ware are also available. Below is a list of some common
ones.

• Weibull++ 6 by ReliaSoft Corp., Tucson, AZ;
http://weibull.reliasoft.com/

• Relex Weibull by Relex Software Corp., Greens-
burg, PA; http://www.relexsoftware.com/products
/weibull.asp

• WeibullPro by Isograph Inc., Newport Beach, CA;
http://www.isograph-software.com/avsoverwbl.htm

• WinSMITH Weibull by Barringer & Associates,
Inc., Humble, TX; http://www.barringer1.com
/wins.htm
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Characterizati4. Characterizations of Probability Distributions

A characterization is a certain distributional
or statistical property of a statistic or statis-
tics that uniquely determines the associated
stochastic model. This chapter provides a brief
survey of the huge literature on this topic.
Characterizations based on random (complete
or censored) samples from common univari-
ate discrete and continuous distributions, and
some multivariate continuous distributions are
presented. Characterizations that use the prop-
erties of sample moments, order statistics,
record statistics, and reliability properties are re-
viewed. Applications to simulation, stochastic
modeling and goodness-of-fit tests are dis-
cussed. An introduction to further resources is
given.
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Suppose X is the population random variable
(RV) with cumulative distribution function (CDF)
F(x) = Pr(X ≤ x) from which the data are generated
according to a specified sampling scheme. Let F be
the family of probability distributions used as an initial
model to describe X and F0 be a subclass of F that
is of interest to the modeler. If T = T (X) is a statistic
arising from F, and if a certain distributional property
it possesses implies that F ∈ F0, then this property of

T (X) produces a characterization of F0. If the concerned
property of T (X) holds if and only if F ∈ F0, then we
have a complete characterization of F0 and it is partic-
ularly helpful when this subfamily has a single member
or members from a single parametric family of distribu-
tions. This is the essence of the abundant literature on
this fascinating area of characterizations, produced by
probabilists and mathematical statisticians, mostly over
the past half-century.
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80 Part A Fundamental Statistics and Its Applications

In Sect. 4.1 we describe characterizing functions and
their role in characterizations. Various types of data set-
tings and associated characterizing properties discussed
in the literature are reviewed in Sect. 4.2. A general clas-
sification of characterization results is given in Sect. 4.3.
Treatment of continuous distributions begins with that
of the exponential in Sect. 4.4, and continues with the
normal in Sect. 4.5, and other distributions in Sect. 4.6.
Characterizations for the Poisson distribution and Pois-
son process are given in Sect. 4.7, and Sect. 4.8 contains

characterizations for other common discrete distribu-
tions. A brief look at the characterizations of multivariate
distributions is provided in Sect. 4.9, where some char-
acterizations based on conditional specification are
presented. Special attention is drawn to the Marshall–
Olkin bivariate exponential model and the multivariate
normal distribution. Stability of characterization results
is discussed in Sect. 4.10 and applications of charac-
terizations in Sect. 4.11. The last section (Sect. 4.12)
contains a listing of major resources.

4.1 Characterizing Functions

There are several functions associated with a probabil-
ity distribution that uniquely identify it. We call these
characterizing functions and describe a few of them.

4.1.1 Cumulative Distribution Function (CDF)

The CDF F(x) of a RV X, defined for all real x, describes
P(X ∈ A) for any Borel set A on the real line. It is
right-continuous, nondecreasing, and F(−∞) = 0 and
F(+∞) = 1. If X is a discrete RV, Pr(X = x) = F(x)−
F(x−) > 0 for any possible value x. A closely associated
function, the survival function (SF), is defined by

S(x) = Pr(X ≥ x) = 1− F(x−) . (4.1)

4.1.2 Probability Density Function (PDF)

The PDF f (x) is a nonnegative function with the prop-
erty that, for any Borel set A, Pr(X ∈ A) can be obtained
by either summing or integrating f (x) over A. When X
is absolutely continuous, f (x) = F′(x) almost every-
where (a. e.). In many cases, the PDF provides the most
convenient way to describe the probability assignment.

4.1.3 Quantile Function

Also known as the inverse CDF, it is often defined as

F−1(u) = inf{x : F(x) ≥ u}, 0 < u < 1 . (4.2)

The quantile function is nondecreasing and, in this
form, is left-continuous. It describes the probability as-
signment in terms of the quantiles of the distribution.
When X is absolutely continuous, F−1(u) is differen-
tiable with derivative 1/ f [F−1(u)].

The probability integral transformation U = F(X)
transforms any continuous RV X with CDF F(x) into

a standard uniform RV U that has PDF f (u) = 1,
0 < u < 1. For any RV X with CDF F(x),

X
d= F−1(U ) , (4.3)

where
d= stands for equality in distribution. This valuable

distributional identity is helpful in simulating arbitrary
RVs and also plays an important role in the theoreti-
cal developments associated with moments of X and of
order statistics generated from random samples.

For a nonnegative RV with finite mean µ= E(X) =∫ 1
0 F−1(u)du, the quantile function yields the Lorenz

curve used for describing the discrepancy in income
distributions. The Lorenz curve is described by the
function

L(t)= 1

µ

t∫

0

F−1(u)du, 0 ≤ t ≤ 1 . (4.4)

It identifies F−1 and consequently F, up to the scale
parameter.

4.1.4 Characteristic Function (CF)
and Other Generating Functions

For any RV X, a CF exists and is defined by
ψ(t) = E[exp(itX)], where t is real and i =√−1. This
complex-valued function (it is real for F symmetric
about 0) uniquely determines the CDF ([4.1], p. 104).
It has played a major role in the proof of the cen-
tral limit theorem and in numerous characterizations,
especially of the normal distribution. An associated
function, the moment generating function (MGF), given
by E[exp(tX)], may not exist for t �= 0. If the MGF exists
for t in a neighborhood of 0, then moments of X of all
orders exist. Furthermore, the jth moment of X, E(X j ),
can be obtained by a Taylor-series expansion of either
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the CF or the MGF of X. A one-to-one function of the
MGF is its logarithm, the cumulant generating function.
A discrete distribution with support over nonnegative
integers is uniquely determined by its probability gen-
erating function, given by E{sX}, defined at least for
|s| ≤ 1 ([4.1], p. 101).

4.1.5 Reliability Considerations

Several characterizing functions that are based on relia-
bility properties have appeared in the area of life-testing
experiments. There are many classes of distributions in
the reliability literature that are based on the proper-
ties of such functions [4.2]. We introduce three such
functions where we assume X to be nonnegative for
practical reasons, and to be absolutely continuous for
convenience.

Failure Rate and Hazard Functions
The failure (or hazard) rate function is defined for all x
in the support of the RV X and is given by

h(x) = f (x)

S(x)
= f (x)

1− F(x)
, (4.5)

where S(x) is the SF defined in (4.1), and in this case,
equals 1− F(x). Clearly,

H(x) ≡
x∫

0

h(w)dw=− log[1− F(x)] , (4.6)

and thus h(x) uniquely determines F(x). Further, H(x),
the integrated failure-rate function, also called the
hazard function, identifies F(x) as well, through the
relationship F(x) = 1− exp[−H(x)]. The family of
distributions for which the failure rate (FR) h(x) is in-
creasing (decreasing) is the IFR (DFR) family. If H(x)/x
is increasing (decreasing) one obtains the IFRA (DFRA)
family since the average failure rate in that case will be
increasing (decreasing).

Mean Residual Life (MRL) Function
The MRL is of practical interest in life-testing ex-
periments and is defined whenever E(X) is finite. For

a nonnegative X, with t > 0, it is given by

m(t) ≡ E(X− t|X > t)

= 1

1− F(t)

∞∫

t

[1− F(w)]dw , (4.7)

if the CDF F is continuous. Equation (4.7) can be used
to recover F(x) from m(t). In fact, when F is continuous,
and F−1(0) = 0,

1− F(x) = m(0)

m(x)
exp

⎛

⎝−
x∫

0

dy

m(y)

⎞

⎠ , x > 0 , (4.8)

where m(0) = E(X). Another closely related character-
izing function is the truncated mean E(X|X > t) ≡ t+
m(t), sometimes referred to as the conditional tail expec-
tation. Increasing (decreasing) m(t) produces the family
of IMRL (DMRL) life distributions. Yet another char-
acterizing function is the total time on test transform
([4.3], p. 91), defined as

τ(t) =
F−1(t)∫

0

[1− F(x)]dx, 0 ≤ t ≤ 1 . (4.9)

This is concave if and only if (iff) F is IFR.
Characterization of a probability distribution then

refers to the identification of any of F(x), F−1(x), f (x),
ψ(t), h(x), H(x), m(t), τ(t), or of families for which
these functions possess a certain property.

Example. Consider the exponential distribution with
rate parameter λ whose PDF is given by

f (x) = λe−λx, x ≥ 0 . (4.10)

If (4.10) holds, we say that X is an exp(λ)
RV. For such an RV, the CDF is given by
F(x) = 1− exp(−λx), x ≥ 0; the quantile function is
given by F−1(u) = − log(1−u)/λ, 0 ≤ u ≤ 1; the
characteristic function by ψ(t) = 1/(1− it/λ); the
failure-rate function by h(x) = λ, x ≥ 0; the hazard
function by H(x) = λx, x ≥ 0; the MRL function by
m(t) = 1/λ, t ≥ 0; and the total time on test transform
by τ(t)= t/λ, t ≥ 0.

4.2 Data Types and Characterizing Conditions

A characterization result is based on the assumed model
for the data and the specified property of a particular
statistic of interest. We now describe some common
scenarios.

4.2.1 Data Models

The most basic data set consists of a single observation X
from the CDF F(x). Next, one may encounter either
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a random sample X1, . . . , Xn from F(x), i. e., the X j are
independent, identically distributed (IID) RVs with CDF
F(x). Or the X j are just independent and their CDFs
belong to a family F0. Type II right-censored samples
from (absolutely) continuous distributions that appear
naturally in life-testing experiments are considered as
well.

Let X1:n ≤ · · · ≤ Xk:n ≤ · · · ≤ Xn:n be the order
statistics of the random sample [4.3]. Then the CDF
of Xk:n is given by

n∑

j=k

(
n

j

)
F j (x)[1− F(x)]n− j

= n!
(k−1)!(n− k)!

F(x)∫

0

tk−1(1− t)n−k dt , (4.11)

and the joint PDF of X1:n, · · · , Xk:n , a type II right
censored sample, is given by

n!
(n− k)! f (x1) · · · f (xk)[1− F(xk)]n−k,

x1 < · · ·< xk . (4.12)

Models that use the properties of upper or lower record
values for characterizations do exist. For an infinite se-
quence {X j , j ≥ 1} from a continuous parent, for j ≥ 1,
X j is called an upper record value of this sequence if
X j =max(X1, . . . , X j ) [4.4]. By convention, X1 is the
first upper record value (or reference value). The joint
PDF of the first m upper record values, R1, . . . , Rm , is
given by

f (r1, . . . , rm) = f (rm)
m−1∏

j=1

h(r j ) r1 < · · ·< rm ,

(4.13)

where h(x) is given by (4.5). From (4.12) and (4.13), we
can, respectively, conclude that (see, e.g., [4.4], p. 114),
for a continuous parent

Pr(Xk+1:n > y|Xk:n = x)

= [Pr(X > y|X > x)]n−k, x < y , (4.14)

and

Pr(Rm+1 > y|Rm = x) = Pr(X > y|X > x)

= 1− F(y)

1− F(x)
, x < y . (4.15)

4.2.2 Characterizing Conditions

There are many types of characterizing properties. For
example, the property could be based on identical dis-

tribution of two statistics, or independence of them, or
on constancy of regression of one on the other. Alterna-
tively, the characterization may be based on properties of
admissibility and optimality of certain estimators based
on random samples [4.5]. Characterizations based on
fixed or random sample sizes and on damaged/missing
observations do exist. Basically, the assumed condition
is shown to yield a functional equation satisfied by a
characterizing function, leading to the identification of
the parent distribution. Other conditions involve recur-
rence relations satisfied by the ordinary moments, or
moments of order statistics. There are characterizations
based on certain inequalities for the moments, Fisher in-
formation or entropy measures, where equality holds for
a unique family of distributions.

4.2.3 General Techniques

For the normal distribution, identification via the char-
acteristic function is the common approach. The proofs
involve results on complex variables. Numerous results
for the exponential or geometric distributions have been
based on the SF and rely on the Cauchy functional
equation (CFE) ([4.6], Sect. 1.1), namely,

g0(x+ y) = g0(x)g0(y), for all x, y ≥ 0 . (4.16)

The only continuous solution is the exponential SF.
The well-known lack-of-memory property (LMP) of the
exponential distribution, namely

Pr(X > x+ y|X > x) = Pr(X > y),

for all x, y ≥ 0 , (4.17)

leads to (4.16). In (4.17), the exponential SF Pr(X >

x) = exp(−λx) is recovered even if the equation holds
for all x ≥ 0 and for two y values y1, y2 such that y1/y2
is irrational.

In recent years, the integrated CFE (ICFE) whose so-
lution goes back to Deny’s Theorem ([4.6, 7], Chapt. 2)
has been used for several characterizations of the ex-
ponential and geometric distributions. We say that g1
satisfies an ICFE if it is a function defined on [0,∞) and
satisfies the condition (4.18) (see below). The following
characterization result due to Lau and Rao [4.8] is taken
from [4.7] (p. 29).

Theorem 4.1
Let g be a nonnegative locally integrable function on
[0,∞) that is not a function identically equal to 0 a.e. ν0,
the Lebesgue measure defined on [0,∞). Suppose g
satisfies (4.18) given below where ν is a σ-finite measure
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satisfying the condition ν({0}) < 1:

g(x)=
∞∫

0

g(x+ y) dν(y), a. e. ν0 for x ≥ 0 .

(4.18)

Then either

g(x+nδ) = g(x)bn, n ≥ 0, a. e. ν0 for x ≥ 0 ,

(4.19)

where b is such that
∑∞

n=0 bnν({nδ})= 1 for some δ > 0,
or

g(x) ∝ eαx a. e. ν0 for x ≥ 0 , (4.20)

where α satisfies the condition
∫∞

0 eαy dν(y) = 1.

If g0 satisfying (4.16) is integrable with respect to
a σ-finite measure ν1 on [0,∞), the integral being
a positive quantity c, then it also satisfies (4.18) with
ν = c−1ν1.

The above result has provided elegant unified proofs
of several characterizations of exponential and geo-
metric distributions. See the review in [4.9] and the
monograph [4.7]. A nice account of the role of functional
equations in probability theory and in characterization
theorems is given in [4.6].

A handy technique is based on complete families of
functions. Suppose { fn(x), n ≥ 1} is a sequence such

that if, for any integrable function g(x), the condition
∫

A

g(x) fn(x)dx = 0 for all n ≥ 1 (4.21)

implies that g(x) = 0 a.e. on A, where A is an inter-
val. Then we say that the sequence of functions fn(x) is
complete on A. For example, fn(x)= xn is complete on
[0, 1] and leads to the characterization of F based on the
sequence E(Xn:n). A classical completeness result due
to Müntz and Szász shows that even an appropriately
chosen subsequence would do. (See [4.10] for a good
summary.) The method of intensively monotone opera-
tors is another general method of showing uniqueness
of solutions to the functional equations generated by the
characterizing conditions [4.11].

An approach involving inequalities such as the
Cauchy–Schwarz (or Cramér–Rao) has produced some
characterizations. The distribution being characterized
corresponds to the case where equality holds. For
example,

Cor(X j:n, Xk:n) ≤
√

j(n− k+1)

k(n− j+1)
, j < k , (4.22)

where “Cor” represents the correlation coefficient, and
equality holds iff F is a uniform CDF.

The method of limit laws, elaborated in [4.12],
is found to be helpful in establishing some
characterizations.

4.3 A Classification of Characterizations

We attempt below a general classification of characteri-
zation results.

4.3.1 Uniqueness Conditions

These are properties that provide a one-to-one cor-
respondence with the parent CDF F. For example,
from (4.11) it is clear that the CDF of Xk:n for any
fixed k and n identifies F(x), and thus provides a trivial
characterization.

A more interesting question is considered in the clas-
sical moment problem [4.13]. It is concerned with the
determination of the CDF F(x) from the sequence of
population moments {E(X j ), j ≥ 1}, which are assumed
to exist. Two distinct distributions can have the same
moment sequence. Under certain conditions, however,
the associated CDF is unique. One such condition is

that

∞∑

j=1

E(X j )

j! t j (4.23)

is absolutely convergent for some t > 0 ([4.1], p. 106).
In the context of order statistics, the moment

problem has the goal of identifying F based on
the moment sequence {E(Xk(n):n), 1≤ k(n)≤ n, n ≥ 1}.
There is no loss of generality in choosing k(n) [or
n− k(n)] to be a constant. It is known that the
subsequence {E(Xn j :n j ), n1 < n2 < · · · , j ≥ 1} charac-
terizes F provided that

∑∞
j=1 1/n j diverges [4.14].

Such a subsequence will not suffice when we con-
sider E(Rn)—the moment sequence of record values.
One needs the entire sequence and identification can be
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achieved only within the family of continuous distribu-
tions ([4.4], Sect. 4.2.1).

It is clear from (4.15) that E(Rn+1− Rn |Rn = x) =
m(x) a.s., and hence, in view of (4.8), one can recover
F(x) from the regression function E(Rn+1|Rn). Simi-
larly E(Xk+1:n |Xk:n) or even E[h(Xk+1:n)|Xk:n] where
h(.) is a real, continuous and strictly monotonic function,
would identify F in the family of arbitrary distribu-
tions [4.15].

4.3.2 Characterizations of Families
of Distributions

There are characterizations of distributions defined by
their reliability properties, of the exponential-family
distributions, or of spherically symmetric (multivari-
ate) distributions, and other large families. Such results
identify the general properties possessed by the mem-
bers without actually providing an explicit form for
the CDF or other characterizing functions. For exam-
ple, certain properties of order statistics characterize
various classes of life distributions [4.16]. A specific
characterization of this sort is the following. Among

nonnegative distributions with finite mean, a CDF F is
IFR iff E[(n− k+1)(Xk:n − Xk−1:n)] is decreasing in k
(2≤ k ≤ n) for infinitely many n. A one-parameter expo-
nential family is characterized (under some conditions)
by the fact that, for a single random sample of size n ≥ 3,
the sample mean X̄ is the maximum-likelihood estimator
(MLE) of the mean of the distribution (see also [4.17]).
Such results are interesting theoretically and provide
some reality checks for the model assumptions.

4.3.3 Characterizations of Specific
Parametric Families

Of maximal interest in terms of applications and cre-
ation of goodness-of-fit tests are the characterizations
that identify specific parametric family of distributions.
In subsequent sections we will discuss a few such results
for some common distributions; in fact, we consider only
a tiny subset of the voluminous, ever-growing literature.
We only list the characterization results with no details
on the other needed conditions, some of which could
be very technical and hard to verify. We refrain from
proving any of our claims.

4.4 Exponential Distribution

Arnold and Huang [4.18], in their survey of characteri-
zations of the exponential distribution, mentioned about
275 citations 10 years ago, and one could safely add 50
more to the list, making it perhaps the most popular dis-
tribution on this topic. In recent years results based on the
properties of order statistics and record values have been
in vogue. In most cases, the condition imposed will re-
sult in the CFE or the ICFE discussed in Sect. 4.2. Apart
from the exponential characterizations stemming from
the general results [e.g., if E(X1:n)= λ/n, n ≥ 1, then F
must be an exp(λ) CDF], the conditions imposed could
be based on: (i) truncated moments or regression func-
tions associated with order statistics or (upper) records,
(ii) distributional identities among order statistics, their
spacings, or the spacings of records, (iii) independence
of certain linear functions of order statistics or records,
(iv) reliability properties of order statistics or records, or
(v) geometric compounding, where the RV of interest is
a random sum of IID RVs where the number in the sum
is determined by an independent geometric RV.

Consider the order statistics case. For the exp(λ)
parent: (a) X j:n and Xk:n − X j:n, j < k, are independent,
(b) nX1:n

d=X1, n ≥ 2, and the normalized spacings,
Y j = (n− j +1)(X j:n − X j−1:n), j = 1, . . . , n (with

X0:n = 0), have the following properties: (c) the Y j are
independent, (d) they are identically distributed as X1 for
all j = 1, . . . , n, and (e) E(Y j )= 1/λ, 1≤ j ≤ n. Under
some mild conditions each of these provides a charac-
terization of the exponential CDF. In (b), it is known
that, if the distributional equality holds for two values
of n, say n1 and n2 such that log n1/ log n2 is irrational,
then the exponential RV is identified in the family of
nonnegative RVs.

If F is an exponential CDF, from the joint PDF of
the record values given in (4.13), it can be shown that,
for j ≤ m < n:

1. Rm and Rn − Rm are independent,
2. R j and Rn − Rm are independent,
3. E(Rn+1− Rn|Rn) does not depend on Rn ,
4. Var(Rn+1− Rn|Rn) does not depend on Rn ,
5. Rn − Rm and Rn−m are identically distributed,
6. E((Rn − Rm)s|R j ) does not depend on R j ,
7. E(Rn) = n/λ, and
8. E(Rn+1|Rn) and E(Rn|Rn+1) are both linear in con-

ditioning variables.

Each of these provides a characterization of the ex-
ponential distribution (possibly with a location shift) in
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an appropriately chosen F (such as continuous CDF).
There are many more that dwell on the properties of the
spacings of upper record values or order statistics.

Using (4.13) and (4.14), characterizations involv-
ing record or order statistic spacings can be linked to
those based on truncated distributions. For example, as-
suming that E(Rn+1− Rn |Rn) does not depend on Rn is
basically the same as saying E(X− x|X > x) is free of x.
This means that the MRL is a constant—a characterizing
property of the exponential distribution. Conditions such
as X j+1:n − X j:n

d= X1:n− j or Rn − Rm
d= Rn−m result

in the ICFE (see Theorem 4.1), yielding an exponential
characterization in the family of continuous CDFs.

In the context of life-testing experiments, the statistic
representing the total time on test by time Xi:n , Ti,n =∑i

j=1Y j =∑i
j=1 X j:n + (n− i)Xi:n, is of considerable

interest. For an exponential parent, for 2 ≤ k ≤ n,

(
T1,n

Tk,n
, · · · , Tk−1,n

Tk,n

)
(4.24)

behaves like the vector of order statistics from a random
sample of size k−1 from the standard uniform distribu-
tion. The converse is shown to be true assuming that the
order-statistic property holds for some k and n such that
5 ≤ k ≤ n [4.9].

There is a characterization of the exponential dis-
tribution based on records that is similar to that of
the uniform distribution based on the order statistics
[see (4.22)]. If Var(Rm) and Var(Rn) are both finite,
Cor(Rm, Rn) does not exceed

√
m/n,m < n. Further-

more, the upper bound is attained if F is an exponential
CDF, possibly with a location shift.

Numerous characterizations of the exponential dis-
tribution exist when F is restricted to families defined by
the reliability properties (such as the new better/worse
than used families). Characterizations of the exponen-
tial distribution arising from queueing models are rare;
for a few results, see [4.19].

The survey of characterizations using order statis-
tics by Gather et al. [4.20] contains an excellent
compendium of results for the exponential distri-
bution based on their properties. Other important
references include the monograph by Azlarov and
Volodin specializing on exponential characterizations
[4.21], the survey [4.18] mentioned earlier, and [4.22],
Chapt. 19.

Remarks. The memoryless property (LMP) of the ex-
ponential distribution is also shared by the geometric
distribution, which can be extracted as [X] where [·]
represents the greatest integer function. This results
in many parallel characterizations for the geometric
parent among distributions on nonnegative integers
(see Sect. 4.8; [4.23]). Homogeneous Poisson processes,
characterized by the fact that the inter-arrival times
of the events are IID exponential, can be identified
by the characterizing properties of the exponential
distributions. Also, for any RV X with continuous
CDF F, − log[1− F(X)] is standard exponential and
thus exponential characterizations naturally lead to char-
acterizations of such distributions. For example, results
based on exponential spacings will lead to the char-
acterizations of the uniform, power-function or Pareto
distributions on the basis of the properties of the ratios
of order statistics.

4.5 Normal Distribution

The earliest characterization results were for the normal
distribution. In 1923 Pólya showed that, if X1 and X2
are IID with finite variance, and X1

d=a1 X1+a2 X2, then
the X j must necessarily be normal. Cramér showed in
1937 that, if X1 and X2 are independent and the sum is
assumed to be normal, then each of them must be normal
(see [4.24], p. 53). Skitovich and Darmois established in
1953 the following result:

Theorem 4.2
If X1, . . . , Xn are independent and the linear functions

L1 =
n∑

j=1

a j X j , L2 =
n∑

j=1

b j X j (4.25)

are independent, then the RVs X j for which a jb j �= 0
must all be normal.

The work on normal characterizations accelerated from
the 1950s and it was an extremely active area of research
until the late 1970s. Extensive accounts are available,
particularly in the influential book on characterizations
by Kagan et al. [4.5], and also in the monograph on the
applications of characteristic functions by Lukacs and
Laha [4.25], all major contributors to the area. A short
book devoted to normal characterizations by Mathai and
Pederzolli [4.26] also provides a good account. An ex-
cellent brief summary of the normal characterizations
and an extensive reference list is provided in [4.22],
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Chapt. 13. Another recent account of normal charac-
terizations is provided by the monograph [4.27]. We
now record a listing of assorted types of characteriza-
tions, mostly those that are easy to describe. These hold
under usually mild conditions. Many normal character-
izations hold under technical conditions that are hard to
verify and often it is difficult to assess their practical
implications.

Characterizations
We begin with characterizations based on the properties
of a single observation from the parent distribution.

Among absolutely continuous distributions with
support (−∞,∞) and specified mean and variance, the
entropy − ∫∞

−∞ f (x) log f (x)dx is the largest for the
normal distribution ([4.5], p. 410).

Assume F is the location family of absolutely
continuous distributions with support (−∞,∞) and dif-
ferentiable density f (x− θ), where θ is the location
parameter. Then the Fisher information in this location
family is given by

I f (θ) =
∫

f (x)>0

(
f ′(x)

f (x)

)2

f (x)dx . (4.26)

The distribution in this family with the smallest I f (θ) is
normal ([4.5], p. 406).

The following properties based on a random sample
X1, . . . , Xn of size n, characterize the normal parent:

1. X1 has zero mean and unit variance, and for some
a1, a2 �= 0, (a1 X1+a2 X2)2/(a2

1 +a2
2)

d=(a1 X1−
a2 X2)2/(a2

1 +a2
2)

d=χ2
(1) ([4.22], p. 105).

2. X1 has zero mean and is nondegenerate and
with ab = −1 and n = 2, E(X1+aX2|X1 +
bX2) = E(X1+bX2|X1+aX2) = 0 ([4.5], p. 158).

3. The sample mean X̄ and sample variance S2 are
independent for some n ≥ 2 ([4.5], p. 103).

4. For some n ≥ 5, the vector(
X1− X̄

(n−1)S2
, · · · , Xn − X̄

(n−1)S2

)
(4.27)

is uniformly distributed on the (n−2)-dimensional
sphere

{
(w1, . . . , wn) :∑n

i=1 wi = 0,
∑n

i=1w
2
i = 1

}

([4.7], p. 142).
5. F is the location family of distributions F0(x− θ),

with mean θ, the location parameter, and finite vari-
ance, and, for some n ≥ 3, X̄ is admissible under

squared error loss among all unbiased estimators
of θ ([4.5], p. 228).

6. In the above location family (with finite variance
and θ as the mean), take the null hypothesis H0 :
θ = 0 and the alternative H1 : θ > 0. Suppose that,
for some n ≥ 3, the critical region {X̄ > cα} is the
uniformly most powerful among all tests with level
of significance ≤ α for all α ∈ (0, 1), where cα =
max{c : Pr(X̄ > c|θ = 0) = α} ([4.5], p. 451).

7. In the above location family with θ as the mean, X̄n
is the MLE of θ for n = 2, 3 ([4.5], p. 411).

8. F is the location-scale family of continuous
distributions F0[(x− θ)/σ], θ real, σ > 0, and
(X̄, S) is a sufficient statistic for (θ, σ) ([4.22],
p. 106).

9. In the above location-scale family with mean θ, X̄n
is a best linear unbiased estimation (BLUE) of θ for
all n ≥ 1 [4.28].

10. In the linear regression model under the Bayesian
framework, the distributions with posterior expecta-
tion is linear in data values [4.29].

When the X j are independent RVs, some of the
above results have appropriate generalizations. For
example,

1. In (4.25), if the sequences {a j/b j} and {b j/a j} for
which a jb j �= 0 are bounded and as n →∞ L1 and
L2 converge with probability 1 to independent RVs,
then the X j for which a jb j �= 0 are normal ([4.5],
p. 94).

2. If X1
d=L1 in (4.25), where a1 �= −1, 0, 1, n ≥ 2,

and the X j have finite variance, then X1 is normal
([4.22], p. 104).

3. Suppose X1, X2, X3 are independent symmetric
RVs with median 0 and CDF that are continuous at 0.
If W1 = X1/X3, W2 = X2/X3 have joint charac-
teristic function E[exp(it1W1+ it2W2)] = exp(t2

1 +
t2
2 )1/2, then the X j are IID normal ([4.22], p. 104).

(Here W1, W2 are identically distributed Cauchy
RVs.)

Remarks. Some of the above results have parallel ver-
sions that characterize the gamma populations when the
support is restricted to positive values or when F is
the scale family distribution. Some provide characteri-
zations of the Poisson distribution when the support is
restricted to nonnegative integers.
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4.6 Other Continuous Distributions

4.6.1 Uniform

As noted earlier, some characterizations of the ex-
ponential lead to similar results for the uniform. In
addition, several characterizations based on the prop-
erties of order statistics and sums of IID RVs do
exist. We have noted earlier [see (4.18)] that the
maximum correlation for any two order statistics is
attained only for the uniform distribution. Below are
some other conditions that characterize the uniform
distribution over an interval whose endpoints are cho-
sen appropriately. (See [4.30], p. 282–285 for original
references.)

1. Cov(X1:2, X2:2) = (1/3)Var(X) or equivalently
E(X2:2− X) = [(1/3)Var(X)]1/2.

2. [E(X2:2)]2 = (4/3)E(X2). Here and above, the right
side represents the maximum possible value for the
left side expression.

3. X2:2− X1:2
d=X1:2.

4. For some n ≥ 3, E(X1|X1:n, Xn:n) = (1/2)(X1:n +
Xn:n) almost surely and F is continuous.

4.6.2 Gamma

The following conditions characterize the gamma dis-
tribution, whose PDF is given by

f (x) = 1

βαΓ (α)
exp(−x/β)xα−1, x > 0 , (4.28)

where α > 0 and β > 0 are the shape and scale
parameters, respectively ([4.22], p. 350–354; [4.5],
p. 407–410).

1. X1 and X2 are independent nondegenerate RVs, and
X1+ X2 and X1/X2 are independent.

2. For independent RVs X1, . . . , Xn , and T =∑n
j=1 X j ,

( X1
T , . . . , Xn

T

)
and T are independent.

3. In a random sample of size n from a positive RV X for
which E(1/X) is finite, the conditional expectation
E(

∑n
j=1 X−1

j |X1− X̄) is a constant.
4. The distribution in the scale family of distributions

with support (0,∞) that has the smallest attainable
Fisher information measure.

5. The distribution with the maximum entropy among
distributions with support (0,∞) and have specified
E(X) and E(log(X)).

4.6.3 Weibull

Some exponential characterizations easily lead to char-
acterizations of the Weibull distribution with the PDF

f (x) = αxα−1

βα
e−(x/β)α , x > 0 , (4.29)

whereα> 0 is the shape parameter and β> 0 is the scale
parameter. This is also a distribution that is min-stable
and is one of the extreme-value distributions to which
the sample minima from random samples may converge.
Further, each of the following properties characterize it
([4.22], Sect. 21.9).

1. X1, X2 are independent nonnegative RVs and for
some a, b ∈ (0, 1)

min(X1, X2)
d= aX1

d= bX2 . (4.30)

2. Var(Xα
k+1:n |Xk:n = x) is a constant.

3. X1, . . . , are IID and N is an independent RV with
support {2, 3, . . . , }, and N1/αX1:N

d= X1.

4. In the scale family of distributions, the distribution
for which the Fisher information in the right-
censored sample X1:n, . . . , Xk:n is the same as in
a random sample of size k for all n and k ≤ n ([4.3],
p. 226).

4.6.4 Gumbel and Other Extreme-Value
Distributions

For an arbitrary parent distribution, if Xn:n has a non-
degenerate limiting distribution, possibly after suitable
standardization, then it is known that the limiting CDF
has one of the following forms, except for a change of
location and scale:

(Fréchet) G1(x;α) = 0 x ≤ 0, α > 0 ,

= exp(−x−α) x > 0 ;
(4.31)

(Weibull) G2(x;α) = exp
[−(−x)α

]

x ≤ 0, α > 0 ,

= 1 x > 0 ; (4.32)

(Gumbel) G3(x) = exp
(−e−x)

−∞< x <∞ .

(4.33)
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The CDF G2(x;α) above is that of −X where X
has the Weibull PDF given in (4.29). These distributions
form the class of max-stable distributions characterized
by the following result ([4.31], p. 38).

Theorem 4.3
Let F be a nondegenerate CDF and an and bn be two
sequences such that (Xn:n −an)/bn

d=X1 for integers n1
and n2 such that bn2 �= 1 and log(bn1 )/ log(bn2 ) is irra-
tional. Then there are constants a, b > 0 and α > 0 such
that F(a+bx) is either (4.31) or (4.32). If bn2 = 1 and
an1/an2 is irrational, then F(a+bx) is given by (4.33).

Additional results for the Gumbel distribution are avail-
able. Here are two characterizing properties.

1. E(R′n − R′n+1|R′n+1) is a constant for some n, where
the R′n is the nth lower record value.

2. R′n − R′m and R′m are independent for some n < m.

4.6.5 Pareto

The Pareto distribution, used as a model for income
distributions and as the limit distribution of residual
lifetime, has the CDF

F(x) = 1−{
1+[(x−µ)/σ]1/γ }−α

,

x ≥ µ, σ > 0, γ > 0, α > 0 . (4.34)

Several characterizations exist for this distribution,
especially when γ = 1, in which case the resulting distri-
bution is called the Pareto distribution of the second kind
(II); one obtains the Pareto distribution of the first kind

(I) when, in addition, µ= σ . (See [4.32], Sect. 3.7. or
[4.22], Sect. 21.9.) Since − log[1− F(X)] = α log{1+
[(X−µ)/σ]1/γ } is the standard exponential, its numer-
ous characterizations provide simple counterparts for
the Pareto distribution. For example, independence of
exponential spacings is equivalent to the independence
of the ratios of order statistics from a Pareto I distribu-
tion. The Pareto II (with α > 1) is the only distribution
for which h(x)m(x) is a constant where the failure rate
h(x) and the MRL function m(x) are given by (4.5)
and (4.7), respectively. Another characterization is that,
if W is a continuous RV with support (0, 1) and is inde-
pendent of X, and {WX|WX ≥ µ} d=X, then X must be
a Pareto II RV. Here W can be seen as the proportion un-
derreported or undamaged. For some recent results on
generalized Pareto distributions, see [4.33].

4.6.6 Inverse Gaussian (IG)

This distribution has the PDF

f (x) =
√

λ

2πx3
exp

(
− λ

2ν2

(x−ν)2

x

)
, x > 0 ,

(4.35)

where the parameters are ν > 0 and λ > 0. It arises as
the waiting time to cross a certain threshold in Brownian
motion. Its characterizations often mimic those for the
normal distribution. For example, the IG distribution has
the maximum entropy subject to certain restrictions on
E(X) and E(1/X). For a random sample X1, . . . , Xn ,
let Y = (1/n)

∑n
i=1 X−1

i − X̄−1. Then the population is
IG if either X̄ and Y are independent, or the regression
E(Y |X̄) is a constant ([4.34], Chapt. 3).

4.7 Poisson Distribution and Process

The Poisson distribution, commonly known through its
PDF

Pr(X = j) = e−λ λ
j

j! , j = 0, 1, 2, . . . ; λ > 0 ,

(4.36)

appears often in the engineering literature as a model
for rare events and in queueing or reliability studies.
We write X is Poi(λ) if (4.36) holds. The earliest re-
sult seems to be due to Raikov (1938) ([4.35], Sect. 4.8)
who showed that, if X1 and X2 are independent and
X1+ X2 is Poisson, then each of them should be Pois-

son RVs. It is known that, if X1 is Poi(λ1) and X2 is
Poi(λ2) and they are independent, the conditional distri-
bution of X1 given X1+ X2 = n is Bin[n, λ1/(λ1+λ2)],
i. e., binomial with n trials and success probability
p= λ1/(λ1+λ2). This property has led to various char-
acterizations of the Poisson distribution. For example, if
the conditional distribution is binomial, then X1 and X2
are both Poisson RVs.

One particularly interesting set up that identifies the
Poisson distribution is the damage model due to Rao.
The associated characterization result due to Rao and
Rubin is the following ([4.7], p. 164):
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Theorem 4.4
Let X and Y be nonnegative integer-valued RVs such
that Pr{X = 0}< 1 and, given X = n, Y is Bin(n, p) for
each n ≥ 0 and a fixed p ∈ (0, 1). Then the Rao–Rubin
condition, given by

Pr(Y = j) = Pr(Y = j|Y = X), j = 0, 1, . . . ,
(4.37)

holds iff X is Poisson.

The condition (4.37) is equivalent to the condition

Pr(Y = j|Y = X) = Pr(Y = j|Y < X) (4.38)

which can be interpreted as follows. Suppose X is the
number of original counts and Y is the number actu-
ally available, the remaining being lost due to damage
according to the binomial model. Then if the probabil-
ity distribution of the actual counts remains the same
whether damage has taken place or not, the number of
original counts must be Poisson. Incidentally, the num-
ber of observations that survived is also Poisson. The
above damage model can be seen as binomial splitting
or thinning and a similar notion is that of binomial ex-
panding. It also leads to a characterization of the Poisson
distribution.

A weaker version of (4.37) can be used to character-
ize the Poisson distribution by restricting the family F
under consideration. Let X belong to the family of the
power-series distribution, i. e., it has the PDF

Pr(X = j) = a jθ
j

A(θ)
, j = 0, 1, . . . (4.39)

Suppose that given X = n, Y has support 0, . . . , n, and
has mean n p and variance n p(1− p), where p does not
depend on θ. Then E(Y |Y = X) = E(Y ) and Var(Y |Y =
X) = Var(Y ) iff X is Poisson.

Poisson characterizations based on the properties of
the sample mean X̄ and variance S2 from a random
sample are known. In the power-series family (4.39),
if E(S2|X̄ > 0) = 1, then the population is necessar-
ily Poisson. When X is assumed to be nonnegative, if
E(S2|X̄) = X̄, the parent is Poisson also. See [4.35],
Sect. 4.8, for relevant references. Characterizations

based on the discrete analogue of the Skitovich–Darmois
theorem (Theorem 4.2) are available [4.36]. It is also
known that, in a wide class of distributions on the set of
integers, the Poisson distribution is characterized by the
equality sign in a discrete version of the Stam inequal-
ity for the Fisher information; the continuous version
yields a normal characterization [4.37]. Another normal-
like result is the Poisson characterization by the identity
E(X)E[g(X+1)] = E[Xg(X)] assumed to hold for every
bounded function g(.) on the integers [4.38].

Poisson Process
A renewal process is a counting process {N(t), t ≥ 0}
where the inter-arrival times of events are IID with
CDF F. The (homogeneous) Poisson process is char-
acterized by the fact that F is exponential. Several
characterizations of a Poisson process in the family of
renewal processes do exist. For example, if a renewal
process is obtained by the superposition of two inde-
pendent renewal processes, then the processes must be
Poissonian. Several are tied to the exponential character-
izations from random samples. Other characterizations
of interest are based on the properties of the current age
and residual lifetime distributions.

Let Xi represent the IID inter-arrival times and
Sn = X1+· · ·+ Xn , so that N(t) = sup(m : Sm ≤ t).
Then A(t)= t− SN(t) represents the current age or back-
ward recurrence time at t and W(t) = SN(t)+1− t is
the residual lifetime or forward recurrence time at t,
t ≥ 0. A good summary of the available results is
provided in [4.39], p. 674–684. Chapter 4 of [4.31] con-
tains an early account of various characterizations of
the Poisson process that include thinned renewal pro-
cesses and geometric compounding. We state below
a few simple characterizing properties of the Poisson
process:

1. Either E[W(t)] or Var[W(t)] is a finite constant for
all t > 0.

2. F is continuous with F−1(0) = 0, and for some
fixed t, A(t) and W(t) are independent.

3. F is continuous and E[A(t)|N(t) = n] =
E[X1|N(t) = n] for all t > 0 and all n ≥ 1.

4. F is continuous and E[A(t)] = E[min(X1, t)] for all
t > 0.
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4.8 Other Discrete Distributions

4.8.1 Geometric

Numerous versions of the LMP of the geometric dis-
tribution have led to several characterizations of the
geometric distribution with PDF

Pr(X = j) = (1− p) j p, j = 0, 1, . . . (4.40)

Here the LMP means Pr(X > x + j|X ≥ x) =
Pr(X > j), j, x = 0, 1, . . . When X has the above PDF,
the following properties hold:

1. E(X− x|X ≥ x) = E(X), x = 0, 1, . . . .
2. |X1− X2| d=X .

3. Pr(X1:n ≥ 1) = Pr(X1 ≥ n), n ≥ 1.
4. X j+1:n − X j:n

d=X1:n− j , 1 ≤ j < n.
5. (Xk:n − X j:n|X j+1:n − X j:n > 0)

d=1 + Xk− j:n− j ,

1 ≤ j < k ≤ n.
6. X1:n and X j:n − X1:n are independent.

Each of these is shown to be a characteristic property
of the geometric or slightly modified versions of that
distribution, under mild conditions [4.40].

In terms of the upper record values, the following
properties hold for the geometric parent and characterize
it ([4.4], Sect. 4.6).

1. R1, R2− R1, R3− R2, . . . are independent.
2. E(Rn+1 − Rn | Rn), E(Rn+2 − Rn+1 | Rn), and

E[(R2− R1)2 | R1] are constants.
3. Rn+1− Rn

d= R1, n ≥ 1.

4.8.2 Binomial and Negative Binomial

The damage model, discussed in Theorem 4.4, also pro-
duces a characterization of the binomial distribution in
that, if (4.37) holds and X is Poisson, then the damage
process is binomial. Another characterization of the bi-
nomial distribution assumes that the RVs X and Y are
independent, and that the conditional distribution of X
given X+Y is hypergeometric [4.41]. When the condi-
tional distribution is negative hypergeometric, a similar
result for the negative binomial distribution is obtained.

Remarks. Characterizations of other discrete distribu-
tions are limited. For results on hypergeometric and
logarithmic distributions, see [4.35]. Characterizations
of discrete distributions based on order statistics are dis-
cussed in [4.40]. See [4.42] for characterizations based
on weighted distributions when F is the power-series
family in (4.39).

4.9 Multivariate Distributions and Conditional Specification

Characterization results are less common for mul-
tivariate distributions. Notable exceptions are the
multivariate normal and the Marshall–Olkin multivari-
ate exponential distribution. First we discuss another
dimension to multivariate characterizations, namely the
specification of the properties of the conditional dis-
tribution(s). For example, can one identify the joint
PDF f (x, y) using the properties of the conditional
PDFs f (x|y) and f (y|x)? This has been an active
area of research in recent years. See [4.43] for an ex-
cellent account of the progress. We present one such
result.

Theorem 4.5
Let f (x, y) be a bivariate PDF where conditional PDFs
belong to natural parameter exponential families with
full rank given by

f (x|y) = r1(x)β1[θ1(y)] exp
[
θ1(y)′q1(x)

]
(4.41)

and

f (y|x) = r1(y)β2[θ2(x)] exp
[
θ2(x)′q2(y)

]
(4.42)

where θ1(y) and q1(x) are k1 × 1 vectors, and θ2(x) and
q1(y) are k2 × 1 vectors, and the components of q1 and
q2 are linearly independent. Then the joint PDF is of the
form

f (x, y) = r1(x)r2(y) exp[A(x, y)] (4.43)

where A(x, y) = [1, q1(x)′]M[1, q2(y)′]′ for a suitable
matrix M = (mij ), whose elements are chosen so that
f (x, y) integrates to 1.

When both the conditional distributions are normal, this
result implies that

f (x, y)∝ exp[(1, x, x2)M(1, y, y2)′] (4.44)

and the classical bivariate normal corresponds to the
condition m23 = m32 = m33 = 0 [4.44].
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Instead of the conditional PDF, the conditional dis-
tribution may be specified using regression functions,
say E(Y |X = x). Then the joint distribution can be de-
termined in some cases. For example, suppose X given
Y = y is N(αy, 1), i. e., normal with mean αy and unit
variance, and E(Y |X = x) = βx. Then 0 < αβ < 1 and
(X,Y ) is bivariate normal [4.44].

The conditional specification could be in terms of
the conditional SF Pr(Y > y|X > x), or in the form of
the marginal distribution of X and the conditional distri-
bution of X given Y = y. Sometimes these together can
also identify the joint distribution.

4.9.1 Bivariate and Multivariate
Exponential Distributions

Marshall and Olkin [4.45] introduced a bivariate ex-
ponential (BVE) distribution to model the component
lifetimes in the context of a shock model. Its (bivari-
ate) SF, with parameters λ1 > 0, λ2 > 0, and λ12 ≥ 0, is
given by

Pr(X > x,Y > y) = e−λ1x−λ2 y−λ12 max(x,y),

x, y > 0 . (4.45)

Here X is exp(λ1+λ12) and Y is exp(λ2+λ12). The joint
distribution is characterized by the following conditions:
(a) X and Y are marginally exponential. (b) min(X,Y )
is exponential, and (c) min(X,Y ) and |X−Y | are inde-
pendent.

The LMP in (4.18) that characterized the univariate
exponential can be extended as

Pr(X > x+ t1,Y > y+ t2|X > x,Y > y)

= Pr(X > t1,Y > t2) . (4.46)

If (4.46) is assumed to hold for all x, y, t1, t2 ≥ 0, then X
and Y are necessarily independent exponential RVs.
The SF (4.45) would satisfy (4.46) for all x, y ≥ 0 and
t1 = t2 = t ≥ 0. This condition, often referred to as bi-
variate LMP, is equivalent to assuming that both (b) and
(c) above hold. While the Marshall–Olkin BVE distri-
bution has exponential marginals and bivariate LMP, it
is not absolutely continuous. If one imposes the LMP
and absolute continuity, the marginal distributions will
no longer be exponential [4.46].

There are other multivariate distributions that are
characterized by the multivariate versions of the failure-
rate function (see [4.47], p. 403–407).

4.9.2 Multivariate Normal

An early characterization of the classical multivariate
normal (MVN) random vector, known as Cramér–
Wold Theorem, is that every linear combination of
its components is univariate normal. Most of the
characterizations of the univariate normal distribution
discussed in Sect. 4.5 easily generalize to the MVN
distribution. For example, the independence of non-
singular transforms of independent random vectors
[see (4.25) for the univariate version], independence
of the sample mean vector and sample covariance
matrix, maximum entropy with a given mean vector
and covariance matrix, are all characteristic properties
of the MVN distribution. There are, of course, re-
sults based on conditional specifications. We mention
two.

For an m-dimensional RV X, let X(i, j) be the
vector X with coordinates i and j deleted. If, for
each i, j the conditional distribution of (Xi , X j ) given
X(i, j) = x(i, j) is BVN for each x(i, j), then X is MVN
([4.43], p. 188).

If X1, · · · , Xm are jointly distributed RVs such
that (X1, · · · , Xm−1)

d=(X2, · · · , Xm), and Xm given
{X1 = x1, X2 = x2, · · · , Xm−1 = xm−1} is N (α+∑m−1

j=1 β j x j , σ
2), then (X1, · · · , Xm) are jointly m-

variate normal ([4.47], p. 157).
Excellent summaries of characterizations of the

bivariate and multivariate normal distributions are avail-
able, respectively, in Sect. 46.5 and Sect. 45.7 of [4.47]
(see also, the review [4.48]).

4.9.3 Other Distributions

Characterization results for other multivariate distri-
butions are not common. A few characterizations
of the multinomial distribution are available ([4.49],
Sect. 35.7), and these are natural extensions of the
binomial characterizations. One result is that, if the
sum of two independent vectors is multinomial, then
each is multinomial. There are also a few charac-
terizations of the Dirichlet distribution, a multivariate
extension of the beta distribution over (0, 1) ([4.47],
Sect. 49.5). It has the characteristic property of neu-
trality, which can be described for m = 2 components
as follows. For two continuous RVs X and Y such
that X,Y ≥ 0 and X+Y ≤ 1, neutrality means X and
Y/(1− X) are independent, and Y and X/(1−Y ) are
independent.
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The multivariate Pareto distribution due to Mardia,
having the multivariate SF

Pr(X1 > x1, . . . , Xm > xm) =
[

1+
m∑

i=1

(
xi

σi

)]−α

,

x1, . . . , xm > 0 , (4.47)

accepts characterizations that are based on condi-
tional specifications. Marginally, the Xi here are Pareto
II RVs.

A few papers that characterize bivariate distributions
with geometric marginals do exist. Some are related to
the Marshall–Olkin BVE.

4.10 Stability of Characterizations

Consider the LMP in (4.18) that characterizes the ex-
ponential distribution. Now suppose the LMP holds
approximately in the sense

sup
x≥0,y≥0

∣∣Pr(X > x+ y|X > x)−Pr(X > y)
∣∣≤ ε .

(4.48)

The question of interest is how close the parent CDF F
is to an exponential CDF. It is known ([4.21], p. 7) that,
when X is nondegenerate and F−1(0)= 0, if (4.48) holds
then E(X) is finite and, with E(X) = 1/λ,

sup
x≥0

∣∣Pr(X > x)− exp(−λx)
∣∣≤ 2ε . (4.49)

This result provides an idea about the stability of the
LMP of the exponential distribution. There are many
such results—mostly for the exponential and normal
distributions. Such results involve appropriate choices
of metrics for measuring the distance between: (a) the
characterizing condition and the associated perturbation,
and (b) the CDF being characterized and the CDF asso-
ciated with the perturbed condition. We will mention
below a few simple stability theorems. It is helpful
to introduce one popular metric measuring the dis-
tance between two distributions with associated RVs X
and Y :

ρ(X,Y ) ≡ sup
−∞<x<∞

|Pr(X ≤ x)−Pr(Y ≤ x)| .
(4.50)

Note that (4.49) basically says that ρ(X,Y ) ≤ 2ε,
where Y is an exp(λ) RV.

For the exponential parent, the constancy of
E[(Xk+1:n − Xk:n)|Xk:n] is a characterizing property.

The associated stability result is the following [4.22,
p. 545], [4.50]:

If F has support (0,∞) and is strictly increasing in
its domain, and γ > 0 is such that

∣∣E
[
(Xk+1:n − Xk:n)

∣∣Xk:n = x
]−γ

∣∣≤ ε ,

for almost all x ≥ 0 , (4.51)

then, there exist positive constants λ1, λ2 and c
that depend only on γ and n− k such that
ρ(X,Y ) ≤ cε1/(n−k) exp(−λ2x), where Y is exp(λ1).

For the normal distribution, we state stability results
for two classical characterizations.

1. Pólya’s characterization [4.5, p. 298]. Let X1
and X2 be IID with zero mean, unit variance
and E(|X1|3) ≤ M <∞. Let Y = (X1+ X2)/

√
2. If

ρ(X1,Y ) ≤ ε, then ρ(X1, Z) ≤ cε1/3, where c de-
pends only on M and Z is standard normal. (See the
recent work [4.51] for another metric of compari-
son.)

2. Independence of X̄ and S2 [4.52]. Suppose that for
all x, y,

∣∣Pr(X̄ ≤ x, S2 ≤ y)−Pr(X̄ ≤ x) Pr(S2 ≤ y)
∣∣

≤ ε . (4.52)

Then there exists a (possibly degenerate) N(µ, σ2)
RV Y such that ρ(X,Y ) ≤ c[log(1/ε)]−1/2, where c
depends only on n, and ρ is given by (4.50).

Many such results are available in the several
monographs on stability of characterizations edited
by Kalashnikov and Zolotarov and others (see e.g.,
[4.52, 53]). These have come from the periodic con-
ferences held in Eastern Europe.

4.11 Applications

A characterization can be of use in the construction of
goodness-of-fit tests and in the examination of the con-
sequences of the modeling assumptions. It can be helpful

in some simulation studies. A full characterization states
that a condition C on the sample data is necessary and
sufficient for the condition F ∈ F0 to hold. The neces-
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sity part can be used for the simulation study of the
properties of the sample statistics involved in the condi-
tion C. For example, if one is interested in the properties
of a function of the random sample mean X̄ and vari-
ance S2 from a standard normal population, one can
start with two independent statistics, one normal and
the other a χ2. We can simulate these statistics directly,
and study the empirical properties of the function of in-
terest. The characterization of the exponential based on
the independence and exponentially distributed nature of
spacings of order statistics, can be used to simulate all
or a selected set of exponential order statistics without
any sorting.

The sufficiency part can be used for checking
implications of modeling assumptions or of their
compatibility. Again consider the situation where the re-
searcher is willing to accept, based on past data, say, that
X̄ and variance S2 are independent. This is equivalent to
assuming that the sample is from a normal population.
As another example, consider the early characterization
result, proved by Cramér in 1937, which states that, if X
and Y are independent and the sum is assumed to be
normal, then each of them must be normal (see [4.24],
p. 53). Thus, if a researcher is willing to assume the in-
dependence of these RVs and that the sum is normal,
this is the same as assuming that both X and Y are
individually normal and are independent. This implica-
tion can be gainfully employed to infer that aX+bY is
N(aµX +bµY , a2σ2

X +b2σ2
Y ).

Characterizing properties, when used as necessary
and sufficient conditions, naturally lead to both in-
formal (graphical) and formal goodness-of-fit tests.
The various plots such as the quantile–quantile (Q–Q)

plots, hazard function plots, or the MRL plots are all
based on the characterizing properties of these func-
tions. For example, in Q–Q plots, the sample quantile
X j:n is plotted against the corresponding hypothesized
population quantile F−1

0 (p j ), where F0 is the stan-
dardized form of F, and p j is sometimes chosen as
( j− (1/2))/n. (See [4.3], p. 270 for other choices for
p j .) If a linear fit is unreasonable, then one may infer
that the assumption that F is the parent CDF is unten-
able. Probability plots (see [4.54], Chapt. 3), and the
hazard-function plots ([4.54], Chapt. 4), popular in reli-
ability studies, also provide similar informal checks of
the fit of the assumed distribution. MRL plots, where
1
k

∑n
j=n−k+1(x j:n − xn−k:n) is plotted against the xn−k:n

(see, [4.55], p. 296), are used to determine the ap-
propriate domain of attraction for the extreme order
statistics.

In theory, a formal goodness-of-fit test can be con-
structed from any characterization. For example, the
independence of spacings of order statistics of a ran-
dom sample from a continuous distribution implies the
CDF is exponential, and thus can be used to construct
a goodness-of-fit test even with a (type II) censored
sample. Such a test does have good power properties.
Another example is the test based on the maximum-
entropy property of the normal distribution [4.56]. See
[4.57–59] for some goodness-of-fit tests inspired by
characterizations. A nice overview is provided in [4.60].
However, not all characterizations lead to powerful tests.
Also, creation of goodness-of-fit tests that exploit the
concerned characterizing property to the full extent may
not be easy. Perhaps this explains the sparsity of such
applications of characterizations.

4.12 General Resources

The literature on characterization is extensive. Over
1000 papers have appeared to date; however, sev-
eral review articles, monographs (e.g., [4.5, 7, 31, 43])
and encyclopedic books on distributions by Johnson,
Kotz, and their coauthors ([4.22, 30, 35, 47, 49]) have
served as excellent filters. Other sources include the vol-
ume [4.61], which contains papers on characterizations
presented at the Calgary conference in 1974, and the
monograph [4.62], which treats characterization (identi-

fication) in a broader context. For results based on order
statistics see [4.3, Sect. 6.7]; see also [4.63].

Here, we have given an informal introduction to
characterizations using a small fraction of the available
results. For economy, we have cited the above general
and other (distribution-specific) secondary resources in
this survey. To get a full appreciation of this active area
of research, one should consult many of the primary as
well as secondary sources.
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(Birkhäuser, Boston 2002) pp. 125–142

4.61 G. P. Patil, S. Kotz, J. K. Ord (eds.): A Modern Course
on Statistical Distributions in Scientific Work. In:
Characterizations and Applications, Vol. 3 (Reidel,
Dordrecht-Boston 1975)

4.62 B. L. S. Prakasa Rao: Identifiability in Stochastic
Models – Characterization of Probability Distribu-
tions (Academic, Boston 1992)

4.63 C. R. Rao, D. N. Shanbhag: Recent approaches to
characterizations based on order statistics and
record values. In: Order Statistics: Theory and
Methods, Handbook of Statistics, Vol. 16, ed. by
N. Balakrishnan, C. R. Rao (North-Holland, Amster-
dam 1998) pp. 231–256

Part
A

4



97

Two-Dimensio5. Two-Dimensional Failure Modeling

For many products (for example, automobiles),
failures depend on age and usage and, in this case,
failures are random points in a two-dimensional
plane with the two axes representing age and
usage. In contrast to the one-dimensional case
(where failures are random points along the
time axis) the modeling of two-dimensional
failures has received very little attention. In
this chapter we discuss various issues (such
as modeling process, parameter estimation,
model analysis) for the two-dimensional case
and compare it with the one-dimensional
case.
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All products are unreliable in the sense that they degrade
and fail with age and/or usage, and ultimately fail. Reli-
ability of a product conveys the concept of dependability
and the absence of failures. Reliability theory deals with
various aspects of product reliability and encompasses
various reliability issues. These include the following:

1. Reliability science to understand the degradation
leading to failures.

2. Reliability engineering to design and manufacture
reliable products.

3. Reliability management to manage the activities dur-
ing the design and manufacture of products and the
operation of unreliable products.

4. Reliability modeling to build models to obtain so-
lutions to a variety of reliability-related problems
in predicting, estimating, and optimizing the per-
formance of unreliable products, the impact of
unreliability and actions to mitigate the impact.

The modeling of failures is an important element of reli-
ability modeling. In one-dimensional failure modeling,
failures are random points along a one-dimensional axis
representing age or usage. For many products (for ex-
ample, automobiles), failures depend on age and usage
and, in this case, failures are random points in a two-
dimensional plane with the two axes representing age
and usage. Models play an important role in decision-
making. Many different types of models are used and
these can be found in [5.1–4]. One-dimensional mod-
eling has received considerable attention and so there
is a vast literature covering this area. In contrast, two-
dimensional failure modeling has received relatively
little attention. In this chapter we discuss various issues
relating to two-dimensional failure modeling.

The outline of the chapter is as follows. In Sect. 5.1
we discuss various issues relating to the modeling of
failures. Section 5.2 deals with the black-box approach
(or empirical modeling) where the modeling is based
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on failure and operational data. One-dimensional mod-
eling based on the black-box approach is reviewed in
Sect. 5.3, where we discuss the different issues and il-
lustrate through an example involving a real case. This
sets the background for the two-dimensional modeling
discussed in Sect. 5.4. Two different approaches have

been proposed for two-dimensional failure modeling.
We discuss these two approaches and indicate topics for
future research. In Sect. 5.5 we discuss a new approach
and this is illustrated using the case discussed earlier.
Finally, we conclude with some comments and remarks
in Sect. 5.6.

5.1 Modeling Failures

In this section we briefly discuss various issues of im-
portance in the modeling of failures.

5.1.1 Product Failures

Products can vary from simple (such as an electric ket-
tle) to complex (such as an aeroplane). A product can be
viewed as a system consisting of several parts and can be
decomposed into a hierarchy of levels with the system at
the top level and components at the lowest level and sev-
eral levels (such as sub-system, assembly, sub-assembly
and so on) in between. The failure of a product is due to
the failure of one or more of its components.

The occurrence of failure depends on several fac-
tors. These include decisions made during the design
and manufacture of the product, usage intensity and
operating environment, and the maintenance actions
(corrective and preventive) carried out during the op-
erating life.

The modeling of failures can be done at any level
ranging from system to component level.

5.1.2 Approaches to Modeling

The approach to modeling depends on the kind of infor-
mation available and the goal of the modeling. There are
two basic approaches to modeling failures, as indicated
below.

1. Black-box approach: here the modeling is based
solely on failure and censored data for similar items.
This approach is used when there is very little under-
standing of the different mechanisms that lead to
product failure or when the unit is too complex. This
approach is also known as data-based or empirical
modeling.

2. White-box approach: here the failure modeling at
the component level is based on the different mech-
anisms that lead to failure. At the system level, the
failure is done in terms of the failures of the dif-
ferent components. This approach is also known as
physics-based modeling.

It should be noted that most statistical modeling in-
corporates features from both approaches and that the
collaborative nature of such modeling is critical. The
engineer or scientist needs to bring their expertise to de-
velop the appropriate models in the white-box approach,
whereas the statistician needs to be able to determine
the appropriate data analysis for the given data set in its
context.

5.1.3 First and Subsequent Failures

One needs to differentiate between the first failure and
subsequent failures. The subsequent failures depend on
the type of actions used to rectify the failures. In the
case of a nonrepairable item (component, system or
something in between), the failed item needs to be
replaced by either a new or used item to make the
product functional. In the case of a repairable item,
the product can be made operational through the repair
of the failed item. Three types of repair are indicated
below:

1. Minimal repair, which restores the item to the con-
dition just before failure;

2. Perfect repair (which makes the item as good as
new); and

3. Imperfect repair that results in the item being bet-
ter than it was prior to failure but not as good as
new.

5.2 Black-Box Modeling Process

In the black-box approach to modeling failures, the data
are the starting point that forms the basis for the model

building. In this section we briefly discuss the different
data types and then outline the modeling process.
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5.2.1 Data Types

The data can be either item failure times or counts of
item failures over an interval. In the former case, the
data are continuous-valued and in the latter case they
are integer-valued.

Lifetime data can be complete, censored or trun-
cated. In the case of complete data, the data relate
to the age at failure. With censored data, the life-
times are only known to exceed some value(s). This
could result from the item not having failed dur-
ing the period of observation and hence still being
operational for a certain length of time afterwards
(right-censored data). When the data are the failures
of an item over different disjoint time intervals we

have grouped data. When failures of different com-
ponents are pooled together, we have pooled data. In
both cases, the data can be considered as categorical
or, if they are in the form of counts, they are discrete-
valued.

5.2.2 Modeling Process

The modeling process involves the following four steps.

Step 1: Exploratory analysis of data
Step 2: Model selection
Step 3: Parameter estimation
Step 4: Model validation

These are discussed further in Sects. 5.3–5.5.

5.3 One-Dimensional Black-Box Failure Modeling

In this section we give a brief review of one-dimensional
failure modeling. The item under consideration can be
the product or some component of the product.

5.3.1 Modeling First Failure

Let T denote the time to first failure. It is modeled by
a failure distribution function, F(t ; θ), which character-
izes the probability P{T ≤ t} and is defined as

F(t ; θ) = P(T ≤ t) , t ≥ 0 (5.1)

θ denotes the parameters (or parameter set) of the distri-
bution function. If F(t ; θ) is a differentiable function,
then the failure density function, f (t ; θ), is given by

f (t) = dF(t; θ)/dt . (5.2)

The survivor function, F̄(t), is given by

F̄(t ; θ) = 1− F(t ; θ) = P(T > t) . (5.3)

The hazard function, h(t ; θ), is given by

h(t ; θ) = f (t ; θ)/F̄(t ; θ) . (5.4)

The cumulative hazard function, H(t ; θ), is given by

H(t ; θ)=
t∫

0

h(u ; θ)du =− log[1− F(t ; θ)] .

(5.5)

Many different distributions have been used for mod-
eling lifetimes. The shapes of the density and hazard

functions depend on the form of the distribution and the
parameter values.

Note: in the future we will omit θ for notational ease
so that we have h(t) instead of h(t ; θ) and similarly for
the other functions.

A commonly used model is the two-parameter
Weibull distribution, which is given by

F(t ; θ)= 1− exp[−(t/α)]β , t ≥ 0 (5.6)

with θ = {α, β}. Here, α is the scale parameter and β is
the shape parameter.

The Weibull models are a family of distributions
derived from the two-parameter Weibull distribution. Lai
et al. [5.5] discuss a few of these models and, for more
details, see Murthy et al. [5.6]. Many other distributions
have been used in modeling time to failure and these can
be found in most books on reliability. See, for example,
Blischke and Murthy [5.2], Meeker and Escobar [5.4],
Lawless [5.3], Nelson [5.7] and Kalbfleisch and Prentice
[5.8]. Johnson and Kotz [5.9, 10] give more details of
other distributions that can be used for failure modeling.

5.3.2 Modeling Subsequent Failures

Minimal Repair
In minimal repair, the hazard function after repair is the
same as that just before failure. In general, the repair
time is small relative to the mean time between failures
so that it can be ignored and the repairs treated as instan-
taneous. In this case, failures over time occur according
to a nonhomogeneous Poisson point process with inten-
sity function λ(t) = h(t), the hazard function. Let N(t)
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denote the number of failures over the interval [0, t).
Define

Λ(t) =
t∫

o

λ(u)du (5.7)

Then we have the following results:

P(N(t)= n) = e−Λ(t)[Λ(t)]n
n! , n = 0 , 1 , 2 , . . .

(5.8)

and

E[N(t)] =Λ(t) (5.9)

For more details, see Nakagawa and Kowada [5.11] and
Murthy [5.12].

Perfect Repair
This is identical to replacement by a new item. If the fail-
ures are independent, then the times between failures
are independent, identically distributed random vari-
ables from F(t) and the number of failures over [0, t) is
a renewal process with

P{N(t)= n} = F(n)(t)− F(n+1)(t) , (5.10)

where F(n)(t) is the n-fold convolution of F(t) with
itself, and

E[N(t)] = M(t) , (5.11)

where M(t) is the renewal function associated with
F(x ; θ) and is given by

M(t)= F(t)+
t∫

0

M(t−u)dF(u) . (5.12)

For more on renewal processes, see Cox [5.13], Cox and
Isham [5.14]) and Ross [5.15].

Imperfect Repair
Many different imperfect repair models have been pro-
posed. See Pham and Wang [5.16] for a review of these
models. In these models, the intensity function λ(t) is
a function of �t , the history of failures over [0, t). Two
models that have received considerable attention are:
(i) reduction in failure intensity, and (ii) virtual age.
See Doyen and Gaudoin [5.17] for more on these two
models.

5.3.3 Exploratory Data Analysis

The first step in constructing a model is to explore the
data through plots of the data. By so doing, information

can be extracted to assist in model selection. The plots
can be either nonparametric or parametric and the plot-
ting is different for perfect repair and imperfect repair
situations. The data comprises both the failure times and
the censored times.

Perfect Repair
Plot of Hazard Function (Nonparametric). The proced-
ure (for complete or censored data) is as follows:

Divide the time axis into cells with cell i defined
by [ti , ti+1), i ≥ 0, t0 = 0 and ti = iδ, where δ is the cell
width. Define the following quantities:

N f
i : Number of items with failure times in cell

i , i ≥ 0;
Nc

i : Number of items with censoring times in cell
i , i ≥ 0;

N f|ri
i : Number of failures in cells i and beyond(

=
∞∑
j=i

N f
j

)
.

Similarly define Nc|ri
i for censored data.

The estimator of the hazard function is given by

ĥi = N f
i

N f|ri
i + Nc|ri

i

, i ≥ 0 (5.13)

Plot of Density Function (Nonparametric). The sim-
plest form of nonparametric density estimator is the
histogram. Assuming the data is complete, the procedure
is to calculate the relative frequencies for each cell,

f̂i = N f
i

∞∑
j=0

N f
j

, (5.14)

and then plot these against the cell midpoints. As histo-
grams can be very unreliable for exploring the shape
of the data, especially if the data set is not large, it
is desirable to use more sophisticated density-function
estimators (Silverman [5.18]).

Weibull Probability Plots (Parametric). The Weibull
probability plot (WPP) provides a systematic procedure
to determine whether one of the Weibull-based models
is suitable for modeling a given data set or not, and is
more reliable than considering just a simple histogram.
It is based on the Weibull transformations

y = ln{− ln[1− F(t)]} and x = ln(t) . (5.15)

The plot of y versus x gives a straight line if F(t) is
a two-parameter Weibull distribution.
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Thus, if F(t) is estimated for (complete) data from
a Weibull distribution and the equivalent transformations
and plot obtained, then a rough linear relationship should
be evident. To estimate F(t), we need an empirical
estimate of F(ti ) for each failure time ti .

Assuming the ti ’s are ordered, so that t1 ≤ t2 ≤ . . .

≤ tn , a simple choice (in the case of complete data) is to
take the empirical distribution function

F̂ (ti)= i/(n+1) . (5.16)

We then plot ŷi = ln
{− ln

[
1− F̂(ti )

]}
versus xi = ln(ti )

and assess visually whether a straight line could describe
the points.

We illustrate by considering real data. The data refers
to failure times and usage (defined through distance trav-
eled between failures) for a component of an automobile
engine over the warranty period given by three years and
60 000 miles. Here we only look at the failure times in
the data set. Figure 5.1 shows a Weibull probability plot
of the inter-failure times of a component that we shall
call component C-1. This clearly shows a curved rela-
tionship and so a simple Weibull model would not be
appropriate.

Note: the plotting of the data depends on the type of
data. So, for example, the presence of censored observa-
tions would necessitate a change in the empirical failure
estimates (see Nelson [5.7] for further details).

Minimal Repair
Plot of Cumulative Intensity Function (Nonpara-
metric). The procedure is as follows: With δ and the
cells defined as before, define the following:

M : Number of items at the start;
N f

i : Total number of failures over [0 , iδ);

1
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Fig. 5.1 WPP of days to failure of component C-1

Mc
i : Number of items censored in cell i;

λi : Cumulative intensity function till cell i.

The estimator of the cumulative intensity is given by

λ̂0 = N f
0

M
and

λ̂i =
N f

i −
i−1∑
j=0

Mc
j λ̂ j

[
M−

i−1∑
j=0

Mc
j

] , i ≥ 1 . (5.17)

Graphical Plot (Parametric). When the failure distribu-
tion is a two-parameter Weibull distribution, from (5.9)
we see that a plot of y = ln{E[N(t)]/t} versus x = ln(t)
is a straight line. Duane [5.19] proposed plotting
y = ln[N(t)/t] versus x = ln(t) to determine if a Weibull
distribution is a suitable model or not to model a given
data set. For a critical discussion of this approach, see
Rigdon and Basu [5.20].

5.3.4 Model Selection

We saw in Fig. 5.1 that a simple Weibull model was
clearly not adequate to model the failures of compo-
nent C-1. However, there are many extensions of the
Weibull model that can fit a variety of shapes. Murthy
et al. [5.6] give a taxonomic guide to such models and
give steps for model selection. This particular curve is
suited to modeling with a mixture of two Weibull com-
ponents. Figure 5.2 shows the WPP plot of Fig. 5.1 with
the transformed probability curve for this mixture. (De-
tails about estimating this curve are given in Sect. 5.3.5.)
This seems to fit the pattern quite well, although it misses
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Fig. 5.2 WPP of component C-1 failures with Weibull
mixture
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the shape of the curve present in the few small failure
times.

Figure 5.3 gives the empirical plot of the density
function and the density function based on the mix-
ture model. As can be seen, the model matches the
data reasonably well. The plots illustrate the way in
which the second Weibull component is being used. The
nonparametric density estimate suggests that there is
a small failure mode centered around 200 d. The second
Weibull component, with a weight of 24.2%, captures
these early failure times while the dominant compo-
nent, with a weight of 75.8%, captures the bulk of the
failures.

5.3.5 Parameter Estimation

The model parameters can be estimated either based
on the graphical plots or by using statistical methods.
Many different methods (method of moments, method
of maximum likelihood, least squares, Bayesian and so
on) have been proposed. The graphical methods yield
crude estimates whereas the statistical methods are more
refined and can be used to obtain confidence limits for
the estimates. Most books on statistical reliability (some
of which are mentioned in Sect. 5.3.1) deal with this
topic in detail.

The parameters for the Weibull mixture model in
Fig. 5.3 were estimated by minimizing the squared er-
ror between the points and the curve on the Weibull
probability plot. The estimates are

p̂ = 0.242 , β̂1 = 1.07 , β̂2 = 4.32 ,

η̂1 = 381 and η̂2 = 839 .

Similar estimates can be obtained without computer soft-
ware using the graphical methods given by Jiang and
Murthy [5.21].
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Fig. 5.3 Empirical density (left) and Weibull mixture density (right) for component C-1

Alternatively, we can use the standard statistical ap-
proach of maximum-likelihood estimation to get the
parameter estimates. We find

p̂ =0.303 , β̂1 = 1.46 , β̂2 = 5.38 ,

η̂1 =383 and η̂2 = 870 .

These values are less affected by the small failures times.

5.3.6 Model Validation

Validation of statistical models is highly dependent on
the nature of the models being used. In many situations,
it can simply involve an investigation of the shape of
the data through plots such as quantile–quantile plots
(for example, normal probability plots and WPP) and
through tests for goodness of fit (general tests, such
as the χ2 goodness-of-fit test, or specific tests, such
as the Anderson–Darling test of normality). Many in-
troductory statistics texts cover these plots and tests
(see, for example, Vardeman [5.22] and D’Agostino
and Stephen [5.23]). In more complex situations, these
approaches need to be used on residuals obtained af-
ter fitting a model involving explanatory variables. An
alternative approach, which can be taken when the
data set is large, is to take a random sample from
the data set, fit the model(s) to this sub-sample and
then evaluate (through plots and tests) how well the
model fits the sub-sample consisting of the remaining
data.

To exemplify model validation, 80% of the data was
randomly taken and the mixed Weibull model above
fitted. The fitted model was then compared using a WPP
to the remaining 20% of the data. The upper top of
Fig. 5.4 shows a Weibull plot of 80% of the failure data
for component C-1, together with the Weibull mixture
fit to the data. The remaining 20% of failure data are
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plotted in the lower plot. The Weibull mixture curve
with the same parameters as in the upper plot has been
added here. Apart from the one short failure time, this

curve seems to fit the test data quite well. This supports
the use of the Weibull mixture for modeling the failures
of this component.

5.4 Two-Dimensional Black-Box Failure Modeling

When failure depends on age and usage, one needs
a two-dimensional failure model. Two different ap-
proaches (one-dimensional and two-dimensional) have
been proposed and we discuss both of these in this
section.

5.4.1 One-Dimensional Approach

Here, the two-dimensional problem is effectively re-
duced to a one-dimensional problem by treating usage
as a random function of age.

Modeling First Failure
Let X(t) denote the usage of the item at age t. In the
one-dimensional approach, X(t) is modeled as a linear

1

0

–1

–2

–3

–4

–5

–6
2 3 4 5 6

1

0

–1

–2

–3

–4

2 3 4 5 61

y

x
y

x

Fig. 5.4 Weibull plots of fitting data (top) and test data
(bottom) for component C-1

function of t and so given by

X(t) = Γt (5.18)

where Γ , 0 ≤ Γ <∞, represents the usage rate and
is a nonnegative random variable with a distribution
function G(r) and density function g(r).

The hazard function, conditional on Γ = r is
given by h(t|r). Various forms of h(t|r) have been
proposed; one such is the following polynomial func-
tion:

h(t|r)= θ0+ θ1r+ θ2t+ θ3 X(t)+ θ4t2+ θ5tX(t) .
(5.19)

The conditional distribution function for the time to first
failure is given by

F(t|r)= 1− exp

⎡

⎣−
t∫

0

h(u|r)du

⎤

⎦ . (5.20)

On removing the conditioning, we have the distribution
function for the time to first failure, given by

F(t) =
∞∫

0

⎧
⎨

⎩1− exp

⎡

⎣−
t∫

0

h(u|r)du

⎤

⎦

⎫
⎬

⎭g(r)dr .

(5.21)

Modeling Subsequent Failures
The modeling of subsequent failures, conditional
on Γ = r, follows along lines similar to that in
Sect. 5.3.2. As a result, under minimal repair, the
failures over time occur according to a nonho-
mogeneous Poisson process with intensity function
λ(t|r) = h(t|r) and, under perfect repair, the failures
occur according to the renewal process associated
with F(t|r).

The bulk of the literature deals with a linear relation-
ship between usage and age. See, for example, Blischke
and Murthy [5.1], Lawless et al. [5.24] and Gertsbakh
and Kordonsky [5.25]. Iskandar and Blischke [5.26] deal
with motorcycle data. See Lawless et al. [5.24] and
Yang and Zaghati [5.27] for automobile warranty data
analysis.
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5.4.2 Two-Dimensional Approach

Modeling First Failure
Let T and X denote the system’s age and usage at its
first failure. In the two-dimensional approach to model-
ing, (T, X) is treated as a nonnegative bivariate random
variable and is modeled by a bivariate distribution func-
tion

F(t , x) = P(T ≤ t , X ≤ x) ; t ≥ 0 , x ≥ 0 . (5.22)

The survivor function is given by

F̄(t , x) = Pr(T > t , X > x) =
∞∫

t

∞∫

x

f (u, v)dvdu .

(5.23)

If F(t, x) is differentiable, then the bivariate failure
density function is given by

f (t , x) = ∂2 F(t , x)

∂t∂x
. (5.24)

The hazard function is defined as

h(t , x) = f (t , x)/F̄(t , x) , (5.25)

with h(t , x)δtδx defining the probability that the first
system failure will occur in the rectangle [t , t+ δt) ×
[x , x+ δx) given that T > t and X > x. Note, how-
ever, that this is not the same as the probability
that the first system failure will occur in the rect-
angle [t , t+ δt) × [x , x+ δx) given that it has not
occurred before time t and usage x, which is given by
( f (t , x)/ [1− F(t , x)]) δtδx.

Bivariate Weibull Models
A variety of bivariate Weibull models have been pro-
posed in the literature. We indicate the forms of the
models, and interested readers can obtain more details
from Murthy et al. [5.6].
Model 1 [Marshall and Olkin [5.28]]

F̄(t , x) = exp
{− [

λ1tβ1 +λ2xβ2

+λ12max(tβ1 , xβ2 )
]}

. (5.26)

Model 2 [Lee [5.29]]

F̄(t , x) = exp
{
−

[
λ1cβ1 tβ+λ2cβ2 xβ

+λ12max
(

cβ1 tβ , cβ2 xβ
)]}

. (5.27)

Model 3 [Lee [5.29]]

F̄(t , x) = exp
[−λ1tβ1 −λ2xβ2

−λ0max(t , x)β0
]
. (5.28)

Model 4 [Lu and Bhattacharyya [5.30]]

F̄(t , x) = exp
{
− [

(t/θ1)β1/δ+ (x/θ2)β2/δ
]δ}

,

(5.29)

F̄(t , x) =
[
1+

({
exp

[
(t/θ1)β1

]−1
}1/γ

+ {
exp

[
(x/θ2)β2

]−}1/γ
)γ ]−1

, (5.30)

F̄(t , x) = exp
[−(t/α1)β1 − (x/α2)β2 − δh(t , x)

]
.

(5.31)

Different forms for the function of h(t , x) yield a family
of models. One form for h(t , x) is the following:

h(t , x) = [
(t/α1)β1/m + (x/α2)β2/m]

(5.32)

which results in

F̄(t , x) = exp
{
− (t/α1)β1 − (x/α2)β2

− δ
[
(t/α1)β1/m + (x/α2)β2/m]m

}
.

(5.33)

Two other variations are

F̄(t , x) = exp
(−(t/α1)β1 − (x/α2)β2

− δ
{
1− exp

[−(t/α1)β1
]}

×
{
1− exp

[−(x/α2)β2
]})

, (5.34)

F̄(t , x) =
{

1+
[ {

exp
[
(t/α1)β1

]−1
}1/γ

+{
exp

[
(x/α2)β2

]−1
}1/γ

]γ}−1

.

(5.35)

Model 5 (Sarkar [5.31])

F̄(t , x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
( [−(λ1+λ12)tβ1

]

×
{

1− [
A
(
λ2tβ1

)]−γ

×
[
A(λ2xβ2 )

]1+γ
})

,

t ≥ x > 0 ;
exp

( [−(λ2+λ12)xβ2
]

×
{

1− [
A(λ1xβ2 )

]−γ

×
[
A(λ1tβ1 )

]1+γ
})

,

x ≥ t > 0 ;

(5.36)
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where γ = λ12/(λ1+λ2) and A(z) = 1− e−z , z > 0.
Model 6 [Lee [5.29]]

F̄(t , x) = exp
[
− (

λ1tβ1 +λ2xβ2
)γ ]

. (5.37)

Comment: many other non-Weibull models can also
be used for modeling. For more on this see Johnson
and Kotz [5.32] and Hutchinson and Lai [5.33]. Kim
and Rao [5.34], Murthy et al. [5.35], Singpurwalla and
Wilson [5.36], and Yang and Nachlas [5.37] deal with
two-dimensional warranty analysis.

Modeling Subsequent Failures
Minimal Repair. Let the system’s age and usage at the
j-th failure be given by t j and x j , respectively. Under
minimal repair, we have that

h
(

t+j , x j

)
= h

(
t−j , x j

)
, (5.38)

as the hazard function after repair is the same as that just
before failure. Note that there is no change in the usage
when the failed system is undergoing minimal repair.

Let {N(t , x) : t ≥ 0 , x ≥ 0} denote the number of
failures over the region [0 , t) × [0 , x). Unfortunately,
as there is no complete ordering of points in two di-
mensions, there is no analogous result to that obtained
for minimal repair in one dimension. In particular,
the hazard rate does not provide an intensity rate at
a point (t , x) as the failure after the last failure prior
to (t , x) may be either prior to time t (though after
usage x) or prior to usage x (though after time t),
as well as possibly being after both time t and us-
age x. Hence, not only is it more difficult to obtain
the distribution for {N(t, x) : t ≥ 0, x ≥ 0}, it is also
more difficult to obtain even the mean function for this
process.

Perfect Repair. In this case, we have a two-dimensional
renewal process for system failures and the following
results are from Hunter [5.38]:

pn(t , x) = F(n)(t , x)− F(n+1)(t , x) , n ≥ 0 ,

(5.39)

where F(n)(t , x) is the n-fold bivariate convolution of
F(t , x)with itself. The expected number of failures over
[0 , t) × [0 , x) is then given by the solution of the two-
dimensional integral equation

M(t , x) =F(t , x)+
t∫

0

x∫

0

M(t−u , x−v)

× f (u , v)dvdu . (5.40)

Imperfect Repair. This has not been studied and hence
is a topic for future research.

Comparison with 1-D Failure Modeling
For the first failure, in the one-dimensional failure mod-
eling, we have

F(t)+ F̄(t) = 1 , (5.41)

and

F̄(t) = exp

⎡

⎣−
t∫

0

h(u)du

⎤

⎦ . (5.42)

In two-dimensional failure modeling, however, we have

F(t , x)+ F̄(t , x) < 1 , (5.43)

since

F(t , x)+F̄(t , x)+ P (T ≤ t , X > x)

+P (T > t , X ≤ x)= 1 . (5.44)

A Numerical Example
We confine our attention to a model proposed by Lu
and Bhattacharyya [5.30], where the survivor function
is given by (5.31) with h(t , x) given by (5.32) with
α1 , α2 , β1 , β2 > 0, δ≥ 0 and 0 < m ≤ 1. If m = 1 then
the hazard function is given by

h(t , x) = (1+ δ)2 β1

α1

(
t

α1

)β1−1
β2

α2

(
t

α2

)β2−1

.

(5.45)

Let the model parameters be as follows:

α1 =2 , α2 = 3 , β1 = 1.5 , β2 = 2.0 ,

δ=0.5 ,m = 1

The units for age and usage are years and 10 000 km,
respectively. The expected age and usage at first system
failure are given by

E(T1) = θ1Γ (1/β1+1) = 1.81 (years) and
E(X1) = θ2Γ (1/β2+1) = 2.66 (103 km).
Figure 5.5 is a plot of the survivor function F̄(t , x)

and Fig. 5.6 is a plot of the hazard function h(t , x). Note
that h(t , x) increases as t (age) and x (usage) increase,
since β1 and β2 are greater than 1.

Replacement. The expected number of system failures
in the rectangle [0 , t)× [0 , x) under replacement is given
by the renewal function M(t , x) in (5.40). Figure 5.7 is
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Fig. 5.5 Plot of the survivor function F̄(t , x)

a plot of M(t , x), obtained using the two-dimensional
renewal-equation solver from Iskandar [5.39].

5.4.3 Exploratory Data Analysis

In the one-dimensional case, the presence of censored
observations causes difficulties in estimating the various
functions (hazard rate, density function). When usage is
taken into account, these difficulties are exacerbated,
due to the information about usage being only observed
at failure times. In particular, models which build con-
ditional distributions for the failure times given usage
(or usage rates) have to determine a strategy for assign-
ing the censored failure times to some usage (or usage
group).

1-D Approach
Perfect Repair. Firstly, we group the data into different
groups based on the usage rate. Each group has a mean
usage rate and the data is analyzed using the approach
discussed in Sect. 5.3. This yields the model for the fail-
ure distribution conditioned on the usage rate. One then
needs to determine whether the model structure is the
same for different usages or not and whether the linear
relationship [given by (5.16)] is valid or not. Next, ex-
ploratory plots of the usage rate need to be obtained to
determine the kind of distribution appropriate to model
the usage rate.

If the conditional failure distributions are two-
parameter Weibull distributions then the WPP plots
are straight lines. If the shape parameters do not vary
with usage rate, then the straight lines are parallel to
each other. One can view usage in a manner simi-
lar to stress level and use accelerated life-test models
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Fig. 5.6 Plot of the hazard function h(t , x)
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Fig. 5.7 Plot of the renewal function M(t , x)

[Nelson [5.7]] to model the effect of usage on fail-
ure.

Imperfect Repair. The plotting (for a given usage rate)
follows along the lines discussed in Sect. 5.3.3 and this
allows one to determine the distribution appropriate to
model the data. Once this is done, one again needs to
examine exploratory plots of the usage rate to decide on
the appropriate model.

2-D Approach
We confine our discussion to the case of perfect repair.

Plot of Hazard Function (Nonparametric Approach).
We divide the region into rectangular cells. Cell
(i , j) is given by [iδ1 , (i+1)δ1) × [ jδ2 , ( j+1)δ2),
where δ1 and δ2 are the cells’ width and height
respectively.
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Let us define:

N f
ij : Number of items with failures times in cell

(i , j) , i ≥ 0 , j ≥ 0 ;
Nc

ij : Number of items with censoring times in cell
(i , j) , i ≥ 0 , j ≥ 0 ;

N f|sw
ij : Number of failures in cells to the southwest of

cell(i , j)

⎛

⎝=
i−1∑

i ′=0

j−1∑

j ′=0

N f
i ′ j ′

⎞

⎠ ;

N f|ne
ij : Number of failures in cells to the northeast of

cell(i−1 , j−1)

⎛

⎝=
∞∑

i ′=i

∞∑

j ′= j

N f
i ′ j ′

⎞

⎠ .

Similarly define Nc|ne
ij and Nc|sw

ij for censored data.
A nonparametric estimator of the hazard function is

ĥij =
N f

ij

N f|ne
ij + Nc|ne

ij

, i ≥ 0 , j ≥ 0 . (5.46)

Plot of Renewal Function (Nonparametric Approach).
A simple estimator of the renewal function in the case
of complete data is given by the partial mean function
over the cells; that is,

M̂(ti , xi ) =
N f|sw

ij

N
, (5.47)

where N is the total number of observations. A contour
plot of this versus t and x can then be obtained.

5.4.4 Model Selection

To determine if the estimate of the renewal function
above corresponds to the renewal function for a given
model, plots similar to quantile–quantile plots can be
investigated. Firstly, the renewal function for the given
model is estimated and then its values are plotted against
the corresponding values of the nonparametric estimator
above. If a (rough) linear relationship is present, then this
would be indicative that the model is reasonable.

5.4.5 Parameter Estimation
and Validation

Once an appropriate model for h(t , x)= f (t , x)/F̄(t , x)
is determined, estimation of the parameters can be
carried out using standard statistical procedures (least
squares, maximum likelihood, and so on) in a simi-
lar fashion to the one-dimensional case, although we
are unaware of any equivalent graphical methods which
may be used. Similarly, model validation can be car-
ried out as before. It should be noted that the procedure
indicated in the previous section can also be used to
validate the model, if not used to select it. In fact, a com-
mon approach when faced with a complex model may
be to fit the model using an estimation procedure such
as maximum-likelihood estimation (or generalized least
squares using an empirical version of a functional such
as the renewal function), then investigating the rela-
tionship between some other functional of the model
and its empirical version. This area requires further
investigation.

5.5 A New Approach to Two-Dimensional Modeling

One of the attractions of the one-dimensional approach
taken in Sect. 5.4.1 is that it matches the manner in
which the failures occur in practice; that is, the ex-
pectation is that the failure time is dependent on the
amount of usage of the item—different usage leads to
different distributions for the time until failure, with
these distributions reflecting the ordering that higher
usage leads to shorter time until failure. However, us-
age may vary over time for individual items and the
one-dimensional approach does not allow for this as-
pect. The model described in this section overcomes
this shortcoming by allowing usage to vary between
failures.

5.5.1 Model Description

For convenience, consider a single item. Suppose that Ti
is the time until the i-th failure and that Xi is the
total usage at the i-th failure. Analogously to the one-
dimensional approach, let Γi = (Xi − Xi−1)/(Ti −Ti−1)
be the usage rate between the (i−1)th and the i-th fail-
ures. Assuming that these usage rates are independent
and come from a common distribution (an oversim-
plification but a useful starting point for developing
models), the marginal distribution of the usage rates
can be modeled, followed by the times until failure
modeled for different usage rates after each failure in
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Usage

Time

New approach

One-dimensional approach

Fig. 5.8 Plot of usage versus time

a similar manner to the one-dimensional approach. This
approach combines the two approaches discussed ear-
lier. Figure 5.8 shows the plots of usage versus time
for the proposed model and the model based on the
one-dimensional approach.

Note that a more general approach is to model the
usage as a cumulative stochastic process. This approach
has received some attention. See Lawless et al. [5.24]
and Finkelstein [5.40] and the references cited therein
for further details.

5.5.2 An Application

We illustrate by considering the failure and usage data
for component C-1 over the warranty period.

Modeling the Usage Rates
Before investigating the relationship between usage rate
and time to failure, it is worthwhile investigating the days
to failure and usage at failure for claims made within the
warranty period. This is shown in Fig. 5.9. Only three
of the failures were a second failure on the component;
all of the others are the first failure since manufacture.
There are three considerations to take into account when
interpreting Fig. 5.9.

Firstly, the censoring by both time and usage ensures
that only the initial part of the bivariate distribution of
usage at failure and time to failure can be explored and
the relationship between usage at failure and time to
failure is distorted. Secondly, the proportions of com-
ponents according to usage rate vary considerably, with
very few components having high or low usage rates (as
would be expected). Lastly, there are a greater number
of short failure times than might be expected, suggesting
that many early failures may not be related to usage and

are more likely to be the result of quality-related prob-
lems during production. What seems like a linear trend
(around the line Usage = 50× Days) is not valid in light
of the above discussion.

Figure 5.10 looks at the conditional distribution of
days to failures against the usage rate (miles/day) aver-
aged over the time before the claim. Again, care needs
to be taken in interpreting this plot. In the left of this
plot, censoring due to time and the low number of
components having low usage rate has distorted the
distribution of failure times for each usage rate. From
a usage rate of around 60 km/d, the key feature of the
plot is the censoring due to reaching the usage limit.
Thus, although it would be expected that the failure-time
distribution would be concentrated around a decreasing
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Fig. 5.9 Plot of days to failure and usage at failure for
claims within warranty for component C-1
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Fig. 5.10 Plot of days to failure against usage rate for
component C-1
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Fig. 5.11 Mean time to failure for usage-rate bands for
component C-1

mean as usage rate increases, this is exaggerated by the
censoring.

Figure 5.11 shows a plot of the mean time to fail-
ure for a split of failures into usage-rate bands. In this
plot, we see the effects of the censoring, as indicated
above. Thus, the mean time to failure actually increases
in the low-usage-rate regime. For usage rate greater
than 60 km/d, the mean time to failure decreases as the
usage rate increases, as is expected (although, as dis-
cussed above, this is exaggerated by the censoring due
to reaching the usage limit).

Figure 5.12 is a WPP plot of the usage rate. The
plot indicates that a Weibull mixture involving two sub-
populations is appropriate to model the usage rate. The
parameter estimates of the fitted curve in Fig. 5.12 are

p̂ =0.647 , β̂1 = 5.50 , β̂2 = 1.99 ,

η̂1 =57.7 , η̂2 = 75.7 .

These give mean usage rates to failure of 53.3 km/d and
75.7 km/d, respectively.
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Fig. 5.13 Empirical density (left) and Weibull mixture density (right) for component C-1 usage rates
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Fig. 5.12 WPP of usage rates for component C-1 with
Weibull mixture

Figure 5.13 gives the empirical plot of the density
function and the density function based on the mixture
model. As can be seen, the model matches the data
reasonably well. The model estimates that around 65%
of the failures come from a subpopulation with a mean
usage rate of 53.3 km/d, giving a dominant peak in the
observed density. The other subpopulation, with a higher
mean usage rate of 75.7 km/d, accounts for the extra
failures occurring for usage rates between around 50
and 100 km/d.

For different usage rates (one for each band
in Fig. 5.11) one can obtain the conditional failure dis-
tribution F(t|r) in a manner similar to that in Sect. 5.3.
It is important to note that this ignores the censored data
and as such would yield a model that gives conservative
estimates for the conditional mean time to failure. Com-
bining this with the distribution function for the usage
rate yields the two-dimensional failure model that can
be used to find solutions to decision problems.
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5.6 Conclusions

In this chapter we have looked at two-dimensional fail-
ure modeling. We have discussed the two approaches
that have been proposed and suggested a new approach.
However, there are several issues that need further study.
We list these and hope that it will trigger more research
in the future.

1. Different empirical plotting of two-dimensional fail-
ure data.

2. Study of models based on the two-dimensional ap-
proach and how this can be used in conjunction with
the empirical plots to help in model selection.

3. Further study of the models based on the new ap-
proach discussed in Sect. 5.6.

4. Most failure data available for modeling is
the data collected for products sold with two-
dimensional warranties. In this case, the war-
ranty can cease well before the time limit
due to the usage limit being exceeded. This
implies censored data with uncertainty in the
censoring. This topic has received very little at-
tention and raises several challenging statistical
problems.
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Prediction Int6. Prediction Intervals for Reliability Growth Models
with Small Sample Sizes

The first section of this chapter provides an
introduction to the types of test considered
for this growth model and a description of the
two main forms of uncertainty encountered
within statistical modelling, namely aleatory
and epistemic. These two forms are combined to
generate prediction intervals for use in reliability
growth analysis.

The second section of this chapter provides
a historical account of the modelling form used
to support prediction intervals. An industry-
standard model is described and will be extended
to account for both forms of uncertainty in
supporting predictions of the time to the detection
of the next fault.

The third section of this chapter describes
the derivation of the prediction intervals. The
approach to modelling growth uses a hybrid of the
Bayesian and frequentist approaches to statistical
inference. A prior distribution is used to describe
the number of potential faults believed to exist
within a system design, while reliability growth
test data is used to estimate the rate at which
these faults are detected.

After deriving the prediction intervals, the
fourth section of this chapter provides an analysis
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of the statistical properties of the underlying
distribution for a range of small sample sizes.

The fifth section gives an illustrative example
used to demonstrate the computation and
interpretation of the prediction intervals within
a typical product development process.

The strengths and weaknesses of the process
are discussed in the final section.

Predicting the time until a fault will be detected in a re-
liability growth test is complex due to the interaction
of two sources of uncertainty, and hence often results in
wide prediction intervals that are not practically credible.
The first source of variation corresponds to the selection
of an appropriate stochastic model to explain the ran-
dom nature of the fault detection process. The second
source of uncertainty is associated with the model itself,
as even if the underlying stochastic process is known,
the realisations will be random.

Statistically, the first source of uncertainty can be
measured through confidence intervals. However, using
these confidence intervals for prediction can result in
naive underestimates of the time to realise the next fail-
ure because they will only infer the mean time to the

next fault detection rather than the actual time of the
fault detection.

Since the confidence in parameter estimates in-
creases as sample size increase, the degree of
underestimation arising from the use of confidence
rather than prediction intervals will be lower for large
sample sizes compared with small sample sizes. Yet, in
reliability growth tests it is common, indeed desirable,
to have a small number of failures. Therefore there is
a need for prediction intervals, although their construc-
tion is more challenging for small samples since they
are driven by the second source of variation.

The type of reliability growth test considered will be
of the form test, analyse and fix (TAAF). This implies
that a system is tested until it fails, at which time analy-
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sis is conducted to investigate potential causes and hence
identify the source of the fault. Once found, a correc-
tive action is implemented and the ‘new’ system design
is returned to test. This cyclical process is repeated un-
til all weaknesses have been flushed out and the system
design is deemed mature. The data generated through
testing are analysed using reliability growth models and
the information generated is used to support product
development decisions. Examples of these data are the
duration of the growth test to achieve the required reli-
ability or the efficacy of the stresses experienced by the
prototype designs during test within a specified test plan.

Procedures for the construction of prediction inter-
vals for the time to realise the next failure are developed
for a standard reliability growth model called the mod-
ified IBM model. This model is particularly suited for
test situations where few data exist and some expert en-
gineering judgement is available. The model consists of
two parameters: one that reflects the number of faults

within the system design; and a second that reflects the
rate at which the faults are detected on test. Estima-
tion procedures have been developed as a mixture of
Bayesian and frequentist methods. Processes exist to
elicit prior distributions describing the number of poten-
tial faults within a design. However prior distributions
describing the test time by which these faults will be
realised are more challenging to elicit and, as such, in-
ference for this parameter is supported by data observed
from the test.

Section 6.1 provides background history and a de-
scription of the model and its underlying assumptions. In
Sect. 6.2, prediction intervals are derived for this model
from the frequentist perspective. Section 6.3 presents
an analysis of the statistical properties of the proposed
estimators, while Sect. 6.4 provides an illustrative ex-
ample of their application to a typical reliability growth
test. Finally the use of such procedures is discussed in
Sect. 6.5.

6.1 Modified IBM Model – A Brief History

The IBM model was proposed by [6.1] and was the
first reliability growth model to represent formally two
different types of failures: namely those that result in
a corrective action to the system; and those that re-
sult in a replacement of a component part. By formally
accounting for failures that occur but which are not ad-
dressed at the system level, the failure rate is estimated
by an asymptote corresponding to a residual failure rate
relating to faults that would have been detected and
corrected, but were not, due to the termination of test-
ing. The model was developed assuming the following
differential equation

dD(t)

dt
=−µD(t) , µ, t > 0 , (6.1)

where D(t) represents the number of faults remaining
in the system at accumulated test time t. Therefore the
expected number of faults detected by accumulated test
time t is

N(t)= D (0)
(
1− e−µt) , µ, t > 0 . (6.2)

The model proposes that spurious failures would be
realised according to a homogeneous Poisson process
independent of the fault detection process. This latter
process is not of direct concern to the model developed
here and hence we do not develop it further. Instead we
focus on the fault detection process only.

The deterministic approach to reliability growth
modelling was popular in the late 1950s and early 1960s.
However, this approach was superseded by the further
development and popularity of statistical methods based
upon stochastic processes. This is because the determin-
istic arguments relating to reliability growth could just
as easily be interpreted through probabilistic methods,
which also facilitated more descriptive measures for use
in test programmes.

Cozzolino [6.2] arrived at the same form for an inten-
sity function, ι (t), assuming that the number of initial
defects within a system, D (0), has a Poisson distribu-
tion with mean λ and that the time to failure of each
initial defect followed an exponential distribution with
hazard rate µ.

ι(t)= λµe−µt , µ , λ , t > 0 (6.3)

implying that

E [N (t)] = λ
(
1− e−µt) . (6.4)

Jelenski and Moranda [6.3] proposed a model to de-
scribe the detection of faults within software testing
assuming that there were a finite number of faults [i.e.
D (0)] within the system and that the time between the
detection of the i-th and (i−1)-th (i.e. Wi ) fault had the
following exponential cumulative distribution function
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(CDF):

F(wi ) = 1− e−[D(0)−i+1] µ wi ,

i = 1, 2, . . . , D (0) ; wi , µ > 0 . (6.5)

This model is the most referenced software reliability
model [6.4]. It is assumed for this model that there ex-
ist D (0) faults within the system, whose failure times
are all independently and identically exponentially dis-
tributed with a hazard rate µ. It is interesting to note
the similarities between this model, Cozzolino’s model
(6.4) and the IBM (6.2) deterministic model; the mean
number of faults detected at accumulated test time t is
the same in all three models.

Jelenski and Moranda advocated that maximum like-
lihood estimators (MLEs) be pursued for this model.
However it was shown by Forman and Singpurwalla
[6.5], and later by Littlewood and Verrall [6.6], that the
MLEs were inconsistent, often did not exist or produced
confidence regions so large that they were practically
meaningless.

Meinhold and Singpurwalla [6.7] proposed an adap-
tation with a Poisson prior distribution to estimate
the number of faults that will ultimately be exposed.
This is similar to Cozzolino [6.2] but from a Bayesian
perspective, so the variability described through the
prior distribution captures knowledge uncertainty in the
number of faults within the system design only. This
Bayesian approach results in the following estimating

equation for µ:

µ̂= j

λt′ e−t′µ+
j∑

i=1
ti

, t1 < t2 < . . . < t j ≤ t′ ,

(6.6)

where: ti is the time of the i-th fault detected on test, t′
is the test time when the analysis is conducted, and j is
the number of faults detected by time t′.

This Bayesian adaptation was further explored in
[6.8] and its advantages over the industry-standard
model, the so-called power-law model [6.9, 10], was
demonstrated. A process was developed to elicit the
prior distribution for this model in [6.11] and procedures
for estimating confidence intervals for µ were devel-
oped in [6.12]. Extensions of this model to assess the
cost effectiveness of reliability growth testing are ad-
dressed in [6.13], and for managing design processes see
[6.14]. This model is incorporated into the international
standard, IEC 61164, as the modified IBM model.

The model assumes that there are an unknown but
fixed number of faults within a system design. It is fur-
ther assumed that the system undergoes a TAAF regime
that gives rise to times to detect faults that are indepen-
dently and identically exponentially distributed. A prior
distribution describing the number of faults existing
within the system design is assumed to be Poisson. Fi-
nally, it is assumed that when a fault is identified it is
removed completely and no new fault is introduced into
the design.

6.2 Derivation of Prediction Intervals
for the Time to Detection of Next Fault

We assume that a system contains D (0) faults. The time
to detect a fault is exponentially distributed with hazard
rate µ, and a prior distribution exists on D (0), in the
form of a Poisson distribution with mean λ. It is further
assumed that j faults will be observed on test at times
t1, . . . t j and we seek a prediction interval for the time
to detect the next fault. Let x denote the time between
t j and t j+1 and assume that the times to detection are
statistically independent.

The statistic R is defined as the ratio of x to the sum
of the first j fault detection times, denoted by T :

R = x

T
. (6.7)

First, the distribution of T is derived. T is the sum of the
first j order statistics from a sample of D (0) independent

and identically exponentially distributed random vari-
ables with hazard rate µ. Thus, the time between any
two consecutive such order statistics are exponentially
distributed with hazard rate [D (0)− i+1]µ. Moreover,
the times between successive order statistics are in-
dependent. For a derivation of this results see [6.15].
Therefore T can be expressed as a weighted sum of inde-
pendent and identically distributed exponential random
variables with hazard rate µ. We denote these random
variables as Wi in the following:

T =
j∑

i=1

ti

=
j∑

i=1

j− i+1

N − i+1
Wi . (6.8)

Part
A

6
.2



116 Part A Fundamental Statistics and Its Applications

As an exponential random variable is closed under scale
transformation, we can consider T , as expressed in (6.8),
as a sum of independent exponential random variables
with different hazard rates. As such, using Goods for-
mula [6.16] we can express the CDF of T , conditional
on there being j faults realised and the design initially
having D (0) faults, as:

Pr

⎛

⎝
j∑

i=1

( j− i+1) Wi

n− i+1
< t

∣∣∣∣∣∣
j, D (0)= n

⎞

⎠

=
j∑

i=1

∏

k=1
k �=i

j
( n−k+1

j−k+1
n−k+1
j−k+1 − n−i+1

j−i+1

)[
1− e−µ n−i+1

j−i+1 t
]
.

(6.9)

Consider the following:

P [ R < r| D (0) , j]

= P
( x

T
< r

∣∣∣ D (0) , j
)

=
∞∫

0

P [ x < rt| D (0) , j, T = t]P (T = t) dt .

(6.10)

Since we know that x will have an exponential distribu-
tion with hazard rate [D (0)− j]µ, we obtain:

P [ R < r| D (0)= n]

= 1−
∞∫

t=0

e−(n− j)µrt
j∑

i=1

j∏

k=1,k �=i

( n−k+1
j−k+1

n−k+1
j−k+1 − n−i+1

j−i+1

)

×µ
n− i+1

j− i+1
e−µ n−i+1

j−i+1 t dt

= 1−
j∑

i=1

(n− i+1)

[n− i+1+ ( j− i+1) (n− j) r]

×
j∏

k=1,k �=i

( n−k+1
j−k+1

n−k+1
j−k+1 − n−i+1

j−i+1

)
. (6.11)

This probability distribution is a pivotal since it does
not depend on µ and can therefore be used to construct
a prediction distribution for the time to detect the next

fault (6.11), which can be simplified to give

P [ R < r| D (0)= n]

= 1− n!
(n− j)! (n− j) j−1

×
j∑

i=1

{
( j− i+1) j−1(−1)i−1

[n− i+1+ ( j− i+1)(n− j)r]

×
1

(i−1)!( j− i)!
}

. (6.12)

Taking the expectation with respect to D (0), for which it
is assumed we have a Poisson prior distribution, provides
a CDF that can be used to obtain prediction intervals.
The CDF in (6.13) for the ratio, i.e. R, is calculated
assuming that there is at least one more fault remaining
in the system design. The probability that all faults have
been exposed given there has been j faults detected is
expressed in (6.14)

P [ R < r| D(0) ≥ j+1, j]

= 1−

⎛
⎜⎜⎜⎝

∞∑
n= j+1

n!
(n− j)!(n− j) j−1

1−
j∑

k=0

λk e−λ

k!

×
j∑

i=1

{
( j− i+1) j−1 (−1)i−1

[n− i+1+ ( j− i+1) (n− j) r]

×
1

(i−1)!( j− i)!
λn e−λ

n!

}
⎞
⎟⎟⎟⎠ , (6.13)

P ( R =∞| j)=
λ j e−λ

j!

1−
j−1∑
k=0

λk e−λ

k!

. (6.14)

Consider how this distribution changes as we expose all
faults within the design. As the number of faults de-
tected, j, increases towards D (0), then the distribution
of T approaches a gamma distribution as follows:

lim
j→D(0)

T = lim
j→D(0)

j∑

i=1

ti

= lim
j→D(0)

j∑

i=1

j− i+1

D (0)− i+1
Wi =

j∑

i=1

Wi ,

where Wi are independent and identically exponentially
distributed and their sum has a gamma distribution with
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parameters j and µ. Therefore, as j approaches D (0),
the distribution of R should approach the following:

P [ R < r| D (0)= n, j]

=
∞∫

0

P [ x < rt| D (0)= n, j, T = t] P (T = t) dt

= 1−
(

1

1+r

) j

. (6.15)

Computationally, (6.15) will be easier to apply than
(6.13), assuming that there exists at least one more fault
in the design. In the following section the quality of
(6.15) as an approximation to (6.13) will be evaluated.

6.3 Evaluation of Prediction Intervals for the Time to Detect Next Fault

In this section the CDF in (6.13) is investigated to as-
sess how it is affected by parameter changes in λ, which
represents the subjective input describing the expected
number of faults within the design. The degree of close-
ness of the approximation of the simple distribution in
(6.15) to the more computationally intensive distribution
in (6.13) will be examined. Finally a table of key values
for making predictions with this model are presented.

The model assumes that the time between the i-th
and (i+1)-th fault detection is exponentially distributed
with hazard rate µ [D (0)− i+1]. Consequently, if
D (0) increases then the expected time to realise the
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Fig. 6.1a–d Comparison of CDF for ratio R as λ changes; (a) 1 fault detected; (b) 5 faults detected; (c) 10 faults detected;
(d) 25 faults detected

next fault reduces. Therefore as λ, which is the expec-
tation of D (0), increases, the CDF for the ratio R shifts
upwards. This is illustrated in Fig. 6.1, where the CDF
in (6.13) is shown for various values of λ assuming there
have been 1, 5, 10 and 25 faults detected.

Figure 6.2 illustrates the CDF in (6.13) assuming
a mean number of faults of 1 and 25 and compares it
to the asymptotic distribution (6.15). Interestingly the
approximation improves when the number of faults ob-
served is moderately lower than the mean, compared
with when it is greater than the mean. However, con-
vergence is slow. For example, there is a noticeable
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Fig. 6.2a–d Comparison of CDF for ratio R and asymptotic distribution; (a) 1 fault detected; (b) 1 fault detected; (c) 10
faults detected; (d) 10 faults detected

difference between the two CDFs in Fig. 6.2c, where
there have been 10 faults exposed but the engineering
experts expected only one.

The data in the plots in Figs. 6.1 and 6.2 was gen-
erated using Maple version 8, which has been used
to support numerical computations. To avoid the need
to reproduce calculations, summaries of the key char-
acteristics of the CDF are presented in the following
tables.

Table 6.1 provides a summary of the expectation
of the ratio of the time to next fault detection and the
sum of the preceding fault detection times. We consider
the mean number of faults λ as it increases from 1 to

Table 6.1 Values of the mean of the distribution of R

j\λ 1 5 10 15 20

1 ∞ ∞ ∞ ∞ ∞
2 1.60 1.13 0.86 0.78 0.76

3 0.74 0.52 0.36 0.31 0.3

4 0.46 0.34 0.22 0.18 0.17

5 0.33 0.25 0.16 0.12 0.11

10 0.13 0.11 0.08 0.05 0.04

20 and the number of observed faults detected as it in-
creases from 1 to 10. For the situation where there is
one fault detected the mean is infinite. However, for
the case of two or more faults detected the mean is
finite. Therefore, the median may provide a more ap-
propriate point estimate of a prediction if there is only
one fault detected. In addition, the skewness of the dis-
tribution of the mean suggests that median estimators
may be appropriate more generally. Note also that as
both the number of faults detected increases and the
mean number of faults within the design increases the
differences in the mean of the distribution of the ratio
decrease.

Table 6.2 Values of the median of the distribution of R

j\λ 1 5 10 15 20

1 1.82 1.32 1.13 1.08 1.06

2 0.65 0.45 0.35 0.32 0.31

3 0.37 0.26 0.18 0.16 0.15

4 0.26 0.18 0.12 0.10 0.09

5 0.20 0.14 0.09 0.07 0.06

10 0.09 0.07 0.05 0.03 0.02
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Table 6.3 Percentiles of the distribution of R

a) 90-th percentile

j\λ 1 5 10 15 20

1 16.48 11.97 10.17 9.7 9.5

2 3.46 2.44 1.86 1.7 1.64

3 1.7 1.22 0.84 0.73 0.69

4 1.09 0.83 0.52 0.42 0.39

5 0.79 0.6 0.38 0.29 0.25

10 0.32 0.27 0.2 0.13 0.09

b) 95-th percentile

j\λ 1 5 10 15 20

1 34.83 25.31 21.49 20.48 20.06

2 5.58 3.96 3 2.73 2.64

3 2.54 1.85 1.27 1.09 1.03

4 1.57 1.18 0.77 0.61 0.56

5 1.11 0.87 0.56 0.41 0.36

10 0.43 0.37 0.28 0.18 0.12

Table 6.2 presents a summary of the median values
from the distribution of R. For comparison the same val-

c) 99-th percentile

j\λ 1 5 10 15 20

1 181.61 132.03 112.14 106.73 104.54

2 14.53 10.42 7.83 7.15 6.9

3 5.45 4.04 2.76 2.35 2.22

4 3.07 2.38 1.56 1.21 1.16

5 2.07 1.67 1.10 0.78 0.68

10 0.72 0.65 0.52 0.36 0.22

ues of j and λ have been chosen as in Table 6.1. The
skew in the distribution is noticeable through the differ-
ence between the mean and the median. This difference
decreases as the number of faults detected increases.
The changes in the median are greater for smaller values
of λ.

Table 6.3 presents summaries of the 90-th, 95-th
and 99-th percentiles of the distribution of R. The skew
is noticeable by the difference between the 95-th and
99-th percentile, where there is a larger difference for
the situation where there have been fewer faults detected.

6.4 Illustrative Example

This example is based around the context and data from
a reliability growth test of a complex electronic system.
A desensitised version of the data is presented; however,
this does not detract from the key issues arising through
this reliability growth test and the way in which the
data are treated. The aim of this example is to illustrate
the process of implementing the modified IBM (MIBM)
model for prediction and to reflect upon the strengths
and weaknesses of this approach.

6.4.1 Construction of Predictions

A TAAF test regime has been used in this growth
development test. The duration of the test was not de-
termined a priori but was to be decided based upon
the analysis of the test data. Two units have been used
for testing. Both units have been tested simultaneously.
The test conditions were such that they approximated
the stress levels expected to be experienced during
operation.

A prior distribution has been elicited before test-
ing is commenced. The experts used to acquire this
information are the engineers involved in the design and
development of the system and specialists in specifica-

tion of the test environment. The process for acquiring
such a prior distribution is described in [6.11]. This pro-
cess involves individual interviews with each expert,
discussing novel aspects of the design, identifying engi-
neering concerns and eliciting probabilities that measure
their degree of belief that the concern will be realised
as a fault during test. Group interviews are conducted
where overlapping concerns are identified to explore
correlation in the assessment. The probabilities are con-
voluted to obtain a prior distribution describing the
number of faults that exist within the design. Typi-
cally a Poisson distribution provides a suitable form for
this prior, and this is assumed within the MIBM model.
For this illustration we use a Poisson distribution with
a mean of 15.

The test was conducted for a total of 7713 test
hours. This was obtained by combining the exposure
on both test units. Nine faults were exposed during
this period. Figure 6.3 illustrates the cumulative num-
ber of faults detected against test time. Visually, there
is evidence of reliability growth, as the curve appears
concave, implying that the time between fault detection
is, on average, decreasing. There were two occasions
where faults were detected in relatively short succession:
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Fig. 6.3 Faults detected against accumulated test time

this occurred between 3000 to 4000 hours and 6000 to
7000 hours.

For illustrative purposes we consider the realisations
of faults sequentially and use the MIBM model to predict
the time to the next fault detection. These predictions are
conditioned on there being at least one more fault in the
design at the time of prediction. The probability that

Table 6.4 Predictions of fault detection times based on
model

Fault Actual Upper 95% Median Mean

number prediction prediction prediction

1 800

2 900 17184 1664

3 1700 5541 1444 2226

4 2150 5406 2244 4284

5 3000 5536 2705 3815

6 3050 7788 3599 4454

7 6000 6646 3630 4094

8 6150 10400 6704 7408

9 7713 11375 7100 7813

Table 6.5 Expected faults remaining undetected

Fault detected Accumulated test time
∧
µ Expected faults remaining

1 800 8.31 × 10−5 14.0

2 900 0.000148 13.1

3 1700 0.000125 12.1

4 2150 0.000135 11.2

5 3000 0.000127 10.2

6 3050 0.000147 9.6

7 6000 0.000108 7.8

8 6150 0.000116 7.3

9 7713 0.000112 6.3
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Fig. 6.4 Comparison between actual and model prediction
fault detection times

all faults have been detected will also form part of the
prediction.

Table 6.4 provides a summary of the estimates pro-
vided by the MIBM and these are also illustrated in
Fig. 6.4. The median estimator appears to perform better
than the mean. This is due to the large skew in the tail of
the distribution of the predicted ratio resulting in a mean
that is much greater than the median. All nine faults were
observed at earlier times than the upper 95% prediction
limit. The point estimates were poorest at the time of the
seventh fault detection, which had been realised after an
unusually long period of no fault detection.

Table 6.5 provides the point estimate of the number
of faults remaining undetected within the design at each
fault detection time. This is obtained using the formula
(6.16), the derivation of which can be found in [6.12].
The MLE of µ was substituted in place of the parameter:

E [ D (0)− N (t)|µ] = λe−µt . (6.16)

Table 6.5 provides some confidence in the model we are
using for this process. The expected number of faults re-
maining undetected decreases in line with the detection
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Table 6.6 Probability of having detected all faults

Number of Probability all faults

faults detected have been detected

1 4.588 54 × 10−6

2 3.441 42 × 10−5

3 0.0002

4 0.0006

5 0.0019

6 0.0049

7 0.0105

8 0.0198

9 0.0337

of the faults and there is some stability in the estimation
of µ.

The analysis conducted to obtain predictions as-
sumes that there is at least one more fault remaining
undetected within the design. However, we are assum-
ing that there are a finite number of faults within the
design described through the Poisson prior distribution
with a mean of 15 at the start of test. Table 6.6 provides
the probability that all faults have been detected at each
fault detection times. This is a conditional probability
calculated from the Poisson distribution. The formula
used, which assumes j faults have been detected and
a mean of λ, is provided in (6.17):

P
[
D (0)= j

∣∣N
(
t′
)= j

]=
λ j e−λ

j!

1−
j−1∑
k=0

λk e−λ

k!

. (6.17)

The probability of having detected all faults increases as
the number of faults increase, which is consistent with
intuition. By the detection of the ninth fault there is still
a small probability of all faults having been detected.

6.4.2 Diagnostic Analysis

Although visually the model appears to describe the
variability within the data, the formal assessment of the
validity of the CDF of the ratio R is assessed in this
section.

Firstly, consider the number of fault detections
where the time of detection was earlier than the median.
This occurred four out of the eight times where a predic-
tion was possible. Secondly, we compare the observed
ratio of the time between successive fault detections and
the sum of the proceeding fault detection times. Our hy-
pothesis is that these observations have been generated
from the CDF of R. Table 6.7 presents a summary of

Table 6.7 Observed ratios

Fault detected Observed ratio Percentile of ratio

1

2 0.13 0.1

3 0.47 0.61

4 0.13 0.44

5 0.15 0.64

6 0.01 0.06

7 0.25 0.93

8 0.01 0.13

9 0.07 0.68

the observed ratio and the percentile to which the ra-
tio corresponds in the CDF. Assuming that the model
is appropriate then these observed percentiles should
be consistent with eight observations being observed
from a uniform distribution over the range [0, 1]. These
percentiles appear to be uniformly distributed across
[0, 1] with possibly a slight central tendency between
0.6 and 0.7.

A formal test can be constructed to assess whether
the percentiles in Table 6.7 are appropriately described
as belonging to a uniform distribution. From Bates [6.17]
the average of at least four uniform random variables is
sufficient for convergence with the normal distribution.
Therefore, the average of the eight uniform random vari-
ables in Table 6.7 is approximately normally distributed
with a mean of 0.5 and a standard deviation of 0.029.
The average of the observed percentiles is 0.449, which
corresponds to a Z-score of −1.76, which is within
the 95% bounds for a normal random variable and, as
such, we conclude that these percentiles are uniformly
distributed. Therefore, the model cannot be rejected as
providing an appropriate prediction of the variability of
the time to the next fault detection within the test.

6.4.3 Sensitivity with Respect
to the Expected Number of Faults

The predictions require a subjective input describing the
expected number of faults within the design and as such
it is worth exploring the impact of a more pessimistic or
optimistic group of experts.

From Sect. 6.3 it is known that the CDF of the ratio
R is most sensitive to changes in λ about the median
and the impact is lower for the upper prediction limits.
The error is defined as the observed minus the predicted
value. A summary of selected performance measures for
the error corresponding to various values of λ, specif-
ically a pessimistic estimate of 20 and an optimistic
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Table 6.8 Prediction errors

λ = 10 λ = 15 λ = 20

Error (median) 9 197 −612

Error (mean) −911 −619 −821

MAD (median) 657 687 612

MAD (mean) 1323 1163 1053

estimate of 10 have been computed and are summarised
in Table 6.8. The average error is smallest for the opti-
mistic estimate using the median to predict, but greatest
for the optimistic estimate using the mean to predict.
The mean absolute deviation (MAD) has also been cal-
culated as a method of assessing accuracy, but there is
little difference between these values.

6.4.4 Predicting In-Service Failure Times

Accessing in-service data is much more challenging than
obtaining data from a controlled reliability growth test.
Consequently, assessing the quality of the predictions
for in-service performance cannot be expected to be
as thorough. However, for this system summary statis-
tics have been obtained from the first two years of
operation. The observed Mean Time Between Failure
(MTBF) was 1610 h at 18 mon, 3657 h after 19 mon and
1876 h after 22 mon of operation. The model predicts an
MTBF of 1888 h, assuming λ is 15. The optimistic es-
timate of λ of 10 results in an estimate of 1258 h, while
the pessimistic estimate of 20 results in an MTBF of
2832 h.

6.5 Conclusions and Reflections

A simple model for predicting the time of fault detec-
tion on a reliability growth test with small sample sizes
has been described. The model requires subjective input
from relevant engineers describing the number of faults
that may exist within the design and estimates the rate
of detection of faults based on a mixture of the empirical
test data and the aforementioned expert judgement.

An illustrative example has been constructed based
on a desensitised version of real data where the model
has been used in anger. Through this example the pro-
cesses of constructing the predictions and validating the
model have been illustrated.

Despite their complexity, modern electronic systems
can be extremely reliable and hence reliability growth
tests are increasingly being viewed as a luxury that
industry can no longer afford. Obviously, omitting relia-
bility growth tests from development programmes would
not be sensible for systems with complex interactions
between subassemblies, since potentially much useful
information could be gained to inform development de-
cisions. This reinforces that there remains a need to
model the fault detection process to provide appropriate
decision support. The modelling framework considered
here lends itself easily to test data on partitions of the

system, as the key drivers are the number of faults in the
design and the rate at which there are detected. These
are easily amalgamated to provide an overall prediction
of the time until next system failure.

The approach considered here combines both
Bayesian and frequentist approaches. The main reason
for this is that, in our experience, we were much more
confident of the subjective data obtained describing the
number of faults that may exist within a design and less
so about subjective assessments describing when these
would realised.

The recent paradigm shift in industry to invest more
in reliability enhancement in design and early devel-
opment means that observable failures have decreased
and hence presented new growth modelling challenges.
Analysis during product development programmes is
likely to become increasingly dependent upon engineer-
ing judgement, as the lack of empirical data will result
in frequentist techniques yielding uninformative support
measures. Therefore, Bayesian methods will become
a more realistic practical approach to reliability growth
modelling for situations where engineering judgement
exists. However, Bayesian models will only be as good
as the subjective judgement used as input.
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Promotional W7. Promotional Warranty Policies:
Analysis and Perspectives

Warranty is a topic that has been studied
extensively by different disciplines including
engineering, economics, management science,
accounting, and marketing researchers [7.1, p. 47].
This chapter aims to provide an overview on
warranties, focusing on the cost and benefit
perspective of warranty issuers.

After a brief introduction of the current status
of warranty research, the second part of this
chapter classifies various existing and several
new promotional warranty policies to extend the
taxonomy initiated by Blischke and Murthy [7.2].

Focusing on the quantitative modeling
perspective of both the cost and benefit analyses
of warranties, we summarize five problems that
are essential to warranty issuers. These problems
are: i) what are the warranty cost factors; ii) how
to compare different warranty policies; iii) how
to analyze the warranty cost of multi-component
systems; iv) how to evaluate the warranty benefits;
v) how to determine the optimal warranty policy.

A list of future warranty research topics are
presented in the last part of this chapter. We hope
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that this will stimulate further interest among
researchers and practitioners.

Warranty is an obligation attached to products (items
or systems) that requires the warranty issuers (man-
ufacturers or suppliers) to provide compensation to
consumers according to the warranty terms when the
warranted products fail to perform their pre-specified
functions under normal usage within the warranty
coverage period. Similar definitions can be found
in Blischke and Murthy [7.1, 3], McGuire [7.4], and
Singpurwalla and Wilson et al. [7.5]. Based on this
definition, a warranty contract should contain at least
three characteristics: the coverage period (fixed or ran-
dom), the method of compensations, and the conditions
under which such compensations would be offered.
The last characteristic is closely related to warranty
execution since it clarifies consumers’ rights and pro-
tects warranty issuers from excessive false claims.
From the costing perspective, the first two character-
istics are more important to manufacturers because
they determine the depth of the protection against pre-

mature failures and the direct cost related to those
failures.

Traditionally, warranty serves as a protection instru-
ment attached to products sold to consumers. There are
two facets of the protection role: on one hand, it guaran-
tees a properly functioning product for at least a period
of w, either financially or physically. On the other hand,
it also specifies an upper bound on the liability of the
supplier induced by the warranty. In addition to the pro-
tection role, warranty has always been one of the most
important elements in business marketing strategy. As
indicated in [7.4, p.1], manufacturers’ primary rationale
for offering warranty is to support their products to gain
some advantage in the market, either by expressing the
company’s faith in the product quality, or by competing
with other firms. Due to the more than ever fierce com-
petition in the modern economy, the market promotion
role of warranty has become even more significant. Man-
ufacturers are fighting with each other through various
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channels from competitive pricing, improved product
reliability, to more comprehensive warranties. Because
of technology constraints or time constraint, it is usu-
ally difficult to improve product quality in a short time.
As a result, warranty has evolved as an essential part of
marketing strategy, along with pricing and advertising,
which is especially powerful during the introduction pe-
riod of new, expensive products such as automobiles and
complex machinery.

In the last two decades, warranty has been studied
extensively among many disciplines such as engineer-
ing, economics, statistics, marketing and management
science, to name a few. Consequently, the literature
on warranty is not only vast, but also disjoint [7.1].
There are three books and hundreds of journal articles
that have addressed warranty-related problems within
the last ten years. A comprehensive collection of re-
lated references up to 1996 can be found in [7.3].
In general, researchers in engineering are interested
in quality control and improving product reliability
to reduce production and service costs. Some of the
major references are Chen et al. [7.6], Djamaludin
et al. [7.7], Hedge and Kubat [7.8], Mi [7.9], Murthy
and Hussain [7.10], Nguyen and Murthy [7.11], and
Sahin [7.12]. Economists usually treat warranty as
a special type of insurance. Consequently, they de-
veloped the economic theory of warranties as one of
many applications of microeconomics. We refer read-

ers to DeCroix [7.13], Emons [7.14, 15], Lutz and
Padmanabhan [7.16], Padmanabhan and Rao [7.17],
Murthy and Asgharizadeh [7.18] and the references
therein. Statisticians mainly focus on warranty claim
prediction, statistical inference of warranty cost, and es-
timation of product reliability or availability. Some of
the key references are Frees [7.19, 20], Ja et al. [7.21],
Kalbfleisch [7.22], Kao and Smith [7.23, 24], Men-
zefricke [7.25], Padmanabhan and Worm [7.26] and
Polatoglu [7.27]. A long-term trend in warranty study
is the focus on various warranty-management aspects.
Some recent references are Chun and Tang [7.28], Ja
et al. [7.21], Lam and Lam [7.29], Wang and Sheu [7.30],
and Yeh et al. [7.31,32]. Blischke and Murthy [7.33] de-
veloped a framework for the analytical study of various
issues related to warranty. Recently, Murthy and Dja-
maludin [7.34] enriched the framework by summarizing
the literature since 1992 from an overall business per-
spective. Another review by Thomas and Rao [7.35]
provided some suggestions for expanding the analysis
methods for making warranty decisions.

In this chapter, we briefly review some recent work
in warranty literature from the manufacturers’ perspec-
tive. The objectives of this chapter are to classify various
existing and relatively new warranty policies to ex-
tend the taxonomy proposed in [7.2], and to summarize
and illustrate some fundamental warranty economic
problems.

7.1 Classification of Warranty Policies

Numerous warranty policies have been studied in the last
several decades. Blischke and Murthy [7.2] presented
a taxonomy of more than 18 warranty policies and pro-
vided a precise statement of each of them. In this section,
we extend the taxonomy by addressing several recently
proposed policies that might be of interests to warranty
managers. It should be noted that we mainly focus on
type A policies [7.2], which, based on the taxonomy, are
referred to as policies for single items and not involving
product development.

7.1.1 Renewable
and Nonrenewable Warranties

One of the basic characteristics of warranties is whether
they are renewable or not. For a regular renewable policy
with warranty period w, whenever a product fails within
w, the buyer is compensated according to the terms of
the warranty contract and the warranty policy is renewed

for another period w. As a result, a warranty cycle T ,
starting from the date of sale, ending at the warranty ex-
piration date, is a random variable whose value depends
on w, the total number of failures under the warranty,
and the actual failure inter-arrival times. Renewable war-
ranties are often offered for inexpensive, nonrepairable
consumer electronic products such as microwaves, cof-
fee makers, and so forth, either implicitly or explicitly.
One should notice that theoretically the warranty cycle
for a renewable policy can be arbitrarily large. For ex-
ample, consumers can induce the failures so that they
keep on getting new warranties indefinitely. Such moral
hazard problems might be one of the reasons that renew-
able policies are not as popular as nonrenewable ones
among warranty issuers.

One way to remedy this problem is to modify the
regular renewable policy in the following way: in-
stead of offering the original warranty with a period
of w repeatedly upon each renewing, warranty issuers
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could setwi = αwi−1, α ∈ (0, 1], for i = 1, 2, · · · , where
wi is the warranty length for the i-th renewing, and
w0 = w. Actually, this defines a new type of renewable
warranty, which we refer to as geometric renewable war-
ranty policies. Clearly, a geometric renewable policy is
a generalization of a regular renewable policy, which
degenerates to the latter when α= 1.

The majority of warranties in the market are nonre-
newable; for these the warranty cycle, which is the same
as the warranty period, is not random, but predetermined
(fixed), since the warranty obligation will be terminated
as soon as w units of time pass after sale. This type of
policies is also known as a fixed-period warranty.

7.1.2 FRW, FRPW, PRW, CMW,
and FSW Policies

According to the methods of compensation specified
in a warranty contract upon premature failures, there
are three basic types of warranties: free replacement
warranty (FRW), free repair warranty (FRPW), and pro-
rata warranty (PRW). Combination warranty (CMW)
contains both features of FRW/FRPW and PRW. Full-
service warranty, (FSW), which is also known as
preventive maintenance warranty, is a policy that may
be offered for expensive deteriorating complex prod-
ucts such as automobiles. Under this type of policies,
consumers not only receive free repairs upon premature
failures, but also free (preventive) maintenance.

For nonrepairable products, the failed products un-
der warranty will usually be replaced free of charge
to consumers. Such a policy is often referred to as
a free replacement warranty or an unlimited warranty.
In practice, even if a product is technically repairable,
sometimes it will be replaced upon failure since repair
may not be economically sound. As a result, for inexpen-
sive repairable products, warranty issuers could simply
offer FRW policies. Consequently, these inexpensive
repairable products can be treated as nonrepairable.
However, for repairable products, if the warranty terms
specify that, upon a valid warranty claim, the warranty
issuer will repair the failed product to working condi-
tion free of charge to buyers, then such a policy is a
so-called free repair warranty. In practice, it is not rare
that a warranty contract specifies that the warranty issuer
would repair or replace a defective product under certain
conditions. This is the reason why most researchers do
not treat FRW and FRPW separately. Nevertheless, we
feel that it is necessary to differentiate these two type of
policies based on the following reasoning: first, repair
cost is usually much lower than replacement cost except

for inexpensive products; secondly, by clearly defining
the compensation terms, warranty issuers may establish
a better image among consumers, which can surely be
helpful for the marketing purpose.

Under a FRW policy, since every failed product
within T is replaced by a new one, it is reasonable
to model all the subsequent failure times by a single
probability distribution. However, under a FRPW, it is
necessary to model the repair impact on failure times of
a warranted product. If it is assumed that any repair is
as-good-as-new (perfect repair), then from the model-
ing perspective, there is little difference between FRW
and FRPW. For deteriorating complex systems, minimal
repair is a commonly used assumption. Under this as-
sumption, a repair action restores the system’s failure
rate to the level at the time epoch when the last failure
happened. Minimal repair was first introduced by Bar-
low and Proschan [7.36]. Changing a broken fan belt on
an engine is a good example of minimal repair since the
overall failure rate of the car is nearly unchanged. Perfect
repair and minimal repair represent two extremes relat-
ing to the degree of repair. Realistically, a repair usually
makes a system neither as-good-as-new, nor as-bad-as-
old (minimal repair), but to a level in between. This type
of repair is often referred to as imperfect repair. In the lit-
erature of maintenance and reliability, many researchers
have studied various maintenance policies considering
imperfect repair. A recent review on imperfect main-
tenance was given by Pham and Wang [7.37]. In the
warranty literature, the majority of researchers consider
repairs as either perfect or minimal. Little has been done
on warranty cost analysis considering imperfect repair.

Both FRW and FRPW policies provide full cover-
age to consumers in case of product failures within T . In
contrast, a PRW policy requires that buyers pay a pro-
portion of the warranty service cost upon a failure within
T in exchange for the warranty service such as repair or
replacement, cash rebate or a discount on purchasing
a new product. The amount that a buyer should pay is
usually an increasing function of the product age (dura-
tion after the sale). As an example, suppose the average
repair/replacement cost per failure is cs, which could be
interpreted as the seller’s cost per product without war-
ranty, if a linear pro-rata function is used, then the cost
for a buyer upon a failure at time t, t <w, is cs

t
w
. The

corresponding warranty cost incurred to the manufac-
turer is cs

(
1− t

w

)
. PRW policies are usually renewable

and are offered for relatively inexpensive products such
as tires, batteries, and so forth.

Generally speaking, FRW and FRPW policies are in
the favor of buyers since manufacturers take all the re-
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sponsibility of providing products that function properly
during the whole warranty cycle [7.1, p. 221]. In other
words, it is the manufacturers that bear all the warranty
cost risk. In contrast, for PRW policies manufacturers
have the relative advantage with regard to the warranty
cost risk. Although they do have to offer cash rebates or
discounts to consumers if failures happen during T , they
are usually better off no matter what consumers choose
to do. If a consumer decides not to file a warranty claim,
then the manufacturer saves himself the cash rebate or
other type of warranty service. If instead a warranty
claim is filed, the manufacturer might enjoy the increase
in sales or at least the warranty service cost is shared by
the consumer.

To balance the benefits between buyers and sellers,
a combination warranty (CMW) that contains both fea-
tures of FRW/FRPW and PRW policies was created.
CMW is a policy that usually includes two warranty pe-
riods: a free repair/replacement period w1 followed by
a pro-rata period w2. This type of warranties is not rare
today because it has significant promotional value to
sellers while at the same time it provides adequate con-
trol over the costs for both buyers and sellers [7.3, p. 12].

For deteriorating complex products, it is essential to
perform preventive maintenance to achieve satisfactory
reliability performance. Maintenance involves planned
and unplanned actions carried out to retain a system at,
or restore it to, an acceptable operating condition [7.38].
Planned maintenance is usually referred to as preventive
maintenance while unplanned maintenance is labeled as
corrective maintenance or repair. The burden of main-
tenance is usually on the consumers’ side. In [7.39],
Bai and Pham proposed a renewable full-service war-
ranty for multi-component systems under which the
failed component(s) or subsystem(s) will be replaced; in
addition, a (preventive) maintenance action will be per-
formed to reduce the chance of future product failures,
both free of charge to consumers. They argue that such
a policy is desirable for both consumers and manufac-
turers since consumers receive better warranty service
compared to traditional FRPW policies, while at the
same time manufacturers may enjoy cost savings due
to the improved product reliability by the maintenance
actions. By assuming perfect maintenance, they derived
the probability distributions and the first two moments of
the warranty cost per warranty cycle for series, parallel,
series–parallel, and parallel–series systems.

Many researchers have studied warranty-mainte-
nance problems. Among them Chun [7.40] determined
the optimal number of periodic maintenance actions dur-
ing the warranty period by minimizing the expected

warranty cost (EWC). Jack and Dagunar [7.41] gen-
eralized Chun’s idea by considering unequal preventive
maintenance intervals. Yeh [7.32] further extended the
work by including the degree of maintenance as one
of the decision variables along with the number of
maintenance actions and the maintenance schedule.
All of these three researches aim to obtain the op-
timal maintenance warranty to assist manufacturers’
decision-making. A related problem is the determina-
tion of the optimal maintenance strategy following the
expiration of warranty from the consumers’ perspec-
tive. Dagpunar and Jack [7.42] studied the problem by
assuming minimal repair. Through a general approach,
Sahin and Polatoglu [7.43] discussed both stationary and
non-stationary maintenance strategies following the ex-
piration of warranty. They proved the pseudo-convex
property of the cost rate function under some mild
conditions.

7.1.3 Repair-Limit Warranty

In maintenance literature, many researchers studied
maintenance policies set up in such a way that differ-
ent maintenance actions may take place depending on
whether or not some pre-specified limits are met. Three
types of limits are usually considered: repair-number-
limit, repair-time-limit, and repair-cost-limit. Those
maintenance policies are summarized by Wang [7.44].

Similarly, three types of repair-limit warranties may
be considered by manufacturers: repair-number-limit
warranty (RNLW), repair-time-limit warranty (RTLW),
and repair-cost-limit warranty (RCLW). Under a RNLW,
the manufacturer agrees to repair a warranted product up
to m times within a period of w. If there are more than
m failures within w, the failed product shall be replaced
instead of being repaired again. Bai and Pham [7.45]
recently studied the policy under the imperfect-repair
assumption. They derived the analytical expressions for
the expected value and the variance of warranty cost per
product sold through a truncated quasi-renewal-process
approach.

AN RTLW policy specifies that, within a warranty
cycle T , any failures shall be repaired by the manufac-
turer, free of charge to consumers. If a warranty service
cannot be completed within τ unit of time, then a penalty
cost occurs to the manufacturer to compensate the in-
convenience of the consumer. This policy was analyzed
by Murthy and Asgharizadeh [7.18] in the context of
maintenance service operation.

For a RCLW policy, there is a repair cost limit τ in
addition to an ordinary FRPW policy. That is, upon each
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failure within the warranty cycle T , if the estimated
repair cost is greater than τ , then replacement instead
of repair shall be provided to the consumer; otherwise,
normal repair will be performed. This policy has been
studied by Nguyen and Murthy [7.46] and others.

It should be noted that various repair limits as
well as other warranty characteristics such as renew-
ing may be combined together to define a new complex
warranty. For example, it is possible to have a renew-
able repair-time-limit warranty for complex systems.
Such combinations define a large set of new war-
ranty policies that may appear in the market in the
near future. Further study is needed to explore the
statistical behavior of warranty costs of such poli-
cies to assist decisions of both manufacturers and
consumers.

7.1.4 One-Attribute Warranty
and Two-Attribute Warranty

Most warranties in practice are one-attribute, for which
the warranty terms are based on product age or product
usage, but not both. Compared to one-attribute war-
ranties, two-attribute warranties are more complex since
the warranty obligation depends on both the product
age and product usage as well as the potential interac-
tion between them. Two-attribute warranties are often
seen in automobile industry. For example, Huyndai,
the Korean automobile company, is currently offering
10 years/100 000 miles limited FRPW on the powertrain
for most of their new models.

One may classify two-attribute warranties according
to the shape of warranty coverage region. Murthy et al.
defined four types of two-attribute warranties labeled as

policy A to policy D (Fig. 1 in [7.47]). The shapes of
the warranty regions are rectangular, L-shaped with no
limits on age or usage, L-shaped with upper limits on
age and usage, and triangular, respectively. Based on the
concept of the iso-cost curve, Chun and Tang [7.28]
proposed a set of two-attribute warranty policies for
which the expected present values of future repair costs
are the same. Some other plausible warranty regions
for two-attribute warranty policies were discussed by
Singpurwalla and Wilson [7.5].

In general, there are two approaches in the analysis
of two-attribute warranties, namely, the one-dimensional
(1-D) approach and the two-dimensional (2-D) ap-
proach. The 1-D approach assumes a relationship
between product age and usage; therefore it eventually
converts a two-attribute warranty into a correspond-
ing one-attribute warranty. This approach is used by
Moskowitz and Chun [7.48], and Chun and Tang [7.28].
The 2-D approach does not impose a deterministic
relationship between age and usage. Instead, a bivari-
ate probability distribution is employed for the two
warranty attributes. Murthy et al. [7.47] followed the
idea and derived the expressions for the expected war-
ranty cost per item sold and for the expected life cycle
cost based on a two-dimensional renewal processes.
Kim and Rao [7.49] obtained the analytical expres-
sions for the warranty cost for the policies A and B
defined in [7.47] by considering a bivariate exponen-
tial distribution. Perhaps the most comprehensive study
of two-attribute warranties so far is by Singpurwalla
and Wilson [7.5], in which, through a game-theory
set up, they discussed in detail both the optimum
price-warranty problem and the warranty reserve de-
termination problem.

7.2 Evaluation of Warranty Policies

Two phenomena make the study of warranties impor-
tant. First, warranty has become common practice for
manufacturers. According to the survey conducted by
McGuire, nearly 95% percent of producers of industrial
products provide warranties on all of their product lines
[7.4, p. 1]; secondly, there is a huge amount of money
involved in warranty programs. Based on a report by the
Society of Mechanical Engineering (www.sme.org), the
annual warranty cost is about 6 billion dollars for Ford,
General Motors and Chrysler combined in the year 2001.

Among many issues related to warranty, there are
two fundamental questions that must be answered, es-
pecially for warranty issuers: (1) how much a warranty

will cost; (2) how much benefit can be earned from a cer-
tain warranty. This section summarizes some ideas and
discussions appeared in the literature that are closely
related to these two questions.

7.2.1 Warranty Cost Factors

Due to the random nature of many warranty cost fac-
tors such as product failure times, warranty cost is
also a random variable whose statistical behavior can
be determined by establishing mathematical links be-
tween warranty factors and warranty cost. There are
numerous factors that may be considered in warranty
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studies. Among them, we believe that the followings
are of great importance: the characteristics of warranty
policies; warranty service cost per failure; product fail-
ure mechanism; impact of warranty service on product
reliability; warranty service time; and warranty-claim-
related factors.

Different warranty policies may require different
mathematical models for warranty cost. One way to
model the warranty cost per item sold is through
a stochastic counting process [N(t), t ≥ 0], which rep-
resents the number of failures over time of a warranted
product. Let S1, S2, · · · be the subsequent failure times,
and denote by CSi the warranty cost associated with
the i-th failure. Assuming that all product failures are
claimed, that all claims are valid, and instant warranty
service, then the total warranty cost per item sold, C(w),
can be expressed as

C(w) =
⎧
⎨

⎩

∑N[T (w)]
i=0 CSi , for N[T (w)] = 1, 2, · · ·

0, for N[T (w)] = 0 .

(7.1)

From (7.1), it is clear that the probabilistic behavior
of C(w) solely depends on N[T (w)] (the number of
failures within a warranty cycle T ) and CSi , as well
as the potential interaction between them. In general it
is very difficult to determine the distribution of C(w).
However, it is possible to obtain the moments of C(w)
using modern stochastic process theory and probability
theory.

For nonrepairable products or repairable products
with a single component, warranty service cost per
failure is often assumed to be constant. However, for
repairable multi-component products, warranty service
cost per failure in general is a random variable whose
distribution is related to the product (system) structure
and the warranty service cost for each component.

Product (system) failure mechanism can be de-
scribed by the distributions of subsequent system failure
times. This involves the consideration of system struc-
ture, the reliability of components and the impact of
repair on components’ reliability and system reliability.
System structure is essential in determining system re-
liability. Extensive research on reliability modeling has
been done for different systems such as series–parallel
systems, parallel–series systems, standby systems, k-
out-of-n systems, and so forth, in the literature of
reliability [7.50]. Unfortunately, to our knowledge, there
is no complete theory or methodology in warranty
that incorporates the consideration of various system
structure.

If a warranted product is nonrepairable or the as-
good-as-new repair assumption is used for repairable
products, then a single failure-time distribution can
be adopted to describe the subsequent product failure
times under warranty. However, if a warranted prod-
uct is repairable and repairs are not as-good-as-new,
then the failure time distribution(s) of repaired prod-
ucts differ(s) from that of a new product. This situation
may be modeled by considering a failure-time distribu-
tion for all repaired products different from that of new
products [7.1]. Strictly speaking, distributions of subse-
quent failure times of a repairable product are distinct,
therefore, such an approach can be only viewed as an
approximation.

As mentioned in Sect. 7.1, warranty compensation
includes free replacement, free repair or cash rebate.
For the case of free replacement, warranty service cost
per failure for manufacturers is simply a constant that
does not depend on the product failure times. In the case
of cash rebate (pro-rata policy), warranty cost per fail-
ure usually relies on product failure time as well as the
rebate function. When repair, especially the not as-good-
as-new repair, is involved in warranty service, one has
to model the repair impact on product reliability, which
in turn has a great impact on warranty cost per fail-
ure. One way to model subsequent failure times under
this situation is to consider them as a stochastic pro-
cess. Consequently, modern stochastic theory of renewal
processes, nonhomogeneous Poisson processes, quasi-
renewal processes [7.38] and general point processes
could be applied.

To our knowledge, most warranty literature as-
sumes that warranty service is instant. This may be
justified when the warranty service time is small com-
pared to the warranty period or the warranty cycle.
A better model is to incorporate explicitly the service
times into warranty cost modeling. One recent attempt
to include non-zero service time in warranty analysis
is by Murthy and Asgharizadeh [7.18]. In this chap-
ter, they developed a game-theoretic formulation to
obtain the optimal decision in a maintenance service
operation.

Warranty claims-related factors include the response
of consumers to product failures and the validation of
warranty claims by warranty issuers. It is no secret that
not all consumers will make warranty claims even if
they are entitled to do so. It is also true that warranty
issuers, to serve their own benefits, usually have a formal
procedure to validate warranty claims before honoring
them. Such situations may be modeled by assigning two
new parameters α and β, where α is the probability that
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a consumer will file a claim upon a failure within T , and
β is the proportion of the rejected claims [7.51].

There are other factors that may be of importance in
warranty cost evaluation such as nonconforming product
quality [7.6], multiple modes of failure, censored obser-
vations [7.20], and etc. Unfortunately, it is impossible
to consider all the factors in one warranty cost model.
Even if such a model exists, it would be too complicated
to be applied.

7.2.2 Criteria for Comparison of Warranties

Warranty managers usually have several choices among
various warranty policies that might be applied to a cer-
tain type of products. This requires some basic measures
as the criteria to make the comparison among these
policies.

There are several measures available, including ex-
pected warranty cost (EWC) per product sold, expected
discounted warranty cost (EDWC) per warranty cycle,
monetary utility function and weighted objective func-
tion. EWC and EDWC are more popular than the others
since they are easy to understand and can be estimated
relatively easily. The key difference between them is
that the latter one considers the value of time, an im-
portant factor for warranty cost accounting and financial
managers.

To our opinion, monetary utility function, U(x), is
a better candidate for the purpose of comparing war-
ranty policies. The functional form of U(x) reflects
the manufacturer’s risk attitude. If a manufacturer is
risk-neutral, then U(x) is linear in x. This implies
that maximizing E[U(x)] is the same as maximizing
U[E(x)]. However, manufacturers may be risk-averse if
they are concerned about the variations in profit or in
warranty cost. For example, a particular manufacturer
may prefer a warranty with less cost variation than an-
other with much larger variation in warranty cost if the
difference between the EWCs is small. If this is the
case, then it can be shown that the corresponding util-
ity function is concave [7.52]. The main difficulty of
the utility theory approach is that utility functions are
subjective.

Weighted objective functions could also be used for
the purpose of comparing warranties for manufactur-
ers. One commonly used weighted objective function is
E[π(x)]−ρV[π(x)], whereρ is a positive parameter rep-
resenting the subjective relative importance of the risk
(variance or standard deviation) against the expectation
and π(x) is the manufacturers profit for a given war-
ranty policy x. Interestingly, such an objective function

coincides to a special case of the utility theory approach
when the manufacturer’s subjective utility function is as-
sumed to only depend on the first two centered moments
of π(x) [7.53, 54].

In the above discussion, the term warranty cost refers
to the manufacturer’s cost per warranted product. In our
opinion, this is the fundamental measure for the pur-
pose of evaluating any warranty for manufacturers since
it provides precise information on the additional cost
incurred to manufacturers due to warranty. An equally
useful measure is the discounted warranty cost (DWC)
per cycle. This measure incorporates the value of time,
therefore it is useful when warranty managers are inter-
ested in determining warranty reserve level. It is also of
importance to financial managers performing warranty
cost analysis.

Some researchers have proposed warranty cost per
unit time, or warranty cost rate, as the primary warranty
cost measure. As indicated by Blischke and Murthy [7.3],
warranty cost rate is useful in managing warranty ser-
vicing resources, such as parts inventory over time with
dynamic sales.

Another related measure is warranty cost over
a product life cycle. Blischke and Murthy named this
cost as life cycle cost-II (LCC-II) [7.1]. A product life
cycle begins with the launch of the product onto the
market and ends when it is withdrawn.

For consumers, warranty cost analysis is usually con-
ducted over the life time of a product. In [7.1], this
cost is labeled as life cycle cost-I (LCC-I). LCC-I is
a consumer-oriented cost measure and it includes ele-
ments such as purchase cost, maintenance and repair
costs following expiration of a warranty, operating costs
as well as disposal costs.

7.2.3 Warranty Cost Evaluation
for Complex Systems

Most products (systems), especially expensive ones, are
composed of several nonrepairable components. Upon
a failure, the common repair practice is to replace failed
components instead of replacing the whole system. For
such products, warranty may be offered for each of the
individual components, or for the whole system. For the
former case, the warranty cost modeling and analysis
for single-component products can be applied readily. In
fact, most warranty literature focuses on the analysis of
warranty for single-component systems via a black-box
approach. However, for the latter case, it is necessary to
investigate warranty with explicit consideration of sys-
tem structure because evidently system structure has

Part
A

7
.2



132 Part A Fundamental Statistics and Its Applications

a huge impact on product reliability, therefore it is
a crucial factor in warranty cost study. Unfortunately,
as indicated by Chukova and Dimitrov [7.55, pp. 544],
so far there has been only limited study on this topic.

Some researchers have discussed the warranty
cost modeling for parallel systems. For example,
Ritchken [7.56] provided an example of a two-
component parallel system under a two-dimensional
warranty. Hussain and Murthy [7.57] also discussed
warranty cost estimation for parallel systems under the
setting that uncertain quality of new products may be
a concern for the design of warranty programs. Chukova
and Dimitrov [7.55] presented a two-component parallel
system under a FRPW policy. Actually, for nonre-
pairable parallel systems, the modeling techniques of
warranty cost is essentially the same as that of black-box
systems unless the system is considered as repairable.

To our knowledge, the only published work about
warranty study on series systems is by Chukova
and Dimitrov [7.55, p. 579–580]. They derived the
EWC per system sold for a two-component series
system under a FRPW policy which offers free re-
placement of the failed component if any system
failure happens within the warranty period w. Re-
cently, Bai and Pham [7.39] obtained the first two
moments of a renewable FSW policy for series,
parallel, series–parallel and parallel–series systems.
The derivation of the first two moments of the
DWC of nonrenewable FRPW and PRW policies
for minimally repaired series systems can be found
in [7.58].

It is possible to use a Markovian model to ana-
lyze warranty cost for complex systems. Balachandran
et al. [7.59] dealt with the problem of determining war-
ranty service cost of a three-component system using
the Markovian approach. A similar discussion can be
seen in [7.55] and the references therein. Although
this approach is a powerful tool in the literature of
reliability, queuing systems, and supply-chain manage-
ment, there are some limitations in the applications of
warranty. First of all, it is difficult to determine the
appropriate state space and the corresponding transi-
tion matrix for the applications in warranty. Secondly,
most Markovian models only provide the analysis of
measures in the steady states by assuming infinite hori-
zon. In other words, the statistical behavior of those
measures in finite horizon (short-run) is either too dif-
ficult to obtain or not of practical interest. However,
in warranty study, it is crucial to understand the finite-
horizon statistical behavior of warranty cost. Thirdly,
warranty claim data as well as reliability data are scarce

and costly. Markovian models usually require more data
since they contain more parameters than ordinary prob-
ability models that could be applied to warranty cost
study.

7.2.4 Assessing Warranty Benefits

As mentioned in the introduction, warranty is increas-
ingly used as a promotional device for marketing
purposes. Consequently, it is necessary to predict and as-
sess quantitatively the benefit that a manufacturer might
generate from a specific warranty [7.35, p. 189]. For
promotional warranties, such benefit is usually realized
through the demand side. Manufacturers generally ex-
pect that the increase in profit as a result of the increase
in sale, which is boosted by warranty, should cover the
future warranty cost.

A simple way to quantify the benefit is to model it
as a function of the parameter(s) of a warranty pol-
icy, for example, w, the warranty period. A linear
form and a quadratic form of w were employed by
Thomas [7.35, 60] for this purpose. As he acknowl-
edged, both forms were not well-founded and shared
the problem of oversimplification [7.35, p. 193]. Another
approach is to estimate the demand function empirically.
Menezes and Currim [7.61] posited a general demand
function where the quantity sold by a firm offering a war-
ranty with period w is a function of its price, warranty
length, advertising, distribution, quality, product feature,
and the corresponding values for the firm’s competitor.
Based on the data from Ward’s Automotive Yearbook,
Consumer Reports, Advertising Age, Leading National
Advertisers, and other sources during the period 1981–
1987, they obtained the price elasticity and the warranty
elasticity, which enabled them to obtain the optimal war-
ranty length through maximizing the present value of
cumulative future profit over a finite planning horizon.
One of the limitations of this approach, as pointed out
by the authors, is that it requires the support of historical
sales data. As a result, it cannot be applied to new prod-
ucts or existing products without such historical data
[7.61, p. 188].

A related problem of the demand side of warranty is
the modeling of sales over time. Mahajan et al. presented
several variant diffusion models that may be appropri-
ate for consumer durables [7.62]. Ja et al. obtained the
first two moments of warranty cost in a product life
cycle by assuming a nonhomogeneous Poisson sale pro-
cess [7.21]. It seems that such models do not allow the
interaction between warranty and sales, therefore, they
may not be used in estimating warranty benefit.
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There is some research (Emons [7.15], Lutz and Pad-
manabhan [7.16], and Padmanabhan and Rao [7.17],
etc.) on the demand side of warranty concerning moral
hazard, advertising, consumers satisfaction, and so forth.
However, compared to the vast warranty literature on
estimating total warranty cost, the study on the demand
side of warranty is far behind. Hopefully we will see
more studies on this aspect in the future.

7.2.5 On the Optimal Warranty Policy

One of the most important objectives of warranty study
is to assist warranty management. In particular, in the de-
sign phase of a warranty program, there are often a set
of warranties that might be appropriate for a specific
type of products. The problem faced by warranty man-
agers therefore is how to determine the optimal warranty
policy.

An early attempt to address the warranty design
problem is based on the concept of life-cycle cost-
ing

(
Blischke [7.63], Mamer [7.64]

)
. It is assumed

that a consumer requires the product over a certain
time period or life cycle from the same producer re-
peatedly upon each product failure no matter whether
under warranty or not. Under this idealized producer–
consumer relationship, the producer’s life-cycle profit
and the consumer’s life-cycle cost can be calculated.
Consequently, a consumer indifference price may be
determined by comparing consumer’s life-cycle costs
with or without warranty. Similarly, the producer’s
indifference price may be calculated based on the
comparison of the life-cycle profits with or without
warranty.

An alternative approach is to set up an optimization
problem to determine the optimal price and warranty
length combination jointly through a game-theoretic
perspective. In general, two parties, a warranty issuer
and a representative consumer, participate in the game.
The latter acts as a follower who responses rationally
to each potential warranty offer by maximizing his/her
utility. The former, as a leader, makes the decision on
the optimal warranty strategy, which maximizes the ex-
pected profit, based on the anticipated rational response
by the consumer. Singpurwalla and Wilson [7.5] studied
two-attribute warranties through this approach. Some
others references are Chun and Tang [7.65], DeCroix
[7.13], Glickman and Berger [7.66], Ritchken [7.67],
Thomas [7.60] and the references therein. In the con-
text of production planning and marketing, Mitra and
Patankar [7.68] presented a multi-criteria model that
could be used in warranty design.

Now, we present a general formulation of the war-
ranty design problem with some discussion, which may
raise more interest among researchers and practitioners
for further study.

Let Ψ = {ψ1, ψ2, · · · , ψn} represent the set of ap-
propriate warranty policies for a given type of products.
Policy ψi may contain more than one parameter. Denote
by wi the set of warranty parameters for ψi ; then we can
represent ψi by ψ(wi ) or wi . If wi contains only one pa-
rameter, say, wi , the warranty period, then wi = {wi}.
Denote by p(wi ) the selling price under the policy ψi ,
and by C j (wi ) the random warranty cost for the j-th
product sold under the policy ψi . Let p0 be the produc-
tion cost per unit (not including the warranty cost), then
the optimal warranty policy ψ(w∗) may be obtained by
solving

max{wi ,∀i,i=1,2,··· ,n}E {U[π(wi )]}
s.t. wl

i ≤wi ≤wu
i ,∀i, i = 1, 2, · · · , n

P

⎡

⎣
d(wi )∑

j=1

C j (wi ) ≥ R0

⎤

⎦≤ α,∀i, i = 1, 2, · · · , n ,

where U(·) is the monetary utility function that re-
flects the risk attitude of the manufacturer. It is a linear
function if the manufacturer is risk-neutral and a con-
cave function in the case of a risk-averse manufacturer;
π(wi )=∑d(wi )

j=1 [p(wi )− p0−C j (wi )];wl
i , w

u
i are some

lower and upper bounds of wi ; d(wi ) represents the
demand function for ψ(wi ); R0 is the predetermined
warranty budget level; and α is the risk-tolerance level
of the manufacturer with regard to R0.

One should note that the second set of constraints is
actually related to value at risk (VaR), a concept widely
used in risk management, which indicates the maximum
percentage value of an asset that could be lost during
a fixed period within a certain confidence level [7.69]. It
is reasonable to assume that manufacturers want to con-
trol VaR such that the probability that the total warranty
cost is over the budget is within the accepted level α.

Solving the optimization problem might be a chal-
lenge. First of all, it is difficult to determine the demand
function d(wi ), although it is possible to estimate it
through marketing surveys or historical data. Secondly,
it is required that warranty managers have complete
knowledge of the selling price p(wi ). This requires
a pricing strategy in the design phase of warranty. It
should be noted that we could have considered p(wi ) as
one of the decision variables, but this makes the problem
more complicated. Besides, it is not rare in practice that
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the price is simply set by adding a fixed margin over the
estimated production cost with warranty. Thirdly, it is re-
quired that the probability distribution of warranty cost
should be known. Little research has been done with re-
gard to this issue except Polatoglu and Sahin [7.27] and
Sahin and Polatoglu [7.70]. In general, numerical meth-

ods are required for this purpose. Fourthly, the problem
is formulated as a nonlinear optimization problem with
some constraints, which may be solved by nonlinear op-
timization software such as GAMS. However, in general
there is no guarantee of the existence of a global optimal
solution.

7.3 Concluding Remarks

A warranty problem, by its nature, is a multi-disciplinary
research topic. Many researchers ranging from the in-
dustry engineer, economist, statistician, to marketing
researchers have contributed greatly to warranty litera-
ture. In this chapter, we present an overview of warranty
policies, focusing on the cost and benefit analysis from
warranty issuers’ perspective. Although we have suc-
cessfully addressed several problems in this area, there
are still a lot of opportunities for future research, a few
of which are listed below:

• To advance warranty optimization models and per-
form empirical study based on the new developed
models.

• To develop and apply efficient algorithms to solve
warranty optimization problems.

• To propose and analyze new warranty policies ap-
propriate for complex systems.

• To Study the distribution and the moments of dis-
counted warranty cost for various policies.

• Warranty cost modeling for systems with more com-
plex structures, including standby systems, bridge
systems and network systems, etc.

• Develop warranty models considering failure depen-
dency between components due to environmental
impact.
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Stationary Ma8. Stationary Marked Point Processes

Many areas of engineering and statistics involve
the study of a sequence of random events,
described by points occurring over time (or space),
together with a mark for each such point that
contains some further information about it (type,
class, etc.). Examples include image analysis,
stochastic geometry, telecommunications, credit
or insurance risk, discrete-event simulation,
empirical processes, and general queueing
theory. In telecommunications, for example, the
events might be the arrival times of requests for
bandwidth usage, and the marks the bandwidth
capacity requested. In a mobile phone context,
the points could represent the locations (at some
given time) of all mobile phones, and the marks 1
or 0 as to whether the phone is in use or not. Such
a stochastic sequence is called a random marked
point process, an MPP for short. In a stationary
stochastic setting (e.g., if we have moved our
origin far away in time or space, so that moving
further would not change the distribution of what
we see) there are two versions of an MPP of interest
depending on how we choose our origin: point-
stationary and time-stationary (space-stationary).
The first randomly chooses an event point as the
origin, whereas the second randomly chooses
a time (or space) point as the origin. Fundamental
mathematical relationships exists between these
two versions allowing for nice applications and
computations. In what follows, we present this
basic theory with emphasis on one-dimensional
processes over time, but also include some recent
results for d-dimensional Euclidean space, R d .

This chapter will primarily deal with marked
point processes with points on the real line (time).
Spatial point processes with points in R

d will be
touched upon in the final section; some of the
deepest results in multiple dimensions have only
come about recently.

Topics covered include point- and time-
stationarity, inversion formulas, the Palm
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a stochastic process, the rate conservation law,
conditional intensities, and ergodicity.
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8.1 Basic Notation and Terminology

Here the basic framework is presented for MPPs on the
real line, with the points distributed over time.

8.1.1 The Sample Space as a Sequence Space

A widely used class of MPPs has events corresponding
to points in time,

0 ≤ t0 < t1 < t2 < · · · , lim
n→∞ tn =∞ . (8.1)

An MPP is then defined as a stochastic sequence; a se-
quence of random variable (RVs),

Ψ = {(tn, kn) : n ≥ 0} ,
where the marks kn take values in a general space K , the
mark space, which is assumed to be a complete separa-
ble metric space, where the sample-paths of Ψ satisfy
(8.1). (It helps to imagine that the arrivals correspond
to customers arriving to some fixed location over time,
each one bringing with them an object called their mark:
the n-th customer arrives at time tn and brings mark
kn .) Alternatively, with Tn

def=tn+1− tn, n ≥ 0 denoting
the n-th interevent (interarrival) time, Ψ can equiva-
lently be defined by its interevent time representation
{t0, {(Tn, kn) : n ≥ 0}}.

Letting R+ and Z+ denote the non-negative
real numbers and non-negative integers respectively,
S = (R+ ×K )Z+ denotes sequence space, endowed with
the product topology and corresponding Borel σ-field.
s = {(yn, kn) : n ∈ Z+} ∈ S denotes a sequence.

M
def={s ∈ S : s satisfies (8.1)}, and is the space of

marked point processes with mark space K , that
is, the MPP space. Elements of M are denoted by
ψ = {(tn, kn)} ∈ M ; they are the sample paths of an
MPP Ψ :Ω→ M , formally a mapping from a probabil-
ity space Ω into M with some underlying probability P.
[It is standard to suppress the dependency of the random
elements on ω ∈Ω; e.g., tn(ω), kn(ω), Ψ (ω).] When
Ω = M , this is called the canonical representation of Ψ .
The sequence of points themselves, without marks, {tn},
is called a point process.

The probability distribution of Ψ is denoted by
P

def=P(Ψ ∈ ·); it is a distribution on the Borel sets E ⊂ M ;
P(E) = P(Ψ ∈ E).

Two MPPs Ψ1 and Ψ2 are said to have the same
distribution if P(Ψ1 ∈ E) = P(Ψ2 ∈ E) for all Borel sets
E ⊂ M ; equivalently all finite-dimensional distributions
of the two sequences are identical, e.g., they agree for

all Borel sets of the form

E = {ψ ∈ M : tn0 ≤ s0, kn0 ∈ K0, . . . ,

tnl ≤ sl, knl ∈ Kl} ,
where 0≤ n0 < · · ·< nl , l ≥ 0, si ≥ 0, Ki ⊂ K , 0 ≤ i ≤ l.

The assumption (8.1) of strict monotonicity,
tn < tn+1, n ≥ 0, can be relaxed to tn ≤ tn+1, n ≥ 0, to
accommodate batch arrivals, such as busloads or other
groups that arrive together, but if the inequalities are
strict, then the MPP is called a simple MPP.

8.1.2 Two-sided MPPs

With Z denoting all integers, a two-sided MPP, Ψ =
{(tn, kn) : n ∈ Z}, has points defined on all of the real
line R thus allowing for arrivals since the infinite past;

· · · t−2 < t−1 < t0 ≤ 0 < t1 < t2 < · · · . (8.2)

(In this case, by convention, t0 ≤ 0.)

8.1.3 Counting Processes

For an MPP ψ ∈ M , let N(t) =∑
j I{t j ∈ (0, t]} denote

the number of points that occur in the time inter-
val (0, t], t > 0. (I{B} denotes the indicator function
for the event B.) {N(t) : t ≥ 0} is called the count-
ing process. By convention N(0)

def=0. For 0 ≤ s ≤ t,
N(s, t]def=N(t)− N(s), the number of points in (s, t].

In a two-sided framework, counting processes can be
extended by defining N(−t) =∑

j I{t j ∈ (−t, 0]}, the
number of points in (−t, 0], t ≥ 0. In this case

t j =
⎧
⎨

⎩
inf{t > 0 : N(t) ≥ j}, j ≥ 1 ;
− inf{t > 0 : N(−t) ≥ j+1}, j ≤ 0 ,

and, for t > 0, N(t)=max{ j ≥ 1 : t j ≤ t}; tN(t) is thus the
last point before or at time t, and tN(t)+1 is the first point
strictly after time t; tN(t) ≤ t < tN(t)+1. TN(t) = tN(t)+1−
tN(t) is the interarrival time that covers t. Note that {t j ≤
t} = {N(t) ≥ j}, j ≥ 1: an obvious but useful identity.
For example, in a stochastic setting it yields P(N(t) =
0) = P(t1 > t). [In the one-sided case, P(N(t) = 0) =
P(t0 > t).]

For a fixed mark set K ⊂ K , let NK (t) =∑
j I{t j ∈

(0, t], k j ∈ K}, the counting process of points restricted
to the mark set K . The MPP corresponding to {NK (t)}
is sometimes referred to as a thinning of ψ by the mark
set K .
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Counting processes uniquely determine the MPP,
and can be extended to measures, as will be presented
in Sect. 8.1.5.

8.1.4 Forward
and Backward Recurrence Times

The forward recurrence time is defined by

A(t)
def= tN(t)+1− t

=
{

t0− t, if 0 ≤ t < t0 ;
tn+1− t, if tn ≤ t < tn+1, n ∈ Z+ .

It denotes the time until the next event strictly after
time t and is also called the excess at time t. At an
arrival time tn , A(tn−) = 0 and A(tn) = A(tn+) = Tn ,
then it decreases down to zero linearly with rate one,
making its next jump at time tn+1 and so on.

Similarly we can define the backward recurrence
time

B(t)
def= t− tN(t)

=
{

t, if 0 ≤ t < t0 ;

t− tn, if tn ≤ t < tn+1, n ∈ Z+ ,

which denotes the time since the last event prior to or
at time t. In particular, B(t) ≤ t and B(0) = 0. B(t) is
also called the age at time t. At an arrival time tn+1,
B(tn+1−) = Tn and B(tn+1+) = 0 and then increases to
Tn+1 linearly with rate one. The sample paths of A and
B are mirror images of each other.

In a two-sided framework, A(t) = tn+1− t and
B(t) = t− tn, if tn ≤ t < tn+1, n ∈ Z ; B(t) is no longer
bounded by t, B(0) = |t0| and A(0) = t1 [recall (8.2)].

S(t)= B(t)+ A(t)= tN(t)+1− tN(t) = TN(t) is called
the spread or total lifetime at time t; S(t)= Tn if tn ≤ t <
tn+1, and is therefore piecewise constant. In a two-sided
framework, S(0) = |t0|+ t1.

In the context of consecutively replaced light bulbs at
times tn with lifetimes {Tn}, A(t) denotes the remaining
lifetime of the bulb in progress at time t, while B(t)
denotes its age. S(t) denotes the total lifetime of the
bulb in progress.

8.1.5 MPPs as Random Measures:
Campbell’s Theorem

An MPP ψ can equivalently be viewed as a σ-finite Z+
valued measure

ψ =
∑

j

δ(t j ,k j ) ,

on (the Borel sets of) R × K , where δ(t j ,k j ) is the Dirac
measure at (t j , k j ). For A ⊂ R and K ⊂ K , ψ(A × K )=
the number of points that occur in the time set A with
marks taking values that fall in K ;

ψ(A × K )=
∑

j

I(t j ∈ A, k j ∈ K ) .

ψ(A × K ) <∞ for all bounded sets A. If g = g(t, k) is
a real-valued measurable function on R × K , then the
integral ψ(g) is given by

ψ(g)=
∫

gdψ =
∫

g(t, k)ψ(dt, dk) =
∑

j

f (t j , k j ) .

An MPP Ψ can thus be viewed as a random mea-
sure and ν denotes its intensity measure on R × K ,
defined by ν(A × K )= E[Ψ (A × K )], the expected value;
ν(dt, dk) = E[Ψ (dt, dk)]. Starting first with simple
functions of the form g(t, k)= I{t ∈ A, k ∈ K} and then
using standard approximation arguments leads to

Theorem 8.1 (Campbell’s theorem)
For any non-negative measurable function g = g(t, k),

E
[
Ψ (g)

]=
∫

gdν .

8.1.6 Stationary Versions

An MPP can be stationary in one of two ways, either
with respect to point shifts or time shifts (but not both);
the basics are presented here.

Define for each s ≥ 0, the MPP ψs by

ψs = {[tn(s), kn(s)] : n ∈ Z+}
def= {(tN(s)+n+1− s, kN(s)+n+1); n ∈ Z+} , (8.3)

the MPP obtained from ψ by shifting to s as the ori-
gin and relabeling the points accordingly. For s ≥ 0
fixed, there is a unique m ≥ 0 such that tm ≤ s < tm+1,
in which case t0(s) = tm+1− s; t1(s) = tm+2− s; and
tn(s) = tm+n+1− s for n ∈ Z+ . Similarly, the marks be-
come k0(s) = km+1; and kn(s) = km+n+1 for n ∈ Z+ .

When choosing s = t j , a particular point, then ψs is
denoted byψ( j). In this caseψ is shifted to the point t j so
ψ( j) always has its initial point at the origin: t0(t j ) = 0,
j ≥ 0.

The mappings from M → M taking ψ to ψs and ψ

to ψ( j) are called shift mappings.
Applying these shifts to the sample paths of an MPP

Ψ yields the shifted MPPs Ψs and Ψ( j). It is noteworthy
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that, while Ψs is a deterministic shift of Ψ , Ψ( j) is a ran-
dom shift because t j = t j (ω) depends upon the sample
path.

In a two-sided framework, the shifts also include
(and relabel) all points to the left of s, and s can be
negative too.

Point Stationarity

Definition 8.1
Ψ is called a point-stationary MPP if Ψ( j ) has the same
distribution as Ψ for all j ∈ Z+ . Equivalently its repre-
sentation {t0, {(Tn, kn) : n ∈ Z+}} has the properties that
P(t0 = 0)= 1 and {(Tn, kn) : n ∈ Z+} forms a stationary
sequence of RVs.

If {(Tn, kn) : n ∈ Z+} is also ergodic, then Ψ is said
to be a point-stationary and ergodic MPP.

For simplicity, we will always assume that a point-
stationary MPP is ergodic.

In practical terms, ergodicity means that, for any
measurable f : M −→ R+ ,

lim
n→∞

1

n

n∑

j=1

f (Ψ( j)) = E( f (Ψ )) ,

with probability 1 (wp1) . (8.4)

(This is Birkoff’s ergodic theorem in its ergodic
form.) For example, if f (ψ) = T0, then f (ψ( j)) = Tj
and (8.4) yields the strong law of large num-
bers for the stationary ergodic sequence {Tn};
limn→∞ 1

n

∑n
j=1 Tj = E(T0), wp1. (The non-ergodic

case is discussed in Sect. 8.8.)

Inherent in the definition of point-stationarity is
the fact that there is a one-to-one correspon-
dence between point-stationary point processes and
stationary sequences of non-negative RVs; given
any such stationary sequence {Tn}, tn

def=T0+· · ·+
Tn−1 (and t0

def=0) defines a point-stationary point
process.

When Ψ is point-stationary, we let T denote
a generic interarrival time, define the arrival rate
λ = [E(T )]−1, and let F(x) = P(T ≤ x), x ≥ 0 de-
note the stationary interarrival time distribution with
F̄(x) = 1− F(x) being its tail. As in the classic ele-
mentary renewal theorem, it holds that N(t)/t → λ as
t →∞, wp1.

From Kolmogorov’s extension theorem in probabil-
ity theory, a stationary sequence can be extended to be
two-sided, {(Tn, kn) : −∞< n <∞}, yielding a point-

stationary MPP on all of R:

· · · t−2 < t−1 < t0 = 0 < t1 < t2 < · · · ,
where t−n

def=− (T−1+· · ·+T−n), n ≥ 1.
Point-stationary MPPs arise naturally as limits (in

distribution) of Ψ( j) as j →∞. In applications the limit
can be taken in a Cesàro sense. Independently take a dis-
crete RV J with a uniform distribution on {1, . . . , n},
and define an MPP Ψ 0 by defining its distribution as

P0(·) = P(Ψ 0 ∈ ·) def= lim
n→∞ P(Ψ(J ) ∈ ·)

= lim
n→∞

1

n

n∑

j=1

P(Ψ( j) ∈ ·) . (8.5)

If the limit holds for all Borel sets of M , then it
can be shown that it holds uniformly over all Borel sets;
known as Cesàro total variation convergence. Assuming
the existence of such a limiting distribution P0, it is
unique and is called the point-stationary distribution of
Ψ (or of P) and Ψ is said to be point asymptotically
stationary. Any MPP Ψ 0 = {(t0

n , k0
n)} distributed as P0

is called a point-stationary version of Ψ . Intuitively this
is obtained from Ψ by randomly selecting a point t j
so far in the infinite future that shifting further to the
next point t j+1 does not change the distribution; it is
stationary with respect to such point shifts.

It is important to remember that a point-
stationary MPP has (wp1) a point at the origin.

Time Stationarity

Definition 8.2
Ψ is called time-stationary if Ψs has the same distribu-
tion as Ψ , for all s ≥ 0. In this case P(t0 > 0) = 1 and
{NK (t) : t ≥ 0} has stationary increments for each mark
set K .

When Ψ is time-stationary, the interevent time se-
quence {(Tn, kn)} will not be stationary in general; in
particular, the distribution of Tj will generally be differ-
ent for different choices of j. However, the stochastic
process {A(t)} is a stationary process.

Ergodicity is defined as requiring that the measure-
preserving flow of shifts θs : M to M , s ≥ 0, θsψ = ψs
be ergodic under the distribution of Ψ . (In the point-
stationary case, ergodicity is equivalent to requiring
that the measure-preserving shift map θ(1) = θt1 be
ergodic.)

For simplicity, we will always assume that
a time-stationary MPP is ergodic. In practical terms,
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ergodicity means that, for any measurable f : M −→ R+
(satisfying

∫ t
0 f (Ψs)ds <∞, t ≥ 0, wp1),

lim
t→∞

1

t

t∫

0

f (Ψs)ds = E
[

f (ψ)
]
, wp1 . (8.6)

When Ψ is time-stationary, the arrival rate is defined
by λ

def=E[N(1)] and it holds that E[N(t)] = λt, t ≥ 0. It
also holds that N(t)/t → λ as t →∞, wp1.

Time-stationary MPPs can be extended to be two-
sided

· · · t−2 < t−1 < t0 < 0 < t1 < t2 < · · · , (8.7)

where P(t0 < 0, t1 > 0) = 1. In this case {B(t)} and
{S(t)} are stationary processes in which case B(0)= |t0|
and A(0) = t1 are identically distributed.

Time-stationary MPPs arise naturally as limits (in
distribution) of Ψt as time t →∞. In applications the
limit can be taken in a Cesàro sense: independently take
a continuous RV, U , uniformly distributed over (0, t),
and define an MPP Ψ ∗ by defining its distribution as

P∗(·) = P(Ψ ∗ ∈ ·) def= lim
t→∞ P(ΨU ∈ ·)

= lim
t→∞

1

t

t∫

0

P(Ψs ∈ ·)ds . (8.8)

If the limit holds for all Borel sets of M, then it
can be shown that it holds uniformly over all Borel
sets; Cesàro total variation convergence. Assuming the
existence of such a limiting distribution P∗, it is unique
and is called the time-stationary distribution of Ψ (or of
P) and Ψ is said to be time asymptotically stationary.
Any MPP Ψ ∗ = {(t∗n , k∗n)} distributed as P∗ is called
a time-stationary version of Ψ . Intuitively it is obtained
from Ψ by randomly selecting a time t as the origin that
is so far in the infinite future that shifting s time units
further does not change the distribution; it is stationary
with respect to such time shifts.

It is important to remember that a time-
stationary MPP has (wp1) no point at the origin.

8.1.7 The Relationship
Between Ψ, Ψ0 and Ψ∗

Suppose that Ψ has a point-stationary version Ψ 0. What
then is the time-stationary distribution ofΨ 0? Intuitively
it should be the same as the time-stationary distribution
of Ψ , and this turns out to be so:

Proposition 8.1
Ψ is point asymptotically stationary (defined as in (8.5))
with point-stationary (and ergodic) P0 under which

0 < λ <∞, if and only if Ψ is time asymptotically sta-
tionary (defined as in (8.8)) with time-stationary (and
ergodic) P∗ under which 0 < λ <∞. In this case P∗
is the time-stationary distribution of P0, and P0 is
the point-stationary distribution of P∗. (All three of
Ψ, Ψ 0, Ψ ∗ share the same point- and time-stationary
distributions.)

Because of the above proposition,Ψ is called asymp-
totically stationary if one (hence both) of P0, P∗ exist
with 0 < λ <∞.

Proposition 8.2
Suppose that Ψ is asymptotically stationary (and er-
godic). Then the two definitions of the arrival rate
λ coincide; λ= E[N∗(1)] = [E(T 0)]−1. Moreover, the
ergodic limits in (8.4) and (8.6) hold for all three
MPPs, Ψ,Ψ 0, Ψ ∗ with the right-hand sides replaced by
E[ f (Ψ 0)] and E[ f (Ψ ∗)] respectively.

It turns out that, in fact, all three MPPs, Ψ,Ψ 0, Ψ ∗
shift couple, and that is the key to understanding the
above two propositions (

d∼ denotes “is distributed as”):

Proposition 8.3
If Ψ is asymptotically stationary, then there ex-
ist versions of Ψ

d∼ P, Ψ 0 d∼ P0, Ψ ∗ d∼ P∗ all
on a common probability space together with three ran-
dom times, S1, S2, S2 such that ΨS1 = Ψ 0

S2
= Ψ ∗

S3
. In

other words, they share the same sample paths modulo
some time shifts.

Given an asymptotically stationary MPP Ψ , the
superscripts 0 and ∗ are used to denote point- and time-
stationary versions of all associated processes of Ψ .
Ψ 0 = {(t0

n , k0
n)}, and Ψ ∗ = {(t∗n , k∗n)} denote the two ver-

sions, and, for example, {(T 0
n , k0

n)} denotes the stationary
sequence of interevent times and marks for Ψ 0, and T 0

denotes such a generic interevent time with F being its
distribution; F(x)= P(T 0 ≤ x), x ≥ 0. {A∗(t)} denotes
the forward recurrence time process for Ψ ∗, etc.

To illustrate the consequences of Proposition 8.8.2,
suppose that f (ψ)= t0. Then f (ψs)= t0(s)= A(s), for-
ward recurrence time, and it holds that

lim
t→∞

1

t

t∫

0

A∗(s)ds = E(t∗0 ), wp1 ,

lim
t→∞

1

t

t∫

0

A(s)ds = E(t∗0 ), wp1 ,
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lim
t→∞

1

t

t∫

0

A0(s)ds = E(t∗0 ), wp1 .

8.1.8 Examples

Some simple examples are presented. In some of these
examples, marks are left out for simplicity and to illus-
trate the ideas of stationarity better.

1. Poisson process: A (time-homogenous) Poisson pro-
cess with rate λ has independent and identically dis-
tributed (iid) interarrival times Tn, n ≥ 0 with an ex-
ponential distribution, P(T ≤ x)= 1− e−λx, x ≥ 0.
Its famous defining feature is that {N(t)} has both
stationary and independent increments, and that
these increments have a Poisson distribution; N(t) is
Poisson-distributed with mean E[N(t)] = λt, t ≥ 0;
P[N(t) = n] = [

e−λt(λt)n]/n!, n ∈ Z+ .
If we place t0 at the origin, t0 = 0, then the Poisson
process is point-stationary, whereas if we (indepen-
dently) choose t0 distributed as exponential at rate λ,
then the Poisson process becomes time-stationary.
Thus, for a Poisson process, removing the point at
the origin from Ψ 0 yields Ψ ∗, while placing a point
at the origin for Ψ ∗ yields Ψ 0. Observe that, by the
memoryless property of the exponential distribution,
A(t) is distributed as exponential with rate λ for all
t ≥ 0.
A two-sided time-stationary version is obtained as
follows: Choose both |t∗0 | = B∗(0) and t∗1 = A∗(0) as
iid with an exponentialλ distribution. All interarrival
times T∗

n ,−∞< n <∞ are iid exponential at rate λ
except for T∗

0 = t∗1 − t∗0 = B∗(0)+ A∗(0) = S∗(0),
the spread, which has an Erlang distribution (mean
2/λ). That the distribution of T∗

0 is different (larger)
than T results from the inspection paradox: Ran-
domly choosing the origin in time, we are more
likely to land in a larger than usual interarrival time
because larger intervals cover a larger proportion of
the time line. S∗(t) is distributed as Erlang (mean
2/λ) for all t ∈ R , by stationarity.
The Poisson process is the unique simple point pro-
cess with a counting process that possesses both
stationary and independent increments.

2. Renewal process: Interarrival times {Tn : n ≥ 0}, are
iid with a general distribution F(x) = P(T ≤ x) and
mean λ−1 = E(T ). If t0 = 0 then the renewal pro-
cess is point-stationary, and is called a non-delayed
version of the renewal process. If instead, indepen-
dently, t0 = A(0) > 0 and has the stationary excess

distribution, Fe, defined by

Fe(x) = λ

x∫

0

F̄(y)dy, x ≥ 0 , (8.9)

then the renewal process is time-stationary and A∗(t)
is distributed as Fe for all t ≥ 0. (In the Poisson
process case Fe = F.) In general, when t0 > 0 the
renewal process is said to be delayed. For any re-
newal process (delayed or not) Ψ( j) always yields
a point-stationary version Ψ 0 (for any j ≥ 0), while
Ψs always yields a delayed version with delay
t0(s) = A(s). Only when this delay is distributed as
Fe is the version time-stationary. As s →∞, the
distribution of A(s) converges (in a Cesàro total vari-
ation sense) to Fe; this explains why the distribution
of Ψs converges (in a Cesàro total variation sense) to
the time-stationary version we just described.
A two-sided time-stationary version Ψ ∗ is ob-
tained when T∗

n , n �= 0 are iid distributed as
F, and independently [B∗(0), A∗(0)] = (|t∗0 |, t∗1 )
has the joint distribution P(|t∗0 | > x, t∗1 > y) =
F̄e(x+ y), x ≥ 0, y ≥ 0. Here, as for the Poisson
process, T∗

0 = S∗(0) has, due to the inspection para-
dox, a distribution that is stochastically larger than
F, P(T∗

0 > x) ≥ P(T > x), x ≥ 0; this is called the
spread distribution of F and has tail

P(T∗
0 > x) = λx F̄(x)+ F̄e(x) ; (8.10)

while E(T∗
0 )= E(T 2)/E(T ). If F has a density f (x),

then the spread has a density λx f (x), which ex-
presses the length biasing contained in the spread.
Fe always has a density, fe(x) = d

dx Fe(x) = λF̄(x),
whether or not F does.

3. Compound renewal process: Given the counting pro-
cess {N(t)} for a renewal process, and independently
an iid sequence of RVs {Xn} (called the jumps),
with jump distribution G(x)= P(X ≤ x), x ∈ R , the
process

X(t) =
N(t)∑

j=1

X j , t ≥ 0

is called a compound renewal process with jump dis-
tribution G. A widely used special case is when the
renewal process is a Poisson process, called a com-
pound Poisson process.
This can elegantly be modeled as the MPP
Ψ = {(tn, kn)}, where {tn} are the points and
kn = Xn . Because it is assumed that {Xn} is
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independent of {tn}, obtaining point and time-
stationary versions merely amounts to joining in
the iid marks to Example 2’s renewal constructions:
k0

n = Xn = k∗n .
4. Renewal process with marks depending on interar-

rival times: Consider a two-sided renewal process
and define the marks as kn = Tn−1, the length of the
preceding interarrival time. The interesting case is
to construct a time-stationary version. This can be
done by using the two-sided time-stationary version
of the point process, {t∗n }, from Example 2. Note
that, for n �= 1, the k∗n are iid distributed as F, de-
fined by k∗n = T∗

n−1; only k∗1 is different (biased via
the inspection paradox). k∗1 = T∗

0 and has the spread
distribution.

5. Cyclic deterministic: Starting with interarrival time
sequence {Tn} = {1, 2, 3, 1, 2, 3, 1, 2, 3 . . . }, Ψ 0 is
given by defining t0

0 = 0 and

{T 0
n : n ≥ 0}

=

⎧
⎪⎪⎨

⎪⎪⎩

{1, 2, 3, 1, 2, 3, . . . },wp = 1/3 ;
{2, 3, 1, 2, 3, 1, . . . },wp = 1/3 ;
{3, 1, 2, 3, 1, 2, . . . },wp = 1/3 .

(8.11)

(By randomly selecting a j and choosing t j as the
origin, we are equally likely to select a Tj with length
1, 2, or 3; P(T 0 = i) = 1/3, i = 1, 2, 3.) The two-
sided extension is given by defining t0

0 = 0 and

{. . . , T 0
−1, T 0

0 , T 0
1 , . . . }

=

⎧
⎪⎪⎨

⎪⎪⎩

{. . . , 3, 1, 2, . . . },wp = 1/3;
{. . . , 1, 2, 3, . . . },wp = 1/3 ;
{. . . , 2, 3, 1, . . . },wp = 1/3 .

A construction of Ψ ∗ is given as follows. Let U de-
note a random variable having a continuous uniform
distribution over (0, 1). Then

{t∗0 , {T∗
n : n ≥ 0}}

=

⎧
⎪⎪⎨

⎪⎪⎩

U, {2, 3, 1, 2, 3, 1 . . . },wp = 1/6 ;
2U, {3, 1, 2, 3, 1, 2 . . . },wp = 1/3 ;
3U, {1, 2, 3, 1, 2, 3 . . . },wp = 1/2 .

(8.12)

By randomly selecting a time s as the origin, we
would land inside an interarrival time of length 1,
2, or 3 with probability 1/6, 1/3 and 1/2 respec-

tively (they are proportions of time). Given that
we land inside one of length i, t0(s) would be dis-
tributed as iU, i = 1, 2, 3 (e.g., uniform on (0, i)).
Unlike {T 0

n : n ≥ 0}, {T∗
n : n ≥ 0} is not a stationary

sequence because of the unequal probabilities in the
mixture.
This illustrates the general fact that t∗0 has the
stationary excess distribution Fe(x) of the point-
stationary distribution F(x) = P(T 0 ≤ x) [recall
(8.9)]. In a two-sided extension, the distribution of
T∗

0 = |t∗0 |+ t∗1 = S∗(0) is the spread distribution of
F; in this case P(T∗

0 = i)= i/6, i = 1, 2, 3, and the
joint distribution of (|t∗0 |, t∗1 ) is of the mixture form
(1−U,U ), (2−2U, 2U ), (3−3U, 3U ) with proba-
bilities 1/6, 1/3, 1/2 respectively.
This example also illustrates the general fact that the
time reversal of an MPP Ψ has a different distribu-
tion fromΨ ; the sequence {T 0

n : n ≥ 0} has a different
distribution from that of the sequence {T 0

n : n ≤ 0}.
6. Single-server queue: tn denotes the arrival time of

the n-th customer, denoted by Cn , to a system (such
as a bank with one clerk) that has one server behind
which customers wait in queue (line) in a first-in-
first-out manner (FIFO). Upon entering service, Cn
spends an amount of time Sn with the server and
then departs. Dn denotes the length of time that Cn
waits in line before entering service and is called
the delay of Cn in queue. Thus Cn enters service at
time tn +Dn and departs at time tn +Dn + Sn ; Wn =
Dn + Sn is called the sojourn time. The total number
of customers in the system at time t, is denoted by
L(t) and can be constructed from {Wn};

L(t) =
N(t)∑

j=1

I(W j > t− t j ), (8.13)

because C j is in the system at time t if t j ≤ t and
W j > t− t j .
Letting Ψ = [(tn, Sn)] yields an MPP, with marks
kn = Sn , called the input to the queueing model;
from it the queueing processes of interest can
be constructed. It is known that Dn satisfies
the recursion Dn+1 = (Dn + Sn − Tn)+, n ≥ 0,
where x+

def=max(x, 0) denotes the positive part
of x, and yet another MPP of interest is
Ψ = {[tn, (Sn, Dn)]}, where now kn = (Sn, Dn).
Letting D(n) = (Dn+m : m ≥ 0), another important
MPP with an infinite-dimensional mark space is
Ψ = {[tn, (Sn, D(n))]}, where kn = (Sn, D(n)). The
workload V (t) is defined by V (t) = Dn + Sn − (t−
tn), t ∈ [tn, tn+1), n ≥ 0, and Dn = V (tn−); it rep-
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resents the sum of all remaining service times in the
system at time t. It can also model the water level of
a reservoir into which the amounts Sn are inserted at
the times tn while water is continuously drained out
at rate 1.
A point-stationary version Ψ 0 = {[t0

n , (S0
n, D0

n)]}
yields a stationary version of the delay se-
quence {D0

n} with stationary delay distribution
P(D≤ x)= P(D0

0 ≤ x), which is an important mea-
sure of congestion from the point of view of
customers, as is its mean, d

def=E(D), the average
delay.

A time-stationary version Ψ ∗ = {[t∗n , (S∗n, D∗
n)]}

yields a time-stationary version of workload
{V∗(t)} and corresponding stationary distribution
P(V ≤ x) = P(V∗(0) ≤ x), which is an important
measure of congestion from the point of view of the
system, as is its mean, E(V ), is the average work-
load.
If the input MPP is asymptotically stationary (er-
godic) with 0 < λE(S0) < 1, then it is known that
Ψ = {[tn, (Sn, Dn)]} is asymptotically stationary,
e.g., the stationary versions and distributions for such
things as delay and workload exist.

8.2 Inversion Formulas

Inversion formulas allow one to derive P0 from P∗, and
visa versa.

Theorem 8.2 (Inversion formulas)
Suppose that Ψ is asymptotically stationary (and er-
godic) and 0 < λ <∞. Then

P(Ψ ∗ ∈ ·) = λE

⎡
⎢⎣

T 0
0∫

0

I(Ψ 0
s ∈ ·)ds

⎤
⎥⎦ , (8.14)

P(Ψ 0 ∈ ·) = λ−1 E

⎡

⎣
N∗(1)∑

j=0

I(Ψ ∗
( j) ∈ ·)

⎤

⎦ , (8.15)

which, in functional form, become

E( f (Ψ ∗)) = λE

⎡
⎢⎣

T 0
0∫

0

f (Ψ 0
s )ds

⎤
⎥⎦ , (8.16)

E( f (Ψ 0)) = λ−1 E

⎡

⎣
N∗(1)∑

j=0

f (Ψ ∗
( j))

⎤

⎦ . (8.17)

Recalling (8.6) and Proposition 8.8.2, it is apparent
that (8.14) and (8.16) are generalizations (to a stationary
ergodic setting) of the renewal reward theorem from
renewal theory:

The time average equals the expected value over
a cycle divided by the expected cycle length.

Here a cycle length is (by point stationarity) represented
by any interarrival time, so the first one, T 0

0 = t0
1 , is

chosen for simplicity. Equations (8.15) and (8.17) are
the inverse [recalling (8.4)]:

The point average equals the expected value over
a unit of time divided by the expected number of
points during a unit of time.

Here a unit of time is (by time stationarity) represented
by any such unit, so the first one, (0, 1], is chosen for
simplicity.

8.2.1 Examples

The following examples illustrate how some well-known
results that hold for renewal processes, involving the
stationary excess distribution (8.9) and the inspection
paradox and spread distribution (8.10) also hold in
general. Throughout, assume that Ψ is asymptotically
stationary (and ergodic).

1. Stationary forward recurrence time: P(t∗0 ≤ x) =
P[A∗(t) ≤ x] = Fe(x) where F(x) = P(T 0 ≤ x).
This is derived by applying (8.17) with
f (ψ)= I(t0 > x): f (ψ0

s )= I[t0
0 (s) > x] and t0

0 (s)=
A0(s) = t0

1 − s, s ∈ [0, t0
1);

∫ T 0
0

0 f (Ψ 0
s )ds = ∫ T 0

0
0

I{s < T 0
0 − x}ds = (T 0

0 − x)+. λE[(T 0
0 − x)+] =

λ
∫∞

x F̄(y)dy = F̄e(x).

2. Stationary backwards recurrence time: P[B(0)∗ ≤
x] = Fe(x). Here, a two-sided framework must be
assumed so that B(0) = |t0|. Applying (8.17) with
f (ψ) = I[B(0) > x]: f (Ψ 0

s ) = I[B0(s) > x] where
B0(s) = s, s ∈ [0, t0

1 );
∫ T 0

0
0 f (Ψ 0

s )ds = ∫ T 0
0

0 I(s >
x)ds = (T 0

0 − x)+. λE[(T 0
0 − x)+] = F̄e(x).

3. Stationary spread: P(T∗
0 > x) = λx F̄(x)+ F̄e(x).

Here again, a two-sided framework must be as-
sumed so that S(0) = |t0|+ t1. Applying (8.17)
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with f (ψ) = I(T0 > x): f (ψs) = I[S(s) > x] and

S0(s) = T 0
0 ,s ∈ [0, t0

1 ); ∫ T 0
0

0 f (Ψ 0
s )ds = ∫ T 0

0
0 I(T 0

0
> x)ds = T 0

0 I(T 0
0 > x). λE(T 0

0 I(T 0
0 > x)) = λx

×F̄(x)+ F̄e(x) by carrying out the integration
E[T 0

0 I(T 0
0 > x)] =∫∞

0 P(T 0
0 > y, T 0

0 > x)dy.

8.2.2 The Canonical Framework

In the canonical framework E denotes expectation under
P, E0 denotes expectation under P0 and E∗ denotes ex-

pectation under P∗ and Ψ : M → M is the identity map;
Ψ (ψ) = ψ. This makes for some elegance and simplic-
ity in notation. For example, the inversion formulas in
functional form become

E∗[ f (Ψ )] = λE0

⎡

⎣
T0∫

0

f (Ψs)ds

⎤

⎦ ,

E0[ f (Ψ )] = λ−1 E∗
⎡

⎣
N(1)∑

j=0

f (Ψ( j))

⎤

⎦ . (8.18)

8.3 Campbell’s Theorem for Stationary MPPs

Suppose that Ψ = Ψ ∗ is time-stationary (and ergodic),
with point-stationary version Ψ 0. From the inversion
formula (8.15), P(k0 ∈ K ) = λ−1 E{Ψ ∗[(0, 1]× K ]},
yielding E{Ψ ∗[(0, 1]× K ]} = λP(k0 ∈ K ). This implies
that the intensity measure from Campbell’s theorem
becomes ν(A × K )= E[Ψ ∗(A × K )] = λl(A)P(k0 ∈ K ),
where l(A) denotes Lebesgue measure {e.g., E[Ψ ∗(dt ×
dk)] = λdtP(k0 ∈ dk)}. This can be rewritten as ν(A ×
K ) = λl(A)E[I(k0

0 ∈ K )], in terms of the mark at the
origin k0

0 of Ψ 0. This yields

Theorem 8.3 [Campbell’s theorem under stationarity
(and ergodicity)]
For any non-negative measurable function g = g(t, k),

E[Ψ ∗(g)] = λE

⎡

⎣
∫

R

g
(
t, k0

0

)
dt

⎤

⎦ .

8.3.1 Little’s Law

A classic application of Campbell’s theorem in queueing
theory is when Ψ ∗ = [(t∗n , W∗

n )] (two-sided) represents
a time-stationary queueing model, where t∗n is the ar-
rival time of the n-th customer, and W∗

n their sojourn
time. Using g(t, w) = 0, t > 0 and g(t, w)= I(w> |t|),
t ≤ 0 yields Ψ ∗(g) =∑

j≤0 I(W∗
j > |t∗j |) = L∗(0), de-

noting the time-stationary number of customers in the
system at time t = 0 [recall (8.13)]. Campbell’s theorem
then yields E[L∗(0)] = λE(W0), known as Little’s Law
or L = λw.

8.3.2 The Palm–Khintchine Formula

Another application of interest for Campbell’s theorem
is the Palm–Khintchine formula: for all n ≥ 0 and t > 0,

P[N∗(t) > n] = λ

t∫

0

P[N0(s) = n]ds . (8.19)

Proof: Since this result does not involve any marks,
the marks can be replaced by new ones: define k j =
ψ( j ). With these new marks Ψ ∗ remains stationary (and
ergodic). For fixed t > 0 and n ≥ 0, define g(s, ψ) =
I[0 ≤ s ≤ t, N(t− s) = n]. Then

Ψ ∗(g)=
N∗(t)∑

j=1

I
(
N∗(t j , t] = n

)

= I[N∗(t) > n] ,
where the last equality is obtained by observing that
N(t) > n if and only if there exists a j (unique) such
that t j < t and there are exactly n more arrivals during
(t j , t]. Campbell’s theorem then yields

P[N∗(t) > n] = λE

t∫

0

I[N0(t− s) = n]ds

= λ

t∫

0

P[N0(t− s) = n]ds ,

= λ

t∫

0

P[N0(s) = n]ds .
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8.4 The Palm Distribution: Conditioning in a Point at the Origin

Given any time-stationary MPP Ψ , its Palm distribution
(named after C. Palm) is defined by

Q(·)= λ−1 E

⎡

⎣
N(1)∑

j=0

I(Ψ( j) ∈ ·)
⎤

⎦ ,

and the mapping taking P(Ψ ∈ ·) to Q(·) is called the
Palm transformation. From (8.15), it follows that, if Ψ is
also ergodic, then Q is the same as the point-stationary
distribution P0 [as defined in (8.5)]. If ergodicity does
not hold, however, then Q and P0 are different (in
general), but the Palm distribution still yields a point-
stationary distribution and any version distributed as Q
is called a Palm version of Ψ .

Similarly, if we start with any point-stationary MPP
Ψ , we can define a time-stationary distribution by

H(·)= λE

⎡

⎣
T0∫

0

I(Ψs ∈ ·)ds

⎤

⎦ ,

which under ergodicity agrees with P∗, but otherwise
does not (in general). This mapping is called the Palm
inverse transformation because applying it to Q yields
back the original time-stationary distribution P(Ψ ∈ ·).
Together the two formulas are called the Palm inversion
formulas. It should be emphasized that only in the non-
ergodic case does the distinction between Q and P0

(or H and P∗) become an issue because only when
ergodicity holds can Q be interpreted as a point average
[as defined in (8.5)], so one might ask if there is some
other intuitive way to interpret Q. The answer is yes:
if Ψ is time-stationary, then its Palm distribution Q can
be interpreted as the conditional distribution of Ψ given
a point at the origin:

Theorem 8.4
If Ψ is time-stationary, then the Palm distribution Q can
be obtained as the limiting distribution

Q(·)= lim
t→0

P(Ψ ∈ · | t0 ≤ t) ,

in the sense of weak convergence. Total variation con-
vergence is obtained if Ψ is first shifted to t0:

Q(·)= lim
t→0

P(Ψ(0) ∈ · | t0 ≤ t) ,

in total variation.

As an immediate consequence, we conclude that
(under ergodicity)

P(Ψ 0 ∈ ·) = lim
t→0

P(Ψ ∗ ∈ · | t∗0 ≤ t)

(weak convergence) ,

P(Ψ 0 ∈ ·) = lim
t→0

P(Ψ ∗
(0) ∈ · | t0 ≤ t)

(total variation convergence) .

Under ergodicity P0 can be viewed as the con-
ditional distribution of P∗ given a point at the
origin.

A proof of such results can be carried out using
inversion formulas and Khintchine–Korolyuk’s Theo-
rem 8.8.1 given in the next section which asserts that
P[N∗(t) > 0] ≈ λt as t → 0.

Putting the one-sided renewal process aside, it is not
true in general that Ψ ∗

(0) has a point-stationary distribu-
tion: shifting a time-stationary MPP to its initial point
does not in general make it point-stationary; condition-
ing on {t∗0 ≤ t} and taking the limit as t → 0 is needed.
[Recall the cyclic deterministic example in (8.12), for
example.]

8.5 The Theorems of Khintchine, Korolyuk, and Dobrushin

For a Poisson process with rate λ, P[N(t) = n] =
e−λt (λt)n

n! , n ∈ Z+ ; thus P[N(t) > 0] = 1− e−λt yielding
(by L’Hospital’s rule for example)

lim
t→0

P[N(t) > 0]
t

= λ . (8.20)

Similarly, P[N(t) > 1] = 1− e−λt(1+λt) yielding

lim
t→0

P[N(t) > 1]
t

= 0 . (8.21)

Both (8.20) and (8.21) remain valid for any sim-
ple time-stationary point process, and the results are
attributed to A. Y. Khintchine, V. S. Korolyuk, and R. L.
Dobrushin. Any point process satisfying (8.21) is said
to be orderly.
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Theorem 8.5 (Khintchine–Korolyuk)
If Ψ is time stationary (and simple), then (8.20) holds.

Theorem 8.6 (Dobrushin)
If Ψ is time stationary (and simple), then (8.21) holds.

Proofs can easily be established using inversion
formulas. For example, assume ergodicity and let
Ψ ∗ = Ψ with Ψ 0 being a point-stationary version
with F(x)= P(T 0 ≤ x) and Fe(x) = λ

∫ x
0 [1− F(y)]dy.

Then P[N∗(t) > 0] = P(t∗0 ≤ t) = Fe(t), from the in-
version formula (8.14). L’Hospital’s rule then reduces
the limit in (8.20) to limt→0 λ[1− F(t)] = λ [F(0) = 0
by simplicity]. Equation (8.21) can be proved from the

Palm–Khintchine formula (8.19) for n = 1:

P[N∗(t) > 1] = λ

t∫

0

P[N0(s) = 1]ds

= λ

t∫

0

P
(
t0
1 ≤ s, t0

2 > s
)

ds

= λ

t∫

0

P
(
t0
1 ≤ s, t0

2 > s
)

ds

≤ λ

t∫

0

P
(
t0
1 ≤ s

)
ds ≤ λtF(t) ;

the result then follows since F(0) = 0 by simplicity.

8.6 An MPP Jointly with a Stochastic Process

In many applications an MPP Ψ is part of or interacts
with some stochastic process X= [X(t) : t ≥ 0], forming
a joint process (X, Ψ ). For example, Ψ might be the
arrival times and service times to a queueing model, and
X(t) the state of the queue at time t. To accommodate
this it is standard to assume that the sample paths of X
are functions x : R+ → S in the space

DS[0,∞)
def= {x : x is continuous from the right

and has left-hand limits} ,

endowed with the Skorohod topology. The state-space S
can be a general complete separable metric space, but
in many applications S= R, or a higher-dimensional
Euclidean space. DS[0,∞) is denoted by D for
simplicity.

Continuous from the right means thats for each t ≥ 0:
x(t+)

def= limh↓0 x(t+h) = x(t), while has left-hand lim-
its means that for each t > 0: x(t−)

def= limh↓0 x(t−h)
exits (and is finite). Such functions are also called cadlag
(continue à droit, limits à gauchee) from the French.

It can be shown that such a function has, at most,
countably many discontinuities, and is bounded on
any finite interval [a, b]: supt∈[a,b]|x(t)|<∞. If t is
a discontinuity, then the jump of X at t is defined by
x(t+)− x(t−).

Jointly the sample paths are pairs (x, ψ) ∈D × M
and this canonical space is endowed with the
product topology and corresponding Borel sets.

(X, Ψ ) :Ω →D × M formally is a mapping into the
canonical space under some probability P; its dis-
tribution is denoted by P(·) = P[(X, Ψ ) ∈ ·]. The
shifts θs and θ( j) extend to this framework in a nat-
ural way by defining Xs = θs X = [X(s+ t) : t ≥ 0];
θs(X, Ψ ) = (Xs, Ψs). The notions of point and time sta-
tionarity (and ergodicity) go right through as does the
notion of asymptotic stationarity, and the inversion for-
mulas also go through. For example, the functional form
of the inversion formulas in the canonical framework
are:

E0[ f (X, Ψ )] = λ−1 E∗
⎡

⎣
N(t)∑

j=0

f (X( j), Ψ( j))

⎤

⎦ ,

(8.22)

E∗[ f (X, Ψ )] = λE0

⎡

⎣
T0∫

0

f (Xs, Ψs)ds

⎤

⎦ . (8.23)

A point-stationary version is denoted by (X0, Ψ 0),
and has the property that X0 can be broken up
into a stationary sequence of cycles Cn = [X0(t0

n +
t) : 0 ≤ t < T 0

n ], n ∈ Z+, with cycle lengths being the
interevent times {Tn}.

A time-stationary version is denoted by (X∗, Ψ ∗),
and X∗ is a stationary stochastic process.

The two-sided framework goes through by letting
x : R→ S and using the extended space D(−∞,+∞).
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8.6.1 Rate Conservation Law

Given a asymptotically stationary (and ergodic) pair
(X, Ψ ), with X real-valued, assume also that the sample
paths of X are right differentiable, x′(t)= limh↓0[X(t+
h)− x(t)]/x(t) exists for each t. Further assume
that the points tn of Ψ include all the discontinu-
ity points (jumps) of X (if any); if for some t it
holds that X(t−) �= X(t+), then t = tn for some n.
Noting that (wp1) E∗[X ′(0)] = limt→∞ 1

t

∫ t
0 X ′(s)ds

and E0[X(0+)− X(0−)] = limn→∞ 1
n

∑n
j=1[X(t j+)−

X(t j−)], average jump size, the following is known as
Miyazawa’s rate conservation law (RCL):

Theorem 8.7
If E∗|X ′(0)|<∞ and E0|X(0−)− X(0+)|<∞, then

E∗(X ′(0)) = λE0[X(0−)− X(0+)] .

The time-average right derivative equals the arrival
rate of jumps multiplied by the (negative of) the
average jump size.

As an easy example, for x ≥ 0 let X(t)= [A(t)− x]+,
where A(t) is the forward recurrence time for Ψ . Then
A′(t) =−1 and X ′(t) =−I[A(t) > x]. Jumps are of
the form X(tn+)− X(tn−) = (Tn − x)+. The RCL then
yields P[A∗(0) > x] = λE(T 0

0 − x)+ = 1− Fe(x). The
RCL has many applications in queueing theory. For
example consider Example 6 from Sect. 8.1.8 and let
X(t) = V 2(t). Then V ′(t) =−I[V (t) > 0] so X ′(t) =
−2V (t) and X(tn+)− X(tn−) = 2Sn Dn + S2

n ; the RCL
thus yields Brumelle’s formula, E(V ) = λE(SD)+
λE(S2)/2. (Here SD = S0

0 D0
0.) A sample-path version

of the RCL can be found in [8.1].

8.7 The Conditional Intensity Approach

Motivated by the fact that {N(t)−λt : t ≥ 0} forms
a mean-zero martingale for a time-homogenous Pois-
son process with rate λ, the conditional intensity λ(t)
of a point process (when it exists) satisfies the property
that {N(t)− ∫ t

0 λ(s)ds} forms a mean-zero martingale.
The framework requires a history Ft supporting N(t)
and a heuristic definition is then λ(t)dt = E(N(dt) | Ft)
which asserts that for each t the conditional expected
number of new arrivals in the next dt time units,
conditional on the history up to time t, is equal to
λ(t)dt. For a time-homogenous Poisson process at
rate λ, λ(t) = λ; E[N(dt) | Ft] = λdt due to sta-
tionary and independent increments; but for general
point processes, λ(t) (if it exists) depends on the past
evolution (before time t).

A non-stationary Poisson process is a simple and
very useful example, where the arrival rate λ changes
over time, but N(t) still has a Poisson distribution.
A common example of this is when λ(t) is a deter-
ministic alternating function [e.g., λ(t) = 2 during the
first 12 hours of each day, and λ(t) = 1 during the sec-
ond 12 hours]. Intuitively then, a point process with an
intensity is a generalization of a non-stationary Poisson
process allowing for more complicated correlations over
time.

Given any MPP Ψ , if E[N(t)]<∞, t ≥ 0, then
{N(t)} is always a non-negative right-continuous
submartingale (with respect to its internal history),
so the Doob–Meyer decomposition yields a right-

continuous (and predictable) increasing process Λ(t)
(called the compensator) for which {N(t)−Λ(t)}
forms a mean-zero martingale. If Λ(t) is of the
form Λ(t) = ∫ t

0 λ(s)ds, t ≥ 0, where λ(t) satis-
fies the regularity conditions of being non-negative,
measurable, adapted to Ft and locally integrable
[
∫

A λ(s)ds <∞ for all bounded sets A], then λ(t)
is called the conditional intensity of the point pro-
cess, or the intensity for short. (A predictable version
of the intensity can always be chosen; this is
done so by convention.) By the martingale prop-
erty, an intensity can equivalently be defined as
a stochastic process {λ(t)} that satisfies the afore-
mentioned regularity conditions and satisfies for
all s ≤ t

E[N(s, t] | Fs] = E

⎡

⎣
t∫

s

λ(u)du | Fs

⎤

⎦ .

Not all point processes admit an intensity. For ex-
ample, a deterministic renewal process does not admit
an intensity. The only part of Ft that is relevant for pre-
dicting the future of a renewal process is the backwards
recurrence time B(t), and if the interarrival time distribu-
tion F has a density f , then the renewal process admits
an intensity λ(t)= f [B(t−)]/F̄[B(t−)], the hazard rate
function of F evaluated at B(t−). The fact that a density
is needed illustrates the general fact that the existence of
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an intensity requires some smoothness in the distribution
of points over time.

Incorporating marks into an intensity amounts to
making rigorous the heuristic λ(t, dk)dt = E[Ψ (dt ×
dk)|Ft], for some intensity kernal λ(t, dk) which in
integral form becomes

E
[∫

H(t, k)Ψ (dt × dk)
]
= E

[∫
H(t, k)λ(t, dk)

]
,

for non-negative and predictable H .
Here λ(t, dk) is a measure on the mark space for

each t. Equivalently such an intensity kernel must have
the properties that, for each mark set K , the process
{λ(t, K ) : t ≥ 0} is adapted to {Ft} and serves as an inten-
sity for the thinned point process (defined by its counting
process) NK (t) = Ψ [(0, t]× K ].

An elementary example is given by the com-
pound Poisson process at rate λ with (independent of
its points) iid jumps kn = Xn with some distribution
µ(dx) = P(X ∈ dx). Then λ(t, dx) = λµ(dx).

8.7.1 Time Changing to a Poisson Process

In some applications, it is desirable to construct (or
simulate) a point process with a given intensity or
corresponding compensator Λ(t) = ∫ t

0 λ(s)ds. This can
generally be accomplished by defining N(t)= M[Λ(t)],
where M(t) is the counting process for an appropriate
time-homogenous Poisson process at rate λ= 1. Con-
versely, the Poisson process can be retrieved by inverting
the time change; M(t) = N[Λ−1(t)].

Theorem 8.8
Consider the counting process {N(t)} of a (simple) MPP
with intensity {λ(t)} that is strictly positive and bounded.
[Also assume that Λ(t) →∞, as t →∞, wp1.] Then
M(t)

def=N[Λ−1(t)] defines a time-homogenous Poisson
process at rate λ= 1.

There are some extensions of this result that incor-
porates the marks, in which case the time-homogenous
Poisson process is replaced by a compound Poisson
process.

8.7.2 Papangelou’s Formula

Suppose that Ψ is asymptotically stationary (and er-
godic), and that Ψ ∗ (two-sided) admits a conditional
intensity λ(t) with respect to a history Ft .

Proposition 8.4 (Papangelou’s formula)
For all non-negative random variables X ∈ F0−

def=∪t<0
Ft

E∗[λ(0)X] = λE0(X) .

In other words, conditional on F0−, P0 is absolutely
continuous with respect to P∗, P0 � P∗, having Radon–
Nikodým derivative

dP0

dP∗ |F0− = λ(0)

λ
.

Note that, when X = 1, the basic fact that
E∗(λ(t)) = λ is retrieved. In many applications, Ft
supports a stochastic process X jointly with Ψ in
which case, letting X = X(0−), Papangelou’s formula
yields E∗[λ(0)X(0−)] = λE0[X(0−)]. For example in
the single-server queue Example 6 from Sect. 8.1.8, let-
ting X(t)= I[V (t)≤ x] yields E∗{λ(0)I[V (0−)≤ x]} =
λP0[V (0−) ≤ x] = λP(D ≤ x). If arrivals are Poisson
[λ(t) = λ], this reduces to P(V ≤ x) = P(D ≤ x) illus-
trating Poisson arrivals see time averages (PASTA),
which asserts that when arrival times are Poisson
for a queueing process {X(t)} and satisfy a lack
of anticipation condition (LAC), then the distribu-
tion of X(0−) is the same under P0 and P∗.
LAC is defined as: for each t ≥ 0 the future in-
crements {N(t+ s)− N(t) : s ≥ 0} are independent of
the joint past {{X(s) : s ≤ t}, {N(s) : s ≤ t}}. Re-
calling the definition of P0 and P∗ as Cesàro
averages, PASTA says that if arrivals are Poisson
then

the proportion of arrivals who find the queueing
process in a given state is equal to the proportion of
time the system is in that state;

lim
n→∞

1

n

n∑

j=1

I[X(t j−) ∈ A]

= lim
t→∞

1

t

t∫

0

I[X(s) ∈ A]ds .

Although its origins and primary applications are in
queueing theory, PASTA can be applied to any joint pair
(X, Ψ ) for which the points of Ψ form a Poisson process
satisfying LAC.
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8.8 The Non-Ergodic Case

The assumption of ergodicity can be relaxed to allow for
a stationary but non-ergodic framework. The key is in
conditioning first on the invariant σ-field of M ,

� def= {E ⊂ M : θ−1
t E = E, t ≥ 0} ,

where θ−1
t E = {ψ ∈ M :ψt ∈ E} and the E are restricted

to be Borel sets. Ergodicity is the case when P(E) = 0
or 1 for all E ∈ �. Conditional expectation is denoted
by E�(X)

def=E(X| �), and so on. A typical example of
an invariant set is E2 = {ψ ∈ M : limt→∞ N(t)/t = 2},
the set of all ψ with arrival rate exactly 2; it follows
immediately that θ−1

t E2 = E2 because shifting a point
process does not effect its long-term arrival rate.

A typical example of a stationary but non-ergodic
MPP is a mixture of two Poisson processes, one at rate 1
and one at rate 2: flip a fair coin once. If it lands heads,
then choose Ψ as a Poisson process at rate 1; if it lands
tails, then choose Ψ as a Poisson process at rate 2. In
this case P(E2) = 0.5, Ψ is non-ergodic.

Inversion formulas still hold between Ψ ∗ and Ψ 0

if one conditions on � first. For example, letting

λ�
def=E∗�[N(1)], it holds that

P(t∗0 > x) = E0{λi E0�(T0− x)+} . (8.24)

In the above Poisson process case, λ� = 1 if the coin
lands heads, or 2 if it lands tails, and (8.24) reduces to

P(t∗0 > x) = (e−x + e−2x)

2
.

If the mixture was for two renewal processes with
interarrival time distributions F1 and F2 respectively,
then (8.24) reduces to

P(t∗0 > x) = [F1,e(x)+ F2,e(x)]
2

,

involving the two stationary excess distributions. The
general inversion formula from P0 to P∗ in functional
form becomes

E∗[ f (Ψ )] = E0

⎧
⎨

⎩λi E0�

⎡

⎣
T0∫

0

f (Ψs)ds

⎤

⎦

⎫
⎬

⎭ .

8.9 MPPs in Rd

When a point process has points in a higher-dimensional
space such as R

d , then the theory becomes more com-
plicated. The main reason for this is that there is no
longer a natural ordering for the points, e.g., there is
no “next” point as is the case on R . So “shifting to the
j-th point” to obtain Ψ( j) is no longer well-defined. To
make matters worse, point Cesàro limits as in (8.5) de-
pend upon the ordering of the points. Whereas when
d = 1 there is a one-to-one correspondence between
stationary sequences of non-negative RVs (interarrival
times) and point-stationary point processes, in higher
dimensions such a simple correspondence is elusive.
A good example to keep in mind is mobile phone us-
age, where the points (in R

2 for simplicity) denote the
locations of mobile phone users at some given time,
and for each user the marks might represent whether
a phone call is in progress or not. As in one dimen-
sion, it would be useful to consider analyzing this
MPP from two perspectives: from the perspective of
a “typical” user, and from the perspective of a “typ-
ical” spatial position in R

2. For example, one might
wish to estimate the average distance from a typical

user to a base station, or the average distance from
a typical position to a user with a call in progress.
A mobile phone company trying to decide where to
place some new base stations would benefit by such an
analysis.

Some of the multidimensional complications can be
handled, and initially it is best to use the measure ap-
proach from Sect. 8.1.5 to define an MPP. Starting with
ψ = {(x j , k j )}, where x j ∈ R

d , it can equivalently be
viewed as a σ-finite Z+-valued measure

ψ =
∑

j

δ(x j ,k j ) ,

on (the Borel sets of) R d × K .
The counting process is replaced by the counting

measure N(A) = the number of points that fall in the
Borel set A ⊂ R

d , and it is assumed that N(A) <∞
for all bounded A. Simple means that the points x j are
distinct; N({x}) ≤ 1 for all x ∈ R

d .
For any x, the shift mapping θxψ = ψx is well de-

fined viaψx(A × K )=ψ(A+ x, K ), where A+ x = {y+
x : y ∈ A}.
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8.9.1 Spatial Stationarity in Rd

Analogous to time stationarity in R , the definition of
spatial stationarity is that Ψx has the same distribution
for all x ∈ R

d , and as in (8.8) such MPPs can be viewed
as arising as a Cesàro average over space, as follows.

Let Br denote the d-dimensional ball of radius r
centered at 0. Then (with l denoting Lebesgue measure
in R

d ) a spatially stationary MPP is obtained via

P(Ψ ∗ ∈ ·) def= lim
r→∞

1

l(Br )

∫

Br

P(Ψx ∈ ·)dx .

In essence, we have randomly chosen our origin from
over all of space.

Ergodicity means that the flow of shifts {θx} is er-
godic. Stationarity implies that E[N(A)] = λl(A) for
some λ, called the mean density; it can be computed
by choosing (say) A as the unit hypercube H = [0, 1]d ;
λ= E[N(H )], the expected number of points in any set
of volume 1.

An important example in applications is the Poisson
process in R

d . N(A) has a Poisson distribution with
mean λl(A) for all bounded Borel sets A, and N(A1)
and N(A2) are independent if A1∩ A2 = ∅.

8.9.2 Point Stationarity in Rd

Coming up with a definition of point stationarity, how-
ever, is not clear, for what do we mean by “randomly
selecting a point as the origin”, and even if we could do
just that what stationarity property would the resulting
MPP have? (For example, even for a spatially stationary
two-dimensional Poisson process, if a point is placed at
the origin, it is not clear in what sense such a point pro-
cess is stationary.) One would like to be able to preserve
the distribution under a point shift, but which point can
be chosen as the one to shift to as the new origin? Under
ergodicity, one could define P(Ψ 0 ∈ ·) as a sample-path
average

P(Ψ 0 ∈ ·) def= lim
r→∞

1

N(Br )

∑

x∈Br

I(Ψx ∈ ·), wp1 .

It turns out that this can be improved to be more
like (8.5) as follows. Let pn denote the n-th point hit by
Br as r →∞ (if there are ties just order lexicographi-
cally). For each sample path of Ψ , {pn} is a permutation
of {xn}. Define

P(Ψ 0 ∈ ·) def= lim
n→∞

1

n

n∑

j=1

P(Ψp j ∈ ·) .

Another approach involves starting with the spatially
stationary MPP Ψ ∗ and defining P(Ψ 0 ∈ ·) by inversion
in the spirit of (8.15) and the Palm transformation, re-
placing a “unit of time” by any set A with volume 1,
such as the unit hypercube H = (0, 1]d :

P(Ψ 0 ∈ ·) = λ−1 E

[
∑

x∈H

I(Ψ ∗
x ∈ ·)

]
. (8.25)

Under ergodicity all these methods yield the same dis-
tribution. Ψ 0 has the property that there is a point at the
origin, and its distribution is invariant under a two-step
procedure involving an external randomization followed
by a random point shift as follows (see Chapt. 9 of
Thorisson [8.2]):

First, randomly place a ball Br of any fixed radius
r > 0 over the origin, e.g., take U distributed uni-
formly over the open ball Br and consider the region
R = Br +U. There is at least one point in R, the
point at the origin, but in any case let n = N(R) de-
note the total number. Second, randomly choose one
of the n points (e.g., according to the discrete uni-
form distribution) and shift to that point as the new
origin. This shifted MPP has the same distribution
P(Ψ 0 ∈ ·) as it started with.

A recent active area of research is to determine
whether or not one can achieve this invariance without
any randomization. In other words is there an algorithm
for choosing the “next point” to move to only using the
sample paths of Ψ 0? In one dimension we know this is
possible; always choose (for example) the point to the
right (or left) of the current point. It turns out that in
general this can be done (Heveling and Last [8.3]), but
what is still not known is whether it can be done in such
a way that all the points of the point process are exhaus-
tively visited if the algorithm is repeated (as is the case
in one dimension). For the Poisson process with d = 2
or 3 simple algorithms have indeed been found (Ferrari
et al. [8.4]).

8.9.3 Inversion and Voronoi Sets

There is an analogue for the inverse part of the for-
mula (8.25) in the spirit of (8.14), but now there is no
“cycle” to average over so it is not clear what to do. It
turns out that a random Voronoi cell is needed. For an
MPP ψ with points {x j}, for each point xi define the
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Voronoi cell about xi by

Vxi (ψ) = {x ∈ Rd : ||x− xi ||< ||x− x j || ,
for all points x j �= xi} ,

the set of elements in Rd that are closer to the point xi
than they are to any other point of ψ. For an MPP,
this set is a random set containing xi and of particular
interest is when Ψ = Ψ 0 and xi = 0, the point at the
origin. We denote this Voronoi cell by V0. It turns out
that E[l(V0)] = λ−1, and

P(Ψ ∗ ∈ ·) = λE

⎡
⎢⎣
∫

V0

I
(
Ψ 0

x ∈ ·
)

dx

⎤
⎥⎦ . (8.26)

The Voronoi cell V0 plays the role that the inter-
arrival time T 0

0 = t0
1 does when d = 1. But, even

when d = 1, V0 is not the same as an interarrival
time; instead it is given by the random interval

V0 = (−T 0
−1/2, T 0

0 /2) = (t0
−1/2, t0

1/2) which has length
l(V0) = (t0

1 +|t0
−1|)/2 and hence mean λ−1. It is instruc-

tive to look closer at this for a Poisson process at rate λ,
for then l(V0) has an Erlang distribution with mean λ−1.

In the mobile phone context, if the points xi are now
the location of base stations (instead of phones) then Vxi

denotes the service zone for the base station, the region
about xi for which xi is the closest base station. Any
mobile user in that region would be best served (e.g.,
minimal distance) by being connected to the base at xi .
Thus all of space can be broken up into a collection
of disjoint service zones corresponding to the Voronoi
cells.

Finally, analogous to the d = 1 case, starting with
a spatially stationary MPP it remains valid (in a limiting
sense as in Theorem 8.8.4) that the distribution of Ψ 0

can be obtained as the conditional distribution of Ψ ∗
given a point at the origin. For example, placing a point
at the origin for a spatially stationary Poisson process
Ψ ∗ in R

d yields Ψ 0.
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Modeling and9. Modeling and Analyzing Yield, Burn-In
and Reliability for Semiconductor Manufacturing:

Overview
The demand for proactive techniques to model
yield and reliability and to deal with various
infant mortality issues are growing with increased
integrated circuit (IC) complexity and new
technologies toward the nanoscale. This chapter
provides an overview of modeling and analysis of
yield and reliability with an additional burn-in
step as a fundamental means for yield and
reliability enhancement.

After the introduction, the second section
reviews yield modeling. The notions of various
yield components are introduced. The existing
models, such as the Poisson model, compound
Poisson models and other approaches for yield
modeling, are introduced. In addition to the
critical area and defect size distributions on the
wafers, key factors for accurate yield modeling are
also examined. This section addresses the issues
in improving semiconductor yield including how
clustering may affect yield.

The third section reviews reliability aspects of
semiconductors such as the properties of failure
mechanisms and the typical bathtub failure rate
curve with an emphasis on the high rate of early
failures. The issues for reliability improvement are
addressed.

The fourth section discusses several issues
related to burn-in. The necessity for and effects
of burn-in are examined. Strategies for the level
and type of burn-in are examined. The literature
on optimal burn-in policy is reviewed. Often
percentile residual life can be a good measure
of performance in addition to the failure rate or
reliability commonly used.

The fifth section introduces proactive methods
of estimating semiconductor reliability from yield
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information using yield–reliability relation
models. Time-dependent and -independent
models are discussed.

The last section concludes this chapter
and addresses topics for future research and
development.

Since Jack Kilby of Texas Instruments invented the first
integrated circuit (IC) in 1958, the semiconductor in-
dustry has consistently developed more complex chips
at ever decreasing cost. Feature size has shrunk by 30%
and die area has grown by 12% every three years [9.1].

The number of transistors per chip has grown exponen-
tially while semiconductor cost per function has been
reduced at the historical rate of 25% per year. As shown
in Table 9.1, the semiconductor market will reach $213
billion in 2004, which represents 28.5% growth over
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Table 9.1 Industry sales expectations for IC devices [9.2]

Billion dollars Percent growth

Device type 2003 2004 2005 2006 03/02 04/03 05/04 06/05

Discretes 13.3 16.0 17.0 16.7 8.1 20.2 6.2 −2.0

Optoelectronics 9.5 13.1 14.9 15.3 40.6 37.3 13.4 2.9

Actuators 3.5 4.8 5.7 6.3 a 35.3 18.9 9.1

Bipolar digital 0.2 0.2 0.2 0.2 −4.2 10.6 −16.3 −25.0

Analog 26.8 33.7 37.0 37.0 12.0 25.6 9.9 −0.1

MOS micro 43.5 52.4 57.2 57.6 14.3 20.4 9.2 0.6

MOS logic 36.9 46.4 50.6 49.6 18.1 25.7 9.1 −2.1

MOS memory 32.5 46.9 49.1 47.6 20.2 44.4 4.6 −3.1

Total 166.4 213.6 231.7 230.0 18.3 28.5 8.5 −0.7

a A growth rate is not meaningful to show since WSTS included actuators from 2003

2003. Growth of 8.5% is forecasted for 2005, followed
by virtually zero growth in 2006. In 2007, however, an-
other recovery cycle is expected to begin with market
growth in the 10% range.

Clearly, yield and reliability are two of the cor-
nerstones of successful IC manufacturing as they
measure semiconductor facility profitability and post-
manufacturing device failures. Yield and reliability have
played a key role in many aspects of semiconductor op-
erations such as determining the cost of new chips under
development, forecasting time-to-market, defining the
maximum level of integration possible and estimating
the number of wafers to start with. Traditionally, reactive
techniques have been used to analyze yield and relia-
bility, and an investigation was launched to determine
the cause of yield loss once a low yield was observed
during production. Stress testing and failure analysis
were commonly performed at the end of the manu-
facturing line [9.3, 4]. However, as the rapid increase
in IC complexity has resulted in multi-billion-dollar
semiconductor fabrication facilities, IC manufacturers
struggle to obtain a better return on their investment

by introducing new process technologies and mater-
ials at an accelerated rate to satisfy narrowing market
windows. Given this trend, the demand for proactive
techniques has strengthened in order to achieve the de-
sired yield and reliability goals early in the process or
even before production begins. The demand for these
proactive techniques will be even bigger in emerging
nanotechnology, which is known to have low yield and
reliability [9.5, 6].

Yield and reliability modeling and analysis is
a means of achieving proactive yield and reliability man-
agement. The purpose of this paper is to review the
modeling and analysis of yield and reliability with an
additional burn-in step. The importance of yield mod-
eling is emphasized for obtaining better yields quickly
after new technologies are introduced. In particular, the
relationship between yield, burn-in and reliability will
be thoroughly addressed. The relation model between
yield and reliability can aid in design for manufactura-
bility (DFM) by improving device layouts for better
manufacturing yield and reliability during their early
development prior to manufacturing.

9.1 Semiconductor Yield

Yield in semiconductor technology is the most impor-
tant index for measuring success in the IC business.
In general, yield is defined as the fraction of manufac-
tured devices that meet all performance and functionality
specifications. Higher yield tends to produce more chips
at the same cost, thus allowing prices to decrease.

In this section, we first decompose overall yield into
several components. Then, the literature on yield models
is reviewed, focusing mainly on the random defect yield
model. Traditional Poisson and compound Poisson yield
models are thoroughly reviewed as well as some more
recent yield models. Finally, issues related to proactive

Part
A

9
.1



Modeling and Analyzing Yield, Burn-In and Reliability 9.1 Semiconductor Yield 155

yield improvement are discussed from the viewpoint of
yield modeling.

9.1.1 Components of Semiconductor Yield

The overall yield Yoverall of a semiconductor facility can
be broken down into several components: wafer process
yield Yprocess, wafer probe yield Yprobe, assembly yield
Yassembly and final test yield Yfinal test [9.7]. Wafer process
yield, which is synonymous with line or wafer yield, is
the fraction of wafers that complete wafer fabrication.
Wafer probe yield is the fraction of chips on yielding
wafers that pass the wafer probe test. The terms die yield,
chip yield or wafer sort yield are used interchangeably
with wafer probe yield. Overall yield is the product of
these components, written as

Yoverall = YprocessYprobeYassemblyYfinal test .

9.1.2 Components of Wafer Probe Yield

Most semiconductor industries focus on improving the
wafer probe yield, which is the bottleneck of overall
yield. The importance of wafer probe yield to financial
success is discussed in [9.8,9]. Wafer probe yield is de-
composed into functional yield Yfunctional and parametric
yield Yparametric such that

Yprobe = YfunctionalYparametric .

Parametric yield refers to the quantification of IC per-
formance that is caused by process parameter variations.
The designer attempts to increase parametric yield us-
ing several tools to check the design for process and
parameter variations. Commonly used methods include
corner analysis, Monte Carlo analysis, and the response
surface methodology [9.10]. Corner analysis is the most
widely used method due to its simplicity. The designer
determines the worst-case corner under which the design
can be expected to function. Then, each corner is simu-
lated and the output is examined to ascertain whether or
not the design performs as required. The disadvantages
of corner analysis include the possibility that a design
may function well at the corners but fail in between or
that the designer may not know what the corners are.
In Monte Carlo analysis, samples are generated to es-
timate yield based on the distributions of the process
parameters. A disadvantage of Monte Carlo analysis is
that the designer may not know if an increased yield
is due to a change in the design parameters or is due
to Monte Carlo sampling error. Another disadvantage is

that a complete rerun of the analysis is required if the
design variables are changed. With the response surface
methodology, a set of polynomial models are created
from the design of experiments that approximate the
original design. These models are run so many times
that the sampling error is reduced to nearly zero. A dis-
advantage of the response surface methodology arises
from errors existing as a result of differences between
the polynomial models and the original design.

Functional yield is related to manufacturing prob-
lems such as particulate matter, mechanical damage,
and crystalline defects which cause dice not to func-
tion. Therefore, functional yield is a reflection of the
quality of the manufacturing process and is often called
the manufacturing yield [9.7, 11] or the catastrophic
yield [9.12, 13]. In general, functional yield can be fur-
ther partitioned into three categories: repeating yield
Yrepeating, systematic yield Ysystematic and random-defect-
limited yield Yrandom [9.14]:

Yfunctional = YrepeatingYsystematicYrandom .

Repeating yield is limited to reticle defects that occur
when there are multiple dies on a reticle. Once reticle
defects are identified using a pattern-recognition algo-
rithm, repeating yield is calculated by the ratio of the
number of dies without repeating defects to the total
number of dies per wafer [9.9]. Then, repeating yield is
extracted from functional yield, and tile yield is defined
by

Ytile = Yfunctional

Yrepeating
= YsystematicYrandom .

Systematic yield is limited to nonrandom defects affect-
ing every die in some region of the wafer. To decompose
Ytile into Ysystematic and Yrandom, Ysystematic is assumed to
be constant regardless of die size since, in a mature pro-
cess, Ysystematic is known and controllable and is often
equal to one. Then, a model is selected to relate Yrandom
to the die area and the density of the random defects,
and curve fitting is used with

ln Ytile = ln Ysystematic+ ln Yrandom

to estimate Ysystematic and the parameters of a model for
Yrandom [9.9].

9.1.3 Modeling Random Defect Yield

Since the early 1960s, researchers have devoted exten-
sive work to developing yield models that relate the mean
number of random defects in a device to the device yield.
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Low clustering High clustering

Fig. 9.1 Comparison of defect clustering for the same de-
fect density [9.15]

The basic assumption is that yield is a function of the
device area and the average number of yield defects per
unit area.

During the manufacturing process, random defects
can be introduced at any one of hundreds of process
steps. Not all defects necessarily cause device failures.
A defect that is of sufficient size and/or occurs in a place
that results in an immediate device failure is called a fa-
tal defect [9.16, 17], killer defect [9.18–22] or yield
defect [9.23–27]. On the other hand, a defect that is ei-
ther too small or located in a position that does not cause
an immediate failure is called a latent defect, nonfatal
defect or reliability defect. In this chapter, we will use
the terms yield defect and reliability defect.

Poisson Model
For the purpose of yield modeling, the only yield de-
fects that are of interest are those that can be detected
by a manufacturing yield test. Let Ny be the number of
yield defects introduced during fabrication on a device
of area A. Assuming that the defects are randomly dis-
tributed and the occurrence of a defect at any location
is independent of the occurrence of any other defect,
the probability of a device having k yield defects is
calculated by the Poisson probability distribution:

PPoisson(k) = P(Ny = k) = e−λyλk
y

k! , k = 0, 1, 2 ,

(9.1)

where λy is the average number of yield defects with
λy = E(Ny). Then, the corresponding Poisson yield is
obtained by

YPoisson = PPoisson(0) = e−λy , (9.2)

where λy = ADy, and Dy is the average number of yield
defects per unit area.

Compound Poisson Model
Often defects on ICs are not uniformly distributed but
tend to cluster. When defects are clustered in certain
areas, the Poisson distribution is too pessimistic and the
compound Poisson process is used, given by

Pcompound(k) = P(Ny = k)

=
∫

e−AD(AD)k

k! f (D)dD ,

k = 0, 1, 2 ,

where f (D) is the distribution of the defect density. The
corresponding yield expression is

Ycompound = Pcompound(0) =
∫

e−AD f (D)dD .

Figure 9.1 compares two different degrees of defect clus-
tering for the same average defect density. The left one,
with low clustering, belongs more to the Poisson model
and the right one, with high clustering, belongs more to
the compound Poisson model.

Several distributions such as the symmetric trian-
gle, exponential, uniform, gamma, Weibull and inverse
Gaussian have been suggested for f (D) [9.7,16,28,29].
If D follows a uniform distribution in [0, 2Dy], then the
corresponding yield can be obtained by

Yuniform =
2Dy∫

0

e−AD 1

2Dy
dD = 1− e−2λy

2λy
.

In the case where D follows a triangle distribution that
approximates a normal distribution, the resulting model
is called the Murphy’s yield and is derived by

YMurphy’s =
Dy∫

0

e−AD D

D2
y

dD

+
2Dy∫

Dy

e−AD
(

2− D

Dy

)
1

Dy
dD

=
(

1− e−λy

λy

)2

.

For an exponential distribution of D, the model is called
the Seed’s yield and is given by

YSeed’s =
∞∫

0

e−AD e−D/Dy

Dy
dD = 1

1+λy
.
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For the case of the Weibull distribution, the correspond-
ing yield is [9.29]

YWeibull =
∞∫

0

e−AD α

βα
Dα−1 e−(D/β)α dD

=
∞∑

k=0

(−1)k (ADy)k

k!
Γ (1+ k/α)

Γ k(1+1/α)
.

Also, if f (D) is the inverse Gaussian distribution, then
the yield is [9.29]

Yinverse-Gaussian =
∞∫

0

e−AD

√
φ

2π
x−3/2 exp

(
−φ(D−Dy)2

2D2
y D

)
dD

= exp

{
φ

[
1−

(
1+ 2ADy

φ

)1/2
]}

.

When D follows a gamma distribution, the resulting
model is called the negative binomial yield, which is
derived as

Ynb =
∞∫

0

e−AD 1

Γ (α)βα
Dα−1 e−D/β dD

=
(

1+ λy

α

)−α

, (9.3)

where α is referred to as the clustering factor. A smaller
value of α means a higher degree of clustering and
greater variation in defect density across the wafer. If
α= 1, then the negative binomial yield is equivalent to
Seed’s yield. In the case where α→∞, the negative bi-
nomial yield approaches the Poisson yield. By varying
the value of α, the negative binomial yield covers the
whole range of yield estimations. Cunningham [9.28]
reported methods to determine the clustering factor.
Langford and Liou [9.30] presented a new technique
to calculate an exact solution of α from wafer probe bin
map data.

Critical Area and Defect Size Distribution
in Yield Model
The random-defect-limited yield can be more accurately
evaluated if the concepts of critical area and defect size
distribution are incorporated.

Let s(x) be the probability density function of the
defect size. Although the form of s(x) depends on pro-
cess lines, process time, learning experience gained
and other variables, it generally peaks at a critical size

and then decreases on either side of the peak [9.31].
Let x0 be the critical size of the defect that is most
likely to occur. The defect size distribution is given
by [9.7, 15, 23, 28]

s(x) =
⎧
⎨

⎩
cx−q−1

0 xq, 0 ≤ x ≤ x0

cx p−1
0 x−p, x0 < x <∞ ,

(9.4)

where p �= 1, q > 0 and c = (q+1)(p−1)/(p+q).
While p, q and x0 are process-dependent constants,
q = 1 and p = 3 agree well with the experimental data,
and x0 must be smaller than the minimum width or spac-
ing of the defect monitor [9.7,23]. A gamma distribution
is also used for s(x) in some applications [9.32, 33].

The critical area defines the region of the layout
where a defect must fall to cause device failure. There-
fore, if a defect occurs in the critical area, then it becomes
a yield defect. Given s(x), the yield critical area is
expressed by

Ay =
∞∫

0

Ay(x)s(x)dx ,

where Ay(x) is a critical area of defect size x. Then
λy = Ay D0 is used in yield models where D0 is the
average defect density of all sizes. The geometric
method [9.34], the Monte Carlo method [9.35] and the
pattern-oriented method [9.36] have been used for criti-
cal area extraction. Critical area analysis can be used to
quantify the sensitivity of a design to defects based on
the layout [9.37] and can aid DFM by improving layouts
for better yield [9.38].

Other Models
Sato et al. [9.39] used a discrete exponential distribution
for the number of yield defects for each type of defect:

Pdiscrete expo(k) = (1− e−h)e−hk , (9.5)

where h is the parameter. Once the probability den-
sity function for m types of defects is derived by m
convolution of (9.5), the yield is derived by

Ydiscrete expo = (1− e−h)m = (1+ Ay D0/m)−m .

(9.6)

Park and Jun [9.40] presented another yield model based
on a generalized Poisson distribution. Assuming that the
number of defect clusters in a chip and the number of
defects in each cluster follows a Poisson distribution, the
total number of defects in a chip follows a generalized
Poisson distribution. Then yield is calculated using the
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fact that the total number of yield defects in a chip is the
sum of the yield defects in each cluster if the probability
of each defect in the cluster becoming a yield defect is
the same.

Jun et al. [9.41] developed a yield model through
regression analysis in which the mean number of defects
per chip and a new cluster index obtained from the defect
location are used as independent variables. Simulation
results showed that yield is higher for the higher index,
but the rate of yield growth decreases as the cluster index
increases.

Carrasco and Suñé [9.42] presented a methodology
for estimating yield for fault-tolerant systems-on-chip,
assuming that the system fails with probability 1−Ci
if component i fails. The system failure probability is
independent of the subsets of components which failed
before. For each component, an upper bound on the yield
loss is obtained, which can be formalized as the prob-
ability that a Boolean function of certain independent
integer-valued random variables is equal to one. The
reduced-order multiple-valued decision diagram is used
to compute the probability.

Noting that interconnect substrates face low yield
and high cost, Scheffler et al. [9.43] presented a yield
estimation approach to assess the impact on overall sub-
strate cost of changing design rules. Given a defect size
distribution, if a design rule is relaxed, for instance,
if the line width and line spacing are widened, the
total number of yield defects decreases and the criti-
cal area increases. From the limitation of applications
to interconnect substrates, the critical area can be ob-
tained by the union of the critical area for line shorts
and the critical area for line opens. Then, the Pois-
son yield is expressed as a function of line width, and
trade-offs of the design rule change can be studied. If
an increase in the design rule has minimal impact on
the overall substrate area, then yield improvement by
increasing the design rules can lead to a more cost-
effective substrate.

Cunningham et al. [9.44] presented a common-yield
model to analyze and compare the yield of products
from different facilities using a linear regression model.
Berglund [9.45] developed a variable defect size yield
model. Milchalka [9.17] presented a yield model that
considers the repair capability in a part of the die area.
Stapper and Rosner [9.37] presented a yield model us-
ing the number of circuits and average number of yield
defects per circuit. Dance and Jarvis [9.46] explained
the application of yield models to accelerate yield learn-
ing and to develop a performance–price improvement
strategy.

Choosing a yield model is basically an experiential
process. IC manufacturers compare data from a specific
process for yield versus die size using various models
and select the best fit. Depending on the distribution of
die sizes of a given product and the distribution pattern
of the defects, different yield models will best fit the
data [9.47].

9.1.4 Issues for Yield Improvement

Achieving high-yield devices is a very challenging task
due to reduced process margins and increased IC design
complexity. Recent research has emphasized the role of
parametric yield loss as well as that of functional yield
loss in proactive yield management. Although random
yield loss typically dominates in high-volume produc-
tion, systematic and parametric yield losses become
more important when a fabrication process is newly
defined and is being tuned to achieve the necessary
processes and device parameters [9.48]. Considerable at-
tention has been paid thus far to improving random yield,
but relatively little attention has been paid to systematic
and parametric yield problems. With new technolo-
gies, a process may never be stabilized and statistical
device-parameter variations will be a big headache. Tra-
ditionally, parametric yield problems were addressed
after a design was manufactured. Low-yielding wafers
were investigated to identify what process variations
caused the yield loss. Then, simulations were used to
see where the design should be changed to improve
the yield. The traditional redesign approach is very
costly compared to handling design at the front-end
of the design process using design for yield (DFY)
techniques. The use of DFY techniques accelerates the
design flow, reduces cycle times and provides higher
yield.

Before a high-volume chip comes to market, it
must be manufacturable at an acceptable yield. Al-
though traditionally yield issues have been in the
domain of manufacturing teams, a new approach to
bridge the gap between design and manufacture is
necessary as chip geometry shrinks. Peters [9.49] em-
phasized the increasing role of DFY approaches in
leading-edge device manufacturability to allow for
tuning of all test programs and models so that de-
sign, manufacturing and testing provide high-yielding
devices.

Li et al. [9.48] presented a holistic yield-improve-
ment methodology that integrates process recipe and
design information with in-line manufacturing data to
solve the process and design architecture issues that
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affect yield and performance. The approach suggests
improving yield not just by eliminating defects but also
by resolving parametric problems.

Nardi and Sangiovanni-Vincentelli [9.12] ob-
served that for complex nanodesigns functional
yield might depend more on the design at-
tributes than on the total chip area. Given that
the current yield-aware flow optimizes yield at
the layout level after optimizing speed and area,
a synthesis-for-manufacturability approach is suggested

in which manufacturability replaces area in the cost
function.

Segal [9.38] claimed that each new technology gen-
eration will see lower and lower yields if the defect level
of well-running processes is not reduced. A strategy to
reduce the defect level is to encompass techniques for re-
sponding quickly to defect excursion using in-line wafer
scanners and wafer position tracking. The defect excur-
sion strategy eliminates wafers and lots with very high
defect densities.

9.2 Semiconductor Reliability

Once an IC device is released to the user, an important
and standard measure of device performance is relia-
bility, which is defined as the probability of a device
conforming to its specifications over a specified period
of time under specified conditions. A failure rate func-
tion is usually used to describe device reliability, which
is defined for a population of nonrepairable devices as
the instantaneous rate of failure for the surviving devices
during the next instant of time. If h(x) denotes a failure
rate function, the corresponding reliability function is
expressed by

R(t) = e−
∫ t

0 h(x)dx .

In this section, the failure rate in semiconductor device
reliability is explained. Then, we discuss where each
semiconductor failure mechanism occurs in the bath-
tub failure rate. Finally, techniques used for reliability
improvement are reviewed.

9.2.1 Bathtub Failure Rate

When engineers have calculated the failure rate of
a semiconductor population over many years, they have
commonly observed that the failure rate is described by
a bathtub shape.

Initially, semiconductor devices show a high fail-
ure rate, resulting in an infant mortality period. The
infant mortality period results from weak devices that
have shorter lifetimes than the normal stronger devices,
implying that infant mortality period applies to a whole
population rather than a single device. The operating pe-
riod that follows the infant mortality period has a lower,
and almost constant, failure rate and is called the use-
ful life period. Infant mortality and useful life failures
are due to defects introduced during the manufacturing
process, such as particle defects, etch defects, scratches
and package assembly defects.

A device that has reached the end of its useful life
enters the final phase called the aging period. Failures
during the aging period are typically due to aging or cu-
mulative damage, and these can be avoided by careful
technology development and product design. These fail-
ures are inherent process limitations and are generally
well-characterized.

The semiconductor manufacturing process requires
hundreds of sequential steps and thus hundreds, or even
thousands, of process variables must be strictly con-
trolled to maintain the device reliability. Despite the
exponential scaling of semiconductor size and chip com-
plexity, IC reliability has increased at an even faster rate
as reliability engineers reduce infant mortality and use-
ful life failure rate and push the aging period beyond
the typical usage period through a variety of reliability
improvement techniques.

9.2.2 Occurrence of Failure Mechanisms
in the Bathtub Failure Rate

Failure mechanisms of semiconductor devices can be
classified into three groups: electrical stress failures,
intrinsic failures and extrinsic failures [9.7, 50].

Electrical stress failures are user-related, and the
major causes are electrical-over-stress (EOS) and elec-
trostatic discharge (ESD) due to improper handling.
ESD and EOS problems are thoroughly discussed in
Vinson and Liou [9.51]. Because this failure mechanism
is event-related, it can occur anywhere in the infant
mortality period, the useful life period or the aging
period.

The intrinsic failure mechanism results from all
crystal-related defects, and thus it occurs predominantly
in the infant mortality period but rarely in the aging
period.
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On the other hand, extrinsic failures are the result of
device packaging, metallization and radiation and they
can occur any time over the device’s lifetime. Extrin-
sic failures that are due to process deficiencies, such as
migration and microcracks, occur during the infant mor-
tality period. The extrinsic failure mechanisms related
to packaging deficiency, such as bond looping and metal
degradation, occur in the aging period. The radiation-
related extrinsic failure mechanisms, such as bit flips
due to external radiation, occur continuously over the
device lifetime [9.50].

The terms extrinsic and intrinsic failure have also
been used in different contexts. First, intrinsic failure is
used to describe those failures that are due to internal
causes of a device, while failures due to forces exter-
nal to the product, such as mishandling or accidents,
are called extrinsic failures [9.52]. In this case, intrin-
sic failures occur in the infant mortality period or in the
aging period, while extrinsic failures occur in the useful
life period. Secondly, the terms intrinsic and extrinsic
failure are used to classify oxide failures [9.53]. In this
case, intrinsic failures are due to the breakdown of ox-
ide which is free of manufacturing defects, and thus is
usually caused by an inherent imperfection in the dielec-
tric material. These failures occur in the aging period at
an increasing failure rate. On the other hand, extrinsic
failures that result from process defects in the oxide or
problems in the oxide fabrication occur in the infant
mortality period.

9.2.3 Issues for Reliability Improvement

As reliability engineers have recognized that it is no
longer affordable to handle reliability assurance as

a back-end process in IC product development, the re-
liability emphasis has been shifted from end-of-line
statistical-based stress testing to new proactive tech-
niques such as design for reliability (DFR), built-in
reliability (BIR), wafer-level reliability (WLR), quali-
fied manufacturing line (QML), and physics-of-failure
(POF) approaches [9.54, 55].

DFR means building reliability into the design rather
than incorporating it after development [9.56]. The im-
portance of DFR increases as stress testing becomes
increasingly difficult as the allowable stress is decreased.

The effectiveness of BIR has been outlined in [9.57,
58] for manufacturing highly reliable ICs through the
elimination of all possible defects in the design stage.

WLR represents a transition from the end-of-line
concept toward the concept of BIR, because the testing
is performed at the wafer level reducing the time and
expense of packaging. Examples of WLR implementa-
tion into a production line or a testing method are given
in [9.59–62].

QML is another evolutionary step devised for the
purpose of developing new technologies where the man-
ufacturing line is characterized by running test circuits
and standard circuit types [9.63]. Understanding fail-
ure mechanisms and performing failure analysis are
critical elements in implementing the BIR and QML
concept.

In cases where the fundamental mechanical, elec-
trical, chemical, and thermal mechanisms related to
failures are known, it is possible to prevent failures in
new products before they occur. This is the basic idea of
POF, which is the process of focusing on the root causes
of failure during product design and development in
order to provide timely feedback.

9.3 Burn-In

Burn-in is a production process that operates de-
vices, often under accelerated environments, so as to
detect and remove weak devices containing manufac-
turing defects before they are sold or incorporated
into assemblies. Because the design rules change so
quickly, burn-in today is an essential part of the
assembly and testing of virtually all semiconduc-
tor devices. To burn-in or not to burn-in and how
long the burn-in should be continued are perennial
questions.

In this section, we discuss several issues related to
burn-in, such as key questions for burn-in effectiveness,

burn-in level and burn-in types. Then, the previous burn-
in literature is reviewed based on the level of burn-in
application.

9.3.1 The Need for Burn-In

Since most semiconductor devices ordinarily have an in-
fant mortality period, the reliability problem during this
period becomes extremely important. Manufacturers use
burn-in tests to remove infant mortality failures for most
circuits, especially where high reliability is a must. Burn-
in ensures that a circuit at assembly has moved to the
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useful life period of the bathtub curve. During burn-in,
elevated voltage and temperature are often combined
to activate the voltage- and temperature-dependent fail-
ure mechanisms for a particular device in a short time.
Careful attention to design of stress burn-in is necessary
to ensure that the defect mechanism responsible for in-
fant mortality failures is accelerated while normal strong
devices remain unaffected.

Although burn-in is beneficial for screening in the
infant mortality period, the burn-in cost ranges from
5–40% of the total device cost depending on the burn-in
time, quantities of ICs and device complexity [9.64], and
it might introduce additional failures due to EOS, ESD
or handling problems. Solutions to the key questions
posed by Kuo and Kuo [9.65] will continue to be found
with new technologies for exercising burn-in effectively:

1. How much should infant mortality be reduced by
burn-in?

2. Under what environmental conditions should burn-
in be performed?

3. Should burn-in be accomplished at the system, sub-
system, or component level?

4. Who should be in charge of burn-in, the vender, the
buyer, or a third party?

5. Are there any side-effects of burn-in?
6. How will the industry benefit from burn-in data?
7. What physics laws should be followed to conduct

burn-in?

9.3.2 Levels of Burn-In

There are three burn-in types based on levels of a device:
package-level burn-in (PLBI), die-level burn-in (DLBI),
and wafer-level burn-in (WLBI) [9.66–68].

PLBI is the conventional burn-in technology where
dies are packed into the final packages and then sub-
jected to burn-in. Although PLBI has the advantage of
assuring the reliability of the final product, repairing or
discarding a product after PLBI is far too costly.

The strong demand for known good dies (KGD)
has motivated the development of more efficient burn-in
technology. Generally, KGD is defined as a bare un-
packed die that has been tested and verified as fully
functional to meet the full range of device specifica-
tions at a certain level of reliability [9.68, 69]. KGD
enables manufacturers to guarantee a given quality and
reliability level per die before integration and assembly.
Optimizing burn-in is a key aspect of KGD [9.69].

In DLBI, dies are placed in temporary carriers before
being packed into their final form to reduce the cost of

added packaging. DLBI and testing of the individual die
before packaging ensures that only KGD are packaged
and thus produces a quality product at a reduced cost.

Considerations of how to reduce burn-in cost and
solve KGD issues have led to the concept of WLBI.
WLBI achieves burn-in on the wafer as soon as it leaves
the fab. Though WLBI can result in less-reliable fi-
nal products than PLBI, the trend in industry is to do
more testing at the wafer level due to the cost and KGD
issues [9.70].

Recently, the line between burn-in and testing has
begun to blur as far as reducing testing costs and cycle
times. For example, some test functions have moved to
the burn-in stage and multi-temperature environments
have moved to final testing. DLBI and WLBI that have
evolved from burn-in to include testing are called die-
level burn-in and testing (DLBT) and wafer-level burn-
in and testing (WLBT), respectively. It is reported that
DLBT is an expensive step in memory production and
the transfer to WLBT can reduce the overall back-end
cost by 50% [9.71].

9.3.3 Types of Burn-In

A basic burn-in system includes burn-in sockets to
provide a temporary electrical connection between the
burn-in board (BIB) and the device under test (DUT)
package. Each BIB might accommodate 50 or more
sockets, and a burn-in system might hold 32 BIBs. To
develop a successful burn-in strategy, detailed knowl-
edge is necessary about temperature distributions across
a DUT package, across a BIB, and throughout the
burn-in oven [9.72].

Three burn-in types are known to be effective for
semiconductor devices: steady-state or static burn-in
(SBI), dynamic burn-in (DBI) and test during burn-in
(TDBI) [9.7, 73].

In SBI, DUTs are loaded into the burn-in boards
(BIB) sockets, the BIBs are put in the burn-in ovens
and the burn-in system applies power and an elevated
temperature condition (125–150 ◦C) to the devices for
a period ranging from 12 to 24 h. Once the devices cool
down, the BIBs are extracted from the boards. These
devices are placed in handling tubes and mounted on
a single-device tester. Functional tests are then applied
on the devices to sort them according to failure types.
Because the DUT is powered but not exercised electri-
cally, SBI may not be useful for complex devices because
external biases and loads may not stress internal nodes.

In DBI, the DUT is stimulated at a maximum rate
determined by the burn-in oven electronics, which can
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propagate to internal nodes. Neither SBI not DBI mon-
itors the DUT response during the stress, and thus dies
that fail burn-in cannot be detected until a subsequent
functional test.

Beyond static and dynamic burn-in is so-called in-
telligent burn-in [9.72]. Intelligent burn-in systems not
only apply power and signals to DUTs, they also mon-
itor DUT outputs. Therefore, they can guarantee that
devices undergoing burn-in are indeed powered up and
that input test vectors are being applied. In addition, they
can perform some test functions. TDBI is a technique for
applying test vectors to devices while they are being sub-
jected to stresses as part of the burn-in process. Though
function testing is not possible due to the burn-in stress,
idle time can be used advantageously to verify circuit
integrity, permitting abbreviated functional testing after
burn-in.

9.3.4 Review of Optimal Burn-In Literature

While a considerable number of papers have dealt with
burn-in at one level, recent research has been directed to
the study of burn-in at multiple levels. In this section, we
will review the burn-in literature based on the burn-in
level being analyzed.

One-Level Burn-In
To fix burn-in at one level, previous work has taken two
different approaches: the black-box approach and the
white-box approach. In the black-box approach, each
device is treated as a black box and a specific failure
rate distribution is assumed for the device. In the white-
box approach, the device is decomposed into smaller
components and a failure rate distribution is assumed
for each component. Then the whole-device failure rate
is obtained from the structure function and component
failure rate.

Many papers have taken the black-box approach
and determined the optimal burn-in time to minimize
a cost function. Mi [9.74,75] showed that optimal burn-
in times that minimize various cost functions occur
in the infant mortality period. Sheu and Chien [9.76]
showed the same result for two different types of fail-
ures. Assuming that the device lifetime follows a Weibull
distribution, Drapella and Kosznik [9.77] obtained op-
timal burn-in and preventive replacement periods using
Mathcad code. Cha [9.78–80] considered a minimally
repaired device and derived the properties of optimal
burn-in time and block replacement policy. Tseng and
Tang [9.81] developed a decision rule for classifying
a component as strong or weak and an economical model

to determine burn-in parameters based on a Wiener pro-
cess. Assuming a mixed Weibull distribution, Kim [9.82]
determined optimal burn-in time with multiple objec-
tives of minimizing cost and maximizing reliability.
A nonparametric approach [9.83] and a nonparamet-
ric Bayesian approach [9.84] have been used to estimate
the optimal system burn-in time that minimizes a cost
function.

The first report that takes a white-box approach ap-
pears in Kuo [9.85]. The optimal component burn-in
time was determined to minimize a cost function sub-
ject to a reliability constraint, assuming that the failure
of each component follows a Weibull distribution. Chi
and Kuo [9.86] extended it to include a burn-in capac-
ity constraint. Kar and Nachlas [9.87] consider a series
structure, assuming that each component has a Weibull
distribution. Given that each component that fails sys-
tem burn-in is replaced, the optimal system burn-in time
was determined to maximize a net-profit function that
balances revenue and cost. For the case where percentile
residual life is the performance measure of burn-in, Kim
and Kuo [9.88] studied the relationship between burn-in
and percentile residual life.

Multi-level Burn-in
For studying burn-in at various levels, the white-box
approach must be asked to characterize the failure time
distribution of the whole device. Because system burn-in
is never necessary after component burn-in if assembly
is perfect [9.89,90], modeling of burn-in at multiple lev-
els must focus on the quantification of assembly quality.
Whitbeck and Leemis [9.91] added a pseudo-component
in series to model the degradation of a parallel system
during assembly. Their simulation result showed that
system burn-in is necessary after component burn-in
to maximize the mean residual life. Reddy and Diet-
rich [9.92] added several connections to explain an
assembly process and assumed that each of compo-
nents and connections followed a mixed exponential
distribution. The optimal burn-in time at the compo-
nent and system levels were determined numerically
to minimize the cost functions, given that the com-
ponents were replaced and the connections minimally
repaired upon failure. Pohl and Dietrich [9.93] consid-
ered the same problem for mixed Weibull distributions.
Kuo [9.94] used the term incompatibility for reliability
reduction realized during assembly process. The incom-
patibility factor exists not only at the component level
but also at the subsystem and the system levels due to
poor manufacturability, workmanship, and design strat-
egy. Chien and Kuo [9.95] proposed a nonlinear model

Part
A

9
.3



Modeling and Analyzing Yield, Burn-In and Reliability 9.4 Relationships Between Yield, Burn-In and Reliability 163

to estimate the optimal burn-in times for all levels as
well as to determine the number of redundancies in
each subsystem when incompatibility exists. To quantify
the incompatibility factor, Chien and Kuo [9.96] added
a uniform random variable to the reliability function.
Optimal burn-in times at different levels were deter-
mined to maximize the system reliability, subject to
a cost constraint via simulation, assuming that the com-
ponent followed a Weibull distribution. A conceptual
model has been developed [9.97] that considers PLBI
and WLBI for minimizing a cost function subject to

the reliability requirement. Kim and Kuo [9.98, 99] an-
alytically derived the conditions for system burn-in to
be performed after component burn-in using a general
system distribution to which the component burn-in in-
formation and assembly problems were transferred. Kim
and Kuo [9.100] presented another model for quantifying
the incompatibility factor when the assembly adversely
affected the components that were replaced at failure.
Optimal component and system burn-in times were
determined using nonlinear programming for various
criteria.

9.4 Relationships Between Yield, Burn-In and Reliability

As semiconductor technology advances, burn-in is
becoming more expensive, time-consuming and less ca-
pable of identifying the failure causes. Previous research
has focused on the determination of burn-in time based
on a reliability function estimated from the time-to-first-
failure distribution. However, newer proactive methods
to determine the burn-in period in the early production
stage are of great interest to the semiconductor industry.

One such approach is based on the relation model
of yield, burn-in and reliability, which we will review in
this section.

9.4.1 Background

Observing that high yield tends to go with high reliabil-
ity, it was conjectured that defects created on IC devices
during manufacturing processes determine yield as well
as reliability [9.31]. Subsequent experiments confirmed
that each defect in a device affects either yield or re-

s(x)

Defect size

Reliability
failures

Infant
mortality
failures

Yield failures

x0

Oxide and defect

x

Fig. 9.2 Defect size distribution and oxide problems [9.15]

liability, depending on its size and location. This is
illustrated in Fig. 9.2 for oxide defects. Therefore, relia-
bility can be estimated based on yield if the relationship
between yield and reliability is identified. A model that
relates yield and reliability has many applications, such
as in yield and reliability predictions for future devices,
device architecture design, process control and specifi-
cation of allowable defect density in new processes for
achieving future yield and reliability goals. As a result,
the start-up time of new fabrication facilities and cycle
times can be shortened by reducing the amount of tra-
ditional stress testing required to qualify new processes
and products.

Developing a relation model of yield and reliabil-
ity has been an active research area in the past decade.
Three different definitions have been used for reliabil-
ity in previous research. First, reliability is defined by
the probability of a device having no reliability defects,
where a reliability defect is defined not as a function of
the operating time but as a fixed defect size. Secondly,

0

1

Y

Yield reliability

Time

When reliabilty includes
yield information

When reliabilty excludes
yield information

Manufacturing processes

Fig. 9.3 Yield-reliability relationship depending on the
definition of reliability [9.24]
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reliability denotes the probability of a device having no
reliability defects given that there are no yield defects.
This reliability is equivalent to yield at time zero, as
depicted in Fig. 9.3. This definition of reliability is use-
ful from the designer’s point-of-view as it incorporates
yield information, but it is not consistent with the tra-
ditional definition. Thirdly, reliability is defined as the
probability of a device having no reliability defects by
time t. In this case, reliability is defined as a function of
the operating time without incorporating the yield de-
fects, after assuming that any device that is released to
field operation has passed a manufacturing yield test,
implying that no yield defects exist. Such a reliability is
always 1 at time zero.

9.4.2 Time-Independent Reliability
without Yield Information

The first model that related yield and reliability was
reported by Huston and Clarke [9.23]. Let Ny be the
number of yield defects and Nr be the number of relia-
bility defects in a device. Reliability defects were defined
as a specific defect size rather than as a function of time.
Assume that Ny and Nr are independent and each fol-
lows a Poisson distribution. Thus, the distribution of Ny
is given in (9.1) and the distribution of Nr is given by

P∗
Poisson(k) = P(Nr = k) = e−λrλk

r

k! , k = 0, 1, 2 ,

where λr is the average number of reliability defects per
chip. Then, for a device without reliability defects, the
Poisson reliability model is obtained by

RPoisson = P∗
Poisson(0) = e−λr . (9.7)

The Poisson yield–reliability relation is obtained from
(9.2) and (9.7) by

RPoisson = Yγ
Poisson (9.8)

where

γ = λr

λy
. (9.9)

Next, they expressed λy = Ay D0 and λr = Ar D0 where
D0 is the common defect density for the yield and relia-
bility defects, and Ay and Ar are the yield and reliability
critical areas, respectively.

Subsequently, Kuper et al. [9.101] used a similar
model given by

RPoisson = (YPoisson/M)γ (9.10)

where M is the maximum possible yield fraction consid-
ering clustering effects and edge exclusions. The value
of γ depends on the technology and process and on the
conditions under which the product is used. They as-
sumed that λy = ADy and λr = ADr where A is the
device area and Dy and Dr are the yield and reliability
defect density, respectively. The model was verified with
high-volume ICs manufactured by several processes.

Riordan et al. [9.27] verified that (9.10) agrees well
for yields based on the lot, the wafer, the region of the
wafer and the die in a one-million-unit sample of mi-
croprocessors. Van der Pol et al. [9.102] used (9.10) to
study the IC yield and reliability relationship further for
50 million high-volume products in bipolar CMOS and
BICMOS technologies from different wafer fabrication
facilities. Experiments showed that a clear correlation
exists among functional yield, burn-in failures and field
failures.

Zhao et al. [9.103] used a discrete exponential yield
model given in (9.6) for yield and (9.7) for reliability.
Then, the relation model is obtained by

R = exp

⎛

⎝−
m

(
1−Y1/m

discrete expo

)

Y1/m
discrete expo

γ

⎞

⎠ .

9.4.3 Time-Independent Reliability
with Yield Information

Barnett et al. [9.19] developed a relation model for the
negative binomial model, rather than for the Poisson
model, assuming that the number of reliability defects is
proportional to the number of yield defects in a device.
Let N be the total number of defects, where N = Ny+
Nr. Then

P(Ny = m, Nr = n|N = q)= (q
m)pm

y pn
r , (9.11)

where py is the probability of a defect being a yield
defect, and pr = 1− py) is the probability of a defect
being a reliability defect. Let λ= E(N ). If N is assumed
to follow a negative binomial distribution

P(N = q)= Γ (α+q)

q!Γ (α)

(
λ
α

)q

(1+ λ
α

)α+q
,

then the wafer probe yield can be obtained by

Ynb = P(Ny = 0) =
(

1+ λy

α

)−α

, (9.12)

where λy = λpy is the average number of yield defects.
Let R be the conditional probability that there are no
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reliability defects given that there are no yield defects.
Then,

R = P(Nr = 0|Ny = 0) =
(

1+ λr(0)

α

)−α

, (9.13)

where

λr(0) = λpr

1+λpy/α

is the average number of reliability defects given that
there are no yield defects. Using (9.12) and (9.13), the
relation model is derived as

R =
[
1+γ

(
1−Y1/α

)]−α

,

where γ = λr/λy = pr/py. Numerical examples were
used to show that the number of reliability failures pre-
dicted by the negative binomial model can differ from
the prediction by the Poisson model because of clus-
tering effects. Barnett et al. [9.18] modified the model
in order to consider the possibility of repair in a cer-
tain area of a chip and experimentally verified that the
reliability of an IC with a given number of repairs
can be accurately quantified with the model. Barnett
et al. [9.21] and [9.20] validated the yield–reliability
relation model using yield and stress test data from a 36-
Mbit static random-access memory (SRAM) memory
chip and an 8-Mbit embedded dynamic random-access
memory (DRAM) chip and from 77 000 microprocessor
units manufactured by IBM microelectronics, respec-
tively.

9.4.4 Time-Dependent Reliability

Van der Pol et al. [9.104] added the time aspect of
reliability to their previous model [9.102] to suggest
detailed burn-in. From an experiment, a combination of
two Weibull distributions was employed for the time-
to-failure distribution by which 1− RPoisson in (9.8) is
replaced. Similarly, Barnett and Singh [9.22] introduced
the time aspect of reliability in (9.13) using a Weibull
distribution. Forbes and Arguello [9.105] expressed the
reliability by time t by

R(t) = 1− e−λr(t) � 1−λr(t)

= 1− ADr(t)= 1− ADyγ (t) , (9.14)

where γ (t) = Dr(t)
Dy

. Then, the Weibull distribution re-
liability replaces the left-hand side of (9.14) and the
corresponding relationship of yield and reliability is used
to optimize the burn-in period. All of these models are
based on the assumption that the device time-dependent

reliability is available in advance from experiments or
field failure data.

Kim and Kuo [9.26] suggested using λr(t)= Ar(t)D0
in (9.8), where λr(t) denotes the mean number of re-
liability defects realized by time t, and Ar(t) is the
reliability critical area by time t. Assuming that the
defect growth for operation time t is a known in-
creasing function of time, they calculated λr(t) and
derived a relation model of oxide yield and time-
dependent reliability. This is the first model in which
time-dependent reliability is estimated from yield and
critical area analysis, rather than from field failure
data. Because of the properties of the assumed de-
fect growth function, the resulting reliability function
has an increasing failure rate. The effect of burn-in on
yield, using yield and reliability critical area, was stud-
ied by Kim et al. [9.106]. Kim et al. [9.24] presented
another model to tie oxide yield to time-dependent
reliability by combining the oxide time to a break-
down model with the defect size distribution given in
(9.4). This reliability model predicted from the yield
has an infant mortality period such that the optimal
burn-in policy for burn-in temperature, burn-in volt-
age and burn-in time can be determined based on the
model.

To handle the dependence between the numbers of
yield and reliability defects, Kim and Kuo [9.25, 107]
used a multinomial distribution for the number of yield
defects, the number of reliability defects that fail dur-
ing burn-in and the number of reliability defects that
are eventually released to field operation. The distribu-
tion of the number of defects is arbitrary. From a feature
of multinomial distribution, the number of yield defects

1
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0
0 0.2 0.4 0.6 0.8 1

Reliability

Yield

t increasesγ(t) > 1

γ(t) < 1
γ(t) = 1

Fig. 9.4 Relation between yield and time-dependent relia-
bility [9.25]
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and the number of reliability defects are negatively cor-
related if the total number of defects in a device is fixed.
An analytical result showed that two events, the number
of yield defects being zero and the number of reliability
defects that fail during burn-in being zero, are positively
correlated. This explains the correlated improvement be-
tween yield and burn-in fallout. It was also shown that
burn-in may be useful if device-to-device variability in
the number of defects passing yield tests is greater than
a threshold, where the threshold depends on the failure
rate of a defect occurrence distribution and the number
of defects remaining after the test. Let γ (t) be the scaling

factor from yield to reliability such that

γ (t) = λr(t)

λy
,

where λr(t) is the number of reliability defects failed by
time t. Figure 9.4 shows that a larger value of the scal-
ing factor gives a smaller value of reliability for a given
yield value. Clearly, burn-in, reliability and warranty
cost can be controlled in an actual process by consid-
ering yield and the scaling factor. One can conjecture
that burn-in should be performed if the scaling factor is
large.

9.5 Conclusions and Future Research

In this chapter, we reviewed semiconductor yield,
burn-in and reliability modeling and analysis as a fun-
damental means of proactive yield and reliability
management. It was emphasized that with new tech-
nologies the consideration of parametric and systematic
yield loss is increasingly important in addition to
the consideration of yield defects. Therefore, devel-
oping a robust design methodology that can be used
to improve parametric and systematic yield becomes
a promising research area. Statistical softwares for
easily implementing the response surface methodol-
ogy and Monte Carlo simulation are necessary to
overcome the limitations of the current corner anal-
ysis method that is widely used in parametric yield
analysis.

As design rules tend to change quickly, whether
or not to perform burn-in is a perennial question.
Previously, a considerable number of papers have
studied ways to determine optimal burn-in times
based on time-to-first-failure distributions, such as the
Weibull distribution or the mixed Weibull distribu-
tion. Since burn-in is expensive and time-consuming,
more proactive approaches are necessary for de-

termining optimal burn-in time, for example POF
analysis.

As correlated improvements in yield, burn-in fail-
ures and reliability have occurred, the development of
a model relating them has been an active research area
in the last decade. Such a model is a prerequisite to
predict and control burn-in and reliability based on the
device layout in the design stage. Through the model, cy-
cle times and testing costs can be reduced significantly.
Currently, experiments are validating the relationship
between yield and time-independent reliability. Exper-
iments are necessary to confirm the time-dependent
relationship as well. Validation of the time-dependent
behavior of reliability defects using IC devices is nec-
essary to determine optimal burn-in periods through the
relation model. To do this, physical models must be
available to characterize defect growth during operation
for various device types, which will enable the estima-
tion of reliability defects as a function of operation time.
Also, some future research should be conducted to gen-
eralize the yield–reliability relation model to other defect
density distributions besides the Poisson and negative
binomial models.
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Part B focuses on process monitoring, control and
improvement. Chapter 10 describes in detail numer-
ous important statistical methodologies for quality
and productivity improvement, including statistical
process control, robust design, signal-to-noise ratio, ex-
perimental design, and Taguchi methods. Chapter 11
deals with Six Sigma design and methodology. The
chapter also discusses decision-making optimiza-
tion strategies for product and process improvement,
including design of experiments and the response-
surface methodology. Chapter 12 describes the two
widely used parameter-optimization techniques, the
response-surface methodology and the Taguchi method,
and discusses how to enhance existing methods by
developing robust optimization approaches that bet-
ter maximize the process and product performance.
Chapter 13 introduces the concept of uniform design
and its applications in the pharmaceutical industry
and accelerated stress testing. It also discusses the
methods of construction of uniform designs for experi-
ments with mixtures in multidimensional cubes and
some relationships between uniform designs and other
related designs, while Chapt. 14 focuses on the devel-
opment and applications of cumulative score statistics
and describes the generalized theoretical development

from traditional process-monitoring charts as well
as how can they be applied to the monitoring of
autocorrelated data. Chapter 15 provides a compre-
hensive review of various chain sampling plans such
as acceptance sampling two-stage chains, dependent
sampling, and chain sampling with variable inspec-
tion, and discusses several interesting extensions of
chain sampling, including chain sampling for mixed
attribute/variable inspection and deferred sampling
plans. Chapter 16 surveys several major models and
techniques, such as control charts based on the zero-
inflated Poisson distribution, the generalized Poisson
distribution and the time-between-event monitoring
process, that can be used to monitor high quality pro-
cesses. Chapter 17 introduces the basic concept and
the use of the exponentially weighted moving-average
statistic as a process-monitoring scheme commonly
used for processes and maintenance in industrial
plants. The chapter also discusses some recent in-
novative types of control charts. Chapter 18 provides
a brief review of major univariate quality-monitoring
procedures including Crosier’s cumulative sum and
exponentially weighted moving-average schemes and
discusses various multivariate monitoring schemes for
detecting a change in the level of a multivariate process.
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Statistical Me10. Statistical Methods for Quality
and Productivity Improvement

The first section of this chapter introduces sta-
tistical process control SPC and robust design
RD, two important statistical methodologies
for quality and productivity improvement.
Section 10.1 describes in-depth SPC theory
and tools for monitoring independent and
autocorrelated data with a single quality char-
acteristic. The relationship between SPC methods
and automatic process control methods is
discussed and differences in their philoso-
phies, techniques, efficiencies, and design are
contrasted. SPC methods for monitoring mul-
tivariate quality characteristics are also briefly
reviewed.

Section 10.2 considers univariate RD, with
emphasis on experimental design, performance
measures and modeling of the latter. Combined
and product arrays are featured and performance
measures examined, include signal-to-noise
ratios SNR, PerMIAs, process response, process
variance and desirability functions. Of central
importance is the decomposition of the expected
value of squared-error loss into variance and
off-target components which sometimes allows
the dimensionality of the optimization problem to
be reduced.

Section 10.3 deals with multivariate RD and
demonstrates that the objective function for the
multiple characteristic case is typically formed
by additive or multiplicative combination of the
univariate objective functions. Some alternative
objective functions are examined as well as
strategies for solving the optimization problem.

Section 10.4 defines dynamic RD and summar-
izes related publications in the statistics literature,
including some very recent entries. Section 10.5
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lists RD case studies originating from applications
in manufacturing, reliability and tolerance design.

In the current international marketplace, continu-
ous quality improvement is pivotal for maintaining
a competitive advantage. Although quality improvement
activities are most efficient and cost-effective when im-
plemented as part of the design and development stage
(off-line), on-line activities such as statistical process

control (SPC) are vital for maintaining quality during
manufacturing processes.

Statistical process control (SPC) is an effective tool
for achieving process stability and improving process
capability through variation reduction. Primarily, SPC
is used to classify sources of process variation as either
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common cause or assignable cause. Common cause
variations are inherent to a process and can be de-
scribed implicitly or explicitly by stochastic models.
Assignable cause variations are unexpected and diffi-
cult to predict beforehand. The basic idea of SPC is
to quickly detect and correct assignable cause variation
before quality deteriorates and defective units are pro-
duced. The primary SPC tool was developed in the 1920s
by Walter Shewhart of Bell Telephone Laboratories
and has been tremendously successful in manufacturing
applications [10.1–3].

Robust design is a systematic methodology that uses
statistical experimental design to improve the design of
products and processes. By making product and pro-
cess performance insensitive (robust) to hard-to-control
disturbances (noise), robust design simultaneously im-
proves product quality, the manufacturing process, and
reliability. The RD method was originally developed by
the Japanese quality consultant, Genichi Taguchi [10.4].
Taguchi’s 1980 introduction of robust parameter design
to several major American industries resulted in sig-
nificant quality improvements in product and process
design [10.5]. Since then, a great deal of research on RD
has improved related statistical techniques and clarified
underlying principles.

In addition, many RD case studies have demon-
strated phenomenal cost savings. In the electronics
industry, Kackar and Shoemaker [10.6] reported a 60%
process variance reduction; Phadke [10.5] reported
a fourfold reduction in process variance and a twofold
reduction in processing time – both from running sim-
ple RD experiments. In other industries, the American

Supplier Institute (1983–1990) reported a large number
of successful case studies in robust design.

Although most data is multivariate in nature, re-
search in both areas has largely focused on normally
distributed univariate characteristics (responses). Mont-
gomery and Woodall [10.2] present a comprehensive
panel discussion on SPC (see also Woodall and Mont-
gomery [10.7]) and multivariate methods are reviewed
by Lowry and Montgomery [10.8] and Mason [10.9].
Seminal research papers on RD include Kackar [10.10],
Leon et al. [10.11], Box [10.12], Nair [10.13] and
Tsui [10.14]. RD problems with multiple characteris-
tics are investigated by Logothetis and Haigh [10.15],
Pignatiello [10.16], Elsayed and Chen [10.17] and
Tsui [10.18]. This research has yielded techniques al-
lowing engineers to effectively implement SPC and RD
in a host of applications.

This paper briefly revisits the major developments
in both SPC and RD that have occurred over the last
twenty years and suggests future research directions
while highlighting multivariate approaches. Section 10.1
covers SPC of univariate and multivariate random vari-
ables for both Shewhart (including x̄ and s charts) and
non-Shewhart approaches (CUSUM and EWMA) while
assessing the effects of autocorrelation and automatic
process control. Section 10.2 considers univariate RD,
emphasizing performance measures and modeling for
loss functions, dual responses and desirability functions.
Sections 10.3 and 10.4 deal respectively with multivari-
ate and dynamic RD. Finally, Sect. 10.5 recaps RD case
studies from the statistics literature in manufacturing,
process control and tolerance design.

10.1 Statistical Process Control for Single Characteristics

The basic idea in statistical process control is a binary
view of the state of a process; in other words, it is either
running satisfactorily or not. Shewhart [10.19] asserted
that the process state is related the type of variation
manifesting itself in the process. There are two types of
variation, called common cause and assignable or spe-
cial cause variation. Common cause variation refers to
the assumption that “future behavior can be predicted
within probability limits determined by the common
cause system” [10.20]. Special cause variation refers
to “something special, not part of the system of com-
mon causes” [10.21]. A process that is subject only
to common cause variation is “statistically” in control,
since the variation is inherent to the process and there-
fore eliminated only with great difficulty. The objective

of statistical process control is to identify and remove
special cause variation as quickly as possible.

SPC charts essentially mimic a sequential hypoth-
esis test to distinguish assignable cause variation from
common cause variation. For example, a basic mathe-
matical model behind SPC methods for detecting change
in the mean is

Xt = ηt +Yt ,

where Xt is the measurement of the process variable at
time t, and ηt is the process mean at that time. Here
Yt represents variation from the common cause system.
In some applications, Yt can be treated as an indepen-
dently and identically distributed (iid) process. With few
exceptions, the mean of the process is constant except
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for abrupt changes, so

ηt = η+µt ,

whereη is the mean target andµt is zero for t < t0 and has
nonzero values for t ≥ t0. For analytical simplicity step
changes are often assumed; in other words µt remains
at a new constant level µ for t ≥ t0.

10.1.1 SPC for i.i.d. Processes

The statistical goal of SPC control charts is to detect
the change point t0 as quickly as possible and trigger
corrective action to bring the process back to the qual-
ity target. Among many others, the Shewhart chart, the
EWMA chart, and the CUSUM chart are three important
and widely used control charts.

Shewhart Chart
The Shewhart control chart monitors the process obser-
vations directly,

Wt = Xt −η .

Assuming that the standard deviation of Wt is σW ,
the stopping rule of the Shewhart chart is defined as
|Wt |> LσW , where L is prespecified to maintain partic-
ular probability properties.

EWMA Chart
Roberts [10.22] introduces a control charting algorithm
based on the exponentially weighted moving average of
the observations,

Wt =
∞∑

i=0

wi (Xt−i −η) ,

where wi = λ(1−λ)i , (0 < λ≤ 1). It can be rewritten as

Wt = (1−λ)Wt−1+λ(Xt −η) , (10.1)

where W0 = 0 or the process mean. The stopping
rule of the EWMA chart is |Wt | > LσW where
σW =√

λ/(2−λ)σX . The Shewhart chart is a special
case of the EWMA chart with λ= 1. When the underly-
ing process is i.i.d, the EWMA chart with small λ values
is sensitive to the detection of small and medium shifts
in mean [10.23].

CUSUM Chart
Page [10.24] introduces the CUSUM chart as a sequen-
tial probability test. It can be simply obtained by letting
λ approach zero in (10.1). The CUSUM algorithm as-

signs equal weights to past observations, and its tabular
form consists of two quantities,

W+
t = max[0, W+

t−1+ (Xt −η)− kσX ] ,
W−

t = min[0, W−
t−1+ (Xt −η)+ kσX ] ,

where W+
0 = W−

0 = 0. It can be shown that the CUSUM
chart with k = µ/2 is optimal for detecting a mean
change in µ when the observations are i.i.d.

Because of the randomness of the observations, these
control charts may trigger false alarms – out-of-control
signals issued when the process is still in control. The
expected number of units measured between two suc-
cessive false alarms is called the in-control average run
length (ARL)0. When a special cause presents itself, the
expected period before a signal is triggered is called
the out-of-control average run length (ARL1). The ideal
control chart has a long ARL0 and a short ARL1. The
Shewhart chart typically uses the constant L = 3 so that
the in-control ARL is 370 when the underlying process
is i.i.d. with normal distribution.

These SPC charts are very effective for monitoring
the process mean when the process data is i.i.d. It has
been shown that the Shewhart chart is sensitive for de-
tecting large shifts while the EWMA and CUSUM charts
are sensitive to small shifts [10.23]. However, a funda-
mental assumption behind these SPC charts is that the
common cause variation is free of serial correlation. Due
to the prevalence of advanced sensing and measurement
technology in manufacturing processes, the assumption
of independence is often invalid. For example, measur-
ing critical in-process dimensions is now possible on
every unit in the production of discrete parts. In contin-
uous process production systems, the presence of inertial
elements such as tanks, reactors, and recycle streams of-
ten result in significant serial correlation in the measured
variables. Serial correlation creates many challenges and
opportunities for SPC methodologies.

10.1.2 SPC for Autocorrelated Processes

Traditional SPC charts have been shown to func-
tion poorly while monitoring and controlling serially
correlated processes [10.25,26]. To accommodate auto-
correlation, the following time series methods have been
proposed.

Modifications of Traditional Methods
One common SPC strategy is to plot the autocorre-
lated data on traditional charts whose limits have been
modified to account for the correlation. Johnson and
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Bagshaw [10.27] and Bagshaw and Johnson [10.28]
consider the effects of autocorrelation on CUSUM charts
using the weak convergence of cumulative sums to
a Wiener process. Another alternative is the exponen-
tially weighted moving average chart for stationary
processes (EWMAST) studied by Zhang [10.29].
Jiang et al. [10.30] extend this to a general class of
control charts based on autoregressive moving aver-
age (ARMA) charts. The monitoring statistic of an
ARMA chart is defined to be the result of a generalized
ARMA(1, 1) process applied to the underlying process
{Xt},

Wt = θ0 Xt − θXt−1+φWt−1

= θ0(Xt −βXt−1)+φWt−1 , (10.2)

where β = θ/θ0 and θ0 is chosen so that the sum of
the coefficients is unity when Wt is expressed in terms
of the Xt’s, so θ0 = 1+ θ−φ. The authors show that
these charts exhibit good performance when the chart
parameters are chosen appropriately.

Forecast-Based Monitoring Methods
Forecast-based charts started with the special-cause
charts (SCC) proposed by Alwan and Roberts [10.31].
The general idea is to first apply a one-step-ahead pre-
dictor to the observation {Xt} and then monitor the
corresponding prediction error,

Wt = et , (10.3)

where et = Xt − X̂t is the forecast error of predictor X̂t .
The SCC method is the first example that uses minimum
mean squared error (MMSE) predictors and monitors
the MMSE residuals. When the model is accurate, the
MMSE prediction errors are approximately uncorre-
lated. This removal of correlation means that control
limits for the SCC can be easily calculated from tra-
ditional Shewhart charts, EWMA charts, and CUSUM
charts. Another advantage of the SCC method is that its
performance can be analytically approximated.

The SCC method has attracted considerable atten-
tion and has been extended by many authors. Among
them, Harris and Ross [10.25] and Superville and
Adams [10.32] investigate process monitoring based on
the MMSE prediction errors for simple autoregressive
[AR(1)] models; Wardell et al. [10.33, 34] discuss the
performance of SCC for ARMA(1, 1) models; and Van-
der Wiel [10.35] studies the performance of SCC for
integrated moving average [IMA(0, 1, 1)] models. SCC
methods perform poorly when detecting small shifts
since a constant mean shift always results in a dynamic
shift pattern in the error term.

In general this approach can be applied to any predic-
tor. Montgomery and Mastrangelo [10.36] recommend
the use of EWMA predictors in the SCC method (here-
after called the M–M chart). Jiang et al. [10.37] propose
the use of proportional-integral-derivative (PID) predic-
tors

X̂t = X̂t−1+ (kP+ kI+ kD)et−1

− (kP+2kD)et−2+ kDet−3 , (10.4)

where kP, kI, and kD are parameters of the PID controller
defined in Sect. 10.1.3. The family of PID-based charts
includes the SCC, EWMA, and M–M charts as special
cases. Jiang et al. [10.37] show that the predictors of the
EWMA chart and M–M chart may sometimes be inef-
ficient and the SCC over-sensitive to model deviation.
They also show that the performance of the PID-based
chart is affected by the choice of chart parameters. For
any given underlying process, one can therefore tune
the parameters of the PID-based chart to optimize its
performance.

GLRT-Based Multivariate Methods
Since forecast-based residual methods monitor a sin-
gle statistic et , they often suffer from the problem of
a narrow “window of opportunity” when the underlying
process is positively correlated [10.35]. If the shift oc-
currence time is known, the problem can be alleviated by
including more historical observations/residuals in the
test. This idea was first proposed by Vander Wiel [10.35]
using a generalized likelihood ratio test (GLRT) proce-
dure. Assuming residual signatures {δi} when a shift
occurs, the GLRT procedure based on residuals is

Wt = max
0≤k≤p−1

|
k∑

i=0

δi et−k+i |/
√√√√

k∑

i=0

δ2
i , (10.5)

where p is the prespecified size of the test window. Apley
and Shi [10.38] show that this procedure is very efficient
in detecting mean shifts when p is sufficiently large.
Similar to the SCC methods, this is model-based and the
accuracy of signature strongly depends on the window
length p. If p is too small and a shift is not detected
within the test window, the signature in (10.5) might no
longer be valid and the test statistic no longer efficient.

Note that a step mean shift at time t− k+1 results
in a signature

dk = (0, · · · , 0,

k︷ ︸︸ ︷
1, · · · , 1)′ (1 ≤ k ≤ p)

and

dk = (1, 1, · · · , 1)′ (k > p)
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on Ut = (Xt−p+1, Xt−p+2, · · · , Xt)′. To test these sig-
natures, the GLRT procedure based on observation
vector Wt is defined as

Wt = max
0≤k≤p−1

|d′kΣ−1
U Ut |/

√
d′kΣ

−1
U dk , (10.6)

where ΣU is the covariance matrix of Ut . Jiang [10.39]
points out that this GLRT procedure is essentially
model-free and always matches the true signature
of Ut regardless of the timing of the change point.
If a non-step shift in the mean occurs, multivariate
charts such as Hotelling’s T 2 charts can be developed
accordingly [10.40].

Monitoring Batch Means
One of the difficulties with monitoring autocorrelated
data is accounting for the underlying autocorrelation. In
simulation studies, it is well known that batch means
reduce autocorrelation within data. Motivated by this
idea, Runger and Willemain [10.41, 42] use a weighted
batch mean (WBM) and a unified batch mean (UBM)
to monitor autocorrelated data. The WBM method
weighs the mean of observations, defines batch size
so that autocorrelation among batches is reduced to
zero and requires knowledge of the underlying process
model [10.43]. The UBM method determines batch size
so that autocorrelation remains below a certain level and
is “model-free”. Runger and Willemain show that the
UBM method is simple and often more cost-effective in
practice.

Batch-means methods not only develop statistics
based on batch-means, but also provide variance es-
timation of these statistics for some commonly used
SPC charts. Alexopoulos et al. [10.44] discuss promis-
ing methods for dealing with correlated observations
including nonoverlapping batch means (NBM), over-
lapping batch means (OBM) and standardized time
series (STS).

10.1.3 SPC versus APC

Automatic process control (APC) complements SPC as
a variation reduction tool for manufacturing industries.
While SPC techniques are used to reduce unexpected
process variation by detecting and removing the cause
of variation, APC techniques are used to reduce system-
atic variation by employing feedforward and feedback
control schemes. The relationships between SPC and
APC are important to both control engineers and quality
engineers.
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Fig. 10.1 Automatic process control

Feedback Control versus Prediction
The feedback control scheme is a popular APC strategy
that uses the deviation of output from target (set-point)
to signal a disturbance of the process. This deviation
or error is then used to compensate for the disturbance.
Consider a pure-gain dynamic feedback-controlled pro-
cess, as shown in Fig. 10.1. The process output can be
expressed as

et = Xt − Zt−1 . (10.7)

Suppose X̂t is an estimator (a predictor) of Xt that can
be obtained at time t−1. A realizable form of control
can be obtained by setting

Zt−1 =−X̂t (10.8)

so that the output error at time t+1 becomes

et = Xt − X̂t , (10.9)

which is equal to the “prediction error”. Control and pre-
diction can therefore have a one-to-one corresponding
relationship via (10.8) and (10.9).

As shown in Box and Jenkins [10.45], when the pro-
cess can be described by an ARIMA model, the MMSE
control and the MMSE predictor have exactly the same
form. Serving as an alternative to the MMSE predic-
tor, the EWMA predictor corresponds to the integral
(I) control [10.46] and is one of the most frequently
used prediction methods due to its simplicity and effi-
ciency. In general, the EWMA predictor is robust against
nonstationarity due to the fact that the I control can
continuously adjust the process whenever there is an
offset.

An extension of the I control is the widely used PID
control scheme,

Zt =−kPet − kI
1

1− B
et − kD(1− B)et , (10.10)
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where kP, kI, and kD are constants that, respectively,
determine the amount of proportional, integral, and
derivative control action. The corresponding PID pre-
dictor (10.4) can be obtained from (10.8) and (10.10).
When λ3 = 0, in other words when kD = 0 (and thus
λ1 = kP+kI and λ2 =−kP), we have a PI predictor cor-
responding to the proportional-integral control scheme
commonly used in industry.

Process Prediction versus Forecast-Based Monitor-
ing Methods
As discussed in Sect. 10.1.2, one class of SPC meth-
ods for autocorrelated processes starts from the idea
of “whitening” the process and then monitoring the
“whitened” process with time series prediction mod-
els. The SCC method monitors MMSE prediction errors
and the M–M chart monitors the EWMA prediction er-
ror. Although the EWMA predictor is optimal for an
IMA(0, 1, 1) process, the prediction error is no longer
i.i.d. for predicting other processes. Most importantly,
the EWMA prediction error that originated from the
I control can compensate for mean shifts in steady
state which makes the M–M chart very problematic for
detecting small shifts in mean.

Since PID control is very efficient and robust, PID-
based charts motivated by PID predictors outperform
SCC and M–M charts. APC-based knowledge of the
process can moreover clarify the performance of PID-
based charts. In summary, the P term ensures that process
output is close to the set point and thus sensitive in SPC
monitoring, whereas the I term always yields control
action regardless of error size which leads to a zero
level of steady-state error. This implies that the I term is
dominant in SPC monitoring. The purpose of derivative
action in PID control is to improve closed-loop stability
by making the D term in SPC monitoring less sensitive.
Although there is no connection between the EWMA
predictor and the EWMA chart, it is important to note
that the I control leads to the EWMA predictor and the
EWMA prediction-based chart is the M–M chart. As
shown in Jiang et al. [10.37], the EWMA chart is the
same as the P-based chart.

10.1.4 SPC for Automatically Controlled
Processes

Although APC and SPC techniques share the objective
of reducing process variation, their advocates have quar-
relled for decades. It has recently been recognized that
the two techniques can be integrated to produce more ef-
ficient tools for process variation reduction [10.47–52].
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Fig. 10.2 APC/SPC integration

This APC/SPC integration employs an APC rule to
regulate the system and superimposes SPC charts on
the APC-controlled system to detect process departures
from the system model. Using Deming’s terminology,
the APC scheme is responsible for reducing common
cause variation while the SPC charts are responsible for
reducing assignable cause variation. From the statistical
point of view, the former part resembles a parameter esti-
mation problem for forecasting and adjusting the process
and the latter part emulates a hypothesis test of process
location. Figure 10.2 pictures a conceptual integration
of SPC charts into the framework of a feedback control
scheme. To avoid confusion, Box and Luceno [10.46]
refer to APC activities as process adjustment and to
SPC activities as process monitoring. Since this chap-
ter emphasizes SPC methods for quality improvement,
we discuss only the monitoring component of APC/SPC
integration.

As discussed in Sect. 10.1.3, control charts devel-
oped for monitoring autocorrelated observations shed
light on the monitoring of integrated APC/SPC sys-
tems. Fundamentally, the output of an automatically
controlled process is recommended for SPC monitor-
ing. This is equivalent to forecast-based control charts
of the corresponding predictor. For example, if the pro-
cess is controlled by an MMSE controller, monitoring
the output is exactly the same as the SCC method. Simi-
lar to forecast-based methods, assignable causes have an
effect that is always contaminated by the APC control
action which results in a limited “window of oppor-
tunity” for detection [10.35]. As an alternative, some
authors suggest that monitoring the APC control action
may improve the probability of detection [10.20]. Jiang
and Tsui [10.53] compare the performance of monitoring
the output vs. the control action of an APC process and
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show that for some autocorrelated processes monitoring
the control action may be more efficient than monitoring
the output of the APC system.

In general, the performance achieved by SPC moni-
toring an APC process depends on the data stream
(the output or the control action) being measured,
the APC control scheme employed, and the underly-
ing autocorrelation of the process. If information from
process output and control action can be combined,
a universal monitor with higher SPC efficiency [10.51]
can be developed. Kourti et al. [10.54] propose
a method of monitoring process outputs conditional
on the inputs or other changing process parameters.
Tsung et al. [10.55] propose multivariate control charts
such as Hotelling’s T 2 chart and the Bonferroni approach
to monitor output and control action simultaneously.
Defining the vector of outputs and control actions as
Vt = (et, · · · , et−p+1, Xt, · · · , Xt−p+1)′, a dynamic T 2

chart with window size p monitors statistic

Wt = V ′
t Σ

−1
V Vt ,

where ΣV is the covariance matrix of Vt [10.56]. Wt fol-
lows a χ2 distribution during each period given known
process parameters. However, strong serial correlation
exists so that the χ2 quantiles cannot be used for con-
trol limits. By recognizing the mean shift patterns of Vt ,
Jiang [10.57] develops a GLRT procedure based on Vt .
This GLRT procedure is basically univariate and more
efficient than the T 2 chart.

10.1.5 Design of SPC Methods:
Efficiency versus Robustness

Among many others, the minimization of mean squared
error/prediction error is one of the important criteria for
prediction/control scheme design. Although the special
cause chart is motivated by MMSE prediction/control,
many previously mentioned SPC charts such as the PID
chart have fundamentally different criteria from those
of the corresponding APC controllers. When selecting
SPC charts, the desired goal is maximization of the
probability of shift detection.

For autocorrelated processes, Jiang [10.37] pro-
pose an ad hoc design procedure using PID charts.
They demonstrate how two capability indices defined
by signal-to-noise ratios (SNR) play a critical role in the
evaluation of SPC charts. They denote σW as the stan-
dard deviation of charting statistic Wt and µT (/µS) as
the shift levels of Wt at the first step (/long enough)
after the shift takes place. The transient state ratio is
defined as CT = µT/σW , which measures the capabil-

ity of the control chart to detect a shift in its first few
steps. The steady state ratio is defined as CS = µS/σW ,
which measures the ability of the control chart to de-
tect a shift in its steady state. These two signal-to-noise
ratios determine the efficiency of the SPC chart and can
be manipulated by selecting control chart parameters.

For a particular mean shift level, if the transient state
ratio/capability can be tuned to a high value (say 4
to 5) by choosing appropriate chart parameters, the
corresponding chart will detect the shift very quickly.
Otherwise the shift will likely be missed during the tran-
sient state and will need to be detected in later runs.
Since a high steady state ratio/capability heralds effi-
cient shift detection at steady state, a high steady state
ratio/capability is also desired. However, the steady state
ratio/capability should not be tuned so high that it results
in an extremely small transient ratio/capability, indica-
tive of low probability of detection during the transient
state. To endow the chart with efficient detection at both
states, a tradeoff is needed when choosing the charting
parameters. An approximate CS value of 3 is generally
appropriate for balancing the values of CT and CS.

One of the considerations when choosing an SPC
method is its robustness to autocorrelated and automati-
cally controlled processes. Robustness of a control chart
refers to how insensitive its statistical properties are to
model mis-specification. Reliable estimates of process
variation are of vital importance for the proper func-
tioning of all SPC methods [10.58]. For process Xt
with positive first-lag autocorrelation, the standard devi-
ation derived from moving range is often underestimated
because

E(σ̂MR) = E(MR/d2) = σX

√
1−ρ1 ,

where ρ1 is the first-lag correlation coefficient
of Xt [10.59].

A more serious problem with higher sensitivity con-
trol charts such as the PID chart is that they may be
less robust than lower sensitivity control charts such
as the SCC. Tsung et al. [10.60] and Luceno [10.61]
conclude that PID controllers are generally more ro-
bust than MMSE controllers against model specification
error. However Jiang [10.37] shows that PID charts
tend to have a shorter “in-control” ARL when the
process model is mis-specified since model errors
can be viewed as a kind of “shift” from the “true”
process model. This seems to be a discouraging re-
sult for higher sensitivity control charts. In practice,
a trade-off is necessary between sensitivity and robust-
ness when selecting control charts for autocorrelated
processes. Apley and Lee [10.62] recommend using
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a conservative control limit for EWMA charts when
monitoring MMSE residuals. By using the worst-case
estimation of residual variance, the EWMA chart can be
robustly designed for the in-control state with a slight
efficiency loss in the out-of-control state. This de-
sign strategy can be easily generalized to other SPC
methods for autocorrelated or automatically controlled
processes.

10.1.6 SPC for Multivariate Characteristics

Through modern sensing technology that allows fre-
quent measurement of key quality characteristics during
manufacturing, many in-process measurements are
strongly correlated to each other. This is especially
true for measurements related to safety, fault detection
and diagnosis, quality control and process control. In
an automatically controlled process for example, pro-
cess outputs are often strongly related to process control
actions. Joint monitoring of these correlated character-
istics ensures appropriate control of the overall process.
Multivariate SPC techniques have recently been applied
to novel fields such as environmental monitoring and
detection of computer intrusion.

The purpose of multivariate on-line techniques is
to investigate whether measured characteristics are
simultaneously in statistical control. A specific multi-
variate quality control problem is to consider whether
an observed vector of measurements x = (x1, . . . , xk)
exhibits a shift from a set of “standard” parameters
µ0 = (µ0

1, . . . , µ
0
k)′. The individual measurements will

frequently be correlated, meaning that their covariance
matrix Σ will not be diagonal.

Versions of the univariate Shewhart, EWMA and
CUSUM charts have been developed for the case of
multivariate normality.

Multivariate T 2 Chart
To monitor a multivariate vector, Hotelling [10.63] sug-
gested an aggregated statistic equivalent to the Shewhart
control chart in the univariate case,

T 2 = (x−µ0)′ Σ̂−1
x (x−µ0) , (10.11)

where Σ̂x is an estimate of the population covari-
ance matrix Σ. If the population covariance matrix is
known, Hotelling’s T 2 statistic follows a χ2 distribu-
tion with k degrees of freedom when the process is
in-control. A signal is triggered when χ2 > χ2

k,α. One of
the important features of the T 2 charts is that its out-of-
control performance depends solely on the noncentrality

parameter δ=
√

(µ−µ0)′Σ−1
x (µ−µ0) , where µ is

the actual mean vector. This means that its detectional
performance is invariant along the contours of the mul-
tivariate normal distribution.

Multivariate EWMA Chart
Hotelling’s T 2 chart essentially utilizes only current
process information. To incorporate recent historical in-
formation, Lowry [10.64] develop a similar multivariate
EWMA chart

W2
t =w′

tΣ
−1
w wt ,

where wt =Λ(xt −µ0)+ (I−Λ)wt−1 andΛ= diag(λ1,

λ2, · · · , λk). For simplicity, λi = λ (1≤ i ≤ k) is gener-
ally adopted and Σw = λ/(2−λ)Σx.

Multivariate CUSUM Chart
There are many CUSUM procedures for multivariate
data. Crosier [10.65] proposes two multivariate CUSUM
procedures, cumulative sum of T (COT) and MCUSUM.
The MCUSUM chart is based on the statistics

st =
{

0 if Ct ≤ k1

(st−1+ xt)(1− k1/Ct) if Ct > k1 ,

(10.12)

where s0 = 0, Ct =
√

(st−1+ xt)′Σ−1
x (st−1+ xt), and

k1 > 0. The MCUSUM chart signals when Wt =
s′tΣ−1

x st > h1. Pignatiello and Runger [10.66] propose
another multivariate CUSUM chart (MC1) based on the
vector of cumulative sums,

Wt = max

(
0,

√
D′

tΣ
−1
x Dt − k2lt

)
, (10.13)

where k2 > 0, Dt =∑t
i=t−lt+1 xi , and

lt =
{

lt−1+1 if Wt−1 > 0

1 otherwise .

Once an out-of-control signal is triggered from a mul-
tivariate control chart, it is important to track the cause
of the signal so that the process can be improved. Fault
diagnosis can be implemented by T 2 decompositions
following the signal and large components are sus-
pected to be faulty. Orthogonal decompositions such
as principal component analysis [10.67] are popular
tools. Mason et al. [10.68], Hawkins [10.69] and Hayter
and Tsui [10.70] propose other alternatives which inte-
grate process monitoring and fault diagnosis. Jiang and
Tsui [10.71] provide a thorough review of these methods.
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10.2 Robust Design for Single Responses

Taguchi [10.4] introduced parameter design, a method
for designing processes that are robust (insensitive)
to uncontrollable variation, to a number of American
corporations. The objective of this methodology is to
find the settings of design variables that minimize the
expected value of squared-error loss defined as

L(Y, t) = (Y − t)2 , (10.14)

where Y represents the actual process response and t the
targeted value. A loss occurs if the response Y deviates
from its target t. This loss function originally became
popular in estimation problems considering unbiased
estimators of unknown parameters. The expected value
of (Y − t)2 can be easily expressed as

E(L) = A0 E(Y − t)2

= A0
[
Var(Y )+ (E(Y )− t)2] , (10.15)

where Var(Y ) and E(Y ) are the mean and variance of the
process response and A0 is a proportional constant rep-
resenting the economic costs of the squared error loss.
If E(Y ) is on target then the squared-error loss func-
tion reduces to the process variance. Its similarity to the
criterion of least squares in estimation problems makes
the squared-error loss function easy for statisticians and
engineers to grasp. Furthermore the calculations for
most decision analyses based on squared-error loss are
straightforward and easily seen as a trade-off between
variance and the square of the off-target factor.

Robust design (RD) assumes that the appropriate
performance measure can be modeled as a transfer func-
tion of the fixed control variables and the random noise
variables of the process as follows:

Y = f (x, N, θ)+ ε , (10.16)

where x= (x1, . . . , x p)T is the vector of control factors,
N = (N1, . . . , Nq)T is the vector of noise factors, θ is
the vector of unknown response model parameters, and
f is the transfer function for Y . The control factors
are assumed to be fixed and represent the fixed design
variables. The noise factors N are assumed to be random
and represent the uncontrolled sources of variability in
production. The pure error ε represents the remaining
variability that is not captured by the noise factors, and
is assumed to be normally distributed with zero mean
and finite variance.

Taguchi divides the design variables into two sub-
sets, x= (xa, xd), where xa and xd are called respectively
the adjustment and nonadjustment design factors. An

adjustment factor influences process location while re-
maining effectively independent of process variation.
A nonadjustment factor influences process variation.

10.2.1 Experimental Designs
for Parameter Design

Taguchi’s Product Arrays and Combined Arrays
Taguchi’s experimental design takes an orthogonal ar-
ray for the controllable design parameters (an inner array
of control factors) and crosses it with another orthogo-
nal array for the factors beyond reasonable control (an
outer array of noise factors). At each test combination
of control factor levels, the entire noise array is run and
a performance measure is calculated. Hereafter we re-
fer to this design as the product array. These designs
have been criticized by Box [10.12] and others for being
unnecessarily large.

Welch [10.72] combined columns representing the
control and noise variables within the same orthogonal
array. These combined arrays typically have a shorter
number of test runs and do not replicate the design. The
lack of replication prevents unbiased estimation of ran-
dom error but we will later discuss research addressing
this limitation.

Which to Use: Product Array or Combined Array. There
is a wide variety of expert opinion regarding choice of
experimental design in Nair [10.13]. The following ref-
erences complement Nair’s comprehensive discussion.
Ghosh and Derderian [10.73] derive robustness meas-
ures for both product and combined arrays, allowing the
experimenter to objectively decide which array provides
a more robust option. Miller et al. [10.74] consider the
use of a product array on gear pinion data. Lucas [10.75]
concludes that the use of classical, statistically designed
experiments can achieve the same or better results than
Taguchi’s product arrays. Rosenbaum [10.76] reinforces
the efficiency claims of the combined array by giving
a number of combined array designs which are smaller
for a given orthogonal array strength or stronger for
a given size. Finally, Wu and Hamada [10.77] provide
an intuitive approach to choosing between product and
combined array based on an effect-ordering principle.

They list the most important class of effects as those
containing control–noise interactions, control main ef-
fects and noise main effects. The second highest
class contains the control–control interactions and the
control–control–noise interactions while the third and
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least important class contains the noise–noise interac-
tions. That array producing the highest number of clear
effect estimates in the most important class is considered
the best design.

Noting that the combined array is often touted as be-
ing more cost-effective due to an implied smaller number
of runs, Wu and Hamada place the cost comparison on
a more objective basis by factoring in both cost per con-
trol setting and cost per noise replicate. They conclude
that the experimenter must prioritize the effects to be es-
timated and the realistic costs involved before deciding
which type of array is optimal.

Choosing the Right Orthogonal Array for RD
Whether the experimenter chooses a combined or prod-
uct array, selecting the best orthogonal array is an
important consideration. The traditional practice in clas-
sical design of experiments is to pick a Resolution IV or
higher design so that individual factors are aliased with
three factor interactions, of which there are relatively
few known physical examples.

However, the estimation of main effects is not ne-
cessarily the best way to judge the value of a test
design for RD. The control–noise interactions are gener-
ally regarded as having equal importance as the control
effects for fine tuning the final control factor settings
for minimal product variation. Hence evaluation of an
experimental design for RD purposes must take into
account the design’s ability to estimate the control–
noise interactions deemed most likely to affect product
performance.

Kackar and Tsui [10.78] feature a graphi-
cal technique for showing the confounding pattern
of effects within a two-level fractional factorial.
Kackar et al. [10.79] define orthogonal arrays and de-
scribe how Taguchi’s fixed element arrays are related to
well known fractional factorial designs. Other pieces re-
lated to this decision are Hou and Wu [10.80], Berube
and Nair [10.60] and Bingham and Sitter [10.81].

D-Optimal Designs
In this section several authors show how D-optimal
designs can be exploited in RD experiments. A D-
optimal design minimizes the area of the confidence
ellipsoids for parameters being estimated from an as-
sumed model. Their key strength is their invariance to
linear transformation of model terms and their charac-
teristic weakness is a dependence on the accuracy of the
assumed model. By using a proper prior distribution to
attack the singular design problem and make the design
less model-dependent, Dumouchel and Jones [10.82]

provide a Bayesian D-optimal design needing little mod-
ification of existing D-optimal search algorithms.

Atkinson and Cook [10.83] extend the existing theory
of D-optimal design to linear models with noncon-
stant variance. With a Bayesian approach they create
a compromise design that approximates preposterior
loss. Vining and Schaub [10.84] use D-optimality to
evaluate separate linear models for process mean and
variance. Their comparison of the designs indicates that
replicated fractional factorials of assumed constant vari-
ance best estimate variance while semi-Bayesian designs
better estimate process response.

Chang [10.85] proposes an algorithm for generating
near D-optimal designs for multiple response surface
models. This algorithm differs from existing approaches
in that it does not require prior knowledge or data
based estimates of the covariance matrix to generate
its designs. Mays [10.86] extends the quadratic model
methodology of RSM to the case of heterogeneous
variance by using the optimality criteria D ( maximal
determinant) and I (minimal integrated prediction vari-
ance) to allocate test runs to locations within a central
composite design.

Other Designs
The remaining references discuss types of designs used
in RD which are not easily classified under the more
common categories previously discussed.

Pledger [10.87] divides noise variables into observ-
able and unobservable and argues that one’s ability to
observe selected noise variables in production should
translate into better choices of optimal control settings.
Rosenbaum [10.88] uses blocking to separate the con-
trol and noise variables in combined arrays, which were
shown in Rosenbaum [10.76] to be stronger for a given
size than the corresponding product array designs. Li and
Nachtsheim [10.89] present experimental designs which
don’t depend on the experimenter’s prior determination
of which interactions are most likely significant.

10.2.2 Performance Measures in RD

In Sect. 10.2.1 we compared some of the experimental
designs used in parameter design. Of equal importance is
choosing which performance measure will best achieve
the desired optimization goal.

Taguchi’s Signal-to-Noise Ratios
Taguchi introduced a family of performance measures
called signal-to-noise ratios whose specific form de-
pends on the desired response outcome. The case where
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the response has a fixed nonzero target is called the
nominal-the-best case (NTB). Likewise, the cases where
the response has a smaller-the-better target or a larger-
the-better target are, respectively, called the STB and
LTB cases.

To accomplish the objective of minimal expected
squared-error loss for the NTB case, Taguchi proposed
the following two-step optimization procedure: (i) Cal-
culate and model the SNRs and find the nonadjustment
factor settings which maximize the SNR. (ii) Shift mean
response to the target by changing the adjustment fac-
tor(s).

For the STB and LTB cases, Taguchi recommends
directly searching for the values of the design vector x
which maximize the respective SNR. Alternatives for
these cases are provided by Tsui and Li [10.90] and
Berube and Wu [10.91].

Performance Measure
Independent of Adjustment (PerMIAs)
Taguchi did not demonstrate how minimizing the SNR
would achieve the stated goal of minimal average
squared-error loss. Leon et al. [10.11] defined a func-
tion called the performance measure independent of
adjustment (PerMIA) which justified the use of a two-
step optimization procedure. They also showed that
Taguchi’s SNR for the NTB case is a PerMIA when
both an adjustment factor exists and the process re-
sponse transfer function is of a specific multiplicative
form. When Taguchi’s SNR complies with the proper-
ties of a PerMIA, his two-step procedure minimizes the
squared-error loss.

Leon et al. [10.11] also emphasized two major ad-
vantages of the two-step procedure:

• It reduces the dimension of the original optimization
problem.• It does not require reoptimization for future changes
of the target value.

Box [10.12] agrees with Leon et al. [10.11] that the
SNR is only appropriately used in concert with models
where process sigma is proportional to process mean.
Maghsoodloo [10.92] derives and tabulates exact math-
ematical relationships between Taguchi’s STB and LTB
measures and his quality loss function.

Leon and Wu [10.93] extend the PerMIA of
Leon et al. [10.11] to a maximal PerMIA which can
solve constrained minimization problems in a two-step
procedure similar to that of Taguchi. For nonquadratic
loss functions, they introduce general dispersion, loca-
tion and off-target measures while developing a two-step

process. They apply these new techniques in a number
of examples featuring additive and multiplicative mod-
els with nonquadratic loss functions. Tsui and Li [10.90]
establish a multistep procedure for the STB and LTB
problem based on the response model approach under
certain conditions.

Process Response and Variance
as Performance Measures
The dual response approach is a way of finding the op-
timal design settings for a univariate response without
the need to use a loss function. Its name comes from its
treatment of mean and variance as responses of interest
which are individually modeled. It optimizes a primary
response while holding the secondary response at some
acceptable value.

Nair and Pregibon [10.94] suggest using outlier-
robust measures of location and dispersion such as
median (location) and interquartile range (dispersion).
Vining and Myers [10.95] applied the dual response ap-
proach to Taguchi’s three SNRs while restricting the
search area to a spherical region of limited radius.
Copeland and Nelson [10.96] solve the dual response
optimization problem with the technique of direct func-
tion minimization. They use the Nelder-Mead simplex
procedure and apply it to the LTB, STB and NTB cases.
Other noteworthy papers on the dual response method
include Del Castillo and Montgomery [10.97] and Lin
and Tu [10.98].

Desirability as a Performance Measure
The direct conceptual opposite of a loss function, a utility
function maps a specific set of design variable settings
to an expected utility value (value or worth of a process
response). Once the utility function is established, non-
linear direct search methods are used to find the vector
of design variable settings that maximizes utility.

Harrington [10.99] introduced a univariate utility
function called the desirability function, which gives
a quality value between zero (unacceptable quality) and
one (further improvement would be of no value) of
a quality characteristic of a product or process. He
defined the two-sided desirability function as follows:

di = e−|Y ′i |
c
, (10.17)

where e is the natural logarithm constant, c is a positive
number subjectively chosen for curve scaling, and Y

′
i

is a linear transformation of the univariate response Yi
whose properties link the desirability values to product
specifications. It is of special interest to note that for
c = 2, a mid-specification target and response values
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within the specification limits, this desirability function
is simply the natural logarithm constant raised to the
squared-error loss function.

Other Performance Measures
Ng and Tsui [10.100] derive a measure called q-yield
which accounts for variation from target among passed
units as well as nonconforming units. It does this by
penalizing yield commensurate with the amount of vari-
ation measured within the passed units. Moorhead and
Wu [10.91] develop modeling and analysis strategies
for a general loss function where the quality charac-
teristic follows a location-scale model. Their three-step
procedure includes an adjustment step which moves the
mean to the side of the target with lower cost. Addi-
tional performance measures are introduced in Joseph
and Wu [10.101] and Joseph and Wu [10.102].

10.2.3 Modeling the Performance Measure

The third important decision the experimenter must
grapple with is how to model the chosen performance
measure. Linear models are by far the most common
way to approximate loss functions, SNR’s and product
responses. This section covers response surface models,
the generalized linear model and Bayesian modeling.

Response Surface Models
Response surface models (RSM) are typically second-
order linear models with interactions between the first-
order model terms. While many phenomena cannot be
accurately represented by a quadratic model, the second-
order approximation of the response in specific regions
of optimal performance may be very insightful to the
product designer.

Myers et al. [10.103] make the case for implement-
ing Taguchi’s philosophy within a well established,
sequential body of empirical experimentation, RSM.
The combined array is compared to the product array
and the modeling of SNR compared to separate mod-
els for mean and variance. In addition, RSM lends itself
to the use of mixed models for random noise variables
and fixed control variables. Myers et al. [10.104] incor-
porate noise variables and show how mean and variance
response surfaces can be combined to create prediction
limits on future response.

Analysis of Unreplicated Experiments. The most com-
monly cited advantage of modeling process responses
rather than SNR is the use of more efficient com-
bined arrays. However the gain in efficiency usually

assumes there is no replication for estimating random
error. Here we review references for analyzing the data
from unreplicated fractional factorial designs.

Box and Meyer [10.105] present an analysis tech-
nique which complements normal probability plots for
identifying significant effects from an unreplicated de-
sign. Their Bayesian approach assesses the size of
contrasts by computing a posterior probability that each
contrast is active. They start with a prior probability
of activity and assume normality of the significant ef-
fects and deliver a nonzero posterior probability for each
effect.

Lenth [10.106] introduces a computationally sim-
ple and intuitively pleasing technique for measuring the
size of contrasts in unreplicated fractional factorials. The
Lenth method uses standard T statistics and contrast
plots to indicate the size and significance of the contrast.
Because of its elegant simplicity, the method of Lenth is
commonly cited in RD case studies.

Pan [10.107] shows how failure to identify even
small and moderate location effects can subsequently
impair the correct identification of dispersion effects
when analyzing data from unreplicated fractional fac-
torials. Ye and Hamada [10.77] propose a simple
simulation method for estimating the critical values em-
ployed by Lenth in his method for testing significance
of effects in unreplicated fractional factorial designs.

McGrath and Lin [10.108] show that a model that
does not include all active location effects raises the
probability of falsely identifying significant dispersion
factors. They show analytically that without replication
it is impossible to deconfound a dispersion effect from
two location effects.

Generalized Linear Model
The linear modeling discussed in this paper assumes
normality and constant variance. When the data does
not demonstrate these properties, the most common ap-
proach is to model a compliant, transformed response.
In many cases this is hard or impossible. The general
linear model (GLM) was developed by Nelder and Wed-
derburn [10.109] as a way of modeling data whose
probability distribution is any member of the single
parameter exponential family.

The GLM is fitted by obtaining the maximum like-
lihood estimates for the coefficients to the terms in the
linear predictor, which may contain continuous, cate-
gorical, interaction and polynomial terms. Nelder and
Lee [10.110] argue that the GLM can extend the class of
useful models for RD experiments to data-sets wherein
a simple transformation cannot necessarily satisfy the

Part
B

1
0
.2



Statistical Methods for Quality and Productivity Improvement 10.3 Robust Design for Multiple Responses 185

important criteria of normality, separation and parsi-
mony. Several examples illustrate how the link functions
are chosen.

Engel and Huele [10.111] integrate the GLM within
the RSM approach to RD. Nonconstant variance is as-
sumed and models for process mean and variance are
obtained from a heteroscedastic linear model of the
conditional process response. The authors claim that
nonlinear models and tolerances can also be studied
with this approach. Hamada and Nelder [10.112] ap-
ply the techniques described in Nelder and Lee [10.110]
to three quality improvement examples to emphasize the
utility of the GLM in RD problems over its wider class
of distributions.

Bayesian Modeling
Bayesian methods of analysis are steadily finding wider
employment in the statistical world as useful alterna-
tives to frequentist methods. In this section we mention
several references on Bayesian modeling of the data.

Using a Bayesian GLM, Chipman and Hamada
[10.113] overcome the GLM’s potentially infinite
likelihood estimates from categorical data taken
from fractional factorial designs. Chipman [10.114]
uses the model selection methodology of Box and
Meyer [10.115] in conjunction with priors for variable
selection with related predictors. For optimal choice of
control factor settings he finds posterior distributions to
assess the effect of model and parameter uncertainty.

10.3 Robust Design for Multiple Responses

Earlier we discussed loss and utility functions and
showed how the relation between off-target and variance
components underlies the loss function optimization
strategies for single responses. Multi-response optimiza-
tion typically combines the loss or utility functions
of individual responses into a multivariate function to
evaluate the sets of responses created by a particular set
of design variable settings. This section is divided into
two subsections which, respectively, deal with the ad-
ditive and multiplicative combination of loss and utility
functions, respectively.

10.3.1 Additive Combination
of Univariate Loss, Utility and SNR

The majority of multiple response approaches additively
combine the univariate loss or SNR performance meas-
ures discussed. In this section we review how these
performance measures are additively combined and their
relative advantages and disadvantages as multivariate
objective functions.

Multivariate Quadratic Loss
For univariate responses, expected squared-error loss is
a convenient way to evaluate the loss caused by deviation
from target because of its decomposition into squared
off-target and variance terms. A natural extension of
this loss function to multiple correlated responses is the
multivariate quadratic function of the deviation vector
(Y− τ) where Y = (Y1, . . . ,Yr )T and τ = (t1, . . . , tr )T,
i. e.,

MQL(Y, τ) = (Y− τ)T A(Y− τ) , (10.18)

where A is a positive definite constant matrix. The val-
ues of the constants in A are related to the costs of
nonoptimal design, such as the costs related to repair-
ing and/or scrapping noncompliant product. In general,
the diagonal elements of A represent the weights of
the r characteristics and the off-diagonal elements rep-
resent the costs related to pairs of responses being
simultaneously off-target.

It can be shown that, if Y follows a multivariate nor-
mal distribution with mean vector E(Y) and covariance
matrix ΣY , the average (expected) loss can be written
as:

E(MQL) = E(Y− τ)T A(Y− τ)

= Tr(AΣY)

+[E(Y)− τ]T A[E(Y)− τ]. (10.19)

The simplest approach to solving the RD problem is
to apply algorithms to directly minimize the average
loss function in (10.19). Since the mean vector and
covariance matrix are usually unknown, they can be esti-
mated by the sample mean vector and sample covariance
matrix or a fitted model based on a sample of obser-
vations of the multivariate responses. The off-target
vector product [E(Y)− τ]T A[E(Y)− τ] and Tr(AΣY)
are multivariate analogs to the squared off-target com-
ponent and variance of the univariate squared-error loss
function. This decomposition shows how moving all
response means to target simplifies the expected multi-
variate loss to the Tr(AΣY) term. The trace-covariance
term shows how the values of A and the covariance
matrix ΣY directly affect the expected multivariate
loss.
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Optimization of Multivariate Loss Functions
For the expected multivariate quadratic loss of (10.19),
Pignatiello [10.16] introduced a two-step procedure for
finding the design variable settings that minimize this
composite cost of poor quality. Tsui [10.18] extended
Pignatiello’s two-step procedure to situations where
responses may be NTB, STB or LTB.

To this point we have examined squared-error loss
functions whose expected value is decomposed into
off-target and variance components. Ribeiro and El-
sayed [10.116] introduced a multivariate loss function
which additionally considers fluctuation in the suppos-
edly fixed design variable settings. Ribeiro et al. [10.117]
add a term for manufacturing cost to the gradient loss
function of Ribeiro and Elsayed.

Additive Formation
of Multivariate Utility Functions
Kumar et al. [10.118] suggest creating a multiresponse
utility function as the additive combination of util-
ity functions from the individual responses where the
goal is to find the set of design variable settings that
maximizes overall utility. Additional papers related
to this technique include Artiles-Leon [10.119] and
Ames et al. [10.120].

Quality Loss Functions
for Nonnegative Variables
Joseph [10.121] argues that, in general, processes
should not be optimized with respect to a single
STB or LTB characteristic, rather to a combination
of them. He introduces a new class of loss func-
tions for nonnegative variables which accommodates
the cases of unknown target and asymmetric loss and
which can be additively combined for the multiresponse
case.

10.3.2 Multivariate Utility Functions
from Multiplicative Combination

In this section, a multivariate desirability function is
constructed from the geometric average of the individual
desirability functions of each response.

The geometric average of r components (d1, . . . , dr )
is the rth root of their products:

GA(d1, . . . , dr ) =
(

r∏

i=1

di

) 1
r

. (10.20)

The GA is then a multiplicative combination of the in-
dividuals. When combining individual utility functions
whose values are scaled between zero and one, the GA
yields a value less than or equal to the lowest individ-
ual utility value. When rating the composite quality of
a product, this prevents any single response from reach-
ing an unacceptable value, since a very low value on any
crucial characteristic (such as safety features or cost)
will render the entire product worthless to the end user.

Modifications of the Desirability Function
In order to allow the DM to place the ideal target
value anywhere within the specifications, Derringer
and Suich [10.122] introduced a modified version of
the desirability functions of Harrington [10.99] which
encompassed both one-sided and two-sided response
specifications. Additional extensions of the multi-
variate desirability function were made by Kim and
Lin [10.123].

10.3.3 Alternative Performance Measures
for Multiple Responses

Duffy et al. [10.124] propose using a reasonably precise
estimate of multivariate yield, obtained via Beta distribu-
tion discrete point estimation, as an efficient alternative
to Monte Carlo simulation. This approach is limited
to independently distributed design variables. Fogliatto
and Albin [10.125] propose using predictor variance as
a multiresponse optimization criterion. They measure
predictive variance as the coefficient of variance (CV)
of prediction since it represents a normalized measure of
prediction variance. Plante [10.126] considers the use of
maximal process capability as the criterion for choosing
control variable settings in multiple response RD situ-
ations. He uses the concepts of process capability and
desirability to develop process capability measures for
multiple response systems.

10.4 Dynamic Robust Design

10.4.1 Taguchi’s Dynamic Robust Design

Up to this point, we’ve discussed only static RD, where
the targeted response is a given, fixed level and is only

affected by control and noise variables. In dynamic ro-
bust design (DRD) a third type of variable exists, the
signal variable M whose magnitude directly affects the
mean value of the response. The experimental design
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recommended by Taguchi for DRD is the product ar-
ray consisting of an inner control array crossed with
an outer array consisting of the sensitivity factors and
a compound noise factor.

A common choice of dynamic loss function is the
quadratic loss function popularized by Taguchi,

L[Y, t(M)] = A0[Y − t(M)]2 , (10.21)

where A0 is a constant. This loss function provides
a good approximation to many realistic loss functions.
It follows that the average loss becomes

R(x) = A0 EM EN,ε[Y − t(M)]2
= A0 EM

{
VarN,ε(Y )+[EN,ε(Y )− t(M)]2} .

(10.22)

Taguchi identifies dispersion and sensitivity effects
by modeling SNR respectively as a function of control
factors and sensitivity factors. His two-step procedure
for DRD finds control factor settings to minimize SNR
and sets other, non-SNR related control variables to
adjust the process to the targeted sensitivity level.

10.4.2 References
on Dynamic Robust Design

Ghosh and Derderian [10.127] introduce the concept of
robustness of the experimental plan itself to the noise
factors present when conducting DRD. For combined
arrays they consider blocked and split-plot designs and
for product arrays they consider univariate and multivari-
ate models. In product arrays they do this by choosing

settings which minimize the noise factor effects on pro-
cess variability and for the combined array they attempt
to minimize the interaction effects between control and
noise factors.

Wasserman [10.128] clarifies the use of the SNR
for the dynamic case by explaining it in terms of linear
modeling of process response. He expresses the dynamic
response as a linear model consisting of a signal factor,
the true sensitivity (β) at specific control variable set-
tings, and an error term. Miller and Wu [10.129] prefer
the term signal-response system to dynamic robust de-
sign for its intuitive appeal and identify two distinct
types of signal-response systems. They call them meas-
urement systems and multiple target systems, where this
distinction determines the performance measure used to
find the optimal control variable settings.

Lunani, Nair and Wasserman [10.130] present
two new graphical procedures for identifying suitable
measures of location and dispersion in RD situations
with dynamic experimental designs. McCaskey and
Tsui [10.131] show that Taguchi’s two-step procedure
for dynamic systems is only appropriate for multi-
plicative models and develop a procedure for dynamic
systems under an additive model. For a dynamic system
this equates to minimizing the sum of process variance
and bias squared over the range of signal values.

Tsui [10.132] compares the effect estimates obtained
using the response model approach and Taguchi’s ap-
proach for dynamic robust design problems. Recent
publications on DRD include Joseph and Wu [10.133],
Joseph and Wu [10.134] and Joseph [10.135].

10.5 Applications of Robust Design

10.5.1 Manufacturing Case Studies

Mesenbrink [10.136] applied the techniques of RD to
optimize three performance measurements of a high vol-
ume wave soldering process. They achieved significant
quality improvement using a mixed-level fractional fac-
torial design to collect ordered categorical data regarding
the soldering quality of component leads in printed cir-
cuit boards. Lin and Wen [10.137] apply RD to improve
the uniformity of a zinc coating process.

Chhajed and Lowe [10.138] apply the techniques
of RD to the problem of structured tool management.
For the cases of tool selection and tool design they use
Taguchi’s quadratic loss function to find the most cost
effective way to accomplish the processing of a fixed
number of punched holes in sheet metal products.

10.5.2 Reliability

Reliability is the study of how to make products and pro-
cesses function for longer periods of time with minimal
interruption. It is a natural area for RD application and
the Japanese auto industry has made huge strides in this
area compared to its American counterpart. In this sec-
tion several authors comment on the application of RD
to reliability.

Hamada [10.139] demonstrates the relevance of
RD to reliability improvement. He recommends the re-
sponse model approach for the additional information
it provides on control–noise interactions and suggests
alternative performance criteria for maximizing reli-
ability. Kuhn et al. [10.140] extend the methods of
Myers et al. [10.103] for linear models and normally
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distributed data to achieve a robust process when time
to an event is the response.

10.5.3 Tolerance Design

This paper has focused on RD, which is synonymous
with Taguchi’s methods of parameter design. Taguchi
has also made significant contributions in the area of
tolerance design. This section reviews articles which
examine developments in the techniques of tolerance
design.

D’errico and Zaino [10.141] propose a modifica-
tion of Taguchi’s approach to tolerance design based
on a product Gaussian quadrature which provides better
estimates of high-order moments and outperforms the
basic Taguchi method in most cases. Bisgaard [10.142]
proposes using factorial experimentation as a more
scientific alternative to trial and error to design tol-

erance limits when mating components of assembled
products.

Zhang and Wang [10.143] formulate the robust toler-
ance problem as a mixed nonlinear optimization model
and solve it using a simulated annealing algorithm. The
optimal solution allocates assembly and machining tol-
erances so as to maximize the product’s insensitivity
to environmental factors. Li and Wu [10.55] combined
parameter design with tolerance design.

Maghsoodloo and Li [10.144] consider linear and
quadratic loss functions for determining an optimal
process mean which minimizes the expected value of
the quality loss function for asymmetric tolerances
of quality characteristics. Moskowitz et al. [10.145]
develop parametric and nonparametric methods for
finding economically optimal tolerance allocations for
a multivariable set of performance measures based on
a common set of design parameters.
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Statistical Me11. Statistical Methods for Product
and Process Improvement

The first part of this chapter describes a process
model and the importance of product and process
improvement in industry. Six Sigma methodology
is introduced as one of most successful integrated
statistical tool.

Then the second section describes the basic
ideas for Six Sigma methodology and the (D)MAIC(T)
process for better understanding of this integrated
process improvement methodology.

In the third section, “Product Specification
Optimization”, optimization models are developed
to determine optimal specifications that minimize
the total cost to both the producer and the
consumer, based on the present technology
and the existing process capability. The total
cost consists of expected quality loss due to the
variability to the consumer, and the scrap or
rework cost and inspection or measurement cost
to the producer. We set up the specifications and
use them as a counter measure for the inspection
or product disposition, only if it reduces the total
cost compared with the expected quality loss
without inspection. Several models are presented
for various process distributions and quality loss
functions.

The fourth part, “Process Optimization”,
demonstrates that the process can be improved
during the design phase by reducing the bias or
variance of the system output, that is, by changing
the mean and variance of the quality characteristic
of the output. Statistical methods for process
optimization, such as experimental design,
response surface methods, and Chebyshev’s
orthogonal polynomials are reviewed. Then the
integrated optimization models are developed
to minimize the total cost to the system of
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producers and customers by determining the
means and variances of the controllable factors.
Finally, a short summary is given to conclude this
chapter.
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Improving manufacturing or service processes is very
important for a business to stay competitive in today’s
marketplace. Companies have been forced to improve
their business processes because customers are always
demanding better products and services. During the last
20 years, industrial organizations have become more
and more interested in process improvement. Statisti-
cal methods contribute much to this activity, including
design of experiments, regression analysis, response
surface methodology, and their integration with opti-
mization methods.

A process is a collection of activities that takes
one or more kinds of inputs and creates a set of out-
puts that are of value to the customer. Everyone may
be involved in various processes in their daily life,
for example, ordering books from an Internet retailer,
checking out in a grocery store, remodeling a home,
or developing new products. A process can be graphed
as shown in Fig. 11.1. The purpose of this model is
to define the supplier, process inputs, the process, as-
sociated outputs, and the customer. The loops for the
feedback information for continuous improvement are
also shown.

As mentioned above, a process consists of many in-
put variables and one or multiple output variables. The
input variables include both controllable and uncontrol-
lable or noise factors. For instance, for an electric circuit
designed to obtain a target output voltage, the designer
can specify the nominal values of resistors or capacitor,
but he cannot control the variability of resistors or ca-
pacitors at any point in time or over the life cycle of the
product. A typical process with one output variable is
given in Fig. 11.2, where X1, X2, . . . , Xn are control-
lable variables and y is the realization of the random
output variable Y .

Many companies have implemented continuous pro-
cess improvement with Six Sigma methodology, such as
Motorola [11.1] and GE [11.2]. Six Sigma is a customer-
focused, data-driven, and robust methodology that is
well rooted in mathematics and statistics. A typical
process for Six Sigma quality improvement has six
phases: define, measure, analyze, improve, control, and
technology transfer, denoted by (D)MAIC(T). The sec-
tion “Six Sigma Methodology and the (D)MAIC(T)
Process” introduces the basic ideas behind Six Sigma
methodology and the (D)MAIC(T) process for a better
understanding of this integrated process-improvement
methodology.

Requirements Requirements

Suppliers Process Customers

S P C
Inputs Outputs

Fig. 11.1 Process model

Controllable factors

Noise factors

Process

yy0

x1 x2 xn…

Output

Fig. 11.2 General process with one output variable

In the section “Product Specification Optimization,”
we create optimization models to develop specifications
that minimize the total cost to both the producer and
the consumer, based on present technology and existing
process capabilities. The total cost consists of expected
quality loss due to the variability to the consumer and
the scrap or rework cost and inspection or measurement
cost to the producer. We set up the specifications and
use them as a countermeasure for inspection or product
disposition only if it reduces the total cost compared with
the expected quality loss without inspection. Several
models are presented for various process distributions
and quality-loss functions.

In the section “Process Optimization,” we assume
that the process can be improved during the design phase
by reducing the bias or variance of the system output,
that is, by changing the mean and variance of the quality
characteristic of the output. Statistical methods for pro-
cess optimization, such as experimental design, response
surface methods, and Chebyshev’s orthogonal polyno-
mials, are reviewed. Then the integrated optimization
models are developed to minimize the total cost to the
system of producers and customers by determining the
means and variances of the controllable factors.
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11.1 Six Sigma Methodology and the (D)MAIC(T) Process
The traditional evaluation of quality is based on aver-
age measures of a process/product. But customers judge
the quality of process/product not only on the average,
but also by the variance in each transaction or use of the
product. Customers value consistent, predictable pro-
cesses that deliver best-in-class levels of quality. This is
what Six Sigma process strives to produce. Six Sigma
methodology focuses first on reducing process variation
and thus on improving the process capability.

The typical definition of a process capability index,
C pk, is C pk = min((USL− µ̂)/(3σ̂), (µ̂−LSL)/(3σ̂)),
where USL is the upper specification limit, LSL is the
lower specification limit, µ̂ is the point estimator of
the mean, and σ̂ is the point estimator of the standard
deviation. If the process is centered at the middle of
the specifications, which is also interpreted as the tar-
get value, i.e., µ̂= (USL+LSL)/(2) = y0, then the Six
Sigma process means that C pk = 2. In the literature, it
is typically mentioned that the Six Sigma process re-
sults in 3.4 defects per million opportunities (DPMO).
For this statement, we assume that the process shifts by
1.5σ over time from the target (which is assumed to be
the middle point of the specifications). It implies that
the realized C pk is 1.5 for the Six Sigma process over
time. Thus, it is obvious that 6σ requirements or C pk of
1.5 is not the goal; the ideal objective is to continuously
improve the process based on some economic or other
higher-level objectives for the system.

At the strategic level, the goal of Six Sigma is to
align an organization to its marketplace and deliver
real improvement to the bottom line. At the operational
level, Six Sigma strives to move product or process
characteristics within the specifications required by cus-
tomers, shrink process variation to the six sigma level,
and reduce the cause of defects that negatively affect
quality [11.3].

Six Sigma continuous improvement is a rigorous,
data-driven, decision-making approach to analyzing
the root causes of problems and improve the pro-
cess capability to the six sigma level. It utilizes
a systematic six-phase, problem-solving process called
(D)MAIC(T): define, measure, analyze, improve, con-
trol, and technology transfer. Traditionally, a four-step
process, MAIC, is often referred to as a general process
for Six Sigma process improvement in the literature. We
extend it to the six-step process, (D)MAIC(T). We want
to emphasize the importance of the define (D) phase as
the first phase for the problem definition and project se-
lection, and we want to highlight technology transfer (T)

as the never-ending phase for continuous applications of
Six Sigma technology to other parts of the organization.
The process of (D)MAIC(T) stays on track by establish-
ing deliverables for each phase, by creating engineering
models over time to reduce process variation, and by
continuously improving the predictability of system per-
formance. Each of the six phases in the (D)MAIC(T)
process is critical to achieving success.

11.1.1 Define:
What Problem Needs to Be Solved?

It is important to define the scope, expectations, re-
sources, and timelines for the selected project. The
definition phase for the Six Sigma approach identifies
the specific scope of the project, defines the customer
and critical-to-quality (CTQ) issues from the viewpoint
of the customer, and develops the core processes.

11.1.2 Measure: What Is the Current
Capability of the Process?

Design for Six Sigma is a data-driven approach that re-
quires quantifying and benchmarking the process using
actual data. In this phase, the performance or process
capability of the process for the CTQ characteristics are
evaluated.

11.1.3 Analyze: What Are the Root Causes
of Process Variability?

Once the project is understood and the baseline perfor-
mance documented, it is time to do an analysis of the
process. In this phase, the Six Sigma approach applies
statistical tools to determine the root causes of problems.
The objective is to understand the process at a level suf-
ficient to be able to formulate options for improvement.
We should be able to compare the various options with
each other to determine the most promising alternatives.
In general, during the process of analysis, we analyze
the data collected and use process maps to determine
root causes of defects and prioritize opportunities for
improvement.

11.1.4 Improve:
Improving the Process Capability

During the improvement phase of the Six Sigma ap-
proach, ideas and solutions are incorporated to initialize
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the change. Based on the root causes discovered and
validated for the existing opportunity, the target process
is improved by designing creative solutions to fix and
prevent problems. Some experiments and trials may be
implemented in order to find the best solution. If a math-
ematical model is developed, then optimization methods
are utilized to determine the optimum solution.

11.1.5 Control: What Controls
Can Be Put in Place
to Sustain the Improvement?

The key to the overall success of the Six Sigma
methodology is its sustainability, which seeks to make
everything incrementally better on a continuous basis.
The sum of all these incremental improvements can be
quite large. Without continuous sustenance, over time
things will get worse until finally it is time for an-
other attempt at improvement. As part of the Six Sigma
approach, performance-tracking mechanisms and mea-
surements are put in place to assure that the gains made
in the project are not lost over time and the process
remains on the new course.

11.1.6 Technology Transfer:
Where Else Can These
Improvements Be Applied?

Ideas and knowledge developed in one part of an or-
ganization can be transferred to other parts of the
organization. In addition, the methods and solutions
developed for one product or process can be applied
to other similar products or processes. Numbering by
infinity, we keep on transferring technology, which is
a never-ending phase for achieving Six Sigma quality.
With technology transfer, the Six Sigma approach starts
to create phenomenal returns.

There are many optimization problems in the six
phases of this methodology. In the following sections,
several statistical methods and optimization models are
reviewed or developed to improve the quality of prod-
uct or process to the six sigma level, utilizing the
tools of probabilistic design, robust design, design of
experiments, multivariable optimization, and simula-
tion techniques. The goal is to investigate and explore
the engineering, mathematical, and statistical bases of
(D)MAIC(T) process.

11.2 Product Specification Optimization

For any process, strategic decisions have to be made in
terms of the disposition of the output of the process,
which may be some form of inspection or other coun-
termeasures such as scrapping or reworking the output
product. We may do zero inspection, 100% inspection,
or use sampling inspection. Some of the problems with
acceptance sampling were articulated by Deming [11.4],
who pointed out that this procedure, while minimizing
the inspection cost, does not minimize the total cost to
the producer. Orsini [11.5] in her doctoral thesis ex-
plained how this results in a process of suboptimization.

Deming’s inspection criterion indicates that inspec-
tion should be performed either 100% or not at all,
depending on the total cost to the producer, which in-
cludes the cost of inspection, k1, and the detrimental
cost of letting a nonconforming item go further down
into production, k2. The criterion involves k1, k2, and p,
the proportion of incoming nonconforming items. The
break-even point is given by k1/k2 = p. If k1/k2 < p,
then 100% inspection is called for; if k1/k2 > p, then no
inspection is done under the assumption that the process
is in a state of statistical control. The practicality and
usefulness of Deming’s criterion for a manufacturing
company was illustrated by Papadakis [11.6], who for-

mulated models to decide if we should do either 100%
inspection or zero inspection based on the total cost to
the producer.

Deming [11.4] also concludes that k1 and k2 are not
the only costs to consider. As manufacturers try hard
to meet or exceed customer expectations, the cost to
the customers should be considered when planning for
the inspection strategy. To meet the requirements of the
current competitive global markets, we consider the cost
to both consumers and producers, thus the total cost to
the whole system in the general inspection model. If we
decide to do 100% inspection, we should also know what
specification limits are for the purpose of inspection, so
that we can make decisions about the disposition of the
output. The work done by Deming and others does not
explicitly consider the specification limits for inspection
and how to determine them.

In the following discussion, several economic mod-
els are proposed that not only explain when to do 100%
inspection but also develop the specifications for the in-
spection. A general optimization model is developed to
minimize the total cost to the system, including both
the producer and the customer, utilizing the quality loss
function based on some of the contribution of Taguchi’s
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work [11.7, 8]. In particular, the optimization models
with the symmetric and asymmetric quadratic quality
loss function are presented to determine the optimal
process mean and specification limits for inspection.

11.2.1 Quality Loss Function

The traditional concept of conformance to specifica-
tions is a binary evaluation system (Fig. 11.3). Units that
meet the specification limits are labeled “good” or “con-
forming,” and units out of specification limits are “bad”
or “nonconforming.” In the traditional quality concept,
quality evaluation systems focus only on the noncon-
forming units and cost of quality is defined as cost of
nonconformance. We can easily recognize the simplic-
ity of this binary (go/no go) evaluation system, as the
quality may not differ very much between a “good” item
that is just within specifications and a “bad” item that is
just outside specifications.

A better evaluation system should measure the
quality of all the items, both within and outside speci-
fications. As shown in Fig. 11.4, the concept of quality
loss function provides a quantitative evaluation of loss
caused by functional variation. We describe the deriva-
tion of the quadratic quality loss function in what
follows.

Let L1(y) be a measure of losses, disutility, failure
rate, or degradation associated with the quality char-
acteristic y. L1(y) is a differentiable function in the
neighborhood of the target y0. Using Taylor’s series
expansion, we have

L1(y) = L1(y0)+ L ′1(y0)(y− y0)

+ L ′′1(y0)
(y− y0)2

2! + · · · .
The minimum quality loss should be obtained at y0, and
hence L ′1(y0)= 0. Since L1(y0) is a constant quality loss
at y0, we define the deviation loss of y from y0 as

L(y) = L1(y)− L1(y0) = L ′′1(y0)
(y− y0)2

2! + · · · .
By ignoring the higher-order terms, L(y) can be approx-
imated using a quadratic function:

L(y) ≈ k(y− y0)2 ,

where

k = L ′′1(y0)

2
.

If the actual quality loss function L(y) is known, we
should use it instead of the approximated loss function.

Nonconforming
items

(All items
equally “bad”)

Nonconforming
items

(All items
equally “bad”)

Conforming
items

(All items
equally “good”)

LSL USLy0
y: Quality Characteristic

Fig. 11.3 Conformance to specifications concept of quality

Let f (y) be the probability density function (pdf) of the
random variable Y ; then the expected loss for any given
L(y) is

L= E[L(y)] =
∫

all y

L(y) f (y)dy .

From this equation we can see that the expected loss
depends heavily on the distribution of Y . To reduce
the expected quality loss, we need to improve the dis-
tribution of Y , not just reduce the number of items
outside specification limits. It is quite different from
the traditional evaluation policy, which only measures
the cost incurred by nonconforming quality character-
istics. In the following sections, different quality loss
functions are discussed for different types of quality
characteristics.

“The Smaller the Better” Quality Characteristics
The objective is to reduce the value of the quality char-
acteristic. Usually the smallest possible value for such
characteristics is zero, and thus y0 = 0 is the “ideal”
or target value, as shown in Fig. 11.5. Some examples
are wear, degradation, deterioration, shrinkage, noise

L(y)

0 yy0

f (y): Probability density
function of random

L(y)

Fig. 11.4 Quality loss function L(y)
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L(y)

yy0 = 0

f (y) L(y)=ky2

Fig. 11.5 “The smaller the better” quality characteristics

level, harmful effects, level of pollutants, etc. For such
characteristics, engineers generally have an upper spec-
ification limit (USL). A good approximation of L(y) is
L(y) = ky2, y ≥ 0.

The expected quality loss is calculated as

L= E[L(y)]
=

∫

all y

L(y) f (y)dy

=
∫

all y

ky2 f (y)dy

=
∫

all y

k
[
(y−µ)2+2(y−µ)µ+µ2

]
f (y)dy

= k
(
σ2+µ2

)
.

To reduce the loss, we must reduce the mean µ and the
variance σ2 simultaneously.

“The Larger the Better” Quality Characteristics
For such quality characteristics, we want to increase
their value as much as possible (within a given frame
of reference), as shown in Fig. 11.6. Some examples are
strength, life of a system (a measure of reliability), fuel
efficiency, etc. An ideal value may be infinity, though
impossible to achieve. For such characteristics, engi-
neers generally have a lower specification limit (LSL).
A good approximation of L(y) is

L(y) = k

y2
, y ≥ 0 .

The expected quality loss is given by

L= E[L(y)] =
∫

all y

L(y) f (y)dy =
∫

all y

k

y2 f (y)dy .

L (y)

yy0

f (y)

L (y) = k/y2

Fig. 11.6 “The larger the better” quality characteristics

Using Taylor’s series expansion for 1/y2 around µ, we
have

1

y2
= µ−2

+
(
−2y−3

∣∣
µ

)
(y−µ)

+6y−4
∣∣
µ

(y−µ)2

2!
+ · · · .

By ignoring higher-order terms, we have

1

y2 ≈
1

µ2 +
2

µ3 (y−µ)+ 3

µ4 (y−µ)2 .

Finally, we have

E[L(y)] ≈ k
∫

all y

[
1

µ2 +
2

µ3 (y−µ)

+ 3

µ4
(y−µ)2

]
f (y)dy

≈ k

(
1

µ2 +
3σ2

µ4

)
.

To reduce quality losses for the “larger the better” quality
characteristics, we must increase the mean µ and reduce
the variance σ2 of Y simultaneously.

“Nominal the Best” Quality Characteristics
For such quality characteristics, we have an ideal or nom-
inal value, as shown in Fig. 11.7. The performance of the
product deteriorates as we move from each side of the
nominal value. Some examples are dimensional char-
acteristics, voltage, viscosity of a fluid, shift pressure,
clearance, and so on. For such characteristics, engineers
generally have both LSL and USL. An approximation
of quality loss function for “nominal the best” quality
characteristics is L(y) = k(y− y0)2.
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L(y)

yy0

f (y)

L (y)=k (y–y0)
2

Fig. 11.7 “Nominal the best” quality characteristics

The expected quality loss is calculated as

L= E[L(y)] =
∫

all y

L(y) f (y)dy

=
∫

all y

k(y− y0)2 f (y)dy

= k
[
σ2+ (µ− y0)2

]
.

Given the constant k, we must reduce bias |µ− y0| and
variance σ2 to reduce the losses.

11.2.2 General Product Specification
Optimization Model

Quality loss relates to cost or “loss” in dollars, not just
to the manufacturer at the time of production, but also
to the next consumer. The intangible losses (customer
dissatisfaction, loss of customer loyalty, and eventual
loss of market share), along with other tangible losses
(rework, defects, down time, etc.), make up some of the
components of the quality loss. Quality loss function
is a way to measure losses due to variability from the
target values and transform them to economic values.
The greater the deviation from target, the greater the
economic loss.

Variability means some kind of waste, but it is
impossible to have zero variability. The common re-
sponse has been to set not only a target level for
performance but also a range of tolerance about that
target, or specification limits, which represents “accept-
able” performance. Thus if a quality characteristic falls
anywhere within the specifications, it is regarded as ac-
ceptable, while if it falls outside that specifications, it
is not acceptable. If the inspection has to be done to
decide what is acceptable, we must know the speci-

fication limits. We consider the specifications not just
from the viewpoint of the customer or the producer
but from the viewpoint of the whole system. The is-
sue is not only to decide when to do inspection, but
also to decide what specifications will be applied for the
inspection.

Suppose a process has been improved to its opti-
mal capability using the present technology; then we
consider the following two questions:

Question 1: Should we perform 100% inspection or
zero inspection before shipping the output to the next or
downstream customers?

Question 2: If 100% inspection is to be performed,
how do we determine the optimal specification limits
that minimize the total cost to the system, which includes
both producers and consumers?

To answer the above two questions, the deci-
sion maker has to choose between the following two
decisions:

Decision 1: No inspection is done, and thus we ship
the whole distribution of the output to the next customer.
One economic interpretation of cost to the downstream
customers is the expected quality loss.

Decision 2: Do 100% inspection. It is clear that we
will do the inspection and truncate the tails of the distri-
bution only if it reduces total cost to both the producer
and the consumer. If we have some arbitrary specifica-
tion limits, we may very well increase the total cost by
doing inspection. When we truncate the distribution by
using certain specification limits, some additional costs
will be incurred, such as the measurement or inspection
cost (to evaluate if units meet the specifications), the re-
work cost, and the scrap cost. The general optimization
model is

Minimize ETC = EQL+ESC+ IC ,

where

ETC = Expected total cost per produced unit

EQL= Expected quality loss per unit

ESC = Expected scrap cost per unit

IC = Inspection cost per unit

and where the specification limits are the decision vari-
ables in the optimization model. Based on this general
optimization model, models have been formulated under
the following assumptions:

• The nature of the quality characteristics:

• “The smaller the better”• “The larger the better”• “Target the best”
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• The nature of the underlying distributions of the out-
put:

• Normal distribution• Lognormal distribution• Weibull distribution

• The relationship between the process mean and the
target value:

• The process mean is centered at the target:
µ= y0• The process mean is not centered at the target:
µ �= y0

• The shape of the quality loss function:

• Symmetric• Asymmetric

• The number of quality characteristics:

• Single quality characteristic• Multiple quality characteristics

Kapur [11.9], Kapur and Wang [11.10], Kapur and
Cho [11.11], and Kapur and Cho [11.12] have
developed several models for various quality char-
acteristics and illustrated the models with several
numerical problems. Kapur and Wang [11.10] and
Kapur [11.13] considered the normal distribution
for the “target the best” single quality character-
istic to develop the specification limits based on
the symmetric quality loss function and also used
the lognormal distribution to develop the model for
the “smaller the better” single quality characteristic.
For the “smaller or larger the better” single qual-
ity characteristic, Kapur and Cho [11.11] used the
Weibull distribution to approximate the underlying
skewed distribution of the process, because a Weibull
distribution can model various shapes of the distri-
bution by changing the shape parameter β. Kapur
and Cho [11.12] proposed an optimization model for
multiple quality characteristics with the multivariate nor-
mal distribution based on the multivariate quality loss
function.

In the next two subsections, two optimization mod-
els are described to determine the optimal specification
limits. The first model is developed for a normal dis-
tributed quality characteristic with a symmetric quality
loss function, published by Kapur and Wang [11.10]
and Kapur [11.13]. The second model is formulated
for a normal distributed quality characteristic with an
asymmetric quality loss function, proposed by Kapur
and Feng [11.14].

11.2.3 Optimization Model
with Symmetric Loss Function

We summarize the basic assumptions presented in Kapur
and Wang [11.10] and Kapur [11.13] as below:

• The single quality characteristic is “target the best,”
and the target is y0.• The process follows a normal distribution:
Y ∝ N(µ, σ2).• The process mean is centered at the target: µ= y0.• The quality loss function is symmetric about the
target y0 and given as L(y) = k(y− y0)2.

Based on these assumptions, the expected quality loss
without inspection is calculated as:

L= E[L(Y )] =
∞∫

−∞
k(y− y0)2 f (y)dy

= k
{

[E(Y )− y0]2+Var(Y )
}

= k
[
σ2+ (y0−µ)2

]
.

After setting the process mean at the target, µ= y0,
the expected loss only has the variance term, which is
L= kσ2.

If we do 100% inspection, we will truncate the tails
of the distribution at specification limits, which should
be symmetric about the target:

LSL = µ−nσ ,

USL = µ+nσ .

In order to optimize the model, we need to determine
the variance of the truncated normal distribution (the
distribution of the units shipped to the customer), which
is V(YT). Let fT(yT) be the probability density function
for the truncated random variable YT; then we have

fT(yT) = 1

q
f (yT) = 1

qσ
√

2π
e−

(yT−µ)2

2σ2 ,

where

q = 2Φ(n)−1

= fraction of units shipped to customers

or area under normal distribution within

specification limits

and

µ−nσ ≤ yT ≤ µ+nσ ,
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whereφ(·) is the pdf for the standard normal variable and
Φ(·) is the cdf for the standard normal variable. From
the probability density function (pdf) we can derive the
mean and variance of the truncated normal distribution
as

E(YT) = µ ,

V(YT) = σ2
[

1− 2n

2Φ(n)−1
φ(n)

]
.

It is clear that the quantity of V(YT) is less than σ2, which
means that we reduce the variance of units shipped to
the customer (YT). Then the expected quality loss, LT,
for the truncated distribution is

LT = k
{

[E(YT)− y0]2+V(YT)
}
= kV(YT) .

Then the expected quality loss per unit EQL is qLT,
because the fraction of units shipped to customers is q.
Given k, SC, and IC, we have the optimization model
with only one decision variable n as

Minimize ETC = qLT+ (1−q)SC+ IC ,

subject to LT = kσ2
[

1− 2n

2Φ(n)−1
φ(n)

]
,

q = 2Φ(n)−1 ,

n ≥ 0 .

The above objective function is unimodal and differ-
entiable, and hence the optimal solution can be found
by differentiating the objective function with respect
to n and setting it equal to zero. Thus we solve
(∂ETC/∂n) = 0, and the solution is n∗ =√

SC/(kσ2).
Let us now consider an example for a normal process

with µ= 10, σ = 0.50, y0 = 10, k = 5, IC= $0.10, and
SC = $2.00.

Decision 1: If we do not conduct any inspection,
the total expected quality loss per unit is calculated as
TC =L= kσ2 = 5 × 0.502 = $1.25.

Decision 2: Let us determine the specification limits
that will minimize the total expected cost by using the
following optimization model:

Minimize ETC = qLT+ (1−q)SC+ IC

= 5 × 0.52 [2Φ(n)−1−2nφ(n)]

+ [2−2Φ(n)] × 2.00+0.10

subject to n ≥ 0 .

The optimal solution is given by n∗=√
SC/(kσ2)=1.26,

and ETC∗ = $0.94 < $1.25. Thus, the optimal strategy
is to have LSL = 9.37 and USL = 10.63, and do 100%

2

1.8

1.6

1.4

1.2

1

1 2 3 4

ETC

n

Fig. 11.8 Expected total cost vs. n

inspection to screen the nonconforming units. The above
model presents a way to develop optimum specification
limits by minimizing the total cost. Also, Fig. 11.8 gives
the relationship between the expected total cost ETC
and n, where we can easily observe that the minimum is
when n = 1.26.

In addition to the above model for the “target the
best” quality characteristic, Kapur and Wang [11.10]
used the lognormal distribution to develop a model for
the “smaller the better” quality characteristic. For the
“smaller or larger the better” quality characteristic, Ka-
pur and Cho [11.11] used the Weibull distribution to
approximate the underlying skewed distribution of the
process because a Weibull distribution can model var-
ious shapes of the distribution by changing the shape
parameter β.

11.2.4 Optimization Model
with Asymmetric Loss Function

The following assumptions are presented to formulate
this optimization model [11.14]:

• The single quality characteristic is “target the best,”
and the target is y0.• The process follows a normal distribution:
Y ≈ N(µ, σ2), and the probability density function

of Y is f (y) = 1√
2πσ

e−
(y−µ)2

2σ2 .
• The mean of the process can be easily adjusted, but

the variance is given based on the present technology
or the inherent capability of the process.• The process mean may not be centered at the tar-
get: µ �= y0, which is a possible consequence of an
asymmetric loss function.• The quality loss function is asymmetric about the
target y0, which means that the performance of the
product deteriorates in the different ways as the
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quality characteristic deviates to either side of the
target value. An asymmetric quality loss function is
given as:

{
k1(y− y0)2, y ≤ y0 ,

k2(y− y0)2, y > y0 .

Based on these assumptions, if we ship the whole dis-
tribution of the output to the next customer as for
Decision 1, the total cost is just the expected quality
loss to the customer. We can prove that the expected
quality loss without truncating the distribution is:

ETC1 =L=
y0∫

−∞
k1(y− y0)2 f (y)dy

+
∞∫

y0

k2(y− y0)2 f (y)dy

= (k1− k2)σ(y0−µ)φ

(
y0−µ

σ

)

+
[
σ2+ (y0−µ)2

]

×

[
(k1− k2)Φ

(
y0−µ

σ

)
+ k2

]
,

whereφ(·) is the pdf for the standard normal variable and
Φ(·) is the cdf for the standard normal variable. Given
k1, k2, and y0 and the standard deviation σ , the total
cost or the expected quality loss to the customer in this
case should be minimized by finding the optimal process
mean µ∗. The optimization model for Decision 1 is:

Minimize ETC1 = (k1− k2)σ(y0−µ)φ

(
y0−µ

σ

)

+
[
σ2+ (y0−µ)2

]

×

[
(k1− k2)Φ

(
y0−µ

σ

)
+ k2

]

subject to µ ∈ R .

Given k1, k2, y0, and σ , ETC1 or L is a convex dif-
ferential function of µ, because the second derivative
d2L
dµ2 > 0. We know that a convex differential function

obtains its global minimum at dL
dµ = 0, which is given

by

dL

dµ
= 2(k2− k1)

⎡

⎣σ2 f (y0)+ (µ− y0)

µ∫

y0

f (y)dy

⎤

⎦

+ (k1+ k2)(µ− y0)

= 0 . (11.1)

y

L(y)=k1(y–y0)
2 L(y)=k2(y–y0)

2

f (y)

n1σ n2σ

LSL USLy0 µ

Fig. 11.9 Optimization model with asymmetric loss func-
tion

Thus, the optimal value of the process mean µ∗ is ob-
tained by solving the above equation of µ. Since the
root of (11.1) cannot be found explicitly, we can use
Newton’s method to search the numerical solution by
Mathematica.

If we do the 100% inspection as for Decision 2, we
should truncate the tails of the distribution at asymmetric
specification limits as shown in Fig. 11.9, where

LSL = µ−n1σ ,

USL = µ+n2σ .

Let fT(yT) be the probability density function for
the truncated random variable YT; then we have

fT(yT) = 1

q
f (yT) = 1

qσ
√

2π
e−

(yT−µ)2

2σ2 ,

where q =Φ(n1)+Φ(n2)−1 ,

and µ−n1σ ≤ yT ≤ µ+n2σ .

Using the above information, we can prove that the
expected quality loss for the truncation distribution is:

LT = 1

q
{k1σ [2(µ− y0)−n1σ]φ(n1)

+ k2σ [2(y0−µ)−n2σ]φ(n2)}
+ 1

q

{
σ(y0−µ)(k1− k2)φ

(
y0−µ

σ

)

+ (k1− k2)
[
σ2+ (y0−µ)2

]
Φ

(
y0−µ

σ

)}

+ 1

q

{[
σ2+ (y0−µ)2

]

× [k1Φ(n1)+ k2Φ(n2)− k1]
}
.
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Then the expected quality loss per unit EQL is qLT,
because the fraction of units shipped to customers is q.
If k1, k2, y0, ESC, and IC are given, we can minimize
ETC2 to find the optimal value of n1, n2, and the process
mean value µ. The optimization model for Decision 2
is

Min ETC2 = qLT+ (1−q)SC+ IC

=
{

k1σ[2(µ− y0)−n1σ]φ(n1)

+ k2σ[2(y0−µ)−n2σ]φ(n2)

+σ(y0−µ)(k1− k2)φ

(
y0−µ

σ

)

+ (k1− k2)
[
σ2+ (y0−µ)2]

×Φ

(
y0−µ

σ

)

+ [
σ2+ (y0−µ)2]

× [k1Φ(n1)+ k2Φ(n2)− k1]

}

+ [2−Φ(n1)−Φ(n2)] SC+ IC .

To choose from the alternative decisions, we should op-
timize the model for Decision 1 with zero inspection first
and have the minimum expected total cost ETC∗

1. Then
we optimize the model for Decision 2 with 100% in-
spection and have the optimal expected total cost ETC∗

2.
If ETC∗

1 < ETC∗
2, we should adjust the process mean

to the optimal mean value given by the solutions and
then ship all the output to the next or downstream cus-
tomers without any inspection because the total cost
to the system will be minimized in this way. Other-
wise, we should take Decision 2, adjust the process
mean, and do 100% inspection at the optimal specifi-
cation limits given by the solutions of the optimization
model.

For example, we need to make decisions in terms
of the disposition of the output of a process that has
the following parameters: the output of the process
has a target value y0 = 10; the quality loss function is
asymmetrical about the target with k1 = 10 and k2 = 5,
based on the input from the customer; the distribu-
tion of the process follows a normal distribution with
σ = 1.0; the inspection cost per unit is IC = $0.10, and
the scrap cost per unit is SC = $4.00. Should we do
100% inspection or zero inspection? If 100% inspec-
tion is to be done, what specification limits should be
used?

First, we minimize the optimization model for De-
cision 1:

Min ETC1 = (k1− k2)σ(y0−µ)φ

(
y0−µ

σ

)

+
[
σ2+ (y0−µ)2

]

×

[
(k1− k2)Φ

(
y0−µ

σ

)
+ k2

]

= 5(10−µ)φ (10−µ)

+
[
1+ (10−µ)2

]

× [5Φ (10−µ)+5]

subject to µ≥ 0 .

Using Mathematica to solve the equation with the
given set of parameters, we have the optimal solution
µ∗ = 10.28, and ETC∗

1 = $6.96. Also, Genetic Algo-
rithm by Houck et al. [11.15] gives us the same optimal
solution.

Then, we optimize the model for Decision 2 given
by

Min ETC2 =
{

(20µ−10n1−200)φ(n1)

+ (100−10µ−5n2)φ(n2)

+ (50−5µ)φ (10−µ)

+ [
5+5(10−µ)2]Φ (10−µ)

+ [
1+ (10−µ)2]

× [10Φ(n1)+5Φ(n2)−10]
}

+4 [2−Φ(n1)−Φ(n2)]+0.1

subject to n1 ≥ 0, n2 ≥ 0 .

This can be minimized using Genetic Algorithm
provided by Houck et al. [11.15], which gives us
n∗1 = 0.72, n∗2 = 0.82, µ∗ = 10.08, and TC∗ = $2.57 <

$6.96.
Since ETC∗

1 > ETC∗
2, we should adjust the pro-

cess mean to 10.08 given by the optimal solution from
Decision 2 and do 100% inspection with respect to
LSL = 9.36 and USL = 10.90 to screen the noncon-
forming units. In this way, the expected total cost to the
whole system will result in a reduction of $4.39, or 63%
decrease in ETC. This example presents a way to deter-
mine the optimal process mean value and specification
limits by minimizing the total cost to both producer and
consumer.
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11.3 Process Optimization

In the previous section, it is assumed that it is diffi-
cult to improve the process because of the constraint of
the current technology, cost, or capability. To improve
the performance of the output, we screen or inspect the
product before shipping to the customer by setting up
optimal specification limits on the distribution of the out-
put. Thus the focus is on inspection of the product. To
further optimize the performance of the system, it is sup-
posed that the process can be improved during the design
phase, which is also called offline quality engineering.
Then the process should be designed and optimized
with any effort to meet the requirements of customers
economically. During offline quality engineering, three
design phases need to be taken [11.7]:

• System design: The process is selected from knowl-
edge of the pertinent technology. After system
design, it is often the case that the exact func-
tional relationship between the output variables and
input variables cannot be expressed analytically.
One needs to explore the functional relationship
of the system empirically. Design of experiments
is an important tool to derive this system trans-
fer function. Orthogonal polynomial expansion also
provides an effective means of evaluating the
influences of input variables on the output re-
sponse.• Parameter design: The optimal settings of input
variables are determined to optimize the output vari-
able by reducing the influence of noise factors. This
phase of design makes effective use of experimental
design and response surface methods.• Tolerance design: The tolerances or variances of the
input variables are set to minimize the variance of
output response by directly removing the variation
causes. It is usually true that a narrower tolerance
corresponds to higher cost. Thus cost and loss due
to variability should be carefully evaluated to deter-
mine the variances of input variables. Experimental
design and response surface methods can be used in
this phase.

In the following sections, the statistical methods in-
volved in the three design phases are reviewed, including
experimental design method, orthogonal polynomial
expansion, and response surface method. Since the ulti-
mate goal is to minimize the total cost to both producers
and consumers, or the whole system, some integrated op-
timization models are developed from the system point
of view.

11.3.1 Design of Experiments

Introduction to Design of Experiments
Experiments are typically operations on natural entities
and processes to discover their structure, functioning,
or relationships. They are an important part of the sci-
entific method, which entails observation, hypothesis,
and sequential experimentation. In fact, experimental
design methods provide us the tools to test the hy-
pothesis, and thus to learn how systems or processes
work.

In general, experiments are designed to study the
performance of processes or systems. The process
or system model can be illustrated by Fig. 11.2 as
given in the introduction of this chapter. The pro-
cess consists of many input variables and one or
multiple output variables. The input variables include
both controllable factors and uncontrollable or noise
factors.

Experimental design methods have broad applica-
tions in many disciplines such as agriculture, biological
and physical sciences, and design and analysis of en-
gineering systems. They can be used to improve the
performance of existing processes or systems and also
to develop new ones. The applications of experimental
design techniques can be found in:

• Improving process yields• Reducing variability including both bias from target
value and variance• Evaluating the raw material or component alterna-
tives• Selecting of component-level settings to make the
output variables robust• Reducing the total cost to the organization and/or the
customer

Procedures of Experimental Design
To use statistical methods in designing and analyzing
an experiment, it is necessary for experimenters to have
a clear outline of procedures as given below.

Problem Statement or Definition. A clear statement
of the problem contributes substantially to better un-
derstanding the background, scope, and objective of the
problem. It is usually helpful to list the specific problems
that are to be solved by the experiment. Also, the phys-
ical, technological, and economic constraints should be
stated to define the problem.
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Selection of Response Variable. After the statement of
the problem, the response variable y should be selected.
Usually, the response variable is a key performance mea-
surement of the process, or the critical-to-quality (CTQ)
characteristic. It is important to have precise measures
of the response variable. If at all possible, it should
be a quantitative (variable) quality characteristic, which
would make data analysis easier and meaningful.

Choice of Factors, Levels, and Ranges. Cause and effect
diagrams should be developed by a team or panels of
experts in the area. The team should represent all points
of view and should also include people necessary for
implementation. A brainstorming approach can be used
to develop theories for the construction of cause and
effect diagrams.

From the cause and effect diagrams a list of factors
that affect the response variables is developed, includ-
ing both qualitative and quantitative variables. Then the
factors are decomposed into control factors and noise
factors. Control factors are factors that are economical
to control. Noise factors are uncontrollable or uneco-
nomical to control. Three types of noise factors are outer
noise, inner noise, and production noise.

The list of factors is generally very large, and the
group may have to prioritize the list. The number of
factors to include in the study depends on the priorities,
difficulty of experimentation, and budget. The final list
should include as many control factors as possible and
some noise factors that tend to give high or low values
of the response variable.

Once the factors have been selected, the experi-
menter must choose the number of levels and the range
for each factor. It also depends on resource and cost con-
siderations. Usually, factors that are expected to have
a linear effect can be assigned two levels, while factors
that may have a nonlinear effect should have three or
more levels. The range over which the factors are varied
should also be chosen carefully.

Selection of Experimental Design. The selection of ex-
perimental design depends on the number of factors, the
number of levels for each factor, and the number of repli-
cates that provides the data to estimate the experimental
error variance. Also, the determination of randomiza-
tion restrictions is involved, such as blocking or not.
Randomization justifies the statistical inference meth-
ods of estimation and tests of hypotheses. In selecting
the design, it is important to keep the experimental ob-
jectives in mind. Several books review and discuss the
types of experimental designs and how to choose an

appropriate experimental design for a wide variety of
problems [11.16–18].

Conduction of the Experiment. Before performing the
experiment, it is vital to make plans for special train-
ing if required, design data sheets, and schedule for
experimentation etc. In the case of product design exper-
imentation, sometimes the data can be collected through
the use of simulation programs rather than experiments
with actual hardware. Then the computer simulation
models need to be developed before conducting the
experiment.

When running the experiment in the laboratory or a
full-scale environment, the experimenter should monitor
the process on the right track, collect all the raw data,
and record unexpected events.

Analysis and Interpretation of the Data. Statistical
methods are involved in data analysis and interpretation
to obtain objective conclusions from the experiment.
There are many software packages designed to assist
in data analysis, such as SAS, S-Plus, etc. The statis-
tical data analysis can provide us with the following
information:

• Which factors and interactions have significant in-
fluences on the response variable?• What are the rankings of relative importance of main
effects and interactions?• What are the optimal factor level settings so that the
response is near the target value? (parameter design)• What are the optimal factor level settings so that the
effects of the noise factors are minimized? (robust
design)• What are the best factor level settings so that the
variability of the response is reduced?• What is the functional relationship between the
controllable factors and response, or what is the em-
pirical mathematical model relating the output to the
input factors?

Statistical methods lend objectivity to the decision-
making process and attach a level of confidence to
a statement. Usually, statistical techniques will lead
to solid conclusions with engineering knowledge and
common sense.

Conclusions and Recommendations. After data anal-
ysis, the experimenter should draw some conclusions
and recommend an action plan. Usually, a confirmation
experiment is run to verify the reproducibility of the op-
timum recommendation. If the result is not confirmed
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Continuous
improvement

Selection of response variable

Choice of factors, levels and ranges

Selection of experimental design

Conduction of experiment

Analysis and interpretation of the data

Conclusions and recommendations

Fig. 11.10 Iterative procedures of experimental design

or is unsatisfactory, additional experimentation may be
required.

Based on the results of the confirmation experiment
and the previous analysis, the experimenter can develop
sound conclusions and recommendations.

Continuous Improvement. The entire process is ac-
tually a learning process, where hypotheses about
a problem are tentatively formulated, experiments are
conducted to investigate these hypotheses, and new hy-
potheses are then formulated based on the experimental
results. By continuous improvement, this iterative pro-
cess moves us closer to the “truth” as we learn more
about the system at each stage (Fig. 11.10). Statistical
methods enter this process at two points: (1) selection of
experimental design and (2) analysis and interpretation
of the data [11.16].

11.3.2 Orthogonal Polynomials

Most research in engineering is concerned with the
derivation of the unknown functional relationship be-
tween input variables and output response. In many
cases, the model is often easily and elegantly constructed
as a series of orthogonal polynomials [11.19–21]. Com-
pared with other orthogonal functions, the orthogonal
polynomials are particularly convenient for at least two
reasons. First, polynomials are easier to work with than
irrational or transcendental functions; second, the terms
in orthogonal polynomials are statistically independent,
which facilitates both their generation and processing.
One of the other advantages of orthogonal polynomi-
als is that users can simply develop their own system

of functions in accordance with the particular prob-
lem. More often, a problem can be transformed to one
of the standard families of polynomials, for which all
significant relations have already been worked out.

Orthogonal polynomials can be used whether the
values of controllable factors Xs are equally or un-
equally spaced [11.22]. However, the computation is
relatively easy when the values of factor levels are in
equal steps. For a system with only one equal-step input
variable X, the general orthogonal polynomial model of
the functional relationship between response variable Y
and X is given as

y = µ+α1 P1(x)+α2 P2(x)+α3 P3(x)

+· · ·+αn Pn(x)+ ε , (11.2)

where x is the value of factor level, y is the measured re-
sponse [11.17],µ is the grand mean of all responses, and
Pk(x) is the kth-order orthogonal polynomial of factor
X. The transformations for the powers of x into orthog-
onal polynomials Pk(x) up to the cubic degree are given
below:

P1(x) = λ1

(
x− x̄

d

)
,

P2(x) = λ2

[(
x− x̄

d

)2

−
(

t2−1

12

)]
,

P3(x) = λ3

[(
x− x̄

d

)3

−
(

x− x̄

d

)(
3t2−7

20

)]
,

(11.3)

where x̄ is the average value of factor levels, t is the
number of levels of the factor, d is the distance between
factor levels, and the constant λk makes Pk(x) an integral
value for each x.

Since t, d, x̄, and x are known, Pk(x) can be calcu-
lated for each x. For example, a four-level factor X
(t = 4) can fit a third-degree equation in x. The or-
thogonal polynomials can be tabulated based on the
calculation of (11.3) as below:

P1(x) P2(x) P3(x)

x1 −3 1 −1

x2 −1 −1 3

x3 1 −1 −3

x4 3 1 1

The values of the orthogonal polynomials Pk(x) have
been tabulated up to t = 104 [11.21].
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Fig. 11.11a,b Response surface (a) and contour plot (b) for
a chemical process

Given the response yi for the ith level of X, xi ,
i = 1, 2, . . ., t, the estimates of the αk coefficients for
the orthogonal polynomial (11.2) are calculated as

αk =
t∑

i=1

yi Pk(xi )
/ t∑

i=1

Pk(xi )
2

for k = 1, 2, . . ., n. The estimated orthogonal polyno-
mial equation is found by substituting the estimates of
µ, α1, α2, · · ·, αn into (11.2).

It is desirable to find the degree of polynomials
that adequately represents the functional relation-
ship between the response variable and the input
variables. One strategy to determine the polynomial
equation is to test the significance of the terms in
the sequence: linear, quadratic, cubic, and so forth.
Beginning with the simplest polynomial, a more com-
plex polynomial is constructed as the data require for
adequate description. The sequence of hypotheses is
H0 : α1 = 0, H0 : α2 = 0, H0 : α3 = 0, and so forth.
These hypotheses about the orthogonal polynomials are
each tested with the F test (F = MSC/MSE) for the
respective polynomial. The sum of square for each poly-
nomial needs to be calculated for the F test, which
is

SSPk =
(

t∑

i=1

yi Pk(xi )

)2/ t∑

i=1

Pk(xi )
2

for k = 1, 2, . . ., n. The system function relationship can
be developed by including the statistically significant
terms in the orthogonal polynomial model.
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For the multiple equal-step input variables
X1, X2, . . ., Xn , the orthogonal polynomial equation is
found in a similar manner as for the single input vari-
able. Kuel [11.17] gives an example of water uptake by
barley plants to illustrate procedures to formulate the
functional relationship between the amount of water up-
take and two controllable factors: salinity of medium
and age of plant.

11.3.3 Response Surface Methodology

Response surface methodology (RSM) is a specialized
experimental design technique for developing, improv-
ing, and optimizing products and processes. The method
can be used in the analysis and improvement phases
of the (D)MAIC(T) process. As a collection of statis-
tical and mathematical methods, RSM consists of an
experimental strategy for exploring the settings of in-
put variables, empirical statistical modeling to develop
an appropriate approximating relationship between the
response and the input variables, and optimization meth-
ods for finding the levels or values of the input variables
that produce desirable response values.

Figure 11.11 illustrates the graphical plot of re-
sponse surface and the corresponding contour plot for
a chemical process, which shows the relationship be-
tween the response variable yield and the two process
variables: temperature and pressure. Thus, when the re-
sponse surface is developed by the design of experiments
and constructed graphically, optimization of the process
becomes easy using the response surface.
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The process model given in Fig. 11.2 is also
very useful for RSM. Through the response surface
methodology, it is desirable to make the process box
“transparent” by obtaining the functional relationship
between the output response and the input factors. In
fact, successful use of RSM is critically dependent
upon the development of a suitable response function.
Usually, either a first-order or second-order model is
appropriate in a relatively small region of the variable
space.

In general, a first-order response model can be writ-
ten as

Y = b0+b1 X1+b2 X2+· · ·+bn Xn + ε .

For a system with nonlinear behavior, a second-order
response model is used as given below:

Y = b0+
∑

i

bi Xi +
∑

i

bii X2
i

+
∑

i

∑

j

dij Xi X j + ε .

The method of least squares estimation is used to es-
timate the coefficients in the above polynomials. The
second-order model is widely used in response surface
methodology.

As an extended branch of experimental design, RSM
has important applications in the design, development,
and formulation of new products, as well as in the im-
provement of existing product designs. The applications
of RSM can be found in many industrial settings where
several variables influence the desired outcome (e.g.,
minimum fraction defective or maximum yield), includ-
ing the semiconductor, electronic, automotive, chemical,
and pharmaceutical industries.

Sequential Procedures of RSM
The applications of RSM are sequential in na-
ture [11.23]. That is, at first we perform a screening
experiment to reduce the list of candidate variables to
a relatively few, so that subsequent experiments will
be more efficient and require few tests. Once the im-
portant independent variables are identified, the next
objective is to determine if the current levels or set-
tings of the independent variables result in a value of
the response that is near the optimum. If they are not
consistent with optimum performance, a new set of ad-
justments to input variables should be determined to
move the process toward the optimum. When the pro-
cess is near the optimum, a model is needed to accurately
approximate the true response function within a rela-

tively small region around the optimum. Then, the model
can be analyzed to identify the optimum conditions
for the process. We can list the sequential procedures
as follows [11.24]:

Step 0: Screening experiment. Usually the list of
input variables is rather long, and it is desirable to
start with a screening experiment to identify the subset
of important variables. After the screening experiment,
the subsequent experiments will be more efficient and
require fewer runs or tests.

Step 1: Determine if the optimal solution is lo-
cated inside the current experimental region. Once the
important variables are identified through screening
experiments, the experimenter’s objective is to de-
termine if the current settings of the input variables
result in a value of response that is near optimum.
If the current settings are not consistent with opti-
mum performance, then go to step 2; otherwise, go
to step 3.

Step 2: Search the region that contains the opti-
mal solution. The experimenter must determine a set
of adjustments to the process variables that will move
the process toward the optimum. This phase of response
surface methodology makes considerable use of the first-
order model with two-level factorial experiment, and an
optimization technique called the method of steepest as-
cent. Once the region containing the optimum solution
is determined, go to step 3.

Step 3: Establish an empirical model to approxi-
mate the true response function within a relatively small
region around the optimum. The experimenter should
design and conduct a response surface experiment and
then collect the experimental data to fit an empirical
model. Because the true response surface usually ex-
hibits curvature near the optimum, a nonlinear empirical
model (often a second-order polynomial model) will be
developed.

Step 4: Identify the optimum solution for the process.
Optimization methods will be used to determine the op-
timum conditions. The techniques for the analysis of the
second-order model are presented by Myers [11.23].

The sequential nature of response surface methodol-
ogy allows the experimenter to learn about the process or
system as the investigation proceeds. The investigation
procedures involve several important topics/methods,
including two-level factorial designs, method of steep-
est ascent, building an empirical model, analysis of
second-order response surface, and response surface
experimental designs, etc. For more detailed infor-
mation, please refer to Myers [11.23] and Yang and
El-Haik [11.24].
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11.3.4 Integrated Optimization Models

The ultimate objective of Six Sigma strategy is to min-
imize the total cost to both producer and consumer, or
the whole system. The cost to the consumer is related
to the expected quality loss of the output variable, and
it is caused by the deviation from the target value. The
cost to the producer is associated with changing prob-
ability distributions of input variables. If the system
transfer function and the variance transmission equa-
tion are available, and the cost functions for different
grades of input factors are given, the general optimiza-
tion model to reflect the optimization strategy is given
in Fig. 11.12.

General Optimization Problem
We usually consider the first two moments of the prob-
ability distributions of input variables, and then the
optimization models will focus on the mean and vari-
ance values. Therefore, the expected quality loss to the
consumer consists of two parts: the bias of the process
and the variance of the process. The strategy to reduce
bias is to find adjustment factors that do not affect vari-
ance and thus are used to bring the mean closer to the
target value. Design of experiments can be used to find
these adjustment factors. It will incur certain costs to
the producer. To reduce the variance of Y , the designer
should reduce the variances of the input variables, which
will also increase costs. The problem is to balance the
reduced expected quality loss with the increased cost
for the reduction of the bias and variances of the input
variables. Typically, the variance control cost for the ith
input variable Xi is denoted by Ci (σ2

i ), and the mean
control cost for the ith input variable Xi is denoted by
Di (µi ). By focusing on the first two moments of the
probability distributions of X1, X2, . . ., Xn , the general
optimization model is formulated as

Minimize TC =
n∑

i=1

Ci
(
σ2

i

)+
n∑

i=1

Di (µi )

+ k
[
σ2

Y + (µY − y0)2
]
,

subject to µY ≈ m(µ1, µ2, · · · , µn) ,

σ2
Y ≈ h

(
σ2

1 , σ
2
2 , · · · , σ2

n

)
. (11.4)

In this objective function, the first two terms,
n∑

i=1

Ci
(
σ2

i

)
and

n∑

i=1

Di (µi ) ,

are the control costs on the variances and means of
input variables, or the cost to the producer; the last

f (y)

y

f (x1)

f (xn)

xn

σY
2 = h (σ 1

2
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Fig. 11.12 General optimization model for system

term, k
[
σ2

Y + (µY − y0)2
]
, is the expected quality loss

to the customer, where k is a constant in the quality loss
function. The first constraint, µY ≈m(µ1, µ2, · · · , µn),
is the model for the mean of the system, which can
be obtained through the system transfer function. The
second constraint, σ2

Y ≈ h(σ2
1 , σ

2
2 , · · · , σ2

n ), is the vari-
ance transmission equation. A future research problem
is to solve this optimization problem in such a way
as to consider together both the mean and the vari-
ance.

Tolerance Design Problem
If we assume that the bias reduction has been ac-
complished, the general optimization problem given
by (11.4) can be simplified as a tolerance design prob-
lem, which is given below:

Minimize TC =
n∑

i=1

Ci
(
σ2

i

)+ kσ2
Y

subject to σ2
Y ≈ h

(
σ2

1 , σ
2
2 , · · · , σ2

n

)
. (11.5)

The objective of the tolerance design is to determine
the tolerances (which are related to variances) of the
input variables to minimize the total cost, which consists
of the expected quality loss due to variation kσ2

Y and the
control cost on the tolerances of the input variables

n∑

i=1

Ci
(
σ2

i

)
.
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Typically, Ci (σ2
i ) is a nonincreasing function of each σ2

i .
For this tolerance design problem, a RLC circuit

example is given by Chen [11.25] to minimize the to-
tal cost to both the manufacturer and the consumer.
Taguchi’s method is used to construct the variance trans-
mission equation as the constraint in Chen’s example.
Bare et al. [11.26] propose another optimization model
to minimize the total variance control cost by finding the
optimum standard deviations of input variables. Tay-
lor’s series expansion is used to develop the variance
transmission equation in their model.

Case Study: Wheatstone Bridge Circuit Design
We use the Wheatstone bridge circuit design prob-
lem [11.7] as a case study to illustrate models described
above [11.27]. The system transfer function is known
for this example, and thus we will illustrate the develop-
ment of variance transmission equation and optimization
design models.

The Wheatstone bridge in Fig. 11.13 is used to de-
termine an unknown resistance Y by adjusting a known
resistance so that the measured current is zero. The re-
sistor B is adjusted until the current X registered by
the galvanometer is zero, at which point the resistance
value B is read and Y is calculated from the formula
Y = BD/C. Due to the measurement error, the current is
not exactly zero, and it is assumed to be a positive or neg-
ative value of about 0.2 mA. In this case the resistance
is given by the following system transfer function:

Y = BD

C
− X

C2 E
[A(C+D)+D(B+C)]

× [B(C+D)+ F(B+C)] .

The noise factors in the problem are variability of
the bridge components, resistors A, C, D, F, and input
voltage E. This is the case where control factors and
noise factors are related to the same variables. Another
noise factor is the error in reading the galvanometer X.
Assuming that when the galvanometer is read as zero,
there may actually be a current about 0.2 mA. Taguchi
did the parameter design using L36 orthogonal arrays
for the design of the experiment. When the parameter
design cannot sufficiently reduce the effect of internal
and external noises, it becomes necessary to develop
the variance transmission equation and then control the
variation of the major noise factors by reducing their
tolerances, even though this increases the cost.

Let the nominal values or mean of control factors
be the second level and the deviations due to the noise
factors be the first and third level. The three levels of

Y A B

X

D C

F E
+ –

Fig. 11.13 Wheatstone bridge and parameter symbols

noise factors for the optimum combination based on
parameter design are given in Table 11.1.

We use three methods to develop the variance trans-
mission equation: Taylor series approximation, response
surface method, and experimental design method. The
results for various approaches are given in Table 11.2.
RSM (L36) and DOE (L36) have the same L36 or-
thogonal array design layout for comparison purposes.
Improved RSM and improved DOE use the com-
plete design with N = 37 = 2187 design points for the
unequal-mass three-level noise factors. For comparison
purposes, we also perform the complete design with
2187 data points for the equal-mass three-level noise
factors, which are denoted as RSM (2187) and DOE
(2187) in Table 11.2. Without considering the different
design layouts, it seems that the improved method gives
better approximation of variance. We can see that the
improved DOE’s VTE does not differ much from the
original one in its ability to approximate the variance
of the response. Because the improved DOE method re-
quires the complete evaluation at all combinations of
levels, it is costly in terms of time and resources. If

Table 11.1 Noise factor levels for optimum combination

Factor Level 1 Level 2 Level 3

A(Ω) 19.94 20 20.06

B(Ω) 9.97 10 10.03

C(Ω) 49.85 50 50.15

D(Ω) 9.97 10 10.03

E(V) 28.5 30 31.5

F(Ω) 1.994 2 2.006

X(A) −0.0002 0 0.0002
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Table 11.2 Comparison of results from different methods

Methods VTE σ2
Y

Linear Taylor σ2
Y = 0.040 00σ2

B +0.001 60σ2
C +0.040 00σ2

D +276.002 84σ2
X +O(σ3) 7.939 01 × 10−5

Nonlinear Taylor σ2
Y = 0.040 00σ2

B +0.001 60σ2
C +0.040 00σ2

D +276.002 84σ2
X +3.84 × 10−6σ4

C +O(σ5) 7.939 10 × 10−5

RSM (L36) σ2
Y = 0.040 04σ2

B +0.001 62σ2
C +0.040 36σ2

D +300.373 96σ2
X +1.42 × 10−8 8.045 28 × 10−5

RSM (2187) σ2
Y = 0.040 00σ2

B +0.001 60σ2
C +0.040 00σ2

D +299.598 75σ2
X +1.00 × 10−8 8.000 03 × 10−5

IPV RSM σ2
Y = 0.040 00σ2

B +0.001 60σ2
C +0.040 00σ2

D +299.601 30σ2
X +1.43 × 10−8 8.000 51 × 10−5

DOE (L36) σ2
Y = 0.041 18σ2

B +0.001 66σ2
C +0.041 50σ2

D +308.939 35σ2
X +1.42 × 10−8 8.274 94 × 10−5

DOE (2187) σ2
Y = 0.040 02σ2

B +0.001 60σ2
C +0.040 02σ2

D +299.735 65σ2
X +1.00 × 10−8 8.004 08 × 10−5

IPV DOE σ2
Y = 0.040 00σ2

B +0.001 60σ2
C +0.040 00σ2

D +299.768 00σ2
X +1.43 × 10−8 8.000 95 × 10−5

Monte Carlo 1 000 000 observations 7.998 60 × 10−5

Note: The calculation of σ2
Y is for σB = 0.024 49, σC = 0.122 47, σD = 0.024 49, σX = 0.000 16; RSM (2187) is the response surface method

applied on the same data set as Taguchi’s VTE (2187); improved (IPV) RSM is the response surface method applied on the same data set

as the improved (IPV) Taguchi VTE

the high cost of the complete design is a concern, the
original DOE’s equal-mass three-level method using or-
thogonal array is preferred. If the complete evaluation
can be accomplished by simulation without much dif-
ficulty, the improved DOE method should be applied
to ensure high accuracy. Thus, the variance transmis-
sion equation for this Wheatstone bridge circuit is
determined as

σ2
Y = 0.040 00σ2

B +0.001 60σ2
C +0.040 00σ2

D

+299.768 00σ2
X +1.43 × 10−8 .

For such a problem, we can easily develop the mean
model and use it with the above VTE to develop the gen-
eral optimization model. It is well understood that the
tolerances or variances on resistors, voltage, and current
impact the cost of the design, i. e., tighter tolerances re-
sult in higher cost. Thus we can develop the variance
control cost functions Ci (σ2

i ) for each component. Sim-
ilarly, the mean control cost functions Di (µi ) for any

problem can be developed. For this problem, if the cost
associated with changing the mean values is relatively
small or insignificant, then we can just focus on the
tolerance design problem given by (11.5), which is

Minimize TC = CB
(
σ2

B

)+CC
(
σ2

C

)+CD
(
σ2

D

)

+CX
(
σ2

X

)+ kσ2
Y ,

subject to σ2
Y = 0.040 00σ2

B +0.001 60σ2
C

+0.040 00σ2
D +299.768 00σ2

X

+1.43 × 10−8 .

Based on the complexity of the cost func-
tions Ci (σ2

i ) and Di (µi ) and the constraint, such
optimization problems can be solved by many op-
timization methods including software available for
global search algorithms such as genetic algo-
rithm optimization toolbox (GAOT) for Matlab 5
(http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/).

11.4 Summary

In this chapter, we first introduce the Six Sigma
quality and design for Six Sigma process. By fo-
cusing on the analysis and improvement phases of
the (D)MAIC(T) process, we discuss the statistical
and optimization strategies for product and process
optimization, respectively. Specifically, for product
optimization, we review the quality loss function

and various optimization models for specification
limits development. For process optimization, we dis-
cuss design of experiments, orthogonal polynomials,
response surface methodology, and integrated opti-
mization models. Those statistical methods play very
important roles in the activities for process and product
improvement.
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Robust Optim12. Robust Optimization in Quality Engineering

Quality engineers often face the job of identifying
process or product design parameters that optimize
performance response. The first step is to construct
a model, using historical or experimental data,
that relates the design parameters to the response
measures. The next step is to identify the best
design parameters based on the model. Clearly,
the model itself is only an approximation of the
true relationship between the design parameters
and the responses. The advances in optimization
theory and computer technology have enabled
quality engineers to obtain a good solution more
efficiently by taking into account the inherent
uncertainty in these empirically based models.

Two widely used techniques for parameter
optimization, described with examples in this
chapter, are the response surface methodology
(RSM) and Taguchi loss function. In both methods,
the response model is assumed to be fully correct at
each step. In this chapter we show how to enhance
both methods by using robust optimization tools
that acknowledge the uncertainty in the models to
find even better solutions. We develop a family of
models from the confidence region of the model
parameters and show how to use sophistical
optimization techniques to find better design
parameters over the entire family of approximate
models.

Section 12.1 of the chapter gives an introduc-
tion to the design parameter selection problem
and motivates the need for robust optimiza-
tion. Section 12.2 presents the robust optimization
approach to address the problem of optimizing
empirically based response functions by develop-
ing a family of models from the confidence region
of the model parameters. In Sect. 12.2 robust op-
timization is compared to traditional optimization
approaches where the empirical model is assumed
to be true and the optimization is conducted
without considering the uncertainty in the pa-
rameter estimates. Simulation is used to make the
comparison in the context of
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response surface methodology, a widely used
method to optimize products and processes that
is briefly described in the section. Section 12.3
introduces a refined technique, called weighted
robust optimization, where more-likely points
in the confidence region of the empirically
determined parameters are given heavier weight
than less-likely points. We show that this
method provides even more effective solutions
compared to robust optimization without weights.
Section 12.4 discusses Taguchi’s loss function and
how to leverage robust optimization methods to
obtain better solutions when the loss function is
estimated from empirical experimental data.
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One of the central themes in quality engineering is the
identification of optimal values for the design parameters
to make a process or product function in the best pos-
sible way to maximize its performance. The advances
in optimization theory and computing technology in the
last half century have greatly stimulated the progress
in quality improvement—optimization methodology has
provided a systematic framework to guide today’s
quality engineers to identify optimal levels in design
parameters efficiently, while the same task would have
taken many iterations of experiments for engineers one
generation ago without the aid of modern optimization
techniques.

Many quality engineering problems arising in to-
day’s complex manufacturing processes can be reduced
to some optimization problem. For example, in process
control problems, we are interested in selecting a best
possible set of values for process settings to maximize
the output of the final products that satisfy the specifi-
cations in the shortest amount of time. In the context
of product design problems, the purpose is to choose
an optimal mix of design parameters to maximize the
performance measures of the new products.

The iteration process in applying optimization tech-
niques to solve quality improvement problems includes
the following steps:

1. Convert the quality requirements and specifications
to an optimization model; (12.1)

2. Solve the optimization problems and identify the
optimal values for the decision variables, i. e., the
process settings or design parameters;

3. Apply the optimal solution identified in step 2 to
the actual process control or product design envi-
ronment, validate the effectiveness of the optimal
solution and revise the optimization model if neces-
sary.

There exists a large volume of literature advocating
the use of optimization techniques to improve process
and product quality; see Box et al. [12.1], Box and
Draper [12.2], Myers and Montgomery [12.3], Khuri
and Cornell [12.4], among many others.

The most critical step in the above procedure is to
construct the optimization model using the historical
or experimental data collected in the process control
or product design stage. Usually we tend to regard
a model constructed on empirical data as a true phys-
ical law. Thus we assume that the model accurately
describes the underlying process or product and that
the optimal solution to the model is better than any other
choice.

However there is much uncertainty involved in the
model construction process. First, the most common un-
certainty comes from the measurement error and noise
effect. The devices used to capture the readings are more
or less subject to measurement errors. Noise factors,
such as environmental conditions and material proper-
ties, will sometimes severely distort the values of the true
performance measure. Second, the failure to identify and
record every possible main factor that contributes to the
final performance measure will certainly degrade the
quality of the model since it cannot incorporate all of
the major predictors. Finally the model selection pro-
cess adds another layer of uncertainty in the final model
we will reach. There are numerous forms of models we
can choose from. For example, should we develop a lin-
ear model or a nonlinear one? If it is a nonlinear model,
should we try a higher-order polynomial function or
a logistic function, or something else?

The uncertainty in the model construction process
poses huge challenges to the statistical sciences, which
have provided numerous methods to identify effec-
tive models to represent the true relationship between
the design parameters and process/product performance
as closely as possible. However, although statistics is
highly useful in reducing the uncertainty in a response
model, it does not eliminate all of the sources of the
uncertainty. Therefore the resulting optimization model,
constructed from the empirical data through careful ad-
justment and calibration using statistical methods, is not
a perfect mirror of the true relationship; it is an approxi-
mation of the true mechanism in the underlying process
or product. We have an opportunity in the optimization
stage to address the uncertainty inherent to the statistical
model to enhance the optimal solution.

In the context of quality engineering, response sur-
face methodology (RSM) is a set of statistical and
optimization techniques that are used sequentially to
identify the optimal solution to a quality improvement
problem. The iterative procedure in RSM includes per-
forming an experiment in the region of the best known
solution, fitting a response model to the experimental
data, and optimizing the estimated response model. RSM
has been widely used in quality engineering since the
seminal work of George Box in the 1950s; for more
details see Box and Wilson [12.5]. We give a brief
introduction to RSM in Sect. 12.2 of this chapter.

In RSM, the optimization procedure is performed
directly on the estimated response model, so it does
not deliver a solution that minimizes the uncertainty
in the model estimation process. This chapter is moti-
vated by the work in Xu and Albin [12.6] and provides
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an introduction into how we can use robust optimiza-
tion methods to identify good solutions that maximize
the performance of a process or product and, in the
meantime, address the uncertainty inherent to a response
model that is an approximation of the true relationship
between the design parameters and the process/product
performance. To make this idea clearer, consider the
following function y = f (x,β), where y is the true pro-
cess/product performance, x includes a set of design
parameters and the function f (x, ·) describes the true
relationship between the design parameters in x and the
process/product performance y. The vector β captures
the important parameters in the function f (x, ·).

If the function is a first-order polynomial

y =
n∑

i=1

βi xi ,

then β is a vector including all the coefficients
(β1,β2, · · ·βn)

′. If the function is a second-order poly-
nomial

y =
∑

1≤i≤ j≤n

βij xi x j +
n∑

i=1

βi xi ,

then the vector β can be written as

(β11,β12, · · ·βnn,β1,β2, · · ·βn)
′ .

We note that the function f (x,β) is linear in the coef-
ficients in β when f (x,β) is a polynomial of x. This
property plays an important role in the robust method
introduced in this chapter.

The parameters in β are important in that they
characterize how a process or product behaves. For ex-
ample, let us consider a mixture design problem on
glass/epoxy composites. We are interested in choosing
the optimal mix of glass and epoxy to maximize the
strength of the composites. Assume the relationship be-
tween the strength y and the fraction of glass (x1) and
epoxy (x2) can be described by the response function
y = β1x1+β2x2+β3x1x2. The parameter β 1 (β 2) mea-
sures how the composite strength changes in response to
the change in the fraction of glass (epoxy) while the pa-
rameter β 3 measures the glass–epoxy interaction effect
on the composite strength.

Although the parameters in β are crucial in deter-
mining the behavior of a process or product, the true
values for β are usually unknown to quality engineers.
The only way to derive the values for β is by fitting
a statistical model to the experimental data. Since the
coefficients in β are estimated values, instead of writing

y = f (x,β), we will use the notation y = f (x, β̂), where
β̂ is estimated from historical or experimental data.

In quality engineering problems, we usually use the
canonical optimization approach to determine the opti-
mal solution. We first estimate the model f (x, β̂) from
the experimental data and treat it as a true characteri-
zation of the underlying model. Then we solve for the
optimal solution to the model f (x, β̂). In the canonical
approach, the point estimates in β̂ are regarded as a sin-
gle representation of the true parameters in β and thus
the optimization steps do not take into account the un-
certainty about the estimate β̂. Although the canonical
approach provides a simple, practical way to optimize
the process/product performance, the solution obtained
from the canonical approach may be far from optimal
under the true performance response model.

Figure 12.1 illustrates the potential danger of the
canonical approach when the performance response
model is a second-order model. The dashed curve on
the right represents the true, but unknown, model and
the solid curve on the left the fitted model. If the goal
is to minimize the performance response, the optimal
value of the design variable is D0 and the optimal per-
formance response is 0. The canonical approach selects
the value D1 for the design variable, which results in the
performance response P1, well above the true optimal.
Thus, even a slight deviation of the fitted model from the
true model might result in unacceptable performance.

Section 12.2 in this chapter presents the robust opti-
mization approach to address the pitfall illustrated in the
above example. In contrast to the canonical approach,
where uncertainty about the estimates β̂ is not explicitly
addressed and only a single model f (x, β̂) is optimized,
the robust approach considers a family of models and
each model in the family is a possible representation
of the true model. Robust and canonical optimization

Design variableD1 D0

Performance response

P1

Fitted model

True model

Fig. 12.1 Optimizing the estimated model yields perfor-
mance response P1, significantly higher than the true
minimum 0
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are compared using a Monte Carlo simulation exam-
ple in Sect. 12.2, in the context of response surface
methodology (RSM), a widely used method to optimize
product/process.

The single estimated model f (x, β̂) in the canonical
approach is the most likely representation of the true
model f (x,β), while the robust approach incorporates
more information by considering a family of models.
Section 12.3 takes this a step further by combining each
individual model in this family with a likelihood measure
of how close it is to the true f (x,β). The improved
approach presented in Sect. 12.3 is called the weighted
robust optimization method and we prove that it provides
a more effective solution to the estimated optimization
model.

One of the greatest achievements in quality engi-
neering in the last century is the robust design method
that Taguchi proposed to minimize the expectation of

Taguchi’s loss function. The loss function is a measure
of the deviation of the product performance from the
desired target. The quality of a product can be meas-
ured by the loss function so a robust design problem can
be reduced to an optimization problem whose objective
is to minimize the expectation of the loss function by
choosing optimal levels in design parameters.

To obtain the objective function in the robust design
problem, designed experiments must be conducted, ex-
perimental data be collected and the loss function be
fitted from the data. We are confronted with the same
problems as discussed earlier on the uncertainty asso-
ciated with the inference from the experimental data.
Therefore robust optimization approach can be applied
to identify a robust set of values for the design param-
eters. Section 12.4 discusses how we can leverage the
robust optimization methods to better address Taguchi’s
robust design problems.

12.1 An Introduction to Response Surface Methodology

Response surface methodology (RSM) is a sequential
approach and comprises iterative steps to conduct de-
signed experiments, estimate the response model and
derive the optimal solution in sequence. This section in-
troduces the most essential steps in RSM and we refer
the reader to Box and Draper [12.2], Myers and Mont-
gomery [12.3], Khuri and Cornell [12.4] for a more
comprehensive introduction to RSM.

We assume that, prior to running RSM, we have
selected a list of significant factors that are the most
important contributors to the response. Screening ex-
periments such as fractional factorial designs and
Plackett–Burman designs can be used to identify the
important factors; see Wu and Hamada [12.7].

Let x = (x1, x2, · · · xk) denote the factors we have
selected. We first run a first-order experiment such as 2k

factorial designs and fit a linear model to the experimen-
tal data. The next step is to choose the path of steepest
ascent or steepest descent, run several experiments along
the path and choose the one with the best performance
response. We move the experimental region to the new
location identified on the steepest ascent (descent) path
and run the first-order experiments using the same steps
above. We continue this process until no improvement is
possible using first-order experiments. A second-order
experiment, such as central composite designs, is con-
ducted in order to describe the response surface better.
We then solve a quadratic optimization model, obtain the

solution and run confirmatory experiments to validate
the optimal solution.

We use a paper helicopter example to illustrate the
steps described above. The purpose of this exercise is to
design a paper helicopter by choosing the optimal lev-
els for rotor length/width, body length/width and other
factors to maximize the flight time of the helicopter.
Due to the convenience of the design, this exercise has
been used in several institutions to teach design of ex-
periments and RSM. We use the results presented in
Erhardt and Mai [12.8] to demonstrate the basic steps
in RSM. Another good source for the design of pa-
per helicopter using RSM can be found in Box and
Liu [12.9].

In Erhardt and Mai [12.8], there are eight factors
that are likely to contribute to the flight time of the paper
helicopter: rotor length, rotor width, body length, foot
length, fold length, fold width, paper weight, and direc-
tion of fold. Screening experiments were conducted and
the investigators found that two of the eight variables, ro-
tor length and rotor width, are important in determining
the flight time.

Erhardt and Mai [12.8] conducted a 22 factorial ex-
periment with replicated runs and center points. The
experimental data is shown in Table 12.1. The coded
level 1 and−1 for rotor length stands for 11.5 and 5.5 cm,
respectively. The coded level 1 and −1 for rotor width
stands for 5 and 3 cm, respectively.

Part
B

1
2
.1



Robust Optimization in Quality Engineering 12.1 An Introduction to Response Surface Methodology 217

The first-order model fitted to the data in Table 12.1
is

Flight time = 11.1163+1.2881

× Rotor length

−1.5081 × Rotor width .

Therefore the path of steepest ascent is (1.2881,
−1.5081) in coded level; in other words, for every one
centimeter of increase in rotor length, rotor width should
be decreased by

1.5081

1.2881
×

1

3
= 0.39 cm .

Table 12.1 22 factorial design for paper helicopter example

Coded level Actual level (cm) Flight time (seconds)

Rotor length Rotor width Rotor length Rotor width Replicate 1 Replicate 2 Replicate 3 Replicate 4

1 1 11.5 5 10.02 9.94 9.95 9.93

1 -1 11.5 3 16.52 16.99 12.58 13.86

-1 1 5.5 5 10.20 9.26 8.20 9.92

-1 -1 5.5 3 10.24 9.11 11.31 10.94

0 0 8.5 4 11.67 10.74 9.83

Table 12.2 Experiments along the path of steepest ascent

Rotor length (cm) Rotor width (cm) Flight time (s)

Base 8.5 4 12.99

Path of steepest ascent ∆ 1 -0.39

Base + 1×∆ 9.5 3.61 15.22

Base + 2×∆ 10.5 3.22 16.34

Base + 3×∆ 11.5 2.83 18.78

Base + 4×∆ 12.5 2.44 17.39

Base + 5×∆ 13.5 2.05 7.24

Table 12.3 Central composite design for paper helicopter example

Coded level Actual level (cm) Flight time (s)

Rotor length Rotor width Rotor length Rotor width

1 1 12.5 3.22 13.53

1 -1 12.5 2.44 13.74

-1 1 10.5 3.22 15.48

-1 -1 10.5 2.44 13.65√
2 0 12.91 2.83 12.51

−√2 0 10.08 2.83 15.17

0
√

2 11.5 3.38 14.86

0 −√2 11.5 2.28 11.85

0 0 11.5 2.83 17.38

0 0 11.5 2.83 16.35

0 0 11.5 2.83 16.41

The investigators conducted five experiments along
the steepest ascent path and the experimental data is
recorded in Table 12.2. The combination of rotor length
and width that gives the longest flight time is 11.5 and
2.83 cm.

The investigators then conduct a central compos-
ite design (CCD) by adding experimental runs at axial
points. Table 12.3 below contains the data from the CCD
experiment. The center point of the CCD design is (11.5,
2.83), which is the solution obtained from the experi-
mental runs on the steepest ascent path. One coded unit
stands for 1 cm for rotor length and 0.39 cm for rotor
width.
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The second-order model fitted to the data in
Table 12.3 is given below:

Flight time = 16.713−0.702x1

+0.735x2−1.311x2
1

−0.510x1x2−1.554x2
2 ,

where x1 stands for rotor length and x2stands for ro-
tor width. The optimal solution by maximizing this
quadratic model is (−0.32, 0.29) in coded units,

or 11.18 cm for rotor length and 2.94 cm for rotor
width.

The paper helicopter example presented in this sec-
tion is a simplified version of how response surface
methodology works to address quality improvement.
A complicated real-world problem may require many
more iterations in order to find an optimal solu-
tion and many of the technical details can be found
in the references given in the beginning of this
section.

12.2 Minimax Deviation Method to Derive Robust Optimal Solution

As we discussed in the introduction, the estimated model
f (x, β̂) is a single representation of the true relationship
between the response y and the predictor variables in x,
where β̂ is a point estimate and is derived from the sam-
ple data. The solution obtained by optimizing a single
estimated model f (x, β̂) may not work well for the true
model f (x,β). This section introduces the minimax de-
viation method to derive the robust solution when the
experimental or historical data is available to estimate
the optimization model.

One assumption we make here is that the vector β

in f (x,β) contains the coefficients in the model and
we assume that f (x,β) is linear in the coefficients in
β. This assumption covers a wide range of applica-
tions since most of the models considered in quality
engineering are derived using regression and the hy-
pothetical model f (x,β) is always linear in regression
coefficients even if the model itself is nonlinear in x. For
example, consider f (x,β) = β1x2+β2x+β3

1
x , clearly

f (x,β) is linear in (β1,β2,β3), although it is not linear
in x.

12.2.1 Motivation
of the Minimax Deviation Method

Consider two models in Fig. 12.2 where model 1 is y =
f (x, β(1)) and model 2 is y = f (x, β(12.1)). If we assume
that model 1 and model 2 are equally likely to be the
true one, then how do we choose the value for x to
minimize the response y in the true model? If the value
at point A is chosen, there is a 50% chance that the
response value y reaches its minimum if model 1 is the
true model, while we are facing another 50% chance that
the response value y is much worse when model 2 is the
true model. A similar conclusion can be made if point B
is chosen. Thus a rational decision maker will probably

Design variableA B

Performance response

Model 1: y = f (x, �(1))

Model 2: y = f (x, �(2))

C

Fig. 12.2 Point C makes the response value close to the
minimum whether model 1 or model 2 is the true model

choose point C such that the response value y will not
be too far off from the minimum 0 whether model 1 or
model 2 is the true one.

To formalize the reasoning, we use the following
notation: let g1 be the minimum value of f (x, β (1)),
and g2 be the minimum value of f (x, β (12.1)). For the
example in Fig. 12.2, g1and g2 are both zeros. Given that
model 1 and model 2 are equally likely to be the true
model, a rational decision maker wants to find an x such
that, when the true model is model 1, the response value
at x, or f (x, β (1)), is not too far from g1; and when the
true model is model 2, the response value at x, or f (x,
β (12.1)), is not too far from g2. In other words, we want
to select x such that both f (x, β (1)) - g1 and f (x, β
(12.1))− g2 are as small as possible. Mathematically this
is equivalent to the following problem.

Choose x to minimize

Max
[

f (x,β(1))− g1, f (x,β(2))− g2

]
. (12.1)

The difference f (x, β (1))− g1 can be understood
as the regret a rational decision maker will have if he
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chooses this particular x when the true model is model 1,
since g1 is the minimum value the response can reach
under model 1. Similarly the difference f (x, β (2)) - g2
is the regret a rational decision maker will have when
the true model is model 2. Thus the aim of (12.1) is to
choose an x to minimize the maximum regret over the
two likely models.

12.2.2 Minimax Deviation Method
when the Response Model
Is Estimated from Data

Given the motivation in the previous section where the
true model has two likely forms, we now consider the
case where the response model is estimated from sam-
ple data; thus there are infinitely many forms that are
likely the true model. Let the experimental data be
(x1, y1), (x2, y2) · · · (xn, yn), where xi contains predictor
variables for the ith observation and yi is the corre-
sponding response value. Suppose the true model is y
= f (x,β)where β contains the parameters we will fit us-
ing the experimental data. The estimate for β, denoted
by β̂, can be derived using the MLE or LSapproach. The
estimated model using the point estimate β̂, or f (x, β̂),
is only one of the many possible forms for the true model
f (x,β). Statistical inference provides ways to construct
a confidence region, rather than a single-point estimate,
to cover the possible value for the true β. Let us denote
a confidence region for β by B; thus any model f (x,β),
where β ∈ B, represents a likely true model.

Figure 12.3 illustrates how robust optimization
works by incorporating all of the estimates in the confi-

�1

�2

Confi-
dence
Interval

Confidence Interval

y = f (x, �̂) Canonical
optimization
considers a
single model
corresponding
to the point
estimate

Robust optimization
considers all of the
likely models in the
confidence region

Fig. 12.3 Canonical optimization considers a single model
while robust optimization considers all of the models with
estimates in the confidence region

dence region. The rectangle in Fig. 12.3 is the confidence
region for β derived from the sample data, and the cen-
ter point of the rectangle is the point estimate β̂. The
usual canonical approach optimizes only a single model
corresponding to the point estimate, or f (x, β̂). In con-
trast, robust optimization considers all of the possible
estimates in the confidence region, so it optimizes all of
the likely models f (x,β) whose β is in the rectangle.

We now use the minimax deviation method in
Sect. 12.2.1 to derive the robust solution where all of the
likely models with estimates in the confidence region are
considered. Suppose our goal is to minimize f (x,β) and
the confidence region for β is B. The minimax deviation
method can be formulated in the following equations:

MinxMaxβ∈B [ f (x,β)− g(β)] , (12.2)

where

g(β)= Minx f (x,β), for anyβ ∈ B .

The interpretation of the minimax deviation method in
(12.2) is similar to that given in Sect. 12.2.1. The differ-
ence f (x,β)− g(β) is the regret incurred by choosing
a particular x if the true coefficients in the model are
β. However the true values for β are unknown and they
are likely at any point in the confidence region B. So
Maxβ∈B [ f (x,β)− g(β)] stands for the maximum regret
over the confidence region. We solve for the robust so-
lution for x by minimizing the maximum regret over B.

The minimax deviation model in (12.2) is equivalent
to the following mathematical program as in refer-
ence [12.10]

Min(z) ,

f (x,β)− g(β)≤ z, ∀β ∈ B ,

g(β)= Minx [ f (x,β)] . (12.3)

The number of decision variables in this statement is fi-
nite while the number of constraints is infinite because
every constraint corresponds to a point in the confi-
dence region, or the rectangle in Fig. 12.3. Therefore the
program in (12.3) is semi-infinite.

As illustrated in Fig. 12.3, we assume the confi-
dence region can be constructed as a polytope. With this
assumption, we have the following reduction theorem.

Reduction theorem. If B is a polytope and f (x,β) is
linear in β then

MinxMaxβ∈B [ f (x,β)− g(β)]

= MinxMaxi
[

f (x,βi)− g(βi)
]
,

where β1,β2 · · ·βmare the extreme points of B.
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The reduction theorem says that the minimization of
the maximum regret over the entire confidence region is
equivalent to the minimization of the maximum regret
over the extreme points of the confidence region. Fig-
ure 12.4 illustrates the use of the reduction theorem that
reduces the original semi-infinite program in (12.3) to
a finite program. The proof of the reduction theorem can
be found in Xu and Albin [12.6].

12.2.3 Construction
of the Confidence Region

One of the assumptions of the reduction theorem is that
the confidence region for β is a polytope. This section
introduces how we can construct a confidence region as
a polytope.

A simple and straightforward way to construct a con-
fidence polytope is to use simultaneous confidence
intervals (Miller [12.11]). Suppose β = (β1, β2, · · ·,
βp) and we want to construct a confidence polytope
with a confidence level of (1−α) × 100% or more. First
we construct a (1−α/p) × 100% confidence interval
for each of the p coefficients in β. Specifically, let
Ii be the (1−α/p) × 100% confidence interval for βi ,
or equivalently, P (βi ∈ Ii)= 1−α/p. Thus the simul-
taneous confidence intervals is the Cartesian product
B = I1 × I2 × · · ·× Ip. Using Bonferroni’s inequality, we
have

P (β ∈ B)= P
(
β1 ∈ I1,β2 ∈ I2, · · ·βp ∈ Ip

)

≥ 1−
p∑

i=1

P (βi /∈ Ii)

= 1− p ×α/p = 1−α .

Therefore the confidence level of the simultaneous
confidence intervals B is at least (1−α) × 100%. Fig-
ure 12.5 illustrates the simultaneous confidence intervals
in a two-dimensional space. Suppose the ellipsoid in the
left panel of Fig. 12.5 is a 90% confidence region for
(β1, β2). To construct simultaneous confidence inter-
vals, we first identify the 95% confidence interval I1 for
β1, and the 95% confidence interval I2 for β2; thus the
rectangle I1 × I2 is a confidence polytope for (β1, β2)
with a confidence level of at least 90%. However, we
know from Fig. 12.5 that the rectangle does not cover the
90% confidence ellipsoid very tightly, so the simultane-
ous confidence intervals are not the smallest confidence
polytope at a certain confidence level. Clearly a better
way to construct a more efficient confidence polytope is
to find a rectangle that circumscribes the ellipsoid, such
as that in the right panel of Fig. 12.5.

�1

�2

Minx Max��B{f (x, �)}–g (�)}
= Minx Maxi{f (x, �i)}–g (�i)} where �1, �2,… �m

are extreme points of confidence region

Fig. 12.4 The reduction theorem reduces the semi-infinite
program over the entire confidence region to a finite pro-
gram over the set of extreme points of the confidence
region

�2

I2

I1

�1 �1

�2

Fig. 12.5 Simultaneous confidence intervals are not the
most efficient confidence polytope

We now present a transformation method to con-
struct a tighter confidence polytope, which proves very
effective to enhance robust optimization performance.
Let X be a matrix with each row representing the ob-
served values for the predictor variables in x, and let Y be
a vector with each element being the observed response
value y.

From regression analysis, the (1−α) × 100% confi-
dence region for β is an ellipsoid described as

(1−α) × 100% confidence region

=
(

β

∣∣∣∣
(β− β̂)′(X′X)(β− β̂)

pMSE
≤ Fp,n−p,α

)
, (12.4)

where β̂ = (X′X)−1X′Y is the point estimator, p is the
number of parameters we need to estimate in the re-
sponse model, n is the total number of observations
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we have in the sample data, MSE = (Y−Xβ̂)′(Y−
Xβ̂)/n− p is the mean squared error, and Fp,n−p,α is
the (1−α)×100 percentile point for the F distribution
with p and (n− p) degrees of freedom. Details about
(12.4) can be found in Myers [12.12].

We use Fig. 12.6 to illustrate the motivation for the
transformation method to construct the confidence poly-
tope in two dimensions. The ellipsoid in the left-hand
picture of Fig. 12.6 is the (1−α) × 100% confidence re-
gion in (12.4). We want to find a polytope to cover the
confidence ellipsoid more tightly. One such choice is to
identify a rectangle with sides parallel to the major and
minor axes of the ellipsoid, such as the one with vertices
β1, β2, β3 and β4 in Fig. 12.6.

It is hard to identify these extreme points β1, β2,
β3 and β4 directly in the original coordinate system
(β1,β2). However, by choosing appropriate algebraic
transformation, the coordinate system (β1,β2) can be
transformed into the coordinate system (z1, z2), where
the ellipsoid is converted to a unit ball in the right-hand
picture of Fig. 12.6. In the coordinate system (z1, z2), it
is easy to find a hypercube, with extreme points z1, z2,
z3 and z4, to cover this ball tightly. We then map these
extreme points back to the extreme points in (β1,β2) to
obtain β1, β2, β3 and β4.

To achieve this idea, we define the following trans-
formation β �→ z:

z = Γ (β− β̂) ,whereΓ = (X′X)1/2
√

p × MSE × Fp,n−p,α
.

Through this transformation, the confidence ellipsoid in
(12.4) in the coordinate system β can be converted into
a unit ball in the coordinate system z:

(
z|z′z ≤ 1

)
. It is

easy to know that the hypercube covering the unit ball
has extreme points zi = (z1, z2, · · · , z p), where z j =
±1, j = 1, 2, · · · , p. By mapping these points back to
the coordinate system β, we can construct a confidence
polytope with extreme points as follows:

βi = β̂+Γ −1zi ,where Γ = (X′X)1/2
√

p ×MSE× Fp,n−p,α
.

(12.5)

Thus the robust optimization model in (12.3) can be
written as

Min(z) ,

f (x,βi)− g(βi) ≤ z ,

g(βi) = Minx f (x,βi) , (12.6)

where βi is given in (12.5)

�2

�1

�4

�3

�2

�1

z2

z1

z1

z4

z2

z3

Fig. 12.6 Illustration of the transformation method to construct
a confidence polytope

12.2.4 Monte Carlo Simulation to Compare
Robust and Canonical Optimization

This section compares the performance of robust opti-
mization and canonical optimization using Monte Carlo
simulation on a hypothetical response model. Much of
the material is from Xu and Albin [12.6] and Xu [12.13].
Suppose the true function relating performance response
yand design variables x1 and x2 is the quadratic function

y = 0.5x2
1 − x1x2+ x2

2 −2x1−6x2 . (12.7)

The objective is to identify x1 and x2 to minimize y
with the constraints that x1+ x2 ≤ 6, x1 ≥0, and x2 ≥ 0.
If the response model in (12.7) is known, the true opti-
mal solution can be easily identified: x1 = 2.8, x2 =3.2,
yielding the optimal value y = -19.6.

Now suppose that the objective function is not
known. We could perform a designed experiment to esti-
mate the performance response function. Since we seek
a second-order function we would perform a 32 facto-
rial design with three levels for x1 and three levels for
x2, resulting in a total of nine different combinations of
x1and x2. The possible experimental values are -1, 0 and
1 for x1and -1, 0, and 1 for x2.

Instead of performing the experiment in a labora-
tory, we use Monte Carlo simulation, where the response
y is produced by generating responses equal to the
underlying response function in (12.7) plus noise ε:

y = 0.5x2
1 − x1x2+ x2

2 −2x1−6x2+ ε

and ε∼ N(0, σ2) . (12.8)

Once the experiment has been run, we fit coefficients
to the data by ordinary least-square regression and then
optimize using the robust and canonical approaches,
respectively.
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The solutions obtained from the two approaches
are inserted into (12.7) to determine the resulting per-
formance response values and we compare these to
determine which is closer to the true optimal.

We perform the above experiment and subsequent
optimizations 100 times for each of the following de-
grees of experimental noise; that is, the noise term ε in
(12.8) has standard deviation, σ , equal to 0.5, 1, 2, 3, or
4.

Thus we have 100 objective values for the canon-
ical approach and 100 objective values for the robust
approach for each value of σ . Table 12.4 gives the
means and standard deviations of these performance
responses using the canonical approach, the robust ap-

proach with simultaneous confidence intervals, and the
robust approach with transformation method.

Table 12.4 shows that, when the experimental noise
is small (σ= 0.5), yielding a relatively accurate point
estimate of β, the objective values given by the canon-
ical approach are slightly closer to those given by the
robust optimization approach. However, when the exper-
imental noise is large (σ= 1,2,3,4), yielding a relatively
inaccurate point estimate of β, the robust approach yields
results much closer to the true optimal than the canon-
ical approach. We also notice that the robust approach
using transformation method to construct the confidence
polytope gives better results than the method using the
simultaneous confidence intervals.

12.3 Weighted Robust Optimization

�1

�2 �(2) �(1)

�(0)

�1

�2

w (�(0)) = 2

w (�(2)) = 1 w (�(1)) = 1.5

Fig. 12.7 Weighted robust optimization assigns weights to every
point in the confidence region to reflect the likelihood of that point
being close to the true β

As we discussed earlier, robust optimization minimizes
the maximum regret over a confidence region for the
coefficients in the response model. Recall that the robust
optimization is written as follows:

MinxMaxβ∈B [ f (x,β)− g(β)] ,

where g(β)= Minx f (x,β), for any β ∈ B.
An implicit assumption in the minimax regret equa-

tion above is that all of the points in the confidence
region B are treated with equal importance. For ex-
ample, consider the three points β(0), β(1), and β(2)

in the left-hand picture of Fig. 12.7, the regrets we
have at the three points by choosing x are f (x,β(0))−
g(β(0)), f (x,β(1))− g(β(1)) and f (x,β(2))− g(β(2)), re-
spectively. However, we know from statistical inference
that the center point β(0) is more likely close to be the
true β than β(1), and β(1) is more likely to be close to

the true β thanβ(2), so in the regret calculation, weights
can be assigned to each point in the confidence region
to measure how likely that point is to be close to the
true β.

In the right-hand picture of Fig. 12.7, the weights
for the three points are w

(
β0

) = 2, w
(
β(1)

) = 1.5,
and w

(
β(2)

) = 1, so the regrets at these three
points can be defined as 2

[
f
(
x,β(0)

)− g
(
β(0)

)]
,

1.5
[

f
(
x,β(1)

)− g
(
β(1)

)]
and

[
f
(
x,β(2)

)− g
(
β(2)

)]
.

In general, the weighted robust optimization can be
written as

MinxMaxβ∈B [ f (x,β)− g(β)]w(β) , (12.9)

where w(β) is the weight assigned to the point β in
the confidence region. So the aim of the weighted ro-
bust optimization in (12.9) is to minimize the maximum
weighted regret over the confidence region. The cen-
ter point of the confidence region should be assigned
the largest weight since it is most likely to be close to
the true β. On the other hand, the extreme points of
the confidence region should be assigned the smallest
weights.

We now consider two choices of the weight function
w(β). Let β(0) be the center point of the confidence
region; let β(+) be an extreme point with the largest
distance to β(0). In the first version of weight function,
we treat the point β(0) as twice as important as β(+). In
other words, we assign weight 1 to the extreme point
β(+) and the weight for the center point β(0) is 2. The
weight for any other point β is between 1 and 2 and
decreases linearly with its distance from the center point
β(0). This linear-distance-based weight function can be
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Robust Optimization in Quality Engineering 12.3 Weighted Robust Optimization 223

written in the following way:

w(β) = 2− ||β−β(0)||
||β(+)−β(0)|| . (12.10)

We now discuss the second version of weight func-
tion. Let x(i)and yi , i = 1, 2, · · ·, n, be the observation
for the predictors and response value. For any estima-
tor β in the confidence region, the sum of squared errors

(SSE)
n∑

i=1
[ yi − f (x(i),β)]2 can be viewed as an indirect

measure of how close the estimator β is to the true co-
efficients. So we take the reciprocal of the SSE as the
weight function, or

w(β) = 1
n∑

i=1
[ yi − f (x(i),β)]2

. (12.11)

To compare the performance of robust optimiza-
tion and weighted robust optimization, we use the same
underlying response model in (12.7) to generate the
experimental data and then apply the two approaches
to derive the robust solutions. Table 12.5 contains the
means and standard deviations of the performance re-
sponses obtained by the canonical, robust and weighted
robust optimization approaches.

It is clear that the performance of the weighted
robust optimization dominates that of the standard ro-
bust optimization. We further note that the weight
function in (12.10) performs better than the weight func-
tion in (12.11) when the experimental noise is large
(σ = 1, 2, 3, 4).

Although the weighted robust optimization gives
better results, computationally it is much harder and
more challenging. Unfortunately, weighting the points
in the confidence region, using weight functions w(β)
in (12.10) or (12.11), results in an optimization problem
in (12.9) with an objective function that is not linear in
β. Consequently, the reduction theorem is no longer ap-
plicable to (12.9) to reduce the optimization problem to
a finite program. Therefore a numerical algorithm has to
be designed to solve the weighted robust optimization
problem in (12.9).

For simplicity, let F(x,β) = [ f (x,β)− g(β)]w(β).
Thus we can write the weighted robust optimization
problem as follows

MinxMaxβ∈B F(x,β) (12.12)

or equivalently,

Minx{ξ} ,
s.t. x ∈ X ,

F(x,β) ≤ ξ,∀β ∈ B .

(12.13)

We use the Shimizu–Aiyoshi relaxation algorithm to
solve (12.13). For a rigorous treatment of this relaxation
algorithm, see Shimizu and Aiyoshi [12.10]. The main
steps in this algorithm are given as follows:

Step 1: choose any initial point β(1). Set k = 1.
Step 2: solve the following relaxed problem of

(12.13):

Minx{ξ}
s.t. x ∈ X

F(x,β(i)) ≤ ξ, i = 1, 2, · · · , k

(12.14)

Obtain an optimal solution (x(k), ξ (k)) for (12.14). The
ξ (k) is also the optimal value for (12.14). We note that
ξ (k) is a lower bound on the optimal value for (12.13).

Step 3: solve the maximization problem:

Maxβ∈B F(x(k),β) . (12.15)

Obtain an optimal solution β(k+1) and the maximal value
φ(x(k))= F(x(k),β(k+1)). We note thatφ(x(k)) is an upper
bound on the optimal value of (12.12) or (12.13).

Step 4: If φ(x(k))− ξ (k) < ε, terminate and report
the solution x(k); otherwise, set k = k+1 and go back to
step 2.

We now introduce the method for solving the opti-
mization problems (12.14) and (12.15). First, we address
(12.14). If the response model f (x,β) is linear in x, then
F(x,β) is also linear in x; thus (12.14) is a linear pro-
gramming problem if we assume that the feasible region
X contains only linear constraints. If the response model
f (x,β) is quadratic in x, then F(x,β) is also quadratic in
x; thus (12.14) is a quadratically constrained quadratic
programming problem.

Quadratically constrained quadratic programming
(QCQP) is a very challenging problem. One efficient
way to solve QCQP is to approximate it by a semidefi-
nite program (SDP) and the solution for SDP usually
provides a very tight bound on the optimal value
of the QCQP. There exist very efficient and pow-
erful methods to solve SDP and numerous software
packages have been developed. After an approximate
solution is obtained from SDP, we then use a ran-
domized algorithm to search for a good solution for
the original QCQP. For a comprehensive introduction
to SDP, see Vandenberghe and Boyd [12.14]; for the
connection between QCQP and SDP, see Alizadeh and
Schmieta [12.15], and Frazzoli [12.16]; for software
packages to solve SDP, see Alizadeh et al. [12.17], and
Sturm [12.18].

We finally comment on the optimization prob-
lem (12.15). The objective function in (12.15) is
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F(xk,β) = { f (xk,β)− g(β)}w(β). We note that the
function g(β) has no closed-form expression since it
is the minimal value of f (x, β). Here we use a pow-
erful global optimization algorithm, called DIRECT, to
solve (12.15). The DIRECT algorithm was proposed
by Jones et al. [12.19]. There are several advantages

of using DIRECT: it is a global optimization algorithm
and has a very good balance between global searching
and local searching, and it converges quite quickly; it
does not need derivative information on the objective
function. For software on DIRECT, see Bjorkman and
Holmstrom [12.20].

12.4 The Application of Robust Optimization in Parameter Design

This section applies robust optimization to solve
Taguchi’s parameter design problem. The aim of pa-
rameter design is to choose optimal levels for the
control factors to reduce the performance variation as
well as to make the response close to the target. Sec-
tion 12.4.1 introduces both traditional and more recent
approaches to handling parameter design problems. Sec-
tion 12.4.2 discusses how to use robust optimization to
identify a robust solution for control factors when the
response model is estimated from experimental data.
Section 12.4.3 presents the robust optimization method
to solve parameter design problem when the experimen-
tal data is from a fractional fractorial design and some
effects are aliased.

12.4.1 Response Model Approach
to Parameter Design Problems

Parameter design was promoted by Genichi Taguchi in
the 1950s and has since been widely used in quality en-
gineering (Taguchi [12.21]). In parameter design, there
are two sets of variables: control factors and noise vari-
ables. Control factors are those variables that can be
set at fixed levels in the production stage; noise vari-
ables are those variables that we cannot control such as
environmental conditions and material properties, and
are hence assumed random in the production stage. The
performance response is affected by both control factors
and noise variables.

The contribution of Taguchi, among many others, is
to recognize that interaction often exists between control
factors and noise variables. Hence, appropriate levels of
control factors can be selected to reduce the impact of
noise variables on the performance response.

Taguchi proposed a set of methodologies, includ-
ing inner–outer array design and signal-to-noise ratio
(SNR), to identify optimal levels of control factors.
Welch et al. [12.22] and Shoemaker et al. [12.23] have
proposed the response model formulation, a more sta-
tistically sound method, to deal with parameter design
problems.

In the response model approach, we first conduct
experiments at appropriate levels of control factors and
noise variables. Then we can fit the following model to
relate the performance response to both control factors
and noise variables:

y = f (x;α, γ, µ, A,∆)

= µ+ 1
2 x′Ax+α′x+ x′∆z+γ ′z+ ε , (12.16)

where x represents the control factors and z the noise
variables. Equation (12.16) includes first- and second-
order terms in control factors, a first-order term in noise
variables and an interaction term between control fac-
tors and noise variables. The noise variables z have
a normal distribution with mean 0 and variance Σz ,
or z ∼ N(0,Σz). The ε term incorporates unidentified
noise other than z.

The difference between the response model in
(12.16) and the response model f (x,β) in the previ-
ous sections is that the former divides the noise into z
and ε and introduces a first-order term and an interaction
term related to z while the latter has the noise only in
ε. We further note that the coefficients (α, γ, µ, A,∆)
in (12.16) are estimated from designed experiments.
More details about (12.16) can be found in Myers and
Montgomery [12.3].

From (12.16), it is easy to derive the expected value
and standard deviation of the response value y

E(y) = µ+ 1
2 x′Ax+α′x ,

Var(y) = x′∆Σz∆
′x+γ ′Σzγ +σ2

ε .

Suppose our goal is to choose control factors x such
that the response y is as close as possible to a target
t. In Taguchi’s parameter design problem, the crite-
rion to identify optimal levels for control factors x is
to minimize the following expected squared loss:

L(x;α, γ, µ, A,∆) = [E(y)− t]2+Var(y)

=
(
µ+ 1

2 x′Ax+α′x− t
)

2

+ x′∆Σz∆
′x+γ ′Σzγ +σ2

ε .
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12.4.2 Identification of Control Factors
in Parameter Design
by Robust Optimization

Since the true values for the coefficients (α, γ, µ, A,∆)
in (12.16) are unknown and they are estimated from data,
we use robust optimization to derive a robust solution x
that is resistant to the estimation error. First we use the
same method as in Sect. 12.2.3 to construct a confidence
region B for the coefficients (α, γ, µ, A,∆) and then we
solve the following minimax deviation model:

MinxMax(α,γ,µ,A,∆)∈B L(x;α, γ, µ, A,∆)

− g(α, γ, µ, A,∆) ,

g(α, γ, µ, A,∆) = MinxL(x;α, γ, µ, A,∆) ,

L(x;α, γ, µ, A,∆) =
(
µ+ 1

2 x′Ax+α′x− t
)

2

+ x′∆Σz∆
′x+γ ′Σzγ +σ2

ε . (12.17)

Note that the model (12.17) is not linear in the coeffi-
cients (α, γ, µ, A,∆), so we have to resort to a numerical
optimization algorithm to solve it.

We use the following example from Xu [12.13] to
show the application of robust optimization to the pa-
rameter design problem. Suppose there are two control
factors A and B and one noise variable C. The underly-
ing relationship between the performance response yand
control/noise factors A, B and C is

y = 3A+2B+0.15C+0.5AC− BC+6+ ε ,

(12.18)

where ε∼ N(0, 1). We further assume that the variance
of the noise factor C is σC = 1. Our goal is to choose
the optimal levels of (A, B) over the feasible region
{(A, B)|−1 ≤ A, B ≤ 1} to make the response y close
to the target t = 7.5. We notice that the response values
have a minimum squared loss of 1 when the control
factors (A, B) = (0.3, 0.3).

Assume we do not know the true model (12.18),
so we have first to fit a response model y = µ+α1 A+
α2 B+γ1C+δ1 AC+δ2 BC, where (µ, α1, α2, γ1, δ1, δ2)
are the coefficients we will estimate. Suppose we per-
form a full 23 factorial design with the design matrix
and the observed responses as follows.

Using the experimental data from the factorial de-
sign in Table 12.3, we first construct the confidence
region B for the coefficients (µ, α1, α2, γ1, δ1, δ2) in the
response model. The squared loss for the response value
y is L = [E(y)− t]2+Var(y)= (µ+α1 A+α2 B− t)2+
(γ1+ δ1 A+ δ2 B)2σ2

C +σ2
ε . By substituting t = 7.5 and

σC = σε = 1, we have L = (µ+α1 A+α2 B−7.5)2+

(γ1+δ1 A+δ2 B)2+1. Therefore we can write the robust
optimization model as follows:

Min{−1≤A,B≤1}Max(µ,α1,α2,γ1,δ1,δ2)∈B

L(A, B;µ, α1, α2, γ1, δ1, δ2)

− g(µ, α1, α2, γ1, δ1, δ2) ,

g(µ, α1, α2, γ1, δ1, δ2)

= Min(A,B)L(A, B;µ, α1, α2, γ1, δ1, δ2) ,

L(A, B;µ, α1, α2, γ1, δ1, δ2)

= (µ+α1 A+α2 B−7.5)2

+ (γ1+ δ1 A+ δ2 B)2+1 . (12.19)

By solving the optimization problem in (12.19), we can
obtain the robust solution (A, B) = (0.35, 0.22). If this
solution is applied to the underlying model (12.18), the
response values would have an expected squared loss
1.01, which is quite close to the true minimum 1. To
be complete, we also present the results obtained by
canonical optimization. The canonical solution is (A,
B) = (0.29, 0.95) and if this solution is applied to the
true model, the expected squared loss would be 3.08,
which is much worse than the true optimum.

12.4.3 Identification of Control Factors
when the Response Model Contains
Alias Terms

Fractional factorial design is a widely used tool to reduce
the number of runs in experimental design. The down-
side of fractional factorial design is that the main effects
and higher-order interactions are confounded. For ex-
ample, in a fractional factorial design with resolution
III, the main effects are aliased with the two-factor in-
teraction in the response model. A usual way to address
this question is to assume that the interaction is zero
and attribute all effects to the main factors. However if
the interaction term is important to determine the pro-
cess/product performance, the loss of this information
may be critical. If in the parameter design we cannot
differentiate between the effects from the main factors
and those from the interaction terms, there is no easy
way to identify the optimal levels for the control fac-
tors to minimize the variance in the final performance
response.

Fractional factorial design usually is used for factor-
screening purposes, however if we can use the data from
fractional design to make a preliminary assessment of
where the optimal levels for control factors may be lo-
cated, this can help move the design more quickly to
the region where the final performance response is most
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likely to be optimal and start the full factorial design
or other sophisticated designs sooner. So this poses the
challenge of how we can solve a parameter design prob-
lem if two effects are aliased due to the nature of the
data from a fractional factorial design.

Robust optimization provides a useful methodol-
ogy to address the above challenge if we can include
prior information on the alias terms. For example, the
prior information can be that both the main factor and
interaction term contribute positively to the response
value, etc.. To be clear, let us consider the same re-
sponse model as in (12.18), but assume that, instead
of the full factorial design in Table 12.3, only the data
from a fractional factorial design is available. The 23−1

design is shown in Table 12.4 where we retain the ob-
servations 1, 4, 6, 7 from Table 12.3. At each design
point in Table 12.4, replicate 1 is the response value
we observed from the design in Table 12.3, in ad-
dition, we perform one more run of the experiments
and replicate 2 contains the corresponding response
value.

We note that the design in Table 12.4 has the defin-
ing relation ABC = I, so the effects of the main factor
A and the interaction BC cannot be differentiated us-
ing the data in Table 12.4; similarly the effects of the
main factor B and the interaction AC are confounded
too. Hence instead of estimating the response model

Table 12.4 Comparison of performance responses using canonical and robust optimization approaches (true optimal
performance: −19.6)

Dist. of ε Canonical approach Robust approach with simul-
taneous confidence intervals

Robust approach with trans-
formation method

Mean Std. dev. Mean Std. dev. Mean Std. dev.

N(0, 0.5) -18.7 1.2 -18.2 1.5 -18.4 1.6

N(0, 1) -15.4 6.0 -15.2 3.3 -17.0 3.5

N(0, 2) -9.9 8.7 -10.8 4.9 -15.0 5.4

N(0, 3) -6.3 9.3 -9.0 5.4 -13.2 6.3

N(0, 4) -4.6 9.0 -7.8 5.7 -11.4 6.9

Table 12.5 Comparison of performance responses using canonical, robust, and weighted robust optimization (adapted
from [12.13])

ε Canonical optimization Robust optimization Weighted robust opt.
with weights (12.10)

Weighted robust opt.
with weights (12.11)

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

N(0, 0.5) -18.7 1.2 -18.4 1.6 -18.4 1.4 -18.8 1.0

N(0, 1) -15.4 6.0 -17.0 3.5 -18.0 1.9 -17.8 2.1

N(0, 2) -9.9 8.7 -15.0 5.4 -17.4 2.8 -16.4 3.7

N(0, 3) -6.3 9.3 -13.2 6.3 -17.2 3.0 -15.3 4.8

N(0, 4) -4.6 9.0 -11.4 6.9 -17.0 3.7 -14.7 5.4

in (12.18), we can only use the data in Table 12.4 to
estimate the following model:

y = µ+β1 Ã+β2 B̃+γ1C , (12.20)

where Ã = A+ BC, β1 measures the combined effect
of the factors A and BC, B̃ = B+ AC, β2 measures the
combined effect of the factors B and AC.

Using the same notation as in Sect. 12.4.2, let
α1 = denote the effect of the main factor A,
α2 = denote the effect of the main factor B,
δ1 = denote the effect of the interaction term AC,
δ2 = denote the effect of the interaction term BC.
Given the values for β1 and β2, if there is no other

information, α1 and δ2 can be any values as long as they
satisfy α1+ δ2 = β1; similarly, α2 and δ1 can be any
values as long as they satisfy α2 + δ1 = β2. However
we assume here that quality engineers already know the
prior information that: (1) the effects of the main fac-
tor A and the interaction BC are in the same direction;
and (2) the effects of the main factor B and the interac-
tion AC are in the opposite direction. We can describe
the prior information in (1) and (2) in the following
constraints:

α1 = λ1β1, δ2 = (1−λ1)β1, 0 ≤ λ1 ≤ 1 , (12.21)

α2 = λ2β2, δ1 = (1−λ2)β2, λ2 ≥ 1 . (12.22)
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We first construct the confidence region B for
(µ,β1,β2, γ1), the parameters in the response model
(12.20). By substituting (12.21) and (12.22) into the op-
timization problem in (12.19), we have the following
equations:

Min{−1≤A,B≤1}Max(µ,β1,β2,γ1)∈B

L(A, B;µ,β1,β2, γ1)− g(µ,β1,β2, γ1) ,

g(µ,β1,β2, γ1)

= Min(A,B)L(A, B;µ,β1,β2, γ1) ,

L(A, B;µ,β1,β2, γ1)

= [µ+λ1β1 A+λ2β2 B−7.5]2
+[γ1+ (1−λ2)β2 A+ (1−λ1)β1 B]2+1 ,

0 ≤ λ1 ≤ 1, λ2 ≥ 1 . (12.23)

By solving the optimization problem in (12.23), we
will get the solution (A, B) = (0.17, 0.36) with the ex-
pected squared loss 1.089. Although this solution seems
a little off from the true optimal solution (0.3, 0.3), it still
provides valuable information and can guide the design
to move quickly to the region closer to the true optimal
solution even in the early stage that only the data from
the fractional factorial design is available.

We finally comment on the use of the prior infor-
mation on the main factor effect and the higher-order
interaction effect in the formulation of the robust opti-
mization model in (12.23). This information is usually
available based on the qualitative knowledge and reason-
able judgment of quality engineers. If this information
is not available, that is, the values for λ1 and λ2 in
(12.23) can take any real numbers, we believe robust
optimization will not be able to yield a good solution.
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Uniform Desig13. Uniform Design and Its Industrial Applications

Uniform design is a kind of space-filling design
whose applications in industrial experiments,
reliability testing and computer experiments is
a novel endeavor. Uniform design is characterized
by uniform scattering of the design points
over the experimental domain, and hence is
particularly suitable for experiments with an
unknown underlying model and for experiments
in which the entire experimental domain has to
be adequately explored. An advantage of uniform
design over traditional designs such as factorial
design is that, even when the number of factors or
the number of levels of the factors are large, the
experiment can still be completed in a relatively
small number of runs. In this chapter we shall
introduce uniform design, the relevant underlying
theories, and the methods of constructing uniform
designs in the s-dimensional cube and in the
(q− 1)-dimensional simplex for experiments with
mixtures. We shall also give application examples
of industrial experiments, accelerated stress
testing and computer experiments.
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Human history shows that performing experiments sys-
temically is a catalyst to speeding up the process of
knowledge discovery. Since the 20th century, when de-
sign of experiments was first adopted in agriculture,
technology has developed more quickly then ever be-
fore. In industry, design of experiments now has an
important position in product design and process de-
sign. In recent decades, a large amount of theoretical
work has been done on design of experiments, and
many successful examples of industrial applications are
available. For a comprehensive review of the differ-
ent types of designs, readers may refer to Ghosh and
Rao [13.1]. In this chapter, we shall focus on a type of
design called the uniform design, whose concept was
first introduced in 1978 [13.2] and has now gained pop-
ularity and proven to be very successful in industrial
applications.

A response in an industrial process may depend on
a number of contributing factors. A major objective of
an industrial experiment is to explore the relationship
between the response and the various causes that may
be contributing factors, and to find levels for the con-
tributing factors that optimize the response. Examples
of responses are the tensile strength of a material pro-
duced from different raw ingredients, the mean time to
failure of an electrical component manufactured under
different settings of the production equipment, or the
yield of a product produced from a chemical process
under different reaction conditions. To optimize the re-
sponse, the relationship between the response and the
contributing factors has to be established. If it is diffi-
cult to derive the theoretical relationship, experiments
may be conducted and statistical methods may be used
to establish empirical models or metamodels. When the
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form of the model is unknown, one may wish to explore
the entire design region by choosing a design whose de-
sign points are spread uniformly over the region. Such
an objective may be achieved by using uniform design,
which was formally introduced in Fang [13.3] and Wang
and Fang [13.4]. Figure 2 shows some examples of uni-
form designs constructed in the two-dimensional square.
There are many examples of successful applications of
uniform designs in science, engineering and industries.
A major multinational automobile manufacturer has re-
cently adopted uniform designs as a standard procedure
in product design and process design. A review of ap-
plications of uniform designs in chemistry and chemical
engineering is given in Liang et al. [13.5]. An example of
application in quality improvement in electronics man-
ufacturing is given in Chan and Huang [13.6], Chan
and Lo [13.7] and Li et al. [13.8]. Investigations have
shown that uniform design performs better at estimat-
ing nonlinear problems than other designs, and is robust
against model assumptions; see Zhang et al. [13.9] and
Xu et al. [13.10].

Uniform design is different from traditional designs
(such as orthogonal arrays and Latin square designs) in
that it is not defined in terms of combinatorial struc-
ture but rather in terms of the spread of the design
points over the entire design region. An advantage of
uniform designs over traditional designs is that the for-
mer can be used for experiments in which the number
of factors and the number of levels of the factor are
not small, but a large number of runs is not avail-
able. In an experiment with 15 factors and 15 levels
on each factor, for example, 225 = 152 runs will be re-
quired if an orthogonal array is used, but if a uniform
design is used it is possible to complete the experi-
ment in 15 runs. In a Taguchi-type parameter design
(Taguchi [13.11]), the number of runs required is smaller
if uniform designs are used instead of orthogonal ar-
rays. For example, if an L36(23 × 311) orthogonal array
is used for the inner and outer arrays, a total of 36 × 36
runs are required, while if U13(138) and U12(1210)
uniform designs are used instead, 13 × 12= 156 runs
will be sufficient [13.12]. Sometimes, to limit the
number of runs in an experiment, one may choose
designs with a small number of levels, say two- or
three-level designs. However, when the behavior of
the response is unknown, designs with small numbers
of levels are generally unsatisfactory. In Fig. 13.1, all
of the two-, three-, four- and five-level designs with
equally spaced design points in [−1, 1] (including the
points ±1) wrongly indicate that y decreases as x in-
creases in [−1, 1]. Only designs with six or more levels

with equally spaced designs points will disclose the
peak of y.

A uniform design with n runs, q levels on
each of the s factors is denoted by Un(qs). Simi-
lar notation, for example Un(qs1

1 × qs2
2 ), is used for

mixed-level designs. Uniform design tables have
been constructed and are available from the web-
site www.math.hkbu.edu.hk/UniformDesign for conve-
nient use. Plots of uniform designs constructed for
n = 2, 5, 8, 20 are shown in Fig. 13.2. Uniform de-
signs, whose designs points are scattered uniformly
over the design region, may be constructed by min-
imizing a discrepancy. Uniform designs can also be
used as space-filling designs in numerical integration.
In recent years, many theoretical results on uniform
designs have been developed. Readers may refer to
Fang and Wang [13.13], Fang and Hickernell [13.14],
Hickernell [13.15], Fang and Mukerjee [13.16], Xie
and Fang [13.17], Fang and Ma [13.18, 19], Fang
et al. [13.20], Fang [13.21] and Hickernell and
Liu [13.22].

In what follows, we will use “UD” as an abbrevia-
tion for “ uniform design”. This chapter is organized as
follows. Section 13.1 gives a general procedure for con-
ducting an industrial experiment, and gives an example
of an application of uniform design in a pharmaceuti-
cal experiment which has three contributing factors and
where each factor has seven levels. No theoretical model
is available for the relationship between these contribut-
ing factors and the response (the yield of the process).
From the results of the experiment conducted accord-
ing to a uniform design, several empirical models are
proposed, and specific levels for the contributing fac-
tors are suggested to maximize the yield. Section 13.2
gives an example of the application of uniform de-
sign to accelerated stress testing for determining the
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Fig. 13.1 An example of a response curve
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n = 2 n = 5 n = 8 n = 20

Fig. 13.2 Plots of uniform designs in S2

median time to failure of an electronics device, with
a known theoretical model. The values of the param-
eters in the theoretical model are determined from the
results of accelerated stress testing conducting accord-
ing to uniform design, and a predicted value for the
median time to failure is obtained. Section 13.3 explains
when computer experiments can be used for solving
practical problems, and illustrates with a simple ex-
ample on a robot arm how a computer experiment is
conducted using uniform design to obtain an approxi-
mation of the true theoretical model of the robot arm
position. Section 13.4 formally defines uniform design
on the s-dimensional cube [0, 1]s in terms of minimiza-
tion of the discrepancy, and introduces several different
discrepancies and their computational formulas. The
U-type design, which is used to define a discrete dis-
crepancy, is also introduced. Section 13.5 states that the
construction of uniform designs on the s-dimensional
cube is an NP-hard problem even when high-power

computers are used, and explains how approximate uni-
form designs can be constructed more easily using
U-type designs. Lower bounds for several discrepan-
cies are given, and these lower bounds can be used
to indicate how close (in terms of discrepancy) an ap-
proximate uniform design is to the theoretical uniform
design. Some methods for construction of approximate
uniform designs are given. Section 13.6 is devoted to
uniform designs for experiments with mixtures in which
the contributing factors are proportions of the ingre-
dients in a mixture. It is explained with illustrations
how uniform designs can be constructed on the the
simplex Sq−1, which is the complete design region,
and on a subregion of it. Section 13.7 gives the rela-
tionships between uniform design and other designs or
design criteria, including aberration, orthogonality, su-
persaturated design, isomorphic design, and equivalent
Hadamard matrices. This chapter is concluded briefly in
Section 13.8.

13.1 Performing Industrial Experiments with a UD

One purpose of performing industrial experiments is to
acquire data to establish quantitative models, if such
models cannot be built solely based on theoretical con-
sideration or past experience. Such models can be used
to quantify the process, verify a theory or optimize the
process. The following steps may be taken as a standard
procedure for performing industrial experiments.

1. Aim. Specify the aim of the experiment (which may
be maximizing the response, defining the operational
windows of the contributing and noncontributing
factors, etc.), and identify the process response to
study.

2. Factor and domain. Specify possible contribut-
ing factors, and identify the domain of variation of

each factor according to experience and practical
constraints.

3. Numbers of levels and runs. Choose a suffi-
ciently large number of levels for each factor
and the total number of runs according to ex-
perience, physical consideration and resources
available.

4. Design. Specify the number of runs and choose
a design for the first set of experiment. It is recom-
mended to adopt a UD from the literature or from
the website www.math.hkbu.edu.hk/UniformDesign
that matches the requirements in Step 3.

5. Implementation. Conduct the experiment accord-
ing to the design chosen in Step 4. Allocate the runs
randomly.
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6. Modeling. Analyze the results using appropriate sta-
tistical tools according to the nature of the data. Such
tools may include regression methods, ANOVA,
Kriging models, neural networks, wavelets, splines,
etc. Establish models relating the response to the
contributing factors.

7. Diagnostics. Make conclusions from the models es-
tablished in Step 6 to fulfil the aim specified in
Step 1.

8. Further Experiments. If applicable, perform addi-
tional runs of the experiment to verify the results
obtained in Steps 6 and 7, or perform subsequent
experiments in order to fulfil the aim in Step 1.

The following example illustrates a successful ap-
plication of UD in an industrial experiment.

Example 13.1: The yield y of an intermediate product
in pharmaceutical production depends on the percent-
ages of three materials used: glucose (A), ammonia
sulphate (B) and urea (C). The aim of the experiment is
to identify the percentages of A, B and C, say x1, x2, x3,
which will produce the highest yield. The region for the
experiment was defined by the following possible ranges
of variation of x1, x2, x3:

A: 8.0 ≤ x1 ≤ 14.0(%); B: 2.0 ≤ x2 ≤ 8.0(%);
C: 0.0 ≤ x3 ≤ 0.3(%). (13.1)

It was planned to complete one experiment in not more
than eight runs. The levels chosen for the factors are as
follows:

x1: (1)8.0, (2)9.0, (3)10.0, (4)11.0, (5)12.0 ,

(6)13.0, (7)14.0 ;
x2: (1)2.0, (2)3.0, (3)4.0, (4)5.0, (5)6.0, (6)7.0 ,

(7)8.0 ;
x3: (1)0.00, (2)0.05, (3)0.10, (4)0.15, (5)0.20 ,

(6)0.25, (7)0.30 .

Table 13.1 Experiment for the production yield y

No. U7(73) x1 x2 x3 y

1 1 2 3 8.0 3.0 0.10 7.33

2 2 4 6 9.0 5.0 0.25 5.96

3 3 6 2 10.0 7.0 0.05 6.15

4 4 1 5 11.0 2.0 0.20 9.59

5 5 3 1 12.0 4.0 0.00 8.91

6 6 5 4 13.0 6.0 0.15 6.47

7 7 7 7 14.0 8.0 0.30 4.82

A U7(73) UD was adopted. Table 13.1 shows the U7(73)
UD adopted, the layout of the experiment, and the
observed response y.

Fitting the data in Table 13.1 with a linear model in
x1, x2, x3 gives

ŷ = 8.1812+0.3192x1−0.7780x2−5.1273x3 ,

(13.2)

with R2 = 0.9444, s2 = 0.3202, and an F probability of
0.022. The ANOVA is shown in Table 13.2. From (13.2),
the maximum value of ŷ = 11.094 is attained at x1 = 14,
x2 = 2 and x3 = 0 within the ranges specified in (13.1).

Fitting the data with a second-degree polynomial by
maximizing R2 gives

ŷ = 7.0782+0.0542x2
1 −0.1629x1x2

−0.3914x1x3+0.1079x2
3 , (13.3)

with R2 = 0.9964, s2 = 0.0309, and an F probability of
0.007. The ANOVA table is shown in Table 13.3. From
(13.3), the maximum value of ŷ = 13.140 is attained at
(x1, x2, x3) = (14.0, 2.0, 0.0), within the ranges speci-
fied in (13.1).

On the other hand, fitting the data with a cen-
tered second-degree polynomial in the variables (x1−
x̄1), (x2 − x̄2) and (x3 − x̄3) by maximizing R2

gives

ŷ = 8.2209−0.5652(x2−5)−4.5966(x3−0.15)

−0.4789(x1−11)2+0.3592(x1−11)(x2−5) ,
(13.4)

with R2 = 0.9913, indicating a good fit. The ANOVA
table is shown in Table 13.4. From (13.4), the
maximum value of ŷ = 11.2212 is attained at
(x1, x2, x3)= (9.8708, 2.0, 0.0), within the ranges spec-
ified in (13.1).

The second-degree model (13.2) and the centered
second-degree model (13.3) fit the data better than the
linear model. The maximum predicted values of ŷ given
by (13.2–13.4) are between 11.094 and 13.140 when
x1 is between 98.708 and 14, x2 = 2 and x3 = 0 in the
design region. These results show that the smaller x2
and x3, the larger ŷ. Zero is the smallest possible value

Table 13.2 ANOVA for a linear model

Source SS df MS F P

Regression 16.3341 3 5.4447 17.00 0.022

Error 0.9608 3 0.3203

Total 17.2949 6
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Table 13.3 ANOVA for a second-degree model

Source SS df MS F P

Regression 17.2331 4 4.3083 139.39 0.007

Error 0.0618 2 0.0309

Total 17.2949 6

of x3, but x2 may be extended beyond its smallest value
of 2, and x1 can be extended beyond its largest value of
14 from the boundary of the design region. To explore
whether any larger values of maximum y can be achieved

Table 13.4 ANOVA for a centered second-degree model

Source SS df MS F P

Regression 17.1445 4 4.2861 56.99 0.0173

Error 0.1504 2 0.0752

Total 17.2949 6

outside the design region, further investigation can be
carried out by fixing x3 at 0 and performing two factor
experiments with x1 in the range [8, 16] and x2 in the
range [0, 3].

13.2 Application of UD in Accelerated Stress Testing

Accelerated stress testing is an important method in
studying the lifetime of systems. As a result of ad-
vancement in technology the lifetime of products
is increasing, and as new products emerge quickly
product cycle is decreasing. Manufacturers need to
determine the lifetime of new products quickly and
launch them into the market before another new gen-
eration of products emerges. In many cases it is not
viable to determine the lifetime of products by testing
them under normal operating conditions. To estimate
their lifetime under normal operating conditions, ac-
celerated stress testing is commonly used, in which
products are tested under high-stress physical condi-
tions. The lifetime of the products are extrapolated
from the data obtained using some lifetime models.
Many different models, such as the Arrhenius model,
the inverse-power-rule model, the proportional-hazards
model, etc., have been proposed based on physi-
cal or statistical considerations. Readers may refer to
Elsayed [13.23] for an introduction to accelerated stress
testing. In this section we shall give an example to
illustrate the application of UD to accelerated stress
testing.

Table 13.5 The set up and the results of the accelerated stress test

No. U8(43) lnV V 1/T T H t

1 1 3 2 0.6931 2 0.0027821 359 90 296.5

2 1 1 3 0.6931 2 0.0026809 373 95 304.3

3 4 1 2 1.6094 5 0.0026809 373 90 95.0

4 4 3 3 1.6094 5 0.0027821 359 95 129.6

5 3 4 1 1.3040 3.68 0.0028328 353 85 278.6

6 3 2 4 1.3040 3.68 0.0027315 366 100 186.0

7 2 4 4 0.9985 2.71 0.0028328 353 100 155.4

8 2 2 1 0.9985 2.71 0.0027315 366 85 234.0

Example 13.2: The median time to failure t0 of an elec-
tronics device under the normal operating conditions
has to be determined under accelerated stress testing.
Theoretical consideration shows that, for such a device,
a model of the inverse response type should be appropri-
ate. Under such a model, when the device is operating
under voltage V (Volts), temperature T (Kelvin) and
relative humidity H (%), its median time to failure t is
given by

t = a V−b ec/T e−dH ,

where a, b, c, d are constants to be determined. Un-
der normal operating conditions, the device operates at
V = 1, T = 298, H = 60. The ranges for V, T, H de-
termined for this experiment were 2–5, 353–373, and
85–100, respectively. Logarithmic transformation on the
above model gives

ln t = ln a−b ln V + c/T −dH .

An experiment with eight runs and four equally spaced
levels on each of ln V, 1/T and H was planned. These

Part
B

1
3
.2



234 Part B Process Monitoring and Improvement

levels were as follows.

ln V : (1)0.6931, (2)0.9985, (3)1.3040,

(4)1.6094 ;
1/T : (1)0.0026809, (2)0.0027315, (3)0.0027821,

(4)0.0028328 ;
H: (1)85, (2)90, (3)95, (4)100 .

The corresponding levels of V and T were

V : (1)2, (2)2.71, (3)3.68, (4)5 ;
T : (1)373, (2)366, (3)359, (4)353 .

The test was performed according to a U8(34) UD. The
layout of the experiment and the t values observed are
shown in Table 13.5.

Table 13.6 ANOVA for an inverse responsive model

Source SS df MS F P

Regression 1.14287 3 0.38096 11.70 0.019

Error 0.13024 4 0.03256

Total 1.27311 7

Regression analysis gives

ˆln t = 5.492−1.0365 ln V +1062/T −0.02104H ,

or

t̂ = 240.327V−1.0365 e1062/T−0.02104H ,

with R2 = 0.898 and s2 = 0.0325. The ANOVA table in
Table 13.6 shows a significance level of 0.019. The value
of t at the normal operating condition V = 1, T = 298
and H = 60 is estimated to be t̂0 = 2400.32 (hours).

13.3 Application of UDs in Computer Experiments

Indeed, UDs were first used by mathematicians as
a space-filling design for numerical integration, and ap-
plication of UDs in experiments was motivated by the
need for effective designs in computer experiments in
the 1970s [13.2].

The computer can play its role as an artificial means
for simulating a physical environment so that experi-
ments can be implemented virtually, if such experiments
are not performed physically for some reasons. For
example, we do not wish to perform an experiment
physically if the experiment may cause casualty. It is
not practical to perform a hurricane experiment because
we cannot generate and control a hurricane, but if a dy-
namical model can be established the experiment can be
performed virtually on the computer. In such a situation,
computer experiments, in which computation or simu-
lation is carried out on the computer, may help study the
relation between the contributing factors and the out-
come. To perform a computer experiment, levels will
have to be set for each of the contributing factors, and
in order to have a wide coverage of the entire design
region with a limited number of runs, a UD is a good
recommendation.

Another use of computer experiments is to estab-
lish approximations of known theoretical models if such
models are too complicated to handle in practice. From
the theoretical model, if computation can be carried out
using the computer in evaluating the numerical values of
the response y at given values of the variants x1, · · · , xk,
from the numerical results we can establish metamodels

that are good approximations to the theoretical model but
yet simple enough for practical use. On the other hand,
if the theoretical model is so complicated (for exam-
ple, represented as a large system of partial differential
equations) that it is not even practical to solve it using
a computer but if it is possible to observe the values of
the response y at different values of x1, · · · , xk, we can
make use of the computer to establish mathematically
tractable empirical models to replace the complicated
theoretical model.

In computer experiments, UDs can be used for the se-
lection of representative values of x1, · · · , xk that cover
the design region uniformly in a limited number of runs.
This is illustrated by an example on water flow in Fang
and Lin [13.24]. Another example of the application of
UDs in computer experiments is for real-time control
of robotic systems in which the kinematics is described
by a system of complicated equations containing vari-
ous angles, lengths and speeds of movement. Control of
robotic systems requires the solution of such a system
of equations on a real-time basis at a sufficiently fast
speed, which sometimes cannot be achieved because of
the intensive computation required (which may involve
inversion of high-order Jacobian determinants, etc.). For
such a case, computer experiments may be employed,
in which the system of equations is solved off-line and
the results obtained are used to establish statistical mod-
els that are mathematically simple enough to be used for
real-time computation. To achieve a sufficiently uniform
coverage of the design region, UDs can be used. The fol-
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lowing Example 3 is a simplified version of a robot arm
in two dimensions which illustrates this application.

Example 13.3: A robot arm on the uv-plane consists of
s segments. One end of the first segment is connected
to the origin by a rotational join, and the other end of
the first segment is connected to one end of the second
segment by a rotational join. The other end of the second
segment is connected to one end of the third segment a by
rotational join, and so on. Let L j represent the length
of the j th segment, θ1 represent the angle of the first
segment with the u-axis, θ j represent the angle between
the ( j−1)th and j th segment, where 0 ≤ θ j ≤ 2π( j =
1, · · · , s). The length between the origin and the end
point of the last segment of the robot arm is given by

y = f (L1, · · · , Ls, θ1, · · · , θs) =
√

u2+v2 ,

Table 13.7 Experiment for the robot arm example

No. U28(286) L1 L2 l3 θ1 θ2 θ3 y

1 11 28 6 3 14 20 0.3704 1.0000 0.1852 0.4654 3.0252 4.4215 0.6196

2 17 2 23 27 20 21 0.5926 0.03704 0.8148 6.0505 4.4215 4.6542 0.3048

3 4 14 2 26 9 23 0.1111 0.4815 0.03704 5.8178 1.8617 5.1196 0.4851

4 13 10 4 24 27 13 0.4444 0.3333 0.1111 5.3523 6.0505 2.7925 0.6762

5 14 24 28 8 12 14 0.4815 0.8519 1.0000 1.6290 2.5598 3.0252 0.5636

6 12 5 25 20 4 8 0.4074 0.1482 0.8889 4.4215 0.6982 1.6290 0.7471

7 3 16 10 1 5 10 0.07407 0.5556 0.3333 0.0000 0.9308 2.0944 0.4901

8 21 9 14 7 2 22 0.7407 0.2963 0.4815 1.3963 0.2327 4.8869 1.2757

9 5 11 26 5 18 24 0.1482 0.3704 0.9259 0.9308 3.9561 5.3523 1.0384

10 9 4 12 17 11 27 0.2963 0.1111 0.4074 3.7234 2.3271 6.0505 0.4340

11 15 17 16 10 28 28 0.5185 0.5926 0.5556 2.0944 6.2832 6.2832 1.6667

12 23 19 1 6 19 9 0.8148 0.6667 0.0000 1.1636 4.1888 1.8617 0.7518

13 7 18 20 22 1 18 0.2222 0.6296 0.7037 4.8869 0.0000 3.9561 0.6310

14 18 12 21 4 10 2 0.6296 0.4074 0.7407 0.6981 2.0944 0.2327 0.8954

15 27 8 11 23 13 6 0.9630 0.2593 0.3704 5.1196 2.7925 1.1636 0.4991

16 24 27 17 25 8 12 0.8519 0.9630 0.5926 5.5851 1.6290 2.5598 0.6711

17 20 25 9 21 22 25 0.7037 0.8889 0.2963 4.6542 4.8869 5.5851 1.3362

18 25 6 19 2 24 17 0.8889 0.1852 0.6667 0.2327 5.3523 3.7234 0.3814

19 16 23 5 16 3 4 0.5556 0.8148 0.1482 3.4907 0.4654 0.6982 1.4331

20 8 3 8 9 23 3 0.2593 0.07407 0.2593 1.8617 5.1196 0.4654 0.5408

21 22 15 27 18 26 5 0.7778 0.5185 0.9630 3.9561 5.8178 0.9308 2.1111

22 2 22 13 19 25 16 0.03704 0.7778 0.4444 4.1888 5.5851 3.4907 0.4091

23 26 21 24 13 6 26 0.9259 0.7407 0.8619 2.7925 1.1636 5.8178 2.2386

24 28 13 7 15 17 19 1.0000 0.4444 0.2222 3.2579 3.7234 4.1888 0.6162

25 19 1 3 11 7 15 0.6667 0.0000 0.07407 2.3271 1.3963 3.2579 0.6665

26 6 26 22 12 21 7 0.1852 0.9259 0.7778 2.5598 4.6542 1.3963 1.4167

27 1 7 18 14 15 11 0.0000 0.2222 0.6296 3.0252 3.2579 2.2327 0.5038

28 10 20 15 28 16 1 0.3333 0.8037 0.5185 6.2832 3.4907 0.0000 0.9161

u =
s∑

j=1

L j cos
( j∑

i=1

θi
)
,

v=
s∑

j=1

L j sin
( j∑

i=1

θi
)
.

For simplicity, suppose that s = 2. We intend to rep-
resent y as a generalized linear function in the variables
L1, L2, θ1, θ2. A computer experiment is performed
with a U28(286) UD, in which the values of y were
evaluated at different values of Li and θi . The results
of the computation is shown in the rightmost column of
Table 13.7.

Fitting the data in Table 13.7 with a centered
generalized linear regression model with variables
(Li −0.5), (θi −π) and cos(θi −π) (i = 1, 2, 3) using
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a stepwise procedure in the package SAS gives the
model

ŷ = 0.9088+0.1760(L1−0.5)+0.6681(L2−0.5)

+0.3917(L3−0.5)−0.2197 cos(θ2−π)

−0.3296 cos(θ3−π)

−0.01919(θ1−π)(θ2−π)

−0.5258(L2−0.5) cos(θ3−π)

−0.0792L3θ1−0.7622(L3−0.5) cos(θ3−π)

−0.0114(θ1−π)(θ3−π)

−0.0274(θ2−π)(θ3−π)

+0.2894 cos(θ2−π) cos(θ3−π) ,

with R2 = 0.9868, s2 = 0.0063, and an F of 0.0000. The
ANOVA table is omitted here. Evaluation at different
values of Li and θi shows that ŷ is a good approximation
of y.

13.4 Uniform Designs and Discrepancies

In this section, the formal definition of a UD will be in-
troduced. A UD is, intuitively, a design whose points
distribute uniformly over the design space. Such uni-
formity may be achieved by minimizing a discrepancy.
There is more than one definition of discrepancy, and
different discrepancies may produce different uniform
designs.

Without loss of generality, let the design space be the
s-dimensional unit cube Cs = [0, 1]s. We represent any
point in Cs by x′ = (x1, · · · , xs), where x1, · · · , xs ∈
[0, 1], and the prime denotes the transpose of matrices.
For a given positive integer n, a uniform design with n
points is a collection of points P ∗ = {x∗1, · · · , x∗n} ⊂ Cs

such that

M(P ∗) = min M(P ) ,

where the minimization is carried out over all
P = {x1, · · · , xn} ⊂ Cs with respect to some measure
of uniformity, M. One choice for M is the clas-
sical L p-discrepancy adopted in quasi-Monte-Carlo
methods [13.25, 26],

Dp(P ) =
(∫

Cs

∣∣∣
N (P , [0, x])

n
−Vol [0, x]

∣∣∣
p
dx
)1/p

,

where [0, x] denotes the interval [0, x1]× · · ·× [0, xs],
N(P , [0, x]) denotes the number of points of P falling
in [0, x], and Vol [0, x] is the volume of the set [0, x] ∈
Cs, which is the distribution function of the uniform
distribution on Cs.

The D∞(P ) discrepancy

max
x∈Cs

∣∣∣∣
N(P , [0, x])

n
−Vol [0, x]

∣∣∣∣

is called the star discrepancy, which is the Kolmogorov–
Smirnov statistic used for the goodness-of-fit test.

The L p-discrepancy is a measure of uniformity of
the distribution of points of P in Cs. The smaller the
value of Dp(P ), the more uniform the distribution of
points of P . The star discrepancy is not as sensitive as
the L p-discrepancy for finite values of p.

The quantity Dp(P ) is in general difficult to com-
pute. Let xk = (xk1, · · · , xks)′ (k = 1, · · · , n). For p= 2,
computation can be carried out more efficiently using the
following closed-form analytic formula [13.27]:

D2(P )2 = 3−s − 21−s

n

n∑

k=1

s∏

l=1

(1− x2
kl)

+ 1

x2

n∑

k=1

n∑

j=1

s∏

i=1

[1−max(xki , x ji )] .

As pointed out by Fang et al. [13.20], the
L2-discrepancy ignores the discrepancy of P on
lower-dimensional subspaces of Cs. To overcome
this drawback, Hickernell [13.28] proposed the fol-
lowing modified L2-discrepancy, which includes
L2-discrepancies of projections of P in all lower di-
mensional subspaces of Cs

D2,modified(P )2

=
∑

u

∫

Cu

∣∣∣
N(Pu, Jxu )

n
−Vol(Jxu )

∣∣∣
p

dxu , (13.5)

where u is a non-empty subset of the set of coordi-
nate indices S = {1, · · · , s}, Cu is the |u|-dimensional
cube involving the coordinates in u, |u| is the cardi-
nality of u, Pu is the projection of P on Cu , xu is
the projection of x on Cu , and Jxu is the projection
of a rectangle Jx on Cu , which depends on x and is
defined based on some specific geometric considera-
tion. Different choices of Jx produce discrepancies with
different properties, the centered L2-discrepancy (CD)
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(which contains all L2-discrepancies each calculated
using one of the 2s vertices of Cs as the origin), the
wrap-around L2-discrepancy (WD) (which is calculated
after wrapping around each one-dimensional subspace
of Cs into a close loop), and others. Closed-form ana-
lytic formulas for CD and WD, the most commonly used
discrepancies, are displayed below, and corresponding
formulas for other discrepancies can be found in Fang
et al. [13.20] and Hickernell [13.28, 29]

[CD(P )]2 =
(

13

12

)s

− 2

n

n∑

k=1

s∏

j=1

(
1+ 1

2
|xk j −0.5|

− 1

2
|xk j −0.5|2

)

+ 1

ns

n∑

k=1

n∑

j=1

s∏

i=1

(
1+ 1

2
|xki −0.5|

+ 1

2
|x ji −0.5|− 1

2
|xki − x ji |

)
, (13.6)

[WD(P )]2 =
(

4

3

)s

+ 1

n2

n∑

k=1

n∑

j=1

s∏

i=1

[
3

2
−|xki − x ji |

× (1−|xki − x ji |)
]
. (13.7)

The CD is invariant under relabeling of coordinate axes.
It is also invariant under reflection of points about any
plane passing through the center and parallel to the faces
of the unit cube Cs , that is, invariant when the ith co-
ordinate xi is replaced by 1− xi . It follows from the

Table 13.8 A design in U(6; 32 × 2)

No. 1 2 3

1 1 1 1

2 2 1 2

3 3 2 1

4 1 2 2

5 2 3 1

6 3 3 2

definition that the CD takes into account the unifor-
mity of P over Cs and also over all projections of P
onto all subspaces of Cs. The uniform designs given in
the website www.math.hkbu.edu.hk/UniformDesign are
constructed using the CD [13.30].

Another useful discrepancy is called the discrete dis-
crepancy, or categorical discrepancy. It is defined on the
discrete space based on the following U-type designs,
and can be used as a vehicle for construction of UDs via
U-type designs.

Definition 13.1
A U-type design is an array of n rows and s columns with
entries 1, · · · , q j in the j-th column such that each entry
in each column appears the same number of times ( j =
1, · · · , s). The collection of all such designs is denoted
by U(n; q1 × · · ·× qs), which is the design space. When
all q j are the same, the design space will be denoted by
U(n; qs). Designs in U(n; q1 × · · ·× qs) (where the q j
are distinct) are asymmetric, while designs in U(n; qs)
are symmetric.

Table 13.8 shows a U-type design in U(6; 32 × 2).
Obviously, in a U-type design in U(n; q1 × · · ·× qs),n
must be an integer multiple of q j for all j = 1, · · · , s.

A discrete discrepancy is defined on U(n; q1 × · · ·×
qs) in terms of two positive numbers a �= b, and is de-
noted by D2(U; a, b). The computational formula for
D2(U; a, b) is

D2(U; a, b) =−
s∏

j=1

(
a+ (q j −1)b

q j

)
(13.8)

+ 1

n2

n∑

k=1

n∑

l=1

s∏

j=1

K̃ (uk j , ul j ) ,

where (uk1, · · · , uks) represents the k-th point in U and

K̃ (uk j , ul j ) =
{

a if uk j = ul j ,

b if uk j �= ul j .

13.5 Construction of Uniform Designs in the Cube

In order to construct a uniform design on the contin-
uum Cs = [0, 1]s, we need to search for all possible sets
of n points over Cs for a design with minimum dis-
crepancy, which is an NP-hard problem for high-power
computers even if n and s are not large. In general,

the coordinates of the points in a UD in Cs may be
irrational. It can be proved that when s = 1, the set{ 1

2n ,
3

2n , · · · , 2n−1
2n

}
with equally spaced points is the

n-point uniform design on [0, 1]with CD = 1/(
√

12n),
which is the smallest possible value [13.30]). Since the
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design points of a UD distribute uniformly over the
design region, from the last result on [0, 1] it is nat-
ural to expect that values of the coordinates of points
in a UD in Cs are either equally spaced or nearly
equally spaced on each one-dimensional subspace of
Cs. Along this line of thought, while uniform designs
defined for the continuum Cs are difficult to find, we
can search over the discrete set of U-type designs to
construct approximate uniform designs. Computation
shows that this approach produces good results. The
closeness between the UDs with exactly the minimum
discrepancy constructed for C2 and the approximate
UDs constructed from U-type designs for n = 2, · · · , 9
is illustrated in Fig. 13.3 of Fang and Lin [13.24], and for
larger values of n these two types of UDs are practically
identical.

Tables of UDs in the website www.math.hkbu
.edu.hk/UniformDesign are constructed from U-type
designs. Figure 13.2 shows the plots of such designs
constructed for n = 2, 5, 8, 20 for s = 2. An obvious
advantage of using U-type designs for construction is
that in the UD constructed values of each coordinate of
the design are equally spaced. Such designs are much
more convenient to use in practice than the exact UDs
with irregular values of coordinates constructed for the
continuum Cs.

If P is a design consisting of n points x1 =
(x11, · · · , x1s)′, · · · , xn = (xn1, · · · , xns)′, we shall use
the following notations, on different occasions as

1.0

0.00.0

0.01.0 1.0

x1

x2 x3

Fig. 13.3 A uniform design of 15 points in S3−1

appropriate, to represent P: P = {x1, · · · , xn}, P =

{xij}i=1,··· ,n; j=1,··· ,s , P = {xij}, P =

⎛
⎜⎜⎝

x11 · · · x1s
...

. . .
...

xn1 · · · xns

⎞
⎟⎟⎠,

P =

⎛
⎜⎜⎝

x1
...

xn

⎞
⎟⎟⎠.

In the following Definition 13.2, we shall introduce
uniform design defined on the discrete set U(n; qs).

Definition 13.2
A design U ∈U(n; q1 × · · ·× qs) is called a uniform
design under the measure of discrepancy M if

M(U) = min
V∈U(n;q1×···×qs)

M(V ) .

The collection of all such designs is denoted by Un(q1 ×
· · ·× qs). When q1 = · · · = qs, U will be called a sym-
metric design, and Un(q1 × · · ·× qs) will be denoted by
Un(qs).

If U ∈U(n; q1 × · · ·× qs) is a U-type design con-
sisting of the n points u1, · · · ,un , where ui =
(ui1, · · · , uis)′ (i = 1, · · · , n), we define xij = (uij −
0.5)/q j , so that P = {x1, · · · , xn} ∈ Cs. If M is a dis-
crepancy on Cs, we define M(U)= M(P ). Finding UDs
in Un(q1 × · · ·× qs) by minimizing discrepancies is still
an NP-hard problem because of the amount of computa-
tion required, even though it is a more manageable task
than finding UDs in the continuum Cs. To get around
this difficulty, a variety of methods have been proposed
by different authors.

For a given discrepancy, and given n and s, it can
be seen from the definition that the discrepancy of all
designs of n points has a positive lower bound. Thus,
lower bounds of discrepancies are used as a benchmark
in the construction of UDs or approximate UDs. A UD
is a design whose discrepancy equals the lower bound,
and a design whose discrepancy is close to the lower
bound is a good design.

13.5.1 Lower Bounds
of Categorical, Centered
and Wrap-Around Discrepancies

(A) Lower Bounds
of the Categorical Discrepancy
Let c(kl) be the coincidence number of a pair of elements
between rows k and l of a design. Clearly c(kk) = s,
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and s− c(kl) is the Hamming distance between rows
k and l.

Theorem 13.1
A lower bound of the categorical discrepancy in
U(n; q1 × · · ·× qs) is given by

−
s∏

j=1

(
a+ (q j −1)b

q j

)
+ as

n
+ n−1

n
bs

(a

b

)ψ
,

(13.9)

where ψ = (
∑s

j=1 n/q j − s)/(n−1). This lower bound
is attained if and only if ψ is an integer and all c(kl) are
equal to ψ. When the design space is U(n; qs) the above
lower bound becomes

−
(

a+ (q−1)b

q

)s

+ as

n
+ n−1

n
bs

(a

b

)ψ
,

(13.10)

where ψ = s(n/q−1)/(n−1).

The above lower bonds can be used in searching for
UDs in U(n; q1 × · · ·× qs).

It is known that block designs have a very good
balance structure. Balanced incomplete block (BIB)
designs have appeared in many textbooks. Liu and
Fang [13.31] and Lu and Sun [13.32] found that there
is a link between UDs and resolvable BIB designs,
a subclass of BIB. Through this link, many UDs can
be generated from the large amount of resolvable BIB
designs available in the literature. Reader may refer to
Fang et al. [13.33], Fang et al. [13.34] and Qin [13.35]
for the details.

(B) Lower Bounds
of the Wrap-Around L2-Discrepancy
Values of the wrap-around discrepancy of a de-
signs in U(n; qs) can be calculated by (13.7). Let
αk

ij ≡ |xik − x jk|(1−|xik − x jk|) (i, j = 1, · · · , n, i �= j
and k = 1, · · · , s). For any two rows of a design denote
the distribution of values ofαk

ij by Fα
ij . Fang et al. [13.36]

obtained lower bounds for q = 2, 3. Recently, Fang
et al. [13.37] gave lower bounds of the wrap-around
discrepancy for any number of levels q as follows:

Theorem 13.2
Lower bounds of the wrap-around L2-discrepancy on
U(n; qs) for even and odd q are given by

LBeven =∆+ n−1

n

(
3

2

) s(n−q)
q(n−1)

(
5

4

) sn
q(n−1)

×

(
3

2
− 2(2q−2)

4q2

) 2sn
q(n−1) · · ·

×

(
3

2
− (q−2)(q+2)

4q2

) 2sn
q(n−1)

,

LBodd =∆+ n−1

n

(
3

2

) s(n−q)
q(n−1)

×

(
3

2
− 2(2q−2)

4q2

) 2sn
q(n−1) · · ·

×

(
3

2
− (q−1)(q+1)

4q2

) 2sn
q(n−1)

,

respectively, where ∆=−
(

4
3

)s + 1
n

(
3
2

)s
. A U-type

design in U(n; qs) is a uniform design under the wrap-
around L2-discrepancy if all its Fα

ij distributions, for
i �= j, are the same. In this case, the WD2 value of this
design achieves the above lower bound.

Fang et al. [13.37] also proposed a powerful algo-
rithm based on Theorem 13.2 and obtained many new
UDs.

(C) Lower Bounds
of the Centered L2-Discrepancy
A tight lower bound for the centered L2-discrepancy
is rather difficult to find. Fang and Mukerjee [13.16]
gave a lower bound for the centered L2-discrepancy
on U(n; 2s). Fang et al. [13.36] gave some improve-
ment of Fang and Mukerjee’s results. Recently, Fang
et al. [13.38] provided a tight lower bound for the cen-
tered L2-discrepancy for q = 3, 4. They also proposed
an efficient algorithm for searching for UDs.

13.5.2 Some Methods for Construction

The design space U(n; qs) contains many poor designs
with large values of discrepancy. Confining our search
to subspaces in U(n; qs) with good designs will sig-
nificantly reduce the amount of computation. Methods
developed along this direction are the good lattice point
method (see Sect. 1.3 of Fang and Wang [13.13]), the
Latin square method and the extending orthogonal de-
sign method (see Fang and Hickernell [13.14]). Ma and
Fang [13.39] proposed the cutting method that con-
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structs a subdesign from a large uniform design. Fang
and Qin [13.40] suggested merging two uniform designs
to generate a larger design. Let U = {uij} be a U-type
design in U(n; q1 × · · ·× qs) and V = {vkl} be one in
U(m;mt). We can construct a new U-type design DU,V
by collapsing U and V as follows:

DU,V = (1m ⊗U
...V ⊗1n) ,

where 1n is the column vector of ones and A⊗ B is the
Kronecker product of A = (aij ) and B = (bkl) defining
by A⊗ B = (aij B). For example, if

A =

⎛
⎜⎜⎜⎝

1 2 4

2 1 3

3 4 2

4 3 1

⎞
⎟⎟⎟⎠ , and B =

(
1 2

2 1

)
,

then

A⊗ B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 4 4 8

2 1 4 2 8 4

2 4 1 2 3 6

4 2 2 1 6 3

3 6 4 8 2 4

6 3 8 4 4 2

4 8 3 6 1 2

8 4 6 3 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If both U and V are uniform designs, Fang
and Qin [13.40] proved that the new design
DU,V has the lowest discrepancy in a subclass of
U(nm; q1,× · · ·×qs × mt).

13.6 Construction of UDs for Experiments with Mixtures

Experiments with mixtures are experiments in which
the variants are proportions of ingredients in a mix-
ture. An example is an experiment for determining
the proportion of ingredients in a polymer mixture
that will produce plastics products with the highest
tensile strength. Similar experiments are very com-
monly encountered in industries. A mixture can be
represented as x= (x1, · · · , xq)′ ∈ {(x1, · · · , xq)′ : x1+
· · ·+ xq = 1; x1, · · · , xq ≥ 0} = Sq−1, where q ≥ 2 is
the number of ingredients in the mixture. The set Sq−1

is called the (q−1)-dimensional simplex. Readers may
refer to the monograph by Cornell [13.41] and the survey
article by Chan [13.42] for details of design and model-
ing in experiments with mixtures. Among the designs for
experiments with mixtures, simplex lattice designs have
the longest history, followed by simplex centroid de-
signs and axial designs. UDs on Sq−1, however, provide
a more uniform coverage of the design region than these
designs. In this section, we shall explain how UDs on
Sq−1 can be constructed using UDs constructed for Cs.

Suppose that U = (uki )k=1,··· ,n;i=1,··· ,q−1 is a
Un(nq−1) selected from the website. Let cki = (uki −
0.5)/n (k = 1, · · · , n; i = 1, · · · , q−1), and let c′k =
(ck1, · · · , ck,q−1). Then

C =

⎛
⎜⎜⎜⎜⎝

c′1
c′2
...

c′n

⎞
⎟⎟⎟⎟⎠

is a UD on [0, 1]q−1 from which a UD on Sq−1 can be
constructed. In the construction, special consideration
is required because (x1, · · · , xq)′ in Sq−1 is under the
constant-sum constraint x1+· · ·+ xq = 1.

(A) When the Design Region is Sq−1

When the design region is the entire simplex Sq−1, the
variables x1, · · · , xq can take any value in [0, 1] as far as
x1+· · ·+ xq = 1. The following method of constructing
UD on Sq−1 is due to Wang and Fang [13.43,44] which
is also contained in Fang and Wang [13.13]. For each
c′k(k = 1, · · · , n) in the above uniform design C, let

xk1 = 1− c1/(q−1)
k1 ,

xk2 = (1− c1/(q−2)
k2 )c1/(q−1)

k1 ,

xk3 = (1− c1/(q−3)
k3 )c1/(q−1)

k1 c1/(q−2)
k2 ,

...

xk,q−1 = (1− c1/1
k,s−1)c1/(q−1)

k1 c1/(q−2)
k2 · · · c1/2

k,q−2 ,

xkq = c1/(q−1)
k1 c1/(q−2)

k2 · · · c1/2
k,q−2c1/1

k,q−1 .

Let x′k = (xk1, · · · , xk,q) (k = 1, · · · , n). Then

⎛
⎜⎜⎜⎜⎝

x′1
x′2
...

x′n

⎞
⎟⎟⎟⎟⎠

is

a UD on Sq−1. This method of construction is based on
the following theory of transformation.
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Let x = (X1, · · · , Xs) be uniformly distributed on
Ss−1. Let

Xi = C2
i

i−1∏

j=1

S2
j (i = 1, · · · , s−1) ,

Xs =
s−1∏

j=1

S2
j

where

Sj = sin
(
πφ j/2

)
,

C j = cos
(
πφ j/2

)

( j = 1, · · · , s−1) ,

(φ1, · · · , φs−1) ∈ Cs−1 .

Then, we have

(a) φ1, · · · , φs−1 are mutually independent;
(b) the cumulative distribution function of φ j is

Fj (φ) = sin2(s− j ) (πφ/2) ,

( j = 1, · · · , s−1) .

With the inverse transformation, the above formulas for
xk1, · · · , xks follow.

When q = 3, this construction is expressed as

xk1 = 1− c1/2
k1 ,

xk2 = (1− ck2)c1/2
k1 ,

xk3 = c1/2
k1 ck2 ,

and under this transformation a rectangle in S2 is trans-
formed into a trapezium in S3−1. Figure 13.3 shows
a plot of a UD of 15 points on S3−1 constructed from
the U15(152) design
(

10 15 14 9 6 2 12 13 11 5 1 8 3 4 7

1 9 3 12 15 13 6 14 17 4 7 5 2 10 8

)�
.

(B) When There are Restrictions
on the Mixture Components
In many cases, lower and upper bounds are imposed on
the components in a mixture. For example, in a concrete
mixture, the amount of water cannot be less than 10%
nor more than 90%. Let ai , bi ∈ [0, 1] (i = 1, · · · , q),
a = (a1, · · · , aq)′, b = (b1, · · · , bq)′, and let a = a1+
· · ·+aq and b = b1+· · ·+bq . Define Sq−1

a,b = {x′ =
(x1, · · · , xq) ∈ Sq−1 : ai ≤ xi ≤ bi (i = 1, · · · , q)}. From
x1+· · ·+ xq = 1 it is not difficult to see that Sq−1

a,b is

non-empty if and only if a ≤ 1 ≤ b, and Sq−1
a,b contains

more than one point if and only if a < 1 < b. Fang and
Yang [13.45] proposed a method for construction of n-
point UDs on Sq−1

a,b using a conditional distribution and
the Monte Carlo method. It is more complicated than
the method due to Wang and Fang [13.44], but produces
designs with better uniformity. To use this method, the
following steps may be followed.

1. Check whether the condition a < 1 < b is satisfied.
If this condition is not satisfied, the set Sq−1

a,b is either
empty or contains only one point, and in both cases
there is no need to construct UDs on Sq−1

a,b .
2. Suppose that a < 1 < b. Some of the restrictions

a1 ≤ xi ≤ bi (i = 1, · · · , q) may be redundant. To
remove redundant restrictions, define

a0
i = max(ai , bi +1−b) ,

b0
i = min(bi , ai +1−a)(i = 1, · · · , q) .

The restrictions a0
1 ≤ xi ≤ b0

i (i = 1, · · · , q) do not
contains redundant ones, and a1 ≤ xi ≤ bi is equiva-
lent to a0

1 ≤ xi ≤ b0
i (i = 1, · · · , q).

3. Reduce the lower bounds to 0 by defining yi =
(
xi −

a0
i

)
/
[
1− (

a0
1 +· · ·+a0

q

)]
and b∗i =

(
b0

i −a0
i

)
/
[
1−(

a0
1+· · ·+a0

q

)]
(i = 1, · · · , q). Then a0

i ≤ xi ≤ b0
i is

equivalent to 0 ≤ yi ≤ b∗i (i = 1, · · · , q).
4. Define the function G(c, d, φ,∆,  )=∆

(
1− [

c(1−
φ) + (1− c)(1−d) 

]1/ ), and follow the steps
below to make use the uniform design C on
[0, 1]q−1 selected above to construct a UD design
on the set Sq−1

0,b∗ = {(y1, · · · , yq)′ : 0 ≤ yi ≤ b∗i (i =
1, · · · , q)}, where b∗ = (b∗1, · · · , b∗q). Recall that
c′k = (ck1, · · · , ck,q−1) (k = 1, · · · , q−1).

Step 1. Let ∆q = 1,
dq = max

[
0, 1− (b∗1+· · · b∗q−1)/∆q

]

φq = min
(
1, b∗q/∆q

)
.

Let yq = G(c1,1, dq, φq,∆q, q−1).

Step 2. Let ∆q−1 =∆q − yq

dq−1 = max
[
0, 1− (b∗1 +· · · b∗q−2)/∆q−1

]

φq−1 = min
(
1, b∗q−1/∆q−1

)
.

Let yq−1 = G(c1,2, dq−1, φq−1,∆q−1, q−2).
...

Step (q− 2). Let ∆3 =∆4− y4,
d3 = max

[
0, 1− (

b∗1 +b∗2
)
/∆3

]
,

φ3 = min
(
1, b∗3/∆3

)
.

Let y3 = G(c1,q−2, d3, φ3,∆4, 2).

Part
B

1
3
.6



242 Part B Process Monitoring and Improvement

Table 13.9 Construction of UD in S3−1
a,b

c′1 = (0.625, 0.125)
(1)◦ ∆3 = 1 d3 = 0 φ3 = 1 c1,1 = 0.062500 y3 = 0.387628

(2)◦ ∆2 = 0.612372 d2 = 0 φ2 = 0.816497 c1,2 = 0.125 y2 = 0.0625

(3)◦ nil nil nil nil y1 = 0.549872

(x1, x2, x3) = (0.432577, 0.137500, 0.429923).

c′2 = (0.125, 0.375)
(1)◦ ∆3 = 1 d3 = 0 φ3 = 1 c2,1 = 0.125 y3 = 0.064586

(2)◦ ∆2 = 0.935414 d2 = 0.109129 φ2 = 0.534522 c2,2 = 0.375 y2 = 0.25130

(3)◦ nil nil nil nil y1 = 0.684113

(x1, x2, x3) = (0.238751, 0.250781, 0.510468).

c′3 = (0.875, 0.625)
(1)◦ ∆3 = 1 d3 = 0 φ3 = 1 c3,1 = 0.875 y3 = 0.646447

(2)◦ ∆2 = 0.853553 d2 = 0 φ2 = 1 c3,2 = 0.625 y2 = 0.220971

(3)◦ nil nil nil nil y1 = 0.132583

(x1, x2, x3) = (0.587868, 0.232583, 0.179550).

c′4 = (0.375, 0.875)
(1)◦ ∆3 = 1 d3 = 0 φ3 = 1 c4,1 = 0.375 y3 = 0.209431

(2)◦ ∆2 = 0.790569 d2 = 0 φ2 = 0.632456 c4,2 = 0.875 y2 = 0.437500

(3)◦ nil nil nil nil y1 = 0.353069

(x1, x2, x3) = (0.325659, 0.362500, 0.311841).

Step (q− 1). Let ∆2 =∆3− y3,
d2 = max(0, 1−b∗1/∆2),

1.0

0.00.0

0.01.0 1.0

x1

x2 x3

Fig. 13.4 An example of a uniform design with constraints

φ2 = min
(
1, b∗2/∆2

)
.

Let y2 = G(c1,q−1, d2, φ2,∆2, 1).

Step q. Let y1 = 1− (yq +· · · y2).
The point y′1 = (y1, · · · , yq) is a point for a UD in

Sq−1
0,b∗ . Let

x1 =
[
1−

(
a0

1 +· · ·+a0
q

)]
y1+a0

1 ,

...

xq =
[
1−

(
a0

1 +· · ·+a0
q

)]
yq +a0

q .

The point x′1 = (x1, · · · , xq) is a point for a UD in
Sq−1

a,b . Repeat the above with each of c2, · · · , cq−1 to ob-
tain another (n−1) points y′2, · · · , y′n , and thus another
(n−1) points x′2, · · · , x′n . Let

Y =

⎛
⎜⎜⎜⎜⎝

y′1
y′2
...

y′n}

⎞
⎟⎟⎟⎟⎠

,
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and let

X =

⎛
⎜⎜⎜⎜⎝

x′1
x′2
...

x′n

⎞
⎟⎟⎟⎟⎠

.

Then Y is a UD on Sq−1
0,b∗ , and X is a UD on Sq−1

a,b .

The following example illustrates construction of
a UD of n = 4 points on S3−1 when there are restrictions
on x1, x2, x3.

Example 13.4: Let xi be subject to the restric-
tion ai ≤ xi ≤ bi (i = 1, 2, 3), where (a1, a2, a3) =
(0.2, 0.1, 0.1) = a′, (b1, b2, b3) = (0.7, 0.4, 0.8) = b′.
Suppose that we want to find a UD with four points
on S3−1

a,b . We choose the following U4(43−1) uniform
design U from the website, and from U we con-
struct the following UD, C, on [0, 1]3−1 by defining
cki = (uki −0.5)/4:

U =

⎛
⎜⎜⎜⎝

3 1

1 2

4 3

2 4

⎞
⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎝

0.625 0.125

0.125 0.375

0.875 0.625

0.375 0.875

⎞
⎟⎟⎟⎠ .

1. We have a = 0.2+0.1+0.1 = 0.4 and b1+b2+
b3 = 1.9. Since the condition a < 1 < b is satisfied,
the set S3−1

a,b contains more than one point and the
construction of the UD proceeds.

2. We have

a0
1 = max (0.2, 0.7+1−1.9)= 0.2 ,

b0
1 = min (0.7, 0.2+1−0.4)= 0.7 ,

a0
2 = max (0.1, 0.4+1−1.9)= 0.1 ,

b0
1 = min (0.4, 0.1+1−1.9)= 0.4 ,

a0
3 = max (0.1, 0.8+1−1.9)= 0.1 ,

b0
1 = min (0.8, 0.1+1−0.4)= 0.7 .

3. Define

y1 = (x1−0.2)/0.6 ,

b∗1 = (0.7−0.2)/0.6= 5/6 ,

y2 = (x2−0.1)/0.6 ,

b∗2 = (0.4−0.1)/0.6= 1/2 ,

y3 = (x3−0.1)/0.6 ,

b∗3 = (0.7−0.1)/0.6= 1 .

Then 0.2≤ x1 ≤ 0.7, 0.1≤ x2 ≤ 0.4 and 0.1≤ x3 ≤
0.7 are equivalent to 0 ≤ y1 ≤ 5/6, 0 ≤ y2 ≤ 1/2,
0 ≤ y3 ≤ 1.

4. Table 13.9 displays the values of ∆k, dk, φk
and yk (k = 1, 2, 3, 4) calculated from the rows
c′1, c′2, c′3, c′4 of C.
Hence

Y =

⎛
⎜⎜⎜⎜⎝

0.387628 0.062500 0.549872

0.064586 0.251301 0.684113

0.646447 0.229071 0.132582

0.209431 0.437500 0.353069

⎞
⎟⎟⎟⎟⎠

,

X =

⎛
⎜⎜⎜⎜⎝

0.432577 0.137500 0.429923

0.238751 0.250781 0.510468

0.587868 0.232583 0.179550

0.325659 0.362500 0.311841

⎞
⎟⎟⎟⎟⎠

,

Y is a UD on S3−1
0,b∗ , and X is a UD on Sq−1

a,b . The plot of
the points of X is shown in Fig. 13.4.

13.7 Relationships Between Uniform Design and Other Designs

13.7.1 Uniformity and Aberration

A qs−p factorial design D is uniquely determined by
p defining words. A word consists of letters that rep-
resent the factors, and the number of letters in a word
is called the word-length. The group formed by the p
defining words is the defining contrast subgroup of D.
Let Ai (D) be the number of words of word-length i in
the defining contrast subgroup. If D1 and D2 are two

regular fractions of a qs−p factorial, and there exists an
integer k (1 ≤ k ≤ s) such that

A1(D1) = A1(D2), · · · , Ak−1(D1)

= Ak−1(D2), Ak(D1) < Ak(D2) ,

then D1 is said to have less aberration than D2. Aber-
ration is a criterion for comparing designs in terms
of confounding. The smaller the aberration, the less
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confounding the design has, and hence designs with
small aberration are preferred. Minimum aberration,
as well as maximum resolution, which is also a cri-
terion defined in terms of confounding for comparing
designs, are two such commonly used criteria in the
literature.

Fang and Mukerjee [13.16] proved the following
relationship, which connects two seemingly unrelated
criteria, CD and aberration, for two-level designs:

[CD(D)]2 =
(

13

12

)s

−2

(
35

12

)s

+
(

8

9

)s
(

1+
s∑

i=1

Ai (D)

9i

)
.

This relationship shows that minimum CD is essential
equivalent to minimum aberration. Fang and Ma [13.46]
extended this result to regular fraction 3s−1 designs, and
proved the following relationships concerning WD for
a regular fractional factorial design qs−k (q = 2, 3):

[WD(D)]2 =
(11

8

)s −
(4

3

)s

+
(11

8

)
+

s∑

i=1

Ai (D)

11i
(q = 2) ,

[WD(D)]2 =−
(4

3

)s +
(73

54

)s

×
[
1+

s∑

i=1

( 4

73

)i
Ai (D)

]
(q = 3) .

The last two relationships show that minimum WD and
minimum aberration are essentially equivalent.

13.7.2 Uniformity and Orthogonality

An orthogonal array has a balanced structure. In any
r columns in an orthogonal array of strength r, com-
binations of different of 1 × r vectors occur the same
number of times. Because of the balanced struc-
ture of orthogonal arrays, it is not surprising that
an orthogonal array has a small discrepancy and is
a uniform design. Fang and Winker [13.47] showed
that many UDs are also orthogonal arrays of strength
2, for example, U4(23), U8(27), U12(211), U12(211),
U16(215), U9(34), U12(3 × 23), U16(45), U16(4 × 212),
U18(2 × 37) and U25(256), and they conjectured that an
orthogonal array is a uniform design under a certain
discrepancy. Ma et al. [13.48] proved this conjec-
ture for complete designs (designs in which all

level combinations of the factors appear equally of-
ten) and for 2s−1 factorials, under L2-discrepancy.

13.7.3 Uniformity
of Supersaturated Designs

A design whose number of runs is equal to the number
of effects to estimate is called a saturated design. A su-
persaturated design is a design in which the number of
runs is less than the number of effects to estimate. In
an industrial or scientific experiment, sometimes a large
number of possible contributing factors are present, but
it is believed that only a few of these factor contribute
significantly to the outcome. In this situation of effect
scarcity, one may use supersaturated designs to iden-
tify the major contributing factors. Studies on two- and
three-level supersaturated designs are available in the
literature [13.49–54].

A supersaturated design can be formed by adding
columns to an orthogonal array. Since the number of
rows in a supersaturated design is less than the num-
ber of columns, a supersaturated design cannot be an
orthogonal array. Many criteria have been defined for
construction of supersaturated designs that are as close
to being orthogonal as possible; they are Ave(s2), E(s2),
ave(χ2), and others. Ma et al. [13.55] defined a more
general criterion, the Dφ,θ criterion

Dφ,θ =
∑

1≤< j≤m

θ

( qi∑

u=1

q j∑

v=1

φ

∣∣∣∣n
(ij )
uv − n

qiq j

∣∣∣∣

)
,

where φ(·) and θ(·) are monotonic increasing func-
tions on [0,∞), φ(0) = θ(0) = 0, n(ij )

uv is the number
of occurrences of the pair (u, v) in the two-column
matrix formed by column i and column j of the ma-
trix design. The smaller the value of Dφ,θ , the closer
the supersaturated design is to an orthogonal design.
Since n/(qiq j ) is the average number of occurrence of
level combinations of the pair (u, v), it is clear that
Dφ,θ = 0 for an orthogonal array. Fang et al. [13.56]
considered a special case of Dφ,θ , denoted by E( fNOD),
from which they proposed a way of construction of
supersaturated designs. Fang et al. [13.56] also pro-
posed a way for constructing supersaturated design with
mixed levels. Fang et al. [13.57] proposed a way that
collapses a uniform design to an orthogonal array for
construction of multi-level supersaturated designs. Fang
et al. [13.33] and Fang et al. [13.58] proposed con-
struction of supersaturated designs by a combinatorial
approach.
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13.7.4 Isomorphic Designs,
and Equivalent Hadamard Matrices

Two factorial designs are said to be isomorphic if one
can be obtained from the other by exchanging rows and
columns and permutating levels of one or more factors.
Two isomorphic designs are equivalent in the sense that
they produce the same result under the ANOVA model.
In the study of factorial designs, a task is to determine
whether two designs are isomorphic. To identify two
isomorphic designs d(n, q, s) of n runs and s factors
each having q levels requires a search over n!(q!)ss!
designs, which is an NP-hard problem even if the values
of (n, s, q) are of moderate magnitudes. Some methods
have been suggested for reducting the computation load,
but such methods are not very satisfactory. The following
method using discrepancy suggested by Ma et al. [13.59]
is a much more efficient alternative.

Given a factorial design D = d(n, q, s) and k
(1 ≤ k ≤ s), there are [s!/(k! (s− k)!)] d(n, q, s) sub-

designs. The values of CD of these subdesigns form
a distribution Fk(D). It is known that two isomorphic
designs d(n, q, s) have the same value of CD and the
same distribution Fk(D) for all k, (1 ≤ k ≤ s). Based
on this, Ma et al. [13.59] proposed an algorithm for
detecting non-isomorphic designs.

Two Hadamard matrices are said to be equivalent
if one can be obtained from the other by some se-
quence of row and column permutation and negations.
To identify whether two Hadamard matrices are equiva-
lent is also an NP-hard problem. A method called the
profile method suggested by Lin et al. [13.60] can be
used, but this method is still not satisfactory. Recently,
Fang and Ge [13.61] proposed a much more efficient
algorithm using a symmetric Humming distance and
a criterion which has a close relationship with several
measures of uniformity. Applying this algorithm, they
verified the equivalence of 60 known Hadamard matri-
ces of order 24 and discovered that there are at least 382
pairwise-equivalent Hadamard matrices of order 36.

13.8 Conclusion

In this chapter, we have introduced the uniform de-
sign (UD) which is a space-filling design characterized
by uniform distribution of its design points over the
entire experimental domain. Abundant theoretical re-
sults on UDs and the relationships between UDs and
other well-established design criteria are now available
in the literature, as are many successful examples of
application of UDs in industry.

Theoretical studies show that UDs are superior, in
the sense that establishing uniformity of design by min-
imizing discrepancies will automatically optimize many
other design criteria. An advantage of using UDs in ex-
periments is that, even when the number of factors and
the levels of factors are large, the experiment can be
conducted in a much smaller number of runs than many
other commonly used designs such as factorial designs.

UDs can be used in industrial experiments. Since
their design points uniformly cover the design region,

UDs are suitable for experiments in which the un-
derlying model is unknown. The UD can be used
as a space-filling design for numerical integration
and computer experiments, and as a robust design
against model specification. For users’ convenience,
many tables for UDs are documented in the website
www.math.hkbu.edu.hk/UniformDesign.

Research in the UD is a new area of study
compared with classical areas in experimental de-
signs. Some existing theoretical problems have not
yet been solved, and many other problems can be
posed. Many successful industrial applications have
been recorded, but widespread application of UDs in
industries still needs further promotion. We hope that
this short chapter can serve as an introduction to the
UD, and in the future more researchers and indus-
trial practitioners will join us in studying and applying
the UD.
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Cuscore Statis14. Cuscore Statistics: Directed Process Monitoring
for Early Problem Detection

This chapter presents the background to the
Cuscore statistic, the development of the Cuscore
chart, and how it can be used as a tool for
directed process monitoring. In Sect. 14.1 an
illustrative example shows how it is effective at
providing an early signal to detect known types
of problems, modeled as mathematical signals
embedded in observational data. Section 14.2
provides the theoretical development of the
Cuscore and shows how it is related to Fisher’s
score statistic. Sections 14.3, 14.4, and 14.5 then
present the details of using Cuscores to monitor for
signals in white noise, autocorrelated data, and
seasonal processes, respectively. The capability
to home in on a particular signal is certainly an
important aspect of Cuscore statistics. however,
Sect. 14.6 shows how they can be applied much
more broadly to include the process model (i. e.,
a model of the process dynamics and noise) and
process adjustments (i. e., feedback control). Two
examples from industrial cases show how
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Cuscores can be devised and used appropriately
in more complex monitoring applications. Sec-
tion 14.7 concludes the chapter with a discussion
and description of future work.

The traditional view of statistical process control is that
a process should be monitored to detect any aberrant be-
havior, or what Deming [14.1] called “special causes”
that are suggested by significant patterns in the data that
point to the existence of systematic signals. The timing,
nature, size, and other information about the signals can
lead to the identification of the signaling factor(s) so that
it can (ideally) be permanently eliminated. Conventional
Shewhart charts are designed with exactly this philoso-
phy, where the signal they detect is an unexpected spike
change in white noise.

Many situations occur, however, where certain
process signals are anticipated because they are charac-
teristic of a system or operation. The cumulative score
(Cuscore) chart can be devised to be especially sensitive
to deviations or signals of an expected type. In general,
after working with a particular process, engineers and
operators often know – or at least have a belief – about
how a process will potentially falter. (Unfortunately, the
problem seldom announces its time and location in ad-

vance.) For example, consider a process where a valve
is used to maintain pressure in a pipeline. Because the
valve will experience wear over time, it must be period-
ically replaced. However, in addition to the usual wear,
engineers are concerned that the value may fatigue or
fail more rapidly than normal. The Cuscore chart can
be used to incorporate this working knowledge and ex-
perience into the statistical monitoring function. This
concept often has a lot of intuitive appeal for industry
practitioners.

After laying the background and theoretical foun-
dation of Cuscores this chapter progresses through
signal detection in white noise, autocorrelated data,
and seasonal data. Two examples from actual indus-
try settings show how Cuscores can be devised and
used appropriately in more complex monitoring ap-
plications. The final section of the chapter provides
a discussion on how Cuscores can be extended in
a framework to include statistical experiments and pro-
cess control.
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14.1 Background and Evolution of the Cuscore
in Control Chart Monitoring

Statistical process control (SPC) has developed into
a rich collection of tools to monitor a system. The first
control chart proposed by Shewhart [14.2] is still the
most widely used in industrial systems [14.3]. As obser-
vational data from the system are plotted on the chart,
the process is declared “in control” as long as the points
on the chart stay within the control limits. If a point
falls outside those limits an “out of control” situation is
declared and a search for a special cause is initiated.

Soon practitioners realized that the ability of the
Shewhart chart to detect small changes was not as
good as its ability to detect big changes. One ap-
proach to improve the sensitivity of the chart was
to use several additional rules (e.g., Western Electric
rules [14.4] that signal for a number of consecutive
points above the center line, above the warning limits,
and so on). Another approach was to design com-
plementary charts that could be used in conjunction
with the Shewhart chart but that were better at de-
tecting small changes. Page [14.5] and Barnard [14.6]
developed the cumulative sum (Cusum) chart where
past and present data are used in a cumulative way
to detect small shifts in the mean. Roberts [14.7] and
Hunter [14.8] proposed the exponentially weighted
moving average (EWMA) as another way to detect
small changes. This ability comes from the fact that
the EWMA statistic can be written as a moving av-
erage of the current and past observations, where the
weights of the past observations fall off exponen-
tially.

Shewhart, EWMA,
and Cusum 
Global radar

Cuscore 
Directional
radar

Fig. 14.1 The roles of the Shewhart and Cuscore charts are
compared to those of global and directional radar defenses
for a small country

Of course the Shewhart, Cusum, and EWMA charts
are broadly applicable to many types of process charac-
terizations. Remarkably, the Cuscore chart generalizes
the Shewhart, Cusum, and EWMA charts; however, its
real benefit is that it can be designed to be a high-
powered diagnostic tool for specific types of process
characterizations that are not covered by the basic charts.
We will develop this result more formally after intro-
ducing the Cuscore theory. However, an analogy due to
Box [14.9] will help to establish the ideas.

Suppose a nation fears aerial attack. As Fig. 14.1
shows, a global radar scanning the full horizon will
have a broad coverage of the entire border, but with
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Fig. 14.2a–c Detection of a ramp signal: (a) ramp signal be-
ginning at time 10; (b) the signal plus white noise consisting
of 100 random normal deviates with zero mean and stan-
dard deviation σ = 1; and (c) the Cuscore statistic applied
to the data of (b)
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a limited range; this is the analog of the Shewhart,
Cusum, and EWMA charts. A directional radar aimed
in the direction of likely attack will have a specific
zone of the border to cover, but with a long range
for early detection; this is the analog of the Cuscore
chart.

As a first illustration of the Cuscore chart, let us
consider it within the framework of looking for a sig-
nal in noise. Suppose we have an industrial process
where the objective is to control the output Yt to a tar-
get value T . We may conveniently view the target as
the specification and record deviations from the target.
Suppose that the process may experience a small drift
to a new level over time – a ramp signal. Although cor-
rective actions have been taken to hopefully resolve the
process, it is feared that the same problem might re-
occur. The components of the process are illustrated in
Fig. 14.2 which shows: (a) the ramp signal beginning at
time t = 10; (b) the signal plus white noise consisting of
100 random normal deviates with zero mean and stan-
dard deviation σ = 1; and (c) the appropriate Cuscore
statistic

Qt =
t∑

i=1

(Yt −T )t .

The development of the statistic is also shown in
Sect. 14.3. We may note that Fig. 14.2b is equivalent
to a Shewhart control chart with upper and lower con-
trol limits of +3σ and −3σ respectively. The Shewhart
chart is relatively insensitive to small shifts in the pro-
cess, and characteristically, it never detects the ramp
signal (Fig. 14.2b). With a decision interval h = 100,
the Cuscore chart initially detects the signal at time 47
and continues to exceed h at several later time periods
(Fig. 14.2c). Although tailored to meet different process
monitoring needs, the EWMA and Cusum charts would
similarly involve a direct plot of the actual data to look
for an unexpected signal in white noise. In this case,
since we have some expectation about the signal, i. e.,
that it is a ramp, we incorporate that information into
the Cuscore by multiplying the differences (which are
residuals) by t before summing.

Similarly, if demanded by the monitoring needs, the
Cuscore can be devised to monitor for a mean shift signal
in autocorrelated noise, or for a bump signal in nonsta-
tionary noise, or for an exponential signal in correlated
noise, or any other combination. Indeed, the Cuscore
chart can be designed to look for almost any kind of sig-
nal in any kind of noise. The theoretical development of
the Cuscore statistic will help illuminate this idea.

14.2 Theoretical Development of the Cuscore Chart

Consider a model of the output of a process deter-
mined by adding the process target to an autoregressive
integrated moving average (ARIMA) time-series model:

Yt = T + θ(B)

φ(B)
at0 , (14.1)

where B is the backshift operator such that
Bk Xt = Xt−k; φ(B) and θ(B) are the autoregressive
(AR) and moving average (MA) polynomials param-
eterized as φ(B) = 1−φ1 B−φ2 B2−· · ·−φp B p and
θ(B) = 1− θ1 B− θ2 B2−· · ·− θq Bq [(1− B)φ(B) can
be used to difference the process]; the at values are inde-
pendent and identically distributed N(0, σ2

a )(i. e., white
noise). However, in the model the zero in at is added to
indicate that the at0 values are just residuals; they are not
white-noise innovations unless the model is true. This
model is referred to as the null model: the in-control
model assuming that no feared signal occurs.

Now assume that an anticipated signal that could ap-
pear at some time where γ is some unknown parameter

of the signal, and f (t) indicates the nature of the signal:

Yt = T + θ(B)

φ(B)
at +γ f (t) . (14.2)

This model is referred to as the discrepancy model and
is assumed to be true when the correct value for γ is
used.

Box and Ramírez [14.10, 11] presented a design for
the Cuscore chart to monitor for an anticipated signal. It
is based on expressing the statistical model in (14.2) in
terms of white noise:

ai = ai (Yi , Xi , γ ) for i = 1, 2, . . . , t , (14.3)

where Xi are the known levels of the input variables. The
concept is that we have properly modeled the system
so that only white noise remains when the signal is
not present. After the data have actually occurred, for
each choice of γ , a set of ai values can be calculated
from (14.3). In particular, let γ0 be some value, possibly
different from the true value γ of the parameter. The
sequential probability ratio test for γ0 against some other
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value γ1 has the likelihood ratio

L Rt =
t∏

i=1

exp

{
1

2σ2
a

[
a2

i (γ0)−a2
i (γ1)

]}
.

After taking the log, this likelihood ratio leads to the
cumulative sum

St = 1

2σ2
a

t∑

i=1

[
a2

i (γ0)−a2
i (γ1)

]
.

Expanding a2
i (γ ) around γ0, letting η= (γ1−γ0), and

di =− ∂ai
∂γ
|γ=γ0 we have

St = 1

2σ2
a

t∑

i=1

[
2ηai (γ0)di (γ0)−η2d2

i (γ0)
]

= η

σ2
a

t∑

i=1

[
ai (γ0)di (γ0)− η

2
d2

i (γ0)
]
.

The quantity

Qt =
t∑

i=1

[
ai (γ0)di (γ0)− η

2
d2

i (γ0)
]
=

t∑

i=1

qi (14.4)

is referred to as the Cuscore associated with the param-
eter value γ = γ0 and di is referred to as the detector.
The detector measures the instantaneous rate of change
in the discrepancy model when the signal appears. Box
and Luceño [14.12] liken its operation to a radio tuner be-
cause it is designed in this way to synchronize with any
similar component pattern existing in the residuals. Ac-
cordingly, it is usually designed to have the same length
as the anticipated signal series. The term η

2 d2
i (γ0) can be

viewed as a reference value around which ai (γ0)dt(γ0) is
expected to vary if the parameter does not change. The
quantity ai (γ0)dt(γ0) is equal to Fisher’s score statis-
tic [14.13], which is obtained by differentiating the log
likelihood with respect to the parameter γ . Thus

∂

∂γ
[ln p (ai |γ)]

∣∣∣∣
γ=γ0

= ∂

∂γ

(
− 1

2σ2

t∑

i=1

a2
i

)∣∣∣∣∣
γ=γ0

= 1

σ2

t∑

i=1

ai (γ0)di (γ0) ,

where p(ai |γ ) is the likelihood or joint probability
density of ai for any specific choice of γ and the
ai (γ0) values are obtained by setting γ = γ0 in (14.3).
Since the qis are in this way a function of Fish-
er’s score function, the test procedure is called the
Cuscore. The Cuscore statistic then amounts to look-
ing for a specific signal f (t) that is present when
γ �= γ0.

To use the Cuscore operationally for process moni-
toring, we can accumulate qi only when it is relevant
for the decision that the parameter has changed and
reset it to zero otherwise. Let Qt denote the value of
the Cuscore procedure plotted at time t, i. e., after ob-
servation t has been recorded. Let Q+

t and Q−
t denote

the one-sided upper and lower Cuscores respectively as
follows:

Q+
t = max(0, Q+

t−1+qt) , (14.5a)

Q−
t = min(0, Q−

t−1+qt) , (14.5b)

where the starting values are Q+
0 = Q−

0 = 0. The one-
sided Cuscore is preferable when the system has a long
period in the in-control state, during which Qt would
drift and thus reduce the effectiveness of the monitoring
chart.

If either Q+
t or Q−

t exceed the decision interval h,
the process is said to be out of control. Box and
Ramírez [14.10] showed that an approximation to h can
be obtained as a function of the type-I error, α, the mag-
nitude of the change in the parameter γ = (γ1−γ0), and
the variance of the as:

h = σ2
a ln (1/α)

γ
. (14.6)

For simpler models, we could also develop control limits
for the Cuscore chart by directly estimating the standard
deviation of the Cuscore statistic. For more complex
models, control limits may be obtained by using simu-
lation to evaluate the average run length associated with
a set of out of control conditions.

14.3 Cuscores to Monitor for Signals in White Noise

Let us now consider the Cuscore statistics for the
basic case of monitoring for signals in white noise,
which is the assumption underlying the traditional She-
whart, EWMA, and Cusum charts. We will develop
them without the reference value in (14.4), but the
reference value will help to improve the average run-

length performance of the chart when used in practice.
We can write the white-noise null model using (14.1)
where the φ and θ parameters are set equal to zero,
i. e.,

Yt = T +at0 .
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Writing at0 on the left makes it clear that each residual
is the difference between the output and the tar-
get:

at0 = Yt −T . (14.7)

If the model is correct and there is no signal, the
result will be a white-noise sequence that can be
monitored for the appearance of a signal. When
the signal does show up, the discrepancy model is
thus

Yt = T +at +γ f (t)

which can be equivalently written with the white noise
quantity at on the left as

at = Yt −T −γ f (t) .

The form of the signal will determine the form
of the detector and hence the form of the Cus-
core.

The Shewhart chart is developed under the assump-
tion of white noise and that the signal for which the chart
detects efficiently is a spike signal:

f (t) =
⎧
⎨

⎩
0 t �= t0

1 t = t0 .
(14.8)

For the spike signal in the discrepancy model, the ap-
propriate detector dt is

dt =−∂at

∂γ

∣∣∣∣
γ=γ0

= 1 . (14.9)

By (14.4), (14.7), and (14.9) the Cuscore statistic is

Qt =
t∑

i=1

ai0di

= at0 ,

where the last equality follows since the detector for the
spike is only for one period (i.e, the current one) given
that the signal series and detector series have the same
length. Hence, the Cuscore tells us to plot the current
residual, which is precisely the design of the Shewhart
chart.

The EWMA chart is developed under the assump-
tion of white noise and that the signal that the chart is
designed to detect is an exponential signal with para-
meter γ :

f (t) =
⎧
⎨

⎩
0 t > t0

1+γt−1+γ 2
t−2+γ 3

t−3+· · · t ≤ t0 .

For the exponential signal in the discrepancy model, the
appropriate detector dt is

dt =−∂at

∂γ

∣∣∣∣
γ=γ0

= 1+γt−1+γ 2
t−2+γ 3

t−3+· · · .
(14.10)

By (14.4), (14.7), and (14.10) the appropriate Cuscore
statistic is

Qt =
t∑

i=1

ai0di

= at0+γat0−1+γ 2at0−2+γ 3at0−3+· · · .
Here the Cuscore tells us to sum the current and past
residuals, applying an exponentially discounted weight
to the past data, which is the design of the EWMA
chart.

The Cusum chart is developed under the assumption
of white noise and that signal to detect is a step change
or mean shift given by

f (t) =
⎧
⎨

⎩
0 t < t0

1 t � t0 .
(14.11)

In this case, the discrepancy model and the detector are
the same as for the spike signal. However, since the
signal remains in the process, the detector is applied
over all periods to give the Cuscore statistic

Qt =
t∑

i=1

ai0 .

Here the Cuscore tells us to plot the sum of all residuals,
which is precisely the design of the Cusum chart.

A variation of the step change is one that lasts
only temporarily, which is called a bump signal of
length b

f (t) =
⎧
⎨

⎩
1 t0−b+1 � t � t0

0 otherwise .

When this signal appears in white noise, the detector is
applied only as long as the bump, giving the Cuscore
statistic

Qt =
t∑

i=1

ai0−b−1 .
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This is equivalent to the arithmetic moving-average
(AMA) chart, which is frequently used in financial
analysis (e.g., see TraderTalk.com or Investopedia.com).

The ramp signal that may start to appear at time t0−r
where r is the duration of the ramp with a final value m
is modeled by

f (t) =
⎧
⎨

⎩
m
r t t0−r � t � t0

0 otherwise .

The discrepancy model is the same as with the Shewhart
chart, but for this signal the detector is given by

dt =−∂at

∂γ

∣∣∣∣
γ=γ0

= t .

The Cuscore is hence

Qt =
t∑

i=1

ai0di =
t∑

i=1

ai0t =
t∑

i=1

(Yt −T ) t

as the example in the introduction shows.

14.4 Cuscores to Monitor for Signals in Autocorrelated Data

In many real systems, the assumption of white-noise
observations is not even approximately satisfied. Some
examples include processes where consecutive measure-
ments are made with short sampling intervals and where
quality characteristics are assessed on every unit in or-
der of production. Financial data, such as stock prices
and economic indices are certainly not uncorrelated
and independent observations. In the case of autocor-
related data the white-noise assumption is violated.
Consequently the effectiveness of the Shewhart, Cusum,
EWMA, and AMA charts is highly degraded because
they give too many false alarms. This point has been
made by many authors (e.g., see Montgomery [14.14]
for a partial list).

Alwan and Roberts [14.15] proposed a solution to
this problem by modeling the non-random patterns using
ARIMA models. They proposed to construct two charts:
1) a common-cause chart to monitor the process, and
2) a special-cause chart on the residuals of the ARIMA
model. Extensions of the these charts to handle auto-
correlated data have been addressed by several authors.
Vasilopoulos and Stamboulis [14.16] modified the con-
trol limits. Montgomery and Mastrangelo [14.17] and
Mastrangelo and Montgomery [14.18] used the EWMA
with a moving center line (MCEWMA). However, when
signals occur in autocorrelated data, there is a pattern in
the residuals that that the residuals-based control charts
do not use. The Cuscore, on the other hand, does in-
corporate this information through the detector. As we
have seen, the detector plays an important role in deter-
mining Cuscore statistics but this role is attenuated for
autocorrelated data.

As in the previous section, we can use the reference
value in practice, but will develop the main result with-
out it. Assuming the null model in (14.1) is invertible,

i. e., |θ|< 1, it can be written in terms of the residuals
as

at0 = (Yt −T )
φ(B)

θ(B)
. (14.12)

The discrepancy model in (14.2) can be equivalently
written with the white-noise quantity at on the left as

at = [Yt −T −γ f (t)]
φ(B)

θ(B)
. (14.13)

We see that to recover the white-noise sequence
in an autocorrelated process, both the residuals
and the signal must pass through the inverse filter
φ(B)/θ(B). Hence, the residuals have time-varying
mean γ f (t){[φ(B)/θ(B)]} and variance σ2

a . Using
(14.13), the detector dt is

dt =−∂at

∂γ

∣∣∣∣
γ=γ0

= f (t)
φ(B)

θ(B)
. (14.14)

By (14.4), (14.13), and (14.14) the Cuscore statistic is

Qt =
t∑

i=1

ai0di

=
t∑

i=1

[
(Yi −T )

φ(B)

θ(B)

]
f (t)

φ(B)

θ(B)
.

Hu and Roan [14.19] mathematically and graphically
showed the behavior of the detector for several combi-
nations of signals and time-series models. Their study
highlights that the behavior is different for different val-
ues of φ and θ determined by the stability conditions,
the value of the first transient response, and the value of
the steady-state response.

As an example, suppose we have the ARMA (1,1)
noise model

(Yt −T )−φ1(Yt−1−T ) = at0− θ1at0−1

Part
B

1
4
.4



Cuscore Statistics: Directed Process Monitoring for Early Problem Detection 14.5 Cuscores to Monitor for Signals in a Seasonal Process 255

or

at0 = (Yt −T )
1−φ1 B

1− θ1 B
. (14.15)

If the step signal in (14.11) occurs at time t0, us-
ing (14.14) we can determine that a change pattern is
produced:

dt = f (t)
φ(B)

θ(B)
=

⎧
⎪⎪⎨

⎪⎪⎩

0 t < t0

1 t = t0

(θ1−φ1)θ t−(t0+1)
1 t � t0+1 .

(14.16)

Then the Cuscore statistic is the sum of the product
of (14.15) and (14.16).

However, we can see an important issue that arises
in autocorrelated data, which is how the time-varying
detector is paired with the current residuals. For exam-
ple, if we assume that we know the time of the step

signal or mean shift, there is a match between the resid-
uals and the detector and we use t0 in the calculation of
dt for the Cuscore. When we do not know the time of
the mean shift, there is a mismatch between the residu-
als and the detector; in this case we make the estimate t̂0
and write the detector as dt̂ . (When t̂0 = t0 then dt̂ = dt .)
The match or mismatch will affect the robustness of the
Cuscore chart, as considered for limited cases in Shu
et al. [14.20] and Nembhard and Changpetch [14.21].
There is an opportunity to increase the understanding of
this behavior through additional studies.

Yet another issue is to determine over how many
periods the detector should be used in the case of a finite
signal such as a step or a bump. On this point, Box
and Luceño [14.12] use equal lengths for both white-
noise and autocorrelated-noise models. Although such
an assumption seems intuitive for white-noise models,
on open question is whether a longer detector would
improve the efficiency of the Cuscore chart in the case
of autocorrelated data.

14.5 Cuscores to Monitor for Signals in a Seasonal Process

In this section, we present the first example of a Cus-
core application in an industry case. One of the major
services of the Red Cross is to manage blood platelet in-
ventory. Platelets are irregularly-shaped colorless bodies
that are present in blood. If, for some unexpected rea-
son, sudden blood loss occurs, the blood platelets go into

250
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Time

Demand

Fig. 14.3 The time-series plot and smooth curve for
the quantity of blood platelets ordered from the Red
Cross

action. Their sticky surface lets them, along with other
substances, form clots to stop bleeding [14.22]. Nemb-
hard and Changpetch [14.21] consider the problem of
monitoring blood platelets, where the practical goal is
to detect a step shift in the mean of a seasonal process as
an indicator that demand has risen or fallen. This infor-
mation is critical to Red Cross managers, as it indicates
a need to request more donors or place orders for more
blood with a regional blood bank. A distinction of this
problem is that the step shift, although a special cause,
is a characteristic of the system. That is, from time to
time, shifts in the mean of the process occur due to nat-
ural disasters, weather emergencies, holiday travel, and
so on. Given the structure of characteristic shifts in this
application, directed monitoring is a natural choice.

Figure 14.3 shows the actual time-series data of the
demand for platelets from the Red Cross from Jan-
uary 2002 to August 2002 and the smooth curve of
the data. The smooth curve suggests that mean of the
series has shifted down during the data-collection pe-
riod. It is easy to visually identify the mean shift in
this series. However, it is difficult to conclude that it is
a mean shift as it is unfolding. This is the main issue: we
want to detect the mean shift as soon as possible in real
time. To detect a mean shift in seasonal autocorrelated
data, we must use an appropriate time-series model of
the original data. Following a three-step model-building
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process of model identification, model fitting, and di-
agnostic checking (Box, Jenkins, and Reinsel [14.23]),
we find that an appropriate null model of the data is
the ARIMA (1, 0, 0) × (0, 1, 1)7 seasonal model given
by

at0 = Yt
φ(B)

θ(B)
= Yt

(1− B7)(1+0.281B)

(1−0.833B7)

= Yt +0.281Yt−1−Yt−7−0.281Yt−8

+0.833at0−7 . (14.17)

The discrepancy model is

at = [Yt −γ f (t)]φ(B)

θ(B)

= [Yt −γ f (t)] (1− B7)(1+0.281B)

(1−0.833B7)
= Yt +0.281Yt−1−Yt−7−0.281Yt−8−γ f (t)

−0.281γ f (t−1)+γ f (t−7)+0.281γ f (t−8)

+0.833at−7 .

The detector for the model is

dt =− ∂at

∂γ

∣∣∣∣
γ=γ0

= f (t)+0.281 f (t−1)− f (t−7)

−0.281 f (t−8)+0.833dt−7 . (14.18)

Using (14.16) and (14.17) in the one-sided Cuscore
statistic of (14.5b) and using a reference value with η=
σa = 31.58 yields the results shown in Fig. 14.4. The
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UCL = 196

LCL = –196

Fig. 14.4 A Cuscore chart for the Red Cross data

figure also shows that control limits are approximately
196 and −196, which are based on (14.6) with α =
1/500. Here the Cuscore chart signals a negative mean
shift at observation 67, just two time periods later than
the actual occurrence.

This example follows the best-case scenario, which
is to predict the time of the occurrence of the mean shift
at exactly the time that it really occurs, that is t̂0 = t0.
In such a case, there will be a match between the resid-
uals and the detector, making the use of the Cuscore
straightforward. In reality, we are unlikely to have prior
information on when the mean shift will occur or, in
terms of this application, when there will be a differ-
ence in the level of platelets ordered. Consequently, in
the determination of the Cuscore statistic there will be
a mismatch between the detector and the residuals. The
mismatch case is considered fully for this application in
Nembhard and Changpetch [14.21].

14.6 Cuscores in Process Monitoring and Control

As a second example of Cuscore in industry, we
now consider a case from Nembhard and Valverde-
Ventura [14.24] where cellular window blinds are
produced using a pleating and gluing manufacturing
process. Cellular shades form pockets of air that in-
sulate windows from heat and cold. These shades start
as 3000-yard rolls of horizontally striped fabric. On the
machines, the fabric winds over, under and through sev-
eral rollers, then a motorized arm whisks a thin layer of
glue across it and a pleater curls it into a cell. When the
process goes as planned, the crest of the pleat is in the
center of the stripe and the finished product is white on
the back and has a designer color on the front. When
something goes wrong, defects can include a color that

bleeds through to the other side, a problem known as
“out of registration.”

Using a high-speed camera, position data are ac-
quired on the fabric every 20 pleats then a computer
compares the edge of the colored band with the target
position and measures the deviation (Fig. 14.5). If the
two lines match then the deviation is zero and the blind
is said to be “in-registration.” If the lines do not match,
a feedback controller is used to adjust the air cylin-
der pressure. Unfortunately, as can be seen from the
displacement measurements in Fig. 14.5, the feedback
controller performed very poorly.

To address this problem, we can use the Box–Jenkins
transfer function plus noise and signal model in Fig. 14.6

Part
B

1
4
.6



Cuscore Statistics: Directed Process Monitoring for Early Problem Detection 14.6 Cuscores in Process Monitoring and Control 257

20
15
10
5
0

–5
–10
–15
–20

100 200 300 400 500

40 30 20 10 0 –10 –20 –30

Time

DIF

Fig. 14.5 Representation of the measurement of the displacement of the leading edge of the fabric with respect to a fixed
point

for process representation. In this model, the output Yt is
the combination of the disturbance term that follows an
ARIMA process, as we had in (14.1) and (14.2), plus an

4
3
2
1
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–3

Xt
L2(B)Bk

L1(B)
XtSt =

θ(B)B
Φ(B)

at + γf(t)Zt =

tε
Yt – T

Output
error

Noise plus signal

Process dynamics

tεL1(B)L3(B)
Xt =

L2(B)L4(B)

Control equation

Cuscore chart

Time
0 10 20 30 40 50

Qt

=

Fig. 14.6 A block diagram showing the input, output, and
noise components and the relationship between feedback
control and Cuscore monitoring of an anticipated signal

input (or explanatory) variable Xt , that is controllable
but is affected by the process dynamics St . In this case,
the combined model of the output in the presence of
a signal is:

Yt = L2(B)

L1(B)
Xt−k +at

θ(B)

φ(B)
+γ , f (t)

where L1(B) and L2(B) are the process transfer func-
tion polynomials. The control equation tells us how to
change Xt over time based on the observed error εt . In
addition to the process transfer polynomials, the con-
trol equation contains the polynomials L3(B), which
describes the noise plus signal Zt in terms of white
noise, and L4(B), which describes the error εt in terms
of white noise.

Assuming that minimum variance [or minimum
mean-square error (MMSE)] control is applied, we have
the null model

at0 = 1

L4(B)
εt . (14.19)

The discrepancy model is

at = 1

L4(B)
εt −γ f (t)

φ(B)

θ(B)
. (14.20)

(See Nembhard and Valverde-Ventura [14.24] for a com-
plete derivation of the null and discrepancy models.)
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Fig. 14.7 Cuscore chart detects spike signals at every twelfth
pleat

Notice that the noise disturbance and signal are assumed
to occur after and independently of the process control.

Using (14.20), the detector is

di = −∂at

∂γ

∣∣∣∣
γ=0

= f (t)
φ(B)

θ(B)
. (14.21)

Finally, using (14.4), the Cuscore statistic for detect-
ing a signal f (t) hidden in an ARIMA disturbance in
an MMSE-controlled process (and omitting the ref-
erence value) is given by summing the product of

equations (14.19) and (14.21):

Qt =
∑ 1

L4(B)
εt
φ(B)

θ(B)
f (t) . (14.22)

For the special case when k = 1 (i. e., a responsive
system), and the disturbance is white noise, (14.22) sim-
ply reduces to the output error, εt , which is equivalent
to using a Shewhart chart. However, in this pleating and
gluing process k = 2 and the spike is hidden in an in-
tegrated moving-average (IMA) (1, 1) disturbance. The
appropriate Cuscore for this case is

Qt = 1

1+0.84B
εt . (14.23)

We constructed the Cuscore chart in Fig. 14.7 using
(14.23). In this application, during the null operation
(i. e., when there is no signal) the Cuscore chart dis-
plays observations normally distributed with a mean of
zero, and standard deviation sσa. At the moment the
spike appears, the corresponding observation belongs to
a normal distribution with mean of s2 and standard de-
viation of sσa. This mean of s2 gives the ability for us to
observe the spike in the chart.

Note that the Cuscore chart identifies spike signals
at pleat numbers 8, 20, 32, etc. In tracking down this
problem, it appeared that the printing cylinder used
by the supplier to print the fabric was the cause. In
that process, the printing consists of passing the fabric
over a screen roll with 12 channels. However, one of
the twelve stripes had a different width, probably be-
cause the printing cylinder was not joined properly at
the seam.

14.7 Discussion and Future Work

This chapter focuses on the development and application
of Cuscore statistics. Since Box and Ramírez [14.10,11]
presented a design for the Cuscore chart, other work has
been done to use them in time series. For example, Box
and Luceño [14.12] suggested monitoring for changes
in the parameters of time-series models using Cuscores.
Box et al. [14.25] and Ramirez [14.26] use Cuscores
for monitoring industry systems. Luceño [14.27] and
Luceño [14.28] considered average run-length prop-
erties for Cuscores with autocorrelated noise. Shu
et al. [14.20] designed a Cuscore chart that is trig-
gered by a Cusum statistic and uses a generalized
likelihood ratio test (GLRT) to estimate the time of oc-
currence of the signal. These statistical aids help the
Cuscore to perform better. Runger and Testik [14.29]

compare the Cuscore and GLRT. Graves et al. [14.30]
considered a Bayesian approach to incorporating the
signal that is in some cases equivalent to the Cus-
core. Harrison and Lai [14.31] develop a sequential
probability ratio test (SPRT) that outperforms the Cus-
core for the limited cases of data similar to the
t-distribution and distributions with inverse polynomial
tails.

Although the statistical foundation can be traced
back to Fisher’s efficient score statistic [14.13], it
still needs further development to realize its true po-
tential as a quality engineering tool. Accordingly,
Nembhard and Valverde-Ventura [14.24] developed
a framework that may help to guide the development
and use of Cuscore statistics in industry applica-
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Fig. 14.8 Framework for using Cuscores with DOE and process control

tions, as shown in Fig. 14.8. This framework parallels
the define, measure, analyze, improve, and control
(DMAIC) approach used in Six Sigma (Harry and
Schroeder [14.32]). The problem-definition step closely
parallels the define step in DMAIC. Design of ex-
periments (DOE) helps us to measure and analyze
the process, the second two DMAIC steps. From
DOE we develop an understanding of the factors
to control, so we can then adjust and monitor in
keeping with the last two DMAIC steps. The mon-
itoring in this case is accomplished using a Cuscore
chart.

The Cuscore is a natural fit with the DMAIC ap-
proach as it strives to incorporate what we learn about
the problem into the solution. Some consideration needs
to be given to the system to establish a clear understand-
ing of the response, the expected signal to be detected,
and the relationship between the two. More specifically,
for the Cuscore to be applicable we should be able to
describe how the signal might modify the response and,
therefore, the output error.

This framework also recognizes that in many
industrial systems, using only SPC to monitor a pro-
cess will not be sufficient to achieve acceptable
output. Real processes tend to drift away from
target, use input material from different suppliers,
and are run by operators who may use different
techniques. For these and many other reasons, a sys-
tem of active adjustment using engineering process
control (EPC) is often necessary. Box and Jenk-

ins [14.33] pioneered the integration of SPC and EPC
to monitor and adjust industrial processes jointly by
demonstrating the interrelationships between adaptive
optimization, adaptive quality control, and prediction.
Box and Kramer [14.34] revived the discussion on
the complementary roles of SPC and EPC. Since
then, many other authors have addressed the joint
monitoring and adjustment of industrial processes.
Montgomery and Woodall [14.35] give over 170 ref-
erences in a discussion paper on statistically based
process monitoring and control. Others since in-
clude Shao [14.36]; Nembhard [14.37]; Nembhard and
Mastrangelo [14.38]; Tsung, Shi, and Wu [14.39];
Tsung and Shi [14.40]; Ruhhal, Runger, and Du-
mitrescu [14.41]; Woodall [14.42]; Nembhard [14.43];
Nembhard, Mastrangelo, and Kao [14.44]; and Nem-
bhard and Valverde–Ventura [14.45]. The texts by Box
and Luceño [14.12] and del Castillo [14.46] also address
the topic.

In addition to those issues addressed in Sect. 14.5
for autocorrelated data, future work that will further
advance the area of Cuscore statistics include their in-
tegration with suboptimal controllers, which are often
used in practice. There is also a great need to expand the
understanding of the robustness of Cuscores to detect
signals (other than the one specifically designed for),
to develop ways to detect multiple signals then iden-
tify or classify them once an out-of-control condition
occurs, and to develop multivariate Cuscore detection
capabilities.
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Chain Samplin15. Chain Sampling

A brief introduction to the concept of chain sam-
pling is first presented. The chain sampling plan of
type ChSP-1 is first reviewed, and a discussion on
the design and application of ChSP-1 plans is then
presented in the second section of this chapter.
Various extensions of chain sampling plans such as
the ChSP-4 plan are discussed in the third part. The
representation of the ChSP-1 plan as a two-stage
cumulative results criterion plan, and its design
are discussed in the fourth part. The fifth section
relates to the modification of the ChSP-1 plan. The
sixth section of this chapter is on the relationship
between chain sampling and deferred sentenc-
ing plans. A review of sampling inspection plans
that are based on the ideas of chain or depen-
dent sampling or deferred sentencing is also made
in this section. The economics of chain sampling
when compared to quick switching systems is dis-
cussed in the seventh section. The eighth section
extends the attribute chain sampling to variables
inspection. In the ninth section, chain sampling is
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then compared with the CUSUM approach. The
tenth section gives several other interesting exten-
sions of chain sampling, such as chain sampling
for mixed attribute and variables inspection. The
final section gives concluding remarks.

Acceptance sampling is the methodology that deals with
procedures by which decisions to accept or not accept
lots of items are based on the results of the inspection
of samples. Special purpose acceptance sampling in-
spection plans (abbreviated to special purpose plans)
are tailored for special applications as against gen-
eral or universal use. Prof. Harold F. Dodge, who is
regarded as the father of acceptance sampling, intro-
duced the idea of chain sampling in his 1959 industrial
quality control paper [15.1]. Chain sampling can be
viewed as a plan based on a cumulative results crite-
rion (CRC), where related batch information is chained
or cumulated. The phrase chain sampling is also used
in sample surveys to imply snowball sampling for col-
lection of data. It should be noted that this phrase was
originally coined in the acceptance sampling literature,

and should be distinguished from its usage in other
areas.

Chain sampling is extended to two or more stages
of cumulation of inspection results with appropri-
ate acceptance criteria for each stage. The theory
of chain sampling is also closely related to the
various other methods of sampling inspection such
as dependent-deferred sentencing, tightened–normal–
tightened (TNT) sampling, quick-switching inspection
etc.

In this chapter, we provide an introduction to chain
sampling and briefly discuss various generalizations of
chain sampling plans. We also review a few sampling
plans which are related to or based on the methodology
of chain sampling. The selection or design of various
chain sampling plans is also briefly presented.
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15.1 ChSP-1 Chain Sampling Plan

A single-sampling attributes inspection plan calls for
acceptance of a lot under consideration if the number
of nonconforming units found in a random sample of
size n is less than or equal to the acceptance number Ac.
Whenever the operating characteristic (OC) curve of
a single-sampling plan is required to pass through a pre-
scribed point, the sample size n will be an increasing
function of the acceptance number Ac. This fact can
be verified from the table of np or unity values given
in Cameron [15.2] for various values of the probabil-
ity of acceptance Pa(p) of the lot under consideration
whose fraction of nonconforming units is p. The same
result is true when the OC curve has to pass through
two predetermined points, usually one at the top and the
other at the bottom of the OC curve [15.3]. Thus, for
situations where small sample sizes are preferred, only
single-sampling plans with Ac = 0 are desirable [15.4].
However, as observed by Dodge [15.1] and several au-
thors, the Ac = 0 plan has a pathological OC curve in
that the curve starts to drop rapidly even for a very small
increase in the fraction nonconforming. In other words,
the OC curve of the Ac = 0 plan has no point of inflec-
tion. Whenever a sampling plan for costly or destructive
testing is required, it is common to force the OC curve
to pass through a point, say, (LQL, β) where LQL is the
limiting quality level for ensuring consumer protection
and β is the associated consumer’s risk. All other sam-
pling plans, such as double and multiple sampling plans,
will require a larger sample size for a one-point protec-
tion such as (LQL, β). Unfortunately the Ac = 0 plan
has the following two disadvantages:

1. The OC curve of the Ac = 0 plan has no point of
inflection and hence it starts to drop rapidly even for
the smallest increase in the fraction nonconforming
p.

2. The producer dislikes an Ac = 0 plan since a single
occasional nonconformity will call for the rejection
of the lot.

The chain sampling plan ChPS-1 by Dodge [15.1] is an
answer to the question of whether anything can be done
to improve the pathological shape of the OC curve of
a zero-acceptance-number plan. A production process,
when in a state of statistical control, maintains a con-
stant but unknown fraction nonconforming p. If a series
of lots formed from such a stable process is submitted
for inspection, which is known as a type B situation,
then the samples drawn from the submitted lots are sim-
ply random samples drawn directly from the production

process. So, it is logical to allow a single occasional
nonconforming unit in the current sample whenever the
evidence of good past quality, as demonstrated by the i
preceding samples containing no nonconforming units,
is available. Alternatively we can chain or cumulate the
results of past lot inspections to take a decision on the
current lot without increasing the sample size.

The operating procedure of the chain sampling plan
of type ChSP-1 is formally stated below:

1. From each of the lots submitted, draw a random
sample of size n and observe the number of noncon-
forming units d.

2. Accept the lot if d is zero. Reject the lot if d > 1. If
d = 1, the lot is accepted provided all the samples of
size n each drawn from the preceding i lots are free
from nonconforming units; otherwise reject the lot.

Thus the chain sampling plan has two parameters: n,
the sample size, and i, the number of preceding sample
results chained for making a decision on the current lot.
It is also required that the consumer has confidence in
the producer, and the producer will deliberately not pass
a poor-quality lot taking advantage of the small samples
used and the utilization of preceding samples to take
a decision on the current lot.

The ChSP-1 plan always accepts the lot if d = 0
and conditionally accepts it if d = 1. The probability
that the preceding i samples of size n are free from
nonconforming units is Pi

0,n . Hence, the OC function
is Pa(p) = P0,n + P1,n Pi

0,n where Pd,n is the probabil-
ity of getting d nonconforming units in a sample of
size n. Figure 15.1 shows the improvement in the shape
of the OC curve of the zero-acceptance-number single-
sampling plan by the use of chain sampling. Clark [15.5]
provided a discussion on the OC curves of chain sam-
pling plans, a modification and some applications.
Liebesman et al. [15.6] argue in favor of chain sampling
as the attribute sampling standards have the deficiency
for small or fractional acceptance number sampling
plans. The authors also provided the necessary tables and
examples for the chain sampling procedures. Most text
books on statistical quality control also contain a section
on chain sampling, and provide some applications.

Soundararajan [15.7] constructed tables for the se-
lection of chain sampling plans for given acceptable
quality level (AQL, denoted as p1 ), producer’s risk α,
LQL (denoted as p2) and β. The plans found from this
source are approximate, and a more accurate procedure
that also minimizes the sum of actual producer’s and
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Fig. 15.1 Comparison of OC curves of Ac= 0 and ChSP-1
plans

consumer’s risks is given by Govindaraju [15.8]. Ta-
ble 15.1, adopted form Govindaraju [15.8] is based on
the binomial distribution for OC curve of the ChSP-1
plan. This table can also be used to select ChSP-1 plans
for given LQL and β only, which may be used in place
of zero-acceptance-number plans.

Ohta [15.9] investigated the performance of ChSP-1
plans using the graphical evaluation and review tech-
nique (GERT) and derived measures such as OC and
average sample number (ASN) for the ChSP-1 plan.
Raju and Jothikumar [15.10] provided a ChSP-1 plan
design procedure based on Kullback–Leibler informa-
tion, and the necessary tables for the selection of the
plan. Govindaraju [15.11] discussed the design ChSP-1
plan for minimum average total inspection (ATI). There
are a number of other sources where the ChSP-1 plan
design is discussed. This paper provides additional ref-

Table 15.1 ChSP-1 plans indexed by AQL and LQL
(α = 0.05, β = 0.10) for fraction nonconforming inspec-
tion [15.8]. Key n : i

LQL AQL (%)

(%) 0.1 0.15 0.25 0.40 0.65 1.00

1.5 154:2

2.0 114:4 124:1

2.5 91:4 92:2

3.0 76:3 76:3 82:1

3.5 65:3 65:3 70:1

4.0 57:2 57:2 57:2

4.5 51:2 51:2 51:2

5.0 45:3 45:3 45:3 49:1

5.5 41:3 41:3 41:3 45:1

6.0 38:3 38:2 38:2 38:2

6.5 35:3 35:2 35:2 35:2

7.0 32:3 32:3 32:3 32:3

7.5 30:3 30:3 30:2 30:2

8.0 28:3 28:3 28:2 28:2 30:1

8.5 26:3 26:3 26:3 26:3 29:1

9.0 25:3 25:3 25:2 25:2 27:1

9.5 24:3 24:3 24:2 24:2 24:2

10 22:3 22:3 22:3 22:3 22:3

11 20:3 20:3 20:2 20:2 20:2

12 19:3 19:3 19:2 19:2 19:2 20:1

13 17:3 17:3 17:3 17:2 17:2 18:1

14 16:3 16:3 16:3 16:2 16:2 16:2

15 15:3 15:3 15:3 15:2 15:2 15:2

erences on designing chain sampling plans, inter alia,
while discussing various extensions and generalizations.

15.2 Extended Chain Sampling Plans

Frishman [15.12] extended the ChSP-1 plan and de-
veloped ChSP-4 and ChSP-4A plans which incorporate
a rejection number greater than 1. Both ChSP-4 and
ChSP-4A plans are operated like a traditional double-
sampling attributes plan but uses (k−1) past lot results
instead of actually taking a second sample from the
current lot. The following is a compact tabular repre-
sentation of Frishman’s ChSP-4A plan.

Stage Sample size Acceptance Rejection
number number

1 n a r

2 (k-1)n a′ a′ +1

The ChSP-4 plan restricts r to a′ +1. The conditional
double-sampling plans of Baker and Brobst [15.13],
and the partial and full link-sampling plans of Har-
ishchandra and Srivenkataramana [15.14] are actually
particular cases of the ChSP-4A plan when k = 2 and
k = 3 respectively. However the fact that the OC curves
of these plans are the same as the ChSP-4A plan is not
reported in both papers [15.15].

Extensive tables for the selection of ChSP-4 and
ChSP-4A plans were constructed by Raju [15.16, 17]
and Raju and Murthy [15.18–21]. Raju and Jothiku-
mar [15.22] provided a complete summary of various
selection procedures for ChSP-4 and ChSP-4A plans,
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and also discussed two further types of optimal plans –
the first involving minimum risks and the second based
on Kullback–Leibler information. Unfortunately, the ta-
bles of Raju et al. for the ChSP-4 or ChSP-4A design
require the user to specify the acceptance and rejec-
tion numbers. This serious design limitation is not an
issue with the procedures and computer programs de-
veloped by Vaerst [15.23] who discussed the design of
ChSP-4A plans involving minimum sample sizes for
given AQL, α, LQL and β without assuming any spe-
cific acceptance numbers. Raju et al. considered a variety
of design criteria while Vaerst [15.23] discussed only
the (AQL, LQL) criterion. The ChSP-4 and ChSP-4A
plans obtained from Raju’s tables can be used in any
type B situation of a series of lots from a stable produc-
tion process, not necessarily when the product involves
costly or destructive testing. This is because the ac-
ceptance numbers covered are above zero. The major
disadvantage of Frishman’s [15.12] extended ChSP-4
and ChSP-4A plans is that the neighboring lot infor-
mation is not always utilized. Even though ChSP-4 and
ChSP-4A plans require smaller sample sizes than the
traditional double-sampling plans, these plans may not

be economical compared to other conditional sampling
plans.

Bagchi [15.24] presented an extension of the ChSP-1
plan, which calls for additional sampling only when one
nonconforming unit is found. The operating procedure
of Bagchi’s plan is given below:

1. At the outset, inspect n1 units selected randomly
from each lot. Accept the lot if all the n1 units are
conforming; otherwise, reject the lot.

2. If i successive lots are accepted, then inspect only
n2 (< n1) items from each of the submitted lots.
Accept the lot as long as no nonconforming units
are found. If two or more nonconforming units are
found, reject the lot. In the event of one noncon-
forming unit being found in n2 inspected units, then
inspect a further sample (n1−n2) units from the
same lot. Accept the lot under consideration if no fur-
ther nonconforming units are found in the additional
(n1−n2) inspected units; otherwise reject the lot.

Representing Bagchi’s plan as a Markov chain, Subra-
mani and Govindaraju [15.25] derived the steady-state
OC function and a few other performance measures.

15.3 Two-Stage Chain Sampling

Dodge and Stephens [15.26] viewed the chain sampling
approach as a cumulative results criterion (CRC) applied
in two stages and extended it to include larger acceptance
numbers. Their approach calls for the first stage of cumu-
lation of a maximum of k1 consecutive lot results, during
which acceptance is allowed if the maximum allowable
nonconforming units is c1 or less. After passing the first
stage of cumulation (i.e. when k1 consecutive lots are
accepted), the second stage of cumulation of k2(> k1)
lot results begins. In the second stage of cumulation, an
acceptance number of c2(> c1) is applied. Stephens and
Dodge [15.27] presented a further generalization of the
family of two-stage chain sampling inspection plans by
using different sample sizes in the two stages. We state
below the complete operating procedure of a generalized
two-stage chain sampling plan.

1. At the outset, draw a random sample of n1 units from
the first lot. In general, a sample of size n j ( j = 1, 2)
will be taken while operating in the j th stage of
cumulation.

2. Record d, the number of nonconforming units in
each sample, as well as D, the cumulative num-

ber of nonconforming units from the first up to
and including the current sample. As long as
Di ≤ c1(1 ≤ i ≤ k1), accept the ith lot.

3. If k1 consecutive lots are accepted, continue to cu-
mulate the number of nonconforming units D in the
k1 samples plus additional samples up to but no more
than k2 samples. During this second stage of cumula-
tion, accept the lots as long as Di ≤ c2(k1 < i ≤ k2).

4. After passing the second stage of k2 lot acceptances,
start cumulation as a moving total over k2 consec-
utive samples (by adding the current lot result and
dropping the kth

2 preceding lot result). Continue to
accept lots as long as Di ≤ c2(i > k2).

5. If, in any stage of sampling, Di > ci then reject
the lot and return to Step 1 (a fresh restart of the
cumulation procedure).

Figure 15.2 shows how the cumulative results criterion
is used in a two-stage chain sampling plan when k1 = 3
and k2 = 5.

An important subset of the generalized two-stage
chain sampling plan is when n1 = n2 and this subset is
designated as ChSP-(c1, c2); there are five parameters:
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n, k1, k2, c1, and c2. The original chain sampling plan
ChSP-1 of Dodge [15.1] is a further subset of the ChSP-
(0, 1) plan with k1 = k2−1. That is, the OC curve of the
generalized two-stage chain sampling plan is equivalent
to the OC curve of the ChSP-1 plan when k1 = k2−1.
Dodge and Stephens [15.26] derived the OC function of
ChSP-(0, 1) plan as

Pa(p) =
P0,n

(
1− P0,n

)+ Pk1
0,n P1,n

(
1− Pk2−k1

0,n

)

1− P0,n + Pk1
0,n P1,n

(
1− Pk2−k1

0,n

) ,

k2 > k1 .

As achieved by the ChSP-1 plan, the ChSP-(0,1)
plan also overcomes the disadvantages of the zero-
acceptance-number plan. Its operating procedure can be
succinctly stated as follows:

1. A random sample of size n is taken from each suc-
cessive lot, and the number of nonconforming units
in each sample is recorded, as well as the cumulative
number of nonconforming units found so far.

2. Accept the lot associated with each new sample as
long as no nonconforming units are found.

3. Once k1 lots have been accepted, accept subsequent
lots as long as the cumulative number of noncon-
forming units is no greater than one.

4. Once k2 > k1 lots have been accepted, cumulate
the number of nonconforming units over at most
k2 lots, and continue to accept as long as this cu-
mulative number of nonconforming units is one or
none.

5. If, at any stage, the cumulative number of noncon-
forming units becomes greater than one, reject the
current lot and return to Step 1.

Procedures and tables for the design of ChSP-
(0,1) plan are available in Soundararajan and
Govindaraju [15.28], and Subramani and Govin-
daraju [15.29]. Govindaraju and Subramani [15.30]
showed that the choice of k1 = k2−1 is always forced
on the parameters of the ChSP-(0,1) plan when a plan
is selected for given AQL, α, LQL, and β. That
is, a ChSP-1 plan will be sufficient, and one need
not opt for a two-stage cumulation of nonconforming
units.

In various technical reports from the Statistics
Center at Rutgers University (see Stephens [15.31]
for a list), Stephens and Dodge formulated the two-
stage chain sampling plan as a Markov chain and
evaluated its performance. The performance measures
considered by them include the steady-state OC func-

Restart point for
CRC

Restart period

Normal period

✓ = Lot acceptance
✗ = Lot rejection

k2 = 5

k1 = 5

Stage 1: Use C1

Stage 2:
Use C2

Lot
rejection

Restart period:
Cumulate up
to 5 samples

Normal period:
Always cumu-
late 5 samples

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✗

Fig. 15.2 Operation of a two-stage chain sampling plan with k1 = 3
and k2 = 5

tion, ASN and average run length (ARL) etc. For
comparison of chain sampling plans with the tradi-
tional or noncumulative plans, two types of ARLs are
used. The first type of ARL, say ARL1, is the av-
erage number of samples to the first rejection after
a sudden shift in the process level, say from p0 to
ps(> p0). The usual ARL, say ARL2, is the average
number of samples to the first rejection given the sta-
ble process level p0. The difference (ARL1−ARL2)
measures the extra lag due to chain sampling. How-
ever, this extra lag may be compensated by gains
in sampling efficiency, as explained by Stephens and
Dodge [15.32].

Stephens and Dodge [15.33] summarized the math-
ematical approach they have taken to evaluate the
performance of some selected two-stage chain sam-
pling plans, while more detailed derivations were
published in their technical reports. Based on the ex-
pressions for the OC function derived by Stephens
and Dodge in their various technical reports (con-
sult Stephens [15.31]), Raju and Murthy [15.34], and
Raju and Jothikumar [15.35] discussed various de-
sign procedures for the ChSP-(0,2) and ChSP-(1,2)
plans. Raju [15.36] extended the two-stage chain
sampling to three stages, and evaluated the OC per-
formances of a few selected chain sampling plans,
fixing the acceptance numbers for the three stages.
The three-stage cumulation procedure becomes very
complex, and will play only a limited role for costly
or destructive inspections. The three-stage plan will
however be useful for general type B lot-by-lot
inspections.
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15.4 Modified ChSP-1 Plan

In Dodge’s [15.1] approach, chaining of past lot results
does not always occur. It occurs only when a noncon-
forming unit is observed in the current sample. This
means that the available historical evidence of quality
is not fully utilized. Govindaraju and Lai [15.37] devel-
oped a modified chain sampling plan (MChSP-1) that
always utilizes the recently available lot-quality history.
The operating procedure of the MChSP-1 plan is given
below.

1. From each of the submitted lots, draw a random
sample of size n. Reject the lot if one or more
nonconforming units are found in the sample.

2. Accept the lot if no nonconforming units are found
in the sample, provided that the preceding i sam-
ples also contained no nonconforming units except
in one sample, which may contain at most one
nonconforming unit. Otherwise, reject the lot.

A flow chart showing the operation of the MChSP-1 plan
is in Fig. 15.3.

The MChSP-1 plan allows a single nonconforming
unit in any one of the preceding i samples but the lot
under consideration is rejected if the current sample
has a nonconforming unit. Thus, the plan gives a psy-
chological protection to the consumer in that it allows
acceptance only when all the current sample units are
conforming. Allowing one nonconforming unit in any
one of the preceding i samples is essential to offer pro-
tection to the producer, i.e. to achieve an OC curve with
a point of inflection. In the MChSP-1 plan, rejection

Start

Inspect a sample of size n from the current lot
and observe the number of nonconforming units d

Reject the
current lot

Yes

No

Cumulate the number of nonconforming
units D in the preceding i samples

YesNoAccept the
current lot

Is d > 0

Is D > 1?

Fig. 15.3 Operation of the MChSP-1 plan
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Fig. 15.4 Comparison of OC curves of ChSP-1 and
MChSP-1 plans
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Fig. 15.5 OC curves of matched ChSP-1 and MChSP-1
plans

of lots would occur until the sequence of submissions
advances to a stage where two or more nonconform-
ing units were no longer included in the sequence of i
samples. In other words, if two or more nonconform-
ing units are found in a single sample, it will result in i
subsequent lot rejections. In acceptance sampling, one
has to look at the OC curve to have an idea of the pro-
tection to the producer as well as to the consumer and
what happens in an individual sample or for a few lots is
not very important. If two or more nonconforming units
are found in a single sample, it does not mean that the
subsequent lots need not be inspected since they will be
automatically rejected under the proposed plan. It should
be noted that results of subsequent lots will be utilized
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Chain Sampling 15.5 Chain Sampling and Deferred Sentencing 269

continuously and the producer has to show an improve-
ment in quality with one or none nonconforming units
in the subsequent samples to permit future acceptances.
This will act as a strong motivating factor for quality
improvement.

The OC function Pa(p) of the MChSP-1 plan
was derived by Govindaraju and Lai [15.37] as
Pa(p) = P0,n(Pi

0,n + iPi−1
0,n P1,n). Figure 15.4 compares

the OC curves of the ChSP-1 and MChSP-1 plans. From
Fig. 15.4, we observe that the MChSP-1 plan decreases
the probability of acceptance at poor quality levels but
maintains the probability of acceptance at good quality
levels when compared to the OC curve of the zero-
acceptance-number single-sampling plan. The ChSP-1

plan, on the other hand, increases the probability of
acceptance at good quality levels but maintains the prob-
ability of acceptance at poor quality levels. To compare
the two sampling plans, we need to match them. That is,
we need to design sampling plans whose OC curves pass
approximately through two prescribed points such as
(AQL, 1-α) and (LQL, β). Figure 15.5 gives such a com-
parison, and establishes that the MChSP-1 plan is effi-
cient in requiring a very small sample size compared to
the ChSP-1 plan. A two-stage chain sampling plan would
generally require a sample size equal to or more than the
sample size of a zero-acceptance single-sampling plan.
The MChSP-1 plan will however require a sample size
smaller than the zero-acceptance-number plan.

15.5 Chain Sampling and Deferred Sentencing

Like chain sampling plans, there are other plans that use
the results of neighboring lots to take a conditional de-
cision of acceptance or rejection. Plans that make use of
past lot results are either called chain or dependent sam-
pling plans. Similarly plans that make use of future lot
results are known as deferred sentencing plans. These
plans have a strategy of accepting the lots condition-
ally based on the neighboring lot-quality history and are
hence referred to as conditional sampling plans. We will
briefly review several such conditional sampling plans
available in the literature.

In contrast to chain sampling plans, which make use
of past lot results, deferred sentencing plans use future
lot results. The idea of deferred sentencing was first pub-
lished in a paper by Anscombe et al. [15.38]. The first and
simplest type of deferred sentencing scheme [15.38] re-
quires the produced units to be split into small size lots,
and one item is selected from each lot for inspection. The
lot-sentencing rule is that whenever Y nonconforming
units are found out of X or fewer consecutive lots tested,
all such clusters of consecutive lots starting from the lot
that resulted in the first nonconforming unit to the lot
that resulted in the Y th nonconforming unit are rejected.
Lots not rejected by this rule are accepted. This rule
is further explained in the following sentences. A run
of good lots of length X will be accepted at once. If
a nonconforming unit occurs, then the lot sentencing or
disposition will be deferred until either a further (X−1)
lots have been tested or (Y −1) further nonconforming
items are found, whichever occurs sooner. At the out-
set, if the (X−1) succeeding lots result in fewer than
(Y −1) nonconforming units, the lot that resulted in the
first nonconforming unit and any succeeding lots clear

of nonconforming units will be accepted. As soon as Y
nonconforming units occur in no more than X lots, all
lots not so far sentenced will be rejected. Thus the lot
disposition will sometimes be made at once, and some-
times with a delay not exceeding (X−1) lots. Some of
the lots to be rejected according to the sentencing rule
may already have been rejected through the operation
of the rule on a previous cluster of Y nonconforming
units that partially overlaps with the cluster being con-
sidered. The actual number of new lots rejected under
the deferred sentencing rule can be any number from 1
to X. Anscombe et al. [15.38] also considered modifi-
cations of the above deferred sentencing rule, including
inspection of a sample of size more than one from each
lot. Anscombe et al. [15.38] originally presented their
scheme as an alternative to Dodge’s [15.39] continuous
sampling plan of type CSP-1, which is primarily in-
tended for the partial screening inspection of produced
units directly (when lot formation is difficult).

The deferred sentencing idea was formally tailored
into an acceptance sampling plan by Hill et al. [15.40].
The operating procedure of Hill et al. [15.40] scheme is
described below:

1. From each lot, select a sample of size n. These lots
are accepted as long as no nonconforming units are
found in the samples. If one or more nonconforming
unit is found, the disposition of the current lot will be
deferred until (X−1) succeeding lots are inspected.

2. If the cumulative number of nonconforming units for
X consecutive lots is Y or more, then a second sample
of size n is taken from each of the lots (beginning
with the first lot and ending with the last batch that
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showed a nonconforming unit in the sequence of
X nonconforming units). If there are less than Y
nonconforming units in the X, accept all lots from
the first up to, but not including, the next batch that
showed a nonconforming unit. The decision on this
batch will be deferred until (X−1) succeeding lots
are inspected.

Hill et al. [15.40] also evaluated the OC function of some
selected schemes and found them to be very economical
compared to the traditional sampling plans, including
the sequential attribute sampling plan.

Wortham and Mogg [15.41] developed a depen-
dent stage sampling (DSSP) plan (DSSP(r, b)), which
is operated under steady state as follows:

1. For each lot, draw a sample of size n and observe
the number of nonconforming units d.

2. If d ≤ r, accept the lot; if d > r +b, reject the
lot. If r +1 ≤ d ≤ r +b, accept the lot if the
(r+b+1−d)th previous lot was accepted; other-
wise reject the current lot.

Govindaraju [15.42] observed that the OC function of
DSSP(r, b) is the same as the OC function of the repet-
itive group sampling (RGS) plan of Sherman [15.43].
This means that the existing design procedures for the
RGS plan can also be used for the design of DSSP(r, b)
plan. The deferred state sampling plan of Wortham and
Baker [15.44] has a similar operating procedure except
in step 2 in which, when r+1 ≤ d ≤ r+b, the current
lot is accepted if the forthcoming (r+b+1−d)th lot
is accepted. The steady-state OC function of the depen-
dent (deferred) stage sampling plan DSSP(r, b) is given
by

Pa (p)= Pa,r (p)

1− Pa,r+b (p)+ Pa,r (p)

where Pa,r (p) is the OC function of the single-sampling
plan with acceptance number r and sample size n.
Similarly Pa,r+b (p) is the OC function of the single-
sampling plan with acceptance number r+b and sample
size n. A procedure for the determination of the
DSSP(r, b) plan for given AQL, α, LQL, and β was
also developed by Vaerst [15.23].

Wortham and Baker [15.45] extended the dependent
(deferred) state sampling into a multiple dependent (de-
ferred) state (MDS) plan MDS(r, b,m). The operating
procedure of the MDS(r, b,m) plan is given below:

1. For each lot, draw a sample of size n and observe
the number of nonconforming units d.

2. If d ≤ r, accept the lot; if d > r+b, reject the lot.
If r+1≤ d ≤ r+b, accept the lot if the consecutive
m preceding lots were all accepted (the consecutive
m succeeding lots must be accepted for the deferred
MDS(r, b,m) plan).

The steady-state OC function of the MDS(r, b,m) plan
is given by the recursive equation

Pa (p)= Pa,r (p)+ [
Pa,r+b (p)+ Pa,r (p)

]
[Pa (p)]m

Vaerst [15.46], Soundararajan and Vijayaragha-
van [15.47], Kuralmani and Govindaraju [15.48], and
Govindaraju and Subramani [15.49] provided detailed
tables and procedures for the design of MDS(r, b,m)
plans for various requirements.

Vaerst [15.23, 46] modified the MDS(r, b,m) plan
to make it on a par with the ChSP-1 plan. The operating
procedure of the modified MDS(r, b,m) plan, called
MDS-1(r, b,m), is given below:

1. For each lot, draw a sample of size n and observe
the number of nonconforming units d.

2. If d ≤ r, accept the lot; if d > r+b, reject the lot. If
r+1≤ d ≤ r+b, accept the lot if r or fewer noncon-
forming units are found in each of the consecutive
m preceding (succeeding) lots.

When r = 0, b = 1, and m = i, MDS-1(r, b,m) be-
comes the ChSP-1 plan. The OC function of the
MDS-1(r, b,m) plan is given by the recursive equation

Pa (p)=Pa,r (p)+ [
Pa,r+b (p)+Pa,r (p)

] [
Pa,r (p)

]m

Vaerst [15.46], Soundararajan and Vijayaragha-
van [15.50], and Govindaraju and Subramani [15.51]
provided detailed tables and procedures for the design
of MDS-1(r, b,m) plans for various requirements.

The major and obvious shortcoming of the chain
sampling plans is that, since they use sample informa-
tion from past lots to dispose of the current lot, there is
a tendency to reject the current lot of given good qual-
ity when the process quality is improving, or to accept
the current lot of given bad quality when the process
quality is deteriorating. Similar criticisms (in reverse)
can be leveled against the deferred sentencing plans. As
mentioned earlier, Stephens and Dodge [15.32] recog-
nizedg this disadvantage of chain sampling and defined
the ARL performance measures ARL1 and ARL2. Re-
call that ARL2 is the average number of lots that will
be accepted as a function of the true fraction noncon-
forming. ARL1 is the average number of lots accepted
after an upward shift in the true fraction nonconform-
ing from the existing level. Stephens and Dodge [15.52]
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evaluated the performance of the two-stage chain sam-
pling plans, comparing the ARLs with matching single-
and double-sampling plans having approximately the
same OC curve. It was noted that the slightly poorer
ARL property due to chaining of lot results is well
compensated by the gain in sampling economy. For
deferred sentencing schemes, Hill et al. [15.40] investi-
gated trends as well as sudden changes in quality. It was
found that the deferred sentencing schemes will dis-
criminate better between fairly constant quality at one
level and fairly constant quality at another level than
will a lot-by-lot plan scheme with the same sample size.
However when quality varies considerably from lot to
lot, the deferred sentencing scheme was found to operate
less satisfactorily, and in certain circumstances the dis-
crimination between good and bad batches may even be
worse than for traditional unconditional plans with the
same sample size. Furthermore, the deferred sentenc-
ing scheme may pose problems of flow, supp1y storage
space, and uneven work loads (which is not a problem
with chain sampling).

Cox [15.53] provided a more theoretical treatment
and considered one-step forward and two-step back-
ward schemes. He represented the lot-sentencing rules
as a stochastic process, and applied Bayes’s theorem
for the sentencing rule. He did recognize the com-
plexity of modeling a multistage procedure. When the
submitted lot fraction nonconforming varies, say when
a trend exists, both chain and deferred sentencing rules
have disadvantages. But this disadvantage can be over-
come by combining chain and deferred sentencing rules
into a single scheme. This idea was first suggested by
Baker [15.54] in his dependent deferred state (DDS)
plan. Osanaiye [15.55] provided a complete methodol-
ogy of combining chain and deferred sentencing rules,
and developed the chain-deferred (ChDP) plan. The
ChDP plan has two stages for lot disposition and its
operating procedure is given below:

1. From lot number k, inspect n units and count the
number of nonconforming units dk. If dk ≤ c1, ac-
cept lot number k. If dk > c2, reject lot numbered k.
If c1 < dk ≤ c2, then combine the number of noncon-
forming units from the immediately succeeding and
preceding samples, namely dk−1 and dk+1. (Stage 1)

2. If dk ≤ c, accept the kth lot provided dk +dk−1 ≤
c3 (chain approach). If dk > c, accept the kth lot
provided that dk +dk+1 ≤ c3 (deferred sentencing).

One possible choice of c is the average of c1 and
c3+1. Osanaiye [15.55] also provided a comparison
of ChDP with the traditional unconditional double-

sampling plans as the OC curves of the two types of
plans are the same (but the ChDP plan utilizes the neigh-
boring lot results). Shankar and Srivastava [15.56] and
Shankar and Joseph [15.57] provided a GERT analysis
of ChDP plans, following the approach of Ohta [15.9].
Shankar and Srivastava [15.58] discussed the selection
of ChDP plans using tables. Osanaiye [15.59] provided
a multiple-sampling-plan extension of the ChDP plan
(called the MChDP plan). MChDP plan uses several
neighboring lot results to achieve sampling economy.

Osanaiye [15.60] provided a useful practical dis-
cussion on the choice of conditional sampling plans
considering autoregressive processes, inert processes
(constant process quality shift) and linear trends in qual-
ity. Based on a simulation study, it was recommended
that the chain-deferred schemes are the cheapest if ei-
ther the cost of 100% inspection or sampling inspection
is high. He recommended the use of the traditional
single or double sampling plans only if the opportu-
nity cost of rejected items is very high. Osanaiye and
Alebiosu [15.61] considered the effect of inspection er-
rors on dependent and deferred double-sampling plans
vis-a-vis ChDP plans. They observed that the chain-
deferred plan in general has a greater tendency to reject
nonconforming items than any other plans, irrespective
of the magnitude of the inspection error.

Many of the conditional sampling plans, which fol-
low either the approach of chaining or deferring or
both, have the same OC curve as a double-sampling (or
multiple-sampling) plan. Exploiting this equivalence,
Kuralmani and Govindaraju [15.62] provided a general
selection procedure for conditional sampling plans for
given AQL and LQL. The plans considered include the
conditional double-sampling plan of the ChSP-4A plans
of Frishman [15.12], the conditional double-sampling
plan of Baker and Brobst [15.13], the link-sampling plan
of Harishchandra and Srivenkataramana [15.14], and
the ChDP plan of Osanaiye [15.55]. A perusal of the op-
erating ratio LQL/AQL of the tables by Kuralmani and
Govindaraju [15.62] reveals that these conditional sam-
pling plans apply in all type B situations, as a wide range
of discrimination between good and bad qualities is pro-
vided. However the sample sizes, even though smaller
than the traditional unconditional plans, will not be as
small as the zero-acceptance-number single-sampling
plans. This limits the application of the conditional sam-
pling plans to this special-purpose situation, where the
ChSP1 or MChSP-1 plans are most suitable.

Govindaraju [15.63] developed a conditional single-
sampling (CSS) plan, which has desirable properties for
general applications as well as for costly or destructive
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testing. The operating procedure of the CSS plan is as
follows.

1. From lot numbered k, select a sample of size
n and observe the number of nonconforming
units dk.

2. Cumulate the number of nonconforming units ob-
served for the current lot and the related lots. The
related lots will be either past lots, future lots or
a combination, depending on whether one is using
dependent sampling or deferred sentencing. The lot
under consideration is accepted if the total num-
ber of nonconforming units in the current lot and
the m related lots is less than or equal to the
acceptance number, Ac. If dk is the number of
nonconforming units recorded for the kth lot, the
rule for the disposition of the kth lot can be stated
as:
a) For dependent or chain single sampling, accept

the lot if dk−m +· · ·+dk−1+dk ≤ Ac; other-
wise, reject the lot.

b) For deferred single sampling, accept the lot if
dk +dk−1+· · ·+dk+m ≤ Ac; otherwise, reject
the lot

c) For dependent-deferred single sampling, where
m is desired to be even, accept the lot if
dk−m

2
+· · ·+dk +· · ·+dk+m

2
≤ Ac; otherwise,

reject the lot.

Thus the CSS plan has three parameters: the sample
size n, the acceptance number Ac, and the number
of related lot results used, m. As in the case of any
dependent sampling procedure, dependent single sam-
pling takes full effect only from the (m+1)st lot. To
maintain equivalent OC protection for the first m lots,
an additional sample of mn units can be taken from
each lot and the lot be accepted if the total number of
nonconforming units is less than or equal to Ac, or ad-
ditional samples of size (m+1− i) n can be taken for
the ith lot (i = 1, 2, . . . ,m) and the same decision rule
be applied. In either case, the results of the additional
samples should not be used for lot disposition from lot
(m+1). Govindaraju [15.63] has shown that the CSS
plans require much smaller sample sizes than all other
conditional sampling plans. In case of trends in quality,
the CSS plan can also be operated as a chain-deferred
plan and this will ensure that the changes in lot qualities
are somewhat averaged out.

15.6 Comparison of Chain Sampling with Switching Sampling Systems

Dodge [15.64] originally proposed quick-switching
sampling (QSS) systems. Romboski [15.65] investigated
the QSSs and introduced several modifications of the
original quick-switching system, which basically con-
sists of two intensities of inspection, say, normal (N)
and tightened (T) plans. If a lot is rejected under nor-
mal inspection, a switch to tightened inspection will
be made; otherwise normal inspection will continue. If
a lot is accepted under the tightened inspection, then the
normal inspection will be restored; otherwise tightened
inspection will be continued. For a review of quick-
switching systems, see Taylor [15.66] or Soundararajan
and Arumainayagam [15.67].

Taylor [15.66] introduced a new switch number to
the original QSS-1 system of Romboski [15.65] and
compared it with the chain sampling plans. When the
sample sizes of normal and tightened plans are equal,
the quick-switching systems and the two-stage chain
sampling plans were found to give nearly identical per-
formance. Taylor’s comparison is only valid for a general
situation where acceptance numbers greater than zero
are used. For costly or destructive testing, acceptance
numbers are kept at zero to achieve minimum sam-

ple sizes. In such situations, the chain sampling plans
ChSP-1 and ChSP-(0, 1) will fare poorly against other
comparable schemes when the incoming quality is at
AQL. This fact is explained in the following paragraph
using an example.

For costly or destructive testing, a quick-switching
system employing zero acceptance number was stud-
ied by Govindaraju [15.68], and Soundararajan and
Arumainayagam [15.69]. Under this scheme, the nor-
mal inspection plan has a sample size of nN units,
while the tightened inspection plan has a higher sam-
ple size nT (> nN). The acceptance number is kept
at zero for both normal and tightened inspection. The
switching rule is that a rejection under the normal plan
(nN, 0) will invoke the tightened plan (nT, 0). An accep-
tance under the (nT, 0) plan will revert back to normal
inspection. This QSS system, designated as type QSS-
1(nN, nT; 0), can be used in place of the ChSP-1 and
ChSP(0,1) plans. Let AQL= 1%, α= 5%, LQL= 15%,
and β = 10%. The ChSP-1 plan for the prescribed
AQL and LQL conditions is found to be n = 15 and
i = 2 (Table 15.1). The matching QSS-1 system for the
prescribed AQL and LQL conditions can be found to be
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QSS-1(nN = 5, nT = 19) from the tables given in Govin-
daraju [15.68] or Kuralmani and Govindaraju [15.70].
At good quality levels, the normal inspection plan will
require sampling only five units. Only at poor quality
levels, 19 units will be sampled under the QSS system.
So, it is obvious that Dodge’s [15.1] chain sampling ap-
proach is not truly economical at good quality levels but
fares well at poor quality levels. However, if the modi-
fied chain sampling plan MChSP-1 by Govindaraju and
Lai [15.37] is used, then the sample size needed will only
be three units (and i, the number of related lot results to
be used, is fixed at seven or eight).

A more general two-plan system having zero
acceptance number for the tightened and normal
plans was studied by Calvin [15.71], Soundarara-
jan and Vijayaraghavan [15.72], and Subramani and
Govindaraju [15.73]. Calvin’s TNT scheme uses
zero acceptance numbers for normal and tightened
inspection and employs the switching rules of MIL-
STD-105 D [15.74], which is also roughly employed
in ISO 2859-1:1989 [15.75]. The operating procedure
of the TNT scheme, designated TNT (nN, nT; Ac = 0),
is given below:

1. Start with the tightened inspection plan (nT, 0).
Switch to normal inspection (Step 2) when t lots
in a row are accepted; otherwise continue with the
tightened inspection plan.

2. Apply the normal inspection plan (nN, 0). Switch to
the tightened plan if a lot rejection is followed by
another lot rejection within the next s lots.

Using the tables of Soundararajan and Vija-
yaraghavan [15.76], the zero-acceptance-number

TNT(nN, nT; 0) plan for given AQL = 1%, α =
5%, LQL = 15%, and β = 10% is found to be
TNT(nN = 5, nT = 16; Ac= 0). We again find that the
MChSP-1 plan calls for a smaller sample size when com-
pared to Calvin’s zero-acceptance-number TNT plan.

The skip-lot sampling plans of Dodge [15.77] and
Perry [15.78] are based on skipping of sampling in-
spection of lots on the evidence of good quality
history. For a detailed discussion of skip-lot sampling,
Stephens [15.31] may be consulted. In the skip-lot sam-
pling plan of type SkSP-2 by Perry [15.78], once m
successive lots are accepted under the reference plan,
the chosen reference sampling plan is applied only for
a fraction f of the time. Govindaraju [15.79] stud-
ied the employment of the zero-acceptance-number
plan as a reference plan (among several other ref-
erence sampling plans) in the skip-lot context. For
given AQL= 1%, α= 5%, LQL= 15%, and β = 10%,
the SkSP-2 plan with a zero-acceptance-number refer-
ence plan is found to be n = 15 m = 6, and f � 1/5.
Hence the matching ChSP-1 plan n = 15 and i = 2
is not economical at good quality levels when com-
pared to the SkSP-2 plan n = 15, m = 6, and f � 1/5.
This is because the SkSP-2 plan requires the zero-
acceptance-number reference plan with a sample size
of 15 to be applied only to one in every five
lots submitted for inspection once six consecutive
lots are accepted under the reference single-sampling
plan (n = 10, Ac = 0). However, the modified MChSP-
1 plan is more economical at poor quality levels
when compared to the SkSP-2 plan. Both plans re-
quire about the same sampling effort at good quality
levels.

15.7 Chain Sampling for Variables Inspection

Govindaraju and Balamurali [15.80] extended the idea
of chain sampling to sampling inspection by variables.
This approach is particularly useful when testing is
costly or destructive provided the quality variable is
measurable on a continuous scale. It is well known that
variables plans do call for very low sample sizes when
compared to the attribute plans. However not all vari-
ables plans possess a satisfactory OC curve, as shown
by Govindaraju and Kuralmani [15.81]. Often, a vari-
ables plan is unsatisfactory if the acceptability constant
is too large, particularly when the sample size is small.
Only in such cases is it necessary to follow the chain
sampling approach to improve upon the OC curve of
the variables plan. Table 15.2 is useful for deciding

whether a given variables sampling plan has a satis-
factory OC curve or not. If the acceptability constant kσ
of a known sigma variables plan exceeds kσl then the
plan is deemed to have an unsatisfactory OC curve, like
an Ac = 0 attributes plan.

The operating procedure of the chain sampling plan
for variables inspection is as follows:

1. Take a random sample of size nσ , say(
x1, x2, ...., xnσ

)
and compute

v=
(

U − X̄

σ

)
,where X̄ = 1

nσ

nσ∑

i=1

xi .
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Table 15.2 Limits for deciding unsatisfactory variables plans

nσ kσl nσ kσl nσ kσl nσ kσl

1 0 16 2.3642 31 3.3970 46 4.1830

2 0.4458 17 2.4465 32 3.4549 47 4.2302

3 0.7280 18 2.5262 33 3.5119 48 4.2769

4 0.9457 19 2.6034 34 3.5680 49 4.3231

5 1.1278 20 2.6785 35 3.6232 50 4.3688

6 1.2869 21 2.7515 36 3.6776 51 4.4140

7 1.4297 22 2.8227 37 3.7312 52 4.4588

8 1.5603 23 2.8921 38 3.7841 53 4.5032

9 1.6812 24 2.9599 39 3.8362 54 4.5471

10 1.7943 25 3.0262 40 3.8876 55 4.5905

11 1.9009 26 3.0910 41 3.9384 56 4.6336

12 2.0020 27 3.1546 42 3.9885 57 4.6763

13 2.0983 28 3.2169 43 4.0380 58 4.7186

14 2.1904 29 3.2780 44 4.0869 59 4.7605

15 2.2789 30 3.3380 45 4.1352 60 4.8021

2. Accept the lot if v ≥ kσ and reject if v < k′σ . If k′σ ≤
v < kσ , accept the lot provided the preceding i lots
were accepted on the condition that v ≥ kσ .

Thus the variables chain sampling plan has four param-
eters: the sample size nσ , the acceptability constants kσ
and k′σ (< kσ ), and i, the number of preceding lots used
for conditionally accepting the lot. The OC function of
this plan is given by Pa (p)= PV + (P′

V − PV )Pi
V , where

PV = Pr (v ≥ kσ ) is the probability of accepting the lot
under the variables plan (nσ , kσ ) and P′

V = Pr
(
v ≥ k′σ

)

is the probability of accepting the lot under the variables
plan (nσ , k′σ ). Even though the above operating proce-
dure of the variables chain sampling plan is of general
nature, it would be appropriate to fix k′σ = kσl . For ex-
ample, suppose that a variables plan with nσ = 5 and
kσ = 2.46 is currently under use. From Table 15.2, the

limit for the undesirable acceptability constant kσl for
nσ = 5 is obtained as 1.1278. As the actual acceptabil-
ity constant kσ (= 2.26) is greater than kσl(= 1.1278),
the variables plan can be declared to possess an un-
satisfactory OC curve. Hence it is desirable to chain
the results of neighboring lots to improve upon the
shape of the OC curve of the variables plan nσ = 5
and kσ = 2.46. That is, the variables plan currently un-
der use with nσ = 5 and kσ = 2.46 will be operated
as a chain sampling plan fixing i = 4. A more detailed
procedure on designing chain sampling for variables in-
spection, including the case when sigma is unknown, is
available in Govindaraju and Balamurali [15.80]. The
chain sampling for variables will be particularly use-
ful when inspection costs are prohibitively high, and
the quality characteristic is measurable on a continuous
scale.

15.8 Chain Sampling and CUSUM

In this section, we will discuss some of the interesting
relationships between the cumulative sum (CUSUM)
approach of Page [15.82, 83] and the chain sampling
approach of Dodge [15.1]. The CUSUM approach is
largely popular in the area of statistical process control
(SPC) but Page [15.82] intended it for use in acceptance
sampling as well. Page [15.82] compares his CUSUM-
based inspection scheme with the deferred sentencing
schemes of Anscombe et al. [15.38], and the continu-

ous sampling plan CSP-1 of Dodge [15.39] to evaluate
their relative performance. In fact Dodge’s CSP-1 plan
forms the theoretical basis for his ChSP-1 chain sam-
pling plan. A more formal acceptance sampling scheme
based on the one-sided CUSUM for lot-by-lot inspec-
tion was proposed by Beattie [15.84]. Beattie’s plan calls
for drawing a random sample of size n from each lot
and observing the number of nonconforming units d.
For each lot, a CUSUM value is calculated for a given
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Lot number j
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

Cusum sj

Return interval

h

h
+
h'

Decision interval

Fig. 15.6 Beattie’s CUSUM acceptance sampling plan

slack parameter k. If the computed CUSUM is within
the decision interval (0, h), then the lot is accepted. If
the CUSUM is within the return interval

(
h, h+h′

)
,

then the lot is rejected. If the CUSUM falls below
zero, it is reset to zero. Similarly if the CUSUM ex-
ceeds h+h′, it is reset to h+h′. In other words, for
the j-th lot, the plotted CUSUM can be succinctly
defined as Sj = Min

{
h+h′, Max{(d j − k)+ Sj−1, 0}}

with S0 = 0. Beattie’s plan is easily implemented us-
ing the typical number of nonconforming units CUSUM
chart for lot-by-lot inspection Fig. 15.6. Prairie and Zim-
mer [15.85] provided detailed tables and nomographs for
the selection of Beattie’s CUSUM acceptance sampling
plan. An application is also reported in [15.86].

Beattie [15.87] introduced a two-stage semi-
continuous plan where the CUSUM approach is
followed, and the product is accepted as long as the
CUSUM, Sj , is within the decision interval (0, h).
For product falling in the return interval

(
h, h+h′

)
,

an acceptance sampling plan such as the single- or
double-sampling plan is used to dispose of the lots.
Beattie [15.87] compared the two-stage semi-continuous
plan with the ChSP-4A plan of Frishman [15.12] and the
deferred sentencing scheme of Hill et al. [15.40]. Beat-
tie remarked that chain sampling plans (ChSP-4A type)
call for a steady rate of sampling and are simple to ad-
minister. The two-stage semi-continuous sampling plan
achieved some gain in the average sample number at
good quality levels, but it is more difficult to adminis-
ter. The two-stage semi-continuous plan also requires
a larger sample size than the ChSP-4A plans when the
true quality is poorer than acceptable levels.

We will now explore an interesting equivalence be-
tween the ChSP-1 plan, and a CUSUM scheme intended
for high-yield or low-fraction-nonconforming produc-
tion processes for which the traditional p or n p control
charts are not useful. Lucas [15.88] gave a signal rule
for lack of statistical control if there are two or more
counts within an interval of t samples. In the case of
a process with a low fraction nonconforming, this means
that, if two or more nonconforming units are observed
in any t consecutive samples or less, a signal for an
upward shift in the process fraction level is obtained.
It should be noted that, if two or more nonconforming
units are found even in the same sample, a signal for
lack of statistical control will be obtained. Govindaraju
and Lai [15.89] discuss the design of Lucas’s [15.88]
scheme, and provided a method of obtaining the param-
eters n (the subgroup or sample size) and t (the maximum
number of consecutive samples considered for a signal).

Lucas [15.88] has shown that his signal rule is
equivalent to a CUSUM scheme having a reference
value k of 1/t and decision interval h = 1 for detecting
an increase in the process count level. It was also shown
that a fast initial response (FIR) feature can be added
to the CUSUM scheme (see Lucas and Crosier [15.90])
with an additional sub-rule that signals lack of statis-
tical control if the first count occurs before the t-th
sample. This FIR CUSUM scheme has a head start
of S0 = 1− k with k = 1/t and h = 1. Consider the
ChSP-1 plan of Dodge [15.1], which rejects a lot if
two or more counts (of nonconformity or nonconform-
ing units) occur but allows acceptance of the lot if no
counts occur or a single count is preceded by t (the
symbol i was used before) lots having samples with no
counts. If the decision to reject a lot is translated as
the decision of declaring the process to be not in sta-
tistical control, then it is seen that Lucas’s scheme and
the ChSP-1 plan are the same. This equivalence will
be even clearer if one considers the operation of the
two-stage chain sampling plan ChSP(0,1) of Dodge and
Stephens [15.26] given in Sect. 15.3. When k2 = k1+1,
the ChSP(0,1) plan is equivalent to the ChSP-1 plan
with t = k1. So it can also be noted that the sub-rule of
not allowing any count for the first t samples suggested
for the FIR CUSUM scheme of Lucas [15.88] is an in-
herent feature of the two-stage chain sampling scheme.
This means that the ChSP-1 plan is equivalent to the
FIR CUSUM scheme with the head start of (1− k) with
k = 1/t and h = 1.
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15.9 Other Interesting Extensions

Mixed sampling plans are two-phase sampling plans in
which both variable quality characteristics and attribute
quality measures are used in deciding the acceptance
or rejection of the lot. Baker and Thomas [15.91] re-
ported the application of chain sampling for acceptance
testing for armor packages. Their procedure uses chain
sampling for testing structural integrity (attributes in-
spection) while a variables sampling plan is used for
testing penetration-depth quality characteristic. The au-
thors also suggested the simultaneous use of control
charts along with their proposed acceptance sampling
procedures. Suresh and Devaarul [15.92] proposed
a more formal mixed acceptance sampling plan where
a chain sampling plan is used for the attribute phase.
Suresh and Devaarul [15.92] also obtained the OC func-
tion for their mixed plan, and discussed various selection
procedures. To control multidimensional characteristics,
Suresh and Devaarul [15.93] developed multidimen-

sional mixed sampling plans (MDMSP). These plans
handles several quality characteristics during the vari-
able phase of the plan, while the attribute sampling phase
can be based on chain sampling or other attribute plans.

In some situations it is desirable to adopt three
attribute classes, where items are classified into
three categories: good, marginal and bad [15.94].
Shankar et al. [15.95] developed three-class chain sam-
pling plans and derived various performance measures
through the GERT approach and also discussed their
design.

Suresh and Deepa [15.96] provided a discussion on
formulating a chain sampling plan given a prior gamma
or beta distribution for product quality. Tables for the
selection of the plans and examples are also provided
by Suresh and Deepa [15.96]. This approach will fur-
ther improve the sampling efficiency of chain sampling
plans.

15.10 Concluding Remarks

This chapter largely reviews the methodology of chain
sampling for lot-by-lot inspection of quality. Various ex-
tensions of the original chain sampling plan ChSP-1 of
Dodge [15.1] and modifications are briefly reviewed.
The chain sampling approach is primarily useful for
costly or destructive testing, where small sample sizes
are preferred. As chain sampling plans achieve greater
sampling economy, these are combined with the ap-
proach of deferred sentencing so that the combined plan
can be used for any general situation. This chapter does
not cover design of chain sampling plans in any great de-
tail. One may consult textbooks such as Schilling [15.97]
or Stephens [15.31,98] for detailed tables. A large num-
ber of papers primarily dealing with the design of chain
sampling plans are available only in journals, and some

of them are listed as references. It is often remarked
that designing sampling plans is more of an art than
a science. There are statistical, engineering and other
administrative aspects to be taken into account for suc-
cessful implementation of any sampling inspection plan,
including chain sampling plans. For example, for ad-
ministrative and other reasons, the sample size may be
fixed. Given this limitation, which sampling plan should
be used requires careful consideration. Several candi-
date sampling plans, including chain sampling plans,
must first be sought, and then the selection of a partic-
ular type of plan must be made based on performance
measures such as the OC curve etc. The effectiveness of
the chosen plan or sampling scheme must be monitored
over time, and changes made if necessary.
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Some Statistic16. Some Statistical Models for the Monitoring
of High-Quality Processes

One important application of statistical models
in industry is statistical process control. Many
control charts have been developed and used
in industry. They are easy to use, but have
been developed based on statistical principles.
However, for today’s high-quality processes,
traditional control-charting techniques are not
applicable in many situations. Research has been
going on in the last two decades and new methods
have been proposed. This chapter summarizes
some of these techniques.

High-quality processes are those with very
low defect-occurrence rates. Control charts based
on the cumulative count of conforming items
are recommended for such processes. The use of
such charts has opened up new frontiers in the
research and applications of statistical control
charts in general. In this chapter, several extended
or modified statistical models are described. They
are useful when the simple and basic geometric
distribution is not appropriate or is insufficient.

In particular, we present some extended
Poisson distribution models that can be used for
count data with large numbers of zero counts. We
also extend the chart to the case of general time-
between-event monitoring; such an extension
can be useful in service or reliability monitoring.
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Traditionally, the exponential distribution is used
for the modeling of time-between-events, al-
though other distributions such as the Weibull
or gamma distribution can also be used in this
context.

Control charting is one of the most widely used sta-
tistical techniques in industry for process control and
monitoring. It dates back to the 1920s when Wal-
ter Shewhart introduced the basic charting techniques
in the United States [16.1]. Since then, it has been
widely adopted worldwide, mainly in manufacturing
and also in service industries. The simplicity of the
application procedure allows a non-specialist user to
observe the data and plot the control chart for simple
decision making. At the same time, it provides sophis-
ticated statistical interpretation in terms of false-alarm
probability and average run length, among other im-
portant statistical properties associated with decision
making based on sample information. The implemen-

tation of control charts had helped many companies to
focus on important quality issues and problems such
as those raised by out-of-control points on a control
chart.

However, for high-quality or near-zero-defect pro-
cesses, traditional Shewhart charts may not be suitable
for process monitoring and decision making. This is es-
pecially the case for Shewhart attribute charts [16.2].
Many problems such as high false-alarm probability,
inability to detect process improvement, unnecessary
plotting of many zeros etc., have been identified by
various researchers [16.3–6]. To resolve these prob-
lems, new models and monitoring techniques have been
developed recently.
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Traditional charts are all based on the principle of
normal distribution and the upper control limit (UCL)
and lower control limit (LCL) are routinely computed
as the mean plus and minus three times the standard
deviation. That is, if the plotted quantity Y has mean µ

and standard deviation σ , the control limits are given
by

UCL = µ+3σ and LCL = µ−3σ . (16.1)

Generally, when the distribution of Y is skewed,
the probability of false alarm, i. e. the probability
that a point indicating out-of-control when the pro-
cess has actually not changed, is different from the
nominal value of 0.0027 associated with a truly
normal distribution. Note that for attribute charts,
the plotted quantities usually follow a binomial or
Poisson distribution, and this is far from the nor-
mal distribution unless the sample size is very
large.

The purpose of this chapter is to review the important
models and techniques that can be used to monitor high-
quality processes. The procedure based on a general
principle of the cumulative count of conforming items
is first described; this is then extended to other distribu-
tions. The emphasis is on recent developments and also
on practical methods that can be used by practitioners.

This chapter is organized as follows. First, the use
of probability limits is described. Next, control charts
based on monitoring of the cumulative count of conform-
ing items and simple extensions are discussed. Control
charts based on the zero-inflated Poisson distribution
and generalize Poisson distribution are then presented.
These charts are widely discussed in the literature and
they are suitable for count or attribute data. For pro-
cess monitoring, time-between-events monitoring is of
growing importance, and we also provide a summary
of methods that can be used to monitor process change
based on time-between-events data. Typical models are
the exponential, Weibull and gamma distribution.

16.1 Use of Exact Probability Limits

For high-quality processes it is important to use prob-
ability limits instead of traditional three-sigma limits.
This is true when the quality characteristic that is being
plotted follows a skewed distribution. For any plotted
quality characteristic Y , the probability limits LCLY and
UCLY can be derived as

P(X < LCLY ) = P(X > UCLY ) = α/2 , (16.2)

where α is the false-alarm probability, i. e., when the
process is in control, the probability that the control chart
raises an alarm. Assuming that the distribution F(x) is
known or has been estimated accurately from the data,
the control limits can be computed.

Probability limits are very important for attribute
charts as the quality characteristics are usually not nor-
mally distributed. If this is the case, the false-alarm
probability could be much higher than the nominal value
(α= 0.0027 for traditional three-sigma limits). Xie and
Goh [16.7] studied the exact probability limits calcu-
lated from the binomial distribution and the Poisson
distribution applied for the np chart and the c chart.

For control-chart monitoring the number of noncon-
forming items in samples of size n, assuming that the

process fraction nonconforming is p, the probability that
there are exactly k nonconforming items in the sample
is

P(X = k) =
(

n

k

)
pk(1− p)n−k , k = 0, 1, . . . n

(16.3)

and the probability limits can be computed as

P(X � LCL) =
LCL∑

i=0

(
n

i

)
pi (1− p)n−i = α

2
(16.4)

and

P(X � UCL) =
UCL∑

i=0

(
n

i

)
pi (1− p)n−i = 1− α

2
.

(16.5)

As discussed, probability limits can be computed for any
distributions, and should be used when the distribution
is skewed. This will form the basis of the following
discussion in this chapter. In some cases, although the
solution is analytically intractable, they can be obtained
with computer programs. It is advisable that probability
limits be used unless the normality test indicates that
deviation from normal distribution is not significant.
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16.2 Control Charts Based on Cumulative Count of Conforming Items

High-quality processes are usually characterized by low
defective rates. In a near-zero-defect manufacturing
environment, items are commonly produced and in-
spected one-by-one, sometimes automatically. We can
record and use the cumulative count of conforming
items produced before a nonconforming item is de-
tected. This technique has been intensively studied in
recent years.

16.2.1 CCC Chart Based
on Geometric Distribution

The idea of tracking cumulative count of conform-
ing (CCC) items to detect the onset of assignable
causes in an automated (high-quality) manufacturing
environment was first introduced in [16.3]. Goh [16.4]
further developed this idea into what is known as the
CCC charting technique. Some related discussions and
further studies can be found in [16.8–14], among oth-
ers. Xie et al. [16.15] provided extensive coverage of
this charting technique and further analysis of this
procedure.

For a process with a defective rate of p, the cumu-
lative count of conforming items before the appearance
of a nonconforming item, Y , follows a geometric distri-
bution. This is given by

P(Y = n) = (1− p)n−1 p, n = 1, 2, . . . . (16.6)

The cumulative probability function of count Y is given
by

P(Y � n) =
n∑

i=1

(1− p)i−1 p = 1− (1− p)n .

(16.7)

Assuming that the acceptable false-alarm probability
isα, the probability limits for the CCC chart are obtained
as

UCL = ln(α/2)/ ln(1− p) (16.8)

and

LCL = ln(1−α/2)/ ln(1− p) (16.9)

Usually the center line (CL) is computed as

CL = ln(1/2)/ ln(1− p) . (16.10)
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Fig. 16.1 A typical cumulative count of conforming (CCC)
items chart

A typical CCC chart is shown in Fig. 16.1 The first 40
data points are simulated with p = 0.001 and the last
one was simulated with p = 0.0002. The value of α is
set to be 0.01 for the calculation of control limits. Note
that we have also used a log scale for CCC.

Note that the decision rule is different from that of
the traditional p or np chart. If a point is plotted above the
UCL, the process is considered to have improved. When
a point falls below the LCL, the process is judged to have
deteriorated. An important advantage is that the CCC
chart can detect not only the increase in the defective
rate (process deterioration), but also the decrease in the
defective rate (process improvement).

16.2.2 CCC-r Chart Based
on Negative Binomial Distribution

A simple idea to generalize a CCC chart is to consider
plotting of the cumulative count of items inspected until
observing two nonconforming items. This was stud-
ied in [16.16] resulting in the CCC-2 control chart.
This chart increases the sensitivity of the original
CCC chart for the detection of small process shifts
in p. The CCC-2 chart has smaller type II error,
which is related to chart sensitivity, and steeper OC
(Operating Characteristic) curves than the CCC chart
with the same type I, error which is the false alarm
probability.

A CCC-r chart [16.17,18] plots the cumulative count
of items inspected until r nonconforming items are ob-
served. This will further improve the sensitivity and
detect small changes faster. However, it requires more
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counts to be cumulated in order to generate an alarm sig-
nal. The CCC-r charting technique was also studied by
Lu et al. [16.17].

Let Y be the cumulative count of items inspected
until r nonconforming items have been observed. Let
the probability of an item to be nonconforming be p.
Then Y follows a negative binomial distribution given
by

P(Y = n) =
(

n−1

r−1

)
pr (1− p)n−r ,

n = r, r+1, . . . . (16.11)

The cumulative distribution function of count Y would
be

F(n, r, p) =
n∑

i=r

P(Y = i)

=
n∑

i=r

(
i−1

r−1

)
pr (1− p)i−r . (16.12)

If the acceptable false-alarm probability is α, then the
upper control limit and the lower control limit, UCLr and

LCLr ,respectively, of the CCC−r chart can be obtained
as the solution of the following equations:

F(UCLr , r, p) =
UCLr∑

i=r

(
i−1

r−1

)
pr (1− p)i−r

= 1−α/2 (16.13)

and

F(LCLr , r, p) =
LCLr∑

i=r

(
i−1

r−1

)
pr (1− p)i−r = α/2 .

(16.14)

Note that this chart is suitable for one-by-one inspection
process and so no subjective sample size is needed. On
the other hand, the selection of r is a subjective issue
if the cost involved is not a consideration. As the value
of r increases the sensitivity of the chart may increase,
but the user probably needs to wait too long to plot
a point. Ohta et al. [16.18] addressed this issue from an
economic design perspective and proposed a simplified
design method to select a suitable value of r based on the
economic design method for control charts that monitor
discrete quality characteristics.

16.3 Generalization of the c-Chart

The c-chart is based on monitoring of the number of
defects in a sample. Traditionally, the number of defect
in a sample follows the Poisson distribution. The control
limits are computed as

UCL = c+3
√

c and LCL = c−3
√

c , (16.15)

where c is the average number of defects in the sample
and the LCL is set to be zero when the value computed
with (16.15) is negative.

However, for high-quality processes, it has been
shown that these limits may not be appropriate. Some
extensions of this chart are described in this section.

16.3.1 Charts Based on the Zero-Inflated
Poisson Distribution

In a near-zero-defect manufacturing environment, many
samples will have no defects. However, for those con-
taining defects, we have observed that there could be
many defects in a sample and hence the data has an
over-dispersion pattern relative to the Poisson distri-
bution. To overcome this problem, a generalization of
Poisson distribution was used in [16.6, 19].

This distribution is commonly called the zero-
inflated Poisson distribution. Let Y be the number of
defects in a sample; the probability mass function is
given by

⎧
⎨

⎩
P(Y = 0) = (1− p)+ pe−λ

P(Y = d)= p λd e−λ

d! d = 1, 2, . . . .
(16.16)

This has an interesting interpretation. The process is
basically zero-defect although it is affected by causes
that lead to one or more defects. If the occurrence of
these causes is p, and the severity isλ, then the number of
defects in the sample will follow a zero-inflated Poisson
distribution.

When the zero-inflated Poisson distribution provides
a good fit to the data, two types of control charts can be
applied. One is the exact probability limits control chart,
and the other is the CCC chart. When implementing
the exact probability limits chart, Xie and Goh [16.6]
suggested that only the upper control limit nu should
be considered, since the process is in a near-zero-defect
manufacturing environment and the probability of zero
is usually very large. The upper control limit can be

Part
B

1
6
.3



Monitoring of High-Quality Processes 16.3 Generalization of the c-Chart 285

determined by:

∞∑

d=nu

p
λd e−λ

d! ≤ α , (16.17)

where α is the probability of the type I error. It should be
noticed that nu could easily be solved because it takes
only discrete values.

Control charts based on the zero-inflated Poisson
distribution commonly have better performance in the
near-zero-defect manufacturing environment. However,
the control procedure is more complicated than the tra-
ditional methods since more effort is required to test the
suitability of this model with more parameters.

For the zero-inflation Poisson distribution we have
that [16.20]

E(Y ) = pλ (16.18)

and

Var(Y ) = pλ+ pλ(µ− pλ) . (16.19)

It should be pointed out that the zero-inflation Poisson
model is very easy to use, as the mean and variance
are of close form. For example, the moment estimates
can be obtained straightforward. On the other hand, the
maximum-likelihood estimates can also be obtained.

The maximum-likelihood estimates can be obtained
by solving

⎧
⎪⎨

⎪⎩
p = 1−n0/n

1− exp(−λ)

λ= ȳ/p

, (16.20)

where ȳ =∑n
i=1 yi/n, [16.20].

When the count data can be fitted by a zero-inflation
Poisson model, statistical process control procedures
can be modified. Usually, the lower control limit for

Table 16.1 A set of defect count data

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 0 9

11 0 1 2 0 0 0 0 0 0 0 0 3 3 0 0 5 0 15 6

0 0 0 4 2 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0

0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 1 0 0 0 0 0

zero-inflation Poisson model will not exist, because the
probability of zero is larger than the predetermined type I
error level. This is common for the attribute control
chart. In the following section, the upper control limit
will be studied.

The upper control limit nu for a control chart based
on the number of nonconformities can be obtained as
the smallest integer solution of the following equation:

P(nu or more nonconformities in a sample)� αL ,

(16.21)

where αL is the predetermined false-alarm probability
for the upper control limit nu.

Here our focus is on data modeling with appropriate
distribution. It can be noted that the model contains two
parameters. To be able to monitor the change in each
parameter, a single chart may no be appropriate. Xie and
Goh [16.6] developed a procedure for the monitoring of
individual parameter. First, a CCC chart is used for data
with zero count. Second, a c-chart is used for those with
one or more non-zero count.

Note that a useful model should have practical inter-
pretations. In this case, p is the occurrence probability
of problem in the process, and λ measures the severity of
the problem when it occurs. Hence it is a useful model
and important to be able to monitor each of these pa-
rameters, so that any change from normal behavior can
be identified.

Example 1
An example is used here for illustration [16.2]. The data
set used in Table 16.1 is the read–write errors discovered
in a computer hard disk in a manufacturing process.

For the data set in Table 16.1, it can be seen that
it contains many samples with no nonconformities.
From the data set, the maximum-likelihood estimates are
p̂ = 0.1346 and µ̂= 8.6413. The overall zero-inflation
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Poisson model for the data set is

f (y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1−0.1346+0.1346 exp(−8.6413) ,
if y = 0 ,

0.1346 8.6413y exp(−8.6413)
y! ,

if y > 0 .

(16.22)

For the data set in Table 16.1, it can be calculated that the
upper control limit is 14 at an acceptable false-alarm rate
of 0.01. This means that there should not be any alarm
for values less than or equal to 14 when the underlying
distribution model is a zero-inflated Poisson distribution.

16.3.2 Chart Based on the Generalized
Poisson Distribution

The generalized Poisson distribution is another useful
model that extends the traditional Poisson distribu-
tion, which only has one parameter. A two-parameter
model is usually much more flexible and able to model
different types of data sets. Since in the situation of over-
dispersion or under-dispersion the Poisson distribution
is no longer preferable as it must have equal mean and
variance, the generalized Poisson distribution [16.21]
can be used.

This distribution has two parameters (θ, λ) and the
probability mass function is defined as

PX (θ, λ)= θ(θ+ xλ)x−1 e−θ−xλ

x! , x = 0, 1, 2 . . . ,

(16.23)

where λ, θ > 0.
For the generalized Poisson distribution we have

that [16.21]

E(X) = θ(1−λ)−1 (16.24)

and

Var(X) = θ(1−λ)−3 . (16.25)

It should be pointed out that the generalized Poisson dis-
tribution model is very easy to use as both the mean and
variance are of closed form. For example, the moment
estimates can easily be calculated. On the other hand,
the maximum-likelihood estimates can also be obtained
straightforwardly. Consider a set of observations {X1,
X2,. . ., Xn}with sample size n, the maximum-likelihood

estimation (θ̂ ,λ̂) can be obtained by solving
⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1

xi (xi −1)

x̄+ (xi − x̄)λ̂
−nx̄ = 0 ,

θ̂ = x̄(1− λ̂) .

(16.26)

Here a similar approach as for the zero-inflated Poisson
model can be used. One could also developed two charts
for practical monitoring. One chart can be used to mon-
itor the severity and another to monitor the dispersion or
variability in terms of the occurrence of defects.

Example 2
The data in Table 16.1 can also be modeled with
a generalized Poisson distribution. Based on the data,
the maximum-likelihood estimates can be computed
as θ̂ = 0.144297 and λ̂= 0.875977. The overall gen-
eralized Poisson distribution model for the data set
is

f (x) = 0.144297(0.144297+0.875977x)x−1

x!
×

e−0.144297−0.875977x

x! , x = 0, 1, 2 . . . .

(16.27)

With this model, it can be calculated that the upper con-
trol limit is 26 at a false-alarm rate of 0.01. This means
that there should not be any alarm for the values less than
or equal to 26 when the underlying distribution model is
the generalized Poisson distribution. It should be men-
tioned here that, for this data set, both models can fit
the data well, and the traditional Poisson distribution is
rejected by statistical tests.

16.4 Control Charts for the Monitoring of Time-Between-Events

Chan et al. [16.22] proposed a charting method called
the cumulative quantity control chart (CQC chart). Sup-
pose that defects in a process are observed according to
a Poisson process with mean rate of occurrence equal to
λ (>0). Then the number of units Q required to observe
exactly one defect is an exponential random variable.

The control chart for Q can be constructed to monitor
possible shifts of λ in the process, which is the CQC
chart.

The CQC chart has several advantages. It can be used
for low-defective-rate processes as well as moderate-
defective-rate processes. When the process defect rate
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is low or moderate, the CQC chart does not have
the shortcoming of showing up frequent false alarms.
Furthermore, the CQC chart does not require rational
grouping of samples. The data required is the time be-
tween defects or defective items. This type of data is
commonly available in equipment and process monitor-
ing for production and maintenance.

When process failures can be described by a Poisson
process, the time between failures will be exponential
and the same procedure can be used in reliability mon-
itoring. Here we briefly describe the procedure for this
type of monitoring. Since time is our preliminary con-
cern, the control chart will be termed a t-chart in this
paper. This is in line with the traditional c-chart or
u-chart, to which our t-chart may be a more suitable
alternative. In fact, the notation also makes it easier for
the extension to be discussed later.

16.4.1 CQC Chart Based
on the Exponential Distribution

The distribution function of the exponential distribution
with parameter λ is given by

F(t; λ)= 1− e−λt, t � 0 . (16.28)

The control limits for t-chart are defined in such a man-
ner that the process is considered to be out of control
when the time to observe exactly one failure is less than
the lower control limit (LCL), TL, or greater than the up-
per control limit (UCL), TU. When the behavior of the
process is normal, there is a chance for this to happen and
it is commonly known as a false alarm. The traditional
false-alarm probability is set to be 0.27%, although any
other false-alarm probability can be used. The actual ac-
ceptable false-alarm probability should in fact depend
on the actual product or process. Assuming an accept-
able probability for false alarms of α, the control limits
can be obtained from the exponential distribution as:

TL = λ−1 ln
1

1−α/2
(16.29)

and

TU = λ−1 ln
2

α
. (16.30)

The median of the distribution is the center line (CL),
TC, and it can be computed as

TC = λ−1 ln 2 = 0.693λ−1 . (16.31)

These control limits can then be utilized to monitor the
failure times of components. After each failure the time

can be plotted on the chart. If the plotted point falls be-
tween the calculated control limits, this indicates that
the process is in the state of statistical control and no
action is warranted. If the point falls above the upper
control limit, this indicates that the process average, or
the failure occurrence rate, may have decreased, result-
ing in an increase in the time between failures. This is an
important indication of possible process improvement.
If this happens the management should look for possible
causes for this improvement and if the causes are dis-
covered then action should be taken to maintain them. If
the plotted point falls below the lower control limit, this
indicates that the process average, or the failure occur-
rence rate, may have increased, resulting in a decrease
in the failure time. This means that the process may have
deteriorated and thus actions should be taken to identify
and remove them.

In either case the people involved can know when
the reliability of the system has changed and by a proper
follow-up they can maintain and improve the reliability.
Another advantage of using the control chart is that it
informs the maintenance crew when to leave the process
alone, thus saving time and resources.

16.4.2 Chart Based
on the Weibull Distribution

It is well known that the lifetime distribution of many
components follows a Weibull distribution [16.23].
Hence when monitoring reliability or equipment fail-
ure, this distribution has been shown to be very useful.
The Weibull distribution function is given as

F(t) = 1− exp

[
−

(
t

θ

)β
]
, t ≥ 0 , (16.32)

where θ > 0 and β > 0 are the so called scale parameter
and shape parameter, respectively.

The Weibull distribution is a generalization of ex-
ponential distribution, which is recovered for β = 1.
Although the exponential distribution has been widely
used for times-between-event, Weibull distribution is
more suitable as it is more flexible and is able to deal
with different types of aging phenomenon in reliability.
Hence in reliability monitoring of equipment failures,
the Weibull distribution is a good alternative.

A process can be monitored with a control chart and
the time-between-events can be used. For the Weibull
distribution, the control limits can be calculated as:

UCL = θ0

[
ln

(
2

α

)]1/β0

(16.33)
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and

LCL = θ0

[
ln

(
2

2−α

)]1/β0

, (16.34)

where α is the acceptable false-alarm probability, and β0
and θ0 are the in-control shape and scale parameter, re-
spectively. Generally, the false-alarm probability is fixed
at α = 0.0027, which is equivalent to the three-sigma
limits for an X-bar chart under the normal-distribution
assumption.

The center line can be defined as

CL = θ0 [ln 2]1/β0 . (16.35)

Xie et al. [16.24] carried out some detailed analysis of
this procedure. Since this model has two parameters,
a single chart may not be able to identify changes in
a parameter. However, since in a reliability context, it is
unlikely that the shape parameter will change and it is
the scale parameter that could be affected by ageing or
wear, a control chart as shown in Fig. 16.2 can be useful
in reliability monitoring.

16.4.3 General t-Chart

In general, to model time-between-events, any distribu-
tion for positive random variables could be used. Which
distribution is used should depend on the actual data,
with the exponential, Weibull and Gamma being the
most common distributions. However, these distribu-
tions are usually very skewed. The best approach is to use
probability limits. It is also possible to use a transforma-
tion so that the data is transformed to near-normality, so
that traditional chart for individual data can be used; such
charting procedure is commonly available in statistical
process control (SPC) software.

In general, if the variable Y follows the distribution
F(t), the probability limits can be computed as usual,
that is:

F(LCLY ) = 1− F(UCLY ) = α/2 , (16.36)

where α is the fixed false-alarm rate. This is an ap-
proach that summarizes the specific cases described
earlier. However, it is important to be able to identify
the distribution to be used.
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Fig. 16.2 A set of Weibull data and the plot
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Fig. 16.3 The same data set as in Fig. 16.2 with the plot of
the Box–Cox transformation

Furthermore, to make better use of the traditional
monitoring approach, we could use a simple nor-
mality transformation. The most common ones are
the Box–Cox transformation and the log or power
transformations. They can be easily realized in soft-
ware such as MINITAB. Figure 16.2 shows a chart
for a Weibull-distributed process characteristic and
Fig. 16.3 shows the individual chart with a Box–Cox
transformation.

16.5 Discussion

In this chapter, some effective control-charting tech-
niques are described. the statistical monitoring technique

should be tailored to the specific distribution of the data
that are collected from the process. Perfunctory use of
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the traditional chart will not help much in today’s manu-
facturing environment towards near-zero-defect process.
For high-quality processes, it is more appropriate to
monitor items inspected between two nonconforming
items or the time between two events.

The focus in this article is to highlight some common
statistical distributions for process monitoring. Several
statistical models such as the geometric, negative bi-
nomial, zero-inflated Poisson, and generalized Poisson
can be used for count-data monitoring in this context.
The exponential, Weibull and Gamma distributions can
be used to monitor time-between-events data, which is
common in reliability or equipment failure monitoring.
Other general distributions of time-between-events can
also be used when appropriate. The approach is still
simple: by computing the probability limits for a fixed
false-alarm probability, any distribution can be used in
a similar way. The simple procedure is summarized
below:

Step 1. Study the process and identify the statistical
distribution for the process characteristic;

Step 2. Collect data and estimate the parameters (and
validate the model, if needed);

Step 3. Compute the probability limits or use an
appropriate normality transformation with an individual
chart;

Step 4. Identify any assignable cause and take ap-
propriate action.

The distributions presented in this paper open
the door to further implementation of statistical pro-
cess control techniques in a near-zero-defect era.
Several research issues remain. For example, the prob-
lem with correlated data and the estimation problem
has to be studied. In a high-quality environment,
failure or defect data is rare, and the estimation
problem becomes serious. In the case of contin-
uous production and measurement, data correlation
also becomes an important issue. It is possible to
extend the approach to consider the exponentially
weighted moving-average (EWMA) or cumulative-
sum (CUSUM) charts that are widely advocated by
statisticians. A further area of importance is multivari-
ate quality characteristics. However, a good balance
between statistical performance and ease of im-
plementation and understanding by practitioners is
essential.
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Monitoring Pr17. Monitoring Process Variability Using EWMA

During the last decade, the use of the exponentially
weighted moving average (EWMA) statistic as
a process-monitoring tool has become more and
more popular in the statistical process-control
field. If the properties and design strategies of
the EWMA control chart for the mean have been
thoroughly investigated, the use of the EWMA
as a tool for monitoring process variability has
received little attention in the literature. The goal
of this chapter is to present some recent innovative
EWMA-type control charts for the monitoring of
process variability (i. e. the sample variance,
sample standard-deviation and the range). In
the first section of this chapter, the definition of
an EWMA sequence and its main properties will
be presented together with the commonly used
procedures for the numerical computation of the
average run length (ARL). The second section will be
dedicated to the use of the EWMA as a monitoring
tool for the process position, i. e. sample mean
and sample median. In the third section, the use
of the EWMA for monitoring the sample variance,
sample standard deviation and the range will be
presented, assuming a fixed sampling interval
(FSI) strategy. Finally, in the fourth section of this
chapter, the variable sampling interval adaptive
version of the EWMA-S2 and EWMA-R control charts
will be presented.
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During the last decade, the use of the exponentially
weighted moving average (EWMA) statistic as a pro-
cess monitoring tool has become increasingly popular in
the field of statistical process control (SPC). If the prop-
erties and design strategies of the EWMA control chart
for the mean (introduced by Roberts [17.1]) have been
thoroughly investigated by Robinson and Ho [17.2],
Crowder [17.3] [17.4], Lucas and Saccucci [17.5] and
Steiner [17.6], the use of the EWMA as a tool for
monitoring the process variability has received little
attention in the literature. Some exceptions are the
papers by Wortham and Ringer [17.7], Sweet [17.8],
Ng and Case [17.9], Crowder and Hamilton [17.10],

Hamilton and Crowder [17.11] and MacGregor and
Harris [17.12], Gan [17.13], Amin et al. [17.14], Lu
and Reynolds [17.15], Acosta-Mejia et al. [17.16] and
Castagliola [17.17]. The goal of this chapter is to present
some recent innovative EWMA-type control charts for
the monitoring of process variability (i. e. the sample
variance, sample standard deviation and the range).
From an industrial perspective, the potential of EWMA
charts is important. Since their pioneer applications,
these charts have proved highly sensitivity in the detec-
tion of small shifts in the monitored process parameter,
due to the structure of the plotted EWMA statistic, which
takes into account the past history of the process at each
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sampling time: this allowed them to be considered as
valuable alternatives to the standard Shewhart charts, es-
pecially when the sample data needed to determine the
EWMA statistic can be collected individually and evalu-
ated automatically. As a consequence, the EWMAs have
been implemented successfully on continuous processes
such as those in chemical or food industries, where data
involving operating variables such as temperatures, pres-
sures, viscosity, etc. can be gathered and represented on
the chart directly by the control system for the process.
In the recent years, thanks to the development of simple
quality-control software tools, that can be easily man-
aged by workers and implemented on a common PC or
notebook, use of EWMAs has systematically been ex-
tended to processes for manufacturing discrete parts; in
this case, EWMAs that consider sample statistics like
mean, median or sample variance are particularly well
suited. Therefore, EWMA charts for monitoring process
mean or dispersion have been successfully implemented
in the semiconductor industry at the level of wafer fabri-
cation; these processes are characterized by an extremely
high level of precision in critical dimensions of parts
and therefore there is the need of a statistical tool that is
able to identify very small drifts in the process param-
eter to avoid the rejection of the product at the testing
stage or, in the worst case, during the operating condi-
tions, i.e., when the electronic device has been installed
on highly expensive boards. Other applications of EW-
MAs to manufacturing processes involve the assembly
operations in automotive industry, the technological pro-
cesses involving the production of mechanical parts like
CNC operations on machining centers, where process
variability should be maintained as small as possible,
and many others. Finally, it is important to note how
EWMAs are also spreading in service control activ-
ities; an interesting example is represented by recent

applications of EWMA charts to monitor healthcare
outcomes such as the occurrence of infections or mor-
tality rate after surgeries. Finally, EWMA charts can be
adopted for any manufacturing process or service with
a low effort and should always be preferred to Shewhart
charts when there is the need to detect small shifts in
the process parameters, as will be proven later in this
chapter.

Therefore, in the second section of this chapter the
definition of an EWMA sequence and its main prop-
erties will be presented together with the commonly
used procedures for the numerical computation of the
average run length (ARL). An important part of this
section will focus on the numerical computation of the
average run length (ARL). The third section will be ded-
icated to the use of the EWMA as a monitoring tool for
the process position, i. e. sample mean (EWMA-X̄) and
sample median (EWMA-X̃). In the fourth section, the
use of the EWMA for monitoring the sample variance
(EWMA-S2), sample standard deviation (EWMA-S)
and the range (EWMA-R) will be presented, assum-
ing a fixed sampling interval (FSI) strategy. In the fifth
section the variable sampling interval adaptive version
of the EWMA-S2 and EWMA-R control charts will be
presented.

The following notations are used – ARL: average
run length; ATS: average time to signal, hS, hL: short
and long sampling interval; K : width of the control lim-
its; λ: EWMA smoothing parameter; LCL, UCL: lower
and upper control limits; LWL, UWL: lower and upper
warning limits; µ0, σ0: in-control mean and standard
deviation; µ1, σ1: out-of-control mean and standard de-
viation; R, S, S2: range, sample standard deviation and
sample variance; τ : shift in the process position or dis-
persion; W : width of the warning limits; X̄, X̃: sample
mean and sample median.

17.1 Definition and Properties of EWMA Sequences

17.1.1 Definition

Let T1, . . . , Tk, . . . be a sequence of independently
and identically distributed (i.i.d.) random variables
and let λ ∈ [0, 1] be a constant. From the se-
quence T1, . . . , Tk, . . . we define a new sequence
Y1, . . . ,Yk, . . . using the following recurrence formula

Yk = (1−λ)Yk−1+λTk .

By decomposing Yk−1 in terms of Yk−2, and Yk−2
in terms of Yk−3 and so on, it is straightforward to

demonstrate that

Yk = (1−λ)kY0+λ

k−1∑

j=0

(1−λ) j Tk− j . (17.1)

This formula clearly shows that Yk is a lin-
ear combination of the initial random variable Y0
weighted by a coefficient (1−λ)k and the random
variables T1, . . . , Tk weighted by the coefficients
λ(1−λ)k−1, λ(1−λ)k−2, . . . , λ. For this reason, the
sequence Y1, . . . ,Yk, . . . is called an exponentially
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weighted moving average (EWMA) sequence. If the
random variables T1, . . . , Tk, . . . are, by definition, in-
dependent, the random variables Y1, . . . ,Yk, . . . are, by
definition, not independent. We can notice that

• when λ→ 0 the sequence Y1, . . . ,Yk, . . . tends
to be a smoothed version of the initial se-
quence T1, . . . , Tk, . . . . When λ = 0 we have
Yk = Yk−1 = · · · = Y0.• when λ→ 1 the sequence Y1, . . . ,Yk, . . . tends to
be a copy of the initial sequence T1, . . . , Tk, . . .

When λ= 1 we have Yk = Tk for k ≥ 1.

17.1.2 Expectation and Variance
of EWMA Sequences

Let µT = E(Tk) and σ2
T = V (Tk) be the expectation and

the variance of the random variables T1, . . . , Tk, . . .

Using (17.1), we find that the expected value of the
random variable Yk is:

E(Yk) = (1−λ)k E(Y0)+λµT

k−1∑

j=0

(1−λ) j

or, equivalently, that

E(Yk) = (1−λ)k E(Y0)+µT [1− (1−λ)k] .
Assuming E(Y0) = µT , for k ≥ 1 it results that

E(Yk) = µT .

Because the random variables T1, T2, . . . are supposed
to be independent, the variance V (Yk) of the random
variable Yk is

V (Yk) = (1−λ)2kV (Y0)+λ2σ2
T

k−1∑

j=0

(1−λ)2 j .

Replacing
∑k−1

j=0(1−λ)2 j by [1− (1−λ)2k]/[λ(2−λ)]
gives

V (Yk) = (1−λ)2kV (Y0)+λ2σ2
T

(
1− (1−λ)2k

λ(2−λ)

)
.

Finally, after some simplifications, we have

V (Yk) = (1−λ)2kV (Y0)

+
(

λ

2−λ

)
[1− (1−λ)2k]σ2

T .

Two common assumptions can be made to determine the
variance V (Y0) of the initial random variable Y0:

• If we assume V (Y0)= 0 (i. e., Y0 =µT is a constant)
then we have, for k ≥ 1,

V (Yk) =
(

λ

2−λ

)
[1− (1−λ)2k]σ2

T .

• If we assume V (Y0) = σ2
T then we have, for k ≥ 1,

V (Yk) =
(
λ+2(1−λ)2k+1

2−λ

)
σ2

T .

For either choice V (Y0) = 0 or V (Y0) = σ2
T , the asymp-

totic variance V∞(Yk) of the random variable Yk is

V∞(Yk) = lim
k→+∞ V (Yk) =

(
λ

2−λ

)
σ2

T .

17.1.3 The ARL for an EWMA Sequence

Let LCL and UCL be two constants satisfying
LCL < µT < UCL. Let fT (t) and FT (t) be the prob-
ability density function (p.d.f.) and the cumulative
distribution function (c.d.f.) of the random vari-
ables T1, . . . , Tk, . . . Because the random variables
T1, . . . , Tk, . . . are assumed to be independent, the av-
erage run length ARLT for the sequence T1, . . . , Tk, . . .

is given by

ARLT = 1

FT (LCL)+1− FT (UCL)
. (17.2)

Let ARLY (y) be the average run length of the EWMA
sequence Y1, . . . ,Yk, . . . assuming Y0 = y and let
ARLY = ARLY (µT ). The fact that the random variables
Y1, . . . ,Yk, . . . are not independent prevents the use
of (17.2) for computing ARLY (y). There are two main
approaches for computing ARLY .

The first approach is based on the fact that ARLY (y)
must satisfy the following equation

ARLY (y) = 1+
UCL∫

LCL

1

λ

× fT

(
z− (1−λ)y

λ

)
ARLY (z)dz .

This equation is a Fredholm equation of the second kind,
i. e.

f (y) = g(y)+
zn∫

z1

h(y, z) f (z)dz ,

Part
B

1
7
.1



294 Part B Process Monitoring and Improvement

where h(y, z) and g(y) are two known functions and
where f (z) is an unknown function that satisfies
the equation above. In our case, we have g(y) = 1,
h(y, z) = fT [z− (1−λ)y]/λ/λ and f (y) = ARLY (y).
The numerical evaluation of a Fredholm equation (see
Press et al. [17.18]) of the second kind consists of
approximating the integral operand by a weighted sum

f (y) � g(y)+
n∑

i=1

wi h(y, zi ) f (zi ) , (17.3)

where z1, z2, . . . , zn and w1, w2, . . . , wn are, respec-
tively, the abscissas and weights of a quadrature
method on [z1, zn] such as, for instance, the n-point
Gauss–Legendre quadrature. If we apply (17.3) for
y = z1, z2, . . . , zn , we have

f1 � g1+w1h1,1 f1+w2h1,2 f2+· · ·+wnh1,n fn ,

f2 � g2+w1h2,1 f1+w2h2,2 f2+· · ·+wnh2,n fn ,

...
...
...

fn � gn +w1hn,1 f1+w2hn,2 f2+· · ·+wnhn,n fn ,

where fi = f (zi ), gi = g(zi ) and hi, j = h(zi , z j ). This
set of equations can be rewritten in a matrix form

⎛
⎜⎜⎜⎜⎝

f1

f2
.
.
.

fn

⎞
⎟⎟⎟⎟⎠
�

⎛
⎜⎜⎜⎜⎝

g1

g2
.
.
.

gn

⎞
⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎝

w1h1,1 w2h1,2 · · · wnh1,n

w1h2,1 w2h2,2 · · · wnh2,n
.
.
.

.

.

.
. . .

.

.

.

w1hn,1 w2hn,2 · · · wnhn,n

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

f1

f2
.
.
.

fn

⎞
⎟⎟⎟⎟⎠

or in a more compact way as

f � g+H f .

H –1

H 0

H –m

H +1

H +m

2δ

LCL

UCL

Fig. 17.1 Interval between LCL and UCL divided into p =
2m+1 subintervals of width 2δ

Solving the equation above for f , we obtain (I−H) f �
g, and finally

f � (I−H)−1g .

The second approach is based on the flexible and
relatively easy to use Markov-chain approach, originally
proposed by Brook and Evans [17.19]. This procedure
involves dividing the interval between LCL and UCL
(Fig. 17.1) into p = 2m+1 subintervals of width 2δ,
where δ = (UCL−LCL)/(2p). When the number of
subintervals p is sufficiently large, the finite approach
provides an effective method that allows ARLY to be ac-
curately evaluated. The statistic Yk = (1−λ)Yk−1+λTk
is said to be in transient state j at time k if Hj −
δ < Yk < Hj + δ for j =−m, . . . ,−1, 0,+1, . . . ,m,
where Hj represents the midpoint of the j-th subin-
terval. The statistic Yk is in the absorbing state if
Yk �∈ [LCL,UCL]. An approximation for ARLY is given
by

ARLY � dTQg ,

where d is the (p, 1) initial probability vector, Q = (I−
P)−1 is the fundamental (p, p) matrix, P is the
(p, p) transition-probabilities matrix and g = 1 is
a (p, 1) vector of 1s. The initial probability vec-
tor d contains the probabilities that the statistic Yk
starts in a given state. This vector is such that, for
j =−m, . . . ,−1, 0,+1, . . . ,m,

d j =
⎧
⎨

⎩
1 if Hj − δ < Y0 < Hj + δ

0 otherwise .

This vector contains a single entry equal to 1, whereas its
2m remaining elements are all equal to 0. The transition-
probability matrix P contains the one-step transition
probabilities. The generic element pi, j of P represents
the probability that the statistic Yk goes from state i to
state j in one step. In order to approximate this proba-
bility, it is assumed that the statistic Yk is equal to Hj
whenever it is in state j, i. e.

pi, j � P

(
Hj − δ− (1−λ)Hi

λ
< Tk

<
Hj + δ− (1−λ)Hi

λ

)
.

This probability can be rewritten

pi, j � FT

(
Hj + δ− (1−λ)Hi

λ

)

− FT

(
Hj − δ− (1−λ)Hi

λ

)
.
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17.2 EWMA Control Charts for Process Position

17.2.1 EWMA-X̄ Control Chart

Let Xk,1, . . . , Xk,n be a sample of n independent nor-
mal (µ0, σ0) random variables, where µ0 is the nominal
process mean, σ0 is the nominal process standard devia-
tion and k is the subgroup number. Let X̄k be the sample
mean of subgroup k, i. e.,

X̄k = 1

n

n∑

j=1

Xk, j .

Traditional Shewhart control charts (X̄, R) or (X̄, S)
directly monitor the sample mean X̄k, in contrast to
EWMA-X̄ control charts, which monitor the statistic
Yk = (1−λ)Yk−1+λX̄k, i. e., Tk = X̄k. This implies that
µT =µ0 andσT = σ0/

√
n and, consequently, the (fixed)

control limits of the EWMA-X̄ control chart (introduced
by Roberts [17.1]) are

LCL = µ0−K

√
λ

2−λ

σ0√
n
,

UCL = µ0+K

√
λ

2−λ

σ0√
n
,

where K is a positive constant.

Example 17.1: Figure 17.2 reports a simulation of 200
data obtained from a manufacturing process: the 150 first
data plotted in Fig. 17.2 consist of m = 30 subgroups of
n = 5 observations randomly generated from a normal
(µ0 = 20, σ0 = 0.1) distribution; the remaining 50 data

Data

Subgroups
0

19.7

19.8

19.9

20

20.1

20.2

20.3

5 10 15 20 25 30 35 40

Fig. 17.2 Data with a half-standard-deviation shift in the
process mean/median

EWMA- -X

Subgroups
0

19.9
5 10 15 20 25 30 35 40

19.95

20

20.05

20.1

20.15

EWMA- -X

Subgroups
0

19.9
5 10 15 20 25 30 35 40

19.95

20

20.05

20.1

20.15

LCL

UCL

λ = 0.1

LCL

UCL

λ = 0.3

Fig. 17.3 EWMA-X̄ control charts corresponding to the
data in Fig. 17.2 for λ= 0.1 and λ= 0.3

are collected within 10 subgroups of n = 5 observations
randomly generated from a normal (20.05, 0.1) distribu-
tion: that is, the process position was shifted up by half
the nominal standard deviation. The process mean and
standard deviation were estimated by considering the
subgroups 1, . . . , 30, corresponding to the in-control
condition: µ̂0 = 19.99, σ̂0 = 0.099. Assuming K = 3,
the control limits of the EWMA chart are, respectively,
equal to:

• if λ= 0.1, LCL = 19.959 and UCL = 20.020,• if λ= 0.3, LCL = 19.934 and UCL = 20.046.

In Fig. 17.3, we plot the EWMA-X̄ control charts
for the cases λ= 0.1 and λ= 0.3. We can see that
these control charts detect an out-of-control signal
at the 34-th subgroup (in the case λ = 0.1) and
at the 33-rd subgroup (in the case λ = 0.3), point-
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ing out that an increasing of the process position
occurred.

17.2.2 EWMA-X̃ Control Chart

Let Xk,(1), . . . , Xk,(n) be the ordered sample corre-
sponding to Xk,1, . . . , Xk,n and let X̃k be the sample
median of subgroup k, i. e.

X̃k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xk,[(n+1)/2] if n is odd

Xk,(n/2)+ Xk,(n/2+1)

2
if n is even .

The EWMA-X̃ control chart is a natural extension of
the EWMA-X̄ control chart investigated by Castagli-
ola [17.20] where the monitored statistic is Yk = (1−
λ)Yk−1+λX̃k, i. e., Tk = X̃k. The (fixed) control limits
of the EWMA-X̃ control chart are

LCL = µ0−K

√
λ

2−λ
σ(X̃) ,

UCL = µ0+K

√
λ

2−λ
σ(X̃) ,

where σ(X̃) is the standard deviation of the sample me-
dian X̃. It is straightforward to show that σ(X̃) = σ0 ×
σ(Z̃) where σ(Z̃) is the standard deviation of the normal
(0, 1) sample median. The values of σ(Z̃) are tabulated
in Table 17.1 for n ∈ {3, 5, . . . , 25}, but they can also
be computed, when n is odd, (see Castagliola [17.21]),
using the following approximation

σ(Z̃) �
√

π

2(n+2)
+ π2

4(n+2)2 +
π2( 13

24π−1)

2(n+2)3 .

Table 17.1 Standard-deviation σ(Z̃) of the normal (0, 1)
sample median, for n ∈ {3, 5, . . . , 25}

n σ(Z̃)

3 0.6698

5 0.5356

7 0.4587

9 0.4076

11 0.3704

13 0.3418

15 0.3189

17 0.3001

19 0.2842

21 0.2707

23 0.2589

25 0.2485

EWMA- -X

Subgroups
0

19.9
5 10 15 20 25 30 35 40

19.95

20

20.05

20.1

20.15

EWMA- -X

Subgroups
0

19.9
5 10 15 20 25 30 35 40

19.95

20

20.05

20.1

20.15

LCL

UCL

λ = 0.1

LCL

UCL

λ = 0.3

Fig. 17.4 EWMA-X̃ control charts corresponding to the
data in Fig. 17.2 for λ= 0.1 and λ= 0.3

Example 17.2: using the same data (Fig. 17.2) as in the
previous example, we computed the control limits of the
EWMA-X̃ control chart (K = 3 assumed)

• if λ= 0.1, LCL = 19.953 and UCL = 20.026,• if λ= 0.3, LCL = 19.923 and UCL = 20.057.

In Fig. 17.4 we plot the EWMA-X̃ control charts for
the cases λ= 0.1 and λ= 0.3. Similarly to the EWMA-
X̄ control charts, we can see that these control charts
detect an out-of-control signal at the 36-th subgroup (in
the case λ= 0.1) and at the 33-rd subgroup (in the case
λ= 0.3), pointing out again that an increasing of the
process position occurred.

17.2.3 ARL Optimization for the EWMA-X̄
and EWMA-X̃ Control Charts

Let τ = |µ1−µ0|/σ0 be the usual variable reflecting the
shift in the process position, where µ1 is the new out-
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of-control process position. The ARL of the EWMA-X̄
and EWMA-X̃ control charts can be computed using
one of the methods presented in Sect. 17.2.3. The p.d.f
and c.d.f. fT (t) and FT (t), required for the computation
of ARLY , are

• for the EWMA-X̄ control chart

fT (t) =√
nφ[(t− τ)

√
n]

FT (t) =Φ[(t− τ)
√

n]
where φ(x) and Φ(x) are the p.d.f. and the c.d.f. of
the normal (0, 1) distribution.• for the EWMA-X̃ control chart

fT (t) = φ(t− τ) fβ

[
Φ(t− τ)|n+1

2
,

n+1

2

]
,

FT (t) = Fβ

[
Φ(t− τ)|n+1

2
,

n+1

2

]
,

where fβ(x|a, b) and Fβ(x|a, b) are the p.d.f. and
the c.d.f. of the (a, b) beta distribution.

The quality practitioner should be interested in de-
termining the optimal couples (λ∗, K∗) that allow one
to achieve:

• ARLY = ARL0, where ARL0 is the in-control ARL,
corresponding to the process functioning at nominal
position µ= µ0, that is to τ = 0;• A minimum value for the out-of-control ARL,
ARLY = ARL∗Y , valid when τ > 0.

Each couple (λ∗, K∗) is then optimally designed
for detecting a particular shift τ . We chose to take

ARL0 = 370.4 for the in-control ARL (corresponding
to the classical 3σ Shewhart control limits). In order to
compute the couples (λ∗, K∗), we adopted the following
approach

1. For every λ ∈ {0.01, 0.02, . . . , 1} and for τ = 0, we
computed (using a basic Newton-type algorithm)
the corresponding value K such that ARLY = ARL0.
At the end of this step, we have a set of pairs
{(0.01, K0.01), (0.02, K0.02), . . . , (1, K1)} candidat-
ing for the second step.

2. For every shift τ ∈ {0.1, 0.2, . . . , 2}, and for every
pair {(0.01, K0.01), (0.02, K0.02), . . . , (1, K1)} we
computed ARLY and chose the pair (λ∗, K∗) that
gave the minimum ARLY = ARL∗Y .

The optimal couples (λ∗, K∗) and the correspond-
ing minimal ARL∗ are shown in Table 17.2, for both the
EWMA-X̄ and EWMA-X̃ control charts. In Table 17.2,
we also added, for comparison purpose, the ARL of the
Shewhart X̄ and X̃ control charts. For example, the opti-
mal couple (λ∗, K∗) ensuring the smallest ARL for a shift
τ = 0.5 and n = 7 are (0.21, 2.869) for the EWMA-X̄
control chart and (0.16, 3.420) for the EWMA-X̃ con-
trol chart. In that case, the minimal ARL is ARL∗ = 6.3
for the EWMA-X̄ control chart (ARL = 21.4 for the X̄
control chart) and ARL∗ = 8.4 for the EWMA-X̃ control
chart (ARL = 37.1 for the X̃ control chart). Table 17.2
clearly demonstrates that, in terms of ARL, the EWMA-
X̄ control chart is more efficient than the EWMA-X̃
control chart and both the EWMA-X̄ and EWMA-X̃
control charts are more efficient, for small and medium
shift, than the traditional X̄ and X̃ control charts.

17.3 EWMA Control Charts for Process Dispersion

17.3.1 EWMA-S2 Control Chart

Let S2
k be the sample variance of subgroup k, i. e.,

S2
k =

1

n−1

n∑

j=1

(Xk, j − X̄k)2 ,

where X̄k is the sample mean of subgroup k. In or-
der to monitor the process variance, Crowder and
Hamilton [17.10], following a recommendation by
Box [17.22], suggested the application of the classi-
cal EWMA approach to the logarithm of the successive
sample variances, i. e. Tk = ln S2

k . The main motivation

for this approach is that Tk = ln S2
k , which has a log-

gamma distribution (Johnson et al. [17.23]), tends to be
more normally distributed than the sample variance S2

k .
A more recent idea developed by Castagliola [17.24]
was to apply a three-parameter (aS2 , bS2 , cS2 ) logarith-
mic transformation to S2

k , i. e. Tk = aS2 +bS2 ln(S2
k +

cS2 ), with cS2 > 0 (in order to avoid problems with the
logarithmic transformation). The main expectation of
this approach is that, if the parameters aS2 , bS2 and cS2

are judiciously selected, then this transformation may
result in better normality of Tk than the approach of
Crowder and Hamilton [17.10]. Trying to make Tk more
normally distributed is related to making the distribu-
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tion of Tk more symmetric. If the value of the expectation
E(Tk) and the standard deviationσ(Tk) of Tk correspond-
ing to the parameters aS2 , bS2 and cS2 are known, then
the (fixed) control limits of the EWMA-S2 control chart
are

LCL = E(Tk)−K

√
λ

2−λ
σ(Tk) , (17.4)

UCL = E(Tk)+K

√
λ

2−λ
σ(Tk) . (17.5)

The control limits given above correspond to a two-sided
EWMA control chart, but one-sided EWMA control lim-
its can also be considered. The approach suggested by
Castagliola [17.24] needs to define aS2 , bS2 , cS2 , E(Tk),
σ(Tk) and Y0. Let S2 be the sample variance of n inde-
pendent normal (µ0, 1) random variables. The p.d.f. and
the c.d.f of S2 are defined for s ≥ 0 and are equal to

fS2 (s) = fγ

(
s|n−1

2
,

2

n−1

)
,

FS2 (s) = Fγ

(
s|n−1

2
,

2

n−1

)
,

where fγ (x|u, v) and Fγ (x|u, v) are the p.d.f. and c.d.f.
of the gamma (u, v) distribution

fγ (x|u, v) =

⎧
⎪⎨

⎪⎩

0 (x ≤ 0)
xu−1 exp(−x/v)

vuΓ (u)
(x > 0) .

Consequently, the expectation E(S2), the variance
V (S2), and the skewness coefficient γ3(S2) of S2 are
equal to

E(S2) = 1 ,

V (S2) = 2

n−1
,

γ3(S2) =
√

8

n−1
.

In the approach developed by Castagliola [17.24],
three parameters AS2 (n), BS2 (n), and CS2 (n), de-
pending only on n, must be computed such that
T = AS2 (n)+ BS2 (n) ln[S2+CS2 (n)] is approximately
a normal (0, 1) random variable. Remembering that
S2 has a gamma distribution, i. e. a unimodal skewed
distribution, Castagliola suggested to find the three
parameters log-normal distribution (another skewed dis-
tribution), defined for x ≥−CS2 (n),

fL (x)= BS2 (n)

x
φ

[
AS2 (n)+BS2 (n) ln[x+CS2 (n)]

]
,

which is the closest to the distribution of S2, according
to a criterion based on the first three moments E(S2),
V (S2), and γ3(S2) of S2. If S2 would have a log-normal
distribution, then T = AS2 (n)+ BS2 (n) ln[S2+CS2 (n)]
would have exactly a normal (0, 1) distribution. By
looking for a log-normal distribution which fits approx-
imately the (gamma) distribution of S2, we expect that
T will have an approximate normal (0, 1) distribution.
What Castagliola suggested is to find parameters AS2(n),
BS2 (n), and CS2 (n) such that the log-normal distribu-
tion fL(x) fits the first three moments E(S2), V (S2),
and γ3(S2) of S2. This can be achieved (Stuart and
Ord [17.25]) by firstly computing

w=
[√

γ 2
3 (S2)/4+1+γ3(S2)/2

]1/3

−
[√

γ 2
3 (S2)/4+1−γ3(S2)/2

]1/3

and then

BS2 (n) = 1√
ln(w2+1)

,

AS2 (n) = BS2 (n)

2
ln

(
w2(w2+1)

V (S2)

)
,

CS2 (n) =
√

V (S2)

w
− E(S2) .

The value of the constants AS2 (n), BS2 (n) and CS2 (n)
can be found in Table 17.3 for n ∈ {3, . . . , 15}. For the
random variable S2

k = σ2
0 S2 [corresponding to the sam-

ple variance of n independent normal (µ0, σ0) random
variables], it is straightforward to see that

T = AS2 (n)+ BS2 (n) ln
[
S2+CS2 (n)

]

= AS2 (n)+ BS2 (n) ln
[
S2

k/σ
2
0 +CS2 (n)

]

= AS2 (n)−2BS2 (n) ln(σ0)+ BS2 (n) ln
[
S2

k

+CS2 (n)σ2
0

]
.

Consequently, if the parameters aS2 , bS2 and cS2 are
defined such that

bS2 = BS2 (n) ,

cS2 = CS2 (n)σ2
0 ,

aS2 = AS2 (n)−2BS2 (n) ln(σ0) ,

then T = aS2 +bS2 ln(S2
k + cS2 ) = Tk . This ensures that

Tk = aS2 +bS2 ln(S2
k + cS2 ) will also be approximately

a normal (0, 1) random variable. Because Tk = T , the
distribution fT (t) of Tk depends only on n. This distri-
bution is defined for t ≥ AS2 (n)+ BS2 (n) ln[CS2 (n)] and
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Table 17.3 Constants AS2 (n), BS2 (n), CS2 (n), Y0, E(Tk), σ(Tk), γ3(Tk) and γ4(Tk) for the EWMA-S2 control chart, for
n ∈ {3, . . . , 15}

EWMA-S2

n AS2 (n) BS2 (n) CS2 (n) Y0 E(Tk) σ(Tk) γ3(Tk) γ4(Tk)

3 −0.6627 1.8136 0.6777 0.276 0.024 72 0.9165 0.5572 −0.3206

4 −0.7882 2.1089 0.6261 0.237 0.012 66 0.9502 0.3752 −0.3947

5 −0.8969 2.3647 0.5979 0.211 0.007 48 0.9670 0.2746 −0.3803

6 −0.9940 2.5941 0.5801 0.193 0.004 85 0.9765 0.2119 −0.3478

7 −1.0827 2.8042 0.5678 0.178 0.003 35 0.9825 0.1697 −0.3142

8 −1.1647 2.9992 0.5588 0.167 0.002 43 0.9864 0.1398 −0.2837

9 −1.2413 3.1820 0.5519 0.157 0.001 82 0.9892 0.1176 −0.2572

10 −1.3135 3.3548 0.5465 0.149 0.001 41 0.9912 0.1007 −0.2344

11 −1.3820 3.5189 0.5421 0.142 0.001 12 0.9927 0.0874 −0.2147

12 −1.4473 3.6757 0.5384 0.136 0.000 90 0.9938 0.0768 −0.1978

13 −1.5097 3.8260 0.5354 0.131 0.000 74 0.9947 0.0681 −0.1831

14 −1.5697 3.9705 0.5327 0.126 0.000 62 0.9955 0.0610 −0.1703

15 −1.6275 4.1100 0.5305 0.122 0.000 52 0.9960 0.0550 −0.1591

Table 17.4 Optimal couples (λ∗, K∗) and optimal ARL∗ for the EWMA-S2 control chart, for τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05,
1.1, 1.2, . . . , 2}, n ∈ {3, 5, 7, 9} and ARL0 = 370.4

EWMA-S2

τ n = 3 n = 5 n = 7 n = 9

λ∗ K∗ ARL∗ S2 λ∗ K∗ ARL∗ S2 λ∗ K∗ ARL∗ S2 λ∗ K∗ ARL∗ S2

0.60 0.10 2.690 17.8 267.0 0.17 2.782 9.0 102.2 0.25 2.836 6.2 45.6 0.31 2.863 4.7 23.6

0.70 0.08 2.644 28.5 363.1 0.12 2.724 14.6 184.5 0.17 2.791 10.0 102.5 0.20 2.823 7.7 62.3

0.80 0.05 2.547 54.3 467.0 0.08 2.635 28.2 308.2 0.10 2.689 19.5 211.8 0.12 2.733 15.1 152.5

0.90 0.05 2.547 155.8 512.1 0.05 2.515 81.0 445.8 0.05 2.505 56.8 384.1 0.06 2.556 44.7 333.1

0.95 0.05 2.547 325.7 463.7 0.05 2.515 202.9 451.0 0.05 2.505 150.6 433.1 0.05 2.501 120.9 414.7

1.05 0.05 2.547 153.6 268.8 0.05 2.515 121.4 253.5 0.05 2.505 99.3 242.1 0.05 2.501 84.0 232.3

1.10 0.05 2.547 64.9 186.4 0.05 2.515 44.8 159.6 0.05 2.505 34.9 140.8 0.05 2.501 29.0 126.2

1.20 0.05 2.547 21.6 90.1 0.05 2.515 15.3 64.5 0.05 2.505 12.4 50.0 0.05 2.501 10.7 40.5

1.30 0.05 2.547 11.6 48.0 0.05 2.515 8.8 30.5 0.05 2.505 7.4 22.0 0.05 2.501 6.6 16.9

1.40 0.05 2.547 7.8 28.5 0.05 2.515 6.2 16.8 0.05 2.505 5.3 11.7 0.30 2.861 4.7 8.8

1.50 0.05 2.547 5.9 18.6 0.05 2.515 4.8 10.5 0.42 2.848 4.2 7.2 0.46 2.864 3.4 5.4

1.60 0.05 2.547 4.8 13.1 0.05 2.515 4.0 7.2 0.49 2.839 3.2 4.9 0.54 2.854 2.7 3.7

1.70 0.05 2.547 4.0 9.8 0.05 2.515 3.5 5.3 0.57 2.827 2.6 3.6 0.65 2.836 2.2 2.8

1.80 0.05 2.547 3.5 7.7 0.55 2.830 2.9 4.2 0.66 2.811 2.2 2.9 0.73 2.822 1.9 2.2

1.90 0.05 2.547 3.1 6.2 0.55 2.830 2.5 3.4 0.66 2.811 2.0 2.4 0.77 2.815 1.6 1.9

2.00 0.05 2.547 2.9 5.2 0.63 2.829 2.3 2.9 0.74 2.799 1.8 2.0 0.78 2.813 1.5 1.6

is equal to

fT (t) = 1

BS2 (n)
exp

(
t− AS2 (n)

BS2 (n)

)

× fS2

[
exp

(
t− AS2 (n)

BS2 (n)

)
−CS2 (n)|n

]
.

The fact that the distribution fT (t) of Tk depends only
on n is important since it allows the calculation of the

values of E(Tk) and σ(Tk) independently of the value
of σ0. The computation of E(Tk) and σ(Tk) has been
achieved by numerical quadrature for n ∈ {3, . . . , 15},
and the results are also shown in Table 17.3. Due to
the fact that E(Tk) approximates 0, whatever the sample
size n, setting E(Tk) = 0 does not introduce significant
errors into the statistical model. Finally, it seems logical
to define the first value Y0 = E[aS2 +bS2 ln(S2+ cS2 )].
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Using the first-order expansion of the expectation, we
deduce Y0 � aS2 +bS2 ln(σ2

0 + cS2 ). Then by replacing
aS2 , bS2 and cS2 with AS2 (n)−2BS2 (n) ln(σ0), BS2 (n)
and CS2 (n)σ2

0 , we have

Y0 � AS2 (n)−2BS2 (n) ln(σ0)

+ BS2 (n) ln[σ2
0 +CS2 (n)σ2

0 ] .
After simplifications, we obtain:

Y0 � AS2 (n)+ BS2 (n) ln[1+CS2 (n)] .
As can be noticed, this value depends only on n and not
on σ0. The values for Y0 are given in Table 17.3. One
can note that these values are also close to 0 and can be
replaced by 0 in practice with little practical effect.

Example 17.3: The goal of this example is to show how
the EWMA-S2 control chart behaves in the case of an
increase and a decrease in the nominal process variabil-
ity. The first 100 data points plotted in Fig. 17.5 (top and
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Fig. 17.5 Data with an increasing variance (top), and with
a decreasing variance (bottom)
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0

0
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0.02

0.04

0.06

0.08

0.1

0.12
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Decreasing case

Fig. 17.6 Sample variances S2
k corresponding to the data

of Fig. 17.5

bottom) consist of 20 identical subgroups of n = 5 ob-
servations randomly generated from a normal (20, 0.1)
distribution (corresponding to an in-control process),
while the last 50 data points of Fig. 17.5 (top) consist of
10 subgroups of n = 5 observations randomly generated
from a normal (20, 0.2) distribution (the nominal pro-
cess standard deviation σ0 has increased by a factor of 2),
and the last 50 data points of Fig. 17.5 (bottom) consist
of 10 subgroups of n = 5 observations randomly gener-
ated from a normal (20, 0.05) distribution (the nominal
process standard deviation σ0 has decreased by a fac-
tor of 2). The corresponding 30 sample variances are
plotted in Fig. 17.6, for the two cases (increasing and

Tk = aS2 + bS2 ln(Sk
2 + cS2)

Subgroups
0

–2
5 10 15 20 25 30

–1
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1
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5
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Decreasing case

Fig. 17.7 Transformed sample variances Tk = aS2 +
bS2 ln(S2

k + cS2 ) corresponding to the data of Fig. 17.5
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EWMA-S 2
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UCL

LCL

Fig. 17.8 EWMA-S2 control chart (λ= 0.1, K = 3) corre-
sponding to the data of Fig. 17.5

decreasing). At this step, the asymmetry between in-
creasing and decreasing sample variances is particularly
noticeable. If n = 5 and σ0 = 0.1, then bS2 = 2.3647,
cS2 = 0.5979 × 0.12 = 0.005 979 and aS2 =−0.8969−
2 × 2.3647 × ln(0.1)= 9.9929. The 30 transformed sam-
ple variances are plotted in Fig. 17.7 and the EWMA-S2

sequence along with the EWMA-S2 control lim-
its LCL = 0.0075−3

√
0.1/1.9 × 0.967 = −0.658 and

UCL = 0.0075+3
√

0.1/1.9 × 0.967 = 0.673 (λ = 0.1
and K = 3) are plotted in Fig. 17.8. The EWMA-S2

control chart clearly detects an out-of-control signal
at the 25-th subgroup (in the increasing case) and at
the 26-th subgroup (in the decreasing case), pointing
out that an increase/decrease of the process variability
occurred.

The distribution fT (t) of Tk = aS2 +bS2 ln(S2
k +

cS2 ) (plain line) for n ∈ {3, 5, 7, 9}, and the normal
(0, 1) distribution (dotted line) are plotted in Fig. 17.9.
The distribution of Tk is defined for t ≥ AS2 (n)+
BS2 (n) ln[CS2 (n)], while the normal (0, 1) distribution
is defined on ]−∞,+∞[. This difference is partic-
ularly important for n = 3. It is clear that when n
increases, the distribution of Tk becomes closer to the
normal (0, 1) distribution, and the lower bound AS2 (n)+
BS2 (n) ln[CS2 (n)]→−∞. By numerical quadrature, the
skewness coefficient γ3(Tk) = µ3(Tk)/V 3/2(Tk) and the
kurtosis coefficient γ4(Tk) = µ4(Tk)/V 2(Tk)−3 of Tk
have been computed for n = 3, . . . , 15. The results are
shown in Table 17.3. As expected, when n increases,
Tk becomes more normally distributed, i. e., γ3(Tk)→ 0
and γ4(Tk) → 0.

Let σ1 be the new out-of-control process standard
deviation and let τ = σ1/σ0 be the variable reflecting
the shift in the process variability. Let S

′2
k = σ2

1 S2 be
the sample variance of n independent normal (µ0, σ1)
random variables (i. e. the sample variance after a shift
τ), and let T ′

k = aS2 +bS2 ln(S
′2
k + cS2 ). If aS2 , bS2 ,

cS2 and S
′2
k are respectively replaced by AS2 (n)−

2BS2 (n) ln(σ0), BS2 (n), σ0CS2 (n) and σ2
1 S2, then

T ′
k = AS2 (n)−2BS2 (n) ln(σ0)

+ BS2 (n) ln
[
σ2

1 S2+σ2
0 CS2 (n)

]

= AS2 (n)−2BS2 (n) ln(σ0)

+ BS2 (n) ln
{
σ2

0 [τ2S2+CS2 (n)]
}

= AS2 (n)+ BS2 (n) ln[τ2S2+CS2 (n)] .
This result clearly shows that the distribution fT ′ (t) of
T ′

k is equal to the distribution of the transformed random
variable τ2S2. Consequently the p.d.f and the c.d.f of T ′

k
are

fT ′ (t)= 1

τ2 BS2 (n)
exp

(
t−AS2 (n)

BS2 (n)

)

× fS2

{
1

τ2

[
exp

(
t−AS2 (n)

BS2 (n)

)
−CS2 (n)

]
|n
}
,

FT ′ (t)=FS2

{
1

τ2

[
exp

(
t−AS2 (n)

BS2 (n)

)
−CS2 (n)

]
|n
}
.

The ARL of the EWMA-S2 control chart can be com-
puted using one of the methods presented in Sect. 17.1.3.
Like for the EWMA-X̄ and EWMA-X̃ control charts, it
is sometimes interesting for the quality practitioner to
know the optimal couples (λ∗, K∗) that give the same
in-control ARLY = ARL0 (i. e. the ARL when the pro-
cess is functioning at the nominal variability σ = σ0 or
equivalently τ = 1) and then find, for a specified value of
the shift τ , the unique couple (λ∗, K∗) which yields the
smallest possible out-of-control ARLY = ARL∗. In order
to compute the couples (λ∗, K∗) for the EWMA-S2 con-
trol chart, the same approach as in the EWMA-X̄ and
EWMA-X̃ control charts was adopted:

1. For every λ ∈ {0.05, 0.06, . . . , 1} and for τ = 1,
we computed the corresponding value K such that
ARLY = ARL0. At the end of this step, we have a set
of pairs {(0.05, K0.05), (0.06, K0.06), . . . , (1, K1)}
candidating for the second step.

2. For every shift τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05,
1.1, 1.2, . . . , 2}, and for every pair {(0.05, K0.05),
(0.06, K0.06), . . . , (1, K1)} we computed ARLY and
chose the pair (λ∗, K∗) which gave the minimum
ARLY = ARL∗Y .
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n = 7 n = 9

–4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

–3 –2 –1 0 1 2 3 4 –4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

–3 –2 –1 0 1 2 3 4

–4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

–3 –2 –1 0 1 2 3 4 –4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

–3 –2 –1 0 1 2 3 4

n = 3 n = 5

Fig. 17.9 Distribution fT (t) of Tk = aS2 +bS2 ln(S2
k + cS2 ) (plain line) compared with the normal (0, 1) distribution

(dotted line), for n ∈ {3, 5, 7, 9}

The optimal couples (λ∗, K∗) for the EWMA-S2

control chart and the corresponding minimal ARL∗ are
shown in Table 17.4. In Table 17.4, we also added, for
comparison purpose, the ARL of the classic S2 con-
trol chart. For example, the optimal couple (λ∗, K∗)
ensuring the smallest ARL for a shift τ = 1.2 and n = 7
is (0.05, 2.505) and the corresponding minimal ARL is
ARL∗ = 12.4, while for the classic S2 control chart, we
have ARL = 50.0. This is just an example of the supe-
riority of the EWMA-S2 control chart (with optimized
parameters) over the classical S2 control chart when the
shift τ is small.

17.3.2 EWMA-S Control Chart

The EWMA-S control chart proposed by Castagli-
ola [17.26] is a natural extension of the EWMA-S2

control chart where a three-parameter (aS, bS, cS) loga-

rithmic transformation is applied to the sample standard
deviation Sk, [i. e. Tk = aS +bS ln(Sk + cS)], instead
of the sample variance S2

k . The control limits of the
EWMA-S control chart are given by (17.4) and (17.5)
but with different values for E(Tk) and σ(Tk). The p.d.f.
and the c.d.f. of S are defined for s ≥ 0 and are equal to

fS(s) = 2s fγ

(
s2|n−1

2
,

2

n−1

)
,

FS(s) = Fγ

(
s2|n−1

2
,

2

n−1

)
,

and the mean E(S), the variance V (S), and the skewness
coefficient γ3(S) of S are equal to

E(S) = KS(n, 1) ,

V (S) = 1−K2
S(n, 1) ,
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Table 17.5 Constants AS(n), BS(n), CS(n), Y0, E(Tk), σ(Tk), γ3(Tk) and γ4(Tk) for the EWMA-S control chart, for
n ∈ {3, . . . , 15}

EWMA-S

n AS(n) BS(n) CS(n) Y0 E(Tk) σ(Tk) γ3(Tk) γ4(Tk)

3 −3.8134 4.8729 1.3474 0.1026 0.000 92 0.9917 0.1361 −0.4489

4 −5.4669 6.2696 1.5009 0.0797 0.000 30 0.9965 0.0741 −0.3221

5 −6.8941 7.4727 1.5984 0.0669 0.000 14 0.9981 0.0472 −0.2454

6 −8.1528 8.5370 1.6650 0.0586 0.000 07 0.9988 0.0331 −0.1964

7 −9.2839 9.4980 1.7131 0.0526 0.000 04 0.9992 0.0248 −0.1628

8 −10.3158 10.3789 1.7493 0.0482 0.000 03 0.9994 0.0194 −0.1387

9 −11.2684 11.1958 1.7776 0.0447 0.000 02 0.9996 0.0157 −0.1206

10 −12.1562 11.9605 1.8002 0.0418 0.000 01 0.9997 0.0130 −0.1066

11 −12.9901 12.6813 1.8186 0.0394 0.000 01 0.9997 0.0110 −0.0955

12 −13.7783 13.3650 1.8340 0.0374 0.000 01 0.9998 0.0095 −0.0864

13 −14.5272 14.0164 1.8469 0.0357 0.000 01 0.9998 0.0082 −0.0789

14 −15.2418 14.6397 1.8581 0.0342 0.000 01 0.9998 0.0073 −0.0725

15 −15.9264 15.2382 1.8677 0.0328 0.000 00 0.9999 0.0065 −0.0671

γ3(S) = KS(n, 3)−3KS(n, 1)+2K3
S(n, 1)

[1−K2
S(n, 1)]3/2

,

where

KS(n, r)= Γ [(n−1+r)/2]
Γ [(n−1)/2]

(
2

n−1

)r/2

.

Using similar demonstrations as for the EWMA-S2 con-
trol chart, it can be proven that the constants aS, bS and cS
required for the transformation Tk = aS+bS ln(Sk +cS)
can be deduced from the constants AS(n), BS(n) and
CS(n) using the following relations

bS = BS(n) ,

cS = CS(n)σ0 ,

aS = AS(n)− BS(n) ln(σ0) .

It can also be proven that the initial value Y0 is equal to

Y0 = AS(n)+ BS(n) ln[KS(n, 1)+CS(n)] .
All the constants AS(n), BS(n), CS(n), Y0, E(Tk) and
σ(Tk), useful for the EWMA-S control chart, are shown
in Table 17.5 for n ∈ {3, . . . , 15}.
Example 17.4: The goal of this example is to show
how the EWMA-S control chart behaves in the case
of an increase and a decrease in the nominal pro-
cess variability. We reuse the data in Fig. 17.5 (top
and bottom). The corresponding 30 sample standard
deviations are plotted in Fig. 17.10, for the two cases
(increasing and decreasing). If n = 5 and σ0 = 0.1,

then bS = 7.4727, cS = 1.5984 × 0.1 = 0.159 84 and
aS = −6.8941−7.4727 × ln(0.1) = 10.3124. The 30
transformed sample standard deviations are plotted
in Fig. 17.11 and the EWMA-S sequence along with the
EWMA-S control limits LCL= 0.000 14−3

√
0.1/1.9×

0.9981 =−0.687 and UCL = 0.000 14+3
√

0.1/1.9 ×
0.9981 = 0.687 (λ = 0.1 and K = 3) are plotted in
Fig. 17.12. The EWMA-S control chart clearly detects
an out-of-control signal at the 25-th subgroup (in the
increasing case) and at the 26-th subgroup (in the de-
creasing case), pointing out that an increase/decrease of
the standard deviation occurred.

Sk

Subgroups
0

0
5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Increasing case

Decreasing case

Fig. 17.10 Sample standard deviations Sk corresponding to
the data of Fig. 17.5
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Tk = aS + bS ln(Sk + cS)

Subgroups
0
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–2
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0
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4

5
Increasing case

Decreasing case

Fig. 17.11 Transformed standard deviations Tk = aS +
bS ln(Sk + cS) corresponding to the data of Fig. 17.5

–4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

–3 –2 –1 0 1 2 3 4 –4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

–3 –2 –1 0 1 2 3 4

–4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

–3 –2 –1 0 1 2 3 4 –4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

–3 –2 –1 0 1 2 3 4

n = 3 n = 5

n = 7 n = 9

Fig. 17.13 Distribution fT (t) of Tk = aS +bS ln(Sk +cS) (plain line) compared with the normal (0, 1) distribution (dotted
line), for n ∈ {3, 5, 7, 9}
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Fig. 17.12 EWMA-S control chart (λ= 0.1, K = 3) corre-
sponding to the data of Fig. 17.5
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Table 17.6 Optimal couples (λ∗, K∗) and optimal ARL∗ for the EWMA-S control chart, for τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05,
1.1, 1.2, . . . , 2}, n ∈ {3, 5, 7, 9} and ARL0 = 370.4

EWMA-S

τ n = 3 n = 5 n = 7 n = 9

λ∗ K∗ ARL∗ S λ∗ K∗ ARL∗ S λ∗ K∗ ARL∗ S λ∗ K∗ ARL∗ S

0.60 0.10 2.680 14.9 267.0 0.17 2.800 7.9 102.2 0.25 2.867 5.6 45.6 0.29 2.892 4.4 23.6

0.70 0.07 2.590 24.3 363.1 0.12 2.732 13.0 184.5 0.14 2.772 9.1 102.5 0.19 2.834 7.2 62.3

0.80 0.05 2.491 46.2 467.0 0.07 2.594 25.0 308.2 0.08 2.635 17.7 211.8 0.11 2.720 13.9 152.5

0.90 0.05 2.491 132.9 512.1 0.05 2.490 72.2 445.8 0.05 2.490 51.0 384.1 0.05 2.490 40.1 333.1

0.95 0.05 2.491 273.7 463.7 0.05 2.490 183.7 451.0 0.05 2.490 139.2 433.1 0.05 2.490 112.5 414.7

1.05 0.05 2.491 197.7 268.8 0.05 2.490 145.6 253.5 0.05 2.490 115.2 242.1 0.05 2.490 95.8 232.3

1.10 0.05 2.491 94.4 186.4 0.05 2.490 58.8 159.6 0.05 2.490 43.7 140.8 0.05 2.490 35.5 126.2

1.20 0.05 2.491 35.7 90.1 0.05 2.490 22.0 64.5 0.05 2.490 16.7 50.0 0.10 2.696 13.6 40.5

1.30 0.05 2.491 20.4 48.0 0.11 2.713 12.8 30.5 0.17 2.809 9.5 22.0 0.18 2.824 7.7 16.9

1.40 0.05 2.491 14.2 28.5 0.20 2.824 8.6 16.8 0.24 2.862 6.3 11.7 0.32 2.902 5.1 8.8

1.50 0.20 2.793 10.6 18.6 0.32 2.868 6.3 10.5 0.34 2.894 4.6 7.2 0.41 2.918 3.7 5.4

1.60 0.43 2.791 8.1 13.1 0.43 2.870 4.8 7.2 0.49 2.903 3.6 4.9 0.55 2.922 2.9 3.7

1.70 0.56 2.753 6.4 9.8 0.51 2.861 3.9 5.3 0.53 2.901 2.9 3.6 0.63 2.919 2.4 2.8

1.80 0.62 2.734 5.3 7.7 0.60 2.846 3.2 4.2 0.64 2.892 2.4 2.9 0.69 2.916 2.0 2.2

1.90 0.65 2.725 4.5 6.2 0.66 2.835 2.8 3.4 0.70 2.886 2.1 2.4 0.74 2.913 1.7 1.9

2.00 0.67 2.720 3.9 5.2 0.70 2.827 2.4 2.9 0.74 2.882 1.9 2.0 0.74 2.913 1.6 1.6

The distribution fT (t) of Tk = aS +bS ln(Sk + cS)
(plain line) for n ∈ {3, 5, 7, 9}, and the normal (0, 1)
distribution (dotted line) are plotted in Fig. 17.13. It is
clear that, when n increases, the distribution of Tk be-
comes closer to the normal (0, 1) distribution, and the
lower bound AS(n)+ BS(n) ln[CS(n)] → −∞. By nu-
merical quadrature, the skewness coefficient γ3(Tk) and
the kurtosis coefficient γ4(Tk) of Tk have been computed
for n ∈ {3, . . . , 15}; see Table 17.5. As expected, when
n increases, Tk becomes more normally distributed, i. e.,
γ3(Tk) → 0 and γ4(Tk) → 0.

The p.d.f and the c.d.f of the transformed sample
standard deviation T ′

k = aS +bS ln(S′k + cS) after a shift
τ are equal to

fT ′ (t) = 1

τBS(n)
exp

(
t− AS(n)

BS(n)

)

× fS

{
1

τ

[
exp

(
t− AS(n)

BS(n)

)
−CS(n)

]
|n
}

,

FT ′ (t) = FS

{
1

τ

[
exp

(
t− AS(n)

BS(n)

)
−CS(n)

]
|n
}

.

The ARL of the EWMA-S control chart can be com-
puted using one of the methods presented in Sect. 17.2.3.
The method used for computing the optimal couples
(λ∗, K∗) and the corresponding minimal ARL∗ for the
EWMA-S control chart is exactly the same as the one

used for the EWMA-S2 control chart. The results are
shown in Table 17.6. In Table 17.6, we also added, for
comparison purpose, the ARL of the classical S con-
trol chart. For example, the optimal couple (λ∗, K∗)
ensuring the smallest ARL for a shift τ = 1.2 and n = 7
is (0.05, 2.490) and the corresponding minimal ARL is
ARL∗ = 16.7, while for the classic S control chart, we
have ARL= 50.0. Like the EWMA-S2 control chart, the
EWMA-S control chart (with optimized parameters) is
more efficient, in terms of ARL, than the S2 or S con-
trol chart. The results of both EWMA-S2 and EWMA-S
control chart are very similar. The main difference is
that for the decreasing case (τ < 1) the optimal ARL∗s
of the EWMA-S control chart are smaller than those of
the EWMA-S2 control chart, while for the increasing
case (τ > 1) the opposite results.

17.3.3 EWMA-R Control Chart

Let Rk be the range of the subgroup k, i. e.,

Rk = max(Xk,1, . . . , Xk,n)−min(Xk,1, . . . , Xk,n) .

The EWMA-R control chart proposed by Castagli-
ola [17.27] is a natural extension of the EWMA-S2

control chart where a three-parameter (aR, bR, cR) log-
arithmic transformation is applied to the range Rk, [i. e.
Tk = aR +bR ln(Rk + cR)], instead of the sample vari-
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Table 17.7 Expectation E(R), variance V (R) and skewness
coefficient γ3(R) of R

n E(R) V(R) γ3(R)

3 1.6926 0.7892 0.6461

4 2.0588 0.7741 0.5230

5 2.3259 0.7466 0.4655

6 2.5344 0.7192 0.4350

7 2.7044 0.6942 0.4176

8 2.8472 0.6721 0.4073

9 2.9700 0.6526 0.4011

10 3.0775 0.6353 0.3976

11 3.1729 0.6199 0.3957

12 3.2585 0.6060 0.3949

13 3.3360 0.5935 0.3949

14 3.4068 0.5822 0.3953

15 3.4718 0.5719 0.3961

ance S2
k . The control limits of the EWMA-R control

chart are given by (17.4) and (17.5) but with different
values for E(Tk) and σ(Tk). Let R be the range of n in-
dependent normal (µ0, 1) random variables. The p.d.f.
fR(r) of R is defined for r ≥ 0 and is given by the
well-known relation

fR(r) = n(n−1)

+∞∫

−∞
φ(u)φ(r+u)[Φ(r+u)

−Φ(u)]n−2 du .

Table 17.8 Constants AR(n), BR(n), CR(n), Y0, E(Tk), σ(Tk), γ3(Tk) and γ4(Tk) for the EWMA-R control chart, for
n ∈ {3, . . . , 15}

EWMA-R

n AR(n) BR(n) CR(n) Y0 E(Tk) σ(Tk) γ3(Tk) γ4(Tk)

3 −6.7191 4.7655 2.4944 0.105 0.000 96 0.9915 0.1370 −0.4429

4 −9.4200 5.8364 3.0385 0.086 0.000 36 0.9961 0.0761 −0.3099

5 −11.1940 6.5336 3.2866 0.077 0.000 19 0.9977 0.0499 −0.2288

6 −12.3056 6.9804 3.3549 0.072 0.000 12 0.9985 0.0361 −0.1767

7 −12.9778 7.2649 3.3202 0.069 0.000 09 0.9989 0.0278 −0.1412

8 −13.3653 7.4446 3.2286 0.067 0.000 07 0.9991 0.0223 −0.1158

9 −13.5689 7.5559 3.1072 0.066 0.000 05 0.9993 0.0185 −0.0969

10 −13.6531 7.6220 2.9715 0.066 0.000 04 0.9994 0.0157 −0.0823

11 −13.6595 7.6576 2.8304 0.065 0.000 04 0.9995 0.0135 −0.0708

12 −13.6151 7.6726 2.6892 0.065 0.000 03 0.9995 0.0118 −0.0615

13 −13.5378 7.6736 2.5508 0.065 0.000 03 0.9996 0.0105 −0.0538

14 −13.4393 7.6647 2.4167 0.065 0.000 03 0.9996 0.0093 −0.0474

15 −13.3276 7.6492 2.2879 0.065 0.000 02 0.9997 0.0084 −0.0420
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Fig. 17.14 Sample ranges Rk corresponding to the data
of Fig. 17.5

In order to compute the constants AR(n), BR(n) and
CR(n), the expectation E(R), the variance V (R) and the
skewness coefficient γ3(R) of R have been computed by
numerical quadrature and are tabulated in Table 17.7.
Using similar demonstrations as for the EWMA-S con-
trol chart, it can be proven that the constants aR, bR and
cR required for the transformation Tk = aR+bR ln(Rk+
cR) can be deduced from the constants AR(n), BR(n) and
CR(n) using the following relations

bR = BR(n) ,

cR = CR(n)σ0 ,
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Tk = aR + bR ln(Rk + cR)
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Fig. 17.15 Transformed ranges Tk = aR +bR ln(Rk + cR)
corresponding to the data of Fig. 17.5
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Fig. 17.17 Distribution fT (t) of Tk = aR+bR ln(Rk+cR) (plain line) compared with the normal (0, 1) distribution (dotted
line), for n ∈ {3, 5, 7, 9}
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Fig. 17.16 EWMA-R control chart (λ= 0.1, K = 3) corre-
sponding to the data of Fig. 17.5
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Table 17.9 Optimal couples (λ∗, K∗) and optimal ARL∗ for the EWMA-R control chart, for τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05,
1.1, 1.2, . . . , 2}, n ∈ {3, 5, 7, 9} and ARL0 = 370.4

EWMA-R

τ n = 3 n = 5 n = 7 n = 9

λ∗ K∗ ARL∗ R λ∗ K∗ ARL∗ R λ∗ K∗ ARL∗ R λ∗ K∗ ARL∗ R

0.60 0.10 2.680 15.0 267.0 0.18 2.811 8.2 102.4 0.22 2.854 5.9 46.4 0.27 2.890 4.7 24.8

0.70 0.07 2.591 24.5 363.0 0.11 2.714 13.4 184.7 0.15 2.788 9.7 103.6 0.17 2.817 7.8 64.2

0.80 0.05 2.491 46.6 466.3 0.07 2.595 25.9 307.9 0.08 2.635 19.0 212.7 0.10 2.697 15.4 155.0

0.90 0.05 2.491 133.9 509.6 0.05 2.491 75.0 440.3 0.05 2.491 54.9 378.8 0.05 2.491 44.8 329.6

0.95 0.05 2.491 274.9 461.7 0.05 2.491 188.4 444.5 0.05 2.491 147.5 423.4 0.05 2.491 123.4 403.2

1.05 0.05 2.491 198.1 270.7 0.05 2.491 149.3 261.3 0.05 2.491 122.2 256.5 0.05 2.491 105.4 253.2

1.10 0.05 2.491 94.7 189.0 0.05 2.491 60.5 169.8 0.05 2.491 46.5 158.5 0.05 2.491 39.0 150.4

1.20 0.05 2.491 35.8 92.3 0.05 2.491 22.5 71.7 0.05 2.491 17.6 60.9 0.05 2.491 15.0 53.9

1.30 0.05 2.491 20.4 49.5 0.08 2.633 13.3 34.6 0.12 2.739 10.3 27.6 0.16 2.805 8.7 23.5

1.40 0.05 2.491 14.2 29.5 0.17 2.802 9.0 19.2 0.21 2.847 6.9 14.8 0.25 2.880 5.9 12.3

1.50 0.18 2.782 10.7 19.3 0.26 2.857 6.6 12.0 0.27 2.880 5.1 9.0 0.34 2.913 4.3 7.4

1.60 0.45 2.788 8.2 13.6 0.33 2.873 5.1 8.2 0.37 2.905 4.0 6.1 0.45 2.930 3.4 5.0

1.70 0.56 2.756 6.5 10.1 0.44 2.876 4.1 6.0 0.50 2.912 3.3 4.5 0.48 2.932 2.8 3.6

1.80 0.58 2.750 5.4 7.9 0.55 2.864 3.5 4.7 0.52 2.912 2.7 3.5 0.61 2.934 2.3 2.8

1.90 0.64 2.732 4.6 6.4 0.61 2.854 3.0 3.8 0.63 2.905 2.4 2.8 0.67 2.932 2.0 2.3

2.00 0.67 2.724 4.0 5.3 0.63 2.850 2.6 3.2 0.68 2.901 2.1 2.4 0.71 2.930 1.8 2.0

aR = AR(n)− BR(n) ln(σ0) .

It can also be proven that the initial value Y0 is equal to

Y0 = AR(n)+ BR(n) ln[K R(n)+CR(n)] ,
where K R(n) is equal to

K R(n) = 2

+∞∫

0

1− [
Φ(x)

]n − [
1−Φ(x)

]n dx .

All the constants AR(n), BR(n), CR(n), Y0, E(Tk) and
σ(Tk), useful for the EWMA-R control chart, are shown
in Table 17.8 for n ∈ {3, . . . , 15}.
Example 17.5: The goal of this example is to show
how the EWMA-R control chart behaves in the
case of an increase and a decrease in the nominal
variability. We reuse the data in Fig. 17.5 (top and bot-
tom). The corresponding 30 sample ranges are plotted
in Fig. 17.14, for the two cases (increasing and decreas-
ing). If n = 5 and σ0 = 0.1, then bR = 6.5336, cR =
3.2866×0.1= 0.328 66 and aR =−11.1940−6.5336×
ln(0.1) = 3.8502. The 30 transformed ranges are plot-
ted in Fig. 17.15 and the EWMA-R sequence along
with the EWMA-R control limits LCL = 0.000 19−
3
√

0.1/1.9 × 0.9977 =−0.686 and UCL = 0.000 19+
3
√

0.1/1.9 × 0.9977 = 0.687 (λ= 0.1 and K = 3) are

plotted in Fig. 17.16. The EWMA-R control chart
clearly detects an out-of-control signal at the 25-th
subgroup (in the increasing case) and at the 26-th sub-
group (in the decreasing case), pointing out that an
increase/decrease of the dispersion occurred.

The distribution fT (t) of Tk = aR +bR ln(Rk + cR)
(plain line) for n ∈ {3, 5, 7, 9}, and the normal (0, 1) dis-
tribution (dotted line) are plotted in Fig. 17.17. It is clear
that, when n increases, the distribution of Tk becomes
closer to the normal (0, 1) distribution, and the lower
bound AR(n)+ BR(n) ln[CR(n)] →−∞. By numerical
quadrature, the skewness coefficient γ3(Tk) and the kur-
tosis coefficient γ4(Tk) of Tk have been computed for
n ∈ {3, . . . , 15}; see Table 17.8. As expected, when n
increases, Tk becomes more normally distributed, i. e.,
γ3(Tk) → 0 and γ4(Tk) → 0.

The p.d.f and the c.d.f of the transformed range T ′
k =

aR +bR ln(R′k + cR) after a shift τ are equal to

fT ′ (t) = 1

τBR(n)
exp

(
t− AR(n)

BR(n)

)

× fR

{
1

τ

[
exp

(
t− AR(n)

BR(n)

)
−CR(n)

]
|n
}

,

FT ′ (t) = FR

{
1

τ

[
exp

(
t− AR(n)

BR(n)

)
−CR(n)

]
|n
}

.
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The ARL of the EWMA-R control chart can be computed
using one of the methods presented in Sect. 17.2.3. The
method used for computing the optimal couples (λ∗, K∗)
and the corresponding minimal ARL∗ for the EWMA-R
control chart is exactly the same as the one used for the
EWMA-S control chart. The results are shown in Ta-
ble 17.9. In Table 17.9, we also added, for comparison
purpose, the ARL of the classic R control chart. For ex-

ample, the optimal couple (λ∗, K∗) ensuring the smallest
ARL for a shift τ = 1.2 and n = 7 is (0.05, 2.491) and
the corresponding minimal ARL is ARL∗ = 17.6, while
for the classic R control chart, we have ARL= 60.9. The
EWMA-R control chart (with optimized parameters) is
more efficient, in terms of ARL, than the R control chart,
but is slightly less efficient than both the EWMA-S2 and
EWMA-S control charts.

17.4 Variable Sampling Interval EWMA Control Charts
for Process Dispersion

17.4.1 Introduction

Variable sampling intervals (VSI) control charts are
a class of adaptive control charts whose sampling in-
tervals are selected depending on what is observed from
the process. VSI control charts have been demonstrated
to detect process changes faster than fixed sampling
interval (FSI) control charts.

For the VSI charts investigated here, the policy of
sampling interval selection is dual: if a point falls into
a warning zone near to one of the control limits, the
sampling interval to the successive sample should be
shorter; otherwise, if the last plotted point is plotted near
to the central line, the successive sampling interval can
be enlarged, because there is not doubt about a possible
out-of-control condition. Most work on developing VSI
control charts has been done for the problem of monitor-
ing the mean of the process (see Reynolds et al. [17.28],
Reynolds et al. [17.29], Runger and Pignatiello [17.30],
Saccucci et al. [17.31] and Reynolds [17.32]). However,
fewer works have been done on control charts for the pro-
cess variance. Chengular et al. [17.33] considered a VSI
Shewhart chart for monitoring process mean and vari-
ance, and very recently, Reynolds and Stoumbos [17.34]
investigated a combination of different control charts
for both process mean and variance, using individual
observations and variable sampling intervals.

17.4.2 VSI Strategy

Unlike FSI control schemes, the sampling interval be-
tween Tk and Tk+1 depends on the current value of Yk .
A longer sampling interval hL is used when the con-
trol statistic falls within the region RL = [LWL,UWL],
defined as

LWL = E(Tk)−W

√
λ

2−λ
σ(Tk) ,

UWL = E(Tk)+W

√
λ

2−λ
σ(Tk) ,

where W is the width of the warning limits, which are al-
ways inside the control interval, i.e., W < K . Similarly,
a short sampling interval hS is used when the con-
trol statistic falls within the region RS = [LCL,LWL]∪
[UWL,UCL]. The process is considered out of con-
trol and action should be taken whenever Yk falls
outside the range of the control limits [LCL,UCL].
This dual-waiting-time control chart is known to be
optimal and easy to implement in practice. Reynolds
et al. [17.28] have empirically shown that it is op-
timal to use only two sampling intervals with VSI
Shewhart and VSI cumulative sum (CUSUM) control
scheme for detecting a specified shift in the pro-
cess target values. They also gave a general proof
for any control scheme that can be represented as
a Markov chain. Saccucci et al. [17.31] gave a sim-
plified proof based on the theory of Markov chain. In
general, these optimality proofs show that the short
sampling interval hS should be made as short as pos-
sible, while the long sampling interval hL should be
made as long as possible (i. e. the longest amount
of time that is reasonable for the process to run
without sampling). As pointed out by Lucas and Sac-
cucci [17.5], there are practical limitations on how short
hS should be. The value of hS represents the short-
est feasible time interval between subgroups from the
process. Any shorter time between subgroups would
be impossible due to the amount of time that is re-
quired to form the rational subgroups, carry out the
inspection, analyze the results from any testing proce-
dures, transport parts and materials, and other delays
that would be otherwise inconvenient. So, in this pa-
per we will consider the impact on the expected
time until detection, using small but nonzero values
of hS.
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Table 17.10 Optimal out-of-control ATS∗ of the VSI EWMA-S2 for τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2},
n ∈ {3, 5}, hS ∈ {0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 3

FSI VSI

hL = 1 hS = 0.5 hS = 0.1

W W

τ 0.9 0.6 0.3 0.1 0.9 0.6 0.3 0.1

0.60 17.8 12.7 12.6 12.2 11.9 7.9 7.5 7.7 6.8

0.70 28.5 21.0 20.3 20.0 19.9 14.4 13.4 12.3 11.9

0.80 54.3 41.9 40.3 39.4 39.1 31.7 28.9 27.2 26.7

0.90 155.8 136.1 132.2 129.7 128.9 120.3 113.3 108.8 107.4

0.95 325.7 313.1 310.1 308.0 307.4 303.2 297.8 294.1 293.0

1.05 153.6 146.1 144.8 144.0 143.8 140.1 137.9 136.5 136.1

1.10 64.9 55.4 54.0 53.0 52.8 47.8 45.2 43.6 43.1

1.20 21.6 14.7 14.0 13.6 13.4 9.2 7.9 7.1 6.9

1.30 11.6 6.8 6.5 6.4 6.3 3.0 2.5 2.2 2.1

1.40 7.8 4.3 4.1 4.0 4.0 1.5 1.2 1.1 1.0

1.50 5.9 3.1 3.0 3.0 3.0 0.9 0.7 0.7 0.7

1.60 4.8 2.5 2.4 2.4 2.4 0.6 0.5 0.5 0.5

1.70 4.0 2.1 2.0 2.0 2.0 0.5 0.4 0.4 0.4

1.80 3.5 1.8 1.8 1.8 1.8 0.4 0.4 0.4 0.4

1.90 3.1 1.6 1.6 1.6 1.6 0.3 0.3 0.3 0.3

2.00 2.9 1.4 1.4 1.4 1.4 0.3 0.3 0.3 0.3

n = 5

FSI VSI

hL = 1 hS = 0.5 hS = 0.1

W W

τ 0.9 0.6 0.3 0.1 0.9 0.6 0.3 0.1

0.60 9.0 6.8 5.9 5.7 5.7 4.5 3.2 2.4 2.4

0.70 14.6 11.0 10.2 10.2 10.2 7.7 5.9 5.6 5.5

0.80 28.2 21.3 20.8 20.3 20.2 15.6 14.5 13.8 13.6

0.90 81.0 67.6 65.3 63.9 63.5 56.9 52.8 50.2 49.4

0.95 202.9 189.9 187.0 185.1 184.5 179.4 174.3 170.8 169.8

1.05 121.4 111.1 109.1 107.9 107.5 102.9 99.4 97.2 96.5

1.10 44.8 34.8 33.3 32.4 32.1 26.9 24.1 22.4 21.9

1.20 15.3 9.3 8.8 8.5 8.4 4.6 3.6 3.1 3.0

1.30 8.8 4.8 4.6 4.5 4.5 1.7 1.3 1.1 1.1

1.40 6.2 3.3 3.2 3.1 3.1 1.0 0.8 0.7 0.7

1.50 4.8 2.5 2.4 2.4 2.4 0.7 0.5 0.5 0.5

1.60 4.0 2.0 2.0 2.0 2.0 0.5 0.4 0.4 0.4

1.70 3.5 1.8 1.7 1.7 1.7 0.4 0.4 0.3 0.3

1.80 2.9 1.6 1.5 1.5 1.5 0.3 0.3 0.3 0.3

1.90 2.5 1.4 1.4 1.4 1.4 0.3 0.3 0.3 0.3

2.00 2.3 1.3 1.3 1.3 1.3 0.3 0.3 0.3 0.3
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Table 17.11 Optimal out-of-control ATS∗ of the VSI EWMA-S2 for τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2},
n ∈ {7, 9}, hS ∈ {0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 7

FSI VSI

hL = 1 hS = 0.5 hS = 0.1

W W

τ 0.9 0.6 0.3 0.1 0.9 0.6 0.3 0.1

0.60 6.2 4.6 4.6 3.5 3.5 3.0 3.0 1.2 1.1

0.70 10.0 7.5 7.0 6.5 6.5 5.2 4.6 3.1 3.0

0.80 19.5 15.1 14.1 14.0 14.0 11.1 9.2 8.8 8.7

0.90 56.8 46.5 45.0 44.0 43.7 38.4 35.5 33.7 33.2

0.95 150.6 137.7 135.1 133.2 132.7 127.5 122.7 119.4 118.4

1.05 99.3 95.2 92.9 91.3 90.9 79.3 75.4 72.8 72.1

1.10 34.9 27.3 25.7 24.8 24.5 18.3 15.7 14.2 13.7

1.20 12.4 7.8 7.3 7.0 7.0 3.4 2.5 2.1 2.0

1.30 7.4 4.3 4.0 4.0 3.9 1.4 1.0 0.9 0.9

1.40 5.3 3.0 2.9 2.8 2.8 0.8 0.6 0.6 0.6

1.50 4.2 2.3 2.2 2.2 2.2 0.6 0.5 0.4 0.4

1.60 3.2 1.9 1.9 1.9 1.9 0.5 0.4 0.4 0.4

1.70 2.6 1.6 1.6 1.6 1.6 0.4 0.3 0.3 0.3

1.80 2.2 1.5 1.5 1.4 1.4 0.3 0.3 0.3 0.3

1.90 2.0 1.3 1.3 1.3 1.3 0.3 0.3 0.3 0.3

2.00 1.8 1.2 1.2 1.2 1.2 0.3 0.2 0.2 0.2

n = 9

FSI VSI

hL = 1 hS = 0.5 hS = 0.1

W W

τ 0.9 0.6 0.3 0.1 0.9 0.6 0.3 0.1

0.60 4.7 3.5 3.7 2.5 2.5 2.4 2.8 0.7 0.7

0.70 7.7 5.8 5.9 4.7 4.7 3.9 4.1 2.0 1.9

0.80 15.1 11.5 10.8 10.5 10.5 8.4 7.4 6.1 6.1

0.90 44.7 36.3 34.9 34.1 33.9 29.6 27.0 25.7 25.3

0.95 120.9 108.6 106.1 104.4 103.9 98.7 94.3 91.3 90.3

1.05 84.0 72.7 70.5 69.0 68.5 63.6 59.6 56.9 56.1

1.10 29.0 20.6 19.3 18.5 18.3 13.8 11.5 10.1 9.7

1.20 10.7 6.3 5.9 5.7 5.6 2.8 2.0 1.6 1.5

1.30 6.6 3.6 3.4 3.3 3.3 1.2 0.9 0.8 0.7

1.40 4.7 2.6 2.5 2.4 2.4 0.8 0.6 0.5 0.5

1.50 3.4 2.0 2.0 1.9 1.9 0.5 0.4 0.4 0.4

1.60 2.7 1.7 1.6 1.6 1.6 0.4 0.3 0.3 0.3

1.70 2.2 1.5 1.4 1.4 1.4 0.3 0.3 0.3 0.3

1.80 1.9 1.3 1.3 1.3 1.3 0.3 0.3 0.3 0.3

1.90 1.6 1.2 1.2 1.2 1.2 0.3 0.2 0.2 0.2

2.00 1.5 1.1 1.1 1.1 1.1 0.2 0.2 0.2 0.2
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17.4.3 Average Time to Signal
for a VSI Control Chart

If the ARL is a useful tool for comparing the perfor-
mance of various control charts, this indicator cannot

Table 17.12 Optimal h∗L values of the VSI EWMA-S2 for n ∈ {3, 5, 7, 9}, τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2}, hS ∈
{0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 3 n = 5

hS = 0.5 hS = 0.1 hS = 0.5 hS = 0.1

W W W W

τ 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

0.60 1.30 1.59 2.67 4.46 1.52 2.16 3.94 7.23 1.28 1.64 2.61 4.39 1.51 2.15 3.92 7.13

0.70 1.28 1.60 2.69 4.56 1.54 2.06 4.00 7.23 1.29 1.57 2.62 4.40 1.51 2.15 3.91 7.10

0.80 1.27 1.56 2.46 4.65 1.48 2.01 3.63 7.56 1.27 1.60 2.68 4.51 1.49 2.05 4.00 7.27

0.90 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

0.95 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.05 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.10 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.20 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.30 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.40 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.50 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.60 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.70 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.80 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

1.90 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

2.00 1.27 1.57 2.48 4.70 1.49 2.03 3.67 7.66 1.27 1.57 2.49 4.71 1.49 2.03 3.68 7.67

n = 7 n = 9

hS = 0.5 hS = 0.1 hS = 0.5 hS = 0.1

W W W W

τ 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

0.60 1.28 1.57 2.60 4.35 1.51 2.02 3.92 7.11 1.27 1.62 2.58 4.32 1.50 2.03 3.87 7.03

0.70 1.28 1.57 2.60 4.35 1.50 2.02 3.87 7.06 1.27 1.62 2.58 4.32 1.49 2.03 3.85 6.98

0.80 1.26 1.58 2.62 4.41 1.51 2.02 3.88 7.05 1.28 1.57 2.59 4.35 1.50 2.03 3.86 7.00

0.90 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.55 2.44 4.61 1.48 2.09 4.06 7.50

0.95 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.05 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.10 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.20 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.30 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.40 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.50 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.60 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.70 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.80 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

1.90 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

2.00 1.27 1.57 2.48 4.69 1.49 2.03 3.67 7.65 1.27 1.57 2.48 4.68 1.48 2.02 3.66 7.63

be used in the case of VSI-type control charts since
the interval between two consecutive samples is not
constant. As a consequence, it is common to use the
average time to signal (ATS): when the process is in-
control and remains in this state, it is desirable to have
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Table 17.13 Optimal couples (λ∗, K∗) of the VSI EWMA-S2 for n ∈ {3, 5}, τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2},
hS ∈ {0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 3

hS = 0.5 hS = 0.1

W W

0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

τ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗

0.60 0.13 2.742 0.12 2.726 0.11 2.709 0.13 2.742 0.16 2.779 0.19 2.808 0.16 2.779 0.13 2.742

0.70 0.09 2.669 0.09 2.669 0.09 2.669 0.08 2.643 0.12 2.726 0.11 2.709 0.11 2.709 0.13 2.742

0.80 0.05 2.548 0.06 2.583 0.06 2.583 0.06 2.583 0.06 2.583 0.06 2.583 0.06 2.583 0.06 2.583

0.90 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

0.95 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.05 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.10 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.20 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.30 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.40 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.50 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.60 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.70 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.80 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

1.90 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

2.00 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548 0.05 2.548

n = 5

hS = 0.5 hS = 0.1

W W

0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

τ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗

0.60 0.21 2.808 0.22 2.812 0.24 2.820 0.24 2.820 0.31 2.833 0.23 2.816 0.31 2.833 0.31 2.833

0.70 0.15 2.763 0.15 2.763 0.17 2.782 0.17 2.782 0.19 2.797 0.21 2.808 0.24 2.820 0.24 2.820

0.80 0.09 2.663 0.09 2.663 0.09 2.663 0.09 2.663 0.10 2.687 0.11 2.707 0.10 2.687 0.10 2.687

0.90 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

0.95 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.05 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.10 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.20 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.30 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.40 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.50 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.60 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.70 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.80 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

1.90 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

2.00 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515 0.05 2.515

a large ATS since it represents the expected value of the
elapsed time between two consecutive false alarms. Oth-
erwise, if the characteristic of the process has shifted,

it is desirable to have an ATS that is as small as pos-
sible. Since it represents the expected value of the
elapsed time between the occurence of a special cause,
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Table 17.14 Optimal couples (λ∗, K∗) of the VSI EWMA-S2 for n ∈ {7, 9}, τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2},
hS ∈ {0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 7

hS = 0.5 hS = 0.1

W W

0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

τ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗

0.60 0.33 2.849 0.15 2.771 0.28 2.843 0.28 2.843 0.41 2.848 0.15 2.771 0.41 2.848 0.41 2.848

0.70 0.20 2.813 0.15 2.771 0.20 2.813 0.24 2.833 0.28 2.843 0.15 2.771 0.28 2.843 0.33 2.849

0.80 0.11 2.710 0.11 2.710 0.13 2.745 0.13 2.745 0.14 2.759 0.14 2.759 0.18 2.800 0.18 2.800

0.90 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

0.95 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.05 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.10 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.20 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.30 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.40 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.50 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.60 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.70 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.80 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

1.90 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

2.00 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506 0.05 2.506

n = 9

hS = 0.5 hS = 0.1

W W

0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

τ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗

0.60 0.33 2.865 0.34 2.866 0.33 2.865 0.33 2.865 0.46 2.864 0.12 2.733 0.41 2.868 0.54 2.854

0.70 0.27 2.854 0.27 2.854 0.27 2.854 0.27 2.854 0.33 2.865 0.12 2.733 0.38 2.868 0.42 2.867

0.80 0.15 2.777 0.12 2.733 0.17 2.798 0.17 2.798 0.17 2.798 0.12 2.733 0.23 2.839 0.23 2.839

0.90 0.05 2.502 0.06 2.555 0.06 2.555 0.06 2.555 0.05 2.502 0.07 2.599 0.07 2.599 0.06 2.555

0.95 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.05 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.10 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.20 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.30 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.40 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.50 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.60 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.70 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.80 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

1.90 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502

2.00 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502 0.05 2.502
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i. e. the transition of the process to an out-of-control
state, and the signal from the control chart. For an FSI
model, the ATS is a multiple of the ARL since the time
hF between samples is fixed. Thus, in this case we
have

ATSFSI = hF × ARLFSI .

For a VSI model, the ATS depends on both the number of
samples to signal (the ARL) and the sampling frequency,
which is variable,

ATSVSI = E(h) × ARLVSI ,

where E(h) represents the expected value of the sam-
pling interval. For given λ and K , the value of E(h)
depends on W , hS and hL. For fixed values of hS and
E(h), with hS < E(h), there is (see Reynolds [17.35])
a one-to-one correspondence between W and hL such
that, if the first one decreases, the second one has to
increase, and conversely. If we have to compare the
out-of-control ATS performance of two FSI-type con-
trol charts, we only need to define them with the same
in-control ARLY = ARL0. For VSI-type control charts,
this is a little more complex because, if one control
chart samples the process more frequently than an-
other, it will necessarily detect a shift in the process
sooner than the other one. Consequently, if we have
to compare the out-of-control ATS performance of two
VSI-type control charts, we need to define them with
the same in-control ARLY = ARL0 and the same in-
control average sampling interval E0(h). Because, for
FSI-type control charts, we have hS = hL = hF = 1
time units, the in-control average sampling interval is
chosen to be E0(h) = 1. This ensures that we have the
same ATSY = ATS0 for both FSI- and VSI-type control
charts.

17.4.4 Performance
of the VSI EWMA-S2 Control Chart

The performance of the VSI EWMA-S2 control chart has
been investigated by Castagliola et al. [17.36]. The ATS
of the VSI EWMA-S2 control chart can be computed us-
ing the second approach presented in Sect. 17.2.3, where
the element g j of the (p, 1) vector g is defined by

g j =
⎧
⎨

⎩
hL if LWL < Hj < UWL

hS otherwise
.

The optimization scheme of the VSI EWMA-S2 con-
trol chart consists of finding the optimal combination

(λ∗, K∗, h∗L) that give the same in-control ATSY = ATS0
(i. e. the ATS when the process is functioning at the
nominal variability σ = σ0 or equivalently τ = 1) and
then, for predefined values of τ , W and hS, find
the unique combination (λ∗, K∗, h∗L) which yields the
smallest possible out-of-control ATSY = ATS∗, sub-
ject to the constraint E0(h) = 1. The minimal ATS
values achieved using the optimal VSI model are sum-
marized in Table 17.10 and Table 17.11 for shift
τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2} and
n ∈ {3, 5, 7, 9}. The values used for hS are 0.5 and
0.1 time units. For comparison purposes, Tables 17.10
and 17.11 also show the minimal ATS of the FSI EWMA-
S2 (column hL = 1). As expected, the results clearly
indicate that the VSI model outperforms the FSI scheme
for all considered shifts of variability since the VSI
model gives a signal earlier than the FSI model. For
example, for n = 5, hS = 0.5 and W = 0.6 we have
ATS∗ = 65.3 when τ = 0.9, while for the FSI model we
have ATS∗ = 81.0. When τ = 1.2, we have ATS∗ = 8.8
for the VSI EWMA-S2 control chart, while for the FSI
model we have ATS∗ = 15.3. We can also notice that the
performance in term of ATS is improved when a smaller
short sampling interval hS is considered and, for a se-
lected value of hS, the ATS is improved as the value
of W decreases. Table 17.12 shows the optimal long
sampling interval h∗L for several combinations of n,
W , hS and τ . For a defined value of hS, when W de-
creases it is no surprise to remark that the length of
the long sampling interval h∗L increases. Finally, Ta-
bles 17.13 and 17.14 summarize the optimal couples
(λ∗, K∗).

Example 17.6: The goal of this example is to illus-
trate the use of the VSI EWMA-S2 control chart using
a simulated process. The sample size is assumed to
be n = 5. We assume that during the first 20 units
of time the data are generated according to a normal
(20, 0.1) distribution (corresponding to an in-control
process) while, after the first 20 units of time, the
data are generated according to a normal (20, 0.13)
distribution (the nominal process standard deviation
σ0 has increased by a factor of 1.3). If n = 5 and
σ0 = 0.1, then we deduce from Table 17.3: bS2 = 2.3647,
cS2 = 0.5979 × 0.12 = 0.005 979 and aS2 =−0.8969−
2×2.3647×ln(0.1)= 9.9929. The FSI EWMA chart has
been designed by considering λ= 0.05, K = 2.515 and
hF = 1; the VSI EWMA was implemented by consider-
ing the same couple (λ, K ) and hS = 0.5, hL = 1.27,
W = 0.9. This choice ensures that both the FSI and
VSI EWMA-S2 control charts are designed to have the

Part
B

1
7
.4



Monitoring Process Variability Using EWMA 17.4 Variable Sampling Interval EWMA Control Charts for Process Dispersion 317

Table 17.15 Subgroup number, sampling interval (hS or hL), total elapsed time from the start of the simulation and
statistics S2

k , Tk and Yk

Subgroup Sampling interval Total time S2
k Tk Yk

1 0.50 0.50 0.003 38 −1.052 0.148

2 0.50 1.00 0.003 15 −1.112 0.085

3 1.27 2.27 0.018 55 1.225 0.142

4 1.27 3.54 0.002 54 −1.275 0.071

5 1.27 4.81 0.004 52 −0.782 0.028

6 1.27 6.08 0.003 76 −0.959 −0.021

7 1.27 7.35 0.009 34 0.112 −0.014

8 1.27 8.62 0.008 53 −0.017 −0.014

9 1.27 9.89 0.017 23 1.094 0.041

10 1.27 11.16 0.008 61 −0.003 0.039

11 1.27 12.43 0.027 72 1.976 0.136

12 1.27 13.70 0.014 22 0.765 0.167

13 0.50 14.20 0.016 96 1.067 0.212

14 0.50 14.70 0.010 37 0.266 0.215

15 0.50 15.20 0.009 56 0.146 0.211

16 0.50 15.70 0.005 31 −0.610 0.170

17 0.50 16.20 0.008 97 0.053 0.164

18 0.50 16.70 0.008 21 −0.070 0.153

19 0.50 17.20 0.009 76 0.176 0.154

20 0.50 17.70 0.016 04 0.970 0.195

21 0.50 18.20 0.005 95 −0.479 0.161

22 0.50 18.70 0.010 25 0.249 0.165

23 0.50 19.20 0.007 75 −0.148 0.150

24 0.50 19.70 0.011 63 0.441 0.164

25 0.50 20.20 0.012 12 0.507 0.181

26 0.50 20.70 0.030 40 2.157 0.280

27 0.50 21.20 0.019 89 1.351 0.334

28 0.50 21.70 0.016 07 0.973 0.366

29 0.50 22.20 0.013 19 0.641 0.379

30 0.50 22.70 0.001 53 −1.573 0.282

31 0.50 23.20 0.009 95 0.203 0.278

32 0.50 23.70 0.020 19 1.378 0.333

33 0.50 24.20 0.008 90 0.043 0.318

34 0.50 24.70 0.025 98 1.850 0.395

35 0.50 25.20 0.019 70 1.333 0.442

same in control ARL0 = 370.4 and are designed to op-
timally detect a τ = 1.5 shift for the process variability.
The control and warning limits are LCL = 0.0075−
2.515

√
0.05/1.95 × 0.967 =−0.382, UCL = 0.0075+

2.515
√

0.05/1.95 × 0.967 = 0.397, LWL = 0.0075−
0.9

√
0.05/1.95×0.967=−0.132 and UWL= 0.0075+

0.9
√

0.05/1.95 × 0.967 = 0.147. In Table 17.15 we
summarize the results of this simulation, i. e. the sub-
group number, the sampling interval (hS or hL) used

for each sample, the total elapsed time from the start
of the process simulation and the statistics S2

k , Tk and
Yk . In Fig. 17.18 (top), we plot the VSI EWMA-S2 con-
trol chart (i. e. the Yks) corresponding to our data. As
we can see, the VSI EWMA-S2 control chart clearly
detects an out-of-control signal after 25.2 units of time
(35-th subgroup), pointing out that an increase of the
variance occurred. In Fig. 17.18 (bottom), we plotted
the FSI EWMA-S2 control chart using the same data but
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Table 17.16 Optimal out-of-control ATS∗ of the VSI EWMA-R for τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2},
n ∈ {3, 5}, hS ∈ {0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 3

FSI VSI

hL = 1 hS = 0.5 hS = 0.1

W W

τ 0.9 0.6 0.3 0.1 0.9 0.6 0.3 0.1

0.60 15.0 11.1 11.3 10.2 10.1 7.7 7.7 5.5 5.2

0.70 24.5 18.9 18.7 17.8 17.8 13.9 13.7 11.3 11.2

0.80 46.6 38.0 36.4 35.8 35.6 31.0 27.9 26.9 26.7

0.90 133.9 121.6 118.6 116.9 116.4 112.0 106.6 103.5 102.6

0.95 274.9 267.7 265.9 264.8 264.5 262.4 259.2 257.2 256.6

1.05 198.1 192.0 190.1 189.0 188.7 186.9 183.5 181.5 180.9

1.10 94.7 86.4 83.9 82.5 82.1 79.4 74.8 72.3 71.6

1.20 35.8 29.2 27.2 26.2 25.9 23.7 20.0 18.3 17.8

1.30 20.4 15.7 14.1 13.4 13.3 11.8 8.8 7.7 7.4

1.40 14.2 10.6 9.2 8.8 8.6 7.6 5.1 4.3 4.1

1.50 10.7 8.1 6.8 6.5 6.4 5.7 3.5 2.8 2.7

1.60 8.2 6.6 5.4 5.2 5.1 4.6 2.6 2.1 1.9

1.70 6.5 5.6 4.5 4.3 4.2 3.9 2.0 1.6 1.5

1.80 5.4 4.7 3.9 3.7 3.7 3.5 1.6 1.3 1.2

1.90 4.6 4.1 3.4 3.2 3.1 3.1 1.4 1.1 1.0

2.00 4.0 3.6 3.1 2.8 2.7 2.9 1.2 1.0 0.9

n = 5

FSI VSI

hL = 1 hS = 0.5 hS = 0.1

W W

τ 0.9 0.6 0.3 0.1 0.9 0.6 0.3 0.1

0.60 8.2 6.0 6.1 5.6 4.9 4.0 4.2 3.4 1.9

0.70 13.4 10.0 10.1 9.2 8.9 7.0 7.0 5.7 4.7

0.80 25.9 20.2 20.1 19.0 19.1 15.4 15.1 12.8 12.8

0.90 75.0 64.7 63.4 61.5 61.2 56.4 54.1 50.7 50.2

0.95 188.4 179.1 177.4 175.5 175.1 171.7 168.6 165.2 164.5

1.05 149.3 140.9 139.1 137.0 136.6 134.0 130.9 127.2 126.4

1.10 60.5 52 50.5 48.3 47.9 45.1 42.4 38.4 37.7

1.20 22.5 17.3 16.6 14.9 14.7 13.1 11.9 8.8 8.5

1.30 13.3 9.9 9.6 8.1 8.0 7.2 6.6 3.9 3.7

1.40 9.0 6.9 6.9 5.5 5.4 5.0 4.7 2.3 2.1

1.50 6.6 5.2 5.4 4.2 4.1 4.0 3.8 1.6 1.5

1.60 5.1 4.2 4.4 3.3 3.2 3.3 3.3 1.2 1.1

1.70 4.1 3.5 3.7 2.8 2.6 2.9 3.0 0.9 0.9

1.80 3.5 3.0 3.2 2.4 2.1 2.5 2.8 0.8 0.7

1.90 3.0 2.6 2.9 2.1 1.8 2.3 2.6 0.6 0.6

2.00 2.6 2.4 2.7 1.9 1.5 2.2 2.5 0.6 0.5
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Table 17.17 Optimal out-of-control ATS∗ of the VSI EWMA-R for τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2},
n ∈ {7, 9}, hS ∈ {0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 7

FSI VSI

hL = 1 hS = 0.5 hS = 0.1

W W

τ 0.9 0.6 0.3 0.1 0.9 0.6 0.3 0.1

0.60 5.9 4.3 4.5 4.4 3.3 2.9 3.2 2.6 1.1

0.70 9.7 7.2 7.3 7.0 6.1 4.9 5.1 4.6 2.8

0.80 19.0 14.5 14.5 13.5 13.3 10.7 10.7 9.1 8.2

0.90 54.9 46.2 45.4 43.9 43.7 39.1 37.7 35.0 34.8

0.95 147.5 137.4 135.6 133.7 133.3 129.3 126.2 122.6 121.9

1.05 122.2 113.0 111.1 108.9 108.4 105.5 102.2 98.2 97.4

1.10 46.5 38.5 37.2 35.2 34.8 32.1 29.8 26.0 25.4

1.20 17.6 13.2 12.7 11.2 11.0 9.8 8.9 6.0 5.7

1.30 10.3 7.8 7.7 6.3 6.2 5.7 5.3 2.7 2.5

1.40 6.9 5.4 5.5 4.3 4.3 4.1 3.9 1.6 1.5

1.50 5.1 4.1 4.3 3.3 3.1 3.2 3.3 1.1 1.0

1.60 4.0 3.3 3.5 2.6 2.3 2.7 2.9 0.8 0.8

1.70 3.3 2.8 3.0 2.2 1.9 2.3 2.7 0.7 0.6

1.80 2.7 2.4 2.7 1.9 1.6 2.1 2.5 0.5 0.5

1.90 2.4 2.2 2.4 1.7 1.4 2.0 2.4 0.5 0.4

2.00 2.1 2.0 2.3 1.5 1.2 1.9 2.3 0.4 0.4

n = 9

FSI VSI

hL = 1 hS = 0.5 hS = 0.1

W W

τ 0.9 0.6 0.3 0.1 0.9 0.6 0.3 0.1

0.60 4.7 3.5 3.7 3.8 2.5 2.4 2.8 2.1 0.8

0.70 7.8 5.8 5.9 6.0 4.6 4.0 4.2 3.9 2.0

0.80 15.4 11.7 11.7 11.1 10.5 8.5 8.5 7.6 6.1

0.90 44.8 37.0 36.5 35.2 35.2 30.7 29.8 27.4 27.3

0.95 123.4 112.8 111.2 109.3 109.0 104.6 101.6 98.2 97.6

1.05 105.4 96.2 94.3 92.1 91.7 88.5 85.2 81.1 80.4

1.10 39.0 31.8 30.7 28.7 28.4 25.8 23.8 20.3 19.7

1.20 15.0 11.3 11.0 9.4 9.3 8.3 7.6 4.9 4.6

1.30 8.7 6.6 6.6 5.3 5.3 4.9 4.7 2.3 2.1

1.40 5.9 4.5 4.7 3.7 3.5 3.4 3.6 1.4 1.2

1.50 4.3 3.4 3.7 2.8 2.5 2.7 3.1 0.9 0.8

1.60 3.4 2.8 3.1 2.3 1.9 2.3 2.7 0.7 0.6

1.70 2.8 2.4 2.7 1.9 1.6 2.1 2.5 0.6 0.5

1.80 2.3 2.1 2.4 1.7 1.3 1.9 2.4 0.5 0.4

1.90 2.0 1.9 2.2 1.5 1.2 1.8 2.3 0.4 0.3

2.00 1.8 1.8 2.1 1.4 1.0 1.7 2.2 0.3 0.3

assuming a fixed sampling rate hF = 1. The difference
between the FSI and the VSI EWMA-S2 control chart

appears clearly and, in this example, the difference in
terms of detection time is 9.8 units of time.
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Table 17.18 Optimal h∗L values of the VSI EWMA-R for n ∈ {3, 5, 7, 9}, τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2}, hS ∈
{0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 3 n = 5
hS = 0.5 hS = 0.1 hS = 0.5 hS = 0.1
W W W W

τ 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

0.60 1.28 1.55 2.59 5.05 1.50 2.14 3.86 8.28 1.27 1.61 2.59 4.96 1.54 2.09 3.86 8.09

0.70 1.26 1.60 2.64 5.15 1.51 2.00 3.89 8.34 1.28 1.54 2.59 5.01 1.48 2.11 3.86 8.12

0.80 1.25 1.53 2.39 3.97 1.49 2.07 4.05 8.70 1.26 1.56 2.63 5.14 1.51 1.99 3.89 8.35

0.90 1.25 1.53 2.39 3.97 1.44 1.95 3.51 6.35 1.24 1.52 2.38 3.95 1.44 1.93 3.48 6.30

0.95 1.25 1.53 2.39 3.97 1.44 1.95 3.51 6.35 1.24 1.52 2.38 3.95 1.44 1.93 3.48 6.30

1.05 1.25 1.53 2.39 3.97 1.44 1.95 3.51 6.35 1.24 1.52 2.38 3.95 1.44 1.93 3.48 6.30

1.10 1.25 1.53 2.39 3.97 1.44 1.95 3.51 6.35 1.24 1.52 2.38 3.95 1.44 1.93 3.48 6.30

1.20 1.25 1.53 2.39 3.97 1.44 1.95 3.51 6.35 1.24 1.52 2.38 3.95 1.44 1.93 3.48 6.30

1.30 1.25 1.53 2.39 3.97 1.44 1.95 3.51 6.35 1.24 1.52 2.38 3.95 1.44 1.93 3.48 6.30

1.40 1.25 1.53 2.39 3.97 1.44 1.95 3.51 6.35 1.28 1.52 2.38 3.95 1.44 1.93 3.48 6.30

1.50 1.25 1.53 2.39 3.97 1.44 1.95 3.51 6.35 1.27 1.62 2.38 3.95 1.44 1.93 3.48 6.30

1.60 1.27 1.53 2.39 3.97 1.44 1.95 3.51 6.35 1.30 1.61 2.59 4.94 1.48 1.93 3.48 6.30

1.70 1.28 1.60 2.39 3.97 1.44 1.95 3.51 6.35 1.30 1.61 2.59 4.95 1.48 1.93 3.48 6.30

1.80 1.29 1.60 2.39 3.97 1.44 1.95 3.51 6.35 1.31 1.62 2.59 4.97 1.48 1.93 3.48 6.30

1.90 1.29 1.60 2.59 5.22 1.44 1.95 3.51 6.35 1.31 1.62 2.59 4.97 1.54 1.93 3.48 6.30

2.00 1.29 1.60 2.59 5.36 1.44 1.95 3.51 6.35 1.28 1.63 2.59 4.97 1.55 1.93 3.48 6.30

n = 7 n = 9
hS = 0.5 hS = 0.1 hS = 0.5 hS = 0.1
W W W W

τ 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

0.60 1.30 1.60 2.60 4.90 1.53 3.88 3.88 7.98 1.29 1.59 2.61 4.86 1.52 2.06 3.90 7.93

0.70 1.27 1.61 2.60 4.91 1.54 3.88 3.88 8.02 1.30 1.60 2.61 4.90 1.53 2.07 3.90 7.95

0.80 1.28 1.54 2.60 5.04 1.50 3.88 3.88 8.15 1.28 1.62 2.61 4.98 1.49 2.10 3.90 8.11

0.90 1.24 1.52 2.37 3.94 1.44 3.47 3.47 6.29 1.24 1.52 2.37 3.93 1.48 2.04 4.00 8.59

0.95 1.24 1.52 2.37 3.94 1.44 3.47 3.47 6.29 1.24 1.52 2.37 3.93 1.43 1.93 3.47 6.27

1.05 1.24 1.52 2.37 3.94 1.44 3.47 3.47 6.29 1.24 1.52 2.37 3.93 1.43 1.93 3.47 6.27

1.10 1.24 1.52 2.37 3.94 1.44 3.47 3.47 6.29 1.24 1.52 2.37 3.93 1.43 1.93 3.47 6.27

1.20 1.24 1.52 2.37 3.94 1.44 3.47 3.47 6.29 1.26 1.52 2.37 3.93 1.43 1.93 3.47 6.27

1.30 1.28 1.52 2.37 3.94 1.44 3.47 3.47 6.29 1.27 1.54 2.65 5.17 1.49 1.93 3.47 6.27

1.40 1.30 1.60 2.60 4.99 1.49 3.47 3.47 6.29 1.30 1.60 2.61 4.91 1.47 1.93 3.47 6.27

1.50 1.29 1.60 2.60 4.92 1.47 3.47 3.47 6.29 1.29 1.59 2.61 4.85 1.52 1.93 3.47 6.27

1.60 1.29 1.60 2.60 4.88 1.53 3.47 3.47 6.29 1.29 1.59 2.61 4.85 1.52 1.93 3.47 6.27

1.70 1.29 1.60 2.60 4.88 1.53 3.47 3.47 6.29 1.29 1.59 2.61 4.85 1.52 1.93 3.96 6.27

1.80 1.30 1.60 2.60 4.88 1.53 3.47 3.47 6.29 1.29 1.59 2.61 4.85 1.52 2.06 3.96 7.93

1.90 1.30 1.60 2.60 4.88 1.53 3.47 3.47 6.29 1.29 1.59 2.61 4.85 1.52 2.06 3.96 7.93

2.00 1.30 1.60 2.60 4.88 1.53 3.47 3.47 7.98 1.29 1.59 2.61 4.85 1.52 1.93 3.96 7.93

17.4.5 Performance
of the VSI EWMA-R Control Chart

Concerning the EWMA-R control chart, similar in-
vestigations were performed for determining the
minimal ATS values achieved using the optimal

VSI model. These minimal ATS values are sum-
marized in Tables 17.16 and 17.17 for shifts
τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2} and
n ∈ {3, 5, 7, 9}. The values used for hS are 0.5 and
0.1 time units. For comparison purposes, Tables 17.16
and 17.17 also show the minimal ATS of the FSI
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Table 17.19 Optimal couples (λ∗, K∗) of the VSI EWMA-R for n ∈ {3, 5}, τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2},
hS ∈ {0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 3

hS = 0.5 hS = 0.1

W W

0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

τ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗

0.60 0.13 2.734 0.13 2.734 0.16 2.767 0.16 2.767 0.16 2.767 0.18 2.782 0.19 2.789 0.22 2.802

0.70 0.09 2.656 0.06 2.547 0.09 2.656 0.09 2.656 0.11 2.701 0.11 2.701 0.13 2.734 0.13 2.734

0.80 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.06 2.547 0.06 2.547 0.06 2.547 0.06 2.547

0.90 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

0.95 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.05 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.10 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.20 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.30 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.40 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.50 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.60 0.06 2.547 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.70 0.21 2.798 0.06 2.547 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.80 0.44 2.791 0.06 2.547 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.90 0.45 2.788 0.06 2.547 0.21 2.798 0.45 2.788 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

2.00 0.45 2.788 0.06 2.547 0.21 2.798 0.58 2.75 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

n = 5

hS = 0.5 hS = 0.1

W W

0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

τ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗

0.60 0.20 2.827 0.20 2.827 0.12 2.734 0.20 2.827 0.28 2.864 0.29 2.866 0.12 2.734 0.29 2.866

0.70 0.13 2.751 0.13 2.751 0.12 2.734 0.14 2.766 0.18 2.811 0.18 2.811 0.12 2.734 0.20 2.827

0.80 0.08 2.633 0.08 2.633 0.08 2.633 0.08 2.633 0.10 2.691 0.10 2.691 0.10 2.691 0.10 2.691

0.90 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

0.95 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.05 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.10 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.20 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.30 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.40 0.12 2.734 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.50 0.17 2.802 0.17 2.802 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.60 0.26 2.857 0.26 2.857 0.12 2.734 0.26 2.857 0.17 2.802 0.05 2.492 0.05 2.492 0.05 2.492

1.70 0.40 2.877 0.39 2.877 0.12 2.734 0.39 2.877 0.22 2.839 0.05 2.492 0.05 2.492 0.05 2.492

1.80 0.45 2.875 0.45 2.875 0.12 2.734 0.45 2.875 0.22 2.839 0.05 2.492 0.05 2.492 0.05 2.492

1.90 0.45 2.875 0.45 2.875 0.12 2.734 0.45 2.875 0.40 2.877 0.05 2.492 0.05 2.492 0.05 2.492

2.00 0.69 2.839 0.56 2.862 0.12 2.734 0.45 2.875 0.43 2.876 0.05 2.492 0.05 2.492 0.05 2.492
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Table 17.20 Optimal couples (λ∗, K∗) of the VSI EWMA-R for n ∈ {7, 9}, τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, . . . , 2},
hS ∈ {0.1, 0.5}, W = {0.1, 0.3, 0.6, 0.9}, ATS0 = 370.4

n = 7

hS = 0.5 hS = 0.1

W W

0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

τ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗

0.60 0.27 2.880 0.26 2.876 0.10 2.696 0.25 2.871 0.38 2.907 0.38 2.907 0.10 2.696 0.35 2.902

0.70 0.17 2.812 0.18 2.822 0.10 2.696 0.22 2.854 0.22 2.854 0.24 2.866 0.10 2.696 0.24 2.866

0.80 0.11 2.719 0.11 2.719 0.10 2.696 0.11 2.719 0.11 2.719 0.12 2.740 0.10 2.696 0.15 2.788

0.90 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

0.95 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.05 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.10 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.20 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.30 0.10 2.696 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.40 0.21 2.847 0.21 2.847 0.10 2.696 0.14 2.774 0.14 2.774 0.05 2.492 0.05 2.492 0.05 2.492

1.50 0.30 2.890 0.29 2.887 0.10 2.696 0.21 2.847 0.20 2.840 0.05 2.492 0.05 2.492 0.05 2.492

1.60 0.37 2.905 0.37 2.905 0.10 2.696 0.37 2.905 0.33 2.898 0.05 2.492 0.05 2.492 0.05 2.492

1.70 0.37 2.905 0.37 2.905 0.10 2.696 0.37 2.905 0.37 2.905 0.05 2.492 0.05 2.492 0.05 2.492

1.80 0.53 2.911 0.52 2.911 0.10 2.696 0.37 2.905 0.37 2.905 0.05 2.492 0.05 2.492 0.05 2.492

1.90 0.58 2.909 0.58 2.909 0.10 2.696 0.37 2.905 0.37 2.905 0.05 2.492 0.05 2.492 0.05 2.492

2.00 0.64 2.904 0.62 2.906 0.10 2.696 0.37 2.905 0.52 2.911 0.05 2.492 0.05 2.492 0.37 2.905

n = 9

hS = 0.5 hS = 0.1

W W

0.9 0.6 0.3 0.15 0.9 0.6 0.3 0.15

τ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗ λ∗ K∗

0.60 0.35 2.916 0.35 2.916 0.09 2.670 0.30 2.901 0.41 2.926 0.40 2.925 0.40 2.925 0.34 2.913

0.70 0.21 2.854 0.21 2.854 0.09 2.670 0.21 2.854 0.27 2.889 0.28 2.894 0.28 2.894 0.29 2.898

0.80 0.11 2.722 0.14 2.777 0.09 2.670 0.14 2.777 0.14 2.777 0.15 2.792 0.15 2.792 0.16 2.805

0.90 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.06 2.551 0.06 2.551 0.06 2.551 0.06 2.551

0.95 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.05 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.10 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.20 0.07 2.599 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492 0.05 2.492

1.30 0.13 2.761 0.12 2.743 0.07 2.599 0.07 2.599 0.13 2.761 0.05 2.492 0.05 2.492 0.05 2.492

1.40 0.20 2.846 0.20 2.846 0.09 2.670 0.20 2.846 0.19 2.837 0.05 2.492 0.05 2.492 0.05 2.492

1.50 0.33 2.911 0.33 2.911 0.09 2.670 0.32 2.908 0.32 2.908 0.05 2.492 0.05 2.492 0.05 2.492

1.60 0.34 2.913 0.34 2.913 0.09 2.670 0.34 2.913 0.34 2.913 0.05 2.492 0.05 2.492 0.05 2.492

1.70 0.50 2.933 0.50 2.933 0.09 2.670 0.34 2.913 0.34 2.913 0.05 2.492 0.07 2.599 0.05 2.492

1.80 0.57 2.934 0.57 2.934 0.09 2.670 0.34 2.913 0.50 2.933 0.48 2.932 0.07 2.599 0.34 2.913

1.90 0.63 2.933 0.62 2.933 0.09 2.670 0.34 2.913 0.55 2.934 0.52 2.934 0.07 2.599 0.34 2.913

2.00 0.68 2.931 0.67 2.932 0.09 2.670 0.34 2.913 0.59 2.934 0.05 2.492 0.07 2.599 0.34 2.913
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EWMA-R (column hL = 1). Like the VSI EWMA-S2

control chart, the results clearly indicate that the VSI
EWMA-R control chart outperforms the FSI scheme
for all considered shifts of variability since the VSI
model gives a signal earlier than the FSI model.
For example, for n = 5, hS = 0.5 and W = 0.6 we
have ATS∗ = 63.4 when τ = 0.9, while for the FSI

model we have ATS∗ = 75.0. When τ = 1.2, we have
ATS∗ = 16.6 for the VSI EWMA-R control chart,
while for the FSI model we have ATS∗ = 22.5. Ta-
ble 17.18 shows the optimal long sampling interval h∗L
for several combinations of n, W , hS and τ . Finally,
Tables 17.19 and 17.20 summarize the optimal couples
(λ∗, K∗).

17.5 Conclusions

This chapter presented several EWMA control charts,
both with static or adaptive design parameters, as effec-
tive means to monitor the process variability, involving
both process position and dispersion. The EWMA con-
trol charts are a tool of statistical process control widely
adopted in the manufacturing environments, due to their
sensitivity in the detection of process drifts caused by
special causes influencing variability. EWMA charts
outperform the statistical performance of traditional
Shewhart control charts thanks to the definition of the
statistic to be monitored, which contains information
about the past process history: this translates into a faster
response on the chart to the presence of an out-of-control
condition. Reducing the number of samples to be taken
between the occurrence of a special cause and its de-
tection on the control chart is very important because
this allows the probability of nonconforming units to be
controlled. The average run length (ARL), defined as the
expected number of samples to be taken before a signal
from the chart, was assumed as a quantitative param-
eter to measure the speed of the chart in revealing the
occurrence of a special cause. Through this parameter,
different control chart schemes can be directly compared
assuming as a common constraint the same probability to
signal for a false alarm. To evaluate the ARL of static EW-
MAs, two procedures were presented in this chapter: an
approach based on the numerical integration of a Fred-
holm equation and another based on an approximate
discrete Markov-chain model. The ARL evaluation of the
adaptive EWMAs was performed through the Markov
chain, which, in this case, allows for an easy mathemat-
ical formulation to be modeled. Traditionally, static and
adaptive EWMA charts have been implemented in order
to monitor the process position with respect to a par-
ticular target value: EWMAs for the process mean and
median monitoring have been developed in the literature
and compared each other or with Shewhart schemes for
the sample mean or median. Here, an extensive set of
results are presented for the out-of-control ARL of these
charts: the analysis of the data shows how the static

EWMA-X̄ always outperforms the static EWMA-X̃ and
the corresponding Shewhart scheme for a wide range
of assumed drifts, whatever the sample size. Therefore,
the adoption of the EWMA-X̄ is suggested to the prac-
titioner whenever small process drifts must be detected.
However, in statistical quality control the monitoring of
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Fig. 17.18 FSI and VSI EWMA-S2 control chart corre-
sponding to the data in Table 17.15
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the process dispersion is equally important as the po-
sition, which can be conducted by applying EWMAs
to statistics based on the sample dispersion. A survey
of EWMAs for monitoring the sample standard devi-
ation S, sample variance S2 and sample range R was
reported in this chapter. The investigated charts work
on logarithmic transformations of the measures of dis-
persion to cope with a variable approximately normally
distributed: the formulas adopted to achieve this trans-
formed variable are widely reported throughout the text.
The reason for this approach lies in the possibility of
managing charts characterized by symmetrical limits,
which is common practice in industrial applications to
simplify the operator’s tasks in the management of the
chart. The selected logarithmic transformations work
well for all the considered statistics and allow for a di-
rect comparison of the statistical properties of the three
charts investigated. The ARL computation, optimization
and comparison for the three static EWMAs allowed us
to demonstrate that the EWMA-S2 always outperforms
both the EWMA-S and EWMA-R when the occurrence
of a special cause results in an increase in the disper-
sion of the data; i.e., when a process is monitored and
a deterioration in process repeatability is expected, the
EWMA-S2 is suitable to detect it. Otherwise, if a reduc-
tion in process dispersion is expected, for example after
a machine maintenance intervention or technological
improvement, then the EWMA-R or EWMA-S should
be used: in particular, for small sample sizes, (n ≤ 5),
implementing the EWMA monitoring the sample range
R is statistically more correct than the EWMA-S, due to
the scarce number of measures adopted to evaluate the
dispersion statistic. When n > 5, the EWMA-S should
be used. A further step in the analysis involved the in-
vestigation of the adaptive version of the EWMA-S2 and
EWMA-R charts. These adaptive charts have a sampling
frequency which is a function of the position of the last
plotted point on the chart. The underlying idea is that,

when a point is plotted near to the control limits, a pos-
sible special cause could be occurring, even if the chart
still has not signaled an out-of-control condition; if this
is the case, then the next sample should be taken af-
ter a shorter time interval. For this reason the variable
sampling interval versions of EWMA-S2 and EWMA-R
have been designed and investigated; the EWMA con-
trol interval was divided into three zones: a point falling
within the central zone, containing the central line of
the chart, calls for a longer sampling interval, whereas
a point plotted within one of the two external zones in-
cluded between the central zone and the control limits
calls for a shorter time interval. Due to the variability of
the time between two samples, the statistical efficiency
of these charts was not measured through the ARL but
through the average time to signal ATS. ATSs were com-
puted for several sample sizes and expected shifts in
process dispersion through the approximate Markov-
chain model. For each of the two investigated charts
several tables were reported, including the optimal ATSs,
a comparison with the corresponding static schemes
and the values of the optimal parameters. The results
show that the variable sampling interval charts always
statistically outperform the static charts; furthermore,
the differences between S2 and R found for the static
schemes also occur for the adaptive versions: there-
fore, when increases in process dispersion are expected,
the VSI EWMA-S2 should be used, otherwise the VSI
EWMA-R represents the best choice. Finally, it must be
argued that EWMA schemes represent a more powerful
tool than the traditional Shewhart control charts when
process variability is to be monitored, enhancing their
statistical properties through the possibility of varying
the sampling frequency is effective, whichever the en-
tity of the drift. As a consequence future research should
be devoted to the development of adaptive schemes in-
volving the possibility of changing sample size or both
sample frequency and sample size.
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Multivariate S18. Multivariate Statistical Process Control Schemes
for Controlling a Mean

The quality of products produced and services
provided can only be improved by examining the
process to identify causes of variation. Modern
production processes can involve tens to hundreds
of variables, and multivariate procedures play an
essential role when evaluating their stability and
the amount of variation produced by common
causes. Our treatment emphasizes the detection of
a change in level of a multivariate process.

After a brief introduction, in Sect. 18.1 we
review several of the important univariate
procedures for detecting a change in level among
a sequence of independent random variables.
These include Shewhart’s X−bar chart, Page’s
cumulative sum, Crosier’s cumulative sum, and
exponentially weighted moving-average schemes.

Multivariate schemes are examined in
Sect. 18.2. In particular, we consider the multi-
variate T 2 chart and the related bivariate ellipse
format chart, the cumulative sum of T chart,
Crosier’s multivariate scheme, and multivariate
exponentially weighted moving-average schemes.

An application to a sheet metal assembly
process is discussed in Sect. 18.3 and the various
multivariate procedures are illustrated.

Comparisons are made between the various
multivariate quality monitoring schemes in
Sect. 18.4. A small simulation study compares
average run lengths of the different procedures
under some selected persistent shifts.

When the number of variables is large, it is
often useful to base the monitoring procedures on
principal components. Section 18.5 discussesthis
approach. An example is also given using the
sheet metal assembly data.

18.1 Univariate Quality Monitoring Schemes . 328
18.1.1 Shewhart X-Bar Chart ................ 328
18.1.2 Page’s Two-Sided CUSUM Scheme 329
18.1.3 Crosier’s Two-Sided CUSUM
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18.3 An Application
of the Multivariate Procedures.............. 336

18.4 Comparison of Multivariate
Quality Monitoring Methods ................. 337

18.5 Control Charts Based
on Principal Components ..................... 338
18.5.1 An Application

Using Principal Components ....... 339

18.6 Difficulties of Time Dependence
in the Sequence of Observations ........... 341

References .................................................. 344

Finally, in Sect. 18.6, we warn against using
the standard monitoring procedures without
first checking for independence among the
observations. Some calculations, involving first-
order autoregressive dependence, demonstrate
that dependence causes a substantial deviation
from the nominal average run length.

Today, with automated data collection a common prac-
tice, data on many characteristics need to be continually
monitored. In this chapter, we briefly review the ma-
jor univariate methods and then discuss the multivariate
quality monitoring methods for detecting a change in
the level of a process. We concentrate on the sequen-

tial schemes where the average run length curve is of
primary importance for describing the performance. All
univariate monitoring schemes attempt to determine if
a sequence of observations X1, X2, · · · is stable. That is,
to confirm that the mean and variance remain constant.
Throughout our discussion we assume that the Xi are in-
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dependent. However, in the last section, we do consider
the effect of dependence on average run length.

We begin with a review of univariate procedures
in Sect. 18.1 and then go on to multivariate exten-
sions in Sect. 18.2. In Sect. 18.3, an example is used
to illustrate the behavior of different multivariate pro-

cedures. The performance of the multivariate schemes
is also compared via simulation in Sect. 18.4. Control
charts based on principle components are introduced
in Sect. 18.5. In Sect. 18.6, we discuss the difficulties
caused by time dependence in the sequence of observa-
tions.

18.1 Univariate Quality Monitoring Schemes

To set notation, let X1, X2, · · · be the sequence of inde-
pendent random variables produced by a process being
monitored. Let a denote the target mean value. In the
fixed-sample-size setting, the hypothesis to be tested is
H0 : µ= a versus H1 : µ �= a. However, in the sequen-
tial setting, we develop statistics based on the deviation
from the target value. The statistics will all involve
s, an estimate of the standard deviation of a single
observation.

Typically, the sequential schemes involve a constant
k, called a reference value, and a positive constant h, that
defines the decision rule. The two constants (k, h) are
selected to give good average run length (ARL) prop-
erties. Sometimes, separate reference values k+ and k−
are used to detect an increase and a decrease in the mean,
respectively.

Figure 18.1 shows 50 observations collected on an
automotive sheet metal assembly process. These mea-
surements, made by sensors, are deviations from the
nominal values (millimeters) at the back right-hand side
of the car body. Measurements made at various locations
of the car body are presented along with more details in
Sect. 18.4.

Figures 18.2–18.5 present different univariate statis-
tics for detecting a change within that data.

0.5

0.0

–0.5

0 10 20 30 40 50

Reading

Observation

Fig. 18.1 Automotive assembly data

18.1.1 Shewhart X-Bar Chart

Historically, the first quality control chart was defined
by Shewhart [18.1]. This procedure has been widely
used since the 1940s. The Shewhart X-bar chart is gen-
erally based on the mean of a small sample. That is, the
plotted point is usually the mean xn of a few (m ≥ 1)
observations. When samples are available, rather than
just individual observations, charts are also maintained
to monitor the process standard deviation.

A widely used Shewhart’s X-bar chart [18.1] signals
a shift in mean when

Xn ≥ a+3
s√
m

or Xn ≤ a−3
s√
m

,

where s is an estimate of the standard deviation of an in-
dividual observation obtained from data collected during
stable operation.

Figure 18.2 illustrates Shewhart’s X-bar chart ap-
plied to automotive assembly data with m = 1.

Figure 18.1 suggests that there is a small increase in
the mean towards the end of the sequence. However, it
is not detected by the Shewhart’s X-bar chart.

The Shewhart X-bar chart is very simple and ef-
fective for detecting an isolated large shift. However,

1.0

0.5

0.0

–0.5

–1.0

0 10 20 30 40 50

X
–

Observation

Upper
limit

Center

Lower
limit

Fig. 18.2 Shewhart’s X-bar chart (m = 1) applied to auto-
motive assembly data
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because any decision using the Shewhart chart is based
only on the most recent observation and has no memory,
it is not effective in detecting small or moderate shifts,
even if the shifts are persistent.

To help remedy the insensitivity to small shifts,
practitioners often apply additional rules for signaling
a change. These conditions to signal include:

i) nine points in a row on the same side of the
centerline

ii) six points in a row that are decreasing or six that
are increasing.

18.1.2 Page’s Two-Sided CUSUM Scheme

The univariate two-sided cumulative sum (CUSUM)
scheme proposed by Page [18.2] uses two cumulative
sums: one to detect an increase in mean and another to
detect a decrease. It is based on single observations Xn
rather than means.

For n > 1, Page iteratively defines the two statistics

SH(n) = max(0, SH(n−1)+ Xn − k+) , (18.1)

SL(n) = min(0, SL(n−1)+ Xn − k−) (18.2)

with specified starting values SH(0) ≥ 0, SL(0) ≤ 0. Sep-
arate reference values k+ and k− are used in Page’s
CUSUM scheme to detect an increase in the mean
and a decrease in the mean, respectively. Specifi-
cally, k+ is selected to be larger than the target
a so each term in the sum has a slightly nega-
tive expected value, and k− is selected to be smaller
than a. When the sequence of random variables X1,
X2, · · · are normally distributed, typically we can set
k+ = a+ ks and k− = a− ks, where k is one half
of the specified shift in mean (expressed in standard
deviations) that should be quickly detected by the
scheme.

If the process remains in control at the target value,
the CUSUM statistics defined in (18.1) and (18.2) should
vary randomly but stay close to zero. When there is
an increase in the process mean, a positive drift will
develop in the CUSUM statistics SH . Conversely, if there
is a decrease in the mean, then a negative drift will
develop in SL . Therefore, an increasing trend in SH or
a decreasing trend in SL is taken to indicate a shift in the
process mean.

Page’s CUSUM scheme signals a shift in mean when

SH(n) ≥ hs (signals an increase), or

SL(n) ≤−hs (signals a decrease) .

The positive constant h is chosen to obtain a desired
value of in-control ARL.

3

2

1

0

–1
0 10 20 30 40 50

3

2

1

0

–1
0 10 20 30 40 50

SH

Observation
SL

Observation

a)

b)

Fig. 18.3 Page’s CUSUM statistics SH (a) and SL (b) using
automotive assembly data

Figure 18.3 illustrates Page’s CUSUM statistics ap-
plied to the automotive assembly data. The increasing
trend in the plot of SH indicates an increase in the
mean towards the end of the sequence. Generally, Page’s
CUSUM scheme is more effective in detecting small but
persistent shifts than the Shewhart X-bar chart.

18.1.3 Crosier’s Two-Sided CUSUM Scheme

Crosier [18.3] proposed a two-sided CUSUM scheme
which first updates the previous CUSUM by a new ob-
servation. Depending on the updated value of this sum,
the new value of the CUSUM is either set equal to
zero or the sum is shrunk towards zero. This modifi-
cation reduces the chance of giving a false alarm. It
seems from Crosier [18.3] that this procedure was ar-
rived at empirically by trying a great many different
schemes.

In particular, Crosier’s two-sided CUSUM starts
with S0 = 0. For each step, first calculate the tentative
sum Cn = |Sn−1+ (Xn −a)|. Then Crosier’s CUSUM
statistic Sn is iteratively defined as

Sn =
⎧
⎨

⎩
0 if Cn ≤ ks

(Sn−1+ Xn −a)(1− ks/Cn) otherwise.

(18.3)
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Crosier’s CUSUM statistic S

Observation

Fig. 18.4 Crosier’s CUSUM statistic using automotive as-
sembly data

Here, the constant k can also be set equal to one half of
a specified mean-shift (expressed in standard deviations)
that should be detected quickly.

Crosier’s scheme signals that the mean has shifted
when

Sn ≥ hs (increase)

or

Sn ≤−hs (decrease) .

Figure 18.4 illustrates Crosier’s two-sided CUSUM
statistic applied to automotive assembly data.

The plot indicates a possible small decrease in the
mean near the middle of the sequence and an increase
towards the end.

18.1.4 EWMA Scheme

The univariate exponentially weighted moving-average
(EWMA) scheme [18.4] is based on the weighted aver-
age of the current CUSUM and the new observation. The
EWMA scheme smooths the sequence of observations
by taking an average where the most recent observa-
tion receives the highest weight. Starting at Z0 = 0, the
updated EWMA sum is defined as

Zn = r(Xn −a)+ (1−r)Zn−1 (18.4)

for n = 1, 2, · · · , where 0≤ r ≤ 1 is a specified constant.
Expressed in terms of all the observations, we have

Zn = r
n−1∑

i=0

(1−r)i(Xn−i −a)

= r(Xn −a)+r(1−r)(Xn−1−a)

+r(1−r)2(Xn−2−a)+· · · ,

0.4

0.2

0.0

–0.2

–0.4

0 10 20 30 40 50

1.0

0.5

0.0

–0.5

–1.0
0 10 20 30 40 50

Zn

Observation

a)

Zn

Observation

b)

Fig. 18.5 EWMA with r = 0.1 (a) and r = 0.8 (b), using
automotive assembly data

where the weights r(1−r)i fall off exponentially, giving
rise to the name of the EWMA scheme.

The EWMA scheme signals a change in mean when

Zn ≥ hs (increase) or Zn ≤−hs (decrease) .

Figure 18.5 shows the EWMA statistics with differ-
ent choices of r applied to automotive assembly data.
In the plot we can see that the EWMA statistic with
the smaller value of parameter r is more sensitive to
small shifts in this process mean. To be specific, the
plot of the EWMA statistics with r = 0.1 has a decreas-
ing trend in the middle and then an increasing towards
the end of the sequence, which suggests a decrease and
then an increase in the mean. However, in the plot of
EWMA statistics with r = 0.8, such patterns can hardly
be recognized.

As shown in Fig. 18.5, the choice of the value for r is
critical to the performance of an EWMA scheme. Usu-
ally a small value for r is used for detecting a small
shift. Lucas and Saccucci [18.4] extensively discuss the
design of EWMA control schemes. For normal observa-
tions, they provide a table of optimal parameters r and
h, which give the minimum ARL at the specified shift
in process for specified in-control ARL. Lucas and Sac-
cucci also compare the ARLs of the EWMA and Page’s
CUSUM schemes. They show that, with carefully cho-
sen parameters r and h, the ARLs for EWMA are usually
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smaller than the ARLs of Page’s CUSUM scheme when
the shift is smaller than the specified value for the shift
that the scheme is designed to detect. However, the ARLs
for the EWMA are larger than those of Page’s CUSUM
procedure when the shift in process mean is larger than
the specified value, unless r is very large.

18.1.5 Summary Comments

Our review above included most of the popular univari-
ate quality monitoring schemes. See [18.5] for further
discussion of univariate schemes for process control.
The well-known Shewhart X-bar chart is very effective
for detecting large shifts but may be slow to detect small
or moderate shifts. This fact gave rise to the setting of
warning limits and rules concerning the number of con-
secutive observations that are increasing or decreasing in

value. Page’s CUSUM scheme uses a positive (negative)
drift when defining the CUSUM statistics for detect-
ing an increase (decrease) in mean. Crosier’s CUSUM
scheme shrinks the CUSUM statistic instead of adding
a drift. Both of these CUSUM procedures make good
choices for detecting small but persisting shifts in the
process mean. They provide similar ARL performance
according to our simulation study in Sect. 18.5 and in
Li [18.6]. The EWMA scheme proposed by Lucas and
Saccucci [18.4] is also an effective method for detecting
small and persisting shifts. Unlike the other two univari-
ate CUSUM schemes, the EWMA does not require the
user to specify the shift in mean that should be detected.
The EWMA scheme could have better ARL perfor-
mance than these other CUSUM schemes when the shift
is smaller than the specified value. However, the choice
of the weight parameter r in (18.4) is somewhat crucial.

18.2 Multivariate Quality Monitoring Schemes

Often, more than one quality characteristics is meas-
ured on each unit. We then model the observations as
a sequence of independent p × 1 random vectors X1,
· · · , Xn , · · · where each has the target mean value a
and the same covariance matrix � . If � is unknown, it
must be estimated from a long sequence of observations
taken when the process is stable. Any out-of-control
observations, detected by a T 2 chart, are deleted. The
sample covariance matrix is calculated from the reduced
data set. Usually only one data cleaning stage is con-
ducted. As in most of the literature, we will describe the
multivariate monitoring schemes in terms of known co-
variance matrix � . Most of the multivariate schemes
discussed below involve a constant k and a positive
control limit h.

The literature on multivariate process control
includes [18.7–11]. Further discussion is given
in [18.12], [18.13, Chapt. 10], and [18.14, Sects. 5.6
and 8.6].

To illustrate what might be the typical behavior of the
various multivariate statistics, we generated a sequence

of 100 bivariate normal observations with � =
(

2 0

0 1

)
.

Our process mean shifted from (0,0) to (0,1) after the
40th observation. This is a moderate shift of one standard
deviation in one of the two components.

In this section, we apply each monitoring scheme
to that single bivariate sequence of observations. In

Sect. 18.5, we look at various other choices and per-
form simulation studies to determine the ARL under
a range of alternatives.

18.2.1 Multivariate T 2 Chart

The traditional T 2 chart reduces each multivariate ob-
servation to a scalar by defining

T 2
n = (Xn −a)′�−1(Xn −a) . (18.5)

The multivariate T 2 scheme signals a shift in mean when
T 2

n first exceeds a specified level h. That is, a change in
mean is signaled when

T 2
n ≥ h .

The usual upper control limit is the upper χ2 per-
centile χ2

p(α) with α= 0.01. If the estimated covariance
matrix S is based on a relatively small number of ob-
servations K , then the appropriate upper control limit
is

UCL = p(K −1)

K − p
Fp,K−p(α) .

As in the case with its univariate counterpart, the
Shewhart X-bar chart, the multivariate T 2 procedure is
not very sensitive to small or moderate shifts from the
target a because it is only based on the most recent ob-
servation and has no memory of previous observations.
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Fig. 18.6 T 2 chart with a 99% control limit using our
generated bivariate data
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Fig. 18.7 The T 2 99% control ellipse using our generated
bivariate data

Figure 18.6 illustrates the traditional multivariate T 2

scheme applied to our generated bivariate normal obser-
vations. As shown in the graph, there is a false alarm
at n = 38 and the first correct detection of a shift is at
n = 52. The shift from (0,0) to (1,0) at n = 40 is not
detected particularly quickly and persistently by the T 2

chart with a = (0, 0).
When there are only two important variables, it is

more informative to plot the individual 2 × 1 vectors Xn
with the control ellipse in an ellipse format chart for T 2

statistics. The 99% control ellipse is

T 2
n = (Xn −a)′�−1(Xn −a) ≤ χ2

2 (0.01) .

The generated bivariate normal data and the 99% con-
trol ellipse are shown in Fig. 18.7. There is one false
detection outside the control ellipse at n = 38 and a few
correct detections of the shift in mean at n = 52, 87
and 96.

T 2 Control Charts Based on Means
Often, rather than using a single observation, a control
chart is based on points that correspond to the mean
of a small sample of size m. We still assume that the
population is p−variate normal with mean vector 0 and
covariance matrix � . However, because of the central
limit effect that sample means are more normal than in-
dividual observations, the normality of the population is
not as crucial. It is now assumed that each random vec-
tor of observations from the process is independently
distributed as Np(0,� ). We proceed differently, when
the sampling procedure specifies that m > 1 units be se-
lected, at the same time, from the process. From the first
sample, we determine its sample mean X1 and covari-
ance matrix S1. When the population is normal, these
two random quantities are independent.

Starting with K samples, where the the j−th sam-
ple has mean vector X j and covariance matrix S j , the
estimator of the population mean vector µ is the overall
sample mean

X = 1

K

K∑

j=1

X j .

The sample covariances from the n samples can be
combined to give a single estimate (called Spooled) of �

as

S = 1

K
(S1+S2+· · ·+SK ) ,

where (mK −K )S is independent of each X j and there-

fore of their mean X. That is, we can now estimate �

internally from the data collected in any given period.
These estimators are combined into a single estimator
with a large number of degrees of freedom.

T 2 Chart When Means Are Plotted. When the chart is
based on the sample mean Xn of m observations rather
than a single observation, the values of

T 2
n = m(Xn −a)′�−1(Xn −a)

are plotted for n = 1, 2, · · · , where the

UCL = χ2
p(0.01)

or some other upper percentile of the chi-square distri-
bution with p degrees of freedom.

Ellipse Format Chart. The control ellipse, expressed in
terms of the sample mean Xn of m observations, is

(x−a)′�−1(x−a) ≤ χ2
p(0.01)/m ,
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where χ2
p(0.01)/m, on the right-hand side, can be re-

placed by some other upper percentile. For p = 2,
a graph of the ellipse is usually presented for visual
inspection of the data.

18.2.2 CUSUM of Tn (COT) Scheme

The cumulative sum of T , COT or CUSUM of Tn
scheme, is the most direct extension of the multivariate
T 2 chart to a CUSUM procedure. It forms a CUSUM of
the scalar statistics Tn , where T 2

n is defined in (18.5).
Let S0 ≥ 0 and k > 0 be specified constants. Itera-

tively define

Sn = max(0, Sn−1+Tn − k), for n = 1, 2, · · · ,
(18.6)

where k is a specified positive constant.
The COT scheme signals when it surpasses a speci-

fied level h. That is, the COT scheme signals a change
in mean when

Sn ≥ h .

Figure 18.8 illustrates the performance of the CUSUM
of T . As we can see, the COT scheme does show an in-
creasing trend which indicates a shift in the sequence
mean, while the multivariate T 2 chart does not persis-
tently indicate a change because the shift is not large
enough.

18.2.3 Crosier’s Multivariate CUSUM Scheme

Crosier [18.11] also generalized his univariate CUSUM
scheme to the multivariate setting. Crosier’s multivariate

15

10

5

0
0 20 40 60 80 100

Sample number

COT

Fig. 18.8 CUSUM of T statistics using our generated bi-
variate data

statistic starts at S0 = 0. With a specified constant k,
iteratively define

Sn =
⎧
⎨

⎩
0 if Cn ≤ k

(Sn−1+ Xn −a)(1− k/Cn) otherwise,

(18.7)

where

Cn = [(Sn−1+ Xn −a)′�−1(Sn−1+ Xn −a)]1/2 .

For a specified constant h, Crosier’s multivariate
scheme signals a shift in mean from a when

Yn = (S′n�−1Sn)1/2 ≥ h .

Figure 18.9 illustrates the performance of Crosier’s
multivariate CUSUM scheme with the generated bivari-
ate normal data. In the plot, a increasing trend was shown
shortly after the shift in process occurs at the 41st ob-
servation. Therefore, the shift is detected faster than it is
detected by the COT scheme.

18.2.4 Multivariate EWMA Scheme
[MEWMA(r)]

In multivariate settings, Lowry and Woodall [18.15]
proposed a natural extension of the univariate EWMA
scheme. Starting with Z0 = 0, the multivariate EWMA
statistic Zn is defined, iteratively, by

Zn = R(Xn −a)+ (I−R)Zn−1

for n = 1, 2, · · · , (18.8)

where the weight matrix R= diag(r1, · · · , rp), 0≤ r j ≤
1, j = 1, · · · , p. That is, Lowry and Woodall specialize

40

30

20

10

0
0 20 40 60 80 100

Sample number

Crosier’s Y

Fig. 18.9 Crosier’s multivariate CUSUM statistics Yn ap-
plied to our generated normal data
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Index x1 x2 x3 x4 x5 x6

1 −0.12 0.36 0.40 0.25 1.37 −0.13

2 −0.60 −0.35 0.04 −0.28 −0.25 −0.15

3 −0.13 0.05 0.84 0.61 1.45 0.25

4 −0.46 −0.37 0.30 0.00 −0.12 −0.25

5 −0.46 −0.24 0.37 0.13 0.78 −0.15

6 −0.46 −0.16 0.07 0.10 1.15 −0.18

7 −0.46 −0.24 0.13 0.02 0.26 −0.20

8 −0.13 0.05 −0.01 0.09 −0.15 −0.18

9 −0.31 −0.16 −0.20 0.23 0.65 0.15

10 −0.37 −0.24 0.37 0.21 1.15 0.05

11 −1.08 −0.83 −0.81 0.05 0.21 0.00

12 −0.42 −0.30 0.37 −0.58 0.00 −0.45

13 −0.31 0.10 −0.24 0.24 0.65 0.35

14 −0.14 0.06 0.18 −0.50 1.25 0.05

15 −0.61 −0.35 −0.24 0.75 0.15 −0.20

16 −0.61 −0.30 −0.20 −0.21 −0.50 −0.25

17 −0.84 −0.35 −0.14 −0.22 1.65 −0.05

18 −0.96 −0.85 0.19 −0.18 1.00 −0.08

19 −0.90 −0.34 −0.78 −0.15 0.25 0.25

20 −0.46 0.36 0.24 −0.58 0.15 0.25

21 −0.90 −0.59 0.13 0.13 0.60 −0.08

22 −0.61 −0.50 −0.34 −0.58 0.95 −0.08

23 −0.61 −0.20 −0.58 −0.20 1.10 0.00

24 −0.46 −0.30 −0.10 −0.10 0.75 −0.10

25 −0.60 −0.35 −0.45 0.37 1.18 −0.30

26 −0.60 −0.36 −0.34 −0.11 1.68 −0.32

27 −0.31 0.35 −0.45 −0.10 1.00 −0.25

28 −0.60 −0.25 −0.42 0.28 0.75 0.10

29 −0.31 0.25 −0.34 −0.24 0.65 0.10

30 −0.36 −0.16 0.15 −0.38 1.18 −0.10

31 −0.40 −0.12 −0.48 −0.34 0.30 −0.20

32 −0.60 −0.40 −0.20 0.32 0.50 0.10

33 −0.47 −0.16 −0.34 −0.31 0.85 0.60

34 −0.46 −0.18 0.16 0.01 0.60 0.35

35 −0.44 −0.12 −0.20 −0.48 1.40 0.10

36 −0.90 −0.40 0.75 −0.31 0.60 −0.10

37 −0.50 −0.35 0.84 −0.52 0.35 −0.75

38 −0.38 0.08 0.55 −0.15 0.80 −0.10

39 −0.60 −0.35 −0.35 −0.34 0.60 0.85

40 0.11 0.24 0.15 0.40 0.00 −0.10

41 0.05 0.12 0.85 0.55 1.65 −0.10

42 −0.85 −0.65 0.50 0.35 0.80 −0.21

43 −0.37 −0.10 −0.10 −0.58 1.85 −0.11

44 −0.11 0.24 0.75 −0.10 0.65 −0.10

45 −0.60 −0.24 0.13 0.84 0.85 0.15

46 −0.84 −0.59 0.05 0.61 1.00 0.20

47 −0.46 −0.16 0.37 −0.15 0.68 0.25

48 −0.56 −0.35 −0.10 0.75 0.45 0.20

49 −0.56 −0.16 0.37 −0.25 1.05 0.15

50 −0.25 −0.12 −0.05 −0.20 1.21 0.10
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to cases where R is a diagonal matrix. This reduces to the
situation where a univariate EWMA is applied to each
individual component. When there is no a priori reason
to weight the p quality characteristics differently, they
further suggest the use of a common value r1 = · · · =
rp = r, where 0 ≤ r ≤ 1 is a constant.

The MEWMA scheme signals if the scalar
Z′n�−1 Zn is large. More particularly, for a specified
constant h, the MEWMA scheme signals a shift in mean
from a when

(Z′n�−1 Zn)1/2 ≥ h .

Analogous to the univariate case, the choice of
weight matrix R has a considerable influence on the
resulting ARL behavior. Usually a small value of r is
selected to detect small shifts in each component of
mean.

Figure 18.10 illustrates the performance of the
MEWMA scheme evaluated for our generated bivariate
normal data under two different choices of the constant r.
Again, we see that the MEWMA scheme with a small
value of r is more effective in detecting a small but
persisting shift like the one in our generated data.
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Fig. 18.11 Shewhart X−bar chart for each variable in automotive assembly data
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Fig. 18.10 MEWMA with r = 0.1 (a) and r = 0.8 (b), using
our generated bivariate normal data
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18.3 An Application of the Multivariate Procedures

The data that we use to illustrate the various control
charts is courtesy of Darek Ceglarek. He collected these
measurements on the sheet metal assembly process as
part of a study conducted with a major automobile man-
ufacturer. Ceglarek and Shi [18.16] give more detail on
the body assembly process. There are six variables of
which four were measured when the car body was com-
plete and two were measured on the underbody at an
earlier stage of assembly.

All measurements were taken by sensors that
recorded the deviation from the nominal value in mil-
limeters:

x1 = deviation at mid right-hand side, body complete,
x2 = deviation at mid left-hand side, body complete,
x3 = deviation at back right-hand side, body complete,
x4 = deviation at back left-hand side, body complete,
x5 = deviation at mid right-hand side of underbody,
x6 = deviation at mid left-hand side of underbody.

The covariance matrix and the mean estimated from
the first 30 observations are

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.0626 0.0616 0.0474 0.0083 0.0197 0.0031

0.0616 0.0924 0.0268 −0.0008 0.0228 0.0155

0.0474 0.0268 0.1446 0.0078 0.0211 −0.0049

0.0083 −0.0008 0.0078 0.1086 0.0221 0.0066

0.0197 0.0228 0.0211 0.0221 0.3428 0.0146

0.0031 0.0155 −0.0049 0.0066 0.0146 0.0366

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

x = ( −0.5063 −0.2070 −0.0620 −0.0317 0.6980 −0.0650 )′.

Figure 18.11 gives the Shewhart X-bar charts for
each of the six variables. Except for two cases with
the last variable measured at the left side of the under-
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T2

Fig. 18.12 Multivariate T 2 chart for automotive assembly
data

body, all of the observations are within their 99% control
limits.

Figures 18.12 and 18.13 show the multivariate T 2

chart and the CUSUM of T chart applied to the automo-
tive assembly data. In the multivariate T 2 chart we can
see that a few values between the 30th and 40th obser-
vations are out of the control limits. The CUSUM of T
chart indicates a small and persistent shift at the end of
the sequence, which is not detected by the multivariate
T 2 chart.

The Crosier’s CUSUM statistic illustrated in
Fig. 18.14 also indicates a small and persistent shift,
which is consistent with the CUSUM of T chart.

The multivariate EWMA schemes are illustrated
in Fig. 18.15. There is a considerable difference in
the appearance depending on the choice of the com-
mon weight r. In the plot of multivariate EWMA
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Fig. 18.13 CUSUM of T chart for automotive assembly
data
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Fig. 18.14 Crosier’s CUSUM statistic applied to automo-
tive assembly data

Part
B

1
8
.3
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statistics with r = 0.1, an increasing trend indicates
an increase in the mean, which is consistent with the
CUSUM of T chart and Crosier’s CUSUM scheme.

However, with r = 0.8, we can not see the increas-
ing pattern in the plot for the multivariate EWMA
statistics.

18.4 Comparison of Multivariate Quality Monitoring Methods
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b) Zn

Fig. 18.15a,b Multivariate EWMA statistics with r =
0.1 (a) and r = 0.8 (b), using automotive assembly data

Table 18.1 ARL comparison with bivariate normal data (uncorrelated)

Shift T2 COT Crosier EW(0.1) EW(0.4) EW(0.8)

(0,0) 198.3 200.1 200.8 200.4 199.4 198.1

2.8 2.7 2.9 2.8 2.8 2.8

(1,0) 44.3 20.5 9.5 9.8 13.3 29.6

0.6 0.2 0.1 0.1 0.1 0.4

(0,-1) 42.9 20.0 9.5 9.8 13.2 28.7

0.6 0.2 0.1 0.1 0.2 0.4

(0.7,0.7) 42.4 20.3 9.5 9.7 12.7 29.0

0.6 0.2 0.1 0.1 0.2 0.4

(0.7,-0.7) 42.3 20.3 9.3 9.7 13.4 29.1

0.6 0.2 0.1 0.1 0.2 0.4

(0.5,0) 119.7 82.4 29.0 27.3 54.2 96.4

1.6 1.1 0.3 0.3 0.7 1.3

(0.4,-0.4) 113.9 82.1 29.0 27.5 52.8 90.7

1.6 1.1 0.3 0.3 0.7 1.3

(2,0) 6.9 4.7 4.0 4.3 3.5 4.8

0.1 0.0 0.0 0.0 0.0 0.1

(1.4,-1.4) 6.7 4.7 4.0 4.3 3.5 4.7

0.1 0.0 0.0 0.0 0.0 0.1

Several authors, including Pignatiello [18.17] and
Lowry [18.18], have compared various multivariate
monitoring procedures. To confirm their general conclu-
sions, we use simulation to study the average run length
(ARL) properties of the multivariate sequential schemes
discussed above. Specifically, the ARL is defined as the
average number of observations before the scheme gives
a signal. If the shift did not occur at the beginning of the
series of observations, it is common practice to use the
steady-state ARL, which is the average additional run
length after the shift occurs. An effective scheme should
have a large ARL when the process is in control and
a small ARL when the process is out of control. Usually,
to compare different schemes, we can set the in-control
ARLs to be nearly equal and compare the ARLs when
there is a shift.

In our simulation, we generate bivariate nor-
mal observations with either � = I (uncorrelated)

or � =
(

1.0 −0.6

−0.6 1.0

)
. For each choice of � and
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Table 18.2 ARL comparison with bivariate normal data (correlated)

Shift T2 COT Crosier EW(0.1) EW(0.4) EW(0.8)

(0,0) 201.1 206.5 202.3 203.0 202.7 202.6

2.8 2.7 3.0 2.8 2.8 2.8

(0.8,0) 42.7 20.0 9.4 9.8 13.1 28.3

0.6 0.2 0.1 0.1 0.2 0.4

(0,−0.8) 44.6 20.6 9.7 9.9 13.4 29.8

0.6 0.2 0.1 0.1 0.2 0.4

(0.4,0.4) 43.3 20.0 9.5 9.8 13.1 28.8

0.6 0.2 0.1 0.1 0.2 0.4

(0.4,−0.4) 115.3 81.8 28.5 26.9 54.2 97.2

1.6 1.1 0.3 0.3 0.7 1.3

(0.4,0) 114.3 84.1 28.8 27.0 52.8 95.0

1.6 1.1 0.3 0.3 0.7 1.4

(0.2,−0.2) 172.3 158.2 84.2 71.7 115.5 158.7

2.4 2.1 1.1 1.0 1.7 2.2

(1.6,0) 7.0 4.7 4.0 4.3 3.5 4.7

0.1 0.0 0.0 0.0 0.0 0.1

(0.9,−0.9) 41.8 20.4 9.5 10.1 14.4 28.5

0.6 0.2 0.1 0.1 0.2 0.4

shift in mean, series of observations were generated
and the multivariate statistics were calculated until
a shift is signaled. This procedure was repeated 5000
times and we calculate the ARL and the estimated
standard error of ARL for each scheme. Table 18.1
and 18.2 show the results of our simulation, where
the estimated standard errors are given in smaller
type.

From our simulation and existing literature, we con-
clude that, due to the fact that the value of the T 2 statistic
only depends on the most current observation, it is not

sensitive to small and moderate shifts in the mean of
a process even if the shift is persistent. By taking the
CUSUM of T , The COT procedure has ARL perfor-
mance that is significantly improved over that of the
T 2 chart. The ARL of Crosier’s scheme is considerably
better than that of the COT scheme. The performance
of multivariate EWMA schemes depend heavily on the
value of the weight parameters. If the weight is ap-
propriately selected, the multivariate EWMA will have
very good ARL performance which is comparable with
Crosier’s scheme.

18.5 Control Charts Based on Principal Components

The first two sample principal components concen-
trate the sample variability. Starting with a sample
x1, x2, · · · , xK , of size K , collected when the pro-
cess is stable, the first sample principal component is
the linear combination with values, y j = a′(x j − x) that
has maximum sample variance among all choices with
a′a = 1. The second sample principal component is the
linear combination, having values b′(x j − x), that has
maximum variance among all linear combinations with
b′b= 1 and that have zero correlation with the first prin-
cipal component. The third sample principal component
is the linear combination with maximum sample vari-
ance, subject to being uncorrelated with each of the first

two principal components and having coefficient vec-
tor of length one. See Johnson and Wichern [18.14] for
a thorough description of principal components.

The coefficients that provide the maximum variance
are the eigenvectors e of the sample covariance matrix
S. That is, they are the solutions of

S e = λ e

with the e normalized so that e′e = 1. There are p solu-
tions (λi , ei ) where λ1 ≥ λ2 · · · ≥ λp. The first sample
principal component

ŷ1 j = e′1(x j − x)
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has the maximum possible variance λ1. More generally,
the k-th principal component

ŷk j = e′k(x j − x), k = 1, 2, · · · , p

has sample variance λk.
If the process is stable over time, then the values of

the first two principal components should be stable. Con-
versely, if the principal components remain stable over
time, the common effects which influence the process
are likely to remain constant.

Through an example, we introduce a two-part mon-
itoring procedure based on principal components.

18.5.1 An Application
Using Principal Components

Today, with electronic and other automated methods of
data collection, major chemical and drug companies reg-
ularly measure over 100 different process variables such
as temperature, pressure, concentrations and weights at
various positions along the production process. Even
with 11 variables to monitor, there are 55 possible pairs
of variables for which ellipse format charts could be cre-
ated. Consequently, we need to consider an alternative
approach that both produces visual displays of important
quantities and still has the sensitivity to detect special
causes. Here we introduce a two-part multivariate qual-
ity control procedure that is widely applied when a large
number of variables are being monitored [18.19].

The first part is an ellipse format chart to monitor
the first two principal components. The second part is a
T 2 chart based on the remaining principal components.

If the p variables have quite different variances, it
is usual to standardize the variables before finding the
principal components. This is equivalent to extracting
the eigenvectors from the correlation matrix R. Here we
skip that step because the variables are comparable.

The values of the first and second sample principal
components for the n−th observation are

ŷ1n = e′1(xn − x) ,

ŷ2n = e′2(xn − x) .

The first part of the multivariate quality control proce-
dure is to construct a ellipse format chart for the pairs of
values (ŷ1n, ŷ2n), n = 1, 2, . . . .

Recall that the variance of the first principal com-
ponent ŷ1 is λ1, that of the second principal component
ŷ2 is λ2, and the two are uncorrelated. Consequently,
the control format ellipse reduces to the collection of

possible values (ŷ1, ŷ2) such that

ŷ2
1

λ1
+ ŷ2

2

λ2
≤ χ2

2 (α) .

Chart 1: The elliptical control region
for the first two principal components
Refer to the automotive assembly data on p = 6 vari-
ables. We base our estimate S of � on the first 30
stable observations. A computer calculation gives the
eigenvalues and eigenvectors in Table 18.3.

The 99% ellipse format chart for the first two prin-
cipal components

ŷ2
1

λ1
+ ŷ2

2

λ2
≤ χ2

2 (0.01)

is shown in Fig. 18.16 along with the pairs of values of
the principal components for the first 30 observations as
well as the additional cases. There are no points out of
control.

Special causes may still produce shocks to the sys-
tem not apparent in the values of the first two principal
components and a second chart is required.

Chart 2: A T 2 chart
for the remaining principal components
For the 30 stable observations, the approximation to
x j − x by the first two principal components has the
form ŷ1 je1+ ŷ1 je2 [18.14]. This leaves an unexplained
component of the j-th deviation x j − x. Namely,

x j − x− ŷ1 je1− ŷ2 je2 .

For each j, this unexplained component is perpendicular
to both of the eigenvectors e1 and e2. Consequently,

2

1

0

–1

–2.0 –1.5 –1.0 –0.5 0.0 0.5

pc1

pc2

Fig. 18.16 The ellipse format for the first two principal
components – automotive data
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Table 18.3 Eigenvectors and eigenvalues from the 30 stable observations

e1 e2 e3 e4 e5 e6

x1 0.1193 0.4691 0.0752 0.2906 0.2672 0.7773

x2 0.1295 0.4576 0.2508 0.6237 0.0366 −0.5661

x3 0.1432 0.7170 −0.1161 −0.6323 −0.1746 −0.1471

x4 0.0964 0.0529 −0.9555 0.2568 0.0619 −0.0715

x5 0.9677 −0.2312 0.0700 −0.0641 0.0322 −0.0030

x6 0.0517 0.0135 −0.0078 0.2380 −0.9444 0.2204

λi 0.3544 0.1864 0.1076 0.0972 0.0333 0.0088

it is perpendicular to its approximation ŷ1 je1+ ŷ1 je2,
which implies that the approximation and unexplained
component have zero sample covariance.

Seen another way, let E = (e1, e2, · · · , ep) be the
orthogonal matrix whose columns are the eigenvectors
of S. The orthogonal transformation of the unexplained
part is

E′(x j − x− ŷ1 je1− ŷ2 je2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

ŷ3 j

·
·
·

ŷp j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first two components are always zero so we base
the T 2 chart on the values of the last p−2 principal
components. Because the

sample variance (ŷij ) = λi for i = 1, 2, 3, · · · , p

and the principal components have zero sample co-
variances, the T 2 based on the original quantities
x j − x− ŷ1 je1− ŷ2 je2 is equivalent to the one based
on the values

T 2
j =

ŷ2
3 j

λ3
+ ŷ2

4 j

λ4
+· · ·+ ŷ2

p j

λp
.

Because the coefficients of the linear combina-
tions, ei , are also estimates, the principal com-
ponents do not have a normal distribution even
when the underlying population is normal. Conse-
quently, it is customary to use the large-sample
approximation to the upper control limit, UCL =
χ2

p−2(α).
This T 2 statistic can be based on high-dimensional

data. When p = 20 variables are measured, it concerns
the 18-dimensional space perpendicular to the first two
eigenvectors. Still, it is reported as highly effective in
picking up special causes.

Refer the automobile assembly data. The quality el-
lipse for the first two principal components was shown
in Fig. 18.16. To illustrate the second step of the two
step monitoring procedure, we create the chart for the
other variables. Since p = 6, this 99% chart is based
on 6−2 = 4 dimensions and the upper control limit is
χ2

4 (0.01) = 13.28. We plot the time sequence of values

T 2
n =

ŷ2
3n

λ3
+ ŷ2

4n

λ4
+ ŷ2

5n

λ5
+ ŷ2

6n

λ6
.

The T 2 chart is shown as Fig. 18.17.
Something has likely happened at the 33rd, 36th,

37th and the 39th observations. For the 39th observa-
tion, the values of the last principal components are
−0.2712, −0.2105, 0.8663, −0.2745, respectively.
The value of ŷ5,39 = 0.8663 is particularly large, with
reference to the coefficient vector e5 in Table 18.3, we
see that the fifth principal component is essentially X6.
From the data and the univariate Shewhart X-bar charts
in Fig. 18.11, we see that the mean of the last variable
has increased.
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Fig. 18.17 T 2 chart based on the last four principal compo-
nents – automotive data
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In some applications in the pharmaceutical industry
hundreds of variables are monitored. Then, the space
orthogonal to the first few principal components has
dimension greater than 100 and some the eigenvalues
are very small. An alternative approach [18.19], which
avoids the difficulty of dividing by very small numbers,
has been successful applied. For each of the K stable
observations, take the sum of squares of its unexplained
component

d2⊥ j = (x j − x− ŷ1 je1− ŷ2 je2)′

× (x j − x− ŷ1 je1− ŷ2 je2) .

Note that, by inserting EE′ = I, we also have

d2⊥ j =
(
x j − x− ŷ1 je1− ŷ2 je2

)′ EE′

×
(
x j − x− ŷ1 je1− ŷ2 je2

)=
p∑

k=3

ŷ2
k j

which is just the sum of squares of the neglected princi-
pal components.

Using either form, the d2⊥n are plotted versus n to
create a control chart. The lower control limit is zero and

the upper limit is set by approximating the distribution
of d2⊥n as a constant c times a chi-square random variable
with ν degrees of freedom. The constant c and degrees
of freedom ν are chosen to match the sample mean and
variance of the d2⊥ j , j = 1, · · · , K . In particular, setting

d2⊥ =
1

K

K∑

j=1

d2⊥ j = c ν ,

sdd = 1

K

K∑

j=1

(
d2⊥ j −d2⊥

)2 = 2c2ν ,

we determine that

c = sdd

2d2⊥
and ν = 2

(d2⊥)2

sdd
.

The upper control limit is then cχ2
ν (α), where α= 0.05

or 0.01.
We remark that this two-step procedure can be made

more sensitive by using, for instance, Crosier’s scheme.

18.6 Difficulties of Time Dependence in the Sequence of Observations

We must include a warning that pertains to the appli-
cation of any of the quality monitoring procedures we
have discussed. They are all based on the assumption that
the observations are independent. Most often, especially
with automated collection procedures, observations may
be taken close together in time or space. This can pro-
duce a series of observations that are not independent
but correlated in time.

We emphasize that the methods described in this
chapter are based on the assumption that the multivariate
observations X1, X2, · · · , Xn are independent of one
another. The presence of even a moderate amount of time
dependence among the observations can cause serious
difficulties for monitoring procedures.

One common and simple univariate model that usu-
ally captures much of the time dependence is a first-order
autoregressive process (AR(1))

Xn −µ= φ ( Xn−1−µ )+ εn ,

where −1 < φ< 1. The εn are independent, mean-zero,
shocks all having the same variance σ2

ε . The AR(1)
model relates the observation at time n, to the observa-
tion at time n−1, through the coefficient φ. The name
autoregressive model comes from the fact that the model

looks like a regression model with Xn as the dependent
variable and the previous value Xn−1 as the independent
variable.

Under normality of errors, if φ = 0, the au-
toregressive model implies that the observations are
independent. It is not at all unusual in practice to find
values of φ as high as 0.3 or 0.4.

The AR(1) model, implies that all of the Xn have the
same variance σ2

X = σ2
ε / (1−φ2 ). As shown in John-

son and Langeland [18.20], if the sample variance s2 is
calculated from a long series of adjacent observations, s2

will closely approximateσ2
X . That is, the correct variance

is being estimated.
We first consider the effects of dependence in the

context of the X-bar chart. When the individual obser-
vations Xn are plotted, with limits set at ± 3σX , we still
have

P( | Xn − µ | > 3σX ) = 0.0027 .

The observations are correlated but we expect the same
number of false alarms.

In this sense, the X-bar chart is robust with respect to
dependence. If the points being plotted, Xn , correspond
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Table 18.4 Probability of false alarms when the process is in control. Normal populations and X-bar chart

P
(|Xn − µ | > 3σX/

√
m
)

φ = −0.6 φ = −0.3 φ = 0 φ = 0.3 φ = 0.6

m = 1 0.0027 0.0027 0.0027 0.0027 0.0027

m = 3 0.0000 0.0003 0.0027 0.0147 0.0484

m = 5 0.0000 0.0002 0.0027 0.0217 0.0971

Table 18.5 The estimated ARL for Page’s CUSUM when the process is in control. Normal populations

φ = −0.4 φ = −0.2 φ = −0.1 φ = 0 φ = 0.1 φ = 0.2 φ = 0.4

k = 0.5, h = 4.24 9549.0 884.0 390.5 206.1 121.8 82.6 43.9

k = 0.75, h = 2.96 2901.2 706.3 356.2 204.1 128.5 88.5 48.1

Table 18.6 The h value to get in-control ARL ≈ 200, k = 0.5. Page’s CUSUM

φ = −0.6 φ = −0.3 φ = −0.1 φ = 0 φ = 0.1 φ = 0.3 φ = 0.6

h 2.34 2.94 3.77 4.24 4.76 6.38 10.6

in-control ARL 214.6 205.5 213.2 206.1 202.7 205.8 210.3

to the sample mean of m adjacent observations, then

σ2
X
= Var( Xn ) = σ2

X

m

⎛

⎝ 1 +
m−1∑

j=1

m− j

m
φ j

⎞

⎠ .

In this case, the probability of a false alarm when the
limits are set at 3σX /

√
m, is

P

(
| Xn − µ | > 3

σX√
m

)

= P

( ∣∣∣∣∣
Xn − µ

σX

∣∣∣∣∣ > 3
σX/

√
m

σX

)
.

There are some dramatic changes from the nominal
value of the probability of a false alarm when the process
is in control. Some values are given in Table 18.4.

The consequences of dependence are much
more severe on the CUSUM statistic. Johnson and
Bagshaw [18.21] present some limiting results for the
distribution of ARL when the centering values are se-
lected so the contribution of the n-th observation has
mean zero for every n. The presence of dependence
greatly alters the ARL. Essentially, this occurs because
the CUSUM is a smooth function of the stochastic
process defined at n = 0, 1, · · · by

n−1/2Sn = n−1/2
n∑

i=1

( Xi − µ ) .

For large fixed n, n−1/2Sn is normal with variance
approaching σ2

X (1+φ )/( 1 − φ ). This is quite different
from σ2

X , which is the value if we ignore the dependence
in the model.

Table 18.5 gives the estimated ARL using Page’s
CUSUM procedure, for in-control normal populations,
for a few values of φ. The h values in the CUSUM
scheme are chosen carefully so that the in-control ARL
at φ = 0 is around 200. The ARL values are based on
5000 trials and apply to the situation where the depen-
dence is not noticed when φ �= 0, but that variance is
estimated by the usual formula using a long series of
consecutive observations.

We see dramatic reductions in ARL even for small
positive values of φ. To be able to get the desired in-
control ARL when there is time dependence in the
sequence of observations, the h values in the control
schemes have to be changed. Table 18.6 presents the h
values obtained from simulation to get in-control ARL
near 200, for different values of φ, using Page’s CUSUM
scheme when the dependence is not noticed.

In the context of multivariate procedures, depen-
dence can often be represented as a multivariate
first-order autoregressive model. Let the p × 1 random
vector Xt follow the multivariate AR(1) model

Xn −µ=�(Xn−1−µ)+ εn (18.9)

where the εn are independent and identically distributed
with E(εn) = 0 and Cov (εn) =�ε and all of the eigen-
values of � are between −1 and 1. Under this model

Cov(Xn, Xn− j ) =� j�X ,

where �X =
∞∑

j=0

� j�ε�
′ j .
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Table 18.7 The estimate in-control ARL using Crosier’s multivariate scheme

φ = −0.3 φ = −0.2 φ = −0.1 φ = 0 φ = 0.1 φ = 0.2 φ = 0.3

k = 0.5, h = 5.55 4881.3 1295.2 454.8 203.6 105.5 65.6 43.2

The multivariate AR(1) model relates the observation
at time n to the observation at time n−1 through the
coefficient matrix Φ. Further, the autoregressive model
says the observations are independent, under multivari-
ate normality, if all the entries in the coefficient matrix
Φ are 0.

As shown in Johnson and Langeland [18.20],

X →P µ ,

S= 1

n−1

n∑

t=1

(Xt − X )(Xt − X )′ →P �X ,

where the arrow indicates convergence in probability.
Similar to the X-bar chart, the T 2 chart is robust with

respect to dependence when individual observations are
plotted. The probability of a false alarm at any time n is
still

P
[

(Xn −µ)′�−1
X (Xn −µ) ≥ χ2

p(0.01)
]
= 0.01

since, under normality, Xn −µ has a p−variate normal
distribution with mean 0 and covariance matrix �X. If
the observations are independent, and the process is in
control, the probability is 0.01 that a single observation
will falsely signal that a change has occurred. The ARL
is then 1/0.01 = 100.

When the plotted points correspond to the sample
mean of m adjacent observations, the situation is more
complicated. To simplify our calculations, we consider
the case where has �= φI, where |φ |< 1. Consider the
multivariate T 2 chart where the process is considered to
be in control if

m(Xn −µ)′Σ−1
X (Xn −µ) ≤ χ2

p(0.01) .

If the observations are independent, and the process is
in control, the probability is 0.01 that a single observa-
tion will falsely signal that a change has occurred. The
ARL is 1/0.01 = 100. Using χ2

p(0.005) as limit gives an
ARL of 1/0.005 = 200 when the process is in control.
However, if the observations are related by our simpli-
fied multivariate AR(1) model, the average of m adjacent

observations has covariance matrix

Cov(Xn) = 1

m
�X

⎛

⎝ 1 +
m−1∑

j=1

m− j

m
φ j

⎞

⎠ .

not �X/m, and this will cause some change from the
nominal probability.

The multivariate CUSUM statistics are all based on
the stochastic process, defined at n = 1, 2, · · · by

n−1/2Sn = n−1/2
n∑

j=1

(X j − µ)

whose covariance at time n

Cov

(
n−1/2

n∑

t=1

Xt

)
→ (I−Φ)−1�X

+�X(I−Φ′ )−1−�X .

This can be considerably different from the covariance
�X used when dependence is ignored.

Table 18.7 provides the estimated ARL for in-
control normal populations with covariance matrix

� =
(

1.0 0.5

0.5 1.0

)
, using Crosier’s CUSUM scheme. The

ARL values are based on 5000 trials where the covari-
ance matrix is estimated by S using a long series of
consecutive observations.

For more details on large-sample approximations,
including a limit for Crosiers statistic, see Li [18.6].

Based on the calculations above and consideration
of other cases, we must emphasize that the indepen-
dence assumption is crucial to all of the procedures
we discussed that are based on cumulative sums. The
results based on this assumption can be seriously mis-
leading if the observations are, in fact, even moderately
dependent.

The best approach, when dependence is identified
as being present, is to fit a time-series model. Then, as
suggested in Bagshaw and Johnson [18.22], the residu-
als can be monitored for a shift. In the univariate case
a CUSUM statistic can be applied. See also Hawkins
and Olwell [18.23], Section 9.3.
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Part C focuses on reliability models, statistical acceler-
ated testing and survival analysis. The first five chapters
in this part emphasize general system modeling while
the last four chapters emphasize software systems. The
first chapter in this part, Chapt. 19, discusses varia-
tions of the statistical survival model and the step-stress
accelerated-failure-time model and their important ap-
plications to both biomedical and engineering studies,
followed by Chapt. 20, which focuses on failure-rate
modeling with respect to heterogeneous populations
and presents the concepts and properties of mixture
failure rates, proportional hazards, additive hazards
and accelerated life tests in heterogeneous populations.
Chapter 21 provides an overview of various proportional
hazard regression (PHR) models, including the strati-
fied Cox model, the Cox model with time-dependent
covariates and various hypothesis-testing methods for
validating PHR models. Several extended models such
as nonproportional random effects are also discussed.
Chapter 22 outlines various statistical models for de-
scribing lifetime distributions, such as the log-normal
and Weibull, with the inclusion of multiple acceler-
ating variables in accelerated-life tests, and discusses
some of the potential difficulties of accelerated testing
in practice. Chapter 23 details the statistical methods

for designing various types of accelerated reliability
tests, including constant-stress tests, step-stress tests,
and step-stress accelerated degradation tests under
harsher environments with multiple-step stress levels.

The next four chapters focus on statistical mod-
els in software systems, starting with Chapt. 24, which
focuses on aspects of technology evolution for high-
assurance systems, including dynamic verification and
validation, reliability and security issues, safety assur-
ance, automated dependency analysis, model checking
on system specifications and model checking based on
test-case generation. Chapter 25 discusses in detail and
reviews software reliability growth modeling and op-
timization problems including software testing effort,
growth models, parameter estimation, optimal release
policies, and resource allocation, while Chapt. 26 fo-
cuses on a software development design-review process
based on a quality engineering approach to analyze the
relationships among the quality of the design-review
activities, including software reliability and human fac-
tors in the development process. Chapter 27 discusses
a generalized prediction model based on a nonhomo-
geneous Poisson process framework for evaluating the
reliability and its corresponding confidence intervals
for software systems in a random field environment.
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Statistical Sur19. Statistical Survival Analysis with Applications

This chapter discusses several important and
interesting applications of statistical survival
analysis which are relevant to both medical
studies and reliability studies. Although it
seems to be true that the proportional hazards
models have been more extensively used in
the application of biomedical research, the
accelerated failure time models are much more
popular in engineering and reliability research.
Through several applications, this chapter not
only offers some unified approaches to statistical
survival analysis in biomedical research and
reliability/engineering studies, but also sets up
necessary connections between the statistical
survival models used by biostatisticians and those
used by statisticians working in engineering
and reliability studies. The first application is
the determination of sample size in a typical
clinical trial when the mean or a certain percentile
of the survival distribution is to be compared.
The approach to the problem is based on an
accelerated failure time model and therefore can
have direct application in designing reliability
studies to compare the reliability of two or more
groups of differentially manufactured items. The
other application we discuss in this chapter is
the statistical analysis of reliability data collected
from several variations of step-stress accelerated
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to Compare Mean or Percentile
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19.1.3 Effect of Guarantee Time
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with a Random
Stress-Change Time ................... 361
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life test. The approach to the problem is based on
the accelerated failure time model, but we will
point out that these methodologies can be directly
applied to medical and clinical studies when
different doses of a therapeutic compound are
administered in a sequential order to experimental
subjects.

Failure time data or survival data are frequently encoun-
tered in biomedical studies, engineering, and reliability
research. Applications of lifetime distribution method-
ologies range from investigations into the reliability
of manufactured items to research involving human
diseases. In medical studies, clinical endpoints for as-
sessment of efficacy and safety of a promising therapy
usually include occurrence of some predefined events
such as deaths, the onset of a specific disease, the re-
sponse to a new chemotherapy in treatment of some
advanced cancer, the eradication of an infection caused
by a certain microorganism, or serious adverse events. In
engineering and reliability studies, manufactured items

such as mechanical or electronic components are of-
ten subjected to life tests to obtain information on their
endurance. This involves putting items into operation,
often in a laboratory setting, and observing them until
they fail. For example, Nelson [19.1] described a life test
experiment in which specimens of a type of electronic in-
sulating fluid were subjected to a constant voltage stress.
The length of time until each specimen broke down
was observed and investigated in its association with the
voltage level. In all of the studies mentioned above, the
primary variable of interest is usually the survival time
to the occurrence of a specific predetermined event. One
of the important features in survival data encountered
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in both medical research and engineering studies is the
existence of censored observations when only a lower
(or upper) bound of the failure time on some experi-
mental units are available. Censoring occurs frequently
because of time limits and other restrictions during the
process of data collection. In a life test experiment of
manufactured items, for example, it may not be feasi-
ble to continue experimentation until all items under
study have failed. If the study is terminated before all
have failed, then for items that have not failed at the
time of termination only a lower bound on lifetime is
available.

The statistical analysis of survival data has been well
developed in the literature. The estimation of the survival
distribution can be done by the Kaplan–Meier product-
limit estimator [19.2], which can also be viewed as a kind
of nonparametric maximum likelihood estimator [19.3].
For studies in which the aim is to compare the sur-
vival distribution of two groups of subjects, the logrank
test has been the most common method, although other
rank tests such as the generalized Wilcoxon test are also
used [19.2]. The logrank test can also be extended to al-
low an adjustment to be made for other covariates [19.4].
The major developments in the analysis of survival data
have focused on several families of survival distribu-
tions. Two very important models of survival distribution
are the model of proportional hazards and the acceler-
ated failure time model. The proportional hazard model
is a regression method introduced by Cox [19.5], which
can be used to investigate the effects of several covari-
ates on survival distribution at the same time. Cox’s
method is a semi-parametric approach – no particular
type of distribution is assumed for the survival data,
but a strong assumption is made on the effects of dif-
ferences, which is referred to as the assumption of
proportional hazards. Regression diagnostic procedures
are also available to assess the assumption of propor-
tional hazards [19.6,7], and some tests of the assumption
of proportional hazards are also introduced through the
incorporation of time-dependent covariates [19.8]. Ex-
tensions to Cox’s proportional hazards model are the
analysis of residuals, time-dependent coefficient, multi-
ple/correlated observations, time-dependent strata, and
estimation of underlying hazard function [19.8–10].
The accelerated failure time model, on the other hand,
assumes that the covariates act by expanding or con-
tracting time by a factor which is the exponential of
a linear function of the covariates. In the logarith-
mic scale of the survival time, the accelerated failure
time model is essentially a scale-location family of
distributions.

It is quite interesting to observe that the propor-
tional hazards models have been more extensively used
in the application of biomedical research, while the ac-
celerated failure time models are much more popular in
engineering and reliability research. Part of the reason
that Cox’s proportional hazards models are popular in
biomedical studies is the very fact that the assumption
of proportional hazards summarizes the risk factor for
a specific disease into a single quantity, the hazard ratio,
which makes the interpretation easy to understand for
clinicians. As an example, medical literature has demon-
strated that a key protein, apolipoprotein E4 (ApoE4),
contributes to the development of Alzheimer’s dis-
ease [19.11]. Clinicians are interested in knowing how
much the risk of Alzheimer’s disease is increased for
ApoE4-positive subjects compared to ApoE4-negative
subjects. The point and confidence interval estimate to
the hazard ratio associated with ApoE4 will adequately
address the question if the assumption of proportional
hazards can be adequately verified. On the other hand,
the accelerated failure time models often make very
good sense when the multiplicative time scale is as-
sumed based on the level of covariate. As an example,
assume that the lifetime of photocopiers has a hazard
function that is a function of the total number of copies
made, but the data on their failures were recorded in
calendar time. Covariates that were related to the num-
ber of copies per day might be very successful in an
accelerated failure time model. If the underlying haz-
ard function had a particular form, say a sharp upturn
after 25 000 cycles, a proportional hazard model would
not fit as well. Similar examples can also be found for
biological data related to cumulative toxicity or other
damage.

Whether or not a statistical model is appropriate
in a specific application depends on the distributional
property of the observed variable and the specific re-
search questions to be addressed. This chapter focuses
on several applications of survival analysis in both
medical/biological research and engineering/reliability
research. We discuss several interesting applications
which are relevant to both medical studies and reliabil-
ity studies. The first application is the determination of
sample size in a typical clinical trial when the mean
or a certain percentile of the survival distribution is to
be compared. The approach to the problem is based
on an accelerated failure time model and therefore can
have direct application in designing reliability stud-
ies to compare the reliability of two or more groups
of differentially manufactured items. The other ap-
plication we discuss in this chapter is the statistical
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analysis of reliability data collected from several vari-
ations of step-stress accelerated life test. The approach
to the problem is based on the accelerated failure time
model, but we will point out that these methodologies

can be directly applied to medical and clinical stud-
ies when different doses of a therapeutic compound
are administered in a sequential order to experimental
subjects.

19.1 Sample Size Determination to Compare Mean or Percentile
of Two Lifetime Distributions

The determination of sample size is an important subject
in planning long-term medical trials. In a randomized
longitudinal clinical trial involving a treatment group
and a control group, if the survival time to a particular
event (e.g., death, relapse of symptoms) is the primary
concern for the study, there are two important types
of comparisons between the treatment group and the
control group. One is the comparison of two survival
curves and the other is the comparison of two com-
mon survival characteristics such as two means and
two percentiles. Although the comparison of two sur-
vival curves is the major interest in many studies, the
comparison of two means or two percentiles is impor-
tant in many other applications. For example, in the
announcement of the aging intervention testing pro-
gram (RFA-AG-02-005), the National Institute on Aging
(NIA) of USA states that one of the major research
objectives of this program is to identify interventions
that increase mean life expectancy by 10% in phase I
studies, which may be terminated at 50% survivor-
ship. This type of aging intervention study based on
animal models has recently received much attention in
the community of aging research. For example, caloric
restriction has been identified as an intervention that
extends the life span of both mammalian animal mod-
els and a variety of invertebrate animal models [19.12].
Mutations in the dw and df genes have been shown to
attenuate the rate of aging in mice [19.13, 14]. Warner
et al. [19.15] provided more details of biological in-
terventions to promote healthy aging. The sample size
computation for this type of study requires a statistical
test that compares the mean lifetime between the control
group and the treatment group based on type II censored
observations.

Sample size determination methods are always based
on certain parametric or semiparametric statistical mod-
els. This section concerns two important families of
distributions used in the analysis of lifetime data: one
is the family of proportional hazards and the other
is the location-scale family of the log-transformed
lifetime. The traditional approach to the sample size
problem in planning long-term medical trials is based

on the logrank test for the comparison of two life-
time distributions between the control group and the
treatment group. Although the logrank test can be de-
rived from both the proportional hazards family and
the location-scale family of log-transformed lifetime,
it is the proportional hazards family that most sam-
ple size computation methods with logrank test in the
literature have been based on. In fact, the statistics
literature on sample size calculation for failure time
data is almost entirely devoted to tests based on ex-
ponential survival distributions [19.16–18] or binomial
distributions [19.19, 20]. This is largely due to the fact
that with the more general conditions hazard functions
and ratios are no longer constant over time, so that
the usual tests based on exponential models with con-
stant hazard ratios no longer apply. Schoenfeld [19.21]
and Freedman [19.22] presented methods for sample
size calculation based on the asymptotic expectation
and variance of the logrank statistic and the assump-
tion of proportional hazards. Lakatos [19.23] proposed
a Markov model to estimate the sample sizes for the
comparison of lifetime distributions based on the lo-
grank test. Wu et al. [19.24] provided a sample size
computation method that allows time-dependent event
(dropout) rate. Lakatos and Lan [19.25] compared sev-
eral sample size calculation methods associated with the
logrank test.

When the primary concern in a medical or reliabil-
ity study is to compare the means or certain percentiles
of two lifetime distributions, such as in the aging inter-
vention testing program, the sample size determination
based on proportional hazards assumption runs into the
problem of expressing the difference or ratio of two
means or two percentiles of lifetime distributions into
the ratio of two hazard functions. Although this is no
problem with exponential distributions or Weibull dis-
tributions with the same shape parameter, it might not
always be possible for other families of proportional
hazards. On the other hand, the location-scale family
of log-transformed lifetime seems to be a very natu-
ral family of lifetime distributions to use for this type
of sample size problem. This is based on the fact that,
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when the scale parameters are assumed to be the same
across different groups, the comparison of the means
in lifetimes is equivalent to the comparison of location
parameters. Although nonparametric tests such as the
logrank test are appealing when the underlying life-
time distributions are unknown, they tend to be less
efficient when the pilot information suggests a certain
family of lifetime distributions and such information
is ignored based on nonparametric tests. In fact, the
logrank test bears 100% asymptotic relative efficiency
when there is no censoring or when there is random
but equal censoring in two groups within the family
of Weibull distributions [19.26]. When data are from
lognormal distributions differing only with respect to
location, however, the asymptotic relative efficiency of
the logrank test decreases to 82% [19.3].

Another common feature of most sample size deter-
mination methods in the literature is that they all deal
with type I censored samples in which a prespecified
time is used to terminate the experiment. This section
studies the sample size determination to compare the
means or certain percentiles of two lifetime distribu-
tions when both samples are subject to type II censoring.
Our approach is based on a location-scale family of log-
transformed lifetime distributions and the asymptotic
normality of maximum likelihood estimates (MLEs).
We also apply our methods to both the family of lognor-
mal distributions and the family of Weibull distributions
and compare our method with other well-known meth-
ods such as those based on Rubinstein et al. [19.18] and
Freedman [19.22].

Although we will discuss the sample size determin-
ation in the context of designing a medical and biological
study in this section, the basic ideas and results can
be readily applied to the design of various engineering
studies to compare the reliability of different groups
of manufactured items. In fact, the application of our
proposed methods to designing engineering studies will
be even more intuitive to engineers as our approach
is based on a location-scale family of log-transformed
lifetime distributions, which is essentially equivalent to
the accelerated failure time model popularly used in
engineering and reliability studies.

19.1.1 The Model and Sample Size

Let Tc be the survival time for the control group, and Tt
be the survival time for the treatment group. Assume that
Yi = ln Ti follows a probability distribution that belongs
to a location-scale family with probability density func-
tion 1

σi
g
( y−µi

σi

)
, −∞< y <∞, i = c, t, where g(s) > 0

is a differentiable positive function whose derivative
g′(s) = dg(s)

ds makes all integrations used in this chapter
exist. Let G(s)= ∫ s

−∞ g(t)dt be the cumulative distribu-
tion of g(s). We also assume that both σc and σt are given
and that σc = σt = σ > 0. The mean of Ti = exp(Yi ) is

ETi =
∞∫

−∞
ey 1

σ
g

(
y−µi

σ

)
dy

= eµi

∞∫

−∞
eσsg(s)ds , (19.1)

for i = c, t. Hence,

ETt

ETc
= eµt−µc . (19.2)

Let 0 < δ < 1. For i = c, t, a straightforward integration
gives the 100δ% percentile of Ti as

τi (δ) = eµi+σG−1(δ) , (19.3)

where G−1 is the inverse function of G. It follows that
τt(δ)

τc(δ)
= eµt−µc . (19.4)

Therefore, the problem of testing the ratio of two means
or two percentiles between the control group and the
treatment group can always be reduced to the problem
of testing the difference between µt and µc.

Suppose that two independent samples of size nc
and nt are drawn from the distributions of Tc and Tt,
respectively. For i = c, t, we assume that only the small-
est 100 qi% of the samples are observed for some given
0 < qi < 1. If we let ri = [qini ], then only the order
statistics up to ri -th are observed for group i = c, t. Let
γ be the ratio of two sample sizes: γ = nt

nc
. We want to

decide the sample sizes for testing the null hypothesis
H0 : µc = µt against the alternative H1 : µc �= µt at an
asymptotic significance level α (0 <α< 1). If this test is
to achieve 100(1−β)% power to detect a difference of
d = µt− µc, the required sample size nc for the control
group is the unique solution to the following equation:

β =Φ

⎛
⎜⎜⎝zα/2− d

√
1
nc

(
1

K2
c
+ 1

γK2
t

)

⎞
⎟⎟⎠

−Φ

⎛
⎜⎜⎝−zα/2− d

√
1
nc

(
1

K2
c
+ 1

γK2
t

)

⎞
⎟⎟⎠ , (19.5)
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where zα/2 is the upper α/2 percentage point of the
standard normal distribution, Φ is the cumulative dis-
tribution function of the standard normal distribution,
Ki , i = c, t, is given by

K2
i =

1

σ2

(λi−µi )/σ∫

−∞

[
g′(s)

]2

g(s)
ds

+ 1

piσ2

[
g

(
λi −µi

σ

)]2

, (19.6)

and λi is such that

qi = G

(
λi −µi

σ

)
, (19.7)

and pi = 1−qi . The required sample size for the treat-
ment group is then nt = γnc. The proof of (19.5) is based
on the asymptotic normality of the MLEs of µi and can
be found in [19.27].

If we want to test the null hypothesis H0 : µc = µt
against the one-sided alternative H1 : µt > µc at an
asymptotic significance level α (0 < α< 1) and assume
that this test is to achieve 100(1−β)% power to detect
a difference of d =µt−µc > 0, the required sample size
for the control group nc is given by

nc =
(

zα+ zβ
d

)2 ( 1

K2
c
+ 1

γK2
t

)
, (19.8)

and the required sample size for the treatment group is
then nt = γnc. The proof of (19.8) can also be found
in [19.27].

19.1.2 Examples

Since the family of lognormal distributions and the
family of Weibull distributions are two important
location-scale families of log-transformed lifetime dis-
tributions, we apply our method to these two families.

Example 1: Lognormal Distribution
We first study the family of lognormal distribution in
which

g(s) = 1√
2π

e−s2/2 . (19.9)

For i = c, t, using integration by parts, we find

K2
i = − (λi −µi )

σ3
g

(
λi −µi

σ

)

+ qi

σ2 +
1

piσ2

[
g

(
λi −µi

σ

)]2

, (19.10)

where λi is such that

qi =Φ

(
λi −µi

σ

)
. (19.11)

If qc = qt = 50%, then

K2
i =

1

2σ2 +
1

πσ2 . (19.12)

Example 2: Weibull Distribution
In the family of Weibull distributions,

g(s)= exp(s− es) . (19.13)

For i = c, t, by repeatedly using the technique of inte-
gration by parts, we have

K2
i =

1− pi

σ2
. (19.14)

If qc = qt = 50%, then

K2
i =

1

2σ2
. (19.15)

19.1.3 Effect of Guarantee Time
on Sample Size Determination

A very simple feature of lifetime distributions is the
existence of a threshold time, or guarantee time, dur-
ing which no subjects will die. For example, the type of
mice to be used in the aging intervention testing program
of the National Institute on Aging exhibit a guarantee
survival time of about 500 days in the survival distri-
bution, as estimated from the survival curves reported
by Turturro et al. [19.28]. When the comparison of two
mean lifetimes is in terms of the difference and when
the two distributions share the same guarantee time, this
time contributes nothing to the comparison. When the
comparison of two mean lifetimes is in terms of the
ratio, however, the guarantee time plays an important
role in the comparison, especially in the determina-
tion of sample sizes at the design stage of the clinical
trials.

When the primary concern in a medical study is to
compare the means or certain percentiles of two lifetime
distributions with type II censored observations such as
the aging intervention testing program from the National
Institute on Aging, the sample size determination may
be based on the method of Rubinstein et al. [19.18],
the method of Freedman [19.22], and the method de-
scribed by (19.5) and (19.8). The methods of Rubinstein
et al. [19.18] can be used since the hazard ratio is simply
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the reciprocal of the ratio of two means under the expo-
nential distributions. The method of Freedman [19.22]
refers to the logrank test of the hazard ratio and re-
quires the assumptions of proportional hazards between
two groups. It could be used to compare the means
or certain percentiles of two lifetime distributions as
long as the comparison of means or certain percentiles
can be related to the hazard ratio between two distri-
butions such as in the family of Weibull distributions.
The method described by (19.5) and (19.8) directly ap-
plies to the comparison of means or certain percentiles
of two lifetime distributions and requires the assump-
tion of location-scale family of log-transformed lifetime
distributions.

If two lifetime distributions under study exhibit
survival thresholds, or guarantee times as in the sur-
vival distribution of mice used in the aging intervention
testing program from the National Institute on Ag-
ing, these thresholds have an important role in the
ratio of means from two distributions. Mathematically,
let Tc be the survival time for the control group,
and Tt be the survival time for the treatment group.
Let ETc and ETt be the corresponding means of the
two distributions. We are interested in testing the null
hypothesis H0 : ETt/ETc = 1 against the alternative
H1 : ETt/ETc �= 1 at an asymptotic significance level
α (0 < α < 1). For i = c, t, suppose that Ti follows
a distribution with a threshold, or a guarantee time
ψi > 0. We assume that both the control group and
the treatment group share the same threshold parame-
ter ψ1 = ψ2 = ψ and that ψ is known. Let T ′

i = Ti −ψ,
then ET ′

i = ETi −ψ, i = t, c. The alternative hypoth-
esis on which the sample size computation is based
is

ρ = ETt

ETc
= ET ′

t +ψ

ET ′
c +ψ

. (19.16)

Therefore

ET ′
t

ET ′
c
= ρETc−ψ

ETc−ψ
. (19.17)

Since ETt/ETc = 1 if and only if ET ′
t /ET ′

c = 1.
The original null and alternative hypotheses trans-
late into the corresponding hypotheses in terms
of distributions T ′

t and T ′
c : H ′

0 : ET ′
t /ET ′

c = 1 and
H ′

1 : ET ′
t /ET ′

c �= 1.
Since the distributions of T ′

t and T ′
c begin with

time 0 and have no guarantee times, the sample size
methods reviewed above can be directly applied to test
the reduced hypotheses H ′

0 against H ′
1. The alternative

hypothesis on which the sample size computation should

be based, however, now becomes ET ′
t /ET ′

c = (ρETc−
ψ)/(ETc−ψ). We call ET ′

t /ET ′
c the adjusted effect size.

Note that for any ρ �= 1, ET ′
t /ET ′

c = ρ if and only if
ψ = 0. Hence, when the ratio of the mean between two
lifetime distributions is to be tested, it is crucial that
the sample size determination based on the logrank test
and the proportional hazards assumption or the location-
scale family of log-transformed lifetime distributions
takes into account the possible guarantee time in the
lifetime distributions. Table 19.1 presents the sample
size computation based on the method of Rubinstein
et al. [19.18] for a selected set of the guarantee time ψ

and the percentage pt of censorship for the treatment
group. Table 19.2 presents the sample size computa-
tion based on the method of Freedman [19.22] for the
same selected set of ψ and pt. The computation in Ta-
ble 19.2 assumes Weibull distributions with the same
shape parameter of 1.5 for both the treatment group
and the control group so that the ratio of two means
can be expressed as a function of the ratio of hazard
functions between the two groups. Table 19.3 presents
the sample size computation based on the method de-
scribed by (19.8) for the same selected set of ψ and pt
under the assumption of lognormal distributions with
a scale parameter of 0.8 in the log-transformed lifetime
distribution. Table 19.4 presents the sample size compu-
tation based on the method described by (19.8) for the
same selected set of ψ and pt under the assumption of
Weibull distributions with a scale parameter of 0.8 in the
log-transformed lifetime distribution. All these compu-
tations in four tables are based on a one-sided test for

Table 19.1 Sample size per group based on the method of
Rubinstein, et al. [19.18] α= 5%, β = 20%

ψ pt = 40% pt = 50% pt = 60%

0 589 702 871

10 518 617 765

20 452 537 666

30 390 463 574

40 332 394 489

50 279 331 410

60 231 274 339

70 187 222 274

80 148 175 216

90 114 134 165

100 84 98 121

110 58 68 83

120 37 43 53

130 21 24 29

140 9 10 12
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the ratio of two means at a significance level of 5%,
a mean lifetime of 150 units for the control group, and
a statistical power of 80%. The 80% power is assumed
at ρ = 1.2 in the original alternative hypotheses with the
equal sample size between the treatment group and the
control group. In addition, both groups are assumed the
simultaneous entry to the study and the simultaneous
stopping time, which is the time of achieving censorship
pt for the treatment group. The censorship for the control
group is then decided by ρ and pt under the appropriate
distributional assumptions and is less than pt by the as-
sumption that ρ > 1. The sample size when there is no
guarantee time or the guarantee time is ignored is given
when ψ = 0.

Although Tables 19.1–19.4 are based on different
sample size determination methods, they demonstrate
two common important observations. First, if a guar-
antee time exists in the two lifetime distributions to be
compared, the ignorance of the guarantee time leads to
the overestimation of the sample size. Second, if the sig-
nificance level of the test, the statistical power of the test,
and the degree of censoring are fixed, the required sam-
ple size decreases as the guarantee time increases. All
these can be explained by (19.17), which expresses the
ratio of two means ET ′

t /ET ′
c after the guarantee time ψ

is subtracted (i. e., the adjusted effect size) as a function
of the guarantee time ψ, the original ratio ρ of mean
lifetime when the guarantee time is included, and the
mean lifetime ETc for the control group. Let ρ > 1 and

Table 19.2 Sample size per group based on the method
of Freedman [19.22] (Weibull distribution with a shape
parameter 1.5 assumed) α= 5%, β = 20%

ψ pt = 40% pt = 50% pt = 60%

0 258 305 377

10 227 268 331

20 198 233 288

30 171 201 248

40 146 171 210

50 122 144 176

60 101 119 145

70 83 96 118

80 66 76 93

90 51 59 71

100 38 44 52

110 27 31 36

120 18 20 24

130 12 13 14

140 7 7 8

ETc be fixed. We denote the adjusted effect size [the
right-hand side of (19.17)] by h(ψ). This function has
two important features. First, h(ψ) = ρ if and only if
ψ = 0. Second, the derivative of h(ψ) with respect to ψ

is always positive, which implies that it is an increas-
ing function of ψ. Since the sample size methods are
applied to the lifetime distributions when the guarantee
time is subtracted, the effect size used in these sample
size computations is based on h(ψ) instead of ρ. The fact
that h(ψ) = ρ if and only if ψ = 0 implies that the ig-

Table 19.3 Sample size per group based on (19.8); The
lognormal case α= 5%, β = 20%, σ = 0.8

ψ pt = 40% pt = 50% pt = 60%

0 267 283 307

10 235 249 270

20 205 217 235

30 178 188 203

40 152 161 174

50 128 135 146

60 106 112 121

70 87 91 99

80 69 73 78

90 53 56 60

100 40 42 45

110 28 29 31

120 18 19 20

130 11 11 12

140 5 5 5

Table 19.4 Sample size per group based on (19.8); the
Weibull case α= 5%, β = 20%, σ = 0.8

ψ pt = 40% pt = 50% pt = 60%

0 377 449 558

10 332 395 490

20 289 344 427

30 249 297 368

40 213 253 313

50 179 212 263

60 148 175 217

70 120 142 175

80 95 112 138

90 73 86 106

100 54 63 77

110 37 44 53

120 24 28 34

130 14 16 19

140 6 7 8
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norance of the guarantee time (i. e., by assuming ψ = 0)
will always lead to an inadequate sample size when in
fact ψ> 0. Since a common feature of the sample size
methods is that the sample size decreases when the ef-
fect size h(ψ) increases, this explains why the sample
size decreases as the guarantee time ψ increases from
Tables 19.1 to 19.4.

19.1.4 Application to NIA Aging
Intervention Testing Program

We now demonstrate the sample size determination
by applying it to the aging intervention testing pro-
gram (RFA-AG-02-005) of the National Institute on
Aging (NIA). One of the major research objectives
of this program is to identify interventions that in-
crease mean life expectancy by 10% in phase 1 studies
which may be terminated at 50% survivorship. The ex-
perimental units in this study are the 4WCNIA mice
obtained from the National Institute of Health (NIH)
aging rodent colony. Pilot data such as the survival
curves reported by Turturro et al. [19.28] on simi-
lar mice have suggested a guarantee survival time of
about 500 days in the survival distribution. In addition,
Pugh et al. [19.29] reported a mean life expectancy of
876 days and a standard deviation of 18 days for similar
mice.

Assume that we ignore the guarantee time in the sam-
ple size computation and use ρ= 1.1 as the ratio of mean
lifetime between the intervention group and the control
group. The method of Rubinstein et al. [19.18] gives
a sample size of 2637 per group. The method of Freed-
man [19.22] gives a sample size of 323 per group based
on two Weibull distributions with the same shape param-
eter which is estimated as 2.793 by the survival curves
reported by Turturro et al. [19.28]. Our proposed method
gives a sample size of 387 per group based on two log-
normal distributions with the same scale parameter σ

(in the log-transformed lifetime). This computation uses
σ = 0.482 as estimated by the survival curves reported
in [19.28]. When applied under the family of Weibull
distributions, the projected sample size per group based
on our method is 338.

When the 500-days guarantee survival time is taken
into account in the sample size computation, these
methods are applied to the survival distributions af-
ter the 500-days guarantee survival time is subtracted.

The pilot information of ETc = 876 and ρ = 1.1 along
with (19.17) implies that ET ′

t /ET ′
c = 1.233. The sam-

ple size methods are then applied to the distributions of
T ′

t and T ′
c when testing H ′

0 against H ′
1 at a 5% signif-

icance level and an 80% statistical power. We assume
that both groups use the same number of mice, that
the treatment group is terminated at the 50% censor-
ship, and that the control group is allowed to continue
until the treatment group terminates. The method of Ru-
binstein et al. [19.18] gives a sample size of 528 per
group. The method of Freedman [19.22] under the as-
sumption of Weibull distributions gives a sample size
of 64 per group. Assuming the lognormal distribution
for the lifetimes with the same scale parameter σ in the
log-transformed lifetime distributions between the con-
trol and treatment groups, our proposed method gives
the sample size required per group as 81. Assuming
a Weibull distribution for the lifetimes with the same
scale parameter σ in the log-transformed lifetime dis-
tributions between the control and treatment groups,
our proposed method gives the sample size required per
group as 68.

Similar to observations from Tables 19.1–19.4, the
real-life example again demonstrates the importance of
taking into account the guarantee time in sample size
computation when it exists. A considerable waste of re-
sources would occur if the guarantee time is ignored
in the sample size projection. Notice also that, while
the methods of Freedman [19.22] and ours give fairly
consistent results about the sample size per group, the
method of Rubinstein et al. [19.18], however, results
in a very different sample size compared to the others.
The reason behind this difference is the assumption of
an exponential distribution for the method in [19.18].
The mathematically attractive but practically unrealistic
property of the exponential distribution is its constant
hazard function over time, which then implies the
memoryless feature for the survival distribution [19.3].
Although the exponential distribution is a distribution
extensively discussed in the fields of biometrics, relia-
bility and industrial life testing literature [19.30, 31], it
has long been pointed out by many authors such as Zelen
and Dannemiller [19.32] that the estimations and infer-
ences associated with an exponential distribution are not
robust and that exponential distribution is a very unre-
alistic distribution in many applications, especially in
studies associated with the aging process.
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19.2 Analysis of Survival Data from Special Cases of Step-Stress Life Tests

We now discuss some applications of survival analy-
sis in engineering and reliability studies. Accelerated
life tests (ALT) consist of a variety of test methods for
shortening the life of products or hastening the degra-
dation of their performance. The aim of such testing
is to obtain data quickly which, properly modeled and
analyzed, yield desired information on product life or
performance under normal use. ALT can be carried out
using constant stress, step-stress, or linearly increas-
ing stress. The step-stress scheme applies stress to test
units in the way that the stress setting of test units
will be changed at specified times. Generally, a test
unit starts at a specified low stress. If the unit does
not fail at a specified time, the stress on it is raised
and held for a specified time. The stress is repeatedly
increased and held, until the test unit fails or a censor-
ing time is reached. A simple step-stress ALT (SSALT)
uses only two stress levels. The problem of modeling
data from ALT and making inferences from such data
has been studied by many authors. Chernoff [19.33]
considered optimal life tests for estimation of model
parameters based on data from ALT. Meeker and Nel-
son [19.34] obtained optimum ALT plans for Weibull
and extreme-value distributions with censored data. Nel-
son and Kielpinski [19.35] further studied optimum
ALT plans for normal and lognormal life distribu-
tions based on censored data. Nelson [19.36] considered
data from SSALT and obtained maximum likelihood
estimates (MLE) for the parameters of a Weibull distri-
bution under the inverse power law using the breakdown
time data of an electrical insulation. Miller and Nel-
son [19.37] studied optimum test plans which minimized
the asymptotic variance of the MLE of the mean life
at a design stress for simple SSALT where all units
were run to failure. Bai et al. [19.38] further studied
the similar optimum simple SSALT plan for the case
where a specified censoring time was involved. Tyoskin
and Krivolapov [19.39] presented a nonparametric ap-
proach for making inferences for SSALT data. Dorp
et al. [19.40] developed a Bayes model and studied the
inferences of data from SSALT. Xiong [19.41] obtained
inferences based on pivotal quantities for type II cen-
sored exponential data from a simple SSALT. Alhadeed
and Yang [19.42] discussed the optimal simple step-
stress plan for the Khamis–Higgins model. Teng and
Yeo [19.43] used the method of least squares to estimate
the life–stress relationship in SSALT. Hobbs [19.44]
gave detailed discussion on highly accelerated life test
(HALT) and highly accelerated stress screens (HASS).

Mann et al. [19.45] and Lawless [19.3] provided the gen-
eral theory and applications of lifetime data analysis.
Meeker and Escobar [19.46] briefly surveyed optimum
test plans for different types of ALT. Nelson [19.1, 47]
provided an extensive and comprehensive source for
theory and examples for ALT and SSALT.

During the step-stress life test, test units can be con-
tinuously or intermittently inspected for failure. The
latter type of test is frequently used since it generally
requires less testing effort and can be administratively
more convenient. In some other cases, intermittent in-
spection is the only feasible way of checking the status
of test units (see, for example, [19.48]). The data ob-
tained from intermittent inspections are called grouped
data and consist of only the number of failures in the
inspection intervals. The first problem we consider in
this section is the statistical inference of model param-
eters and optimum test plans based on only grouped
and type I censored data obtained from a step-stress life
test. We will also study another important and interest-
ing variation associated with grouped and censored data
from a simple SSALT, when both the stress change time
and the censoring time are random variables, such as
the order statistics at the current stress levels, and when
only these order statistics (stress-change time and type II
censoring time) are observed during the test.

Throughout the section, we denote the design stress
by x0, the i-th test stress by xi , i = 1, 2, · · · ,m,
x1 < x2 < · · ·< xm , where m is the total number of test
stress levels. We assume that the i-th stress change time
is constant τi , i = 1, 2, · · · ,m−1, and the fixed censor-
ing time is τm > τm−1. Let τm+1 =∞, τ0 = 0,∆τi =
τi − τi−1. We also make following assumptions:

(A1). At any constant stress xi , i = 0, 1, 2, · · · ,m,
the cumulative distribution function (CDF)of a test unit
lifetime is

Fi (t) = F(t/θi ) for t > 0 , (19.18)

where the stress–response relationship (SRR) θi is
a function of stress xi and F is a strictly increasing
distribution function.

(A2). The stresses are applied in the order x1 < x2 <

· · ·< xm .

(A3). The lifetimes of test units under SSALT are
statistically independent.

For the step-stress life test, there is a probability dis-
tribution G(t) of time T to failure on test. Data from this
distribution are observed during the test. The cumulative
exposure model of time T assumes that the remaining
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life of a test unit depends only on the current cumula-
tive fraction failed and the current stress, regardless of
how the fraction is accumulated. Moreover, if held at
the current stress, survivors will fail according to the
cumulative distribution for that stress but starting at the
previously accumulated fraction failed. Also, the change
in stress has no effect on life, only the level of the stress
does. As pointed out by Miller and Nelson [19.37] and
Yin and Sheng [19.49], this model has many applications
in industrial life testing.

Mathematically, the cumulative distribution G(t) of
time T to failure from a step-stress test described above
is

G(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi (t− τi−1+ si−1) ,

for τi−1 ≤ t < τi ,

i = 1, 2, · · · ,m−1,

Fm(t− τm−1+ sm−1) ,

for τm−1 ≤ t <∞ ,

(19.19)

where si−1 is the equivalent start time at step i satisfying

Fi (si−1) = Fi−1(τi−1− τi−2+ si−2) . (19.20)

We further assume:
(A4). The stress-response relationship (SRR) θi =

θ(xi ) is a log–linear function of stress xi . That is,

log θ(xi ) = α+βxi , (19.21)

where α and β are unknown model parameters which
typically depend on the nature of the product and the
test method. Although the specification of θ(x) looks
rather restrictive, it covers some of the most important
models used in industry, such as the power-law model,
the Eyring model and the Arrhenius model [19.47].
With the above specifications, it is straightfor-
ward to find that si−1 = (τi−1− τi−2+ si−2)θi/θi−1 =
θi
∑i−1

j=1 ∆τ j/θ j , i = 2, 3, 4, · · · ,m. Thus, the distribu-
tion function of the step-stress failure time T is

G(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F

(
t− τi−1

θi
+∑i−1

j=1

∆τ j

θ j

)
,

for τi−1 ≤ t < τi , i = 1, 2, ...,m−1 .

F

(
t− τm−1

θm
+∑m−1

j=1

∆τ j

θ j

)
,

for τm−1 ≤ t <∞
(19.22)

Although we will discuss the statistical analysis of data
collected from SSALT in the context of engineering

studies, we point out that the statistical models and
methods discussed in this section can be readily used
in medical and biological research. Many clinical trials
on therapeutical compounds of a disease contain a novel
treatment group and a control group. At the comple-
tion of well-designed clinical studies, especially when
the novel treatment has been found efficacious for the
protection against the disease development based on the
available data, many clinical trials are extended for an-
other specified time period so that subjects from the
original control group can receive the treatment. When
a survival endpoint such as the time from the study
baseline to the onset of a specific disease is measured on
subjects from the original control group throughout the
entire trial period, the resulting survival data are very
analogous to these collected from the standard SSALT
in engineering studies. In fact, the drug dose used in
such clinical trials can be thought of as the stress level
in which 0 is the stress at the initial phase of the origi-
nal control group and a positive dose is the stress at the
extension phase of the trial.

19.2.1 Analysis of Grouped and Censored
Data from Step-Stress Life Tests

MLE
We first consider the case when all test units are subject
to the same censoring time and the same stress-change
patterns with the same set of stresses and the same
stress-change times. We assume that data obtained from
such step-stress tests are grouped and type I censored.
More specifically, we assume that the intermittent in-
spection times during the step-stress test coincide with
the stress-change times and the censoring time. Sup-
pose that n test units begin at low stress x1. If the unit
does not fail at a specified time τ1, the stress on it is
raised to a higher stress x2. The stress is repeatedly in-
creased and held in this fashion, until the test unit fails
or the fixed censoring time τm (> τm−1) is reached. As-
sume that ni units fail during the inspection time interval
[τi−1, τi ), i = 1, 2, · · · ,m,m+1, (τm+1 =∞). To sim-
plify the notations, we denote, for i = 1, 2, · · · ,m+1,

ui (α, β) =
i∑

j=1

∆τ j exp(−α−βx j )

vi (α, β) =
i∑

j=1

x j∆τ j exp(−α−βx j ) . (19.23)

Let pi = Pr(τi−1 ≤ T < τi ) for 1 ≤ i ≤ m+1. The cu-
mulative exposure model (19.22) implies that, for
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1 ≤ i ≤ m+1,

pi = F[ui (α, β)]− F[ui−1(α, β)] . (19.24)

The likelihood function based on data vector
(n1, n2, · · · , nm+1) is (up to a constant):

L(α, β)∝
m+1∏

i=1

{F[ui (α, β)]− F[ui−1(α, β)]} ni ,

(19.25)

where θi is specified by the SRR (19.21) and F(∞)= 1.
Thus, the log likelihood function is a function of the
unknown parameters α and β :

log L(α, β) ∝
m+1∑

i=1

ni log {F[ui (α, β)]

−F[ui−1(α, β)]} . (19.26)

To find the maximum likelihood estimators (MLE) for
α and β, we maximize log L(α, β) over α and β. The
maximization of log L(α, β) requires the solution to the
system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L(α, β)

∂α
=−∑m+1

i=1 ni

×
ui (α, β) f [ui (α, β)]

F[ui (α, β)]− F[ui−1(α, β)]
− ui−1(α, β) f [ui−1(α, β)]

F[ui (α, β)]− F[ui−1(α, β)]
= 0 ,

∂L(α, β)

∂β
=−∑m+1

i=1 ni

×
vi (α, β) f [ui (α, β)]

F[ui (α, β)]− F(ui−1(α, β))

− vi−1(α, β) f [ui−1(α, β)]
F[ui (α, β)]− F(ui−1(α, β))

= 0 ,

(19.27)

where f (t) = dF(t)/dt is the probability density func-
tion of F(t). Generally, the solution of (19.27) requires
a numerical method such as Newton–Raphson. Seo and
Yum [19.50] proposed several approximate ML estima-
tors and compared with the MLE by a Monte Carlo
simulation when the lifetime distribution is assumed ex-
ponential. The expected second partial derivatives of the

log likelihood function at (α, β)′ are

σ11 =−E
∂2L(α, β)

∂α2

=−n
m+1∑

i=1

∂2 pi

∂α2 +
m+1∑

i=1

1

pi

(
∂pi

∂α

)2

,

σ12 =−E
∂2L(α, β)

∂α∂β

=−n
m+1∑

i=1

∂2 pi

∂α∂β
+

m+1∑

i=1

1

pi

∂pi

∂α

∂pi

∂β
,

σ22 =−E
∂2L(α, β)

∂β2

=−n
m+1∑

i=1

∂2 pi

∂β2
+

m+1∑

i=1

1

pi

(
∂pi

∂β

)2

. (19.28)

Let D be the (m+1) by (m+1) diagonal matrix with
1/pi , i = 1, 2, · · · ,m+1, as its diagonal elements. Let
J = ( jst), 1 ≤ s ≤ m+1, 1 ≤ t ≤ 2, be the (m+1) × 2
Jacobian matrix of (p1, p2, · · · , pm+1)′ with respect to
(α, β)′, i. e.,

js1 = ∂pi

∂α
=−ui (α, β) f [ui (α, β)]
+ui−1(α, β) f [ui−1(α, β)] ,

js2 = ∂pi

∂β
=−vi (α, β) f [ui (α, β)]
+vi−1(α, β) f [ui−1(α, β)] , (19.29)

for s = 1, 2, · · · ,m+1. Because

E

(
m+1∑

i=1

∂pi

∂α

)
= E

(
m+1∑

i=1

∂pi

∂β

)
= 0 ,

the expected Fisher information matrix � = (σij ), i, j =
1, 2, is given by � = n · J ′DJ . Let (̂α, β̂)′ be the MLE
of (α, β)′ obtained from solving (19.27). n−1� can be
consistently estimated by n−1�̂ , where �̂ = (σ̂ij ), i, j =
1, 2, is obtained by replacing (α, β)′ in � by its MLE
(̂α, β̂)′.

Based on the asymptotic normality of (̂α, β̂)′ with
estimated covariance matrix Σ̂−1, we can set up the
asymptotic confidence interval (CI) for α, β, the SRR
of lifetime at design stress θ0 = θ(x0) = exp(α+βx0),
and the reliability function at design stress R0(t) = 1−
F(t/θ0). Let Σ̂−1 = (m̂ij ), i, j = 1, 2, be the estimated
asymptotic covariance matrix of (̂α, β̂)′. It is straight-
forward to show that an asymptotic 100(1−γ )% CI
for α is α̂± zγ/2m̂11, and an asymptotic 100(1−
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γ )% CI for β is β̂± zγ/2m̂22, where zγ/2 is the
γ/2 point of the standard normal distribution. The
asymptotic variance for log�θ(x0) = α̂+ β̂x0 is given
by

σ̂ = (1, x0)�̂−1(1, x0)′ . (19.30)

An asymptotic 100(1−γ )% CI for θ0 is

exp
(
α̂+ β̂x0± zγ/2σ̂

)
.

Finally, because F(t) is a strictly increasing func-
tion of t, an asymptotic 100(1− γ )% CI for
R0(t) = 1− F(t/θ0) at a given time t is 1−
F
[
t/ exp

(
α̂+ β̂x0± zγ/2σ̂

)]
.

When the step-stress test is a simple SSALT, i. e.,
when m = 2, there exist closed form MLE for α and β.
The MLE of α and β solves

⎧
⎪⎪⎨

⎪⎪⎩

F

(
τ1

θ1

)
= n1

n

F

(
τ2− τ1

θ2
+ τ1

θ1

)
− F

(
τ1

θ1

)
= n2

n
.

(19.31)

The solutions are

α̂= x2

x2− x1
log

τ1

F−1
( n1

n

)

− x1

x2− x1
log

(τ2− τ1)

F−1
( n1+n2

n

)− F−1
( n1

n

) ,

β̂ = 1

x2− x1
log

(τ2− τ1)F−1
( n1

n

)

τ1
[
F−1

( n1+n2
n

)− F−1
( n1

n

)] ,

(19.32)

where F−1 is the inverse function of F.
In the more general situation when different test units

are subject to different censoring times and different
stress-change patterns with different sets of stresses and
even different stress-change times, the likelihood func-
tion for each test unit can be given by (19.25) for each
test unit with

∑m+1
i=1 ni = 1. The likelihood function for

a sample of size n test units is the product of all n in-
dividual likelihood functions by assumption (A3). The
MLE of α and β can be obtained by maximizing this
likelihood function using a numerical method such as
Newton–Raphson. Although the lifetime distributions
of n test units are independent, they are not identical.
The asymptotic confidence interval estimates for various
model parameters given above, however, are still valid
when the Fisher information matrix �/n is replaced by
the average information matrix to take into account of
the difference in the lifetime distributions. The detailed

theoretical justification can be found in Chapt. 9 of Cox
and Hinkley [19.51].

A Statistical Test for the Cumulative
Exposure Model when m>2
We only consider the case when all test units are
subject to the same censoring time and the same stress-
change patterns with the same set of stresses and the
same stress-change times in this section. We again let
pi = Pr(τi−1 ≤ T < τi ) for 1 ≤ i ≤ m+1. The cumula-
tive exposure model (19.22) implies that

pi = F[ui (α, β)]− F[ui−1(α, β)] . (19.33)

A statistical test for the cumulative exposure model
can be obtained by testing the null hypothesis
H0 : pi = F[ui (α, β)]− F[ui−1(α, β)], 1 ≤ i ≤ m+1,
against the alternative Ha : there is no constraint on
pi , 1 ≤ i ≤ m+1. When grouped and type I censored
data are available from n test units, the likelihood func-
tion of pi , 1 ≤ i ≤ m+1, is

L ∝
m+1∏

i=1

pi
ni . (19.34)

The MLE of pi , 1 ≤ i ≤ m+1, under H0 are given by

p̂0
i = F

[
ui

(
α̂, β̂

)]− F
[
ui−1

(
α̂, β̂

)]
, (19.35)

where α̂, β̂ are the MLE of α and β. Under Ha, a straight-
forward maximization of the likelihood function gives
the MLE of pi , 1 ≤ i ≤ m+1, as

p̂a
i =

ni

n
. (19.36)

Therefore, an asymptotic likelihood ratio test of signifi-
cance level γ (0 < γ < 1) rejects H0 if

−2
m+1∑

i=1

ni

(
log

{
F
[
ui

(
α̂, β̂

)]

− F
[
ui−1

(
α̂, β̂

)]}− log
ni

n

)

> χ2
γ (m−2) , (19.37)

whereχ2
γ (m−2) is the upper 100γ% percentile of theχ2

distribution with m−2 degrees of freedom. Because

−2
m+1∑

i=1

ni

(
log

{
F
[
ui

(
α̂, β̂

)]

− F
[
ui−1

(
α̂, β̂

)]}− log
ni

n

)
(19.38)
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is stochastically equivalent to

m+1∑

i=1

(
ni −n

{
F
[
ui

(
α̂, β̂

)]− F
[
ui−1

(
α̂, β̂

)]})2

n
{

F
[
ui

(
α̂, β̂

)]− F
[
ui−1

(
α̂, β̂

)]} ,

(19.39)

another asymptotically equivalent test of significance
level γ (0 < γ< 1) is the well-known χ2 goodness-of-fit
test, which rejects H0 if

m+1∑

i=1

(
ni −n

{
F
[
ui

(
α̂, β̂

)]− F
[
ui−1

(
α̂, β̂

)]})2

n
{

F
[
ui

(
α̂, β̂

)]− F
[
ui−1

(
α̂, β̂

)]}

> χ2
γ (m−2) . (19.40)

The mathematical verification of these tests can be found
in Agresti [19.52] and Pearson [19.53].

Optimum Test Plans
We next discuss the optimum test plan for choosing τ1 in
a particular case. Suppose that n test units are tested un-
der a simple SSALT which uses the same censoring time
τ2 and the same stress-change patterns with the same set
of stresses (x1 < x2) and the same stress-change times
τ1. Assume that the censoring time τ2 is given. Sup-
pose that the lifetimes at constant stresses x1 and x2 are
exponential with means θ1 and θ2, respectively, where
θi = exp(α+βxi ), i = 1, 2. Thus, F(t) = 1− exp(−t)
for t > 0. The expected Fisher information matrix �

is now simplified as

�

= n

(
A
(
τ1
θ1

)
2+ B

(
∆τ2
θ2

)
2 x1 A

(
τ1
θ1

)
2+ x2 B

(
∆τ2
θ2

)
2

x1 A
(
τ1
θ1

)
2 + x2 B

(
∆τ2
θ2

)
2 A

(
x1τ1
θ1

)
2+ B

(
x2∆τ2
θ2

)
2

)
,

(19.41)

where

A = (1− p1)p1

B = (1− p1)/[exp(∆τ2/θ2)−1] .
Because

�−1 = (θ1θ2)2

n · ABτ2
1 ∆τ2

2 (x2− x1)2

×

(
A
(

x1τ1
θ1

)
2+ B

(
x2∆τ2
θ2

)
2 −x1 A

(
τ1
θ1

)
2 − x2 B

(
∆τ2
θ2

)
2

−x1 A
(
τ1
θ1

)
2− x2 B

(
∆τ2
θ2

)
2 A

(
τ1
θ1

)
2 + B

(
∆τ2
θ2

)
2

)
,

(19.42)

we find that the asymptotic variance of log θ̂0 = α̂+ β̂x0,
denoted by Asvar

(
log θ̂0

)
, is given by

n ·Asvar
(
log θ̂0

)= ξ2 θ
2
2

[
exp(∆τ2/θ2)−1

]

exp(−τ1/θ1) (∆τ2)
2

+ (1+ ξ)2

×
θ2

1

[
1− exp(−τ1/θ1)

]

exp(−τ1/θ1)τ2
1

,

(19.43)

where ξ = x1−x0
x2−x1

is the amount of stress extrapolation.
Our optimum criterion is to find the optimum stress
change time τ1 (0 < τ1 < τ2) such that the Asvar(log θ̂0)
is minimized. Because

lim
τ1→0+

Asvar
(
log θ̂0

)= lim
τ1→τ−2

Asvar
(
log θ̂0

)=+∞ ,

(19.44)

the minimum of Asvar
(
log θ̂0

)
is attained at some τ1

between 0 and τ2 based on the fact that Asvar
(
log θ̂0

)
is

a continuous function of τ1 when τ1 is between 0 and τ2.
The minimization of Asvar

(
log θ̂0

)
over τ1 solves the

equation

∂
[
n ·Asvar

(
log θ̂0

)]

∂τ1
= 0 , (19.45)

where

∂
[
n ·Asvar

(
log θ̂0

)]

∂τ1

= ξ2θ2
2

(∆τ2)
3 exp

(
τ1

θ1

){[
2+

(
1

θ1
− 1

θ2

)
∆τ2

]

exp

(
∆τ2

θ2

)
−
(

2+ ∆τ2

θ1

)}

+ (1+ ξ)2θ2
1

τ3
1

[
2+

(
τ1

θ1
−2

)
exp

(
τ1

θ1

)]
.

(19.46)

The uniqueness of the solution to (19.45) is shown
in [19.54]. In general, the solution to (19.45) is not in
a closed form and therefore requires a numerical method
such as the Newton–Raphson method.

An Example
We use a real data set reported in Table 17.2.1 of
Chapt. 10 in Nelson [19.47] to demonstrate our esti-
mation and testing procedure. The data set was obtained
from a step-stress test of cryogenic cable insulation.
Each specimen was first stressed for 10 min each at volt-
ages of 5 kV, 10 kV, 15 kV, and 20 kV before it went into
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step 5. Thereafter one group of specimens was stressed
for 15 min at each step given in Table 19.5.

Three other groups were held for 60, 240, and
960 min at each step. Thus there were four step-stress
patterns. The stress on a specimen (x) is the natural loga-
rithm of the ratio between the voltage and the insulation
thickness.

The original data were observed as exact fail-
ure times. To demonstrate our estimation process, we
grouped the failure time data according to the inter-
vals formed by consecutive stress-change times. There
were five censored failure times in the data set. The
grouped and censored data are summarized in Ta-
ble 19.6.

Because of the different thickness for different spec-
imens and different voltages at different steps in the
testing, each specimen has its own stress pattern and
censoring time. A likelihood function can be written
for each specimen according to (19.25). The likelihood
function for the whole sample is the product of all these
individual likelihood functions in the sample. By us-
ing exact failure times instead of grouped count data,

Table 19.5 Step-stress pattern after step 4

Step 5 6 7 8 9 10 11

kV 26.0 28.5 31.0 33.4 36.0 38.5 41.0

Table 19.6 Count data

Holding time (min) Final step Count (uncensored) Censoring time Count (censored) Thickness (mm)

15 9 3 0 27

60 10 1 370 1 29.5

60 10 0 345 1 28

240 9 2 0 29

240 10 2 1333 1 29

240 10 1 0 30

960 5 1 0 30

960 5 0 363.9 1 30

960 6 1 0 30

960 7 3 2460.9 1 30

960 8 1 0 30

960 9 1 0 30

Table 19.7 Parameter estimates

Parameter MLE 95% CI

α 97.5 [60.3, 134.7]
β −12.9 [−13.6,−12.2]
θ(x0) = exp(α+βx0) 6.1 × 108 [2.05 × 10−8, 1.76 × 109]
R0(t) = exp[−t/θ(x0)] exp(−10−8t/6.1) [exp(−10−8t/2.05), exp(−10−9t/1.76)]

Nelson [19.47] fitted the Weibull model to the step-stress
data and presented the MLE of model parameters on Ta-
ble 17.2.2 of Chapt. 10 in Nelson [19.47]. The MLE
estimate for the Weibull shape parameter is 0.755 97
with an asymptotic 95% confidence interval from 0.18
to 1.33. Because the confidence interval contains the
value 1, there is no significant evidence against the hy-
pothesis that the failure times of these specimens follow
an exponential distribution when tested against the larger
family of Weibull distributions based on the standard
normal test at a significance level of 5%. We choose
to base our analysis on exponential failure time in the
step-stress test.

The analysis provided by Chapt. 10 in Nelson [19.47]
assumed that the SRR is an inverse power-law model
and used the stress as the ratio between the voltage
and the insulation thickness. In our set up of log-
linear SRR, the inverse power-law model translates into
log θ(x) = α+βx, where θ(x) is the mean of the expo-
nential distribution at stress x, and stress x now becomes
the natural logarithm of the ratio between the voltage
and the insulation thickness. The design stress is at
400 V/mm, therefore, x0 = 5.99. Table 19.7 presents
the MLE and CI of various parameters.

To demonstrate how to find the optimum design
under a simple step-stress life test, we assume that
the voltage levels from step 5 (26 kV) and step 6
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(28.5 kV) in the step-stress pattern are used to con-
duct a future simple step-stress life test. We also assume
that the test uses the cable insulation with thickness
equal to 30 mm (one of the four types used in the
study). Therefore, the two stress levels for this sim-
ple step-stress test are x1 = log(26 000/30)= 6.765 and
x2 = log(28 500/30) = 6.856. We still use a design
stress of x0 = 5.99. The amount of stress extrapola-
tion is ξ = 8.516. We assume that the simple step-stress
test has to stop after 1800 min (censoring time τ2). Us-
ing the MLE of α and β obtained from the grouped
and censored data in Table 19.7, we numerically
solved (19.45) and found that the optimum stress-
change time is after 1191.6 min (τ1) of testing under
stress x1.

19.2.2 Analysis of a Very Simple
Step-Stress Life Test
with a Random Stress-Change Time

In this section we deal with a very special case of a sim-
ple SSALT that is subject to type II censoring. The
traditional cumulative exposure model assumes that the
stress-change time is a prespecified constant. The stress-
change time in many applications, however, can be
a random variable which follows a distribution. Here we
consider a specific case of a simple step-stress life testing
in which the stress-change time T1 is an order statis-
tic at the low-stress level. This type of simple SSALT
occurs when experimenters want to change the stress
level after a certain number of failures are observed at
the low-stress level.

Throughout the section, we also denote the design
stress by x0, the i-th test stress by xi , i = 1, 2, x1 < x2.
We further assume that a sample of n test units begin at
the low stress x1 until the first n1 units fail. The stress
is then raised to the high stress x2 and held until an-
other n2 units fail. Let C = n(n−n1)

(n−n1−1
n2−1

)( n−1
n1−1

)
and(n

k

)= n!/[k!(n− k)!] for 0 ≤ k ≤ n. For 0 ≤ i ≤ n1−1
and 0 ≤ j ≤ n2−1, let ξ(n, n1, i) = n−n1+ i+1 and
η(n, n1, n2, j) = n−n1−n2+ j+1. In addition to the
assumption (A1) and (A2) made above, we further as-
sume that only two order statistics are observed during
the entire simple SSALT: one is the stress-change time,
which is the n1-th order statistic under the low stress
x1, the other is the final failure time of SSALT, which
is the n2-th order statistic under the high stress x2.
We will present the joint and marginal distributions
of the two observed order statistics from the simple
SSALT. We will also discuss the maximum likelihood
estimates (MLE) and the method of moment estimates

(MME) for the model parameters based on the joint
distribution and present the exact confidence interval
estimates for the model parameters based on various
pivotal quantities.

Joint Distribution
of Order Statistics under SSALT
Let T1 be the stress-change time and T be the lifetime
under such a simple SSALT. We further assume that the
lifetime under the simple SSALT, given T1 = t1, follows
the cumulative exposure model. Therefore, the condi-
tional cumulative distribution function GT |T1 of T , given
the stress-change time T1 = t1, is given by the classic
cumulative exposure model [19.47]:

GT |T1 (t)

⎧
⎨

⎩
F1(t), for 0 ≤ t < t1

F2(t− τ1+ s), for t1 ≤ t <∞
,

(19.47)

where s = t1θ2/θ1. The conditional probability distri-
bution function (PDF) g(t|t1) of T , given T1 = t1, is
then

g(t|t1) =

⎧
⎪⎪⎨

⎪⎪⎩

1

θ1
f

(
t1
θ1

)
, for 0 ≤ t < t1

1

θ2
f

(
t2− t1
θ2

+ t1
θ1

)
, for t1 ≤ t <∞

.

(19.48)

The marginal probability density function (PDF) of
T is given by g(t|t1)l(t1), where l(t1) is the PDF of
T1 [19.55].

Suppose that T2 (T1 < T2) is the final censoring
observation under the simple SSALT. The observed
data in such a test are the vector (T1, T2). Since T1
is the n1-th smallest observation from the distribu-
tion F( t1

θ1
). The probability density function of T1

is [19.3]:

l(t1) =
(

n−1

n1−1

)
n

θ1
f

(
t1
θ1

)
Fn1−1

(
t1
θ1

)

×

[
1− F

(
t1
θ1

)]n−n1

. (19.49)

Given T1 = t1, the conditional cumulative exposure
model implies that T2 is the n2-th order statistic from
a sample of size n−n1 with probability density func-
tion (1/θ2) f [(t2− t1)/θ2+ t1/θ1]/[1− F(t1/θ1)], t ≥ t1.
Thus, the conditional probability density function for T2,
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362 Part C Reliability Models and Survival Analysis

given T1 = t1, is [19.3]:

fT2|T1 (t2) =
(

n−n1−1

n2−1

)
(n−n1)

θ2

× f

(
t2− t1
θ2

+ t1
θ1

)

×

[
F

(
t2− t1
θ2

+ t1
θ1

)
− F

(
t1
θ1

)]n2−1

× Rn−n1−n2

(
t2− t1
θ2

+ t1
θ1

)

× Rn1−n
(

t1
θ1

)
, (19.50)

where R(t) = 1− F(t). Therefore, the joint probability
density for (T1, T2) is

f (t1, t2) = fT2|T1 (t2)l1(t1)

= C

θ1θ2
f

(
t1
θ1

)
f

(
t2− t1
θ2

+ t1
θ1

)

× Fn1−1
(

t1
θ1

)

×

[
F

(
t2− t1
θ2

+ t1
θ1

)
− F

(
t1
θ1

)]n2−1

× Rn−n1−n2

(
t2− t1
θ2

+ t1
θ1

)
. (19.51)

When the lifetime is exponential under constant stress,
i. e., f (t) = exp(−t), t > 0,

f (t1, t2) = C

θ1θ2

{
exp

[
− (n−n1+1)

t1
θ1

]}

×

[
1− exp

(
− t1
θ1

)]n1−1

×

{
exp

[
− (n−n1−n2+1)

t2− t1
θ2

]}

×

[
1− exp

(
− t2− t1

θ2

)]n2−1

.
(19.52)

MLE and MME
From now on we concentrate on the SRR, which as-
sumes that θ(x) is a log-linear function of the stress
x, i. e., ln[θ(x)] = α+βx. The parameters α and β are
characteristics of the products and test methods and we
assume that x > 0 and β < 0. Notice that θ(x) is a mul-
tiple of the mean lifetime under the stress x based on
the assumption (A1). In fact, if the lifetime distribu-
tion is exponential, then θ(x) is the mean lifetime under
stress x. We discuss the point estimates for α, β, and
θ0 = exp(α+βx0) in this section based on the method
of maximum likelihood and the method of moment.

As a function of α and β, the joint density func-
tion f (t1, t2) in (19.51) becomes the likelihood function
L(α, β) based on the data vector (T1, T2). The maxi-
mum likelihood estimate for α and β can be obtained by
solving the system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ log L
∂α

=−2− t1 f ′
(

t1
θ1

)

θ1 f
(

t1
θ1

) −
(

t2−t1
θ2

+ t1
θ1

)

×
f ′
(

t2−t1
θ2

+ t1
θ1

)

f
(

t2−t1
θ2

+ t1
θ1

) − (n1−1)t1 f
(

t1
θ1

)

θ1 F
(

t1
θ1

)

− (n2−1)

×

[(
t2−t1
θ2

+ t1
θ1

)
f
(

t2−t1
θ2

+ t1
θ1

)
− t1

θ1
f
(

t1
θ1

)]

F
(

t2−t1
θ2

+ t1
θ1

)
−F

(
t1
θ1

)

+ (n−n1−n2)
(

t2−t1
θ2

+ t1
θ1

)

×
f
(

t2−t1
θ2

+ t1
θ1

)

R
(

t2−t1
θ2

+ t1
θ1

) = 0

∂ log L
∂β

=− x1t1 f ′
(

t1
θ1

)

θ1 f
(

t1
θ1

) −
[

x2(t2−t1)
θ2

+ x1t1
θ1

]

×
f ′
(

t2−t1
θ2

+ t1
θ1

)

f
(

t2−t1
θ2

+ t1
θ1

) − (n1−1)x1t1 f
(

t1
θ1

)

θ1 F
(

t1
θ1

)

− (x1+ x2)

− (n2−1)

×

[(
x2(t2−t1)

θ2
+ x1 t1

θ1

)
f
(

t2−t1
θ2

+ t1
θ1

)

F
(

t2−t1
θ2

+ t1
θ1

)
−F

(
t1
θ1

)

−
x1 t1
θ1

f
(

t1
θ1

)

F
(

t2−t1
θ2

+ t1
θ1

)
−F

(
t1
θ1

)

]

+ (n−n1−n2)
[

x2(t2−t1)
θ2

+ x1t1
θ1

]

×
f
(

t2−t1
θ2

+ t1
θ1

)

R
(

t2−t1
θ2

+ t1
θ1

) = 0

,

(19.53)

where f ′(t) = d f (t)/dt. In general, the solution of
(19.53) requires a numerical method such as the
Newton–Raphson method. The methods in Seo and
Yum [19.50] can also be used. To find the MME of α

and β, we notice that (by a change of variable)

ET1 =
∞∫

0

t1l(t1)dt1 = n

(
n−1

n1−1

)
θ1

×

1∫

0

un1−1(1−u)n−n1 F−1(u)du ,

(19.54)
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and

E(T2|T1 = t1) =
∞∫

t1

t2 fT2|T1 (t2)dt2

=
(

n−n1−1

n2−1

)
(n−n1)

Rn−n1

(
t1
θ1

)

×

1∫

F(t1 /θ1)

[
θ2 F−1(v)+

(
1− θ2

θ1

)
t1

]

×

[
v− F

(
t1
θ1

)]n2−1

(1−v)n−n1−n2 dv ,

(19.55)

where F−1 is the inverse function of F. Thus, by letting
w= F(t1/θ1),

E(T2) = ET1 [E(T2|T1)]

= C

1∫

0

wn1−1 dw

×

1∫

w

[
θ2 F−1(v)+ (θ1− θ2) F−1(w)

]

× [v−w]n2−1(1−v)n−n1−n2 dv . (19.56)

The MME of α and β can be found by solving the system
of equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T1 = n
( n−1

n1−1

)
θ1

∫ 1
0 un1−1(1−u)n−n1 F−1(u)du

T2 = C
∫ 1

0 wn1−1 dw

×
∫ 1
w

[
F−1(v)+ (θ1− θ2) F−1(w)

]

×(v−w)n2−1(1−v)n−n1−n2 dv . (19.57)

When the lifetime is exponential under constant stress,
i. e., f (t) = exp(−t), t > 0, ET1 = θ1

∑n1−1
i=0 (n− i)−1

[19.3]. A direct binomial expansion in (19.52) along
with the repeated use of integration by parts yields

E(T2) = θ1

n1−1∑

i=0

(n− i)−1

+C
n1−1∑

i=0

n2−1∑

j=0

(−1)i+ j
(

n1−1

i

)

×

(
n2−1

j

)
θ2

η2(n, n1, n2, j)ξ(n, n1, i)
.

(19.58)

This also gives a closed form solution to the MME of α
and β as

β̃ = 1

x2− x1

⎧
⎨

⎩ln

⎡

⎣(T2−T1)

n1−1∑

i=0

(n− i)−1

⎤

⎦

− ln

⎡

⎣T1C
n1−1∑

i=0

n2−1∑

j=0

(−1)i+ j
(

n1−1

i

)(
n2−1

j

)

× η−2(n, n1, n2, j)ζ−1(n, n1, i)

⎤

⎦

⎫
⎬

⎭

α̃= ln

(
T1

∑n1−1
i=0 (n− i)−1

)
− β̃x1 . (19.59)

Confidence Interval Estimates
of Model Parameters
Now we set up the exact confidence intervals for α, β,
and θ0 = exp(α+βx0) under the assumption that F is
given. We first observe an important fact which will be
used for the estimation of model parameters in this sec-
tion. Let S1 = T1

θ1
, and S2 = T2−T1

θ2
. The joint probability

density function of (S1, S2) is

g(s1, s2) = C f (s1) f (s2+ s1)Fn1−1(s1)

× [F(s2+ s1)− F(s1)]n2−1

× [1− F(s2+ s1)]n−n1−n2 . (19.60)

Therefore, (S1, S2) is a pivotal vector whose distribution
does not depend on the unknown parameters θ1 and θ2.

We now set up a confidence interval for β. Let
S3 = S2

S1
. The marginal distribution of S3 is given by

g3(s3) =
∞∫

0

g(s1, s1s3)s1 ds1 . (19.61)

Since S3 = T2−T1
T1

exp [β(x1− x2)], a 100(1−γ )% (0 <

γ < 1) confidence interval for β is [β1, β2], where

β1 = 1

x2− x1
ln

(
T2−T1

T1S3,γ/2

)
,

β2 = 1

x2− x1
ln

(
T2−T1

T1S3,1−γ/2

)
, (19.62)

and for 0 < c < 1, S3,c is such that

S3,c∫

0

g3(s3)ds3 = 1− c . (19.63)
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To set up a confidence interval for α, we let S4 = Sx2/x1
1

and S5 = S2
S4

. The marginal distribution of S5 is given by

g5(s5) = x1

x2

∞∫

0

g

(
s

x1
x2
4 , s4s5

)
s

x1
x2
4 ds4 . (19.64)

Since S5 = (T2−T1) T
− x2

x1
1 exp

(
x2−x1

x1
α
)

, a 100(1−
γ )% (0 < γ < 1) confidence interval for α is [α1, α2],
where

α1 = x1

x1− x2

[
ln (T2−T1)− ln

(
T

x2
x1

1 S5,1−γ/2

)]
,

α2 = x1

x1− x2

[
ln (T2−T1)− ln

(
T

x2
x1

1 S5,γ/2

)]
,

(19.65)

and, for 0 < c < 1, S5,c is such that

S5,c∫

0

g5(s5)ds5 = 1− c . (19.66)

The confidence interval for θ0 = exp(α+βx0) can also
be obtained based on the distribution of a similar piv-
otal quantity to S5. In fact, for i = 1, 2, we can always
write θi = exp(α+βxi )= exp [(α+βx0)+β (xi − x0)].
Therefore, by replacing the stress xi by the transformed
stress xi − x0 in the derivation of pivotal quantity S5, we

Table 19.8 Percentiles of S3 and S5

Variable Percentile n2 = 6 n2 = 8 n2 = 10

S3 1 0.40 0.69 1.07

2.5 0.52 0.86 1.31

5 0.63 1.03 1.55

10 0.80 1.27 1.88

90 4.01 5.82 8.20

95 5.12 7.38 10.36

97.5 6.37 9.14 12.79

99 8.28 11.83 16.52

S5 1 0.84 1.32 1.91

2.5 1.08 1.73 2.57

5 1.42 2.25 3.32

10 1.97 3.07 4.51

90 27.14 40.05 56.98

95 42.16 61.96 87.96

97.5 62.95 92.25 130.75

99 102.81 150.25 212.60

obtain another pivotal quantity:

S̃5 = (T2−T1) T
− x2−x0

x1−x0
1 exp

[
x2− x1

x1− x0
(α+βx0)

]
.

(19.67)

The distribution of S̃5 is given by the marginal density
function

g̃5(s5) = x1− x0

x2− x0

∞∫

0

g

(
s

x1−x0
x2−x0
4 , s4s5

)
s

x1−x0
x2−x0
4 ds4 .

(19.68)

By using the distribution of pivotal quantity S̃5, we can
set up a confidence interval for α+βx0 similar to the
way that the confidence interval for α was set up based
on the original stress xi and the pivotal quantity S5. Then
a confidence interval for θ0 can be obtained by the expo-
nentiation of the confidence interval of α+βx0. More
specifically, let ξ = (x1− x0)/(x2− x1) be the amount of
stress extrapolation [19.37]. A 100(1−γ )% (0 < γ< 1)
confidence interval for θ0 = exp(α+βx0) is [θ01, θ02],
where

θ01 =
T 1+ξ

1 S̃ξ
5,1−γ/2

(T2−T1)
ξ

,

θ02 =
T 1+ξ

1 S̃ξ
5,γ/2

(T2−T1)
ξ
, (19.69)
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and, for 0 < c < 1, S̃5,c is such that

S̃5,c∫

0

g̃5(s5)ds5 = 1− c . (19.70)

When the lifetime is exponential under constant stress,
i. e., f (t) = exp(−t), t > 0, the marginal density func-
tions for S3 and S5 are simplified. The marginal
probability density function of S3 is

g3(s3) = C
n1−1∑

i=0

n2−1∑

j=0

(−1)i+ j
(

n1−1

i

)(
n2−1

j

)

×
1

[ξ(n, n1, i)+η(n, n1, n2, j)s3]2 .
(19.71)

A direct integration gives the marginal CDF of S3 as

G3(s3) = C
n1−1∑

i=0

n2−1∑

j=0

(−1)i+ j
(

n1−1

i

)(
n2−1

j

)

×
1

η(n, n1, n2, j)

[
1

ξ(n, n1, i)

− 1

[ξ(n, n1, i)+η(n, n1, n2, j)s3]

]
.

(19.72)

The marginal density function of S5 is

g5(s5) = C
x1

x2

n1−1∑

i=0

n2−1∑

j=0

(−1)i+ j
(

n1−1

i

)(
n2−1

j

)

×

∞∫

0

exp

[
−ξ(n, n1, i)s

x1
x2
4

− η(n, n1, n2, j)s4s5

]
s

x1
x2
4 ds4 . (19.73)

A change in the order of integration and the use of
integration by parts gives the marginal CDF of S5 as

G5(s5) = C x1
x2

n1−1∑

i=0

n2−1∑

j=0

(−1)i+ j
(

n1−1

i

)(
n2−1

j

)

×

∞∫

0

1− exp[−η(n, n1, n2, j)s4, s5]
η(n, n1, n2, j)s4

× exp

[
−ζ (n, n1, i)s

x1
x2
4

]
s

x1
x2
4 ds4 (19.74)

The marginal density function and the marginal distribu-
tion function of S̃5 can be obtained by replacing the stress
xi by the transformed stress xi − x0, i = 1, 2, in the cor-
responding function of S5. Except for trivial situations,
numerical integration subroutines are typically required
for the evaluation of the distribution functions associated
with the pivotal quantities even when the exponential
distributions are assumed. In addition, the approxima-
tion of these distributions can also be obtained through
large simulations of the pivotal quantities.

Assume that a sample of 20 experimental units are
placed under a simple step-stress life test. The test stress
is changed from the lower stress x1 to the higher stress
x2 after the fifth failure from the lower stress level
x1 is observed (n1 = 5). The test is finished after an-
other n2 failures are observed at the higher stress x2.
Assume that the lifetime distribution under constant
stress xi (i = 0, 1, 2) is exponential with mean param-
eter θi = exp (α+βxi). For x0 = 0, x2 = 2x1 > 0 and
n2 = 6, 8, 10, Table 19.8 presents the 1, 2.5, 5, 10, 90,
95, 97.5 and 99 percentiles for the distributions of S3 and
S5. These percentiles are computed by numerical inte-
gration of the distribution function for S3 and S5. They
can be used to set up appropriate confidence intervals
for β, α, and θ0.

References

19.1 W. B. Nelson: Applied Life Data Analysis (Wiley, New
York 1982)

19.2 J. D. Kalbfleisch, R. L. Prentice: The Statistical An-
alysis of Failure Time Data (Wiley, New York 1980)

19.3 J. F. Lawless: Statistical Models and Methods for
Lifetime Data (Wiley, New York 1982)

19.4 R. Peto, M. C. Pike, P. Armitage, N. E. Breslow,
D. R. Cox, S. V. Howard, N. Mantel, K. McPher-
son, J. Peto, P. G. Smith: Design and analysis of
randomized clinical trials requiring prolonged ob-

servation of each patient. Part II: Analysis and
examples, Br. J. Cancer 35, 1–39 (1977)

19.5 D. R. Cox: Regression models and life tables (with
Discussion), J. R. Stat. Soc. B 74, 187–200 (1972)

19.6 D. Schoenfeld: Partial residuals for the proportional
hazards regression model, Biometrika 69, 239–241
(1982)

19.7 T. M. Therneau, P. M. Grambsch, T. R. Fleming:
Martingale-based residuals and survival models,
Biometrika 77, 147–160 (1990)

Part
C

1
9



366 Part C Reliability Models and Survival Analysis

19.8 T. M. Therneau, P. M. Grambsch: Modeling Survival
Data: Extending the Cox Model (Springer, Berlin
Heidelberg New York 2000)

19.9 T. R. Fleming, D. P. Harrington: Counting Processes
and Survival Analysis (Wiley, New York 1991)

19.10 P. K. Anderson, R. D. Gill: Cox’s regression model
for counting processes: a large sample study, Ann.
Stat. 10, 1100–1120 (1982)

19.11 P. Tiraboschi, L. A. Hansen, E. Masliah, M. Alford,
L. J. Thal, J. Corey-Bloom: Impact of APOE genotype
on neuropathologic and neurochemical markers
of Alzheimer disease, Neurology 62(11), 1977–1983
(2004)

19.12 R. Weindruch, R. L. Walford: The Retardation of Ag-
ing and Disease by Dietary Restriction (Thomas,
Springfield 1988)

19.13 H. M. Brown-Borg, K. E. Borg, C. J. Meliska,
A. Bartke: Dwarf mice and the aging process, Na-
ture 33, 384 (1996)

19.14 R. A. Miller: Kleemeier award lecture: are there
genes for aging?, J Gerontol. 54A, B297–B307 (1999)

19.15 H. R. Warner, D. Ingram, R. A. Miller, N. L. Nadon,
A. G. Richardson: Program for testing biological
interventions to promote healthy aging., Mech.
Aging Dev. 155, 199–208 (2000)

19.16 S. L. George, M. M. Desu: Planning the size and
duration of a clinical trial studying the time
to some critical event, J. Chron. Dis. 27, 15–24
(1974)

19.17 D. A. Schoenfeld, J. R. Richter: Nomograms for
calculating the number of patients needed for
aclinical trial with survival as an endpoint, Bio-
metrics 38, 163–170 (1982)

19.18 L. V. Rubinstein, M. H. Gail, T. J. Santner: Planning
the duration of acomparative clinical trial with loss
to follow-up and a period of continued observa-
tion, J. Chron. Dis. 34, 469–479 (1981)

19.19 J. Halperin, B. W. Brown: Designing clinical trials
with arbitrary specification of survival functions
and for the log rank or generalized Wilcoxon test,
Control. Clin. Trials 8, 177–189 (1987)

19.20 E. Lakatos: Sample sizes for clinical trials with
time-dependent rates of losses and noncompli-
ance, Control. Clin. Trials 7, 189–199 (1986)

19.21 D. Schoenfeld: The asymptotic properties of
nonparametric tests for comparing survival distri-
butions, Biometrika 68, 316–318 (1981)

19.22 L. S. Freedman: Tables of the number of patients
required in clinical trials using the log-rank test,
Stat. Med. 1, 121–129 (1982)

19.23 E. Lakatos: Sample sizes based on the log-rank
statistic in complex clinical trials, Biometrics 44,
229–241 (1988)

19.24 M. Wu, M. Fisher, D. DeMets: Sample sizes for
long-term medical trial with time-dependent
noncompliance and event rates, Control. Clin. Trials
1, 109–121 (1980)

19.25 E. Lakatos, K. K. G. Lan: A comparison of sample
size methods for the logrank statistic, Stat. Med.
11, 179–191 (1992)

19.26 J. Crowley, D. R. Thomas: Large Sample Theory for
the Log Rank Test, Technical Report, Vol. 415 (Uni-
versity of Wisconsin, Department of Statistics, 1975)

19.27 C. Xiong, Y. Yan, M. Ji: Sample sizes for com-
paring means of two lifetime distributions with
type II censored data: application in an aging in-
tervention study, Control. Clin. Trials 24, 283–293
(2003)

19.28 A. Turturro, W. W. Witt, S. Lewis et al.: Growth
curves and survival characteristics of the animals
used in the biomarkers of aging program, J. Geron-
tol. Biol. Sci. Med. Sci. A54, B492–B501 (1999)

19.29 T. D. Pugh, T. D. Oberley, R. I. Weindruch: Dietary
intervention at middle age: caloric restriction
but not dehydroepiandrosterone sulfate increases
lifespan and lifetime cancer incidence in mice,
Cancer Res. 59, 1642–1648 (1999)

19.30 A. S. Little: Estimation of the T-year survival rate
from follow-up studies over alimited period of
time, Human Biol. 24, 87–116 (1952)

19.31 B. Epstein: Truncated life tests in the exponential
case, Ann. Math. Stat. 23, 555–564 (1954)

19.32 M. Zelen, M. C. Dannemiller: The robustness of life
testing procedures derived from the exponential
distribution, Technometrics 3, 29–49 (1961)

19.33 H. Chernoff: Optimal accelerated life designs for
estimation, Technometrics 4, 381–408 (1962)

19.34 W. Q. Meeker, W. B. Nelson: Optimum accelerated
life tests for Weibull and extreme value distribu-
tions and censored data, IEEE Trans. Reliab. 24,
321–332 (1975)

19.35 W. B. Nelson, T. J. Kielpinski: Theory for optimum
censored accelerated life tests for normal and log-
normal life distributions, Technometrics 18, 105–114
(1976)

19.36 W. B. Nelson: Accelerated life testing—step-stress
models and data analysis, IEEE Trans. Reliab. 29,
103–108 (1980)

19.37 R. W. Miller, W. B. Nelson: Optimum simple step-
stress plans for accelerated life testing, IEEE Trans.
Reliab. 32, 59–65 (1983)

19.38 D. S. Bai, M. S. Kim, S. H. Lee: Optimum simple step-
stress accelerated life tests with censoring, IEEE
Trans. Reliab. 38, 528–532 (1989)

19.39 O. I. Tyoskin, S. Y. Krivolapov: Nonparametric model
for step-stress accelerated life test, IEEE Trans. Re-
liab. 45, 346–350 (1996)

19.40 J. R. Dorp, T. A. Mazzuchi, G. E. Fornell, L. R. Pol-
lock: A Bayes approach to step-stress acceler-
ated life test, IEEE Trans. Reliab. 45, 491–498
(1996)

19.41 C. Xiong: Inferences on a simple step-stress model
with type II censored exponential data, IEEE Trans.
Reliab. 47, 142–146 (1998)

Part
C

1
9



Statistical Survival Analysis with Applications References 367

19.42 A. A. Alhadeed, S. S. Yang: Optimal simple step-
stress plan for Khamis–Higgins model, IEEE Trans.
Reliab. 51, 212–215 (2002)

19.43 S. L. Teng, K. P. Yeo: A least-square approach to
analyzing life–stress relationship in step-stress
accelerated life tests, IEEE Trans. Reliab. 51, 177–182
(2002)

19.44 G. K. Hobbs: Accelerated Reliability Engineering
(Wiley, New York 2000)

19.45 N. R. Mann, R. E. Schafer, N. D. Singpurwalla:
Methods for Statistical Analysis of Reliability and
Life Data (Wiley, New York 1974)

19.46 W. Q. Meeker, L. A. Escobar: A review of recent re-
search, current issues in accelerated testing, 61,
147–168 (1993)

19.47 W. B. Nelson: Accelerated Life Testing, Statistical
Models, Test Plans, and Data Analysis (Wiley, New
York 1990)

19.48 S. Ehrenfeld: Some experimental design problems
in attribute life testing, J. Am. Stat. Assoc. 57, 668–
679 (1962)

19.49 X. K. Yin, B. Z. Sheng: Some aspects of accelerated
life testing by progressive stress, IEEE Trans. Reliab.
36, 150–155 (1987)

19.50 S. K. Seo, B. J. Yum: Estimation methods for the
mean of the exponential distribution based on
grouped censored data, IEEE Trans. Reliab. 42, 87–
96 (1993)

19.51 D. R. Cox, D. V. Hinkley: Theoretical Statistics (Chap-
man Hall, London 1974)

19.52 A. Agresti: Categorical Data Analysis (Wiley, New
York 1990)

19.53 K. Pearson: On a criterion that a given system of
deviations from the probable in the case of a cor-
related system of variables is such that it can be
reasonably supposed to have arisen from random
sampling, Philos. Mag. 50, 157–175 (1900)

19.54 C. Xiong, M. Ji: Analysis of grouped and censored
data from step-stress life testing, IEEE Trans. Re-
liab. 53(1), 22–28 (2004)

19.55 C. Xiong: Step-stress life-testing with random
stress-change times for exponential data, IEEE
Trans. Reliab. 48, 141–148 (1999)

Part
C

1
9



369

Failure Rates20. Failure Rates in Heterogeneous Populations

Most of the papers on failure rate modeling
deal with homogeneous populations. Mixtures
of distributions present an effective tool for
modeling heterogeneity. In this chapter we
consider nonasymptotic and asymptotic properties
of mixture failure rates in different settings.

After a short introduction, in the first section
of this chapter we show (under rather general
assumptions) that the mixture failure rate is
‘bent-down’ compared with the corresponding
unconditional expectation of the baseline failure
rate, which has been proved in the literature
for some specific cases. This property is due to
an effect where ‘the weakest populations die
out first’, explicitly proved mathematically in
this section. This should be taken into account
when analyzing failure data for heterogeneous
populations in practice. We also consider the
problem of mixture failure rate ordering for
the ordered mixing distributions. Two types of
stochastic ordering are analyzed: ordering in the
likelihood ratio sense and ordering the variances
when the means are equal. Mixing distributions
with equal expectations and different variances
can lead to corresponding ordering for mixture
failure rates in [0‚∞) in some specific cases.
For a general mixing distribution, however, this
ordering is only guaranteed for sufficiently small t.

In the second section, the concept of propor-
tional hazards (PH) in a homogeneous population
is generalized to a heterogeneous case. For each
subpopulation, the PH model is assumed to exist.
It is shown that this proportionality is violated for
observed (mixture) failure rates. The correspond-
ing bounds for a mixture failure rate are obtained
in this case. The change point in the environment
is discussed. Shocks – changing the mixing dis-
tribution – are also considered. It is shown that
shocks with the stochastic properties described
also bend down the initial mixture failure rate.
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inally, the third section is devoted to new
results on the asymptotic behavior of mixture
failure rates. The suggested lifetime model
generalizes all three conventional survival models
(proportional hazards, additive hazards and
accelerated life) and makes it possible to derive
explicit asymptotic results. Some of the results
obtained can be generalized to a wider class of
lifetime distributions, but it appears that the class
considered is ‘optimal’ in terms of the trade-off
between the complexity of a model and the
tractability (or applicability) of the results. It is
shown that the mixture failure rate asymptotic
behavior depends only on the behavior of a mixing
distribution near to zero, and not on the whole
mixing distribution.

Although most studies that model failure rates deal with
homogeneous cases, homogeneous populations are rare

in real life. Neglecting the existence of heterogeneity
can lead to substantial errors during stochastic analy-
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370 Part C Reliability Models and Survival Analysis

sis, reliability, survival and risk analysis, and in other
disciplines.

Mixtures of distributions usually present an effective
approach to modeling heterogeneity. There may be a
physical origin for such mixing in practice. This may
happen, for instance, if different (heterogeneous) types
of devices that all perform the same function, and are
not distinguishable during operation, are mixed together.
This occurs in real life when we have ‘identical’ items
that originate from different brands. A similar situation
arises when data from different distributions are pooled
to enlarge the sample size.

It is well-known that mixtures of decreasing failure
rate (DFR) distributions are always also DFR [20.1]. On
the other hand, mixtures of increasing failure rate distri-
butions (IFR) can decrease, at least over some intervals
of time, which means that the IFR class of distributions is
not closed under the operation of mixing [20.2]. As IFR
distributions are usually used to model lifetimes gov-
erned by aging processes, this means that the operation
of mixing can change the pattern of aging dramatically;
for example from positive aging (IFR) to negative aging
(DFR). It should be noted, however, that the change in
the aging pattern usually occurs at sufficiently large item
age, and so asymptotic methods are clearly important
in this type of analysis. These facts and other implica-
tions of heterogeneity should be taken into account in
applications.

One specific natural approach to this modeling
exploits a notion of a non-negative random unob-
served parameter (the frailty) Z, introduced by Vaupel
et al. [20.3] for a gamma-distributed Z. This, in fact, can
be interpreted as a subjective approach and leads to a
consideration of a random failure rate λ(t, Z). Some in-
teresting applications of the frailty concept in survival
analysis were studied by Aalen [20.4]. Since the failure
rate is a conditional characteristic, the ‘ordinary’ ex-
pectation E[λ(t, Z)] with respect to Z does not define
a mixture failure rate λm(t), and a proper conditioning
should be performed [20.5]. It is worth mentioning that
a random failure rate is a specific case of a hazard rate
process [Kebir [20.6] and Yashin and Manton [20.7]].
A convincing ‘experiment’ that shows a deceleration
in the observed failure rate is performed by nature. It
is well-known that human mortality follows the Gom-
pertz [20.8] lifetime distribution with an exponentially
increasing mortality rate. Assume that heterogeneity
can be described by the proportional gamma frailty
model:

λ(t, Z) = Zα exp(βt),

whereα andβ are positive constants. Due to its computa-
tional simplicity, the gamma frailty model is practically
the only one that has been used in applications so far. It
can be shown (see, e.g., Finkelstein and Esaulova [20.9])
that the mixture failure rate λm(t) in this case is mono-
tonic in [0,∞) and asymptotically tends to a constant as
t →∞. However,λm(t) monotonically increases for real
values of the parameters of this model. This fact explains
the recently observed deceleration in human mortal-
ity for the oldest humans (human mortality plateau,
as in Thatcher [20.10]). A similar result has been ex-
perimentally obtained for a large cohort of medflies
by Carey et al. [20.11]. On the other hand, in engi-
neering applications a mixing operation can result in
a failure rate that increases for [0, tm), tm > 0 and de-
creases asymptotically to 0 for (tm,∞), which has been
experimentally observed by Finkelstein [20.12] for ex-
ample for a heterogeneous sample of miniature light
bulbs (Example 20.1). This fact is easily explained the-
oretically using the gamma frailty model with a baseline
failure rate that increases as a power function (Weibull
law) [20.9, 13].

When considering heterogeneous populations in dif-
ferent environments, the problem of ordering mixture
failure rates for stochastically ordered random mixing
variables arises. This topic has not been addressed in
the literature before. In Sect. 20.1 we show that the
natural type of ordering for the mixing models under
consideration is ordering by likelihood ratio [20.14,15].
This correlates with the general considerations of Block
et al. [20.16] with respect to burn-in of heteroge-
neous populations. Specifically, when two frailties are
ordered in this way, the corresponding mixture fail-
ure rates are naturally ordered as functions of time
in [0,∞). Some specific results for the case of frail-
ties with equal means and different variances are also
obtained.

In Sect. 20.2 we discuss a ‘combination’ of a frailty
and a proportional hazards (PH) model. The case of
a step-stress change-point in the proportional hazards
framework is considered and the corresponding bounds
for the mixture failure rate are also obtained. Another ex-
ample deals with a special type of shock, which performs
a burn-in for heterogeneous populations.

Section 20.3 is devoted to the important topic of the
asymptotic behavior of mixture failure rates. In Block
et al. [20.17], it was proved that, if the failure rate of
each subpopulation converges to a constant and this
convergence is uniform, then the mixture failure rate
converges to the failure rate of the strongest subpopula-
tion: in other words, the weakest subpopulations die out
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Failure Rates in Heterogeneous Populations 20.1 Mixture Failure Rates and Mixing Distributions 371

first. (For convenience, from now on we shall use, where
appropriate, the term “population” instead of “subpopu-
lation”) This result is a generalization of the case where
populations have constant failure rates, as considered
by Clarotti and Spizzichino [20.18], and it also repre-
sents a further development of the work by Block et al.
in [20.16] (see also [20.19,20]). In Block and Joe [20.21]
the following asymptotic result, which addresses the is-
sue of ultimate monotonicity, was obtained. Let z0 be
a realization of a frailty Z, which corresponds to the
strongest population. If λ(t, z)/λ(t, z0) uniformly de-
creases as t →∞, then λm(t)/λ(t, z0) also decreases.
If, in addition, limt→∞ λ(t, z0) exists, then this quotient
decreases to 1. Although the lifetime model obtained
from these findings may be rather general, the ana-
lytical restrictions, such as uniform convergence, are
rather stringent. Besides, the strongest population cannot
always be identified.

We suggest a class of distributions that generalizes
the proportional hazards, the additive hazards and the
accelerated life models and we prove a simple asymp-
totic result for the mixture failure rate for this class of
lifetime distributions. It turns out that the asymptotic
behavior of mixture failure rates depends only on the
behavior of the mixing distribution in the neighborhood
of the left end point of its support, and not on the whole
mixing distribution.

Notation
The following notation is used in this chapter

T lifetime random variable,
F(t) cumulative distribution function of T ,
Z unobserved random variable (frailty),
F(t, z) cumulative distribution function indexed by pa-

rameter z,
Π(z) distribution function of Z,
Π(z|t) conditional distribution function of Z,
π(z) probability density function of Z,
πk(z) probability density function of kZ,
π(z|t) conditional probability density of Z,
λ(t, z) failure rate indexed by parameter z,
Λ(t, z) cumulative failure rate indexed by parameter z,
λm(t) mixture failure rate,
λP(t) unconditional expectation in the family of failure

rates,
λmk(t) mixture failure rate for the PH model,
λ̃mk(t) notation for kλm(t),
λms(t) mixture failure rate after a shock,
g(z) function decreasing in z
ε(t) baseline stress,
εs(t) more severe stress,
A(s) function defining the general survival model,
φ(t) scale function in the general survival model,
Ψ (t) additive part of the general survival model.

20.1 Mixture Failure Rates and Mixing Distributions

20.1.1 Definitions

Let T ≥ 0 be a lifetime random variable with the cumu-
lative distribution function (Cdf) F(t)[F̄(t)≡ 1− F(t)].
Assume that F(t) is indexed by a random variable Z in
the following sense

P(T ≤ t|Z = z) ≡ P(T ≤ t|z) = F(t, z)

and that the probability density function (pdf) f (t, z)
exists. Then the corresponding failure rate λ(t, z) is
f (t, z)/F̄(t, z). Let Z be interpreted as a non-negative
random variable with support [a, b], a ≥ 0, b ≤∞ and
pdf π(z). Thus, a mixture Cdf is defined by

Fm(t) =
b∫

a

F(t, z)π(z)dz .

As the failure rate is a conditional characteristic, the mix-
ture failure rate λm(t) should be defined in the following

way (see, e.g., Finkelstein and Esaulova [20.9]):

λm(t) =

b∫
a

f (t, z)π(z)dz

b∫
a

F̄(t, z)π(z)dz

(20.1)

=
b∫

a

λ(t, z)π(z|t)dz ,

where the conditional pdf (on the condition that T > t)
is:

π(z|t) ≡ π(z|T > t)= π(z)
F̄(t, z)

b∫
a

F̄(t, z)π(z)dz

. (20.2)

Therefore, this pdf defines a conditional random variable
Z|t, Z|0 ≡ Z with the same support. On the other hand,
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372 Part C Reliability Models and Survival Analysis

consider the following unconditional characteristic

λP(t) =
b∫

a

λ(t, z)π(z)dz , (20.3)

which, in fact, defines an expected value (as a function
of t) for a specific stochastic process λ(t, Z). It follows
from definitions (20.1) and (20.3) that λm(0) = λP(0).
The function λP(t) is a supplementary one, but as a trend
function of a stochastic process, it captures the mono-
tonic pattern of the family λ(t, z). Therefore, under
certain conditions, λP(t) has a similar shape to λ(t, z):
if, e.g., λ(t, z), z ∈ [a, b] increases with t, then λP(t) in-
creases as well. For some specific cases (see later) λP(t)
also characterizes the shape of the baseline failure rate.
On the other hand, the mixture failure rate λm(t) can
have a different pattern: it can ultimately decrease, for
instance, or it can preserve the property that it increases
with t, as in Lynch [20.2]. There is even the possibility
of a few oscillations. However, despite all of the pat-
terns that are possible, it will be proved that the mixture
failure rate is majorized by λP(t):

λm(t) < λP(t), t > 0 (20.4)

and under some additional assumptions, that

[λP(t)−λm(t)] ↑, t ≥ 0. (20.5)

Definition 20.1
[20.22]. Relation (20.4) defines a weak bending-down
property for the mixture failure rate, whereas rela-
tion (20.5) is the definition of a strong bending-down
property.

20.1.2 Multiplicative Model

Consider the following specific multiplicative model

λ(t, z) = z λ(t), (20.6)

where λ(t) is a baseline failure rate. This setting de-
fines the widely used frailty (multiplicative) model. On
the other hand, it can be also viewed as a proportional
hazards (PH) model. Applying definition (20.1) gives:

λm(t) =
b∫

a

λ(t, z)π(z|t)dθ = λ(t)E[Z|t]. (20.7)

The conditional expectation E[Z|t](E[Z|0] ≡ E[Z])
plays a crucial role in defining the shape of the
mixture failure rate λm(t) in this model. The follow-
ing result was proved in Finkelstein and Esaulova
[20.9]:

E′
t[Z|t] = −λ(t)Var(Z|t) < 0,

which means that the conditional expectation of Z is
a decreasing function of t ∈ [0,∞). On the other hand,
(20.3) becomes

λP(t) =
b∫

a

λ(t, z)π(z)dz = λ(t)E[Z|0]. (20.8)

Therefore

λP(t)−λm(t) = λ(t)(E[Z|0]− E[Z|t]) > 0

and relation (20.4) holds, whereas under the additional
sufficient condition that λ(t) is increasing, the strong
bending-down property (20.5) occurs.

20.1.3 Comparison
with Unconditional Characteristics

The main additional assumption that will be needed for
the following result is that the family of failure rates
λ(t, z), z ∈ [a, b] should be ordered in z.

Theorem 20.1
Let the failure rate λ(t, z) in the mixing model (20.1)
be differentiable with respect to both arguments and be
ordered as

λ(t, z1) < λ(t, z2), z1 < z2,∀z1, z2 ∈ [a, b], t ≥ 0.
(20.9)

Assume that the conditional and unconditional expec-
tations in relations (20.1) and (20.3), respectively, are
finite for ∀t ∈ [0,∞).

Then:
a) The mixture failure rate λm(t) bends down with

time, weakly at least.
b) If, additionally, ∂λ(t,z)

∂z increases with t, then λm(t)
strongly bends down with time.

Proof: It is clear that ordering (20.9) is equivalent to the
condition that λ(t, z) increases with z for each t ≥ 0. In
accordance with (20.1) and (20.3), and integrating by
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parts [20.5]:

∆λ(t) ≡
b∫

a

λ(t, z)[π(z)−π(z|t)]dz

=λ(t, z)[Π(z)−Π(z|t)]|ba

−
b∫

a

λ′z(t, z)[Π(z)−Π(z|t)]dz

=
b∫

a

−λ′z(t, z)[Π(z)−Π(z|t)]dz > 0, t > 0 ,

(20.10)

where

Π(z) = P(Z ≤ z); Π(z|t) = P(Z ≤ z|T > t)

and the termλ(t, z)[Π(z)−Π(z|t)]|ba vanishes for b=∞
as well. Inequality (20.10), and therefore the first part of
the theorem, follows from λ′z(t, z) > 0 and the following
inequality:

Π(z)−Π(z|t) < 0, ∀t > 0, z ∈ (a, b). (20.11)

Inequality (20.11) can be interpreted as: “the weakest
populations die out first”. This interpretation is widely
used in various specific cases, especially in demographic
literature [20.3]. To obtain (20.11), it is sufficient to
prove that

Π(z|t) =

z∫
a

F̄(t, u)π(u)du

b∫
a

F̄(t, u)π(u)du

increases with t, which can be easily done by considering
the corresponding derivative [20.22].

The derivative Π ′
t (z|t) > 0 if

z∫
a

F̄′
t (t, u)π(u)du

z∫
a

F̄(t, u)π(u)du

>

b∫
a

F̄′
t (t, u)π(u)du

b∫
a

F̄(t, u)π(u)du

.

As F̄′
t(t, z)=−λ(t, z)F̄(t, z), it is sufficient to show that

B(t, z)≡

z∫
a
λ(t, u)F̄(t, u)π(u)du

z∫
a

F̄(t, u)π(u)du

increases with z. Inequality B′z(t, z) > 0 is equivalent to

λ(t, z)

z∫

a

F̄(t, u)π(u)du >

z∫

0

λ(t, u)F̄(t, u)π(u)du.

Thus, due to the additional assumption in Theo-
rem 20.1b), the integrand at the end of (20.10) does
increase and therefore ∆λ(t) does as well, which imme-
diately leads to the strong bending-down property (20.5).

The following example shows the strong bending-
down property of the mixture failure rate in practice.

Example 20.1: Technical devices have parameters that
are also usually quite heterogeneous and should exhibit a
similar deceleration in the failure rate or may even bend
down practically to 0. In order to support this statement
and to show that the effect of heterogeneity is signifi-
cantly underestimated by most reliability practitioners,
the following experiment was conducted at the Max
Planck Institute for Demographic Research [20.12]. We
recorded the failure times for a population of 750 minia-
ture lamps and constructed an empirical failure rate
function (in relative units) for a time interval of 250 h,
which is shown in Fig. 20.1.

The results were very convincing: the failure rate
initially increased (a tentative fit showed the Weibull
law) and then it decreased to a very low level. This
pattern for the observed failure rate is exactly the same
as that predicted in Finkelstein and Esaulova [20.9] for
the Weibull baseline Cdf.

We will now show now that the natural ordering
for our mixing model is based on the likelihood ra-
tio. Somewhat similar reasoning can be found in Block

0.25
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0.00
250200150100500

Hazard rate

Time, step = 10

Fig. 20.1 Empirical hazard rate for a population of the 750
miniature lamps.
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et al. [20.16] and Shaked and Spizzichino [20.23]. Let
Z1 and Z2 be continuous non-negative random variables
with the same support and with densitiesπ1(z) andπ2(z),
respectively. Recall [20.14, 15] that Z2 is smaller than
Z1 based on the likelihood ratio [20.24]:

Z1 ≥LR Z2 , (20.12)

if π2(z)/π1(z) is a decreasing function.

Definition 20.2
Let Z(t), t ∈ [0,∞) be a family of random variables
indexed by parameter t (time) with probability den-
sity functions p(z, t). We say that Z(t) decreases with t
according to the likelihood ratio if

L(z, t1, t2) = p(z, t2)

p(z, t1)

decreases with z for all t2 > t1.

The following simple result states that our family
of conditional mixing random variables Z|t, t ∈ [0,∞]
decreases based on the likelihood ratio:

Theorem 20.2
Let the family of failure rates λ(t, z) in the mixing
model (20.1) be ordered as in the relation (20.9).

Then the family of random variables Z|t ≡ Z|T > t
decreases with t ∈ [0,∞) based on the likelihood ratio.

Proof: In accordance with (20.2):

L(z, t1, t2) = π(z|t2)

π(z|t1)

=
F̄(t2, z)

b∫
a

F̄(t1, z)π(z)dz

F̄(t1, z)
b∫

a
F̄(t2, z)π(z)dz

. (20.13)

Therefore, the monotonicity with z of L(z, t1, t2) is
defined by

F̄(t2, z)

F̄(t1, z)
= exp

⎧
⎨

⎩−
t2∫

t1

λ(u, z)du

⎫
⎬

⎭ ,

which, due to ordering given in (20.9), decreases with z
for all t2 > t1.

20.1.4 Likelihood Ordering
of Mixing Distributions

For the mixing model (20.1) and (20.2), consider two
different mixing random variables Z1 and Z2 with prob-
ability density functions π1(z), π2(z) and cumulative
distribution functions Π1(z), Π2(z), respectively. As-
suming some type of stochastic ordering for Z1 and
Z2, we intend to achieve simple ordering of the corre-
sponding mixture failure rates. Using simple examples,
it becomes apparent that the ‘usual’ stochastic order-
ing (stochastic dominance) is too weak to do this. It was
shown in the previous section that likelihood ratio order-
ing is the natural one for the family of random variables
Z|t in our mixing model. Therefore, it seems reasonable
to order Z1 and Z2 in this sense too.

Lemma 20.1
Let

π2(z) = g(z)π1(z)
b∫

a
g(z)π1(z)dz

, (20.14)

where g(z) is a decreasing function.
Then Z1 is stochastically larger than Z2:

Z1 ≥st Z2 (Π1(z) ≤Π2(z), z ∈ [a, b]) (20.15)

Proof:

Π2(z) =

z∫
a

g(u)π1(u)du

b∫
a

g(u)π1(u)du

=

z∫
a

g(u)π1(u)du

z∫
a

g(u)π1(u)du+
b∫
z

g(u)π1(u)du

=
g∗ (a, z)

z∫
a
π1(u)du

g∗ (a, z)
z∫

a
π1(u)du+ g∗ (z, b)

z∫
a
π1(u)du

≥
z∫

a

π1(u)du =Π1(z), (20.16)

where g∗ (a, z) and g∗ (z, b) are the mean values of
the function g(z) in the corresponding integrals. As this
function decreases, g∗ (z, b)≤ g∗ (a, z).
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Equation (20.14) with decreasing g(z) means that
Z1 ≥LR Z2, and it is well-known (see, e.g., [20.14]) that
likelihood ratio ordering implies corresponding stochas-
tic ordering. However, we need the previous reasoning
to derive the following result.

Theorem 20.3
Let relation (20.14) (where g(z) is a decreasing func-
tion) hold, which means that Z1 is larger than Z2 based
on likelihood ratio ordering. Assume that the ordering
from (20.9) holds.

Then for ∀t ∈ [0,∞):

λm1(t) ≡

b∫
a

f (t, z)π1(z)dz

b∫
a

F̄(t, z)π1(z)dz

≥

b∫
a

f (t, z)π2(z)dz

b∫
a

F̄(t, z)π2(z)dz

≡ λm2(t). (20.17)

Proof: Inequality (20.17) means that the mixture fail-
ure rate obtained for the stochastically larger (in the
likelihood ratio ordering sense) mixing distribution is
larger for ∀t ∈ [0,∞) than the one obtained for the
stochastically smaller mixing distribution.

We shall first prove that

Π1(z|t) =

z∫
a

F̄(t, u)π1(u)du

b∫
a

F̄(t, u)π1(u)du

≤

z∫
a

F̄(t, u)π2(u)du

b∫
a

F̄(t, u)π2(u)du

≡Π2(z|t). (20.18)

Indeed:

z∫
a

F̄(t, u)π2(u)du

b∫
a

F̄(t, u)π2(u)du

=

z∫
a

F̄(t, u) g(u)π1(u)
b∫

a
g(u)π1(u)du

du

b∫
a

F̄(t, u) g(u)π1(u)
b∫

a
g(u)π1(u)du

du

=

Z∫
a

g(u)F̄(t, u)π1(u)du

b∫
a

g(u)F̄(t, u)π1(u)du

≥

Z∫
a

F̄(t, u)π1(u)du

b∫
a

F̄(t, u)π1(u)du

,

where the last inequality follows using exactly the same
argument, as in inequality (20.16) of Lemma 20.1. Sim-

ilar to (20.10), and taking into account relation (20.18):

λm1(t)−λm2(t) =
b∫

a

λ(t, z)[π1(z|t)−π2(z|t)]dz

=λ(t, z)[Π1(z|t)−Π2(z|t)]|ba

−
b∫

a

λ′z(t, z)[Π1(z|t)−Π2(z|t)]dz

=
b∫

a

−λ′z(t, z)[Π1(z|t)

−Π2(z|t)]dz ≥ 0, t > 0.

(20.19)

The starting point of Theorem 20.3 was (20.14) with
the crucial assumption of a decreasing g(z) function. It
should be noted, however, that this assumption can be
rather formally and directly justified by considering the
difference ∆λ(t)= λm1(t)−λm2(t) and using definitions
(20.1) and (20.2). The corresponding numerator (the
denominator is positive) is transformed into a double
integral in the following way

b∫

a

λ(t, z)F̄(t, z)π1(z)dz

b∫

a

F̄(t, z)π2(z)dz

−
b∫

a

λ(t, z)F̄(t, z)π2(z)dz

b∫

a

F̄(t, z)π1(z)dz

=
b∫

a

b∫

a

F̄(t, u)F̄(t, s)[λ(t, u)π1(u)π2(s)

−λ(t, s)π1(u)π2(s)]du ds

=
b∫

a
u>s

b∫

a

F̄(t, u)F̄(t, s){π1(u)π2(s)[λ(t, u)−λ(t, s)]

+π1(s)π2(u)[λ(t, s)−λ(t, u)]}du ds

=
b∫

a
u>s

b∫

a

F̄(t, u)F̄(t, s)[λ(t, u)−λ(t, s)][π1(u)π2(s)

−π1(s)π2(u)]du ds. (20.20)

Therefore, the final double integral is positive if order-
ing (20.9) holds and π2(z)/π1(z) is decreasing.
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20.1.5 Ordering Variances
of Mixing Distributions

Let Π1(z) and Π2(z) be two mixing distributions with
equal means. It follows from equation (20.7) that, for
the multiplicative model considered in this section,
λm1(0) = λm2(0). Intuitive considerations and reason-
ing based on the principle: “the weakest populations die
out first” suggest that, unlike (20.17), the mixture fail-
ure rates will be ordered as λm1(t) < λm2(t) for all t > 0
if, e.g., the variance of Z1 is larger than the variance of
Z2. We will show that this is true for a specific case and
that for a general multiplicative model this ordering only
holds for a sufficiently small time t. Therefore, it is nec-
essary to formulate a stronger condition to apply when
ordering the ‘variabilities’ of Z1 and Z2.

Example 20.2: For a meaningful specific example, con-
sider the frailty model (20.6), where Z has a gamma
distribution

π(z) = βα

Γ (α)
zα−1 exp(−βz); α > 0, β > 0.

Substituting this density into relation (20.1) gives

λm(t) =
λ(t)

∞∫

0
exp[−zΛ(t)]zπ(z)dz

∞∫

0
exp[−zΛ(t)]π(z)dz

,

where Λ(t) =
t∫

0
λ(u)du is a cumulative baseline failure

rate. Computing integrals results in

λm(t) = αλ(t)

β+Λ(t)
. (20.21)

Equations (20.21) can now be written in terms of E[Z]
and Var(Z):

λm(t) = λ(t)
E2[Z]

E[Z]+Var(Z)Λ(t)
, (20.22)

which, for the specific case E[Z] = 1, gives the result
from Vaupel et al. [20.3], widely used in demography:

λm(t) = λ(t)

1+Var(Z)Λ(t)
.

Using equation (20.22), we can compare mixture
failure rates of two populations with different Z1 and
Z2 on the condition that E[Z2] = E[Z1]:

Var(Z1) ≥ Var(Z2) ⇒ λm1(t) ≤ λm2(t). (20.23)

Intuitively it might be expected that this result would
be valid for arbitrary mixing distributions in the mul-
tiplicative model. However, the mixture failure rate
dynamics here can be much more complicated than this,
even for this specific case, and this topic needs further at-
tention in future research. A somewhat similar situation
was observed in Finkelstein and Esaulova [20.9]: al-
though the conditional variance Var(Z|t) decreased with
t for the multiplicative gamma frailty model, a counter
example was constructed for the case of the uniform
mixing distribution for [0, 1].

The following theorem shows that ordering vari-
ances is a sufficient and necessary condition for ordering
mixture failure rates, but only for the initial time interval.

Theorem 20.4
Let Z1 and Z2 (E[Z2] = E[Z1]) be two mixing distri-
butions in the multiplicative model (20.6), (20.7).

In this case, ordering the variances

Var(Z1) > Var(Z2) (20.24)

is a sufficient and necessary condition for the ordering
of mixture failure rates in the neighborhood of t = 0:

λm1(t) < λm2(t); t ∈ (0, ε), (20.25)

where ε > 0 is sufficiently small.

Proof:
Sufficient condition:

From the results in Sect. 20.1.3:

∆λ(t)= λm1(t)−λm2(t)= λ(t)(E[Z1|t]− E[Z2|t]),
(20.26)

E′
t[Zi |t] = −λ(t)Var(Zi |t) < 0, i = 1, 2, t ≥ 0,

(20.27)

where

E[Zi |0] ≡ E[Zi ], Var(Zi |t) ≡ Var(Zi ). (20.28)

As the means of the mixing variables are equal, rela-
tion (20.26) for t = 0 reads ∆λ(0)= 0, and therefore the
time interval in (20.25) is opened. Thus, if the ordering
in (20.24) holds, the ordering in (20.25) then follows
immediately after, considering the derivative of

λm1(t)

λm2(t)
= E[Z1|t]

E[Z2|t]
at t = 0 and taking into account relations (20.27) and
notation (20.28).
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Necessary condition:
Similar to (20.20), the numerator of the difference

∆λ(t) is

λ(t)

b∫

a

b∫

a

{exp[−Λ(t)(u+ s)]}(u− s)π1(u)π2(s)du ds,

where, as previously, Λ(t) =
t∫

0
λ(u)du. After changing

variables to x = (u+ s)/2, y = (u− s)/2, the double in-
tegral is transformed to the iterated integral and denoted
by G(t):

G(t) ≡
b∫

a

exp[−2Λ(t)x]

×

x∫

−x

yπ1(x+ y)π2(x− y)dy dx. (20.29)

Denote the internal integral in (20.29) by g(x). Then:

G(t) =
b∫

a

{exp[−2Λ(t)x]}g(x)dx.

On the other hand, reverting back to the initial variables
of integration and taking into account that Λ(0)= 0, we
get

G(0) =
b∫

a

g(x)dx =
b∫

a

b∫

a

(u− s)π1(u)π2(s)du ds

=
b∫

a

uπ1(u)du−
b∫

a

uπ2(u)du

= E[Z1]− E[Z2] = 0.

Assume, firstly, that λ(0) �= 0. As G(0)= 0, the function
G(t) is negative in the neighborhood of 0 if G′(0) < 0:

G′(t) =−2λ(t)

b∫

a

{exp[−2Λ(t)x]}xg(x)dx,

G′(0) < 0 ⇒
b∫

a

xg(x)dx > 0.

If ∆λ(t) < 0, t ∈ (0, ε) [condition (20.25)], then G(t) <
0, t ∈ (0, ε), and taking into account that

b∫

a

xg(x)dx =
b∫

a

b∫

a

u+ s

2
(u− s)π1(s)π2(s)du ds

= 1

2

b∫

a

b∫

a

(u2− s2)π1(u)π2(s)du ds

= 1

2
[Var(Z1)−Var(Z2)],

we arrive at the ordering given in (20.24).
Similar considerations are valid for λ(0) = 0. The

function G(t) is negative in this case in the neighborhood
of 0 if G′′(0) < 0. As

G′′(0) =−2λ′(0)

b∫

a

xg(x)dx

and λ′(0) > 0 [since λ(t) > 0, t > 0 and λ(0) = 0], the
same reasoning used for the case λ(0) �= 0, also holds
here.

A trivial but important consequence of this theorem
is as follows:

Corollary
Let mixture failure rate ordering (20.25) hold for t ∈
(0,∞). Then inequality (20.24) holds.

20.2 Modeling the Impact of the Environment

20.2.1 Bounds
in the Proportional Hazards Model

Consider the specific multiplicative frailty model (20.6)
and (20.7). Formally combine this model with the pro-
portional hazards (PH) model in a following way:

λ(t, z, k) = zkλ(t) ≡ zkλ(t). (20.30)

Therefore, the baseline F(t) is indexed by the random
variable Zk = kZ with the pdf πk(z) = π(z/k), whereas
the corresponding conditional pdf πk(z|t) is given by the
right hand side of (20.2), where π(z) is substituted by
πk(z). Equivalently, (20.30) can be interpreted as a frailty
model with a mixing random variable Z and a baseline
failure rate kλ(t). These two simple and equivalent inter-
pretations will help us in what follows. Without losing
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378 Part C Reliability Models and Survival Analysis

any generality, assume that a = 0 and b=∞. Thus, sim-
ilar to (20.6)–(20.9), the mixture failure rate in this case
is

λmk(t) = kλ(t)

∞∫

0

zπk(z|t)dz ≡ λ(t)E[Zk|t]. (20.31)

As Zk = kZ, its density function is

πk(z) = 1

k
π
( z

k

)
.

Theorem 20.5
Let the mixture failure rates for the multiplicative mod-
els (20.6) and (20.30) be given by relations (20.7)
and (20.31), respectively, where k > 1.

Assume that the following quotient increases with z:

πk(z)

π(z)
= π

( z
k

)

kπ(z)
↑ (20.32)

Then:

λmk(t) > λm(t); ∀t ∈ [0,∞). (20.33)

Proof: Although inequality (20.33) seems rather triv-
ial at first sight, it is only valid for some specific
cases of mixing (e.g., the multiplicative model). It is
clear that (20.33) is always true for sufficiently small t,
whereas with larger t the ordering can be different for
general mixing models. Denote:

∆λm(t) = λmk(t)−λm(t).

Using definitions (20.1)–(20.2), it can be seen that, sim-
ilar to the case for relation (20.20), the sign of this
difference is defined by the sign of

∞∫

0

z F̄(t, z)πk(z)dz

∞∫

0

F̄(t, z)π(z)dz

−
∞∫

0

z F̄(t, z)πk(z)dz

∞∫

0

F̄(t, z)π(z)dz

=
∞∫

0

∞∫

0

F̄(t, u)F̄(t, s)[uπk(u)π(s)

− sπk(u)π(s)]du ds

=
∞∫

0
u>s

∞∫

0

F̄(t, u)F̄(t, s)[πk(u)π(s)(u− s)

+πk(s)π(u)(s−u)]du ds

=
∞∫

0
u>s

∞∫

0

F̄(t, u)F̄(t, s)(u− s)[πk(u)π(s)

−πk(s)π(u)]du ds. (20.34)

Therefore, the sufficient condition for inequality (20.33)
is condition (20.32), which is, in fact, rather crude. It is
easy to verify that this condition is satisfied, for example,
for the gamma and the Weibull densities, which are often
used for mixing.

Example 20.3: Consider the same setting as in Exam-
ple 20.1. Condition (20.32) is satisfied for the gamma
distribution. The mixture failure rate λm(t) in this case is
given by relation (20.22). A similar equation obviously
exists for λmk(t), and the corresponding comparison can
be performed explicitly:

λmk(t) = λ(t)
E2[Zk]

E[Zk]+Var(Zk)Λ(t)

= λ(t)
k2 E2[Z]

kE[Z]+ k2Var(Z)Λ(t)
> λm(t).

(20.35)

Now we shall obtain an upper bound for λmk(t).

Theorem 20.6
Let the mixture failure rates for the multiplicative mod-
els (20.6) and (20.30) be given by relations (20.7)
and (20.31), respectively, where k > 1.

Then:

λmk(t) < kλm(t); ∀t ∈ (0,∞). (20.36)

Proof: Consider the difference λmk(t)−kλm(t) similarly
to (20.34), but in a slightly different way: λmk(t) will be
equivalently defined by the baseline failure rate kλ(t)
and the mixing variable Z (in (20.34) it was defined
by the baseline λ(t) and the mixing variable kZ). This
means that:

λmk(t)− kλm(t)= kλ(t)(Ê[Z|t]− E[Z|t]), (20.37)

where the conditioning in Ê[Z|t] is different from the
one in E[Z|t] in the sense described. Denote:

F̄k(t, z) = exp [−zkΛ(t)] .
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‘Symmetrically’ to (20.34), sign[λmk(t)−kλm(t)] is de-
fined by

sign

∞∫

0
u>s

∞∫

0

π(u)π(s)(u− s)[F̄k(t, u)F̄(t, s)

− F̄(t, u)F̄k(t, s)]du ds,

which is negative for all t > 0 since

F̄k(t, z)

F̄(t, z)
= exp [−(k−1)zΛ(t)]

decreases with z.
It is worth noting that we do not need an additional

condition for this bound as in the case of Theorem 20.5.
Also, it is clear that λmk(0) = kλm(0). As previously
mentioned, model (20.30) defines a combination of a PH
model and a frailty model. When Z = 1, it is an ‘ordi-
nary’ PH model. In the presence of a random Z, as
follows from (20.36), the observed failure rate λmk(t)
cannot be obtained as kλm(t) due to the nature of the
mixing.

Therefore, the PH model in each realization does not
result in the PH model for the corresponding mixture
failure rate.

Example 20.3 (continuation): We illustrate inequal-
ity (20.36):

λmk(t) = λ(t)
k2 E2[Z]

kE[Z]+ k2Var(Z)Λ(t)

< λ(t)
kE2[Z]

E[Z]+Var(Z)Λ(t)
= kλm(t).

20.2.2 Change Point in the Environment

Assume that there are two possible environments
(stresses), ε(t) and εs(t): the baseline and a more se-
vere one, respectively. The baseline environment for our
heterogeneous population corresponds to the observed
failure rate λm(t) and the more severe one to λmk(t),
k > 1. As we did previously, assume also that the PH
model for each subpopulation (for each fixed z) holds.
Consider a piece-wise constant step stress with a single
change point at t1:

ε(t1) =
⎧
⎨

⎩
ε, 0 ≤ t < t1,

εk t ≥ t1,
(20.38)

where the stresses ε and εk correspond to the failure
rates zλ(t) and zkλ(t), respectively (k > 1, z ≥ 0). In
accordance with the ‘memoryless property’ of the PH
model, the stress (20.38) results in the following failure
rate for each subpopulation:

λ(t, t1, z, k) =
⎧
⎨

⎩
zλ(t), 0 ≤ t < t1

kzλ(t) t ≥ t1
(20.39)

Denote the resulting mixture failure rate in this case
as:

λm(t, t1) =
⎧
⎨

⎩
λm(t), 0 ≤ t < t1,

λ̃mk(t) t ≥ t1,
(20.40)

where, similar to the previous section,

λ̃mk(t1) = kλm(t1). (20.41)

It is worth noting that relation (20.41) means that this
model with a step stress is proportional for the mixture
failure rates only at the switching point t1. We want to
prove the following inequality:

λmk(t) < λ̃mk(t); ∀t ∈ [t1,∞). (20.42)

In accordance with (20.40), consider two initial (for the
interval [0,∞)) mixing distributions: Z1 = Z|T1 > t1,
where T1 is defined by the baseline failure rate kλ(t)
and Z̃1 = Z|T̃1 > t1, where T̃1 is defined by the baseline
failure rate λ(t). As follows from definition (20.2), the
corresponding ratio

π̃(z, t1)

π(z, t1)
= exp[(k−1)zΛ(t1)]

increases with z. Then inequality (20.42) follows im-
mediately after taking the proof of Theorem 20.1 into
account with obvious alterations caused by the change
in the left end point of the interval from 0 to t1.

Inequality (20.42) was graphically illustrated in Vau-
pel and Yashin ([20.25] Fig.10) for a specific case of
a discrete mixture of two subpopulations and the Gom-
pertz baseline failure rate. The demographic meaning of
this was the following: suppose we decrease the mortal-
ity rates of the subpopulations during early life ([0, t1)).
Then the observed mortality rate for [t1,∞) is larger
than the observed mortality rate for the initial mixture
without changes. In other words, early success results in
more failure later on [20.25].
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20.2.3 Shocks
in Heterogeneous Populations

Now consider the general mixing model (20.1)–(20.2)
and assume that an instantaneous shock occurs at time
t = t1. This shock affects the whole population: with cor-
responding complementary probabilities it either kills
an individual or ‘leaves him unchanged’. Without losing
any generality, let t1 = 0; otherwise a new initial mixing
variable Z|t1 needs to be defined and the corresponding
procedure can be easily adjusted to this case. It is natu-
ral to suppose that the frailest individuals or populations
(those with the largest failure rates) are more susceptible
to being killed.

This setting can be defined probabilistically in the
following way. Let π1(z) denote the frailty distribution
of a random variable Z1 after the shock and let λms(t) be
the corresponding observed (mixture) failure rate after
the shock. Assume that

π1(z) = g(z)π(z)
b∫

a
g(z)π(z)dz

, (20.43)

where g(z) is a decreasing function and therefore
π1(z)/π(z) also decreases. This means that the shock
performs a kind of burn-in operation [20.16] and the
random variables Z and Z1 are ordered based on the
likelihood ratio [20.14, 15]:

Z ≥LR Z1 (20.44)

We are now able to formulate the following result.

Theorem 20.7
Let relation (20.43), which defines the mixing density
after a shock at t = 0 (and where g(z) is a decreasing
function), hold.

Also assume that the ordering given by (20.9) holds
Then:

λms(t) < λm(t); ∀t ∈ [0,∞). (20.45)

Proof: Inequality (20.9) is a natural ordering of the fam-
ily of failure rates λ(t, z), z ∈ [0,∞) and it trivially holds
for the specific model (20.6). Performing all of the steps
we used when obtaining relation (20.34), we finally
obtain:

sign[λms(t)−λm(t)]

= sign

b∫

a
u>s

b∫

a

F̄(t, u)F̄(t, s)[λ(t, u)

−λ(t, s)][π1(u)π(s)−π1(s)π(u)]du ds,

which is negative due to definition (20.43) and the
assumptions of this theorem.

At t = 0, for instance:

λm(0)−λms(0) =
∞∫

0

λ(0, z)[π(z)−π1(z)]dz.

In accordance with inequality (20.45), the curve λms(t)
lies beneath the curve λm(t) for t ≥ 0. This fact seems
intuitively evident, but, in fact, it is only valid due to
the rather stringent conditions of this theorem. It can
be shown, for instance, that replacing condition (20.44)
with a weaker one of stochastic dominance, Zst ≥ Z1,
will not guarantee the ordering given in (20.45) for all t.

This result can be generalized to a sequence of
shocks of the type described that occur at times
{ti}, i = 1, 2, ...

20.3 Asymptotic Behaviors of Mixture Failure Rates

20.3.1 Survival Model

The asymptotic behaviors of mixture failure rates have
been studied by Block et al. [20.16], Gurland and Sethu-
raman [20.20], Lynn and Singpurwalla [20.19] and
Block et al. [20.17], to name but a few. In Finkelstein
and Esaulova [20.9] we considered the properties of
λm(t) as t →∞ for the multiplicative model (20.6).
As λm(t) = λ(t)E[Z|t], this product was analyzed for
increasing λ(t) and conditions implying convergence

to 0 were derived, taking into account that the condi-
tional expectation E[Z|t], defined in (20.7), decreases
with t. The approach taken in this section is differ-
ent: we study a new lifetime model and derive explicit
asymptotic formulae for mixture failure rates that gen-
eralize various specific results obtained for proportional
hazards and additive hazards models. This approach
also allows us to deal with the accelerated life model
(ALM), which has not been studied in the litera-
ture.
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We now define a class of distributions F(t, z) and
study the asymptotic behavior of the corresponding
mixture failure rate λm(t). To begin with it is more con-
venient to define this in terms of the cumulative failure
rate Λ(t, z), rather than in terms of λ(t, z):

Λ(t, z) = A[zφ(t)]+ψ(t). (20.46)

General Assumptions for the Model (20.46):
The natural properties of the cumulative failure rate of
the absolutely continuous distribution F(t, z) (for ∀z ∈
[0,∞)) imply that the functions A(s), φ(t) and ψ(t) are
differentiable, the right hand side of (20.46) does not
decrease with t and it tends to infinity as t →∞ and
A[zφ(0)]+ψ(0) = 0. Therefore, these properties will
be assumed throughout this section, although some of
them will not be needed for formal proofs.

An important additional simplifying assumption is
that

A(s), s ∈ [0,∞); φ(t), t ∈ [0,∞) (20.47)

are increasing functions of their arguments and
A(0) = 0, although some generalizations (e.g., only for
ultimately increasing functions) are easily performed.
Therefore, we will view 1− exp[−A(zφ(t))], z �= 0 in
this chapter as a lifetime Cdf.

It should be noted that model (20.46) can be also
easily generalized to the form Λ(t, z) = A[g(z)φ(t)]+
ψ(t)+η(z) for some properly defined functions g(z)
and η(z). However, we cannot generalize any further
(at least, at this stage), and the multiplicative form of
the arguments in A[g(z)φ(t)] is important to our method
of deriving asymptotic relations. It is also clear that the
additive term ψ(t), although important in applications,
provides only a slight generalization for further analysis
of λm(t), as (20.46) can be interpreted in terms of two
components in series (or, equivalently, as two competing
risks).

The failure rate, which corresponds to the cumulative
failure rate Λ(t, z), is

λ(t, z)= zφ′(t)A′[zφ(t)]+ψ′(t), (20.48)

where, by A′[zφ(t)], we in fact mean dA[zφ(t)]/d[zφ(t)].
Now we can explain why we start with the cumula-

tive failure rate and not with the failure rate itself, which
is common in lifetime modeling. The reason is that one
can easily suggest intuitive interpretations of (20.46),
whereas it is certainly not as simple to interpret the fail-
ure rate structure in the form (20.48) without stating
that it just follows from the structure of the cumulative
failure rate.

Relation (20.46) defines a rather broad class of sur-
vival models which can be used, for example, to model
the impact of the environment on survival character-
istics. The proportional hazards, additive hazards and
accelerated life models, widely used in reliability, sur-
vival analysis and risk analysis, are the obvious specific
cases of our relations (20.46) or (20.48):
PH (multiplicative) model:

Let

A(u) ≡ u, φ(t) =Λ(t), ψ(t) ≡ 0.

Then

λ(t, z)= zλ(t), Λ(t, z) = zΛ(t). (20.49)

ALM:
Let

A(u) ≡Λ(u), φ(t) = t, ψ(t) ≡ 0.

Then

Λ(t, z) =
tz∫

0

λ(u)du, λ(t, z) = zλ(tz). (20.50)

AH model:
Let

A(u) ≡ u, φ(t) = t, ψ(t) is increasing, ψ(0) = 0.

Then

λ(t, z)= z+ψ′(t), Λ(t, z) = zt+ψ(t). (20.51)

The functions λ(t) and ψ′(t) act as baseline failure
rates in equations (20.49), (20.50) and (20.51), respec-
tively. Note that, in all of these models, the functions
φ(t) and A(s) increase monotonically.

The asymptotic behaviors of the mixture failure
rates for the PH and AH models have been studied
for some specific mixing distributions in, for exam-
ple, Gurland and Sethuraman [20.20] and Finkelstein
and Esaulova [20.9]. On the other hand, as far as we
know, the mixture failure rate for the ALM has only
been considered at a descriptive level in Anderson and
Louis [20.26].

20.3.2 Main Result

The next theorem derives an asymptotic formula for the
mixture failure rateλm(t) under rather mild assumptions.
We use an approach related to the ideology of gener-
alized convolutions, for example Laplace and Fourier
transforms and (especially) Mellin convolutions [20.27].
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Theorem 20.8
Let the cumulative failure rate Λ(t, z) be given by the
model (20.46) and the mixing pdf π(z) be defined as

π(z) = zαπ1(z), (20.52)

where α >−1 and π1(z), π1(0) �= 0 is a function that is
bounded in [0,∞) and continuous at z = 0.

Assume also that φ(t) increases to infinity:

φ(t) →∞ as t →∞ (20.53)

and that

exp[−A(s)]sα+1 → 0 as t →∞,

∞∫

0

exp[−A(s)]sα ds <∞. (20.54)

Then

λm(t)−ψ′(t) ∼ (α+1)
φ′(t)
φ(t)

. (20.55)

By relation (20.55) we (as usual) mean asymp-
totic equivalence, and we write a(t) ∼ b(t) as t →∞,
if limt→∞[a(t)/b(t)] = 1.
Proof: Firstly, we need a simple lemma for the Dirac
sequence of functions.

Lemma 20.2
Let g(z), h(z) be non-negative functions in [0,∞) that
satisfy the following conditions:

∞∫

0

g(z)dz <∞, (20.56)

and h(z) is bounded and continuous at z = 0.
Then, as t →∞:

t

∞∫

0

g(tz)h(z)dz → h(0)

∞∫

0

g(z)dz. (20.57)

Proof: Substituting u = tz,

t

∞∫

0

g(tz)h(z)dz =
∞∫

0

g(u)h(u/t)du.

The function h(u) is bounded and h(u/t) → 0 as t →
∞, thus convergence (20.57) holds by the dominated
convergence theorem.

We are now able to prove Theorem 20.8. The
proof is straightforward, as we use definition (20.1) and
Lemma 20.2.

The survival function for the model (20.46) is

F̄(t, z) = exp{−[A(zφ(t)]−ψ(t)}.
Taking into account thatφ(t)→∞ as t →∞, and apply-
ing Lemma 20.2 to the function g(u) = exp[−A(u)]uα:

∞∫

0

F̄(t, z)π(z)dz =
∞∫

0

exp{−[A(zφ(t))]

−ψ(t)}zαπ1(z)dz

∼ exp[−ψ(t)]π1(0)

φ(t)α+1

∞∫

0

exp[−A(s)]sα ds, (20.58)

where the integral is finite due to the condition given
in (20.54).

The corresponding probability density function is:

f (t, z) ={A′[zφ(t)]zφ′(t)
+ψ′(t)} exp{−A[zφ(t)]−ψ(t)}

=A′[zφ(t)]zφ′(t) exp{−A[zφ(t)]
−ψ(t)}+ψ′(t)F̄(t, z).

Similarly, applying Lemma 20.2 gives:
∞∫

0

f (t, z)π(z)dz−ψ′(t)
∞∫

0

F̄(t, z)π(z)dz

= φ′(t) exp[−ψ(t)]
∞∫

0

A′[zφ(t)]

exp{−A[zφ(t)]}zα+1π1(z)dz

∼ φ′(t) exp[−ψ(t)]π1(0)

φ(t)α+2

∞∫

0

A′(s)

exp[−A(s)]sα+1 ds (20.59)

Integrating by parts and using condition (20.54):
∞∫

0

A′(s) exp[−A(s)]sα+1 ds

= (α+1)

∞∫

0

exp[−A(s)]sα ds. (20.60)
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Combining relations (20.58)–(20.60), finally:
∞∫

0
f (t, z)π(z)dz

∞∫

0
F̄(t, z)π(z)dz

−ψ′(t) ∼ (α+1)
φ′(t)
φ(t)

.

It is easy to see that assumption (20.52) holds for
the main lifetime distributions, such as Weibull, gamma,
log-normal etc. Assumption (20.53) states a natural con-
dition for the functionφ(t), which can often be viewed as
a scale transformation. Conditions (20.54) mean that the
Cdf 1−exp[−A(s)] should not be ‘too heavy-tailed’ (as
e.g. the Pareto distribution 1− s−β , for s ≥ 1, β−α > 1)
and are equivalent to the condition that a moment of or-
der α+1 exists for this Cdf. The examples shown in the
next subsection will clearly illustrate that these condi-
tions are not stringent at all and can be easily met in
most practical situations.

A crucial feature of this result is that the asymp-
totic behavior of the mixture failure rate depends only
[omitting an obvious additive term ψ(t)] on the be-
havior of the mixing distribution near to zero and on
the derivative of the logarithm of the scale function
φ(t) : [logφ(t)]′ = φ′(t)/φ(t). When π(0) �= 0 and π(z)
is bounded in [0,∞), the result does not depend on the
mixing distribution at all, as α= 0!

20.3.3 Specific Models

Multiplicative (PH) Model
In the conventional notation, the baseline failure rate
is usually denoted by λ0(t) [or λb(t)]. Therefore,
model (20.6) reads:

λ(t, z)= zλ0(t), Λ0(t) =
t∫

0

λ0(u)du (20.61)

and the mixture failure rate is given by

λm(t) =

∞∫

0
zλ0(t) exp[−zΛ0(t)]π(z)dz

∞∫

0
exp[−zΛ0(t)]π(z)dz

. (20.62)

As A(u)≡ u,φ(t)=Λ0(t),ψ(t)≡ 0 in this specific case,
Theorem 20.8 simplifies to:

Corollary 20.1
Assume that the mixing pdf π(z), z ∈ [0,∞) can be
written as

π(z) = zαπ1(z), (20.63)

where α≥−1 and π1(z) is bounded in [0,∞), continu-
ous at z = 0 and π1(0) �= 0.

Then the mixture failure rate for the multiplicative
model (20.61) has the following asymptotic behavior:

λm(t) ∼ (α+1)λ0(t)
t∫

0
λ0(u)du

. (20.64)

The mixture failure rate given by (20.62) can be
obtained explicitly when the Laplace transform of the
mixing pdf π̃(t) is easily computed. As the cumulative
failure rate increases monotonically with t, the mix-
ture survival function is written in terms of the Laplace
transform as:

∞∫

0

exp[−zΛ0(t)]π(z)dz = π̃[Λ0(t)].

Therefore, (20.62) becomes:

λm(t) =− (π̃[Λ0(t)])′
π̃[Λ0(t)] = −(log π̃[Λ0(t)])′

and the corresponding inverse problem can also be
solved; in other words, given the mixture failure rate
and the mixing distribution, obtain the baseline failure
rate [20.28].

Example 20.4: As for examples 20.1 and 20.3, consider
a frailty model (20.61) where Z has a gamma distri-
bution, which, for notational convenience, is written in
a slightly different form:

π(z) =
( z

b

)c−1
exp

{
− z

b

} 1

bΓ (c)
, (20.65)

where b, c > 0.
The expected value Z is bc and the variance is b2c.

The Laplace transform of π(z) is π̃(t) = c(tb+1)−c

and therefore the mixture failure rate is given by the
following expression, which is the same as (20.22):

λm(t) = bcλ0(t)

1+b
t∫

0
λ0(u)du

. (20.66)
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Obviously, the asymptotic behavior of λm(t) can be
analyzed explicitly. Consider two specific cases.

If the baseline distribution is Weibull with λ0(t) =
λtβ , β ≥ 0, then the mixture failure rate (20.66) is

λm(t) = (β+1)λbctβ

(β+1)+λbtβ+1
, (20.67)

which converges to 0 as t →∞ because it is ∼ (β+
1)ct−1, exactly as prescribed by formula (20.64) of
Corollary 20.1 (c = α+1).

If the baseline distribution is Gompertz with λ0(t)=
µ exp(βt), then a simple transformations gives

λm(t) = βc exp(βt)

exp(βt)+
(

β
µb −1

) . (20.68)

If b = β/µ, then λm(t) ≡ βc; if b > β/µ, then λm(t)
increases to β/µ; if b < β/µ, it decreases to β/µ.

It is reasonable to compare the asymptotic behaviors
of (20.67) and (20.68) for the same mixing distribu-
tion (20.65). For the Weibull Cdf, the mixture failure
rate converges to 0. This means that, within the frame-
work of the multiplicative model, where the family of
failure rates is ordered in z, we can still speak of con-
vergence to the failure rate of the strongest population,
defining the z = 0 case as a ‘generalized’ (or formal)
strongest failure rate: λ(t, 0) = 0. However, the failure
rate for a Gompertz Cdf does not converge to 0 – it
converges to a constant, thus violating the principle of
converging to the failure rate of the strongest popula-
tion, even when formulated in a ‘generalized’ form!
The reason for this is the sharp increase in the func-
tion φ(t), which is proportional to exp(βt) in the latter
case.

Accelerated Life Model
In the conventional notation, this model is written as:

λ(t, z) = zλ0(tz),

Λ0(tz) =
tz∫

0

λ0(u)du. (20.69)

Although the ALM also has a very simple definition,
the presence of the mixing parameter z in the arguments
make analysis of the mixture failure rate more complex
than in the multiplicative case. Therefore, as mentioned
previously, this model is practically unstudied. The mix-

ture failure rate in this specific case is

λm(t) =

∞∫

0
zλ0(tz) exp[−Λ0(tz)]π(z)dz

∞∫

0
exp[−Λ0(tz)]π(z)dz

. (20.70)

The asymptotic behavior of λm(t) can be described as
a specific case of Theorem 20.8 with A(s) =Λ0(s),
φ(t) = t and ψ(t) ≡ 0:

Corollary 20.2
Assume that the mixing pdf π(z), z ∈ [0,∞) can be
defined as π(z) = zαπ1(z), where α >−1, π1(z) is con-
tinuous at z = 0 and bounded in [0,∞), π1(0) �= 0.

Let the baseline distribution with cumulative rate
Λ0(t) have a moment of order α+1. Then

λm(t) ∼ α+1

t
(20.71)

as t →∞.

The conditions of Corollary 20.2 are not that strong
and are relatively natural. Most widely used lifetime
distributions have all of the moments. The Pareto distri-
bution will be discussed in the next example.

As already stated, the conditions on the mix-
ing distribution hold for the gamma and the Weibull
distributions, which are commonly used as mixing
distributions.

Relation (20.71) is really surprising, as it does not de-
pend on the baseline distribution, which seems strange,
at least at first sight. It is also dramatically different
to the multiplicative case (20.64). It follows from Ex-
ample 20.4 that both asymptotic results coincide in the
case of the Weibull baseline distribution; this is obvi-
ous, as the ALM can only be reparameterized to end
up with a PH model and vice versa for the Weibull
distribution.

The following example shows other possible asymp-
totic behaviors for λm(t) when one of the conditions of
Corollary 20.2 does not hold.

Example 20.5: Consider the gamma mixing distri-
bution π(z) = zα exp(−x)/Γ (α+1). Let the baseline
distribution be the Pareto distribution with density
f0(t) = β/tβ+1 t ≥ 1, β > 0.

For β > α+1 the conditions of Corollary 20.2 hold
and relation (20.71) occurs. Let β ≤ α+1, which means
that the baseline distribution doesn’t have the (α+1)th
moment. Therefore, one of the conditions of Corol-
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lary 20.2 does not hold. In this case:

λm(t) ∼ β

t

as t →∞, which can be shown by direct integration:

∞∫

0

z f0(tz)π(z)dz

=
∞∫

1/t

β z

Γ (α+1)tβ+1zβ+1 exp(−z)zα dz

= β

Γ (α+1)tβ+1

∞∫

1/t

zα−β exp(−z)dz

∼ Γ (α−β+1)β

Γ (α+1)tβ+1

and

∞∫

0

F̄0(tz)π(z)dz =
1/t∫

0

exp(−z)zα

Γ (α+1)
dz

+
∞∫

1/t

exp(−z)zα

tβzβΓ (α+1)
dz.

As t →∞, the first integral on the right-hand side is
equivalent to

1/t∫

0

zα

Γ (α+1)
dz = 1

tα+1Γ (α+2)

and the second integral is equivalent to Γ (α−β+
1)/Γ (α+1)tβ , which decreases more slowly for β ≤ α;
therefore, the sum of the two integrals is Γ (α−β+
1)/Γ (α+1)tβ . Eventually:

λm(t) ∼ Γ (α−β+1)β

Γ (α+1)tβ+1 · Γ (α+1)tβ

Γ (α−β+1)
= β

t
.

If β = α+1, then
∞∫

0

z f0(tz)π(z)dz

= α+1

Γ (α+1)tα+2

∞∫

1/t

z−1 exp(−z)dz

and since
1/t∫

0

zα dz = o(t−α−1)

∞∫

1/t

z−1 exp(−z)dz,

we obtain
∞∫

0

F̄0(tz)π(z)dz

= 1

Γ (α+1)tα+1

∞∫

1/t

z−1 exp(−z)dz.

Therefore

λm(t) ∼ α+1

t
= β

t
.

and both cases can be combined into one relation

λm(t) ∼ min(β, α+1)

t
.

It can be shown that the same asymptotic rela-
tion holds not only for the gamma distribution, but
also for any other mixing distribution π(z) of the form
π(z) = zαπ1(z). If β > α+1, the function π1(z) should
be bounded and π1(0) �= 0.

Due to its simplicity, the asymptotic behavior of
λm(t) in the additive hazards model (20.51) does not
warrant special attention. As A(s)= s and φ(t)= t, con-
ditions (20.53) and (20.54) of Theorem 20.8 hold and
the asymptotic result in (20.55) simplifies to:

λm(t)−ψ′(t) ∼ α+1

t
.
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Proportional21. Proportional Hazards Regression Models

The proportional hazards model plays an important
role in analyzing data with survival outcomes. This
chapter provides a summary of different aspects of
this very popular model.

The first part gives the definition of the model
and shows how to estimate the regression param-
eters for survival data with or without ties. Hypoth-
esis testing can be built based on these estimates.
Formulas to estimate the cumulative hazard func-
tion and the survival function are also provided.
Modified models for stratified data and data with
time-dependent covariates are also discussed.

The second part of the chapter talks about
goodness-of-fit and model checking techniques.
These include testing for proportionality assump-
tions, testing for function forms for a particular
covariate and testing for overall fitting.

The third part of the chapter extends the
model to accommodate more complicated data
structures. Several extended models such as
models with random effects, nonproportional
models, and models for data with multivariate
survival outcomes are introduced.

In the last part a real example is given. This
serves as an illustration of the implementation
of the methods and procedures discussed in this
chapter.
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The proportional hazards model has played a pivotal role
in survival analysis since it was proposed by Cox [21.1].
This model has been widely used in many areas, such as
biomedical research and engineering, for assessing co-
variate effects on the time to some events in the presence
of right censoring. For example, when testing the relia-
bility of an electrical instrument, the model can be used
to investigate the effects of variables such as humid-
ity, temperature, and voltage on the time to breakdown.
Since time constraint might not allow us to observe the

failure of every experimental unit, for some units we
only know that failure did not occur up to the end of
study, which is the censoring event.

Let T be the failure time, C be the censoring time,
and Z = {Z1, · · · , Zp}T be a p-dimensional vector of
covariates. Throughout this chapter the covariate vec-
tor Z is assumed to be time-independent, although it
is straightforward to extend the theory to time-varying
covariates. The failure time T might not always be ob-
served due to censoring, and what we actually observe
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388 Part C Reliability Models and Survival Analysis

are X = min(T,C), the smaller of the failure time and
the censoring time, and ∆= I (T ≤ C), the indicator
that failure has been observed. The dataset obtained
from a failure-time study consists of n independent
realizations of the triplet (X, Z,∆). It is usually as-
sumed that the censoring is noninformative in that,
given Z, the failure and the censoring times are inde-
pendent. Let P (T > t | Z) be the conditional survival
function, and the conditional hazard function is defined
as

λ (t | Z)= lim#t↓0

1

#t
P (t ≤ T < t+#t | T ≥ t, Z) ,

which is the instantaneous rate of failure at time t, given
that failure has not occurred before t and the covariate
vector Z.

There are many ways to model the relationship
between the failure time and the covariates. The pro-
portional hazards model specifies

λ (t | Z)= λ0(t) exp
(
βT Z

)
, (21.1)

where λ0(t) is an unknown baseline hazard function cor-
responding to Z = (0, · · · , 0), and β= (β1, . . . , βp)T is
the vector of regression coefficients.

This method does not assume a parametric distri-
bution for the failure times, but rather assumes that the
effects of the different variables on the time to failure
are constant over time and are multiplicative on the haz-
ard. The model is called the proportional hazards model
since the ratio of hazards of any two experimental units
is always a constant:

λ (t | z)

λ (t | z′)
= λ0(t) exp

(
βT z

)

λ0(t) exp
(
βT z′

) = exp
[
βT (z− z′)

]
,

where z and z′ are the respective covariate values of the
two units. This quantity is often referred to as the hazard
ratio or relative risk.

The interpretation of the parameter β is similar to
that in other regression models. For example, exp(β1)
is the hazard ratio of two study units whose values of
the first covariate differ by 1 and whose values of any
other covariate are the same. Usually, the goal is to
make inferences about β or a subset of β to see whether
a certain covariate has an effect on the survival rate or
not. The baseline hazard λ0(·) is treated as a nuisance
parameter function. The proportional hazards model is
considered a semiparametric model, in the sense that
λ0(·) is an infinite-dimensional parameter.

The semiparametric proportional hazards model
includes the parametric Weibull model as a special
case. To see this, for the Weibull distribution with
density f (t) = αλtα−1 exp(−λtα) and survival func-
tion S(t) = exp(−λtα), parameterize the parameter λ

as λ= λ
′
exp(βT Z), then the hazard of failure given Z

is

λ(t|Z)= λ0(t) exp
(
βT Z

)
,

where λ0(t) = αλ
′
tα−1 is a function with two param-

eters, instead of the unspecified λ0(·) in the case of
the proportional hazards model. It can also be shown
that the Weibull model is also a special case of
the semiparametric accelerated failure-time model. In
fact, the Weibull model is the most general paramet-
ric model that has both the proportional hazards and
the accelerated failure-time properties. See Chapt. 12
of Klein and Moeschberger [21.2] for a detailed
discussion.

21.1 Estimating the Regression Coefficients β

The partial likelihood method was introduced by
Cox [21.3] to estimate the regression parameters
β in the proportional hazards model for failure
times with possible right censoring. We will first
focus on the case when all failure times are dis-
tinct. When the failure time follows a continuous
distribution, it is very unlikely that two subjects
would fail at the same time. In reality, however,
the measured time always has a discrete distribu-
tion, since it can only take values in a finite set
of numbers. Thus tied failure times could happen in
a real study, and special attention is needed in this
situation.

21.1.1 Partial Likelihood for Data
with Distinct Failure Times

Now suppose there is no tie among the failure times. Let
t1 < · · ·< tN denote the N ordered times of observed
failures and let ( j ) denote the label of the individual
that fails at t j . Let R j be the risk set at time t j , i. e.
R j = {i : Xi ≥ t j}.

The partial likelihood for the model (21.1) is defined
as

N∏

j=1

exp
(
βT Z( j )

)
∑

i∈R j
exp

(
βT Zi

) , (21.2)
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Proportional Hazards Regression Models 21.2 Estimating the Hazard and Survival Functions 389

and the log partial likelihood is then

L(β) =
N∑

j=1

{
βT Z( j )− log

[ ∑

i∈R j

exp
(
βT Zi

)]}
.

The maximum partial likelihood estimate of β, β̂, as
proposed by Cox [21.3], is found by solving the score
equation

U(β) = 0 ,

where U(β) = ∂L(β)/∂β.
The information matrix, defined as the negative of

the second derivative matrix of the log likelihood, is
given by

I(β) =−∂U(β)

∂β
=

N∑

j=1

[∑
i∈R j

exp
(
βT Zi

)
Z⊗2

i∑
i∈R j

exp
(
βT Zi

)

−
(∑

i∈R j
exp

(
βT Zi

)
Zi

∑
i∈R j

exp
(
βT Zi

)
)⊗2

⎤

⎦ ,

where a⊗2 = aaT for any vector a.
It can be shown that β̂ is a consistent estimator for β,

and nI−1(β̂) is a consistent estimator for the covariance
matrix of n1/2(β̂−β), where n is the number of all sub-
jects, censored or uncensored. Thus for large samples, β̂
has an approximately normal distribution with mean β

and variance–covariance matrix I−1(β̂).

21.1.2 Partial Likelihood for Data
with Tied Failure Times

In the previous section, we defined the partial likelihood
for data with distinct failure times. Now we want to give
several alternative partial likelihoods for data with ties
between failure times.

Suppose there are N distinct observed failure times
t1 < · · ·< tN , and at each time t j (1 ≤ j ≤ N ) there are
d j observed failures. Let D j be the set of all individuals
who die at time t j . Let R j be the risk set at time t j , i. e.
R j = {i : Xi ≥ t j}.

When there are many ties in the data, the compu-
tation of maximum partial likelihood estimates, though
still feasible, becomes time-consuming. For this reason,
approximations to the partial likelihood function are of-
ten used. Two commonly employed approximations are
due to Breslow and to Efron.

Breslow [21.4] suggested the following log partial
likelihood for data with ties among failure times

LB(β) =
N∑

j=1

{
βT

∑

l∈D j

Zl

−d j log

[ ∑

i∈R j

exp
(
βT Zi

)]}
.

This approximation works well when there are not many
ties. Another approximation of the log partial likelihood
is given by Efron [21.5]

LE(β) =
N∑

j=1

{
βT

∑

l∈D j

Zl

−
d j∑

k=1

log

[ ∑

i∈R j

exp
(
βT Zi

)

− (k−1)/d j

∑

i∈D j

exp
(
βT Zi

) ]}
.

Breslow’s method is easy to use and is therefore more
popular, but Efron’s approximation is generally the more
accurate of the two. Also both likelihoods reduce to the
partial likelihood when there is no tie.

21.2 Estimating the Hazard and Survival Functions

The cumulative baseline hazard function Λ0(t)=∫ t
0 λ0(u)du can be estimated by Breslow [21.6]

Λ̂0(t) =
∑

j: t j≤t

δ j
∑

i∈R j
exp(β̂

T
Zi )

,

where δ j = I(Tj ≤ CJ ). Note that Λ̂0 is a right-con-
tinuous step function with jumps at the observed failure
times, and it is often referred to as the Breslow esti-
mator. In the case of tied events, each of the subjects

in a tie contributes its own term to the sum, and this
term is the same for all subjects who failed at the spe-
cific time. This estimator can also be derived through
a profile likelihood approach (Johansen [21.7], Klein
and Moeschberger [21.2]). The baseline survival func-
tion S0(t) = exp [−Λ0(t)] can thus be estimated by
Ŝ0(t) = exp[−Λ̂0(t)]. The estimated survival function
of an individual with covariate value z is given by

Ŝ(t | z) = exp
[
− Λ̂0(t)eβ̂

T
z
]
.
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390 Part C Reliability Models and Survival Analysis

21.3 Hypothesis Testing

Without loss of generality, assume that we are inter-
ested in hypothesis testing involving only the first q
components of the regression parameter β. Write
β = (

βT
1 , β

T
2

)T
, where β1 is of dimension q and β2

is of dimension (p−q). For testing the null hypoth-
esis β1 = β01 against the alternative β1 �= β01 for any
fixed β01 in the presence of the unknown parameters β2,
there are three types of tests: the likelihood ratio test,
the Wald test, and the score test. This type of test with
β01 = 0 is often used in model selection procedures, test-
ing whether a given model can be improved by including
a certain additional covariate or covariate combinations.

21.3.1 Likelihood Ratio Test

The test statistic for the likelihood ratio test is given by

TSLR = 2
[
log L(β̂)− log L(β̃)

]
,

where β̃ = (β01, β̃
T
2 )T and β̃2 maximizes L(β) when β1

is fixed at β01. Under the null hypothesis, the asymptotic
distribution of TSLR is χ2

q .

21.3.2 Wald Test

Let β̂ =
(
β̂

T
1 , β̂

T
2

)
denote the usual maximum par-

tial likelihood estimate of the full parameter vector

β = (
βT

1 , β
T
2

)
, and partition the inverse of the informa-

tion matrix as

I−1(β) =
(

I11(β) I12(β)

I21(β) I22(β)

)
,

where I11(β) is a q × q matrix. The test statistic for the
Wald test is given by

TSwald = (β̂1−β01)T

× I11(β̂)−1(β̂1−β01) .

Under the null hypothesis, the asymptotic distribution
of TSwald is χ2

q .

21.3.3 Score Test

Let S1(β) denote the vector of the first q components of
the score function S(β). The test statistic for the score
test is

TSscore = S1(β̃)T

× I11(β̃)S1(β̃) ,

where β̃ and I11(β) are defined as before. Again, the
large sample distribution of the test statistic under the
null hypothesis is χ2

q .

21.4 Stratified Cox Model

The proportional hazards model can be stratified to
account for heterogeneity in the baseline hazards. To
achieve this, the subjects are divided into several groups
with distinct baseline hazard functions and a common
vector of regression coefficientsβ, and proportional haz-
ards are assumed within each stratum. For a subject with
covariate Z in the k-th stratum, let the hazard at time t

be

λ(t | Z) = λk(t) exp
(
βT Z

)
.

Within each stratum a partial likelihood function can be
defined as in (21.2), and the partial likelihood for the
stratified Cox model is defined as the sum of the partial
likelihood functions for all strata.

21.5 Time-Dependent Covariates

The Cox model can be extended to include time-
dependent covariates.

Let Z(t) be a covariate vector measured at
time t. Again we assume that the censoring is
noninformative in that the failure time T and the cen-
soring time C are conditionally independent, given
the history of the covariate vector Z∗(X), where
Z∗(t) = {Z(u) : 0 ≤ u < t} for any 0 ≤ t ≤ X. The

dataset
{[

Xi , Z∗i (Xi ),∆i
] : i = 1, · · · , n

}
is an i.i.d.

sample of
{[

X, Z∗(X),∆
]}

. Using similar notations as
in Sect. 21.1, the hazard function for T is defined as

λ
[
t | Z∗(t)

]= lim#t↓0

1

#t
P
[
t ≤ T < t

+#t | T ≥ t, Z∗(t)
]

= λ0(t) exp
[
βT z(t)

]
.
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Proportional Hazards Regression Models 21.6 Goodness-of-Fit and Model Checking 391

The partial likelihood is then defined as

N∏

j=1

exp
[
βT Z( j )(X( j ))

]
∑

i∈R j
exp

[
βT Zi (X( j ))

] ,

where, like in Sect. 21.2, (j) denotes the label of the sub-
ject with the j-th earliest observed failure time, and R j
denotes the corresponding risk set.

Though the extension of the model and partial likeli-
hood is simple, the validity of the underlying assumption
and the computation of the partial likelihood are quite
complicated in practice. Extra care is needed in dealing
with time-dependent covariates.

Kalbfleisch and Prentice [21.8] pointed out that
there are two types of time-dependent covariates: ex-
ternal covariates, whose value do not depend on the
failure process, and internal covariates, which usually
carry information about the failure process. For example,
when studying how long an experimental unit remains
functioning, the air humidity rate is essentially exter-
nal to the units work duration. But a patient’s daily
blood pressure is an internal time-dependent covari-
ate, since it carries information about the health status
and hence the failure time of the patient. Though the
definition of the hazard function and the construction
of the partial likelihood apply to both type of time-
dependent covariates, it is not possible to estimate the
conditional survival function when there are internal
covariates.

Another problem concerns the measurement of
time-dependent covariates. The calculation of par-

tial likelihood requires that the values of any unit’s
time-dependent covariates be available at all fail-
ure times when it is still at risk. This cannot be
achieved in general, since we can never know the
failure times in advance and the information on the
covariates are usually collected at predetermined time
points.

One way to deal with incomplete history of time-
dependent covariates is imputation, and there are several
possible ways to impute the intermittent values. An
ad hoc approach commonly used in practice, referred
to as the LVCF method, is to impute the missing co-
variate at a certain time point with the nearest previous
observation of the same unit. Other nonparametric ap-
proaches, like the smoothing methods, can be used
to estimate the unobserved part of the time-dependent
data.

If one can make the assumption that the time-
dependent covariates follow certain models, for ex-
ample, linear mixed effects models, several strategies
can be applied, including regression calibration meth-
ods [21.9–11], joint likelihood methods, [21.12–14], and
conditional score methods, [21.15].

One also needs to be aware of the possible
informative censoring due to the fact that the time-
dependent covariates are truncated by failure [21.16].
Allison [21.17] suggested avoiding using observations
after the failure time, unless one is dealing with ex-
ternal time-dependent covariates. Failure to take into
account these problems can lead to biased parameter
estimates.

21.6 Goodness-of-Fit and Model Checking

21.6.1 Tests of Proportionality

A key assumption of the Cox proportional hazard model
is the proportionality of the hazards. Note that the haz-
ard function for an individual depends on the covariate
values and the value of the baseline hazard. For any two
individuals, it is easy to see from (21.1) that the ratio of
the hazards over time will be constant. The validity of
this assumption needs to be checked. Various methods
can be used for this purpose.

One graphical approach to check the proportion-
ality assumption is the log–log survival plot. We first
divide all study units into several groups according
to the covariate values, and then estimate the survival
function within each group using the Kaplan–Meier
method, [21.18]. If the proportional hazard assumption

is satisfied, plotting the transformed survival functions,
log

[− log S(t)
]
, would result in parallel curves. This

method works well with categorical covariates without
many levels. For continuous predictors, one may first
divide them into a few categories based on quantiles or
other grouping criterion. For categorical covariates with
many levels, one may want to combine them into fewer
groups.

Other graphic approaches includes Andersen
plots [21.19], Arjas plots [21.20], and the use of plots
based on the score residuals or Schoenfeld residuals.
The details of these approaches can be found in Klein
and Moeschberger [21.2], Chapt. 11.

Alternatively, one can check the proportionality as-
sumption by adding a time-dependent covariate to the
model. The time-dependent covariate can be defined
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392 Part C Reliability Models and Survival Analysis

as the interaction of a time-independent covariate and
a function of time. If the time-dependent covariate is
significant in the Cox model, it could be concluded
that the effect of the time-independent covariate varies
with time, and the proportional hazards assumption is
violated.

21.6.2 Test of the Functional Form
of a Continuous Covariate

Next we want to examine the functional form of a given
covariate on the survival and see whether any transfor-
mation of the original covariate is needed. One method
is based on martingale residuals.

Let β̂ be the estimated regression coefficient and
Λ̂0(·) be the Breslow estimator of the cumulative base-
line hazard function, the martingale residual for the i-th
subject is defined as

M̂i = δi − Λ̂0(Xi ) exp
(
β̂

T
Zi

)
= δi − Λ̂i (Xi ) .

It can be shown that when sample size is large, expec-
tation of M̂i is close to 0 and, for i �= j, cov(M̂i , M̂ j ) is
also close to 0. We also have

∑
M̂i = 0.

When the functional form of a specific covariate
needs to be examined, we first fit a Cox model with
all covariates excluding the covariate to be investigated,
and then plot the martingale residuals against the ex-
cluded covariate. If the plot shows an approximately
linear trend, no transformation is needed and the un-
transformed covariate can be included in the model with
the other covariates. If, however, there appears to be
a certain pattern, a proper transformation of the original
covariate might be needed.

Nonparametric methods can also be used to explored
the nature of covariate effects on survival. Local like-
lihood or penalized likelihood methods with different
smoothing methods have been proposed to estimate the
functional form of a single covariate or a linear combi-
nation of covariates in the survival model [21.21–25].

21.6.3 Test for the Influence
of Individual Observation

The influence of individual observation may be studied
by the use of score residuals. We can fit the Cox model
with and without the i-th observation of the data sam-
ple, and obtain the estimates β̂ and β̂(i), respectively.
If β̂− β̂(i) is close to zero the individual observation has
little influence on the estimate. We can plot this differ-
ence against the observation number to identify those
influential observations.

21.6.4 Test for the Overall Fit

The overall fit of the model can be assessed using the
Cox–Snell residuals, which are defined as

ri = Λ̂0(Xi ) exp
(
β̂

T
Zi

)
, i = 1, · · · , n ,

where Λ̂ is the Breslow estimator for the cumulative
baseline hazard function and β̂ are the estimated regres-
sion coefficients. It can be shown that, when there is
no censoring and the true values of the parameters are
known,Λ0(Ti ) exp

(
βT Zi

)
follows an exponential distri-

bution with unit rate. Thus we can treat {ri, i = 1, . . . , n}
as a possibly right-censored sample of failure times from
the unit exponential distribution, which has a constant
hazard rate λr(r) = 1 and a cumulative hazard func-
tion Λr(r) = r. The failure indicator δi for Xi can also
serve as the failure indicator for ri . The Nelson–Aalen
estimator can be used to estimate Λr:

Λ̂r(r)=
∑

i: ri≤r

δi

#{r j : r j ≥ ri} ,

where # counts the number of elements in a set. If the
model is correct, the function Λ̂r would be close to the
straight line Λr(r) = r. Thus, plotting Λ̂r(ri ) against ri
will provide an assessment of the departure from the
model assumptions.

21.6.5 Test of Time-Varying Coefficients

Schoenfeld residuals [21.26] can be used to test
for time-varying coefficients in the Cox model. Let
Yi (t) = I(Xi ≥ t), be the indicator of whether unit i is
still at risk at time t. For a subject who fails at time ti ,
the vector of Schoenfeld residuals is defined as

Zi (ti )− Z̄(ti ) ,

where Z̄(t) is defined as

Z̄(t) =
∑n

j=1 Y j (t)Z j exp
(
β̂

T
Z j

)

∑n
j=1 Y j (t) exp

(
β̂

T
Z j

) ,

which is a weighted average of the covariate Z over all
individuals at risk at time t.

Under the proportional hazards assumption, the
Schoenfeld residuals should be independent of time.
Therefore, a clear pattern of the Schoenfeld resid-
uals over time implies a departure from the model
assumption.
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For the j-th covariate, a time-varying coefficient can
be expressed as

β j (t) = b0 j +b1 j f j (t) ,

where f j (t) is a known function of time. Grambsch and
Therneau [21.27] showed that the scaled Schoenfeld
residuals from a Cox model have a mean of approxi-
mately b1 j f j (t) for the j-th covariate at time t. So the
plot of the scaled Schoenfeld residuals against the event
times can be used to check whether the coefficient of f j
is zero.

21.6.6 Test for a Common Coefficient
Across Different Groups

To test whether the effect of a covariate on failure is
identical across different groups of study units, a strati-
fied analysis can be utilized. First, a stratified Cox model
is fitted with different regression coefficients for differ-
ent groups. Then another stratified Cox model is fitted
with the same coefficient for all groups. The difference
between the log likelihoods, which has an approximate
χ2 distribution, can be used to test for any heterogeneity
in the covariate effect.

21.7 Extension of the Cox Model

21.7.1 Cox Model with Random Effects

Similarly to the case of a linear model, random effects
can be added to the proportional hazards model to han-
dle clustered or heterogeneous survival data [21.28].
Let

λ(t | Z) = λ0(t) exp
(
βT Z+bT W

)
,

where b is the random effect of the covariate vector
W on survival. This model allows for a multivari-
ate random effect with known distribution. Maximum
likelihood estimates of the regression parameters, the
variance components and the baseline hazard function
can be obtained via the expectation maximization (EM)
algorithm.

21.7.2 Nonproportional Models

Several models can be applied when one suspects that
the proportionality assumption does not hold for a cer-
tain dataset. The most common among them are frailty
models and cure-rate models.

Frailty models can be used to account for individual
randomness in an experiment. An unobserved random
variable W is added to a Cox proportional hazards
model, which is assumed to follow a known distribu-
tion. The effect of W is multiplicative on the hazard:
given W , the hazard rate is given by

λ(t | W, Z) = λ0(t)W exp
(
βT Z

)
.

With a common choice for the distribution of W ,
Gamma(1, θ), the marginal hazard rate given the covari-

ate vector Z is

λ(t | Z) = λ0(t) exp
(
βT Z

)

1+ θ exp
(
βT Z

)
Λ0(t)

.

Another commonly used model for nonproportional
hazards is the cure-rate model. This assumes that there
are two sub-populations: cured subjects and uncured
subjects. Suppose the proportion of the cured subjects
is π and that of the uncured subjects is 1−π. The sur-
vival probability at t given covariates Z is then given
by

S(t | Z) = πS1(Z)+ (1−π)S2(t | Z) ,

where S1(Z) is the probability of being cured and
S2(t | Z) represents the survival function of the uncured,

Table 21.1 Data table for the example

Time to breakdown (s)

45 kV 40 kV 35 kV 30 kV 25 kV

1 1 30 50 521

1 1 33 134 2517

1 2 41 187 4056

2 3 87 882 12553

2 12 93 1448 40290

3 25 98 1468 50560+

9 46 116 2290 52900+

13 56 258 2932 67270+

47 68 461 4138 83990

50 109 1182 15750 85500+

55 323 1350 29180+ 85700+

71 417 1495 86100+ 86420+

+ represents censoring
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394 Part C Reliability Models and Survival Analysis

which is modeled as in a proportional hazards model.
The cure-rate model can be used to fit failure-time data
when the right tail of the survival function looks like
a plateau.

21.7.3 Multivariate Failure Time Data

Sometimes an experimental unit might experience mul-
tiple failures, which could be of the same nature (e.g.,

same event recurring over time), or of different nature
(e.g., distinct types of problems). Also, in some situa-
tions there are clustering of study units such that failure
times within the same cluster are expected to be corre-
lated. For example, pieces of equipment in the same fac-
tory might behave similarly to those in another factory.

Various methods have been developed for these
kinds of multivariate failure-time data. See, for ex-
ample, [21.29–33].

21.8 Example

We now use a dataset from the book by Wayne [21.34]
as an illustration. The data came from an experiment on
testing the fatigue limit for two steel specimens in two
forms under different stress ratios. The data are shown
in Table 21.1.

The fitting result is shown in Table 21.2. We can see
that voltage has a negative effect on the failure rate. The
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Censored voltage = 30
Voltage = 40

Fig. 21.1 Estimated survival function

Table 21.2 Model fitting result

coef exp(coef) se(coef) z p

Voltage 0.241 1.27 0.0339 7.12 1.1e-012

exp(coef) exp(-coef) lower 0.95 upper 0.95

Voltage 1.27 0.786 1.19 1.36

Rsquare = 0.68 (max possible = 0.997 )

Likelihood ratio test = 68.3 on 1 df, p = 1.11e-016

Wald test = 50.7 on 1 df, p = 1.07e-012

Score (logrank) test = 68.1 on 1 df, p = 1.11e-016

higher the voltage is, the shorter the time to break down
will be. One unit increase in voltage results in an hazard
ratio of 1.27 (95% confidence interval = 1.19–1.36).

The survival function estimates for five groups of
voltage are displayed in Fig. 21.1. The graph shown in
Fig. 21.2 of the graph of log[-log(survival)] versus the
log of survival time results in parallel straight lines,
so the proportional hazard assumption is satisfied. The
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log(–log SDF)
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Strata: Voltage = 25
Voltage = 30
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Fig. 21.2 Checking the proportional hazard assumption
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Fig. 21.3 Martingale residual plot

martingale residual plot is shown in Fig. 21.3 and the
deviance residual plot is shown in Fig. 21.4. There is

2

1

0
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Voltage
25 30 35 40 45

Deviance residual

Fig. 21.4 Deviance residual plot

no indication of a lack of fit of the model to individual
observations.
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Accelerated Li22. Accelerated Life Test Models and Data Analysis

Today’s consumers demand high quality and
reliability in the products they buy. Accelerated life
tests (ALT) are commonly used by manufacturers
during product design to obtain reliability
information on components and subsystems in a
timely manner. The results obtained at high levels
of the accelerating variables are then extrapolated
to provide information about the product life
under normal use conditions.

The introduction and Section 22.1 describe the
background and motivations for using accelerated
testing. Sections 22.2 and 22.3 discuss statistical
models for describing lifetime distributions in
ALT. Commonly used ALT models have two parts:
(a) a statistical distribution at fixed levels of
the accelerated variable(s); and (b) a functional
relationship between distribution parameters
and the accelerating variable(s). We describe
relationships for accelerating variables, such as
use rate, temperature, voltage, and voltage rate.
We also discuss practical guidelines and potential
problems in using ALT models. Section 22.4
describes and illustrates a strategy for analyzing
ALT data. Both graphical and numerical methods
are discussed for fitting an ALT model to data and
for assessing its fit. These methods are thoroughly
illustrated by fitting an ALT model with a single
accelerating variable to data obtained from an
actual ALT experiment. Extrapolation of the results
at accelerated levels to normal use levels is
also discussed. Section 22.5 presents statistical
analysis of a wider variety of ALT data types that
are encountered in practice. In particular, the
examples involve ALTs with interval censoring
and with two or more accelerating variables.
Section 22.6 discusses practical considerations
for interpreting statistical analysis of ALT data.
This Section emphasizes the important role of
careful planning of ALT to produce useful results.
Section 22.7 discusses other kinds of accelerated
tests often conducted in practice. Brief descriptions
of each and specific applications in industry are
also provided. Section 22.8 reviews some of the
potential pitfalls the practitioner of accelerated
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22.1.3 Choosing
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testing may face. These are described within
practical situations, and strategies for avoiding
them are presented. Section 22.9 lists some
computer software packages that are useful for
analyzing ALT data.
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Rapid developments in technology, consumer demand
for highly reliable products, and competitive markets
have placed pressure on manufacturers to deliver prod-
ucts with high quality and reliability. Similarly, there
is strong pressure to shorten the concept-to-market cy-
cle time, subject to the constraint of having a product
with high reliability. Achieving these goals requires
more attention to reliability early in the product de-
sign process and has lead to such programs as design
for reliability and design for six sigma. As a result,
there has been an increased need for upstream tests
of product materials and components, often followed
by subsequent testing of subsystems and even complete
systems.

Customers may expect products to work properly
for years or even decades. For instance, a refrigerator
might be expected to work without failure for at least
10 years. Testing under normal operating conditions for
reasonable lengths of time is unlikely to result in any fail-
ures and thus little information about product reliability.
Hence, manufacturers perform accelerated tests (AT) on
their products by exposing them to harsher conditions to

generate failures and useful reliability information more
quickly.

Depending on the nature of the product, life tests
are accelerated by increasing product use rate or expos-
ing the product to higher levels of accelerating variables
such as temperature, pressure, and voltage. It is custom-
ary to fit a statistical model to the AT data and then
extrapolate to use conditions to characterize the pro-
duct’s long-term performance. It is desirable that the
statistical model for ATs be based on physical/chemical
theory that can be used to justify the extrapolation. Oper-
ationally, however, detailed knowledge of theory relating
the accelerating variables to life is not always avail-
able and the model is chosen on the basis of previous
experience in similar situations.

Due to space constraints, we provide a limited dis-
cussion and description of the models and methods used
in AT. For those actually involved in AT and for those
who want more information, we highly recommend
Nelson [22.1]. Other useful books with information
that will complement this chapter include Tobias and
Trindade [22.2] and Meeker and Escobar [22.3].

22.1 Accelerated Tests

22.1.1 Types of Accelerated Tests

During product design, manufacturers perform ex-
periments to obtain timely information on material
properties and component durability. Other experiments
involving prototype systems and subsystems are used
to help make product and process design decisions
that will improve product robustness. Experiments are
also run to support decision making in production pro-
cess design. Tests during the production stage include
certification of components, burn-in tests, and tests de-
signed to monitor the production process over time.
For further discussion of these issues, see Meeker and
Hamada [22.4] and Meeker and Escobar [22.5]. Of-

ten these tests must be accelerated to obtain timely
information.

ATs can be characterized by the nature of the re-
sponse variable in the test (i. e., what can be measured
or observed, relative to reliability):

• Accelerated Life Tests ALT
The response in an ALT is related to the lifetime of
the product. Often ALT data are right-censored be-
cause the test is stopped before all units fail. In other
cases, the ALT response is interval-censored because
failures are discovered at particular inspection times.• Accelerated Repeated Measures Degradation
Tests ARMDT
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In an ARMDT, one measures degradation on a sam-
ple of units at different points in time. In general,
each unit provides several degradation measure-
ments. The degradation response could be actual
chemical or physical degradation or performance
degradation (e.g., drop in power output).• Accelerated Destructive Degradation Tests
ADDT
An ADDT is similar to an ARMDT, except that the
measurements are destructive, so one can obtain only
one observation per test unit.

These different kinds of ATs can be closely related
because they can involve the same underlying physi-
cal/chemical mechanisms for failure and models for ac-
celeration. They are different, however, in that different
kinds of statistical models and analyses are performed
because of the differences in the kind of response.

This chapter focuses on analyses of data from
ALTs. See Meeker and Escobar ([22.3], Chapts. 13 and
21) for further discussion of ARMDTs and see Nel-
son ([22.1], Chapt. 11) and Meeker, Escobar, Kugler,
and Kramer [22.6] for models, methods, and examples
pertaining to ADDTs.

22.1.2 Methods of Acceleration

There are different methods of accelerating tests to in-
duce product failures more quickly. These methods vary
depending on the nature of the product or material being
tested.

• Accelerate the Product Use Rate
This method is appropriate for products that are
ordinarily not in continuous use. For example, the
median life of a bearing for a certain washing ma-
chine agitator is 12 years, based on an assumed use
rate of eight loads per week. If the machine is tested
at 112 loads per week (16 per day), the median life
is reduced to roughly 10 months.• Accelerate Product Aging
Changing environmental conditions (e.g., increasing
humidity or temperature) can be used to increase the
rate of chemical degradation of products such as
insulating materials and adhesive bonds.• Accelerate by Increasing Product Stress
Increasing stress (e.g., voltage or pressure) on a spec-
imen will generally cause it to fail sooner.

It is also possible to accelerate product failures by using
combinations of these accelerating variables. For exam-
ple, in fatigue testing one uses higher cycling rates and
higher than usual levels of stress. In electro-chemical

reactions, increasing voltage will also increase the rate
of chemical change. Putting higher voltage stress on an
insulating material may generate heat that will acceler-
ate chemical change. In all types of acceleration, care
should be taken to make sure that the underlying mech-
anisms and the resulting failure modes in an AT are the
same as those that will affect the product in actual use.

22.1.3 Choosing
an Accelerated Life Test Model

The task of finding an ALT model can be divided into
two steps:

1. Choose an appropriate statistical distribution to de-
scribe lifetime at fixed levels of the accelerating
variable(s). Typically the same distribution is used
at all levels of stress, as would be suggested by
the commonly used scale-accelerated failure-time,
SAFT, model. Probability plots (i. e., plotting a non-
parametric estimate on special distribution-specific
probability scales) are used to help identify an ap-
propriate distribution.

2. Choose a model to describe the relationship between
the lifetime distributions and the accelerating vari-
ables. It is best if the selected model is based on
physical or chemical theory, empirical considera-
tions, or both.

These two steps are discussed in detail in Sects. 22.2
and 22.3, respectively.

As will be discussed in subsequent sections, the
combination of probability plotting and maximum like-
lihood provides the basic statistical tools for analyzing
most ALT data. Probability plots provide a convenient,
intuitive method to display ALT data and assess agree-
ment with proposed models for the data. These methods
are described in detail in Nelson ([22.1], Chapt. 3) and
Meeker and Escobar ([22.3], Chapts. 6 and 19). Max-
imum likelihood (ML) is the most common method of
fitting an ALT model to data because it allows for cen-
sored data and because ML estimates have desirable
statistical properties. The ML estimates of model pa-
rameters are those parameter values that maximize the
probability of the observed data for the proposed model.
The theory of ML methods has been thoroughly ex-
plored in the literature. Nelson ([22.1], Chapt. 5) and
Meeker and Escobar ([22.3], Chapts. 8 and 19) discuss
ML methods relevant to ALT data analysis. Both prob-
ability plotting and maximum likelihood methods are
now widely available in commercial statistical software,
as described in Sect. 22.9.
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22.2 Life Distributions

In this chapter, the symbol T will denote lifetime for
devices, components, systems, etc. Then, it will be as-
sumed that T is a positive continuous random variable.
The cumulative distribution function CDF for T is the
probability of failure by time t (or the fraction failing by
time t) and one writes F(t)= Pr(T ≤ t). The probability
density function PDF f (t) is the derivative of the CDF.
That is, f (t) = dF(t)/dt. Selecting a probability distri-
bution for lifetime is equivalent to specifying either F(t)
or f (t).

This section describes log-location-scale probability
distributions. Important members of this family include
the popular Weibull and lognormal distributions. Other
members of the family are described in Chapt. 4 of
Meeker and Escobar [22.3]. Distributions that are other
than log-location-scale (which could also be used in
ALT modeling) are described in Chapt. 5 of Meeker and
Escobar [22.3].

A random variable Y has a location-scale distribution
if its CDF can be written as

F(y;µ, σ) = Pr(Y ≤ y) =Φ

(
y−µ

σ

)
,

where µ is a location parameter, σ is a scale parameter,
and Φ does not depend on any unknown parameters. In
many reliability applications, it is assumed that log(T )
has a location-scale distribution. Then T is said to have
a log-location-scale distribution.

22.2.1 The Lognormal Distribution

Lifetime T has a lognormal distribution if its CDF and
PDF are

F(t;µ, σ) =Φnor

(
log(t)−µ

σ

)
,

f (t;µ, σ) = 1

σt
φnor

(
log(t)−µ

σ

)
, t > 0 ,

where Φnor and φnor are the standard normal (Gaussian)
CDF and PDF, respectively. In particular,

φnor(z) = 1√
2π

exp

(
− z2

2

)
.

The parameters (µ, σ) are the mean and the standard
deviation of log(T ), respectively. Then [exp(µ), σ] are,
respectively, the scale and shape parameters of T . The
lognormal p quantile is tp = exp[µ+Φ−1

nor(p) σ]. Note
that exp(µ) corresponds to the median lifetime. That is,
t0.50 = exp(µ).

22.2.2 The Weibull Distribution

Lifetime T has a Weibull distribution if its CDF and
PDF are

F(t;µ, σ)=Φsev

(
log(t)−µ

σ

)

= 1− exp

[
−
(

t

η

)β
]

f (t;µ, σ) = 1

σt
φsev

(
log(t)−µ

σ

)

= β

η

(
t

η

)β−1

exp

[
−

(
t

η

)β
]
, t > 0,

where Φsev and φsev are the standard smallest extreme
value SEV CDF and PDF defined by

Φsev(z) = 1− exp[− exp(z)]
and φsev(z) = exp[z− exp(z)] ,

σ > 0, and −∞< µ <∞. Here (µ, σ) are the loca-
tion and scale parameters for the distribution of log(T ).
The expressions for the CDF and PDF above also use
η= exp(µ) and β = 1/σ , the traditional Weibull scale
and shape parameters, respectively. The Weibull p quan-
tile is tp = exp{µ+ log[− log(1− p)] σ} = η[− log(1−
p)]β . Note that η is approximately the 0.63 quantile of
the Weibull distribution.

The parameterization in terms of (µ, σ) is partic-
ularly convenient for lifetime regression models and is
used extensively in this chapter. The (η, β) parameteriza-
tion is commonly used in the engineering and statistical
literature.

22.3 Acceleration Models

fitting a model to data obtained at high levels of the
accelerating variables and extrapolating the results to
use conditions levels. Ideally, this model should be de-

rived from physical or chemical theory and verified
empirically to justify the extrapolation. If a physical
understanding of the failure mechanism is lacking, an
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empirical model might be justified for extrapolation if
it is based on extensive experience with how failure
mechanisms relate to accelerating variables.

This section discusses basic ideas of acceleration
models and some physical considerations that lead to
these models. For more information on these models,
see Nelson ([22.1], Chapt. 2) and Meeker and Esco-
bar ([22.3], Chapt. 18).

22.3.1 Scale-Accelerated Lifetime Model

A simple, commonly used model used to characterize
the effect that explanatory variables x = (x1, . . . , xk)′
have on lifetime T is the scale-accelerated failure-time
(SAFT) model. Some of these explanatory variables are
accelerating, but others may just be of interest (e.g.,
for product design optimization decisions). If xU de-
notes the ordinary use conditions, under a SAFT model,
lifetime at x, T (x), is scaled by a deterministic factor
that might depend on x and unknown fixed parameters.
More specifically, T (x) = T (xU)/AF (x) where the ac-
celeration factor AF (x) is a positive function of x
satisfying AF (xU) = 1. Lifetime is accelerated (decel-
erated) when AF (x) > 1 [AF (x) < 1]. Some special
cases of these important SAFT models are discussed in
the following sections.

Observe that under a SAFT model, the probability
that failure under conditions x occurs at or before time
t can be written as Pr[T (x) ≤ t] = Pr[T (xU)≤AF (x) ×
t]. As described in Sect. 22.2, it is common practice to
assume that the lifetime T (x) has a log-location-scale
distribution such as a lognormal or Weibull distribution
in which µ is a function of the accelerating variable(s)
and σ is constant (i. e., does not depend on x). In
this case,

F(t; xU) = Pr[T (xU) ≤ t]

=Φ

(
log(t)−µU

σ

)
, (22.1)

where Φ denotes a standard cumulative distribution
function (e.g., standard normal or standard smallest ex-
treme value) and µU is the location parameter for the
distribution of log[T (xU)]. Thus,

F(t; x) = Pr [T (x) ≤ t]

=Φ

(
log(t)−{µU− log [AF (x)]}

σ

)
.

(22.2)

Note that T (x) also has a log-location-scale distri-
bution with location parameter µ= µU− log[AF (x)]
and a scale parameter σ that does not depend
on x.

22.3.2 Accelerating Product Use Rate

Increasing the use rate can be an effective method of
acceleration for some products. In simple situations
the cycles-to-failure distribution does not depend on
the cycling rate. In such situations reciprocity holds.
Then the underlying model for lifetime is SAFT where
AF (UseRate) = UseRate/UseRateU is the factor by
which the test is accelerated.

Use-rate acceleration may be appropriate for prod-
ucts such as electrical relays and switches, paper
copiers, and printers, and home appliances such
as toasters and washing machines. The manner in
which the use rate is increased may depend on
the product. For example, Nelson ([22.1], page 16)
states that failure of rolling bearings can be ac-
celerated by running them at three or more times
the normal speed. Johnston et al. [22.7] demon-
strated that the cycles-to-failure of electrical insula-
tion was shortened, approximately, by a factor of
AF (412) = 412/60 ≈ 6.87 when the applied AC volt-
age in endurance tests was increased from 60 Hz to
412 Hz.

ALTs with increased use rate attempt to simulate
actual use. Thus other environmental factors should be
controlled to mimic actual use environments. If the cy-
cling rate is too high, it can cause reciprocity breakdown.
For example it may be necessary to have test units (such
as a toaster) cool down between cycles of operation.
Dowling ([22.8], page 706) describes how increased cy-
cle rate may affect the crack growth rate in per-cycle
fatigue testing.

Reciprocity breakdown is known to occur, for ex-
ample, for certain components in copying machines
where components tend to last longer (in terms
of cycles) when printing is done at higher rates.
In such cases, the empirical power-rule relationship
AF (UseRate) = (UseRate/UseRateU)p is often used,
where p can be estimated by testing at two or more use
rates.

22.3.3 Models for Temperature Acceleration

This section describes common models that are used
to describe the relationship between lifetime and tem-
perature.
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The Arrhenius Relationship
for Temperature Acceleration
The Arrhenius equation is widely used to relate the rate
of a chemical reaction R to temperature temp. This
relationship can be written as

R(temp) = γ0 exp

( −Ea

kB × temp K

)

= γ0 exp

(−Ea × 11605

temp K

)
, (22.3)

where γ0 and the activation energy Ea are con-
stants that depend on material properties and test
methods, kB = 8.6171 × 10−5 = 1/11605 is Boltzman-
n’s constant in units of electron volts per ◦C, and
temp K = temp ◦C+273.15 is the temperature kelvin.
The Arrhenius lifetime relationship is based on the view
that failure occurs after there has been a critical amount
of chemical reaction. Then when R(temp) is larger, the
failure will occur sooner (e.g., Klinger [22.9]). Empirical
observations have suggested that the Arrhenius equa-
tion provides an adequate description of the relationship
between product life and temperature in a variety of ap-
plications such as integrated circuits (several different
kinds of failure modes), light-emitting diodes (LEDs),
adhesive bonds, lubricants, incandescent bulb filaments,
insulating tapes, and dielectric materials. It should be
noted, however, that the nature of the failure mecha-
nism may limit the range of temperature over which the
Arrhenius relationship is adequate.

Let tempU be the temperature at use conditions. Then
the Arrhenius acceleration factor is

AF (temp, tempU, Ea) = R(temp)

R(tempU)

= exp

[
Ea

(
11605

tempU K
− 11605

temp K

)]
.

For simplicity, the time-acceleration factor is sometimes
written as AF (temp) instead of AF (temp, tempU, Ea).

Let tempLow < tempHigh be two temperature levels
and define the temperature differential factor TDF

TDF =
(

11605

tempLow K
− 11605

tempHigh K

)
. (22.4)

Then, one can write

AF (tempHigh, tempLow, Ea) = exp (Ea × TDF) .

(22.5)

Example 22.1: Adhesive-Bonded Power Element.
Meeker and Hahn [22.10] describe an adhesive-bonded
power element that was designed for use at temp= 50 ◦C
and a life test of this element is to be conducted at
temp= 120 ◦C. Suppose that experience with this prod-
uct suggested that Ea = 0.5. Using (22.4) and (22.5)
gives TDF = 6.39 and then AF (120) ≈ 24.41 gives
the acceleration factor for the chemical reaction when
testing the power element at 120 ◦C.

Note that the Arrhenius relationship (and the as-
sumption that the failure is directly related to the amount
of material reacting) implies that the acceleration model
is a SAFT model. If T (tempU) has a log-location-scale
distribution with parameters µU and σ , then it follows
from (22.2) that T (temp) also has a log-location-scale
distribution with parametersµ=µU−β1x andσ , where
β1 = Ea, x = TDF, and the TDF is computed for the
temperatures tempU < temp.

Nonlinear Degradation Path Models
for Reaction-Rate Acceleration
As discussed earlier, when failure is caused directly by
degradation, one can relate the distribution of degrada-
tion to the distribution of failure. Suppose that failure
occurs when degradation reaches a certain critical level
Df. This section discusses the situation in which degra-
dation follows a nonlinear path (e.g., the degradation
path will reach an asymptote because of a limited amount
of material that is available to go into the reaction) over
time. The linear path case is discussed in the next section.

The amount of degradation at time t and temperature
temp is given by

D (t; temp)

=D∞ ×
{
1− exp

[−RU ×AF (temp) × t
] }

,

(22.6)

where RU is the rate of reaction rate at the use
temperature tempU. Note that RU × AF (temp) is
the rate reaction at temp and AF (temp) > 1 when
temp > tempU. Figure 22.1 shows the decrease in
strength of adhesive bonds, as a function of time for dif-
ferent temperatures. In this application, D∞ < 0 so that,
for fixed temp, D(t; temp) is a decreasing function of t
and failure occurs when D(t; temp) falls below Df, say
50 N. In other applications, D∞ > 0, then D(t; temp)
is increasing and failure occurs once D(t; temp) ex-
ceeds Df. For both cases, the lifetime T (temp) at any
level temp is given by T (temp)= T (tempU)/AF (temp)
where T (tempU) =− (1/RU) log (1−Df/D∞). Note
that this has the form of a SAFT model. Sufficient
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Fig. 22.1 Nonlinear decreasing degradation path at differ-
ent temperatures for a SAFT model

conditions for a degradation model to be SAFT are
given by LuValle, Welsher and Svoboda [22.11] and
Klinger [22.9]. Under a SAFT model and a log-location-
scale distribution with parametersµ andσ for T (tempU),
T (temp) at any temp also has a log-location-scale distri-
bution with the same σ and

µ= µU− log
[
AF (temp)

]= β0+β1x,

where x = 11605/(tempK), xU = 11605/(tempUK),
β1 = Ea, β0 = µU−β1xU, and µU is the location pa-
rameter of the distribution of log(T ) at use conditions.

Linear Degradation Path Models
for Reaction-Rate Acceleration
There are situations in which a linear model can be
used to approximate degradation over time. For example,
when RU ×AF (temp) × t in (22.6) is small enough so
that D(t) is small compared to D∞, then

D(t; temp) =D∞ ×
{
1− exp

[−RU ×AF (temp)

×t]}
≈D∞ ×RU ×AF (temp) × t =R+

U

×AF (temp) × t ,

where R+
U =D∞ ×RU. There are also practical situa-

tions (e.g., wear of automobile tires) for which a linear
path adequately approximates degradation over time. In
this case, D(t; temp) =R+

U ×AF (temp) × t where it is
assumed that D(0; temp)= 0 and that R+

U ×AF (temp)
is the degradation rate at condition temp.

Again, failure occurs when D(t; temp) reaches
a critical level Df. The equation D(t; temp)=Df yields
the lifetime at temp, T (temp) = T (tempU)/AF (temp)
which, again, is in SAFT form. Thus, if T (temp) has

a log-location-scale distribution, µ= β0+β1x and σ

does not depend on x (where x has the same definition
given in Sect. 22.3.3).

22.3.4 Models for Voltage
and Voltage–Stress Acceleration

Voltage or voltage stress can also be used to accel-
erate degradation and hasten product failures. Voltage
measures the amount of force needed to move an elec-
tric charge between two points. Such a flow of charges
produces an electrical current. Voltage stress measures
voltage per unit of thickness of a dielectric. For dielectric
components (e.g., capacitors and insulators), chemical
degradation reduces the dielectric strength over time.
Also, stronger electric fields can accelerate the growth of
discontinuities, electrochemical reactions, or electrome-
chanical changes that cause failure.

Example 22.2: Accelerated Life Test of Insulation for
Generator Armature Bars. Doganaksoy et al. [22.12]
discuss an ALT for a new mica-based insulation de-
sign for generator armature bars GAB. Degradation of
an organic binder in the insulation causes a decrease in
voltage strength and this was the primary cause of failure
in the insulation. The insulation was designed for use at
a voltage stress of 120 V/mm. Voltage-endurance tests
were conducted on 15 electrodes at each of five acceler-
ated voltage levels between 170 V/mm and 220 V/mm
(i. e., a total of 75 electrodes). Each test was run for
6480 h at which point 39 of the electrodes had not
yet failed. Table 22.1 gives the data from these tests.
The insulation engineers were interested in the 0.01
and 0.05 quantiles of lifetime at the use condition of

Table 22.1 GAB insulation data

Voltage stress Lifetime
(V/mm) (103 h)

170 15 censoreda

190 3.248, 4.052, 5.304, 12 censoreda

200 1.759, 3.645, 3.706, 3.726, 3.990, 5.153,
6.368, 8 censoreda

210 1.401, 2.829, 2.941, 2.991, 3.311, 3.364,
3.474, 4.902, 5.639, 6.021, 6.456,
4 censoreda

220 0.401, 1.297, 1.342, 1.999, 2.075, 2.196,
2.885, 3.019, 3.550, 3.566, 3.610, 3.659,
3.687, 4.152, 5.572

a Units were censored at 6.480 103 h
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Fig. 22.2 GAB insulation data. Scatter plot of life versus
voltage. Censored observations are indicated by ∆

120 V/mm. Figure 22.2 plots the insulation lifetimes
against voltage stress.

Inverse Power Relationship
The inverse power relationship is frequently used to de-
scribe the effect that stresses like voltage and pressure
have on lifetime. Voltage is used in the following dis-
cussion. When the thickness of a dielectric material or
insulation is constant, voltage is proportional to voltage
stress. Let volt denote voltage and let voltU be the volt-
age at use conditions. The lifetime at stress level volt is
given by

T (volt) = T (voltU)

AF (volt)
=

(
volt

voltU

)β1

T (voltU) ,

where β1, in general, is negative. The model has SAFT
form with acceleration factor

AF (volt) =AF (volt, voltU, β1) = T (voltU)

T (volt)

=
(

volt

voltU

)−β1

. (22.7)

If T (voltU) has a log-location-scale distribution with
parameters µU and σ , then T (volt) also has a log-
location-scale distribution with µ= β0+β1x, where
xU = log(voltU), x = log(volt), β0 = µU−β1xU, and σ

does not depend on x.

Example 22.3: Time Acceleration for GAB Insulation.
For the GAB insulation data in Example 22.2, an es-
timate for β1 is β̂1 =−9 (methods for computing such
estimates are described and illustrated in Sect. 22.4). Re-
call that the design voltage stress is voltU = 120 V/mm

and consider testing at volt = 210 V/mm. Thus, using
β1 = β̂1, AF (210) = (210/120)9 ≈ 154. Thus by in-
creasing voltage stress from 120 to 210 V/mm, one
estimates that lifetime is shortened by a factor of
1/AF (210) ≈ 1/154 = 0.0065. Figure 22.3 plots AF
versus volt for β1 =−7,−9,−11. Using direct compu-
tations or from the plot, one obtains AF (210) ≈ 50 for
β1 =−7 and AF (210) ≈ 471 for β1 =−11.

Motivation for the Inverse Power Relationship
The following description of a failure process that re-
lates lifetime to pressure-like stresses, leading to the
inverse power relationship, comes from Meeker and
Escobar ([22.3], Sect. 18.4.3). Insulation units or spec-
imens will have a characteristic dielectric strength D .
This property varies from unit to unit and degrades over
time. When D degrades to the level of the applied volt-
age stress volt, a failure-causing event (e.g., short circuit
or a flash-over) is triggered. Suppose one can express the
dielectric strength at time t by D(t)= δ0 × t1/β1 . Letting
D(t)= volt and solving for t, T (volt)= (volt/δ0)

β1 . The
acceleration factor for comparing lifetimes at volt and
voltU is

AF (volt) =AF (volt, voltU, β1) = T (voltU)

T (volt)

=
(

volt

voltU

)−β1

,

which agrees with (22.7).
The inverse power relationship can be used to de-

scribe cases for which the accelerating voltage increases
the degradation rate. For example, suppose that degra-
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Fig. 22.3 Time-acceleration factor as a function of voltage
stress and exponent −β1 =−7,−9,−11
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dation is more appropriately described by

D(t) = δ0 [R(volt) × t]1/γ1 ,

where R(volt) = γ0 exp
[
γ2 log(volt)

]
. Again, if failure

occurs when Df = volt, then lifetime is

T (volt) = 1

R(volt)

(
volt

δ0

)γ1

.

Then the acceleration factor is

AF (volt) = T (voltU)

T (volt)
=

(
volt

voltU

)γ2−γ1

which is an inverse power relationship with β1 =
γ1−γ2.

This discussion can be extended to other materials
and products such as filaments of light bulbs, capacitors,
roller bearings, and ball bearings. The inverse power
relationship has also been used with other accelerating
factors such as loading stress, cycling rate, humidity, and
pressure.

22.3.5 Models for Two-or-More-Variable
Acceleration

Some ALTs use two or more accelerating variables
that affect the degradation process. In comparison with
single-variable ALTs, in some situations, the degrada-
tion rate can be increased more effectively when two
or more variables are used to accelerate the test. Many
ALTs use temperature in combination with another en-
vironmental condition such as pressure, voltage, and
humidity. The rest of this section describes models for
these ALTs.

Extending the Arrhenius Relationship
Recall the Arrhenius equation (22.3), which gives the
rate of a chemical reaction as a function of temperature.
Suppose that X represents a non-thermal accelerating
variable. A model for reaction rate in this situation is

R(temp, X) = γ0 × exp

( −γ1

kB × temp K

)

× exp

(
γ2 X+ γ3 X

kB × temp K

)
,

(22.8)

where the parameters γ1 = Ea (the effective activa-
tion energy), γ0, γ2, and γ3 are specific properties of
the failure-causing chemical reaction. In (22.8), the ra-
tio γ3 X/(kB × temp K) represents possible interaction
between the two accelerating variables. This model

could be further extended by adding appropriate fac-
tors for other explanatory variables to the right-hand
side of (22.8).

Using a SAFT formulation, one can equivalently
express the extended Arrhenius relationship (22.8) in
terms of the acceleration factor given by

AF (temp, X) = R(temp, X)

R(tempU, XU)
. (22.9)

When T (tempU, XU) has a log-location-scale distribu-
tion, (22.1), (22.8) and (22.9) imply that T (temp, X) also
has a log-location-scale distribution with

µ= µU− log[AF (temp, X)]
= β0+β1x1+β2x2+β3x1x2 , (22.10)

where β1 = Ea, β2 = −γ2, β3 = −γ3, x1 = 11605/
(temp K), x2 = X, β0 =µU−β1x1U−β2x2U−β3x1Ux2U,
and σ does not depend on the explanatory variables
(temp, X).

Temperature–Voltage Acceleration Models
There has been a variety of approaches that have been
used to model the combination of temperature and
voltage acceleration. For instance, Meeker and Esco-
bar ([22.3], Sect. 17.7) analyzed data from a study
relating voltage and temperature to the failure of glass
capacitors. They modeled the location parameter of log
lifetime as a simple linear function of temp ◦C and volt.
The extended Arrhenius relationship in Sect. 22.3.5 can
also be used with X = log(volt), as in Boyko and Ger-
lach [22.13]. Klinger [22.14] modeled the Boyko and
Gerlach [22.13] data by including second-order terms
for both accelerating variables.

To derive the time-acceleration factor for the ex-
tended Arrhenius relationship with temp and volt,
one can follow steps analogous to those outlined in
Sect. 22.3.4. Using the dielectric strength (degradation
path) model at time t, D(t)= δ0

[
R(temp, volt) × t

]1/γ1 .
Using (22.8) with X = log(volt), we obtain

R(temp, volt) = γ0 × exp

( −Ea

kB × temp K

)

× exp

[
γ2 log(volt)+ γ3 log(volt)

kB × temp K

]
.

Again, failure occurs when the dielectric strength
crosses the applied voltage stress, that is, D(t) = volt.
This occurs at time

T (temp, volt) = 1

R(temp, volt)

(
volt

δ0

)γ1

.
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From this, one computes

AF (temp, volt) = T (tempU, voltU)

T (temp, volt)
= exp[Ea(x1U − x1)]

×

(
volt

voltU

)γ2−γ1

× {exp[x1 log(volt)

−x1U log(voltU)
]}γ3 .

where x1U = 11605/(tempU K) and x1 = 11605/
(temp K). When γ3 = 0, there is no interaction between
temperature and voltage. In this case, AF (temp, volt)
can be factored into two terms, one that involves temper-
ature only and another term that involves voltage only.
Thus, if there is no interaction, the contribution of tem-
perature (voltage) to acceleration is the same at all levels
of voltage (levels of temperature).

Temperature–Current Density Acceleration Models
d’Heurle and Ho [22.15] and Ghate [22.16] studied
the effect of increased current density (A/cm2) on
electromigration in microelectronic aluminum conduc-
tors. High current densities cause atoms to move more
rapidly, eventually causing extrusion or voids that lead
to component failure. ATs for electromigration often
use increased current density and temperature to accel-
erate the test. An extended Arrhenius relationship could
be appropriate for such data. In particular, when T has
a log-location-scale distribution, then (22.10) applies
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Fig. 22.4 LED device data. Lognormal multiple probabil-
ity plot with lognormal ML fits for each combination of
voltage/temperature

with x1 = 11605/temp K, x2 = log(current). The model
with β3 = 0 (without interaction) is known as Black’s
equation (Black [22.17]).

Example 22.4: Light Emitting Device (LED) Example.
A degradation study on a light emitting device LED was
conducted to study the effect of current and tempera-
ture on light output. A unit was said to have failed if its
output was reduced to 60% of its initial value. Two lev-
els of current and six levels of temperature were used in
the test. Figure 22.4 is a probability plot of lifetimes for
each combination of current and temperature. The plot
suggests that the lognormal distribution is an appropri-
ate distribution for lifetime and that increasing either
temperature or current results in shorter device life.

Temperature–Humidity Acceleration Models
Relative humidity is another environmental variable
that can be combined with temperature to accelerate
corrosion or other chemical reactions. Examples of
applications include paints and coatings, electronic de-
vices and electronic semiconductor parts, circuit boards,
permalloy specimens, foods, and pharmaceuticals. Al-
though most ALT models that include humidity were
derived empirically, some humidity models have a phys-
ical basis. For example, Gillen and Mead [22.18] and
Klinger [22.19] studied kinetic models relating ag-
ing with humidity. LuValle et al. [22.20] provided
a physical basis for studying the effect of humid-
ity, temperature, and voltage on the failure of circuit
boards. See Boccaletti et al. [22.21], Nelson ([22.1],
Chapt. 2) Joyce et al. [22.22], Peck [22.23], and Peck
and Zierdt [22.24] for ALT applications involving tem-
perature and humidity.

The extended Arrhenius relationship (22.10)) ap-
plied to ALTs with temperature and humidity uses
x1 = 11605/temp K, x2 = log(RH), and x3 = x1x2,
where RH is a proportion denoting relative humidity.
The case when β3 = 0 (no temperature–humidity inter-
action) is known as Peck’s relationship and was used
by Peck [22.23] to study failures of epoxy packing.
Klinger [22.19] suggested the term x2 = log[RH/(1−
RH)] instead of log(RH). This alternative relationship is
based on a kinetic model for corrosion.

The Eyring Model
Fundamental work on the relationship between reac-
tion rates and temperature, in combination with other
variables, was done by Eyring in a number of impor-
tant works (Eyring, Gladstones, and Laidler [22.25] and
Eyring [22.26]). The Eyring model is the same as the ex-
tended Arrhenius model described in this section, except
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that it has an additional factor g(temp K) outside of the
exponential in (22.8). Usually, g(temp K) = (temp K)p

is used. For the purposes of using a fitted acceleration
model to predict life at use conditions, for any practi-
cal values of the model parameters, this extra factor and
estimating p along with Ea have no perceptible effect
on the prediction. Thus the simpler Arrhenius model is
what is generally used in practice. See Meeker and Es-
cobar ([22.3], Sect. 18.3.2) and the above references for
more information on the Eyring model.

22.3.6 Guidelines and Issues
for Using Acceleration Models

The main objective of AT is to collect data at high lev-
els of accelerating variables and extrapolate the results
to use conditions. This section provides some guide-
lines and lists some common issues that arise in fitting
acceleration models to ALT data.

• Whenever possible, the acceleration model should
have a basis in physical or chemical theory. A care-
ful review of previous theoretical and empirical
work will often shed light on which environmen-
tal factors and degradation processes are relevant
to a failure mechanism. It is highly recommended
that a group of experts oversee the entire project
of planning, collecting and analyzing AT data. This
group should include experts with a clear under-
standing of the mechanical, physical and chemical
nature of how the product degrades and eventu-
ally fails. This team should also include someone
who is knowledgeable of the statistical aspects
of planning life tests and analyzing the resulting
data.

• ATs often assume a relatively simple failure mech-
anism or degradation process. It is possible at
high levels of an accelerating variable to intro-
duce new failure mechanisms. Acceleration could
also alter other environmental factors that affect the
failure mechanism. For example, Meeker and Esco-
bar ([22.3], page 526) pointed out that ALT tests of
circuit packs at higher temperatures reduced humid-
ity, causing fewer failures than expected. Potential
scenarios like these should be considered for both
planning and modeling ATs.• The main difficulty with extrapolation in ATs is that
there is rarely sufficient data at lower levels of the
accelerating variable to verify that the acceleration
model for the failure mechanism still holds at use
conditions. Thus, a good test plan minimizes the
amount of acceleration while providing a statistically
efficient description of the failure mechanism at use
conditions. There is a large amount of work that has
been done on ALT planning. For an overview of this
work, see, for example, Nelson ([22.1], Chapt. 6)
and Meeker and Escobar ([22.3], Chapt. 20 and
Sect. 22.5).• The statistical analysis of ALT data depends im-
portantly on the acceleration model and distribution
assumptions. A sensitivity analysis should be con-
ducted to study how results (e.g., quantile and failure
probability estimates) vary with changes in the as-
sumed model and distribution. The results of such
sensitivity analyses can help decision-makers under-
stand whether model assumptions are conservative
or not.

22.4 Analysis of Accelerated Life Test Data

This section discusses the statistical analysis of ALT
data. First, we outline a useful strategy to follow
when choosing and fitting a model to ALT data and
assessing the adequacy of the fit. Then we illus-
trate the proposed strategy with several different ALT
applications having either one or two accelerating
variables.

22.4.1 Strategy for ALT Data Analysis

This section outlines some guidelines for analyzing ALT
data. Suppose that groups of data were collected under

several individual conditions (levels or level combina-
tions of the accelerating variables).

1. Make a scatter plot of the lifetimes versus the ex-
planatory variable(s) to help in the identification of
an appropriate relationship or model.

2. For each individual condition, make a probability
plot (Meeker and Escobar, [22.3], Chapts. 6 and 21)
of the data under candidate distributions and obtain
ML estimates of the parameters. A distribution pro-
vides a good fit if the plotted points fall roughly
along a straight line. Check the constant-σ assump-
tion visually by comparing the slopes of the lines in
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the probability plots and statistically by comparing
the estimates of σ .

3. Fit a model constraining σ to be the same at each
level and compare with the unconstrained model in
Step 3. This provides the basis for a formal test of
constant σ .

4. Based on the previous steps, choose and fit and
overall model (distribution and acceleration model).

5. Compare the overall model fit in Step 4 to the
common-σ model fit in Step 3. Large discrepancies
between these two models suggest an inadequate fit
for the overall model.

6. Use diagnostics such as residual plots to assess the
fit of the overall model and to check the model
assumptions.

22.4.2 Data Analysis
with One Accelerating Variable

This section describes the analysis of several different
kinds of ALT data sets, following and illustrating the
ALT analysis strategy outlined in Sect. 22.4.1.

ALT Data Scatter Plot
The first step is to make a scatter plot of the data and
study how the accelerating variable affects the lifetime.
Use a different plotting symbol to indicate censored
observations.

Example 22.5: Scatter Plot of the GAB Insulation
Data. Example 22.2 described a generator armature
bar insulation ALT. A scatter plot of the data, given
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Fig. 22.5 GAB insulation data. Lognormal multiple proba-
bility plot with lognormal ML fits for each level of voltage
stress

in Fig. 22.2, suggests a downward trend in lifetime as
voltage stress is increased. There was heavy censoring
at the lower voltage stresses. In particular, 8 out of 12
units failed at 190 V/mm and none of the 12 units failed
at 170 V/mm.

Multiple Probability Plots at Individual Conditions
of the Accelerating Variable
For each level (individual condition) of the accelerating
variable(s), compute a nonparametric estimate of the
fraction failing as a function of time and plot it on prob-
ability paper for a suggested lifetime distribution. The
distribution adequately describes the data if, for each
individual condition, the points lie close to a straight
line. ML can be used to fit a line through the points at
each level. A multiple probability plot showing these
nonparametric estimates and fitted lines for all of the
levels of the accelerating variable provides a conve-
nient visual assessment of the constant-σ assumption.
If the assumption is reasonable, the lines will be ap-
proximately parallel. Repeat this for different lifetime
distributions.

Example 22.6: Probability Plots at Individual Condi-
tions for the GAB Insulation Data. Figures 22.5 and 22.6
give lognormal and Weibull multiple probability plots,
respectively, for the GAB insulation data. There is noth-
ing plotted for 170 V/mm because there were no failures
at this level of voltage stress. The points for each volt-
age stress level fall roughly along a straight line, and
the lines appear to be reasonably parallel (but more
parallel with the Weibull distribution). It appears that
both the Weibull and the lognormal distributions pro-
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Fig. 22.6 GAB insulation data. Weibull multiple probabil-
ity plot with Weibull ML fits for each level of voltage
stress
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Table 22.2 GAB insulation data. Weibull ML estimates for each voltage stress

Parameter ML estimate Standard error Normal-approximation
95% confidence interval

190 µ 2.49 0.44 [1.63, 3.35]
σ 0.42 0.23 [0.14, 1.26]

200 µ 2.07 0.20 [1.68, 2.45]
σ 0.45 0.16 [0.23, 0.89]

210 µ 1.74 0.13 [1.49, 2.00]
σ 0.44 0.11 [0.26, 0.73]

220 µ 1.17 0.11 [0.94, 1.39]
σ 0.42 0.09 [0.28, 0.64]

The individual maximum log likelihoods were L190 = −12.31, L200 = −22.09, L210 = −27.54, and L220 = −25.05. The total
log likelihood for this model is L1 = −86.99

vide adequate descriptions of the GAB data. At each
level of voltage stress, the Weibull distribution is fitted
to the data, and estimates of µ and σ were computed
by using the method of ML. Table 22.2 gives the ML
estimates of µ and σ for each level of voltage stress. Ta-
ble 22.2 also provides approximate standard errors and
normal-approximation-based confidence intervals. The
lines drawn in Fig. 22.6 represent the ML estimates of
the individual CDFs (fraction failing) at each level of
voltage stress.

The ML estimates of σ for all levels of voltage stress
are similar. The similarities are reflected in the near-
parallel CDF lines drawn in Fig. 22.6. Although details
are not shown here, the maximum total log likelihood
value achieved by fitting Weibull distributions with com-
mon σ (the location parameters are allowed to float) to
each individual condition is L2 = −87.01 which is very
close to the total log-likelihood L1 = −86.99 obtained
from fitting separate Weibull distributions. This suggests
that it is reasonable to assume that σ is constant across
voltage stresses.

Maximum Likelihood Estimate
of the ALT Model
The inverse power relationship is often used to re-
late the lifetime distribution of a dielectric to voltage
stress. Suppose that T (volt), the lifetime at volt, has

Table 22.3 GAB insulation data. ML estimates for the inverse power relationship Weibull regression model

Parameter ML estimate Standard error Normal-approximation
95% confidence interval

β0 53.39 9.46 [34.84, 71.93]
β1 −9.68 1.77 [−13.14, −6.21]
σ 0.44 0.06 [0.33, 0.58]

The maximum log likelihood for this model is L3 = −87.72

a log-location-scale distribution with parameters (µ, σ)
and that σ does not depend on volt. Under the inverse
power relationship, µ= β0+β1x where x = log(volt).
Fitting the model to data is accomplished by computing
estimates for the parameters β0, β1, and σ .

Example 22.7: Maximum Likelihood Estimate of the In-
verse Power Model for the GAB Insulation Data. The
results of fitting the inverse power relationship Weibull
model to the data are summarized in Table 22.3. A likeli-
hood ratio test comparing with the constant-σ /floating-µ
model allows a formal assessment of whether the inverse
power relationship is consistent with the data. Fitting the
inverse power relationship with constant σ also allows
extrapolation to the use level of 120 V/mm.

Suppose that model B is obtained by imposing con-
straints on the parameters of model A (e.g., the constraint
that the location parameters at different levels of volt-
age stress are related by the inverse power relationship).
For i = A, B, let Li be the maximum total log likeli-
hood achieved by fitting model i to the data. If model B
is the correct model, in large samples, the likelihood
ratio statistic W = 2 × (LA−LB) has a χ2

ν distribution
with degrees of freedom ν equal to the difference be-
tween the number of estimated model parameters in
the two models. Large values of W indicate evidence
against the constrained model model B, relative to the
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410 Part C Reliability Models and Survival Analysis

unconstrained model A. The difference is statistically
important at the α level if W ≥ χ2

(1−α;ν) where χ2
(1−α;ν)

is the (1−α) quantile of the χ2
ν distribution.

For the GAB insulation data, model A is the (un-
constrained) set of Weibull distributions with common
σ (five parameters), and model B is the (constrained)
inverse power relationship Weibull model (three param-
eters). Then LA =L2 = −87.01, LB =L3 = −87.72,
and W = 1.42 < χ2

(0.95;2) = 5.99. Thus, the difference
between the fits is not statistically important at the
0.05 level and the data do not provide evidence against
model B.

The maximum log likelihood value attained with
the lognormal distribution is −89.52, which is close
to L3 = −87.72 for the Weibull distribution. Again, as
noted earlier with the probability plots, both the Weibull
and lognormal models fit the data well.

Figure 22.7 is a probability plot showing the ML fit
of the inverse power relationship Weibull model to the
data. It also gives the ML estimate of the fraction fail-
ing at use conditions voltU = 120 V/mm. The dashed
lines give pointwise normal-approximation 95% confi-
dence intervals for the fraction failing at use conditions.
Conversely, this plot can be used to obtain an estimate
and an approximate confidence interval for specified
quantiles at use conditions. Figure 22.8 is a scatter
plot of the GAB data with ML estimates of the 0.1,
0.5, and 0.9 quantiles at all levels of voltage stresses
between 120 and 220 V/mm. The horizontal line indi-
cates the censoring time at 6480 h. Densities (smallest
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Fig. 22.7 GAB insulation data. Weibull multiple probabil-
ity plot depicting the inverse power relationship Weibull
regression model ML fit

extreme-value densities because time is plotted on a log
scale) are shown at the voltage stresses in the exper-
iment as well as at the use condition of 120 V/mm.
Figure 22.8 suggests that it is unlikely that one would
observe any failures below 170 V/mm during the ALT
experiment.

Assessing Statistical Uncertainty
An estimate of the variance–covariance matrix for the
ML estimates θ̂ = (β̂0, β̂1, σ̂)′ is

∑̂
θ̂
=

⎛
⎜⎝

89.52 −16.73 0.27

−16.73 3.13 −0.05

0.27 −0.05 0.004

⎞
⎟⎠ . (22.11)

The elements of this matrix are used to compute
normal-approximation confidence intervals, as de-
scribed in Example 22.9. This matrix is usually available
(at least as an option) as output from computer software
and is useful for computing the variance of functions of
the parameters (e.g., quantiles and fraction failing esti-
mates) that may be of interest. In modern software for
life data analysis, however, such computations are easy
to request and printing the variance–covariance matrix
is often suppressed by default.

Diagnostics and Assessing Fit
of ALT Model to Data
Plots like Figs.22.7 and 22.8 can be used to assess
the fit of a model to a set of data. Graphical analyses
of the standardized residuals, exp[log(t)− µ̂]/σ̂ , pro-
vide additional diagnostics for judging model adequacy.

104

103

102

101

100

10–1

100 110 130 150 170 190 210 240

Hours to failure (103 h)

Voltage stress on inverse power rule scale

90%
50%
10%

Fig. 22.8 GAB insulation data. Scatter plot showing hours
to failure versus voltage stress (log–log scales) and the
inverse power relationship Weibull regression model fit.
Censored observations are indicated by ∆
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Residuals can be plotted against the order of the test
runs, fitted values, and levels of explanatory variables
that are or are not in the fitted model. It is necessary
to take into account the amount of censoring during in-
terpretation. An overall assessment of the distributional
assumption can be obtained by using a probability plot
of the residuals.

Example 22.8: Residuals Plots for the Inverse Power Re-
lationship Weibull Model Fit to the GAB Insulation Data.
Figure 22.9 plots residuals versus fitted values. The verti-
cal axis shows the standardized residuals. The horizontal
lines are the 0.05, 0.50, and 0.95 quantiles of a standard
exponential distribution (e.g., − log(1−0.95) = 2.996
is the 0.95 quantile of this distribution). For the Weibull
distribution, the residuals should have an approximate
standard Weibull (µ= 0, σ = 1) distribution (which is
left-skewed). Thus, the Weibull distribution is appropri-
ate if the residuals have a long lower tail. At 210 V/mm,
where all of the test units failed, the residuals (first
column of points in Fig. 22.9) indicate a left-skewed
distribution about the center line, indicating no lack
of fit of the Weibull distribution. The interpretation of
the residuals is not as simple for the levels 170, 190,
200, and 210 V/mm (the last four columns of points in
Fig. 22.9) because all of these levels resulted in some
censored observations. The triangles (#) in Fig. 22.9
indicate lower bounds for residuals for these censored
observations (i. e., the actual unobserved residuals corre-
sponding to these points would be larger than the plotted
triangles). With this in mind, there is no strong evidence
of lack of fit of the Weibull distribution at these levels.
Figure 22.10 is a Weibull probability plot of the residu-
als for all failures. The residuals fall close to a straight
line, which suggests that there is no problem with the
Weibull assumption.

Estimation at Use Conditions
and Sensitivity to Model Assumptions
It is important to quantify the statistical uncertainty in
estimates from an ALT. Here, we illustrate the compu-
tation of normal-approximation confidence intervals for
quantiles. See Sect. 17.4.2 of Meeker and Escobar [22.3]
for a more general discussion of the methodology. The
following example also contains a sensitivity analysis of
the estimates with respect to the assumed distribution.

Example 22.9: ML Estimates and Confidence Intervals
for Quantiles for the GAB Insulation Data Life Distri-
bution. For the GAB experiment, it was of interest to
estimate the 0.01 and 0.05 quantiles of insulation life at
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Fig. 22.9 GAB insulation data. Plot of standardized residuals versus
fitted values for the inverse power relationship Weibull regression
model. Censored observations are indicated by ∆
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Fig. 22.10 GAB insulation data. Weibull probability plot of the
standardized residuals from the inverse power relationship Weibull
regression model fit

the 120 V/mm use condition. The ML estimate of the lo-
cation parameter at 120 V/mm, computed from the ML
estimates for the parameters in Table 22.3, is

µ̂= β̂0+ β̂1x = 53.39−9.68 log(120) = 7.07 .

The ML estimate of the log p quantile is

log( t̂ p) = µ̂+ log[− log(1− p)] σ̂
= 7.07+ log[− log(1− p)]× 0.44
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412 Part C Reliability Models and Survival Analysis

Table 22.4 GAB insulation data. Quantiles ML estimates at 120 V/mm

Distribution Quantile ML estimate Normal-approximation
95% confidence interval

Weibull t01 154.6 × 103 h [26.4, 907.4] ×103 h

17.7 y [3.0, 103.6] y

t05 317.0 × 103 h [51.4, 1953.0] ×103 h

36.2 y [5.9, 223.0] y

Lognormal t01 254.4 × 103 h [43.4, 1492.9] ×103 h

29.1 y [5.0, 170.0] y

t05 390.8 × 103 h [63.4, 240.9] ×103 h

44.6 y [7.0, 27.5] y

with an estimated standard error ŝelog(̂tp) =
√

V̂arlog(̂tp)

=
√

c′
∑̂

θ̂
c, where c= {1, log(volt), log[− log(1− p)]}′

and
∑̂

θ̂
is given in (22.11). A 100(1−α)% normal-

approximation confidence interval for tp is

exp
[
log( t̂ p)± z(1−α/2) × ŝelog(̂tp)

]

= t̂ p exp
(
±z(1−α/2) × ŝelog(̂tp)

)
,

where zγ is the γ quantile of the standard nor-
mal distribution. Table 22.4 gives the ML estimates

and 95% confidence intervals for the 0.01 and
0.05 quantiles at 120 V/mm. the data that was
almost as good as the fit with the Weibull distri-
bution. Table 22.4 also includes quantile estimates
for the lognormal distribution. Although the differ-
ences between the Weibull and lognormal distribution
point estimates may be judged to be large, the
confidence interval for the quantile under one dis-
tribution contains the point estimate under the
other. The lognormal distribution quantile estimates
are optimistic relative to those for the Weibull
distribution.

22.5 Further Examples

This section illustrates the use of the statistical methods,
outlined in Sect. 22.4, to various other ALT applica-

Table 22.5 IC device data

Temperature (◦C) Time Bounds (h) Frequency Censoring
Lower Upper

150 788 1 Right
150 2304 49 Right
175 788 1 Right
175 2304 49 Right
200 788 1 Right
200 2304 49 Right
250 384 788 1 Interval
250 788 1 Right
250 1536 2304 6 Interval
250 2304 42 Right
300 96 192 1 Interval
300 192 384 6 Interval
300 384 788 20 Interval
300 384 2 Right
300 788 1536 16 Interval
300 1536 5 Right

tions. The examples show the fit of ALT models to
interval-censored data and reliability data with two or
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Accelerated Life Test Models and Data Analysis 22.5 Further Examples 413

more explanatory variables. These examples illustrate
a wider (but not exhaustive) range of data types that arise
in practice, provide more insight into how to develop
ALT models, address the goals and objectives of the ex-
periment, and study the effect of model assumptions on
these aims (sensitivity analyses).

22.5.1 Analysis
of Interval Censored ALT Data

Interval-censored data are common in ALT studies. Con-
straints on resources limit the frequency of inspection
times in tests. As a consequence, engineers often fail to
observe failures instantaneously, and inspection times
serve as bounds for lifetimes.

Example 22.10: Analysis of Integrated Circuit Device
ALT Data. Table 22.5 gives the results of an ALT for
an integrated circuit (IC) device at five different levels
of junction temperature. Because the diagnostic testing
of each device was expensive, each unit could only be
inspected a few times during the ALT. Consequently,
an observation was either interval-censored (bounds for
lifetime were recorded) or right-censored (lower bound
for lifetime was recorded). The engineers chose inspec-
tion times that were approximately equally spaced in
log time. Tests were conducted at 150, 175, 200, 250,
and 300 ◦C on a total of 250 devices (50 at each level of
temperature).

The objectives of the ALT was to quantify the long-
term reliability of the ICs and to estimate the effective
activation energy of the failure mechanism. In particular,
the engineers involved in the study wanted to assess the
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Fig. 22.11 IC device data. Lognormal multiple probability
plot with individual lognormal ML fits for each temperature

hazard rate and the fraction failing by 100 000 hours at
the use junction temperature of 100 ◦C.

Figure 22.11 is a lognormal probability plot of the
data at individual conditions. There are no plots for 150,
175, 200 ◦C because there were no failures at these levels
of temperature. The ML results for estimating the log-
normal parameters at individual temperatures are given
in Table 22.6. The fitted CDF lines drawn in the plot ap-
pear to be reasonably parallel. Also, the ML estimates
of σ and corresponding confidence intervals do not indi-
cate evidence against the constant-σ assumption across
temperature levels. Table 22.7 gives the ML results of
fitting an Arrhenius lognormal model to the IC device
data. An estimate of the effective activation energy is
Êa = β̂1 = 0.94.

Figure 22.12 is a probability plot depicting the ML
fit of the Arrhenius lognormal model to the data. It
also gives the ML estimate of the fraction failing at
tempU = 100 ◦C with pointwise normal-approximation
95% confidence intervals. Figure 22.12 plots the ML
estimates of the 0.1, 0.5, and 0.9 quantiles with the
data for temperatures between 100 and 300 ◦C. Even
though there is a large amount of statistical uncertainty,
Figs. 22.12 and 22.13 both suggest that it is very un-
likely that failures would occur before 100 000 hours at
tempU = 100 ◦C.

Observing failures at two or more levels of the
accelerating variable is necessary to estimate the param-
eters of the Arrhenius relationship. There are situations
in which the activation energy Ea is specified, based
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Fig. 22.12 IC device data. Lognormal multiple probability
plot depicting the Arrhenius lognormal regression model
ML fit
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414 Part C Reliability Models and Survival Analysis

Table 22.6 IC device data. Lognormal ML estimates for each temperature

Temperature (◦C) Parameter ML estimate Standard error Normal-approximation
95% confidence interval

250 µ 8.54 0.34 [7.87, 9.22]
σ 0.74 0.25 [0.38, 1.43]

300 µ 6.58 0.20 [8.59, 9.36]
σ 0.61 0.07 [0.48, 0.76]

The individual maximum log likelihoods were L250 = −26.11 and L300 = −63.18. The total log likelihood for this model
is L4 = −89.29

Table 22.7 IC device data. ML estimates for the Arrhenius lognormal regression model

Parameter ML estimate Standard error Normal-approximation
95% confidence interval

β0 −12.45 1.95 [−16.26, −8.63]
β1 0.94 0.09 [0.76, 1.12]
σ 0.62 0.07 [0.50, 0.77]

The maximum log likelihood for this model is L5 = −89.45
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Fig. 22.13 IC device data. Scatter-plot interval midpoints
failure versus ◦C (on an Arrhenius scale) and the Arrhenius
lognormal regression model fit. Censored observations are
indicated by ∆

on prior experience with the product, in which case
only one temperature level with failures may suffice
for estimation. For example, MIL-STD-883 [22.27]
gives guidelines for conducting reliability demonstra-
tions tests when Ea is given.

Example 22.11: Analysis of the IC Device Data when
the Activation Energy is Given. Figure 22.14 is simi-
lar to Fig. 22.12, but obtained with Ea = 0.8 eV given.
Now, the confidence intervals for the fraction failing
at tempU = 100 ◦C are much narrower than when Ea
had to be estimated. This difference reflects a tremen-
dous, probably unreasonable, gain in precision. Because
there will be doubt about the actual value of Ea, one
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Fig. 22.14 IC device data. Lognormal probability plot
showing the Arrhenius lognormal model ML estimates and
95% confidence intervals for F(t) at 100 ◦C given Ea =
0.8 eV

must exercise caution in interpreting such an analysis.
Varying β1 = Ea over some plausible range of values
provides a useful sensitivity analysis. Also a Bayesian
analysis could be used when the uncertainty on Ea can
be specified by a probability distribution (see Meeker
and Escobar [22.3], Sect. 22.2).

22.5.2 Analysis of Data
From a Laminate Panel ALT

A sample of 125 circular-holed notched specimens of
a carbon eight-harness-satin/epoxy laminate panel were
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Fig. 22.15 Laminate panel data. Log–log scatter plot of life
versus stress

subjected to a cyclic four-point out-of-plane bending at
several levels of stress, measured in MPa. The data are
from Shimokawa and Hamaguchi [22.28]. In these tests,
final specimen fracture and fiber fracture occurred si-
multaneously. The lifetime of a specimen is the number
of cycles to fracture. Figure 22.15 is a log–log scat-
ter plot of the data. Note that the response (thousands
of cycles) is plotted on the horizontal axis (the usual
convention in the fatigue-fracture literature). Ten speci-
mens were right-censored (two at 280 MPa and eight at
270 MPa). The goals of experiment were to estimate the
relationship between life and stress (or the S–N curve)
and a safe level of stress for a given life quantile. Fig-
ure 22.16 is a multiple lognormal probability plot of
the data. The lognormal distribution appears to be ap-
propriate here. Figure 22.15 indicates a strong linear
correlation between log life and log stress. These plots
suggest fitting a inverse power relationship lognormal
model to the data.

Example 22.12: ML Estimate of the Inverse Power Re-
lationship Lognormal Model for the Laminate Panel
Data. For the inverse power relationship lognormal
model, the parameters are µ= β0+β1x and σ , where
x = log(Stress). Table 22.8 gives the results of the ML
estimation of β0, β1 and σ with the laminate panel data.

Table 22.8 Laminate panel data. ML estimates for the inverse power relationship lognormal regression model

Parameter ML estimate Standard error Normal-approximation
95% confidence interval

β0 99.36 2.14 [95.16, 103.55]
β1 −16.05 0.37 [−16.78, −15.32]
σ 0.52 0.04 [0.46, 0.60]
The maximum log likelihood for this model is L6 = −898.3

0.00005

0.0005
0.002
0.005
0.02
0.05
0.1
0.2
0.3
0.5
0.7
0.8
0.9
0.95
0.98
0.995
0.998

101 102 103 104 105 106 107

Fraction failing

Thousands of cycles

380 MPa 340 300 280

270 197.9

Fig. 22.16 Laminate panel data. Lognormal probability plot
showing the inverse power relationship lognormal model
ML fit and 95% confidence intervals for F(t) at 197.9 MPa
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Fig. 22.17 Laminate panel data. Scatter-plot showing cycles
to failure versus MPa (on a log scale) and the inverse power
relationship lognormal regression model ML fit. Censored
observations are indicated by ∆

Estimates of the fraction failing at the individual stress
levels of the experiment are drawn in Fig. 22.16. Fig-
ure 22.17 is a scatter plot of the data with ML estimates
of the 0.1, 0.5, and 0.9 quantiles. The confidence in-
tervals for the life distribution at use conditions in this
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example are much narrower, when compared to those
for the IC device example shown in Fig. 22.12. This is
because there is less censoring and less relative extrap-
olation in the inference for the laminate panel data. The
median (0.50 quantile) life line in Fig. 22.17 provides
the estimate of the S–N curve that was of interest to the
engineers.

Example 22.13: Estimate of a Safe-Level Stress for the
Laminate Panel Data. The engineers wanted to esti-
mate a safe level of stress at which no more than 10%
of the population of laminate panels would fail before
1 000 000 cycles. This involves determining the stress
level at which the 0.10 quantile is 1 000 000 cycles.
At any stress below this safe level of stress, the pop-
ulation fraction failing before 1 000 000 cycles will be
more than 0.10. Using the inverse power relationship
lognormal model, the safe stress level is

safe stress = exp
{[

log
(
106)−99.36−Φ−1

nor(0.1)

× 0.52
]/

(−16.05)
}
= 197.9 MPa.

Figure 22.16 plots an estimate of the fraction failing
(rightmost line) at this safe stress level. As seen in this
plot, the stress 197.9 MPa is an extrapolation because the
estimation is outside the range of the data. Of course,
there is potential danger in making decisions based on
this estimate, especially if the inverse power relationship
lognormal model fails to hold below 270 MPa. Because
the inverse power relationship is an empirical model
and its use is based on past experience, it is important to
perform a sensitivity analysis by computing safe-level
estimates under alternative relationships. For example,
the reciprocal relationship (x = 1/Stress) gives a model
maximum log likelihood value of L7 = −892.1 which
is larger than that from the inverse power relationship
(indicating that the reciprocal model provides a better
fit to the data). The estimate of the safe level of stress
under the reciprocal relationship is equal to 216 MPa.
This is larger (less conservative) than that under the in-
verse power relationship. Quantile estimates at a given
stress level are also less conservative under the recipro-
cal relationship. That is, the estimates of life under the
reciprocal relationship are longer than those under the
inverse power relationship.

22.5.3 Analysis of ALT Data with Two
or More Explanatory Variables

The single-variable analyses in Sects. 22.4, 22.5.1,
and 22.5.2 can be extended to two or more variables (ac-
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Fig. 22.18 LED device data. Scatter-plot showing hours to
failure versus temperature with voltage indicated by differ-
ent symbols. Censored observations are indicated by ∆

celerated or otherwise). For example, ATs with multiple
accelerating variables often use temperature in combi-
nation with humidity, pressure, and/or voltage. The goal
of an AT may be to compare new and old product de-
signs under different humidity levels, using temperature
to accelerate the lifetimes. In this case, product design is
a qualitative factor and the humidity range would mimic
that seen in the actual application. This section illustrates
the analysis of data from AT studies like these.

Example 22.14: Light Emitting Device Data with Accel-
erated Current and Temperature. Recall the LED device
data from Example 22.4. The engineers were interested
in the reliability of the LED at use conditions of 20 mA
current and 40 ◦C temperature. Figure 22.18 plots the
LED device data versus temperature for different levels
of current. The plot suggests that failures occur earlier
at higher levels of current or temperature.

The probability plot in Fig. 22.4 suggests that the
lognormal distribution can be used to describe the life-
times at each combination of current and temperature.
Furthermore, because the lines are approximately paral-
lel, it is reasonable to assume that σ is constant across
individual conditions.

The inverse power (for current) and Arrhenius (for
temperature) relationships are combined to model the
effect that current and temperature have on lifetime. In
particular, suppose that LED lifetime at volt and temp◦C
has a lognormal distribution with parameters µ given by

Main effects without interaction model:

µ= β0+β1x1+β2x2 , (22.12)
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Fig. 22.19 LED device data. Multiple lognormal probabil-
ity plot depicting the regression model (22.12) (without
interaction) ML fit

Main effects with interaction model:

µ= β0+β1x1+β2x2+β3x1x2 , (22.13)

where x1 = log(volt), x2 = 11605/(temp K), and β2 =
Ea, and σ does not depend on x. Fitting the model with
interaction to the data resulted in life estimates at use
conditions that were shorter than those observed at the
more stressful test conditions. The engineers were sure
this was wrong. It turned out that the incorrect estimates
were caused by the interaction term in the model. The
interaction term lead to nonlinearity in the response sur-
face and resulted in a saddle point in the surface relating
µ to the transformed explanatory variables. Because this
model gave nonsense results, it will not be considered
any further.

Table 22.9 LED device subset data. ML estimates for the lognormal regression models (22.12) and (22.13)

Model Parameter ML estimate Standard error Normal-approximation
95% confidence interval

Main effects β0 1.33 0.28 [0.78, 1.89]
without interaction β1 −0.46 0.06 [−0.58, −0.34]

β2 0.073 0.005 [0.063, 0.083]
σ 0.11 0.07 [0.09, 0.12]

Main effects β0 13.54 4.20 [5.31, 21.78]
with interaction β1 −3.96 1.21 [−6.33, −1.60]

β2 −0.31 0.13 [−0.57, −0.05]
β3 0.11 0.04 [0.04, 0.18]
σ 0.10 0.006 [0.09, 0.12]

The maximum log likelihood values are L8 = −173.5 (main effects without interaction) and L9 = −169.5 (main effects with
interaction model)
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Fig. 22.20 LED device subset data. Multiple lognormal probabil-
ity plot depicting the lognormal regression model (22.12) (without
interaction) ML fit. The data at (40 V, 130 ◦C) were omitted

The fit of the main-effects model without interaction
reveals strong lack of fit at the high-level combination
of volt= 40 and temp◦C = 130. Figure 22.19 is a prob-
ability plot depicting the ML estimates of the fraction
failing as a function of time at individual conditions.
Observe that the true fraction failing as a function of
time is underestimated throughout the range of data at
volt = 40 and temp◦C = 130. If the main-effects model
were physically appropriate, it appears that it may not
hold when both volt and temp are at these high levels,
probably because a new failure mechanism is excited at
those extreme conditions.

Table 22.9 provides the ML results for the inverse-
power Arrhenius lognormal model after deleting the
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Fig. 22.21 LED device subset data. Multiple lognormal probability
plot lognormal regression model (22.12) (with interaction) ML fit.
The data at (40 V, 130 ◦C) were omitted

data at volt = 40 V and temp◦C = 130 ◦C. Figure 22.20
shows a probability plot of the LED device subset data
along with ML estimates of fraction failing as a function
of time for the model without interaction.
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Fig. 22.22 Spring fatigue data. Scatter-plot matrix of the data

Figure 22.20 is a lognormal probability plot of the
LED device subset data along with ML estimates of frac-
tion failing as a function of time. It also includes the ML
estimate of the fraction failing as a function of time at
the use conditions volt= 20 V and temp◦C= 40 ◦C (the
rightmost line). The dashed lines represent approximate
95% pointwise confidence intervals for the fraction fail-
ing as a function of time at these conditions. For this
model there is much better agreement between the model
and the data. Figure 22.21 is a similar multiple prob-
ability plot using the interaction model. Comparison
of the models with and without the interaction term,
after deleting the (40 V, 130 ◦C) condition, indicates
some lack of fit for the model without interaction (com-
pare the log likelihoods in Table 22.9). Predictions with
the interaction model, however, are very pessimistic
and much worse than had been expected by the en-
gineers (though not as easily dismissed as the with
the interaction model when fitted to the complete data
set). The estimates at use conditions are highly sen-
sitive to the model choice because of the rather large
amount of extrapolation involved in computing the es-
timates. The engineers were uncertain as to the correct
model, but felt that almost certainly the truth would
lie between the two different fits shown in Figs. 22.20
and 22.21.
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Example 22.15: An Accelerated Life Test for a Spring
with Three Explanatory Variables. Meeker, Escobar, and
Zayac [22.29] describe an experiment to compare old
and new processing methods for manufacturing a spring.
The experimenters used three variables, namely, stroke
displacement (Stroke), processing method (Method),
and temperature (temp). Springs were compressed cycli-
cally and Stroke measured the distance that a spring was
compressed. Stroke was the accelerating variable. Life-
time was measured in cycles to failure. The springs
were designed to be used at Stroke= 20 mils (1 mil
=1/1000 inch) and the nominal processing temperature
was temp= 600 ◦F. The goals of the experiment were to
compare the old and new processing methods, to see if
temperature had an important effect on spring life, and
to check if the B10 life (0.10 quantile) at use conditions
was at least 500 000 kilocycles.

Meeker, Escobar, and Zayac [22.29] give the results
from a 2 × 2 × 3 factorial with factors Stroke (50 mil,
60 mil, 70 mil), temp (500 ◦F, 1000 ◦F), and Method
(Old, New). Each of the 12 factor combinations was
replicated nine times for a total of 108 observations. All
nine observations at Stroke= 60, temp = 500 ◦F, and
Method= New were right-censored at 500 000 cycles.
Figure 22.22 is a scatter-plot matrix of the Spring ALT
data. It appears that on average, spring lifetimes are
longer at shorter stroke, at lower temperature, and with
the new processing method, respectively.

Figure 22.23 gives Weibull probability plots of
the data at individual conditions (factor combinations).
The plot indicates that the Weibull distribution can
be used to describe the data. Moreover, the plotted
lines showing the ML estimates of fraction failing as
a function of time at each test condition suggest that
it is reasonable to assume that σ (or, equivalently, the
Weibull shape parameter β) is constant. The likeli-
hood ratio test for homogeneity of the Weibull shape
parameters provides no evidence of differences. Thus,
one can assume constant σ across experimental factor
combinations.

Table 22.10 Spring fatigue data. ML estimates for the Weibull regression model

Parameter ML estimate Standard error Normal-approximation 95% confidence interval

β0 32.03 2.48 [27.16, 36.90]

β1 −5.51 0.59 [−6.66, −4.36]

β2 −0.000 88 0.000 27 [−0.0014, −0.000 35]

β3 −1.27 0.15 [−1.56, −0.98]

σ 0.57 0.054 [0.47, 0.69]

The maximum total log likelihood for this model is L10 = −625.8
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Fig. 22.23 Spring fatigue data. Weibull multiple probability plot
with individual Weibull ML fits for each test condition

The model for the location parameter µ was devel-
oped as follows. Previous experience with testing similar
springs suggested taking a log transformation of Stroke.
On the other hand, no transformation is applied to temp
because there were no prior studies involving temp (note
that because temp is a processing temperature rather
than a temperature driving a chemical reaction, there
is no suggestion from physical/chemical theory that the
Arrhenius relationship should be used). An indicator
variable was used to represent the effect of the qualitative
factor Method. Thus,

µ= β0+β1 log(Stroke)+β2 temp+β3 Method
(22.14)

where Method = 0 for the New processing method and
Method = 1 for the Old method. Terms representing
factor interactions can be added to (22.14). Meeker
et al. [22.29] extended (22.14) to include two-factor
interaction terms. The likelihood-ratio test suggested,
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Fig. 22.24 Spring fatigue data. Weibull multiple probability plot of
the Weibull regression ML fit with estimates at use conditions

however, that there was little evidence for such interac-
tions.

Table 22.10 gives the results of fitting the Weibull
model with the location parameter given in (22.14) and
constant σ . For this fit, Fig. 22.24 is a probability plot
showing the ML estimates for fraction failing as a func-
tion of time for each of the 12 factor combinations and
for the Old and New processing methods at use condi-
tions of Stroke = 20 mils and temp = 600 ◦F. We note
the following:

• The estimate and confidence interval for β1, the co-
efficient for Stroke, are negative, which suggests
that, with temp and Method held constant, increas-
ing Stroke shortens spring life, on average. A similar
analysis shows that increasing temperature decreases
the life of the units.• The estimate for the coefficient β3 for Method is
β̂3 =−1.27 < 0 and the corresponding confidence
interval excludes 0. Thus, there is evidence that
switching from the Old to the New method length-

Table 22.11 Spring fatigue data. Quantiles ML estimates at (20 mil, 600 ◦F) for the Old and New processing methods

Processing Quantile ML estimate Standard error Normal-approximation
method 95% confidence interval

Old 0.10 252 208 160 148 [72 654, 875 502]
0.50 737 371 483 794 [203 801, 2 667 873]
0.90 1 460 875 989 321 [387 409, 5 508 788]

New 0.10 900 221 612 067 [237 471, 3 412 619]
0.50 2 631 947 1 855 063 [661 194, 10 476 722]
0.90 5 214 400 3 794 441 [1 252 557, 21 707 557]

ens spring life, on average. In Fig. 22.24, observe that
the fraction-failing estimate for the New method is
to the right (suggesting longer lives) of the fraction
failing for the New method. On the average, springs
under the New method last 1/ exp(β̂3) = 3.56 times
longer than those under the Old method. A 95% con-
fidence interval for this factor is [2.66, 4.76] which
is obtained by taking the reciprocal of the antilog
of the endpoints of the confidence interval for β3 in
Table 22.10.

For a graphical comparison of quantile estimates
under the two processing methods, draw horizontal
lines in Fig. 22.24 that intersect the New and Old
fraction-failing lines, and read off the estimates from
the horizontal time axis. Estimates of the 0.10, 0.50
and 0.90 quantiles for the two processing methods un-
der use conditions are given in Table 22.11. This table
also provides estimates of the standard errors of quantile
estimators and 95% normal-approximation confidence
intervals. Observe that quantile estimates for the New
method are 3.57 times larger than those for the Old
method.

The design engineers wanted to know if the B10
life at use conditions would exceed 500 000 kilocycles.
Line segments are drawn in Fig. 22.24 to indicate
the B10 estimates. The Old method fails to sat-
isfy this requirement because its B10 life estimate is
252 208 kilocycles. The estimate for the New method
is 900 222 kilocycles, which does satisfy the require-
ment. The lower endpoint of the confidence interval
is, however, below the 500 000 target. Thus, there is
some doubt that the New method meets the reliability
requirement.

Example 22.16: Sensitivity Analysis for the Spring Fa-
tigue Data. Meeker et al. [22.29] studied the effect that
varying model assumptions has on the analysis of the
spring fatigue data. In particular, they investigated the
sensitivity of the estimate of B10 life to alternative
transformations of Stroke and temp, and the assumed
distribution. A summary of their findings follows.
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Meeker et al. [22.29] extended (22.14) to

µ= β0+β1W+β2temp+β3Method , (22.15)

where

W =
⎧
⎨

⎩

(Stroke)λ−1

λ
, λ �= 0

log(Stroke), λ= 0
(22.16)

and where λ was allowed to range between −1 and 2.
The transformation W is known as a Box–Cox trans-
formation, and the linear (no transformation, λ= 1) and
log (λ= 0) relationships are special cases of this trans-
formation. Meeker et al. [22.29] used a range of fixed
values of λ and fitted by ML methods a Weibull distri-
bution with µ in (22.15) and constant σ . They observed
that, as λ moved from −1 to 2, the ML estimate of
the B10 life at use conditions decreased by a factor
of between 103 and 104. In particular, switching from
λ= 0 to λ= 1 decreased the B10 life estimate from
900 221 kilocycles to 84 925 kilocycles. From past ex-
perience with the spring, the engineers thought that λ
should be close to 0 and almost certainly less than 1.
Thus, a conservative approach for designing the prod-

uct using the spring as a component would be to assume
that λ= 1.

Using a similar sensitivity analysis with temperature,
Meeker et al. [22.29] observed that the estimate of B10
life was not as sensitive to temp as it was to Stroke.
Increasingλ from−1 to 2 increased the B10 life estimate
by no more than a factor of 1.25. They also explain that
the data did not provide any information about what
transformation (λ value) would be best for model fitting
(because there were only two levels of temperature in
the experiment).

Another sensitivity analysis involved fitting a log-
normal (instead of Weibull) distribution with a location
parameter given by (22.15) and constant σ . For any fixed
value of λ between −1 and 2, the lognormal distribu-
tion gave more optimistic estimates of B10 life than
the Weibull distribution. In particular, the lognormal es-
timates of B10 life were about twice as large as the
Weibull estimates. This is expected because, when both
distributions are fitted to the same data, the Weibull
distribution is less optimistic when extrapolating in
time.

22.6 Practical Considerations for Interpreting the Analysis of ALT Data

Extrapolation is an integral part of any ALT. As a re-
sult, interpretation of statistical analysis of ALT data is
often a challenge. In this section, we discuss the most
important issues and suggest strategies to address them.

ALTs are most effective when predicting the life for
well-understood failure mechanisms for relatively sim-
ple materials or components. ALTs are less useful or
there may be more restrictions for more complicated
products. There are also difficulties when there are dis-
crepancies between laboratory and field conditions. In
particular, when the ALT model generates failure modes
that are different from those seen in the field, the in-
formation obtained from an ALT may be difficult or
impossible to interpret.

ALTs have a better chance to produce useful results
if they are carefully planned with attention to obtaining
information about possible failure modes from which
the product or material might fail.

• Information from earlier experiences with product
prototypes or similar products is important. For
example, pilot studies can provide information on
which environmental factors and failure modes are
relevant relative to customer or field use.• Knowledge of the physical or chemical nature of
product degradation and failure is crucial in provid-
ing a basis for the statistical model to be fitted to
ALT data. This could provide information on how
much extrapolation is justified.• An obvious way to limit the effect of extrapolation
is to test at lower levels of the accelerating vari-
ables. Doing this, however, results in fewer observed
failures, which translates into statistical estimates
with larger amounts of uncertainty. For one-variable
ALTs, Meeker and Hahn [22.10] provided practical
guidelines for choosing ALT plans that meet practi-
cal constraints and have good statistical efficiency.

22.7 Other Kinds of ATs

Discussions up to this point pertain to ALTs where prod-
ucts are tested at high levels of the accelerating variables

and extrapolating to assess life at use levels of these vari-
ables. Of primary interest is the life distribution with
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respect to a few simple failure mechanisms. This sec-
tion briefly discusses other types of ATs that are used in
assessing or improving product reliability. See Meeker
and Escobar ([22.3], Chapt. 19) and references therein
for more detailed discussion of these tests and other
references.

22.7.1 Continuous Product Operation
Accelerated Tests

In this type of AT, tests are performed on the complete
system. Such tests are useful because, in addition to test-
ing individual components, the tests can catch problems
with component interfaces that cannot be tested in low-
level ALTs. In these tests, a sample of product is tested
on a more or less continuous basis to accelerate failure
mechanisms. Applications include accelerated testing of
engines (e.g., in automobiles, motorcycles, lawn equip-
ment, washing machines) and refrigerator compressors.
Caution is taken to avoid damage to the system that
would not occur in actual product use (e.g., overheating
or melted parts due to extreme temperatures). In auto-
mobile engine testing, there is one test standard in which
the engine is run continuously and another in which the
engine is cycled on and off continuously. This is because
the two different ATs will tend to generate different kinds
of failures.

22.7.2 Highly Accelerated Life Tests

In highly accelerated life tests HALT, products are op-
erated under extremely high levels of variables such
as temperature (−90 ◦C to 190 ◦C), vibration (up to
60 Grms), and other stresses directly related to system
operation. These tests are used to identify failure modes
and determine product operational limits. It is generally
agreed that these tests provide little or no information
about product life at use conditions. This is because
the results of the tests usually lead to product design
changes. HALTs are typically performed on solid-state
electronics, but, with proper equipment, they can be ap-
plied to other products as well. Confer et al. [22.30]
remarked that HALTs can be used to inspect lots of
incoming components and to screen products by burn-
in. At extremely high levels of the stressing variables,
the failure-mechanism model may no longer hold or
the system experiences some damage. Thus, precautions
must be taken to avoid these effects. See, for example,
McLean [22.31] and Hobbs [22.32] for more information
on HALT methods.

22.7.3 Environmental Stress Tests

These tests are closely related to HALTs in that the
main objective is to identify reliability issues quickly
(e.g., product design flaws) and address them while in
the product-development stage. Different authors have
different names for this type of test. One is stress–life
(STRIFE) tests in which one or two prototypes are
aggressively tested to produce failures quickly. Most
common STRIFE tests involve temperature and vibra-
tion that are cycled in increasing amplitudes throughout
the test. Nelson ([22.1], pages 37–39) refers to such tests
as ‘elephant tests.’ He described tests of ceramic cook-
ware exposed to cycles of high and low temperature
until failure. Failures occurring in these tests are often
due to design flaws in the product. Thus, this type of test
allows engineers to identify design flaws and fix them
while in the design stage. Also, the engineers must deter-
mine if failures due to these flaws would occur in actual
to avoid unnecessary product redesign. Nelson ([22.1],
pages 38–39) describes an example where a transformer
was redesigned to eliminate a failure mode that was dis-
covered in an elephant test. Years later it was realized
that none of the transformers with the old design ever
failed from this failure mode; the expensive redesign had
been unnecessary.

Nelson ([22.1], Chapt. 1) and Meeker and Es-
cobar ([22.3], pages 519–520) give more detailed
discussions of issues related to environmental stress
tests.

22.7.4 Burn-In

Early failures (infant mortality) are the most common
problem with electronic products. Defective compo-
nents, sometimes called freaks, comprise a small fraction
of all products and are caused by manufacturing defects.
Burn-in involves operating the units at higher that usual
levels of accelerating variables for a specific length of
time to screen out such defects. For example, burn-in of
products such as integrated circuits involve testing units
at high levels of temperature and humidity. Units that
survive this burn-in period are then put into service. This
type of test is expensive because it is essentially a 100%
inspection of products. Also, the longer the burn-in pe-
riod, the more defective items are identified. Tradeoffs
between these and other considerations are studied to
determine the length of the burn-in period. Jensen and
Petersen [22.33] describe some of the engineering issues
related to burn-in. Kuo et al. [22.34] discuss statistical
and economic issues of burn-in.
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22.7.5 Environmental Stress Screening

Environmental stress screening (ESS) methods were
developed to improve traditional burn-in tests. It has
been suggested that ESS is less expensive and more
effective in detecting defectives from the product
population. In ESS, products are tested at milder,
but more complex, stress processes than in burn-in

tests. The methodology has been developed mostly
along engineering considerations. The goal is still to
screen out defectives without causing damage to the
systems. It is widely used in consumer, industrial,
and military electronics manufacturing. Nelson ([22.1],
pages 39–40) provided references regarding ESS mil-
itary standards and more in-depth discussions of
ESS.

22.8 Some Pitfalls of Accelerated Testing

This section reviews potential difficulties one may face
in the analysis and interpretation of ALT data. See
Meeker and Escobar [22.35] for a more detailed dis-
cussion of these pitfalls.

22.8.1 Failure Behavior Changes at High
Levels of Accelerating Variables

It is possible that failure mechanisms at high levels of
the accelerating variables may not be the same as those
at low levels. High levels of the accelerating variables
could induce failure modes that have not been identi-
fied beforehand or which may not occur in normal use
of the product. Such failure modes can be direct results
of physical changes brought on by extreme stressing
(e.g., at high temperatures product parts could warp or
melt). Also, even with the same failure mechanism, the
assumed relationship between life and the accelerating
variable(s) may not be valid at higher levels. For ex-
ample, in a voltage-accelerated ALT, the relationship
between log(Life) and log(volt) may not be linear at
higher levels of volt.

Previously unrecognized failure modes could still be
accounted for in the data analysis by regarding failures
caused by them as right-censored with respect to the fail-
ure mode of primary interest. This approach, however,
requires the assumption of independent failure modes.
Nelson ([22.1], Chapt. 7) discusses methods for ana-
lyzing failure data with competing failure modes, but
the failure modes at the higher levels of the acceler-
ating variables restrict the amount of information that
will be available on the mode of interest. If possible, the
investigator should establish limits on the accelerating
variables within which only the primary failure mode
occurs and the assumed ALT model holds.

In some applications there will be an effort to elimi-
nate a particular failure mode that is seen only at higher
levels of stress. This would be done to make it possible

to study another failure mode of primary interest more
effectively.

22.8.2 Assessing Estimation Variability

Estimates from ALTs will contain statistical uncer-
tainty due to having only a limited amount of data.
It is unsafe to base product-design decisions on point
estimates alone. Instead, conclusions from data analy-
sis should account for statistical uncertainty by using
confidence intervals. Such confidence intervals provide
a range of plausible values for quantities of interest.
All of our examples have presented such confidence in-
tervals. Recall the analysis of the GAB insulation data
in Example 22.2. Estimates and corresponding point-
wise 95% confidence intervals for the fraction failing at
voltU = 120 are shown in Fig. 22.7. The confidence in-
terval for the probability of failure before 5 × 105 h is
[0.0017, 0.94]. This interval is too wide to be of any
practical value. There are ways to reduce statistical un-
certainty (reduce confidence interval width). In general,
one could, for instance, increase the sample size, ob-
serve more failures by testing at higher stress levels, or
reduce the amount of extrapolation. One could also use
prior information to fix the values of model parame-
ters that would normally be estimated from data, if there
is good information about such parameters. Recall the
analyses of the IC device data in Examples 22.10 and
22.11. In the first analysis, all model parameters, in-
cluding the activation energy Ea, were estimated and
pointwise confidence intervals for the fraction failing at
use condition temp=100 ◦C are given in Fig. 22.12. Fig-
ure 22.14 is a similar plot for the second analysis with
Ea fixed at 0.8 eV, resulting in much narrower confi-
dence intervals. Of course, conclusions from an analysis
like that shown in Fig. 22.14 could be misleading if Ea
were to be misspecified. Meeker and Escobar ([22.3],
Sect. 22.2) discuss applications of Bayesian analysis
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where prior distributions are set up to reflect information
about model parameters.

It is important to recognize that the uncertainty re-
flected in confidence intervals does not include the error
(bias) that results from fitting an incorrect model (and
strictly speaking, no statistical model is exactly correct).
More extrapolation will exacerbate the problem. So, it
is important to do sensitivity analysis to study the ef-
fect that changes in the model assumptions will have on
the results. For example, one could study how estimates
and confidence intervals change when the form of the
stress-life relationship and/or distribution is changed, as
was done in several of the examples in this chapter.

22.8.3 Degradation and Failure Measured
in Different Time Scales

In certain applications, lifetime is measured in different
time scales (e.g., cycles or hours to failure) depend-
ing on which factors affect the degradation process.
Often, time scales are determined by how the prod-
uct is actually used. Incandescent light bulb burn time
drives a filament-evaporation process, leading to even-
tual failure. One way to speed up time is by increasing
voltage. The bulb is operated continuously and lifetime
is measured in hours of operation. Also, turning a light
bulb on and off produces mechanical shocks that can
cause the initiation and growth of fatigue cracks within
the filament. Bulb life in this case might be measured
in on–off cycles. Testing bulbs continuously at higher
voltages does not simulate the on–off cycling effect.
Thus, predictions based on a simple model with only
one time scale will not accurately describe light bulbs
that fail through a combination of burn time and on–off
cycles.

22.8.4 Masked Failure Modes

In some situations, higher levels of the accelerating vari-
able can produce a new failure mode, not ordinarily seen
at use conditions. This new failure mode can mask the
failure mode of interest. If the new failure mode is not

recognized (because engineers naively think they are the
same and do not check), the resulting conclusions will
be highly optimistic relative to the truth. See Meeker
and Escobar ([22.3], Fig. 19.22) for an illustration and
further discussion.

22.8.5 Differences Between Product
and Environmental Conditions
in Laboratory and Field Conditions

For accurate prediction of failure behavior in the field,
it is necessary that laboratory conditions be similar to
those in the field, and that units tested in the laboratory
be similar to products in actual use. Laboratory con-
ditions are not always similar to field conditions. For
example, in a life test of a circuit pack, accelerated lev-
els of temperature resulted in lower humidity levels. This
in turn inhibited corrosion, which was the primary cause
of failure in the field. Thus, there were more failures in
the field than were predicted by the data analysis. Lab-
oratory tests should have controlled both temperature
and humidity levels. Also, laboratory tests are generally
carefully controlled, while in actual use, the environment
may be highly variable.

There are various points in the process from pro-
totype development to product manufacture at which
product-building inconsistencies could occur. Techni-
cians may build prototypes to be used in testing in
a manner that is different from the way an assembly
line builds the final product. For example, products with
epoxy have to be cured for a certain length of time in
an oven. Uncured epoxy can be highly reactive and may
cause corrosion and lead to premature failure. It is possi-
ble that the units are effectively cured in the lab, but not
in the factory assembly line. ALT tests will likely pre-
dict failure behavior that is more optimistic than that in
the field. Raw materials and instruments could also vary.
It is also possible, because of identified design flaws, to
modify the product design several times throughout the
process. Any inconsistencies in how a product is built
will most likely cause disagreements between laboratory
and field results.

22.9 Computer Software for Analyzing ALT Data

Nelson ([22.1], pages 237–240) provides a table listing
software packages for analysis of ALT data by maximum
likelihood methods (which has been updated in the 2004
paperback edition). The table provides the packages’

features and specific capabilities. Commercially avail-
able statistical software such as SAS JMP [22.36],
SAS [22.37], MINITAB [22.38], and S-PLUS [22.39]
have procedures specifically for ALT data analysis.
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ALTA [22.40] is a software package specifically for ALT
analysis.

All of the analyses in this chapter were done with
S-PLUS Life Data Analysis (SPLIDA) by Meeker
and Escobar [22.41]. SPLIDA runs on top of S-
PLUS. Special features for some plots were created
by modifying SPLIDA functions and using S-PLUS

annotation tools. SPLIDA consists of special S-PLUS
functions and GUIs, and is available for download
from http://www.public.iastate.edu/˜splida/. The SPL-
IDA download also contains files with all of the data
sets from this chapter, as well as many other exam-
ple data sets, including all examples from Meeker and
Escobar [22.3] and many from Nelson [22.1].
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Statistical App23. Statistical Approaches to Planning
of Accelerated Reliability Testing

This chapter presents a few statistical methods
for designing test plans in which products are
tested under harsher environment with more
severe stresses than usual operating conditions.
Following a short introduction, three different
types of testing conditions are dealt with in
Sects. 23.2, 23.3, and 23.4; namely, life testing
under constant stress, life testing in which stresses
are increased in steps, and accelerated testing
by monitoring degradation data. Brief literature
surveys of the work done in these areas precede
presentations of methodologies in each of these
sections.

In Sect. 23.2, we present the conventional
framework for designing accelerated test plans
using asymptotic variance of maximum likelihood
estimators (MLE) derived from the Fisher informa-
tion matrix. We then give two possible extensions
from the framework for accelerated life testing
under three different constant stress levels; one
based on a nonlinear programming (NLP) formula-
tion so that experimenters can specify the desired
number of failures, and one based on an en-
larged solution space so that the design of the
test plan can be more flexible in view of the many
possible limitations in practice. These ideas are il-
lustrated using numerical examples and followed
by a comparison across different test plans.

We then present planning of accelerated life
testing (ALT) in which stresses are increased in
steps and held constant for some time before the
next increment. The design strategy is based on
a target acceleration factor which specifies the
desired time compression needed to complete the
test compared to testing under use conditions.

23.1 Planning Constant-Stress Accelerated
Life Tests ............................................ 428
23.1.1 The Common Framework ............ 429
23.1.2 Yang’s Approach ....................... 430
23.1.3 Flexible Near-Optimal Plans ....... 430
23.1.4 Numerical Example ................... 432
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23.2.2 Planning Multiple-Step SSALT...... 435
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23.3 Planning Accelerated Degradation Tests
(ADT) .................................................. 436
23.3.1 Experimental Set Up

and Model Assumptions ............. 436
23.3.2 Formulation

of Optimal SSADT Plans ............... 437
23.3.3 Numerical Example ................... 439

23.4 Conclusions ......................................... 439

References .................................................. 440

Using a scheme similar to backward induction in
dynamic programming, an algorithm for planning
multiple-step step-stress ALT is presented.

In Sect. 23.4, we consider planning problems
for accelerated degradation test (ADT) in which
degradation data, instead of lifetime data, are
used to predict a product’s reliability. We give
a unifying framework for dealing with both
constant-stress and step-stress ADT. An NLP model
which minimizes cost with precision constraint is
formulated so that the tradeoff between getting
more data and the cost of conducting the test can
be quantified.

Technology and market forces have created genera-
tion after generation of highly reliable products. For
most products, it is no longer feasible to test prod-
ucts/components in the usual manner at their design
conditions as the time needed to obtain sufficient failure
information so as to understand the products’ behaviors

and to quantify their reliability is prohibitively long. In
applications where safety and mission success are crit-
ical, accelerated reliability testing (ART) is commonly
deployed to quantify products’ reliability. The basic idea
of ART is to achieve time compression so that fail-
ure information can be precipitated within a reasonable
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test duration. To achieve the requisite time compression,
products are tested either under a harsher environment
or under more intensive usage than the usual use condi-
tion. For many products which are always on, only the
former is feasible and will be dealt with in this chapter.

One of the important issues in ART is how to plan
a test by determining the testing time, stress levels, sam-
ple sizes for different stress levels, etc., so as to achieve
cost saving and/or efficiency. Good planning does not
only lead to shorter test time or fewer test specimens or
both; but more importantly; a good test plan will result
in a more precise estimate for the reliability measure

of interest, which could be critical, in some cases, in
meeting a design or customer specification.

In this chapter, we present test plans for three types
of acceleration tests, namely, constant-stress accelerated
life test, step-stress accelerated life test and accelerated
degradation test, in the following three sections, respect-
ively. A quick review of the literature in each of these
areas will first be presented at the beginning of the re-
spective sections. The statistical approach for planning
these experiments will then follow. At the end of each
section, a numerical example will be given to illustrate
the application of the planning methodology.

23.1 Planning Constant-Stress Accelerated Life Tests

The most commonly adopted ART is the constant-stress
accelerated life test (CSALT) which comprises multiple
sub-samples tested at different but fixed stress levels, at
which time-censored failure times are recorded. For ease
of administration, commonly used CSALT test plans
consist of equally spaced test stresses, each with the
same number of test specimens. Such standard plans
are highly inefficient for estimating product reliabil-
ity at the design stress as fewer failures are expected
at lower stress levels unless the test duration is much
longer than other higher stress levels. Pioneering work
by Chernoff [23.1] and Meeker and Nelson [23.2] pro-
posed statistically optimal plans for constant-stress ALT
which involved only two stress levels. As a result, these
plans, though statistically optimal, cannot be used to
validate the assumed stress–life relationship. To rem-
edy this problem, Meeker and Hahn [23.3] proposed
the use of a 4:2:1 allocation ratio for low-, middle-
and high-stress levels and gave the optimal low-stress
level by assuming that the middle stress is the aver-
age of the high- and low-stress levels. An alternative
approach is to set equally spaced stress levels with
equal allocations as in Nelson and Kielspinski [23.4] and
Nelson and Meeker [23.5]. The main reason for using
a predetermined allocation and middle stress is that the
statistically optimal plan only involves two stress levels
once the stress–life relation is given. Nelson [23.6] pro-
vides a comprehensive treatment of these plans and thus
they will not be presented in this chapter.

Another approach adopted by Yang [23.7] and Yang
and Jin [23.8] to overcome this problem is to add test
constraints involving expected minimum number of fail-
ures to be observed at the mid-stress levels. The resulting
plan is sensitive to the value of the constraint for ex-

pected minimum number of failures as it indirectly
determines the mid-stress levels and corresponding sam-
ple allocation. Tang [23.9] imposed constraints that limit
the probability of having probability plots with best-fit
lines crossing at the lower tails. In this way, the stress
levels and their corresponding sample allocations are
best suited to infer whether the shape parameters are
indeed different at different stress levels. Motivated by
the fact that the mid-stress level is meant for validat-
ing the assumed stress–life model, Tang et al. [23.10]
considered test plans in which the mid-stress level will
have the least influence on the slope of the stress–life
relationship plot. Although these plans are more ro-
bust, variances of the estimates at design stress for these
compromised plans may be much higher than those un-
der the two-stress-level optimum plans. To address this,
Tang and Yang [23.11] proposed a graphical approach
for planning multiple constant-stress-level ALT so that
the uncertainty involved for some estimate of interest
is not worse than that of a statistical optimum plan by
a margin determined by the experimenter before the
test. Recently, Tang and Xu [23.12] presented a general
framework for planning ALT. We shall summarize these
plans in this Section and provide a simple comparison.

There are many other papers in statistical plan-
ning of CSALT that are not presented here. Most of
the work has been summarized in Nelson [23.6] and
Meeker and Escobar [23.13]. A comprehensive bibliog-
raphy is given in Nelson [23.14]. For example, Meeter
and Meekers [23.15] presented optimal plans involving
a nonconstant shape parameter, in the case of Weibull
distribution, and Tang et al. [23.16] gave optimal plans
involving a failure-free life represented by a location
parameter.
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Notations and Assumptions

Sd, Si , Sh Stress (design, i, high) levels,
i = 1, 2, . . . , h−1

ξi
Si−Sh
Sd−Sh

: normalized stress levels,
i = 1, 2, . . . , h, so that ξh = 0, ξd = 1

πi Proportion of units tested at ξi
n Total sample size
ni Actual number of test units needed at ξi
h Total number of stress levels; also denotes

the high stress level
τi Censoring time at low Si , i = 1, 2, . . . , h
F Fisher information matrix for the plan with

a unit of n independent observations
σ Scale parameter
µ Location parameter of the smallest extreme

value distribution
µD, µH µ (design, highest test stress)
pi Probability that units tested at ξi fail before

τi
m A maximum bound
γi Expected number of failure at stress ξi
Avar[log(t)] Asymptotic variance of natural logarithm

of the estimate of a fixed percentile of
interest t

t̂0.43 The estimate of the 43rd percentile of the
time to failure; which is also the maxi-
mum likelihood estimation (MLE) of the
mean life of the smallest extreme value
distribution at design stress

23.1.1 The Common Framework

For ease of discussion and comparison, the common
assumptions and framework of these plans are:

1. The lifetime follows a Weibull distribution of which
the natural logarithm of life, y = ln(t), has a smallest
extreme-value distribution with a reliability function
given by

R(y) = exp

{
− exp

[
(y−µ)

/
σ
] }

−∞< y <+∞ , (23.1)

where µ is the location parameter and σ is the scale
parameter.

2. The scale parameter does not depend on the stress
level and;

3. The location parameter is a linear function of the
transformed stress:

µ (ξ)= α+β ξ , (23.2)

where, α, β are unknown parameters to be estimated
from test data.

4. For planning purpose, the initial guess values for σ ,
pD and pH are given.

5. Test units allocated to ξi are tested simultaneously
until τi .

6. The highest test stress is specified.
7. The test stresses are above the design stress.
8. The measure of statistical precision is given by the

asymptotic variance of the MLE of the mean life of
the smallest extreme value distribution, which is the
43rd percentile (t̂0.43), at design stress.

For test conducted at three stress levels, the above
variance is given by:

yvar = Avar
[
t̂0.43(1)

]

= [1 , 1 ,−0.577 22]F−1[1 , 1 ,−0.577 22]′ ,
(23.3)

where F is the Fisher information matrix for the plan
given below

F = n

σ2

⎛
⎜⎝

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎟⎠ ,

M11 =
3∑

i=1

πi A (ψi) ,

M22 =
3∑

i=1

πiξ
2
i A (ψi) ,

M33 =
3∑

i=1

πiC (ψi) ,

M12 = M21 =
3∑

i=1

πiξi A (ψi) ,

M13 = M31 =
3∑

i=1

πi B (ψi) ,

M32 = M23 =
3∑

i=1

πiξi B (ψi) ,

A (ψi)= 1− exp
{
− exp

[
(ψi − θ)

/
σ
]}

,
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B (ψi)=
exp(ψi )∫

0

ln(w)w exp(−w)dw

+
(

exp
{
− exp

[
(ψi − θ)

/
σ
]})

×ψi exp(ψi ) ,

C (ψi)= 1− exp
{
− exp

[
(ψi − θ)

/
σ
]}

+
exp(ψi )∫

0

ln2(w)w exp(−w)dw

+
(

exp
{
− exp

[
(ψi − θ)

/
σ
]})

×ψ2
i exp (ψi) ,

ψi = [τi − (α+βSH)]
/
σ[β (SD− SH)]

/
σ .

Note that, usually, the standardized asymptotic variance,
Svar = Avar*(n

/
σ2) is used in optimization.

23.1.2 Yang’s Approach

Yang [23.7] formulated a constrained nonlinear pro-
gramme to obtain an optimal test plan. He allowed
for varying censoring time at different stress levels and
aimed to minimize the total test duration while achiev-
ing statistical efficiency and robustness. The objective
function to be minimized consists of a weighted sum of
the standardized asymptotic variance and the product of
the test duration at the lowest stress level and the sum of
test duration; i. e.

Minimize: ω AVar
[
log(t0.43)

]+ (1−ω)τ1

∑

i

τi ,

0 ≤ ω≤ 1 ,

Subject to: τi > τ j for i < j ,
∑

i

πi = 1 ;

ξi > xi j > ξh = 0 for i < j ,

nπi pi ≥ γi for all i .

(23.4)

Yang [23.7] presented the solution for four stress lev-
els, i. e. h = 4, and γi = 10 for all i. He transformed
the above into an unconstrained optimization using
a penalty-function approach to obtain nearly optimal
plans. A similar approach is given in Yang and Jin [23.8]
with 3 stress levels, known as the three-level best-
compromised test plan, where the middle stress is the
average of the low and high stresses.

23.1.3 Flexible Near-Optimal Plans

In the above plans, the inclusion of additional stress
levels will give rise to less-precise estimates compared
to the statistically optimal two-level CSALT. For better
management of risk in planning ALT, it would be useful
to know the extent by which the variance of the percentile
of interest is inflated. For practical implementation, test
plans should also be sufficiently flexible, in that some
range of stress levels and the corresponding allocations
are provided instead of stipulating specific stress lev-
els and allocations. In the following, we present flexible
near-optimal plans proposed by Tang and Yang [23.11]
that provides the flexibility while limiting the loss in
precision. For simplicity, we assume that the censor-
ing time at all stress levels are identical, i. e. τi = T
for all i.
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Consider a solution of two-stress-level CSALT de-
picted in Fig. 23.1. The statistically optimal solutions
specify the low stress level (ξL) and the corresponding
allocation (πL), which are marked by “+” for differ-
ent pd . A possible approach in enlarging the solution
space is to consider combinations of (ξL, πL) such that
the following ratio is restricted to a maximum bound
tolerable, say m:

ln

(
Avar

[
log(t)

]

Min
{
Avar

[
log(t)

]}
)
≤ m . (23.5)

Figure 23.1 depicts the contours that enclosed (ξL, πL)
for m ranging from 0.1–2.

This principle of enlarging the solution space
can be generalized to 3SCSALT. In the following,
we give a step-by-step description on how a con-
tour plot of the solution space for 3SCSALT is
constructed.

1. For different combinations of pd and ph , the statisti-
cally optimal 2SCSALT plan with the optimal value
ofπH can be determined. By allowing the value of m
in (23.5) to vary, a range of πH as a function of m
can easily be determined. The results are depicted in
Fig. 23.2 for m= 0.1, 0.2, 0.5, 1.0, 2.0.

2. For each value ofπH , the solution space of ξM and ξL
can be obtained using the same criterion as in (23.5).
An example for πH = 0.15 is given in Fig. 23.3 for
m= 0.1, 0.2, 0.5, 1.0, 2.0. Interestingly, the solution
space of ξM and ξL is enclosed in an approximately
right-angled triangle sharing the common slope of 1
as ξL > ξM.

3. As one would usually like to ensure that ξL and ξM
are sufficiently far apart, the preferred solution will
be at the vertex of the right angle. Tracing the vertices
for different values of m, the various combinations
of ξL and ξM form a straight line, as depicted in
Fig. 23.2.

4. Repeated applications of this procedure for different
values of πH result in a plot depicting the solu-
tion space of ξL and ξM of 3SCSALT, as shown in
Fig. 23.4. In Fig. 23.4, we use the boundary values
of πH marked by A, B, C, D, E, A’, B’, C’, D’ and
E’ in Fig. 23.2, and some intermediate values of πH
(0.13, 0.18, 0.25, 0.33) to generate the correspond-
ing lines that give the preferred solutions of ξL and
ξM for different values of m.

5. The contours of various setting of m (0.1, 0.2, 0.5, 1,
2) are superimposed on these lines so that ξL and ξM

can be read off by interpolation between the lines
of πH for a given m value.

To determine πL and πM, since the main purpose
of having a middle stress is to validate the stress life
model, one may prefer minimum allocation to the middle
stress such that there are sufficient failures to detect
nonlinearity, if it exists. In this case, πM is given by

πM = γm

nFM(T )
, (23.6)

where γM is the minimum number of failures expected
under the middle stress level, and FM(T ) is the prob-
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ability of failure by the end of the test at the middle
stress.

Alternatively, as suggested by Tang [23.9], a good
planning strategy is to set the centroid of the lower
and middle stress levels, weighted by their respective
allocation, in a near-optimal 3SCSALT plan equal to
the optimal low stress in the statistical optimal plan,
i. e.

ξ3Mπ3M+ ξ3Lπ3L

π3M+π3L
= ξ∗2L

⇒ ξ3Mπ3M+ ξ3Lπ3L

= ξ∗2L

(
1−π∗H

)
, (23.7)

where the subscript numbers 3 and 2 represent the
number of stresses under which the test plans are de-
signed, superscript “*” means optimal values; note that
π3H = π∗H .

In summary, the steps in obtaining a 3SCSALT test
plan are:

• For the given inputs, solve for the optimal π∗H .• For a given value of m, obtain ξL and ξM from
Fig. 23.4 by interpolation between the lines of πH
to that corresponds to the optimal πH .• Compute πM from (23.6) or (23.7) noting that πL =
1−πM−πH .

23.1.4 Numerical Example

In this section, we give an example to show the procedure
for planning a three-stress-level CSALT given that pd =
0.0001, ph = 0.9 and n = 300, T = 300, σ = 1, and m =
0.1. These give rise to µH = 4.8698 and µD = 14.9148.

1. Solve for the statistically optimal plan: ξ2L∗ = 0.29
and πH = 0.21. (see Fig. 23.1)

2. From Fig. 23.4, with πH = 0.21 and m = 0.1, ξL =
0.38 and ξM = 0.22.

3. From (23.6), since µ(ξM) = 7.0795 and F(300) =
0.223, assuming that γM = 21, we have πM = 0.314
and πL = 0.477.

4. Alternatively, from (23.7), we have 0.22(0.79−
πL)+0.38πL = 0.29 × 0.79 which gives
⇒ πL = 0.35 , πM = 0.44.

Since the low stress levels are determined with m <

0.1, the resulting asymptotic variances should be less
than 1.1 times the best achievable variance. Note that the
sample allocation ratio is approximately 5:3:2, which is
quite different from the 4:2:1 recommended by Meeker
and Hahn [23.3]. Despite the lower allocation to the low
stress level, the expected number of failures is about
8–10 at the lower stress in these plans, which is sufficient
to make some meaningful statistical inference.

23.2 Planning Step-Stress ALT (SSALT)
The simplest form of SSALT is a partially ALT con-
sidered by Degroot and Goel [23.23] in which products
are first tested under use condition for a period of time
before the stress is increased and maintained at a level
throughout the test. This is a special case of a simple

Table 23.1 A summary of the characteristics of literature on optimal design of SSALT

Paper Problem addressed Input Output Lifetime distribution

Bai et al. [23.17] Planning two-step SSALT pd, ph Optimal hold time Exponential
Bai, Kim [23.18] Planning two-step SSALT pd, ph, shape

parameter
Optimal hold time Weibull

Khamis,
Higgins [23.19]

Planning three-step SSALT
without censoring

All parameters of
stress–life relation

Optimal hold time Exponential

Khamis [23.20] Planning m-step SSALT
without censoring

All parameters of
stress–life relation

Optimal hold time Exponential

Yeo, Tang [23.21] Planning m-step SSALT ph and a target
acceleration factor

Optimal hold time
and lower stress

Exponential

Park,
Yum [23.22]

Planning two-step SSALT
with ramp rate

pd, ph, ramp rate Optimal hold time Exponential

SSALT where only two stress levels are used. Much
work has been done in this area and literature appeared
before 1989 has been covered by Nelson [23.6], which
has a chapter devoted to step-stress and progressive-
stress ALT assuming exponential failure time. A survey
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Statistical Approaches to Planning of Accelerated Reliability Testing 23.2 Planning Step-Stress ALT (SSALT) 433

of the subsequent work from 1989 has been given in
Tang [23.24]. A summary of the work relating to opti-
mal design of SSALT is presented in Table 23.1. The
term optimal usually refers to minimizing the asymp-
totic variance of the log(MTTF), where MTTF is the
mean time to failure, or that of a percentile at use condi-
tion. As we can see from Table 23.1, with the exception
of Bai and Kim [23.18], all this work deals with expo-
nential failure time. This is due to simplicity as well as
practicality, as it is hard to know the shape parameter of
the Weibull distribution in advance.

23.2.1 Planning a Simple SSALT

We first consider a two-level SSALT in which n test
units are initially placed on S1. The stress is changed
to S2 at τ1 = τ , after which the test is continued until all
units fail or until a predetermined censoring time T . For
simplicity, we assume that, at each stress level, the life
distribution of the test units is exponential with mean θi ,
and that the linear cumulative exposure model (LCEM)
of Nelson [23.6] applies.

The typical design problem for a two-step SSALT
is to determine the optimal hold time, with a given low
stress level. In the following, we shall give the optimal
plan that includes both optimal low stress and hold time
as in Yeo and Tang [23.21].

The Likelihood Function
Under exponential failure time and LCEM assumptions,
the likelihood function under simple step-stress is

L (θ1, θ2)=
n1∏

j=1

[
1

θ1
exp

(
− t1, j

θ1

)]

×
n2∏

j=1

[
1

θ2
exp

(
− t2, j − τ

θ2
− τ

θ1

)]

×
nc∏

j=1

exp

(
− τ

θ1
− T − τ

θ2

)
, (23.8)

where the notations are defined as follows:

ni number of failed units at stress level Si ,
i = 1, 2, . . ., h,

nc number of censored units at Sh (at end of test),
ti, j failure time j of test units at stress level

Si , i = 1, 2, . . ., h,
θi mean life at stress Si , i = 1, 2, . . ., h,
τi hold time at low stress levels Si , i = 1, 2, . . ., h−1,
T censoring time.

MLE and Asymptotic Variance
The MLE of log(θ0) can be obtained by differentiating
the log-likelihood function in (23.8):

log
(
θ0
∧)=

log
(

U1
n1

)
− (1− ξ1) log

(
U2
n2

)

ξ1
, (23.9)

where

U1 =
n1∑

j=1

t1, j + (n−n1) · τ ;

and

U2 =
n2∑

j=1

(
t2, j − τ

)+ (n−nc) · (T − τ) .

From the Fisher information matrix, the asymptotic vari-
ance of the MLE of the log(mean life) at the design stress
is:

V (ξ1, τ)=
(

1
ξ1

)2

1− exp
(
− τ

θ1

)

+
(

1−ξ1
ξ1

)2

exp
(
− τ

θ1

) [
1− exp

(
− 1−τ

θ2

)] .

(23.10)

To obtain the optimal test plan, we need to express
(23.10) in terms of ξ1,τ , and other input variables. To do
this, we need to assume a stress–life relation. For illus-
tration, suppose the mean life of a test unit is a log-linear
function of stress:

log(θi ) = α+βSi , (23.11)

where α, β (β < 0) are unknown parameters. (This is
a common choice for the life–stress relationship because
it includes both the power-law and the Arrhenius relation
as special cases.) From the log-linear relation of the
mean in (23.11), we have

θ2

θ1
=

(
θ2

θ0

)ξ1

= exp (βξ1) .

And since ph = 1−exp
(
− 1

θ2

)
, it follows thatV (ξ, τ) is

given by:

V (ξ1, τ)=
(

1
ξ1

)2

1− (1− ph)
ω

+
(

1−ξ1
ξ1

)2

(1− ph)
ω
[
1− (1− ph)

1−τ
] ,

(23.12)
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where

ω≡ τ

(
θ2

θ0

)ξ1

= τ
[
exp (βξ1)

]
.

As β is unknown, another input variable is needed. We
propose using the target acceleration factor (AF) as it
is a measure of the amount of extrapolation and a time-
compression factor. AF is easier to estimate compared to
the commonly used probability of failure at design stress.
Given the time constraint that determines the maximum
test duration and some guess of the test duration if the test
were conducted at use condition, the target AF, denoted
by φ, is given by the ratio of the two, i. e.

φ = time to failure at design stress

time to failure under test plan
. (23.13)

For exponential lifetime under the LCEM assumption,
the equivalent operating time for the test duration T at
the design stress given is by θ0

(
τ
θ1
+ T−τ

θ2

)
. As a result,

the AF is:

φ = τ
θ0
θ1
+ (T − τ)

θ0
θ2

T
. (23.14)

From the log-linear stress–life relation in (23.11), with-
out loss of generality, let S0 = 0, S1 = x, S2 = 1, T = 1.
Then, (23.14) becomes:

φ = (1− τ) exp (−β)+ τ exp (−βx) . (23.15)

The optimal low stress and the corresponding hold time
can be obtained by solving the following constrained
nonlinear programme (NLP):

min: V (x, τ)=
(

1
1−x

)2

1− (1− ph)
ω

+
(

x
1−x

)2

(1− ph)
ω
[
1− (1− ph)

1−τ
]

subject to: (1− τ) exp (−β)+ τ exp (−βx)= φ ,

(23.16)

where x = 1− ξ1.
The results are given graphically in Figs. 23.5, 23.6,

with (ph, φ) on the x–y axis, for φ ranging from 10–100
and p ranging from 0.1–0.9. Figure 23.5 shows the
contours of the optimal normalized hold time τ and
Fig. 23.6 gives the contours of the optimal normalized
low stress (x). Given a pair of (ph, φ) the simultaneous
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optimal low stress and hold time can be read from the
graphs.

Both sets of contours for the optimal hold time and
the optimal low stress show an upward convex trend. The
results can be interpreted as follows. For the same p, in
situations where the time constraint calls for a higher
AF, it is better to increase the low stress and extend the
hold time at low stress. For a fixed AF, a longer test time
(so that p increases) will result in a smaller optimal low
stress and a shorter optimal hold time.

23.2.2 Planning Multiple-Step SSALT

To design optimal plans for multiple-step SSALT, we
adopt a similar idea as in CSALT where the low stress
level and its sample allocation are split into two portions.
As all units are tested in a single step-stress pattern, the
analogy of the sample allocation in a CSALT is the hold
time in a SSALT. As a result, for a three-step SSALT,
the hold time at the high stress level is kept at (1− τ)
while the hold time at low stress is split into two for the
additional intermediate stress level. In doing so, we need
to ensure that after splitting the optimal low stress of a
two-step SSALT into two stress levels, the AF achieved
in the newly created three-step SSALT is identical to
that the original two-step SSALT. Since the high stress
and its hold time remain intact, the AF contributed by
the first two steps of the three-step SSALT must be the
same as that contributed by the low stress in the original
two-step SSALT. In essence, given the target AF and
ph , we first solve the optimal design problem for a two-
step SSALT. Then, a new target AF corresponding to
the AF contributed by the low stress of the optimal two-
step SSALT is used as input to solve for a new two-step
SSALT; which, after combining with the earlier result,
forms a three-step SSALT. To achieve the new target AF,
the resulting middle stress will be slightly higher than
the optimal low stress. The new two-step SSALT uses
this middle stress as the high stress and the optimal τ as
the test duration. The optimal hold time and low stress
for a three-step SSALT can be solved using (23.16).

The above procedure can be generalized to m steps
SSALT which has m−1 cascading stages of two-step
SSALT, as it has the structure of a typical dynamic pro-
gramme. The number of steps corresponds to the stage
of a dynamic programme and the alternatives at each
stage are the low stress level and test duration.

For example, in a three-step SSALT having two cas-
cading stages of simple SSALT, the results of stage 1 of
the simple SSALT gives the optimal low stress level and
its hold time. At stage 2, this low stress level is split into

a simple SSALT that maintains the overall target AF. As
a result AF is one of the state variables which is addi-
tive under LCEM; i. e. the new target AF for stage 2 is
the AF contributed by the low stress in stage 1. From
(23.15), the AF contributed by the low stress is given by

φ′ = τ exp(−βx) . (23.17)

To solve the stage 2 NLP, this target AF needs to be
normalized by the hold time, τ , due to change to time
scale; i. e. the normalized AF, φ2 at stage 2 is given by:

φ2 = φ′/τ = exp(−βx) . (23.18)

Note that, to meet the above target AF, the middle stress
level xm should be higher than the optimal low stress in
stage 1. As a result, p2, the expected proportion of failure
at xm during τ will also increase. At the same time, for
consistency, we need to ensure that β of the stress life
model is identical to that obtained in stage 1. These
variables are interdependent and can only be obtained
iteratively. The algorithm [23.24] that iteratively solves
for p2, xm, that results in the same β is summarized as
follows.

1. Compute p(0)
2 , the expected proportion of failure at

the low stress level of stage 1:

p(0)
2 = 1− exp

(
− τ

θx

)

= 1− exp
{
− τ log

(
1

1− p

)

× exp [β (1− x)]
}
. (23.19)

2. Solve the constrained NLP in (23.16) to obtain(
τ∗(1), x∗(1), β∗(1)

)
.

3. Compute the new middle stress x(1)m

x(1)m = β∗(1)
/

⎡
⎢⎢⎣log

⎛
⎜⎜⎝

log

(
1

1−p(0)2

)

τ log
(

1
1−p

)

⎞
⎟⎟⎠+β∗(1)

⎤
⎥⎥⎦ ,

(23.20)

4. Update p2 using x(1)
m :

p(1)2 = 1− exp
{
− τ log

(
1

1− p

)

× exp
[
β
(

1− x(1)m

)] }
. (23.21)

5. Repeat steps 2 to 4, with
(

p(1)2 , φ2

)
,
(

p(2)2 , φ2

)
,(

p(3)2 , φ2

)
, . . . until

∣∣∣β∗(k)− x(k)m β

∣∣∣< ε, for some
prespecified ε > 0.
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Suppose that
(
τ∗(k), x∗(k), β∗(k)

)
are the solutions of

the scheme. The new optimal low stress and hold time
can be computed by combining the results from stages 1
and 2 to form the optimal plan for a three-step SSALT
(h = 3) as follows:

x1 = x(k)m · x∗(k) , x2 = x(k)m , τ1 = τ · τ∗(k) , τ2 = τ .

(23.22)

In general, the above scheme can be carried out recur-
sively to generate test plans for multiple-step SSALT.

23.2.3 Numerical Example

Suppose that a three-step SSALT test plan is needed to
evaluate the breakdown time of insulating oil. The high
and use stress levels are 50 kV and 20 kV, respectively,
and the stress is in log(kV). The total test time is 20 h. It is
estimated that the reliability is about 0.1 under 50 kV for
20 h (p= 0.9) and the target acceleration factor φ = 50.

Solving (23.16) gives β = 4.8823, τ2 = 0.6871 and
x = 0.5203. Using these as the inputs for the next stage,

we have τ1 = 0.4567; x1 = 0.2865 and x2 = 0.6952. As
a result, the voltages for conducting the SSALT are

S1 = exp [S0+ x1(Sh − S0)]

= exp
{
log(20)+0.2865 ×

[
log(50)− log(20)

]}

= 26.0 kV ,

S2 = exp [S0+ x2(Sh − S0)]

= exp
{
log(20)+0.6952 ×

[
log(50)− log(20)

]}

= 37.8 kV .

And the switching times for the lowest and the middle
stress are

t1 = τ120 = 9.134 h = 548.0 min ;
t2 = τ220 = 13.74 h = 824.5 min .

The three-step SSALT starts the test at 26 kV and holds
for 548 min, then increase the stress to 37.8 kV and
holds for another 276 min (=824.5–548), after which
the stress is increased to 50 kV until the end of the
test.

23.3 Planning Accelerated Degradation Tests (ADT)
For reliability testing of ultra-high-reliability prod-
ucts, ALT typically ends up with too few failures
for meaningful statistical inferences. To address this
issue, accelerated degradation tests (ADT), which
eliminate the need to observe actual failures, were
proposed. For successful application of ADT, it is
imperative to identify a quantitative parameter (degra-
dation measure) that is strongly correlated with product
reliability and thus will degrade over time. The degra-
dation path of this parameter is then synonymous
to performance loss of the product. The time to
failure is usually defined as the first passage time
of the degradation measure exceeding a prespecified
threshold.

Planning of ADT typically involve specifying the
stress levels, sample size, sample allocations, inspection
frequencies and number of inspections for a constant-
stress ADT (CSADT). More samples and frequent
inspections will result in more accurate statistical infer-
ences; but at a higher testing cost. So there is a tradeoff
between the attainable precision of the estimate and
the total testing cost. Park and Yum [23.25] and Yu
and Chiao [23.26] used precision constraints for opti-
mal planning. Boulanger and Escobar [23.27] and Yu
and Tseng [23.28] also derived cost functions accord-

ing to their test procedures. Wu and Chang [23.29]
and Yang and Yang [23.30] presented CSADT plans
such that the asymptotic variance of a percentile of
interest is minimized while the testing cost is kept at
a prescribed level. Tang et al. [23.31] gave SSADT
plans in which the testing cost is minimized while
fulfilling a precision constraint. Park et al. [23.32]
gave an SSADT plan with destructive inspections. Yu
and Tseng [23.33] presented a CSDT plan in which
the rate of degradation follows a reciprocal Weibull
distribution.

23.3.1 Experimental Set Up
and Model Assumptions

For simplicity, we consider an ADT, be it a CSADT or
SSADT, with two stress levels. Some descriptions and
assumptions are as follows:

1. The test stress Xk is normalized by Xk = Sk−S0
S2−S0

, k =
0, 1, 2, in which the Sk are functions of the applied
stresses. With such a transformation, X0 = 0 < X1 <

X2 = 1.
2. A total sample size is n of which nk are assigned to

the stress level Xk, so that the relationship between
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n and nk can be expressed by:

n =

⎧
⎪⎨

⎪⎩

2∑
k=1

nk for CSADT

nk for SSADT

. (23.23)

3. The test duration at stress Xk is τk, and the stop-
ping time of the whole test is T . The relationship
between T and τk is:

T =

⎧
⎪⎨

⎪⎩

maximum(T1, T2) for CSADT
2∑

k=1
Tk for SSADT

.

(23.24)

4. For each unit i, let Di,1, Di,2, . . . Di, j be the
recorded degradation values, which are the dif-
ferences between the initial and current value of
the degradation measurement at the preset time
points ti,1, ti,2, . . . ti, j , ti,0 = 0 < ti,1 < ti,2 < . . . <

ti, j < . . . ti,L = T ; each item is measured L1 times
at X1 and L2 times at X2. The total number of
inspections is L = L1+ L2. Given the number of in-
spections, all samples are inspected simultaneously
at equal interval ∆t so that the stress-changing time
is T1 = L1∆t and the experiment stopping time is
T = L∆t = (L1+ L2)∆t.

5. The degradation is governed by a stochastic pro-
cess [Dk(t), t ≥ 0] with drift ηk > 0 and diffusion
σ2

k > 0 at Xk. We assume that the degrada-
tion increments follow a normal distribution, i. e.
∆Di, j ∼ N

(
ηk∆ti, j , σ

2∆ti, j
)

with probability dis-
tribution function (PDF)

f
(
∆Di, j

)= 1
√

2π
√

∆ti, jσ2
exp

×

(
−
(
∆Di, j −∆ti, jηk

)2

2∆ti, jσ2

)

(23.25)

in which the drift is stress-dependent, and is given
by:

ηk = a+bXk (23.26)

and the diffusion remains constant for all stresses:

σ2
k = σ2 , (23.27)

where a, b and σ2 are unknown parameters that need
to be pre-estimated either from engineering hand-
books or other ways before experiment planning.

6. Only degradation increments are measured through-
out the test. This assumption is mild since the
products in ADT are always highly reliable and
normally no physical failures occur.

The above model is applicable to stress-drift rela-
tions that can be linearized as in (23.26). For example,
for degradation induced by humidity, (23.26) may be the
result after taking logarithm of the rate of reaction ver-
sus the logarithm of the relative humidity. In the case of
the Arrhenius model, the reaction rate is an exponential
function of the stress factor (= 1/absolute temperature);
taking logarithms on both sides of the equation results
in a linear function between the log(Drift), which is ηk ,
versus the stress factor (= 1/absolute temperature).

23.3.2 Formulation of Optimal SSADT Plans

Here, we follow Tang et al. [23.31], in which an optimal
SSADT plan is obtained such that the total test expense
is minimized while the probability that the estimated
mean lifetime at use stress locates within a predescribed
range of its true value should not be less than a precision
level p. For simplicity, the decision variables are the
sample size and the number of inspections at each stress
level, which also determine the test duration for a given
inspection interval. The context of discussion can be
generalized to that of a CSADT plan by noting that

πk =
⎧
⎨

⎩

nk
n for CSADT ,

Tk
T for SSADT .

(23.28)

qk =
⎧
⎨

⎩

Tk
T for CSADT ,

nk
n for SSADT .

(23.29)

For CSADT, q1 = 1, 0 < q2 ≤ 1, while qk = 1 for
SSADT. With this definition, the proportion of sample
allocation in CSADT is analogous to the holding time
in SSADT. This is consistent with the analogy between
CSALT and SSALT.

Precision Constraint in SSADT Planning
Suppose that the mean lifetime at use condition, µ(X0),
is of interest in our planning. To obtain an estimate close
to its true value with a certain level of confidence, we
impose a precision constraint by limiting the sampling
risk in estimating µ(X0) with its MLE, i. e. %µ(X0), to be
reasonably small. Mathematically, this can be expressed
as follows:

Pr

[
µ (X0)

c
≤%µ (X0)≤ cµ (X0)

]
≥ p , (23.30)
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where c > 1 and p are given constants. The asymptotic
variance of %µ (X0) is needed for further explanation of
(23.30). From (23.25), the log-likelihood for an individ-
ual degradation increment Di, j is

ln Li, j = − 1

2
ln(2π)− 1

2
ln

(
∆ti, j

)− ln σ − U2
i, j

2
,

(23.31)

where

Ui, j =
(
∆Di, j −∆ti, jηk

)
√

∆ti, jσ
,

⎧
⎨

⎩
k = 1 if j ≤ L1 ,

k = 2 otherwise .

Hence, the log-likelihood function for all degradation
increments of n items is given by

ln L =
n∑

i=1

L∑

j=1

ln Li, j . (23.32)

Given the degradation critical value Dc, µ (X0) is given
by the ratio of this threshold value over drift at use
condition:

µ (X0)= Dc/η0 = Dc/a . (23.33)

Let
{%a,%b,%σ} be the MLE of {a, b, σ}, then, by the

invariant property, the MLE of µ (X0) is given by:

%µ (X0)= Dc/%η0 = Dc/%a (23.34)

Then the asymptotic variance of %µ(X0) can be obtained
by:

Avar [%µ(X0)] = %h′F−1%h , (23.35)

where h =
(
∂%µ(X0)

∂a ,
∂%µ(X0)

∂b ,
∂%µ(X0)

∂σ

)′
, and F is a Fisher

information matrix displayed as follows, in which the
caret (ˆ) indicates that the derivative is evaluated at
{a , b , σ} = {%a ,%b ,%σ}. We make use of E

(
Ui, j

)= 0
and Var

(
Ui, j

)= 1

F =

⎛
⎜⎜⎜⎝

E
(
− ∂2 ln%L

∂a2

)
E
(
− ∂2 ln%L

∂a∂b

)
E
(
− ∂2 ln%L

∂a∂σ

)

E
(
− ∂2 ln%L

∂b2

)
E
(
− ∂2 ln%L

∂b∂σ

)

symmetrical E
(
− ∂2 ln%L

∂σ2

)

⎞
⎟⎟⎟⎠

= n

%σ
2

⎛
⎜⎜⎜⎜⎜⎝

L∆t ∆t
2∑

k=1
Xk Lk 0

∆t
2∑

k=1
X2

k Lk 0

symmetrical 2L

⎞
⎟⎟⎟⎟⎟⎠

.

Thus we have

Avar [%µ(X0)]

= %σ2

n

D2
c

%a4

⎛
⎜⎜⎜⎜⎜⎝

2∑
k=1

X2
k Lk

L∆t
2∑

k=1
X2

k Lk −∆t

(
2∑

k=1
Xk Lk

)2

⎞
⎟⎟⎟⎟⎟⎠

.

(23.36)

Because the MLE is asymptotically normal and consis-
tent, for large n, approximately we have

%µ (X0)∼ N
{

[µ (X0)] , Avar [%µ (X0)]
}
, (23.37)

which can be rewritten as

%µ(X0)

µ(X0)
∼ N

(
1 ,

%σ2

n%a2
Q

)
. (23.38)

From (23.30), we have

Pr

(
1

c
≤ %µ(X0)

µ(X0)
≤ c

)
≥ p . (23.39)

This translates into the precision constraint

Φ

(
(c−1)

√
n

%σ
%a
√

Q

)
−Φ

⎛

⎝

(
1
c −1

)√
n

%σ
%a
√

Q

⎞

⎠≥ p , c > 1 ,

(23.40)

whereΦ(·) is the cumulative distribution function (CDF)
of the standard normal distribution and

Q =
∑2

k=1 X2
k Lk

L ×∆t ×
∑2

k=1 X2
k Lk −∆t ×

(∑2
k=1 Xk Lk

)2 .

(23.41)

Cost Function in SSADT Planning
Typical cost components for testing consists of:

1. Operating cost, which mainly comprises the
operator’s salary and can be expressed as
∆t(Co1L1+Co2L2), where Cok is the salary of the
operator per unit of time at Xk.

2. Measurement cost, which includes the cost of using
measuring equipments and the expense of test-
ing materials. Because depletion of equipments at
higher stress is more severe than that at lower
stress, measurement cost can be generated as
n(Cm1L1+Cm2L2), where Cmk is the cost per meas-
urement per device at Xk.
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3. Sample cost, which is related to the number of sam-
ples, and can be formulated as Cdn, where Cd is the
price of an individual device.

So, the total cost (TC) of testing is:

TC (n , L1 , L2|X1 ,∆t)

=∆t (Co1L1+Co2L2)

+n (Cm1L1+Cm2L2)+Cdn ,

Cok > 0 ,Cmk > 0 ,Cd > 0 . (23.42)

In some experiments, the lower test stress can be fixed
because of practical limitations. For example, the tem-
perature of a test oven can only be adjusted within a small
range or even fixed at some particular values. Given
the lower stress X1, the two-step-stress ADT planning
problem is to determine the sample size n, number of
inspections L1 and L2. The problem is formulated as:

Min: TC (n , L1 , L2|X1 ,∆t)

=∆t (Co1L1+Co2L2)

+n (Cm1L1+Cm2L2)+Cdn ,

Cok > 0 ,Cmk > 0 ,Cd > 0 ;

s.t.: Φ

(
(c−1) ·√n
%σ
%a ·

√
Q

)
−Φ

(
( 1

c −1) ·√n
%σ
%a

·√Q

)

≥ p , c > 1 . (23.43)

Due to the simplicity of the objective function and the
integer restriction on the decision variables, the solu-
tion can be obtained by complete enumerations or using
search methods given in Yu and Tseng [23.28].

23.3.3 Numerical Example

In this example, the operating temperature of a light-
emitting diode (LED) in use condition is 25 ◦C.
Historical experience indicates that the highest tem-
perature that will not affect the failure mechanism is
65 ◦C. The lower test stress is set at 45 ◦C, which can be

normalized by

X1 = S1− S0

S2− S0

= 1/(45+273)−1/(25+273)

1/(65+273)−1/(25+273)
= 0.53 .

This normalization is consistent with the Arrhenius
model in which stress takes the reciprocal of temper-
ature.

To set the inspection time interval, we refer to
a similar CSADT plan conducted at 25 ◦C in Yu and
Chiao [23.26], which suggested an optimal inspection
time interval of 240 h. Here, in view of adopting a higher
stress, ∆t should be shorter as the degradation rate is
higher. Here, ∆t = 120 h to capture more degradation
information. The operation and measurement coeffi-
cients are set at Co1 = 0.3 ,Co2 = 0.4 ,Cm1 = 4 and
Cm2 = 4.5.

Here the c and p values represent the dependence on
sampling risk. Smaller sampling risk implies smaller c
and relatively larger p and vise versa. As an illustration,
we present the case of c= 2, p= 0.9 by setting%σ = 10−4

(which is comparable with the value used in Yu and
Chiao [23.26]).

Substitute this information into (23.42) and (23.43),
we have:

Min: TC (n , L1 , L2)

= 120 · (0.3 · L1+0.4L2)

+n · (4L1+4.5L2)+86n

s.t.: Φ

( √
n

100
√

Q

)
−Φ

(
− 1

2

√
n

100
√

Q

)
≥ 0.9 ,

where Q = 0.532L1 + L2/120
[
(L1 + L2)(0.532L1 +

L2)− (0.53L1+ L2)2
]

.
This plan puts 16 samples at 45 ◦C for 3240 h, after

which the temperature is increased to 65 ◦C and held for
720 h before the end of the test. Measurements are taken
at 120 h interval.

23.4 Conclusions

In this chapter, literature surveys and statistical ap-
proaches for planning three types of accelerated
reliability testing, namely, constant-stress accelerated
life tests, step-stress accelerated life tests and step-stress
accelerated degradation tests, are presented. We only
focus on literature concerning the above three prob-

lems since the 1990s. A more comprehensive survey
can be obtained from Nelson [23.14]. The general ap-
proach taken in solving for the optimal plan is to derive
the asymptotic variance (or its approximation) of a per-
centile of interest at use condition and minimize it
subject to a set of constraints. The constraints either
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help to define the logical solution space or help to nar-
row the solution space for ease of finding the solution.
For more general considerations, the approach presented

in Tang and Xu [23.12] can be adopted to generalize the
current models so that other objectives and constraints
can be incorporated.
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End-to-End (
24. End-to-End (E2E) Testing and Evaluation

of High-Assurance Systems

U. S. Department of Defense (DoD) end-to-end
(E2E) testing and evaluation (T&E) technology
for high-assurance systems has evolved from
specification and analysis of thin threads, through
system scenarios, to scenario-driven system
engineering including reliability, security, and
safety assurance, as well as dynamic verification
and validation. Currently, E2E T&E technology
is entering its fourth generation and being
applied to the development and verification of
systems in service-oriented architectures (SOA)
and web services (WS). The technology includes
a series of techniques, including automated
generation of thin threads from system scenarios;
automated dependency analysis; completeness
and consistency analysis based on condition–event
pairs in the system specification; automated test-
case generation based on verification patterns;
test-case generation based on the topological
structure of Boolean expressions; automated
code generation for system execution as well as
for simulation, automated reliability assurance
based on the system design structure, dynamic
policy specification, analysis, enforcement and
simulation; automated state-model generation;
automated sequence-diagram generation; model
checking on system specifications; and model
checking based on test-case generation. E2E T&E
technology has been successfully applied to several
DoD command-and-control applications as well
civilian projects.
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The Department of Defense (DoD) end-to-end testing
and evaluation (E2E T&E) project started in 1999 when
the DoD was involved in the largest testing project ever,
i.e, year 2000 (Y2K) testing. During Y2K testing, it
was discovered that, even though DoD had many testing
guidelines, most of them only addressed unit testing, and
few were available for integration testing, but Y2K test-
ing involved mainly integration testing, and thus needed
E2E T&E guidelines.

Even though many techniques, such as inspection
and program verification, are available for evaluating
system reliability and quality, testing was and is the
primary means for reliability and quality assurance. Fur-
thermore, in practice, integration testing is often the
most time-consuming and expensive part of testing. It
is common to find software development projects with
50–70% of effort on testing, and 50–70% of the testing
effort on integration testing. A review of the literature
on integration testing shows that most integration testing
techniques are either a methodology, such as incremental
integration, top-down, and bottom-up integration [24.1],
or are based on specific language or design structures of
the program under test [24.2–5]. These techniques are
useful, but are applicable to software written using the
related techniques only. For example, an integration test-
ing technique for an object-oriented (OO) program using
Java may not be applicable to the testing of a legacy
program using the common business-oriented language
(COBOL). It may not be applicable to a C++ program
because Java has no pointers but C++ does.

Due to these considerations, DoD initiated a project
on E2E T&E in 1999 [24.6], intended to verify the
interconnected subsystems as well as the integrated sys-
tem. E2E T&E is different from module testing where
the focus is on individual modules and is similar to,
yet different from, integration testing where the fo-
cus is on the interactions among subsets of modules.
Since 1999, E2E T&E has evolved from thin-thread
specification and analysis, to scenario specification and
analysis, and to scenario-driven system engineering
(SDSE), and from SDSE to testing and verification of
web services (WS) in a service-oriented architecture
(SOA).

This paper is organized as following. Section 24.1
covers the history and evolution of E2E T&E and sce-
nario specification. Section 24.2 presents an overview
of the third and fourth generations of E2E T&E tech-
niques. Section 24.3 elaborates static analyses, including
model checking, completeness and consistency (C&C)
analyses, and test-case generation. Section 24.4 presents
automated test execution by distributed agents and how
simulation of concurrent scenarios can be executed. Sec-
tion 24.5 discusses policy specification and enforcement,
which can be used to enforce safety and security poli-
cies, as well as dynamic verification and validation.
Section 24.6 presents the reliability model for dynamic
reliability assurance. Section 24.7 outlines the applica-
tion of E2E T&E in SOA. Finally, Sect. 24.8 concludes
this paper.

24.1 History and Evolution of E2E Testing and Evaluation

This section briefly describes the evolutionary develop-
ment of the new generations of E2E T&E. Table 24.1
depicts the four generations of E2E T&E, their appli-
cation periods, and the signature techniques in each
generation.

24.1.1 Thin-Thread Specification
and Analysis – the First Generation

The genesis of the DoD E2E T&E is thin-thread specifi-
cation and analysis. This is based on the lesson learned
from DoD Y2K testing. At that time, it was discov-
ered that the DoD did not have an integration testing
guideline that could be used for a variety of applica-
tions written in a variety of programming languages.
Most existing integration techniques are either mainly

of high-level concepts (such as those that used an in-
cremental manner to perform integration testing) or are
applicable to specific design structures or programming
languages only, e.g., an integration testing techniques for
object-oriented (OO) programs. Thus, there is an imme-
diate need for an integration testing guideline that can be
used by a majority of DoD organizations and services.

While no such DoD integration testing guidelines
are available, it was discovered that most DoD orga-
nizations used the concept of thin threads to perform
integration testing. A thin thread is essentially an exe-
cution sequence that connects multiple systems during
system exercise and execution, and most organizations
reported their Y2K testing effort in terms of the num-
ber of thin threads successfully executed and tested. In
other words, thin threads were successfully used as the
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Table 24.1 Evolution of E2E T&E techniques

Generations Application period Signature techniques

First 1999–2002 Thin thread specification and analysis techniques

Second 2001–2003 Scenario specification, analysis, and pattern verification techniques

Third 2003–present Scenario specification and analysis, Scenario-driven system engineering, including reliabil-
ity, security, and risk analysis; modeling and simulation

Fourth 2004–present Scenario specification and analysis, and scenario-driven system engineering in service-
oriented architecture with dynamic composition and recomposition

principal technique for Y2K integration testing. Integra-
tion testing based on thin threads has many advantages
including:

• Thin threads are independent of any application;• Thin threads are independent of any programming
languages;• Thin threads are also independent of any specific
design structure;• Thin threads can be used early during system de-
velopment and late during system integration testing;
and• Thin threads can be easily understood by a vast
number of DoD engineers. Thus, a DoD integra-
tion testing based on thin threads becomes a viable
candidate for an integration guideline.

However close examination of DoD Y2K testing effort
also revealed some important weakness of thin threads:

• Most thin threads were specified without a consistent
format or using a localized format. In other words,
different groups used different formats to specify
thin threads;• Most thin threads were developed manually and
placed in an Excel file and thus were rather expensive
to develop and maintain;• The number of thin threads needed for successful
integration testing was not known and thus some or-
ganizations used an extensive number of thin threads
(such as thousands of thin threads) while some used
only few (such as four to five) for a large application;• The quality of thin threads was not easy to deter-
mine as they were developed manually and verified
manually.

Thus, the first step of DoD E2E T&E focuses on the
following issues:

1. The development of a consistent format for specify-
ing thin threads. Because many thin threads share
certain commonality with other thin threads, the
DoD E2E guideline also suggests the organization of

thin threads into a hierarchical thin-thread tree with
related thin threads grouped together as a sub-tree in
the thin-thread tree;

2. The development of a tool so that thin threads can be
analyzed to ensure that these thin threads meet the
minimum requirements;

3. The development of a guideline to determine the
number of thin threads needed for an application;
specifically, assurance-based testing (ABT) was de-
veloped to determine the number of thin threads
needed for a certain system quality.

This first-generation DoD E2E T&E also assumes
that each individual, participating system has been tested
before they are subject to the DoD integration testing.

Several related techniques to thin threads have
also been developed, including functional regression
testing [24.7], automated dependency recognition and
analysis, risk analysis, and test coverage based on spec-
ification of thin threads. Three versions of the DoD E2E
tools have been developed and experimented with in the
period 1999–2002. This experimentation showed that,
once the thin-thread tree is specified, it is straightforward
to develop test cases to run the integrated system.

24.1.2 Scenario Specification and Analysis –
the Second Generation

During 2001–2002, experimentation of the DoD thin-
thread tools revealed several serious shortcoming of thin
threads:

• The number of thin threads needed is often too
large to be manually developed even if an automated
support tool is available; and• Many thin threads differ only slightly from each
other as they addressed the same similarity features
and functionality of the application.

These shortcomings are due to the fact that each thin
thread represents a specific execution sequence while
a typical DoD application may have numerous execution
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sequences. Thus, it is expensive and time-consuming
to specify these thin threads even with automated tool
support. To address these problems, it was discovered
that it is possible to add control constructs such as if-
then-else and while into thin threads. However, adding
these constructs will change the meaning of thin threads
because such a modified thread no longer represents one
execution sequence, but multiple execution sequences.
In other words, the modified thread is no longer a thin
thread as defined by the DoD Y2K testing project, and
the modified thread is called a scenario, for lack of an
alternative, better names.

DoD E2E T&E is changed from the specification
and analysis of thin threads to the specification and
analysis of system scenarios; furthermore, techniques
are developed so that thin threads will be automatically
generated once system scenarios are specified. The fact
that thin threads can be automatically generated from
E2E scenarios makes them different from unified mod-
eling language (UML) use cases. While UML use cases
also describe system scenario from an external point
of view, a use case does not need to be able to gener-
ate thin threads for testing, furthermore the E2E system
scenarios can be used early in the development life cy-
cle as well as late for integration testing and regression
testing.

The original DoD E2E T&E techniques, such as
automated dependency recognition and analysis, test
coverage, risk analysis, functional regression testing,
are modified so that they are applicable to the E2E sys-
tem scenarios. Furthermore, several versions of tools
were developed to support scenario specification and
analysis.

Experiments with second-generation DoD E2E T&E
were carried out on several projects, including a testing
project for a high-availability communication proces-
sor. The requirements of a sample telecommunication
processor were first translated into system scenarios,
then the tool automatically generate a large number of
thin threads from these scenarios, and finally an en-
gineer developed test cases based on the thin threads
generated. It was discovered that translating the original
requirements into system scenarios is much easier than
specifying the thin threads from the same requirements,
and generating test cases from the thin threads gener-
ated is straightforward. The engineers involved in these
experimentation also expressed the advantage of this ap-
proach over their current approach. It was much more
difficult to develop test cases from the system require-
ments using their current approach, and the DoD E2E
approach is much more structural and rigorous while

saving them time and effort in developing test cases. In
conclusion, second-generation DoD E2E T&E achieved
its original goal of assisting test engineers to perform
integration testing efficiently and effectively.

Several other new techniques were developed and
discovered:

1. The system scenarios can be specified formally and
subjected to a variety of formal analyses, not just the
dependency analysis and risk analysis developed in
the first generation of the E2E tool.

2. Systems often exhibit patterns in their behavior and
these patterns can be rather useful for automated
test-script generation.

3. As the developers of DoD E2E T&E always sus-
pected, E2E techniques can also be useful in design
and analysis rather than for integration testing only.
This was confirmed in early 2003, and after hearing
the briefing of the E2E T&E, a DoD organization
started using the E2E T&E techniques for specifying
and analyzing its command-and-control system.

Formalized scenario specification
The system scenario in DoD E2E T&E can be for-
malized in two ways: the first concerns the elements
in the scenario, while the second concerns the process
aspect of the scenario. The first aspect is formalized us-
ing the the actor, condition, data, action, timing, and
event (ACDATE) model [24.8]. Using the ACDATE
model, the specification of the software under devel-
opment is described by its five model elements and their
relationships.

• An actor is a model element that represents a system
or its component with a clear boundary that interacts
with other actors.• A condition is a predicate on data used to determine
the course of a process taken by actors. Conditions
can be preconditions and post-conditions represent-
ing external and internal conditions and situations.
Internal conditions represent the states of all system
objects of interest, and external conditions can be
network and database connections• A data is an information carrier that represents the
internal status of actors.• An action is a model element that represents an
operational process to change the internal status
of an actor. Actions are performed when the pre-
conditions are satisfied and events occur. Typically
an action is
a brief atomic computation such as
– Assignment: sets the value of a variable,

Part
C

2
4
.1



End-to-End (E2E) Testing and Evaluation of High-Assurance Systems 24.1 History and Evolution of E2E Testing and Evaluation 447

– Call: calls an operation on a target object,
– Create: creates a new object,
– Destroy: destroys an object,
– Return: returns a value to a caller.
– Send: generates an event, outgoing data,
– Terminate: self-destruction of the owning object.• The timing is an attribute of an actor, data, condition,
event and action or behavioral model elements that
describe their static or dynamic time information.• An event is a model element that represents an ob-
servable occurrence with no time duration. Events
can be internal and external occurrences that impact
on, or are generated by, system objects such as in-
coming data (inputs), external action, and internal
method call/message.

Once the specification of the software under devel-
opment is represented by these five components and their
relationships, the execution steps can be constructed us-
ing control constructs such as if-then-else and while-do,
as shown in the following example. Figure 24.1 illus-
trates a simple scenario: “when both the driver and
passenger door are locked, if remote controller is pressed
for unlock, then the driver door will be opened”, in the
design of a car alarm system. In this scenario, five actors,
one condition, one data, and one action are used.

Once the system scenario are specified, model
checking, test-case generation, automated code gener-
ation, policy-enforcement-based dynamic testing, and
simulation can be performed.

An important attribute is that scenarios can be speci-
fied in a hierarchical manner. The tester can first specify
system scenarios at the highest level of abstraction. Once
obtained, scenarios can be decomposed to show low-

Condition

Actors

usingACTOR:Alarm
usingACTOR:Horn
usingACTOR:DriverDoor
usingACTOR:PassengerDoor
usingACTOR:Trunk

if(CONDITION:DriverDoor,DriverDoorIsLocked ��CONDITION:PassengerDoor,PassengerDoorIsLocked)
then
{

do ACTION:Alarm,TurnOnAlarm�
do ACTION:Horn.MakeHornBeepOnce(DATA:Horn,HornStatus)

}
else
{

do ACTION:Horn.MakeHornBeepThreeTimes(DATA:Horn,HornStatus)
}

Action Data

Fig. 24.1 A sample scenario in the ACDATE language. Once the system scenarios are specified, model checking, test-case
generation, automated code generation, policy-enforcement-based dynamic testing, and simulation can be performed

level details. This process can continue until scenarios
are detailed enough for the T&E purpose. Furthermore,
scenarios can be organized in a scenario tree where
a group of related scenarios form a high-level scenario
group [24.9, 10]. This feature is useful for testing an
system of systems (SoS) because it often has subcom-
ponents that interact with each other, and some of these
components are legacy systems while others may be new
systems that have just been introduced. Organizing sys-
tem scenarios in a hierarchical manner facilitates test
reuse and matches the hierarchical structure of the SoS.

Pattern Analysis
Even though a system may have hundreds of thousand
scenarios, it may have only a few scenario patterns.
For example, a commercial defibrillator has hundreds
of thousand of scenarios, however, most (95%) of these
scenarios can be classified into just eight scenario pat-
terns [24.11]:

• Basic pattern (40%),• Key-event-driven pattern (15%),• Timed key-event pattern (5%),• Key-event time-sliced pattern (7%),• Command–response pattern (8%),• Look-back pattern (6%),• Mode-switch patten (8%), and• Interleaving pattern (6%).

This provides an excellent opportunity for rapid veri-
fication because scenarios that belong to the same pattern
can be verified using the same mechanism, except per-
haps with different parameters such as timing and state
information. This can save significant time and effort for
implementation of test scripts.
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For example, suppose a system has 7000 scenar-
ios, and if 15% of these scenarios belong to a specific
pattern, these 1050 (7000 × 0.15) scenarios can be
tested using the same verification software with in-
dividualized parameters. Thus, the productivity gain
can be significant and industrial application of this
approach showed that 25–90% effort reduction is pos-
sible [24.12].

Another significant advantage of this approach is
the size reduction achieved using this approach. Indus-
trial applications and experiments have indicated that
the average length of code for test scripts reduced from
1380 lines of code (LOC) per scenario to 143 LOC per
scenario using this approach, corresponding to a size
reduction of 89.6%. If we assume that an expert test en-

Timeline

Pre-condition

Key-event

Key timeout Timeout (optional)

P

R

t 0

t 1 t 2

Fig. 24.2 Timed key-event-driven requirement pattern

Verifier Scenario

–m_ScenarioList
–m_MonitorList

+ ProcessEvent()
+ initalize()
+ addScenario()
+ allAllScenarios()
+ addAllLogicalWatchPoints()
+ recordPass()
+ recordFail( )
+ recprdAllPass()
+ reportError()
+ processLogicalWatchPoint()
+ reportVerificationTime()
+ reportStatus()

+ precondition()
+ postcondition()
+ isTimeout()
+ getScemaropState()
+ getActivationTime()
+ getScenarioID()
+ setScenarioID()
+ setScenarioState()
+ setActivationTime()

–m_State
–m_ID
–m_AdtivatinTime
–m_AdjustedTimeout

VerificationPattern

VP_TimedKeyEventDriven

+ processEvent()

1 n

SP_TimedKeyEventDriven

+ durationExpired()
+ isTimeout()
+ keyEventOccured()
+ precondition()
+ postcondition()

Fig. 24.3 Class diagram of the timed key-event-driven requirement
pattern

KeyEventOccured/[SetActivationTime]

Check Pre-Condition

Check Post-Condition

Check for
Key-Event PreCondition()

 == trueDurationExpired/
[report not
exercised]

IsTimeout() ==
true/[report fail]

PostCondition() == true/
[report success]

Fig. 24.4 Timed key-event-driven verification pattern

gineer can develop 1000 LOC of test script each week,
the effort reduction achieved by using this approach is
significant.

The following illustrate this concept for a timed key-
event pattern.

Figure 24.2 shows a timed key-event-driven scenario
pattern that includes two timing constraints for three
events:

• Within the duration from t0 to t1 and after the key
event, if event P occurs, then event R is expected to
occur before t2.

As a typical example in an implantable defibril-
lator, when the device detects a heart problem, the
capacity must be charged before it can apply a ther-
apy to the patience, and this scenario shows three
events (detection, capacity charged, and therapy ap-
plied), and the timing constraints between these three
events.

Timed key-event verification patterns.
Name. Timed key-event-driven verification pattern
Description. The timed key-event-driven verification
pattern is used to verify requirements that can be repre-
sented using the timed key-event-driven scenario pattern
shown in Fig. 24.3. It provides an interface to decide if
the duration has expired.
Verification state machine. Unlike the basic verifica-
tion pattern, which starts checking the pre-condition
right away, the verification process here checks the
pre-condition within the duration after the key event oc-
curs. The verifier can report “not exercised” if it failed
to verify the pre-condition within this duration. Fig-
ure 24.4 shows an example of the timed key-event-driven
verification pattern.
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24.1.3 Scenario-Driven System
Engineering – the Third Generation

Once system scenarios are formalized and experi-
mented, DoD realized another need, i. e., can DoD E2E
technology be useful for system engineering and system
development? Traditional system engineering focuses
on the following aspects:

• Reliability analysis;• Safety analysis;• Security analysis;• Simulation, including distributed simulation and
code generation;• Verification and validation (V&V).

The DoD E2E already focused on V&V, and thus the
quest is to extend the E2E technology to address the
other aspects of system engineering. The rest of the
paper will focus on

• Distributed simulation and code generation will be
discussed in Sect. 24.4;• Safety analysis: traditional safety analysis includes
event analysis, event sequence and fault-tree anal-
ysis, while modern safety analysis includes static
model checking and dynamic simulation anal-
ysis using executable policies. Model checking

will be discussed in Sect. 24.1 and policy spec-
ification and enforcement will be discussed in
Sect. 24.6;• The DoD E2E security analysis is based on speci-
fication security policies and uses the simulation to
evaluate the system vulnerability by verifying the
security policies at runtime. These will be discussed
in Sects. 24.4 and 24.6.• Reliability analysis: it turns out that system scenarios
are useful for both static and dynamical reliability
analyses, and this will covered in Sect. 24.6.

24.1.4 E2E on Service-Oriented
Architecture – the Fourth
Generation

Currently, E2E T&E technology is being applied to the
emerging SOA and web services (WS) platforms where
more dynamic features are required, including dynamic
composition, recomposition, configuration, reconfigu-
ration, V&V, reliability assurance, ranking of WS, and
methodologies that assess the WS. The fourth gener-
ation of E2E T&E has the same basic techniques but
is implemented on a different software architecture.
The basic techniques in the third and fourth genera-
tions of E2E T&E will be discussed in Sects. 24.3–24.7
and the SOA-specific techniques will be presented in
Sect. 24.8.

24.2 Overview of the Third and Fourth Generations of the E2E T&E

This section outlines the major components of the ba-
sic techniques in the third and fourth generations of

Applying scenario
specification language User requirements Applying policy

specification language

Specification in scenarios or thin-threads Policies in policy specification language

System
evaluation

Static
analysis

Code
generation Simulation Service-oriented

architecture
Policy
enforcement

Reliability &
availability

Security
& risk

Model
checking

C&C
checking

Test case
generation

Dynamic
composition

Dynamic
verification

Fig. 24.5 The overall development and E2E T&E

the E2E T&E. As shown in Fig. 24.5, the develop-
ment process starts from the user requirements, which
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is then formalized into the specification in the ACDATE
scenario language, consisting of a sequence of actors,
conditions, data, actions, timings, and events. Because
scenarios are developed directly from the requirements,
they are independent of any programming languages, de-
sign techniques, or development processes, such as the
waterfall model, or agile development processes such as
extreme programming [24.13].

Based on the scenario specification, static analy-
sis, automated code generation, simulation, and system
evaluation can be performed. E2E T&E also supports
the service-oriented architecture (SOA) where software
components are defined by standard interfaces that al-
low dynamic composition of new services based on
existing services. On the other hand, the policies can
be extracted from the user requirements and presented
in a policy specification language. A policy-based sys-
tem can be developed and policies are used to verify
the behavior of the system dynamically. Static analy-
sis, simulation, and code generation can be applied on
policy specification.

Static analysis. Once the system is specified in sce-
narios, various analysis techniques [24.9, 14, 15] can be
used to statically analyze the specification, for exam-
ple, model checking and C&C. These analyses help the
designer to make informed and intelligent decision in
the requirement and design phases of project develop-
ment [24.7, 13, 15]. In other words, the E2E T&E tool
can be used early in the life cycle, during, and throughout
the rest of the life cycle, including during operation and
maintenance. Several methods can be applied to perform
model checking, for example, Berkeley lazy abstraction
software verification tool (BLAST) [24.16] developed
at the University of California at Berkeley and C&C
analysis [24.11]. In the process of model checking, both
positive and negative test cases can be generated [24.17].
The positive test cases are used to test if the system gen-
erates correct output for valid inputs, while the negative
test cases are used to test if the system does not gen-
erate an undesired output. An undesired output is one
that could cause an undetected error or an unacceptable
consequence.

The E2E process also supports rapid test-case gen-
eration by classifying system scenarios into patterns,
where each pattern has a corresponding test case that
can be parameterized to test all the system scenarios be-
long to the pattern. This approach promotes test-case
reusability and reduces the cost of test-script genera-
tion significantly [24.18]. This approach has been used
successfully to test commercial real-time safety-critical

embedded medical devices such as pacemakers and
defibrillators.

Code generation. Once the model is verified, the auto-
mated code-generation tool can be applied to generate
the executable directly from the scenario specification.
Code generation can also be performed in the simulation
framework.

Simulation. Simulation is a practical way to prove the
design idea and assess the performance of complex sys-
tems dynamically [24.19]. The traditional simulation is
done in a specify-and-code or model-and-code manner,
which means that, in the simulation process, engineers
first construct the target system model and then de-
velop the simulation code to run the simulation. This
approach is expensive and inflexible. The automated
code generation in E2E T&E environment can perform
model-and-run or specify-and-run simulation. In other
words, once the scenario model is constructed, no ad-
ditional simulation coding effort is needed to run the
simulation. Even the real target system’s code can be au-
tomatically generated from the system model with little
or no human involvement, because the same automated
code-generation tool is applied to generate the real sys-
tem code and simulation code. In E2E simulation, once
scenarios are available, the system is executed in a simu-
lation environment by tracing the conditions and actions
in the scenarios. Simulation can be used together with
other analyses to prove the ideas and features of the
system design. For example, simulation can be used to-
gether with timing analysis to determine if the system
satisfies the timing requirements. Furthermore, multiple
scenarios can be simulated at the same time to determine
the interaction of these scenarios. The E2E tool supports
distributed test execution by providing the architecture
with a test master and test agents. The test master is re-
sponsible for managing test scenarios and test scripts,
and sending test commands to test agents for remote
execution. Test agents are responsible for sending test
commands to the system under test for test execution,
collecting and data analysis, and for reporting test results
to the test master.

Policy enforcement and dynamic verification. A po-
licy-based system allows the requirements and the
specification to be modified dynamically. The typical ap-
plication of a policy-based system is in dynamic safety
and security enforcement where the safety and security
of a system can change from time to time. A policy-
based system is also useful when the system is dealing
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with a dynamically changing environment or the func-
tional requirements can change from time to time. For
example, the initial system has been programmed for an
application temperature range of 0–100 degrees. If the
range is later extended to 0–150 degrees, a policy-based
implementation does not need to modify the program
code and regenerate the executable code. Only the policy
data need be updated and reloaded. Policy enforce-
ment can be applied as a dynamic V&V method. In
fact, many functional requirements of a system can be
extracted as policy requirements. For example, array in-
dex range checking, probability value range checking,
and execution-order checking can be written as poli-
cies. As a result, policy enforcement can dynamically
check the validity of computing. Policy enforcement is
particularly useful in detecting bugs that are difficult to
catch during unit testing and those with complicated in-
teractions due to concurrent threads and processes in
simulation.

System evaluation. E2E T&E supports both static and
dynamic analyses of reliability, availability, security,
risk, timing, usage, dependency, and the effectiveness
of test cases. The evaluation results can be applied im-
mediately to guide subsequent testing. For example,
according to the number of faults each test case detects,

the effectiveness of the test cases can be ranked dynami-
cally. In subsequent testing, the more effective test cases
will be applied first in testing. The reliability evaluation
results can be applied in selecting components that need
to be replaced dynamically.

Service-oriented architecture. The service-oriented ar-
chitecture (SOA) considers a software system consisting
of a collection of loosely coupled services. These ser-
vices can make use of each other services to achieve
their own desired goals and end results. Simple services
can cooperate in this way to form a complex service.
Technically, a service is the interface between the pro-
ducer and the consumer. From the producer’s point of
view, a service is a function that is well defined, self-
contained, and does not depend on the context or state of
other functions. In this sense a service is often referred to
as a service agent. The services can be newly developed
applications or just wrapped around existing legacy soft-
ware to give them new interfaces. From the consumer’s
point of view, a service is a unit of work done by a service
provider to achieve desired end results for a consumer.
The next generation of E2E T&E will deal with SOA
and composition and recomposition, dynamic configu-
ration and reconfiguration of software systems. Initial
investigations have been performed [24.14, 17, 20, 21].

24.3 Static Analyses

To ensure the correctness of the specification, static anal-
ysis will be performed, including model checking and
C&C analysis. Test cases can be generated in the process
of static analysis.

24.3.1 Model Checking

Model checking has been proposed recently to facilitate
software testing following the idea that model checking
verifies the model while testing validates the correspon-
dence between the model and the system. One of the
most promising approaches was proposed at the Univer-
sity of California at Berkeley using BLAST [24.16].
The BLAST model checker is capable of checking
safety temporal properties, predicate-bound properties
(in a form that asserts that, at a location l, a predicate p
is true or false), and identify dead code. BLAST abstracts
each execution path as a set of predicates (or conditions)
and then these predicates are used to generate test cases
to verify programs. This approach is attractive because

it deals with code directly rather than the state model
used in traditional model checking [24.22]. Thus, the
BLAST approach is better suited for software verifica-
tion than traditional model checking. However, BLAST
does not handle currency and its test-case generation is
targeted mainly on the positive aspects of testing. Nega-
tive aspects such as near misses are not handled. In our
E2E T&E framework, many scenarios may be active at
the same time, and it is necessary to verify that con-
current execution of these scenarios will not cause the
system to deviate from its intended behavior. We extend
the BLAST approach to suit the scenario specification
in three ways: (1) instead of using the source code to
drive model checking, we use our scenario modeling lan-
guage for model checking. The control-flow automata
used by BLAST resembles the workflow model de-
rived by the control constructs in the scenario language;
(2) we rely on the conditional or unconditional output,
effect, and precondition in each thin thread to construct
their essential inner control logic; and (3) we enhance
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BLAST to handle concurrent executions of processes in
the ACDATE language [24.17].

24.3.2 Completeness
and Consistency Analysis

Software requirements are often incomplete, inconsis-
tent, and ambiguous. The specification based on the
requirements may have inherited the faults. Faults in-
troduced in this stage of development have been shown
to be difficult and more expensive to correct than
faults introduced later in the life cycle. C&C analy-
sis on specification aims to eliminate requirement- and
specification-related faults. As shown in Fig. 24.6, the
process starts from converting user requirements into
a ACDATE scenario specification; extracting condition
and event (CE) combinations from the specification;
performing a completeness analysis to identify all the
missing CE combinations; performing consistency anal-
ysis to check if the CE combinations are consistent with
each other; and identifying the set of scenarios that
need to be modified to make the system reliable and
robust. More specifically, these steps are explained as
follows.

1. Derive system scenarios from the system re-
quirements: formalize system scenarios using the
ACDATE model, which includes elements (actor,
condition, data, action, timing and event) and the
relations among them.

2. Parse each scenario and extract the combinations of
conditions and events: from the ACDATE model,
the CE combinations are automatically extracted.
The CE combinations are partitioned into indepen-
dent components where each component does not
interact or related to the others. Two scenarios are
independent of each other if there is no way for
them to interact or influence each other. For exam-

User requirements

Modeling Amending

Scenario Specification

Condition/event
combinations

Extract

Scenario
patching

Completeness &
consistency analysis

Don’t care
Supplement as
functional scenarios

As exception
scenarios

Specified
Unspecified

Consistent
Inconsistent

Generate masking scenarios

Fig. 24.6 The process of C&C analysis

ple, two scenarios that share a common condition
are considered related, and the related relationship
is transitive. By exhaustively examining the transi-
tive relationships, one can determine if two scenarios
are independent of each other.

3. Perform C&C analysis on CE combinations: once
the CE combinations are obtained in step 2, consis-
tency analysis on CE combinations is performed and
completeness analysis on CE combinations is then
performed to identify those missing CE combina-
tions.

4. Construct patching scenarios to eliminate those
missing CE combinations. Using an Karnaugh-map
analysis, we can aggregate a large number of miss-
ing CE combinations into a smaller set of equivalent
CE combinations. From these CE combinations, we
can develop patching scenarios to cover the missing
condition.

5. Classify each patching scenario into one of the three
categories: (1) incorporate it as a functional scenario;
(2) treat it as an exception with an exception han-
dling; or (3) consider it as a do not care item, based
on the nature of the application. In the first case,
the covering scenario is indeed an intended behavior
but missed in the specification, in the second case
the covering scenario is not intended and should be
masked out in the specification.

6. Amend the scenario specification using the C&C
analysis results: use the results in step 5 to patch the
scenario specification automatically.

7. Inform the user about the amendment of the spec-
ification and seek amendment of the requirements
from the user.

The C&C analysis process is an iterative and in-
cremental process. After each amendment, the C&C
process should be repeated to ensure that the amend-
ment does not introduce new consistency. Tools have

Part
C

2
4
.3



End-to-End (E2E) Testing and Evaluation of High-Assurance Systems 24.4 E2E Distributed Simulation Framework 453

been developed to perform steps 2–6 automatically.
Experiments with the tools in several large, industrial
applications have been carried out and the results in-
dicate that the process described above is feasible and
scalable to large applications.

24.3.3 Test-Case Generation

Test-case generation techniques can be greatly enhanced
by comprehensive formal C&C analysis followed
by test-case generation based on Boolean expres-
sions [24.11]. An important distinction of this approach
is that test-case generation is based on the quantitative
Hamming distance. All previous approaches, includ-
ing modified condition/decision coverage (MC/DC)
and MUMCUT [24.23], were based on user experi-
ence and intuition. Exploring the topological hypercube
structure of Boolean expressions can easily reveal the
faults not discoverable by previous approaches. Fur-
thermore, these two mechanisms can be completely
automated, thus saving significant effort and time. Af-
ter the Boolean-expression generation, the Swiss-cheese
test-case-generation tool can be applied to obtain both
positive and negative test cases.

The Swiss-cheese (SC) approach is an efficient
iterative algorithm developed based on C&C analy-
sis [24.17]. It can identify most error-sensitive positive
test cases and most critical negative test cases. Given the
Boolean expressions that represent the system specifi-
cation, the algorithm first maps the Boolean expressions
into a multidimensional Karnaugh map called a poly-
hedron. The algorithm then iteratively identifies all
boundary cells of the polyhedron and selects the most
error-sensitive test cases among all the boundary cells.
The more neighboring negative test cases (degree of
vertex – DoV) a boundary cell has, the more error-
sensitive it is. The last step is post-checking, which
tries to identify critical negative test cases within the
polyhedron. For each negative test case, the term Ham-
ming distance (HD) is used to define the minimum
different Boolean digits between it and any bound-
ary cells. The HD of all boundary cells is 0. The
smaller the HD is, the more critical a negative test
case is. It is shown in this paper that negative test
cases can detect more failures. The SC approach uses
the most critical negative test cases first to test a pro-
gram, and then randomly chooses the remaining test
cases.

24.4 E2E Distributed Simulation Framework

Traditional simulation methodologies adopt a model-
code-run approach, such as that used in the Institute
of Electrical and Electronics Engineers (IEEE) mod-
eling and simulation (M&S) high-level architecture
(HLA) [24.24] and other popular simulation frame-
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Fig. 24.7 Simulation framework architecture

works, which means that the engineers must create
a model of the target system, develop the simulation
code based on the model, and then run the simula-
tion code, as discussed in GALATEA [24.25]. The E2E
scenario-based modeling and simulation framework pro-
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vides a model-and-run paradigm for simulation. In
other words, once the model is available, the model
is directly executed for simulation without manual
simulation-code development. The simulation code is
automatically generated from the system scenario spec-
ification. Before the code is generated, the model
can be evaluated using existing E2E analysis tech-
niques such as C&C analysis to ensure that the model
is correct. Furthermore, the simulation run can be
dynamically verified using a formal policy specifica-
tion.

24.4.1 Simulation Framework Architecture

Figure 24.7 shows the E2E T&E simulation frame-
work running on an SOA, based on software agents.
According to the definition in [24.26, 27], a software
agent is "an autonomous computer program that op-
erates on behalf of something or someone else" and
can "be viewed as a self-contained, concurrently execut-
ing thread of control that encapsulates some state and
communicates with its environment and possibly other
agents via some sort of message passing". The agents
here serve as an entity that is capable of carrying out the
simulation task and performing a variety of analyses.
Both the agents and the simulation framework are de-
signed according to an object-oriented layout to support
distribution (of objects/agents), modularity, scalability,
and interactivity [24.25], as demanded by the IEEE HLA
specification [24.24].

The E2E simulation framework integrates the con-
cepts and tools that support modeling and simulating
systems under the distributed, interactive, continuous,
discrete, and synthetic focuses. The simulation frame-
work consists of:

• The ACDATE scenario language and the framework
that allows the construction of the system models.• The on-demand automated dynamic code generator
that supports rapid and automated simulation/real
system-code generation such that simulation can be
carried out once the system model is ready. No ad-
ditional programming effort is needed. The
execution here means that the real system com-
ponents’ execution is involved in the system
simulation, i. e. end-to-end simulation including the
end hardware-in-the-loop and man-in-the-loop.• Simulation agents that carry out the simulation tasks
and form a simulation federation (in the HLA sense)
serve as the simulator for the whole system. These
agents can be geographically distributed on comput-

ers that are interconnected via a local-area and/or
wide-area network [24.19].• An extended runtime infrastructure to support the
agents’ work. As required in [24.28], the simula-
tion here is separated from the target system model,
which makes the simulation framework flexible and
generic.

As discussed in [24.24], traditional simulation tech-
niques should be extended to support interactive
simulation of a number of programs executing in het-
erogeneous and distributed computers that interact with
each other through communication networks and are
managed by a distributed operating system. The IEEE
has provided the HLA framework to allow the devel-
opment of a standard simulation framework with many
different simulation components, which is used as a ref-
erence for the design of our framework. Figure 24.7
shows the architecture of our simulation framework. As
can be seen, the scenario modeling framework provides
the scenario specifications of the target systems. The
extended runtime infrastructure separates the simulator
(which consists of the agents and/or the live participants)
from the target system model and provides the necessary
runtime support for the simulator.

24.4.2 Simulation Agents’ Architecture

The E2E T&E simulation framework is object-oriented,
agent-based, discrete-event-driven, distributed, and real-
time. In object-oriented terms, E2E simulation is based
on the integrated ACDATE scenario model, which is
based on SoS/SOA and the object-oriented modeling
methodology. Each component in the system is modeled
as a specific object–actor that has interfaces (actions),
behaviors (scenarios) and constraints (policies). The
simulation is carried out by a set of simulation agents.
The agents are the most important elements in our
simulation framework.

An agent can simulate either a single actor or mul-
tiple actors. Two agents may or may not reside in the
same computation site. Agents can talk with each other
via standard communication protocols. The behavior of
a simulation agent is determined by the SoS/SOA sce-
nario model of the actors simulated on this simulation
agent. Based on the system’s scenario model, it is clear
how an actor will behave to some outside stimulus ei-
ther from the environment or from some other agents
under given conditions. The outside stimuli are modeled
as discrete events that can be received and processed
by an actor. Once an event arrives at an actor, the ac-
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tor will put it into its waiting queue. How the events in
the waiting queue are processed depends on the actor’s
scenario model, i. e. if the system is modeled as a multi-
tasking actor, any incoming event can be processed as
long as there is enough resource. If the system is mod-
eled as a single-tasking actor, an incoming event can be
processed only if no other task is scheduled to use the
processor, and so on. Due to some uses of the frame-
work for decision-making, one simulation run should
finish before a given deadline, if required.

The simulation can be formally described as follows.
Simulation of an actor Ai starts from the point when
an event Ei,k arrives at Ai . At the point, Ai will pick
up scenario Scnri,w, which describes the behavior of
Ai in response to Ei,k and sends Scnri,w to a scenario
simulation/execution engine, as shown in Fig. 24.8. The
scenario simulation engine will then interpret Scnri,w
and perform the following:

• Check current system condition, which includes
the Ai own conditions {Ci,i1,Ci,i2, . . . ,Ci,im} ∈
{Ci,0,Ci,1, . . . ,Ci,Mi} and/or other actors’ condi-
tions as guard conditions.• Based on the system condition and chosen sce-
nario Scnri,w, the simulation engine will choose an
execution path which includes a series of actions
{Acti,v1,Acti,v2, . . . ,Acti,vn}.• The scenario simulation engine will carry out the
chosen actions, whose semantics are also specified
using scenarios. Thus, whether an action can be
successfully performed also depends on the system
conditions at that point. An action may change the
owner actor’s status by changing the values of the
data owned by the actor; or emit a new event either
to other actors or to its owner actor.• Agents’ states will be changed accordingly as the
actions are performed, which is reflected in the data-
changing function: Act: D→ D0, where D is the set
of data values before the action Act is performed,
where D0 is the set of data values after the action
Act is performed.

Events are the only channel through which differ-
ent actors can communicate with each other. An event
can carry parameters to provide more information for
the receiver to make decision on how to respond to the
incoming event. Simulation agents used here contain
versatile communication capability, which is imple-
mented by the communication component of each agent,
and thus an agent can be exposed to the outside world as
a traditional transmission control protocol/internet pro-
tocol (TCP/IP) service, a dedicated network component,
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activity

Scheduler
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Emit
Event Event queue

Environment

Event tirggers
scenario

Access

Execute

Scenario
Entity Pool

Entity Entity

Entity Entity
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Scenario
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Fig. 24.8 Simulation engine inside a distributed simulation agent

or more generally a web service. In the latter case, as
each simulation agent is exposed as a web service, it is
easy for the simulation users to perform the simulation
tasks on the internet.

There are three major types of simulation agents: en-
vironment simulation agents, system simulation agents
and meta-agents. By separating the environment simu-
lation agents and system simulation agents, it is easy to
study the target system’s behaviors under different en-
vironments without touching the target system model
and simulation, which only requires a change to dif-
ferent environment simulation agents in the simulation.
Meta-agents are agents that monitor and coordinate the
whole simulation. With the help of these meta-agents,
engineers can easily know what is going on in the dis-
tributed simulation from a global point of view. These
meta-agents can also help perform dynamic analyses that
involve more than one participating simulation agents
such as the generation of overall system behavior.

24.4.3 Simulation Framework and Its
Runtime Infrastructure (RTI) Services

The simulation extended runtime infrastructure is an
extension and enhancement of high level architec-
ture/runtime infrastructure (HLA/RTI) [24.24], which
serves as a design reference for our simulation frame-
work’s runtime infrastructure. The major improvements
are the automated ACDATE/scenario code generation
and deployment management, event management on
SOA, and automated simulation runtime reconfigura-
tion and recomposition. With the help of these services,
our simulation framework is capable of providing on-
demand simulation, which means that the simulation
code can be dynamically obtained and used for simu-
lation from the dynamic code generator whenever it is

Part
C

2
4
.4



456 Part C Reliability Models and Survival Analysis

demanded by the users; as well as dynamic simulation
reconfiguration.

In contrast to traditional HLA/RTI services, which
are exposed as traditional remote procedure call (RPC)
methods using the user datagram protocol (UDP)/TCP,
the services provided by our simulation framework
can be exposed as either RPC-like service using bi-
nary communication data via TCP, or WS using simple
object access protocol (SOAP) messages to carry com-
munication data via the hypertext transfer protocol
(HTTP).

Managing events in SOA
The simulation framework is developed on top of an
SOA, and thus it can reuse resources on SOA, a lot of
benefits can be obtained. One of these is that a simulation
agent does not need to know the existence of other sim-
ulation agents. Simulation framework RTI will provide
an event-space service (ESS) to facilitate communica-
tion among simulation agents, as shown in Fig. 24.9. The
services provided by ESS include:

Event space service

NotifyPublish

Agent N

Scenario
…

…emit EVENT: E

Agent M

Scenario
…

…Wait(E)

Resumes

Fig. 24.9 Event publishing and notification example
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Fig. 24.10 Automated simulation-code generation and deployment

• Event registration
– Event publishing registration: before sending out

any event, agents must register what events they
will send out with the ESS.

– Event subscription registration: an agent must
subscribe the interested events before it can ac-
tually know that the event happens.• Event publishing: agents can emit events using ESS• Event notification: ESS can notify the occurrence

of events to those agents that have subscribed the
events.

Automated Simulation Code Generation
and Deployment
The simulation code is generated based on the scenario
specification, which includes the ACDATE definition
and scenario description, as shown in Fig. 24.10. Each
ACDATE element will be translated into an object with
the attributes defined in the specification. Instrumenta-
tion code will be inserted into the objects to interface
with the monitor and policy checker. Each scenario will
be translated into a procedure that is basically a sequence
of operations on the ACDATE objects or emitting events.
Similarly, instrumentation code will be inserted into the
procedure so that the procedure can interface with the
scheduler to schedule concurrent execution and the event
queue for emitting new events.

Table 24.2 shows a sample simulation code au-
tomatically generated with instrumentation code that
interfaces with the scheduler, event queue, monitor, and
policy checker.

Simulation framework provides two base compo-
nents for scenario code generation: BaseACDATE
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Table 24.2 Automatically generated code example

public override void ScnrFunc()// a scenario
. . . . . .

{
Condition_4 condition4 = new Condition_4();// obtain ACDATE elements
Action_5 action5 = new Action_5();

Data_2 data2 = new Data_2();

e = newSimRunTimeLogArgs(SimRunTimeLogArgs.LogTypes.ScnrPreStatement,2,
1, 0, "Before Step 1 in scenario 6");

this.OnPreScnrStatementEventHandler(this, e);

data2.SetValue(1); // data2’s value is now changed to integer 1
e = newSimRunTimeLogArgs(SimRunTimeLogArgs.LogTypes.DataWrite,
2, 1, 0, "After Step 1 in scenario 6");

// interface to instrumentations such as policy checker embedded here
this.OnPostScnrStatementEventHandler(this, e);

System.Windows.Forms.MessageBox.Show("Agent 1 - Step 1 done");

e = newSimRunTimeLogArgs(SimRunTimeLogArgs.LogTypes.SchedulingFlag,

System.Threading.Thread.CurrentThread.GetHashCode(), 1, 0, "Calling
Scheduling");

this.OnSchedulingEventHandler(this, e);

System.Threading.Thread.CurrentThread.Suspend();// interface to simula-
tion scheduler
. . . . . .

}

BaseACDATEElement

ID
Name
OwnerActor

ActorBase ActorBase ConditionBase DataBase EventBase

Root of ACDATE
Code generation

Base classes
actually used by
ACDATE code
generation

Real generated
classes for
ACDATE elements

ActorM ActorN ActionK ConditionJ DataL EventO

Fig. 24.11 Generated ACDATE code hierarchy

(Fig. 24.11) and BaseScenario (Fig. 24.12). The
BaseACDATE component contains all the base class
definitions for the ACDATE elements in the scenario.
The BaseScenario component provides the base class
for the scenario specification in the scenario model while
referencing the used ACDATE elements’ information in
the BaseACDATE component.

For different system simulations, different sim-
ulation code will be automatically generated based
on the target system’s scenario model. The gener-
ated code is divided into two major categories of
components: ConcreteACDATE and ConcreteScenar-
ios. ConcreteACDATE here does not mean a single
component but a collection of components holding
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Fig. 24.12 Generated scenario code hierarchy

the generated code for the concrete ACDATE ele-
ments in the target system’s scenario model. Similarly,
ConcreteScenarios is a collection of components hold-
ing the concrete scenario code of the target system’s
scenario model, with only references to the related Con-
creteACDATE components. Each generated component
has its own deployment configuration document, based
on which the deployment management will deploy the
simulation code properly. More details of automated
simulation code generation will be discussed in later
sections.

At simulation runtime, with different simulation
code loaded, the simulation agents can simulate differ-
ent target systems while keeping the simulation agents
themselves untouched.

In a distributed simulation system, simulation
deployment is an important issue. Traditionally sim-
ulation deployment is done manually, which is
time-consuming and error-prone, especially for large
simulation systems. Simulation deployment can be
formally specified and then be automated. As has
been discussed, with different target system mod-
els (code) loaded, the simulation agents can perform
different simulation tasks. Machine understandable sim-
ulation deployment specification [in extensible markup
language (XML)] will be provided. Service RTI
will provide a dynamic model (code) load/unload
service based on the simulation deployment specifica-
tions.

Automated Simulation Reconfiguration
and Recomposition
For a large-scale distributed simulation, a single failure
may corrupt the whole simulation if the failure point is
critical (a single point of failure). It is important to orga-
nize the simulation services (agents) distributing across
the internet to form a functional simulator, which can
make use of the unutilized computation power. With the
policy and dynamic reconfiguration service (DRS), the
simulation framework should be able to see the change
of system behavior when a new policy becomes effective
during simulation without shutting down the system.

Dynamic simulation composition and reconfigura-
tion management involves the following issues:

• Automated simulation-agent deployment and dis-
covery• Automated simulation-agent status monitoring and
failure detection• Automated dynamic simulation code generation• Automated dynamic simulation configuration gen-
eration• Automated dynamic simulation deployment and re-
deployment.

A simulation agent knows nothing about the target sys-
tem until the corresponding simulation code is loaded
into the agent. With different simulation code loaded,
the simulation is capable of simulating different target
systems. The simulation agent can also unload the pre-
viously loaded simulation code component and reload
a new set of simulation code components to simulate an-
other target system. In this sense, the real components
of a functional simulation are the dynamically and au-
tomatically generated simulation distributed across the
network.

The first problem one may face is how the dy-
namically generated simulation code components can
know where the counterparts and the runtime infras-
tructure services are. This can be solved with using
a dynamically and automatically generated configu-
ration of the simulation. With any given simulation
topology, users can specify where and how a simula-
tion should be deployed. A configuration document will
then be automatically generated for each dynamically
and automatically generated simulation code compo-
nent based on the users’ deployment requirements, such
that each simulation code component can know where
to obtain the required resources and services, as well as
how to communicate with the runtime infrastructure ser-
vices and its counterparts. This has been introduced in
previous sections.
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The automatically generated simulation code com-
ponents along with their configuration documents are
deployed based on the deployment configuration docu-
ments to set up the simulation agents properly with the
help of the automated deployment management services,
as shown in Fig. 24.13.

During the simulation, the status-monitoring ser-
vices continuously monitor the status of the simulation
agents involved. Once the failure of a simulation agent
is detected, the runtime infrastructure will try to dis-
cover an available simulation agent and perform the code
and configuration generation again for the alternative
agent. The new simulation agent is then loaded with the
simulation code and configuration and the simulation is
resumed. Using automated simulation composition and
deployment, users can also easily change the deploy-
ment of the simulation anytime. However, in these cases
all the unfinished work on the crashed simulation agents
will all be lost, if it has not been saved.

There is another scenario in which dynamic sim-
ulation reconfiguration can be used: on-the-fly model
changing and continuous simulation. Users can change
the target system model during the simulation without
restarting the simulation to reflect the effect of model
modification.

Once the target system model has been changed,
based on the original users’ deployment requirements
and the status of the simulation agents, the automated
simulation deployment service can determine which
agents are affected by the model modification. The
simulation code components and configuration doc-
uments are then regenerated based on the modified
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Fig. 24.13 Automated simulation reconfiguration and recomposi-
tion

model. Once the affected simulation agents enter a safe
state where unloading and reloading simulation code
components will not affect other running simulation
agents, the automated simulation deployment service
will unload and reload the simulation agents with the
modified simulation code components. Before the sim-
ulation components are unloaded, the status of the
simulation agents is saved. The saved information is
used to restore the original agents after the new simu-
lation code components are reloaded. In this way, the
users’ simulation will not be interrupted by the model
modification.

24.5 Policy-Based System Development

Policies have been increasingly used in computing sys-
tems for specifying constraints on system status and
system behaviors. A policy is a statement of the intent
of the policy maker or the administrator of a computing
system, specifying how he or she wants the system to
be used [24.29]. Usually, policies are hard-coded into
the system implementation, For instance, if a policy
states that “passwords must be at least eight charac-
ters long”, there must exist a snippet of code in the
system implementation that checks the length of pass-
words. Hard-coded policies can cause major problems
for the system such as:

• It is difficult and expensive to update.
Whenever a policy needs to be changed (e.g. the

system administrator wants to reduce the minimum
length of valid passwords from eight characters
long to five characters long), the whole system
has to be shut down, and the code has to be
modified, recompiled, and redeployed. The pro-
cess is lengthy and significantly increases an
organization’s operating expenses. Shutting down
a mission-critical system, in most cases, is pro-
hibitive and may cause disastrous consequences to
the mission.• It is difficult to manage.
Hard-coding policies do not separate policy speci-
fication from system implementation. Policies are
spread throughout the system implementation. If
a policy maker wants to know how many policies
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there are in the system, or what are the poli-
cies that are defined for the role of supporting
arms coordinator, there is no easy way to find the
answers.

In the past decade, a number of policy specification
languages (PSLs) have been proposed [24.29–33]. PSLs
provide a simple and easy-to-use syntax to specify poli-
cies separately from the system implementation. A user
interface can provide a means for policy makers to spec-
ify and manage policies. A policy engine can interpret
and enforce policies at runtime rather than at compi-
lation time, which allows policies to be dynamically
added, removed, updated, and enabled or disabled.

24.5.1 Overview of E2E Policy Specification
and Enforcement

Figure 24.14 shows the simulation environment that we
developed for highly developed systems. When devel-
oping such systems, V&V needs to be performed at each
step of the development. First, the system requirement
is translated into the formal specification. The specifica-

User requirements

Policy writing in a PSL

Policies in a PSL

Policy verification

Final policies

Policy database

Policy enforcement engine

Simulation and testing

Verified? Specification
refinement

Error
detected

Test case
generation

Fig. 24.14 The policy specification and enforcement archi-
tecture

tion is verified by a C&C check. After several iterations
of verification, the final specification is obtained. Test
cases are generated from the specification. An auto-
mated code-generation tool generates the executable for
simulation. This process has been reported in [24.17].

Independently of the development processes, the
policies are extracted from the requirements and then
written in a policy specification language (PSL). Sim-
ilarly to the specification, the policies are verified by
a C&C check to detect any incomplete and inconsis-
tent policies. After the policies pass the verification,
they will be stored in a policy database. Test cases
that dynamically check C&C can be generated from
the final policies. During the course of simulation exe-
cution, a policy-enforcement engine dynamically loads
the policies from the policy database, interprets them,
and enforces them at runtime. Since the policy engine
dynamically interprets and enforces policies, policies
can be easily changed (added, removed, updated, and
enabled/disabled) on-the-fly at any time.

This paper not only makes use of the flexibil-
ity of policies, but also applies policies as a dynamic
V&V method. In fact, many functional requirements of
a system can be extracted as policy requirements. For ex-
ample, array index range check, probability value range
check, and execution orders can be written as policies.
As a result, the policy enforcement can dynamically
check the validity of computing. Policy enforcement
is particularly useful in detecting those bugs that are
difficult to catch during unit testing and those with
complicated interactions due to concurrent threads and
processes in simulation. Note that traditional testing suf-
fers from the need to set up the environment to a given
state and run the program to see if the program behaves
as intended, which is time-consuming and difficult. Pol-
icy is a good way of ensuring the simulation program
is correct because an engineer can specify any kinds of
policies that need to be enforced to see if the simulation
program performs correctly. Another advantage of us-
ing simulation to run policies is that simulation can run
extensive cases to ensure extensive coverage. Thus, we
can have both static and dynamic coverage, e.g., how
many times a specific set of scenarios have run, and how
many times a specific scenarios will happen, and how
many of these scenarios are performed correctly.

24.5.2 Policy Specification

We designed the policy specification and enforcement
language (PSEL) that covers obligation policies, autho-
rization policies and system constraints. A policy editor
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and a graphical policy-management interface have been
developed for policy input. Obligation policies and au-
thorization policies are defined on roles rather than on
individual actors. A role represents a management po-
sition and the responsibilities and rights associated with
that management position. Actors are assigned to roles
according to their management positions. Since actors
take particular roles in an organization, policies specified
on a role will in turn apply to actors who take this role.

Obligation policies define a role’s responsibilities,
specifying what actions a role must or must not take
under a condition. Positive obligation policies are event–
condition–action (ECA) rules with the semantics that:
on receiving a triggering event E, a role R must per-
form the action A if condition C is true. For instance,
the policy “on receiving the call for fire, the support-
ing arms coordinator must issue a fire order” should be
defined as a positive obligation policy, since it specifies
the responsibility of actors who take the supporting arms
coordinator role.

Negative obligation policies forbid a role from per-
forming action A if condition C is true. For instance,
the policy “If a main battle tank can shoot, it must not
reject the fire order” should be defined as a negative
obligation policy. If violated, the policy enforcer will
inform the system simulator of the detection of the pol-
icy violation. The system simulator will perform the
compensation action that is intended to minimize the
consequences caused by the policy violation. Table 24.3
gives the syntax and examples of obligation policies.

Authorization policies define a role’s rights to per-
form actions, specifying which actions are allowed or
prohibited for the role under a certain circumstance.
In PSEL, authorization policies are specified and en-

Table 24.3 Examples of obligation policies

Policy type Syntax Example

Positive MUSTDO { MUSTDO {
obligation definedOn ROLE definedOn ROLE:SupportingArmsCoordinator

policy triggeredBy EVENT triggeredByEVENT:ReceiveCFF

do ACTION do ACTION:IssueFireOrder

on CONDITION on CONDITION:

} }
Negative MUSTNOTDO { MUSTNOTDO {
obligation definedOn ROLE definedOn ROLE:MainBattleTank

policy do ACTION do ACTION:MBTRejectMission

on CONDITION on CONDITION:MainBattleTankCanShoot

perform COMPENSATION perform COMPENSATION:Warning

} }

forced through access control models. Currently, two
access control models are supported in PSEL: the Bell–
LaPadula (BLP) model and the role-based access control
model.

Bell–LaPadula (BLP) model [24.34] is a mandatory
access control model widely used in military and govern-
ment systems. It controls information flow and prevents
information from being released to unauthorized per-
sons. The BLP model defines four ordered security
levels: Unclassified < Confidential < Secret < Top Se-
cret. Security levels are then assigned to actors and data.
An actor’s security level is called the security clearance;
data’s security levels are called the security classifica-
tion. Each action in the system has a subject (an actor)
that performs the action, data (objects) on which the
action is performed, and an accessing attribute that in-
dicates the nature of this action (read, write, both, or
neither).

The BLP model defines two access rules. The no-
read-up rule applies to all actions whose accessing
attributes are read. It specifies that an actor is not al-
lowed to read data if the actor’s security clearance is
lower than the data’s security classification. For instance,
the observer in the special operations forces (SOF) team,
with a security clearance of confidential, is not allowed
to read (attribute: read) the target destroyed report (secu-
rity classification: secret). The no-read-up rule prevents
unauthorized persons from reading information they are
not supposed to read. The no-write-down rule applies
to all actions whose accessing attributes are write. It
specifies that an actor is not allowed to write data if the
actor’s security clearance is higher than the data’s se-
curity classification. The no-write-down rule prevents
actors with higher security clearance from accidentally

Part
C

2
4
.5



462 Part C Reliability Models and Survival Analysis
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Fig. 24.15 The RBAC model

writing classified information to an unclassified media,
so that unauthorized persons can read the information.

The role-based access control (RBAC) model
[24.35–37] has been increasingly implemented in vari-
ous systems, due to its policy-neutral nature. As shown
in Fig. 24.15, in RBAC a group of roles are defined
according to the semantics of a system. Actors are
then assigned to roles according to their management
position in this system. A set of actions are then as-
signed to a role, giving it the permissions to perform
these actions. PSEL also supports a role hierarchy.
A role hierarchy represents the superior and subordi-
nate relationships among roles, allowing a superior role
to obtain all permissions of its subordinate roles au-

Role definition

Permission
assignment

User
assignment

Fig. 24.16 Graphical user interface for role-based authorization-policy specification

tomatically. Role delegation is also supported, which
enables a role to temporarily transfer its permissions
to other roles, and for them to be revoked at a later
time.

The access rule defined in the RBAC model is sim-
ple: an action A is allowed if

• there exists a role R, such that A.owner takes R, and• R has permission to perform A.

For instance, the supporting arms coordinator (who
takes the supporting arms coordinator role) is allowed
to issue the fire order. Figure 24.16 shows the graph-
ical user interface for role-based authorization policy
specification.

System constraints define constraints on system sta-
tus and behaviors that must hold in the system execution
or simulation. System constraints on data specify that
data must or must not be within a certain range. For ex-
ample, the policy that “the distance between the SOF
team and the surface-to-surface missile (SSM) launcher
must be ≥ 3000 feet at all times” is a system constraint
on data. System constraints on actions are currently
temporal logic on actions. Examples could be “action
DetermineBestWeapon must occur before action Input-
FireOrder” or “the call for fire (CFF) command can
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Table 24.4 Examples of specifying system constraints

Policy type Syntax An example

System MUSTBE / MUSTNOTBE { MUSTBE {
constraints on appliedTo DATA appledTo DATA:SOFTeamDistanceFromSSM

data status EXPRESSION status EXPRESSION:”>=3000”

on CONDITION on CONDITION:TRUE

perform COMPENSATION perform COMENSATION:SOFRetreat

} }
System MUSTBE / MUSTNOTBE { MUSTBE {
constraints on do ACTION:Operator do ACTION:Sequence

actions (action parameters) (ACTION:DetermineBestWeapon

on CONDITION:TRUE ACTION:InputFireOrder )

perform COMPENSATION on CONDITION:TRUE

} perform COMPENSATION:Warning }

be issued only once”. Currently, the following tempo-
ral logic operators are supported by our ACDATE-based
policy framework:

• Concurrency (A, B): A, B occur concurrently;• Sequence (A, B, C): A, B, C occur in this sequence;• Order (A, B, C): A, B, C occur in this order consec-
utively;• Either (A, B): either A occurs or B occurs, but not
both;• Exist (A): A must occur;• Once (A): A must occur once, and only once.

Conditions are associated with system constraints,
specifying when these policies are to be enforced. In
addition, compensation actions are defined in a system
constraint. When policy violation is detected, associated
compensation actions will be performed by the simu-
lator to minimize the consequences brought about by
policy violation. Table 24.4 gives syntax examples of
specifying system constraints.

24.5.3 Policy Enforcement

Policies are enforced in the course of system simula-
tion. In the initialization phase of system simulation,
the policy enforcer will load policies out of the policy
database and register them with the system simulator
according to their semantics. Policies are registered so
that the system simulator knows when to trigger policy
enforcement. The system simulator triggers the policy
enforcer when a registered event occurs, a registered ac-
tion is performed, or a registered datum is modified. The
policy enforcer will enforce relevant policies attached to
these registered events, actions, or data, and return the
results of enforcement back to the system simulator.

Policy enforcement can be classified into three cat-
egories: policy checking, policy execution, and policy
compensation. Policy checking verifies if policy viola-
tions are detected when actions are performed or data are
changed. Policy execution executes the action defined in
the policy when receiving the triggering events. Policy
compensation executes the compensation action defined
in the policy when policy checking detects a policy vio-
lation. All checkable policies come with a compensation
action.

Only positive obligation policies are executable poli-
cies. The other types of policies (e.g. negative obligation
policies, all authorization policies and all system con-
straints) are all checkable policies. Executable policies
influence the paths of system simulation through the
actions defined in them. When the triggering event oc-
curs, executable policies registered to this event will be
enforced, and the action specified in the policy specifica-
tion will be executed by the system simulator. Checkable

6. Enforce
policy

2. Load policy

Policy database

1. Store policy

0. Parse
policy

3. Registor policy

Policy
editor

4. Execute
scenarios

Policy
enforcer

5. Trigger policy
enforcement

System simulator
or executor

7. Report results

Fig. 24.17 The policy enforcement framework
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Fig. 24.18 Policy parsing
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Execution

Fig. 24.20 Policy enforcement triggering – event

policies can also influence the paths of the system sim-
ulation through compensation actions. When data are
changed or actions are performed, checkable policies
registered to the data or actions will be enforced. If
policy violations are detected, the compensation action
specified in the policy specification will be executed by
the system simulator.

Table 24.5 Policy registration

Policy Authorization Positive Negative System constraints System constraints
type policy obligation obligation on data on action

policy

Event X

Action X X X

Data X

Figure 24.17 illustrates the policy enforcement
framework. After ACDATE elements are defined and
policies are extracted, policies are specified in the pol-
icy editor, which parses policies for correctness, C&C,
and stores them in the policy database. During the ini-
tialization phase of simulation, the policy enforcer loads
policies from the policy database, interprets them and
registers them with the system simulator. While the sim-
ulator executes system scenarios, it triggers the policy
enforcement when registered events occur, registered
actions are performed, or registered data are changed.
The policy enforcer checks or executes policies and re-
turns the results to the simulator. Based on the returned
results, the simulator determines what the next system
scenarios are.

The policy editor parses policies for correctness and
C&C. On successful parsing, the policy editor trans-
lates policies into XML and stores them in the policy
database. The policy parser is implemented by: another
tool for language recognition (ANTLR). According to
the policy syntax, ANTLR creates an abstract syntax tree
(AST) for each policy. Policy elements (roles, actions,
condition, etc.) are extracted by traversing the tree, and
translated to the XML representation, as shown below.
The XML representation of a policy is then stored in
the policy database as a string. Figure 24.18 shows an
example policy parsing.

The purpose of policy registration is to let the system
simulator know when policy enforcement should be trig-
gered. In our ACDATE-based policy framework, three
out of the six ACDATE elements can trigger policy en-
forcement: event, action, and data. Events occurrences
will trigger the enforcement of positive obligation poli-
cies; action performances will trigger the enforcement of
negative obligation polices, authorization policies, and
system constraints on actions; data changes will trigger
the enforcement of system constraints on data, as shown
in Table 24.5.

To improve performance, a policy map is created,
mapping a particular event, action or data to a list of
relevant policies to which it is registered, as shown in
Fig. 24.19. All policies registered to a particular action,
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event or datum form a linked list. The linked list and the
identification (ID) of the action, event or datum are then
organized as a policy map. When policy enforcement is
triggered, the policy enforcer locates the policy linked
list of a particular action, event or datum, and enforces
all policies in the list.

After policies have been registered, the simulator
initializes the data and starts running the system sce-
narios. The simulator keeps an eye on the simulation of
system scenarios, and triggers the policy enforcement
by invoking the EnforcePolicy method in the policy
enforcer whenever an event is triggered, an action is
performed or a datum is changed. Figure 24.20 shows
an example where a triggering event causes a policy
enforcement execution. The policy enforcer enforces
all relevant policies, records all violations in the pol-
icy log, and returns the policy log back to the system
simulator.

When policy enforcement is triggered, the simu-
lator invokes the EnforcePolicy method in the policy
enforcer, passing the ID of the event, action or datum
that triggered the policy enforcement. On being trig-
gered, the policy enforcer looks into its policy map,
maps the ID to a list of policies to which it has been
registered, and enforces them one by one. Authoriza-
tion policies are not registered in the policy map, and
they are enforced before obligation policies and sys-
tem constraints are enforced. When policies are being

Enforce
authori-
zation
policies

Enforce
obligation
policies

Enforce
system
constraints

Fig. 24.21 Algorithm for policy enforcement

enforced, all violations are recorded into a policy log
that is returned to the simulator. The EnforcePolicy
method returns a Boolean value indicating whether pol-
icy violations are detected. Figure 24.21 gives the policy
enforcement algorithm.

24.6 Dynamic Reliability Evaluation

Software reliability has been defined as the probabil-
ity that no failure occurs in a specified environment
during a specified (continued) exposure period. Ex-
isting software reliability models assess reliability
statically in the development process. The E2E T&E
perform dynamic evaluation at runtime using a soft-
ware reliability model that is integrated into the
ACDATE scenario model. Figure 24.22 illustrates
the development and operation processes using this
model.

From the scenario specification, the atomic com-
ponents can be identified and a data collector is
instrumented around each atomic component, which col-
lects runtime failure data during testing and operation.
Based on the collected data, the reliability of both com-
ponents and the SoS can be assessed. The rest of the
section explains the major components in this reliability
assurance process.

24.6.1 Data Collection and Fault Model

An SoS may consist of many subsystems or components
and it is hard to exactly distinguish their contributions
to the overall reliability of the SoS due to the anfrac-
tuous dependency relations among them. A component
may consist of several subcomponents, in which case
its reliability can be computed analytically, provided the
reliability of each subcomponent is known. The break-
down can be continued to each subcomponent. However
it must end somewhere when the component is either in-
divisible or it is not worthwhile dividing it further. We
then consider these components as black boxes or atomic
components in our reliability model. In other words, the
reliability of an atomic component is not the result of
(but an input to) our reliability model.

Although the decision on what component shall be
treated as a black box is truly application-dependent,
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Fig. 24.22 Dynamic reliability assurance

we propose three general principles to curb arbitrariness
and strengthen the rationale for our reliability model.

Granularity principle: a finer granularity can lead
to more accurate evaluation results but may increase the
complexity of the computation. Basically there is a trade-
off between granularity and accuracy and their balance
depends on the specific application and its requirements.

Perceptible principle: if a component is treated as
a white box, the opposite of a black box, then the depen-
dencies among all its subcomponents that have an effect
on reliability will be modeled explicitly and hence be
accounted for during the reliability computation. If the
dependency is neither clear nor completely modeled,
then the result of the computation will be biased.

Continuous principle: a component is a white box
only if its super-component is a white box. It is of no
benefit if a black box has a subcomponent as a white
box since the reliability of a black box is not computed.

The perceptible principle and the continuous princi-
ple define the effective domain of the ACDATE scenario
model. Inside the domain, everything is explicitly mod-
eled and hence is a white box, while a component outside
the domain is a black box. Code that is either manually
developed or automated generated based on the model
represents its effective domain in the system.

The black box, which is outside the effective domain
of the model, can be further categorized as follows:

• Operation on hardware through a device driver;• A system call provided by the operating system;• A method or attribute in the programming platform,
e.g., the vector class in Java, C# or C++ standard
template library (STL);• A method or attribute in a library provided by a third
party;• Input from a human operator;• A component in a remote location.

Different types of black boxes incur different relia-
bility estimations, which will be detailed in the next
subsection.

Figure 24.23 illustrates the effective domain, where
a circle is a white box, a disk is a black box, a line is
a dependency relation, and a dashed line is an unclear
dependency relation.

To collect failure data, each function call to an atomic
component is replaced by a wrapper call that collects
failure data related to the atomic component.

Assume a call to an atomic component is
atomfun(p1, p2, . . . , pn), where atomfun is the function
name, and p1, p2, . . . , pn are the parameters. In the
data collector instrumentation stage in Fig. 24.22, the
function call is replaced by a wrapper function call:
dataanalyzer(atomfun, p1, p2, . . . , pn).

The data collector function is:
dataanalyzer(atomfun, p1, p2, . . . , pn)
{
Increment the execution counter;
Find the specification of atomfun;
Verify the legitimacy of p1, p2, . . . , pn;
Call atomfun(p1, p2, . . . , pn);

Hard-
ware

OS
call

Third
party

library

Programming
platform

Human
input

Remote
compo-
nent

Fig. 24.23 Identification of atomic components in an SoS
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Verify the legitimacy of results;
Handle exceptions;
If results fail, report a failure;
}

The data collector performs acceptance testing on
the inputs and outputs of the atomic component and
maintains following data in a local log file:

• The execution counter keeps track of how many
times the atomic component has been called.• The failure counter counts how many failures have
been detected.• Failure types: incorrect data, exceptions, and crash,
etc.

The local log file associated with the data collector au-
tomatically synchronizes with a central database that
records data related to all atomic components. The syn-
chronization can be performed in the testing stage, in
the development process, and during the operational
stage after the software is delivered to the client. On-
line error reporting during the operational stage can
also help the developers to design patches and up-
dates of the software. The execution number of each
atomic component collected during the operational stage
can be used to determine the execution profile of the
software.

For each atomic component, the following data items
are maintained in the database:

• Versions: recording the date and time of each mod-
ification/error correction performed on the atomic
component. Each error correction results in a new
version of the component;• Number of executions between two error correc-
tions;• Number of failures between two error corrections;• Numbers of each failure type.

Table 24.6 Reliability definition of ACDATE entities

ACDATE Reliability of the ACDATE entity

The probability that the:

Actor – actor presents the expected behavior

Condition – condition presents the expected Boolean
value

Data – data presents the expected value

Action – action presents the expected behavior

Timing – action completes in given time frame

Event – event is sent or received successfully

Scenario – scenario presents the expected behavior

System – system presents the expected behavior

These data can be used to estimate the reliability of the
components. In the next subsection, we will apply the
input domain-based reliability growth model to estimate
the reliability of each atomic component.

An incorrect output of a program is a failure. A pro-
gram contains errors if it can produce a failure when
certain input cases are applied. The size of an error is
the ratio of the number of inputs that can detect the
error (cause a failure) and the total number of valid
inputs.

According to the input domain-based reliability
growth model [24.38, 39], the failure data stored in
the central database can be used to estimate the er-
ror sizes Θ1, Θ2, . . . , Θk and the failure rates λ1,
λ2, . . . , λn of the errors in each atomic component
between two error corrections. The error sizes and
failure rates between error corrections can be used
to estimate the final failure rate λ of each atomic
component.

The failure rate and the total number of executions
associated with each atomic component is the input to
the structural reliability model to be discussed in the
remaining part of the paper.

24.6.2 The Architecture-Based
Reliability Model

In the previous subsection, we evaluated the reliability of
atomic components. In this subsection, we evaluate the
reliability of an SoS consisting of multiple systems, each
of which is considered an atomic component. The model
can be generalized to evaluate a system or a subsystem
in a system, with the knowledge of the reliability of its
components, operational profile, and the architecture of
the system. The architecture determines the contribution
of the reliability of each atomic component to that of
the overall system. Hence the approach is named the
architecture-based reliability model [24.40].

First we give the definition of a component’s reliabil-
ity and present our assumptions; then we discuss how the
architecture affects the propagation of reliability; finally,
we derive the formulas that compute the reliability.

We base our reliability model on the ACDATE sce-
nario model, which describes the structure of a system
using model entities actors, conditions, data, actions,
timing, and events, and the behavior of a system us-
ing scenarios. The ACDATE scenario model models the
general computing process.

The reliability definitions of ACDATE entities and
scenarios are summarized in Table 24.6.

The assumptions of our reliability are
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1. Assignment assumption: the assignment operation
introduces no new failure.

2. Condition assumption: the condition fails when any
data that constitutes the condition fails.

3. Acyclic dependency assumption: there is no cyclic
dependency among ACDATE entities.

The system behaviors are specified by a few system-
level scenarios and the reliabilities of those system-level
scenarios will contribute to that of the system. Differ-
ent scenarios may have different execution rates (the
operational profile), which determine the weight of the
contributions.

A scenario is a sequence of activities connected by
four operators: sequence, choice, loop and concurrency.
Each activity is a data assignment, exchanging an event,
doing an action, or executing a sub-scenario. Hence
the reliability of data, events, actions and sub-scenarios
will contribute to that of a scenario. The choice and
loop operator are associated with one or more condi-
tions that determine the branches to take. Hence the
reliability of conditions also contributes to that of a sce-
nario. Moreover, the true/false rate of each condition
will affect the reliability of the scenario through the
choice and loop operators (formulas will be presented
later).

Each top-level scenario would be invoked by an ex-
ternal event. Hence, the occurrence rates of external
events determine the operational profile of top-level sce-
narios. A scenario may emit an internal event, whose
sole function is to resume or invoke the execution of
a sub-scenario. Hence, the occurrence rates of internal
events will affect the operational profile of sub-scenarios
(in addition to direct calling from other scenarios). The
occurrence rates of internal events can be determined
by that of external events invoking top-level scenarios,
and the control flow of those scenarios that emit internal
events.

To summarize, assuming that we know the reliability
of each scenario and the occurrence rate of each external
event (and hence internal events), we can evaluate the
reliability of the system following the formula:

Relsystem = [∑
(wi ∗Relscenario_i )

]
/
∑

(wi ) ,

where wi is the execution rate of the corresponding sce-
nario. In the following we present the calculation of the
reliability of a scenario.

The reliability of data is determined by that of its
storage method, which is modeled as atomic components
(memory, external database, file system, etc.), and hence

is known. The reliability of actions is known if it is
atomic (e.g., a system call), or is that of the sub-scenario
that implements it. The reliability of events is determined
by that of the communication link (atomic component)
and hence is known.

Following assumption 1, the reliability of assign-
ment is that of the right-hand-side data. Hence we know
the reliability of each activity in a scenario.

If several activities are connected by a sequence
operator, then the overall reliability follows the
formula:

Relsequence =
∏

Relactivity_i ,

where Relactivity_i is the reliability of each activity that
participates in the sequence. If several activities are
connected by a concurrency operator and all of them
are replicas, then the overall reliability follows the
formula:

Relconcurrency = 1−
∏

(1−Relactivity_i ) .

Otherwise, it is the same as the sequence, since any
failure results in the failure of the overall concurrency.
For the loop operator, the formula is:

Relloop = (Relcond_set ·Relblock)Pt ,

where Relcond_set is the reliability of the condition set as-
sociated with the loop operator, Relblock is the reliability
of the block of activities enclosed in the loop operator,
and Pt is the expected number of loops. We will discuss
Relcond_set later. For the choice operator, the formula is

Relchoice = Relcondset ·
(
Pt ·Reltrue_block

+ (1− Pt) ·Relfalse_block
)
,

where Pt is the probability that the condition set evalu-
ates as true. Since a scenario consists of only these four
types of operators, we can calculate its reliability fol-
lowing these formulas. The reliability of a condition is
determined by the data that constitute the condition, or
is known if the condition is atomic (e.g., a system call).
Following assumption 2, if a condition consists of sev-
eral data, its reliability is the product of the reliabilities
of all the data. We omit the deduction process due to
the space restriction and only present the final formulas
here:

Relcond_set = 1−
∑

ProTopc(m,o) ,

where each ProTopc(m,o) =
∑

ProTop{c}o
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Table 24.7 The most reliable services and their forecast

Components Reliability Forecast probability Adjusted probability

RainForecast 0.764 18 % heavy rain 33.1%

TempForecast 0.98 31 % extreme temp 31.76 %

WindForecast 0.90 23 % strong wind 28.4 %

33.1%

Change
date

Change
date

Launch

Change
date

Heavy rain
0.764

Extreme
temperature

0.98

Strong wind
0.90

66.9%

68.3%31.7%

28.4%

71.6%

Fig. 24.24 Decision making

Each ProTop{c}o is calculated by the following for-
mulas:

ProTop{c}o = Rel{c}o ·
(
ProTF{c}o+ ProFT{c}o

)

· Probremv ,

Rel{c}o =
∏

(1−RelCk) ·
∏

(RelCl) ,

where RelCi is the reliability of the i-th condition in
the condition set. Each condition set is evaluated in dis-
junction normal form (DNF), whose Boolean value may
be dominated by a true disjunct. Probremv is used to
compensate for possible domination and is defined as
the probability that the disjunct evaluates to be false.
ProTF{c}o and ProFT{c}o are the probabilities that a con-
dition incorrectly changes from true to false, or from
false to true, respectively, and are determined by the
condition’s reliability.

24.6.3 Applications

This subsection uses an example to illustrate the ap-
plications of the proposed dynamic software reliability
model. Assume a space agency plans to launch a satellite
on a specific date and from a specific location. Among
other constraints, the launch is heavily dependent on
the weather conditions at the launch location, including

rain, wind, and temperature. Three independent weather
services are used, offering RainForecast, TempForecast,
and WindForecast, respectively. The forecasts are given
with their probabilities. The reliabilities based on the
history of the services, their forecast probabilities (com-
ponent outputs), and the adjusted probabilities based on
the reliability and the forecast probabilities are given in
Table 24.7.

To decide whether to change the launch date based
on the weather forecasting information, the space agency
then constructed a system based on the components. The
reliability of the system and the final decision of whether
to launch the satellite can then be assessed by the process
shown in Fig. 24.24. The numbers in the diamond boxes
are the reliabilities of each component. The numbers on
the branches are the probabilities forecasted by the best
service. The decision is based on these two factors.

24.6.4 Design-of-Experiment Analysis

Design of experiment (DOE) is an engineering tech-
nique [24.41] that can be used to determine the extent
of the impact of the parameters (factors) of a model on
the final results. This subsection applies DOE to ana-
lyze the impact of the reliability of the components on
the reliability of the SoS.

There are three factors in the example, the reli-
abilities of (A) RainForecast, (B) TempForecast, and
(C) WindForecast. We use two-level DOE techniques,
i. e., we use high and low values of each factor: Rain-
Forecast (70%, 90%), TempForecast (90%, 99%) and
WindForecast (85%, 95%). In our experiment, the three-
factor and two-level design generated the analysis of
variance (ANOVA) table shown in Table 24.8.

The F-value represents the significance of the impact
of a model and its components. In general, if a com-

Table 24.8 ANOVA significance analysis

Source F-value Prob > F-value

Model 1.421 × 10+5 < 0.0001

A (RainForecast) 3.898 × 10+5 < 0.0001

B (TempForecast) 2.2943 × 10+4 < 0.0001

C (WindForecast) 1.3558 × 10+4 < 0.0001
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Fig. 24.25 Impact of components

overall model in the table implies that the model is
significant. There is only a 0.01% chance that the an
F-value of this size could occur for this model due to
noise.

The experimental results in Table 24.8 also show that
the F-values and significances of RainForecast, Temp-
Forecast, and WindForecast are all less than 0.0001, and
thus they are all significant model components.

DOE can be used to compare the significances
among the components. Figure 24.25 shows the impacts
of the three components on the overall reliability in our
example. As can be seen, the higher the component re-
liability, the higher the overall reliability. However, the
impact of the RainForecast service is much more signif-
icant than that of the others. This suggests that the space
agency should pay more attention to the quality of the
rain-forecast service provider.

24.7 The Fourth Generation of E2E T&E on Service-Oriented Architecture

Service-oriented architecture (SOA) and web services
(WS) are emerging technologies that may change the
way computer software is designed and used. Many
industrial standards have been defined in the past few
years to facilitate and regulate the development of WS.
However, there are still a number of barriers prevent-
ing WS from being widely applied or being used as the
platform for trustworthy and high-assurance systems.
Sleeper identified five missing pieces of WS technol-
ogy: reliability, security, orchestration, legacy support,
and semantics [24.42]. Among these five issues, relia-
bility is the least addressed and probably most difficult,
for the following reasons:

• WS are based on an unreliable and open internet
infrastructure, yet they are expected to be trustwor-
thy.• WS have a loosely coupled architecture, yet they are
expected to collaborate closely and seamlessly.• WS can be invoked by unknown parties with unpre-
dictable requests, and thus WS must be robust.• WS involve runtime discovery, dynamic binding
with multiple parties, including middleware and
other WS, and runtime composition using existing
WS. Thus, WS must support dynamic and runtime
behaviors.• WS must support dynamic configuration and recon-
figuration to support fault-tolerant computing.

• WS must support dynamic composition and recom-
position to cope with the changing environment and
changing requirements.• WS involve concurrent threads and object sharing.
It is difficult to test concurrent processes.

We propose an integrated collaborative and coopera-
tive WS development process to achieve high-assurance
computing. The process is implemented in a frame-
work consisting of three major modules dealing with
the construction, publishing, and testing of WS.

As shown in Fig. 24.26, the WS cooperative and
collaborative computing (WSC3) framework consists of
three modules: cooperative WS construction; publish-
ing; and testing, assessment, and ranking (WebStrar).
The framework can be used by service requestors, ser-
vice providers, as well as researchers experimenting with
WS.

As an example, the arrows and numbers in
Fig. 24.26, which outline cooperation scenarios between
the components, are explained as follow.

1. The WS construction module, in the process of dy-
namically constructing a composite WS based on
existing WS, requests information from the WS
publishing module.

2. The publishing module provides required informa-
tion, including the specification and interface of
using the WS.
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Fig. 24.26 WS cooperative and collaborative computing
framework

3. After a composite WS is constructed, the construc-
tion module submits the WS to the WebStrar module
for rigorous testing.

4. If the WS passes the test, it will be registered with
the publishing module and a new WS is available for
online access.

5. A WS provider or a researcher submits their WS for
publication or testing. The WS will be tested by the
WebStrar module rigorously based on the test scripts
submitted by the provider as well as the test scripts
generated by WebStrar. Sharing the test scripts repre-
sents collaboration between the framework and WS
providers and researchers.

6. The framework publishes the WS and informs the
WS provider if the submitted WS passes the test.

7. A WS requestor requests a service. The requestor
can request testing before using a WS. It can use
the test scripts provided by the framework or submit
their own test scripts. Sharing the test scripts repre-
sents collaboration between the framework and WS
requestors. WS requestors can also access the relia-
bility data and ranking information of published WS.

8. The framework processes and responds to the WS
requestor.

In the following three subsections, we elaborate the
three modules in the WSC3 framework, respectively.

24.7.1 Cooperative WS Construction

Figure 24.27 elaborates the cooperative WS construction
module in Fig. 24.26. This module has six components.

The cooperative WS specification component
provides guidelines and tools for users to write WS spec-
ifications in a specification language, e.g., in OWL-S.

Cooperative WS
(C-WS) construction

C-WS
specification

C-WS code
generation

C-WS
composition

C-WS
recomposition

C-WS
configuration

C-WS
reconfiguration

Fig. 24.27 Cooperative WS construction

The component will then use WebStrar to perform
a consistency and completeness (C&C) check on the
specification.

Once the specification passes the check, the code-
generation component can automatically generate the
executable code. The WS generated in this way is
atomic, because its implementation detail is not accessi-
ble to the users. All WS submitted by WS providers are
also atomic.

The cooperative WS composition component pro-
vides automated high-level WS composition based on
existing atomic WS and their specifications.

The recomposition component can reconstruct
a composite WS if the requirement and specification
are changed. Composition and recomposition compo-
nents construct WS based on the functional requirement
while the configuration and reconfiguration components
deal with the management of redundant resources and
the reliability of WS. The configuration component adds
redundant structure into composite WS to meet the
reliability requirements while the reconfiguration com-
ponent maintains redundancy after the environment is
changed, for example, if some WS become faulty or
unavailable.

24.7.2 Cooperative WS Publishing
and Ontology

This section elaborates the cooperative WS publishing
module in Fig. 24.26. Current WS publishing is based
on the universal description, discovery, and integration
(UDDI) technique. The UDDI discovery part is based
on simple term/text matching, which does not have the
intelligent to find synonyms and semantically related
terms. For example, if the phrase “red wine” is searched,
terms like Cabernet Sauvignon and Merlot should be
found too.
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Table 24.9 Cooperative versus traditional ontology

Traditional ontology Cooperative ontology

Test scripts Does not include test scripts Include test scripts and execute these test scripts at runtime

Nonfunctional Use certain terms to represent the value of Use test scripts to present the nonfunctional properties.

property these nonfunctional properties, such as Translate the nonfunctional properties to the measurable

performance and security. features.

Behavior Allow specification of the constraints, but Execute the constraints at runtime to check if the assigned

constraints not their execution at runtime services match the constraints.

Interface Does not include the interface Use specific test scripts to present the interface constraints

information in the description

OWL-S and Protégé are recent projects that support
ontology description. Ontology defines the basic terms
and relations comprising the vocabulary of a topic area
as well as the rules for combining terms and relations to
define extensions to the vocabulary [24.43]. This repre-
sents knowledge about a domain and describes specific
situations in the domain [24.44]. Dynamic composition
and recomposition need to discover WS at runtime over
the internet, add them to the ontology domain, and then
compose a WS at runtime.

Current ontology methods do not include the ver-
ification process. In our cooperative WS publishing
module, we integrated the collaborative verification and
validation (CV&V) process into the ontology by includ-
ing the necessary test scripts in the ontology domain.
When a WS is chosen for composition, recomposi-

ATM system

Login service
(Authorization)

Withdraw/Deposit/
Check balance
service

Check-out
service

Network service

Database service

In each node, in includes the
1. interface scenarios
2. minimal scenarios
3. requested scenarios
4. user-defined scenarios
5. maximum scenarios

Interface group A

Test script 1

Test script 2

User-defined Group A

Test script 1

Test script 2

Fig. 24.28 ATM services tree example

tion, configuration, or reconfiguration, the stored test
scripts will be immediately applied to test the WS. This
integrated ontology with CV&V is called cooperative
ontology. Table 24.9 compares and contrasts cooperative
and traditional ontology.

The ontology-based architecture plays a key role
in runtime WS composition. Runtime verification can
choose different levels of test scripts to verify the
services found. To further explain the idea, a sim-
ple automatic teller machine (ATM) example is used
here. Assume the ATM offers login, balance-checking,
withdrawal, deposit, and logout services.

The service tree of the cooperative ontology repre-
senting the ATM composite WS is given in Fig. 24.28.
Each node has a service interface definition, a number
of service constraints and service scenarios, and user-
specific requirements described using test scripts. For
instance, if we want to choose a login service that sup-
ports a specific character set [&*%̂] in the user name,
the user-defined test script can be:
Execute Register(“abc&*ˆ%123”, “123456”);
If this test script fails, the services found do not conform
to the requirement and will be rejected. As discussed
before, there are multiple levels of test scripts, which
include the interface test scripts. In the service tree spec-
ification, the internal relations among test scripts are also
important to support dynamic service composition and
recomposition.

24.7.3 Collaborative Testing and Evaluation

The WS composed using the process in Fig. 24.29 will
be tested, assessed and ranked. Figure 24.4 depicts the
module that tests and assesses the reliability of the WS
and assures the tools involved. The solid arrows indicate
that a component can be decomposed into several sub-
components, while the dotted arrows indicate the data
flow between components. WebStrar itself is a frame-
work supporting the development of trustworthy WS
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Test case gene-
rator ranking

Collaborative web services testing, reliability assessment, and ranking (WebStrar)
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Reliability
model ranking

Ranking,
method ranking

Fig. 24.29 Collaborative testing, assessing, and ranking

(http://asusrl.eas.asu.edu/srlab/projects/webstrar/index.
htm). This section explains the individual techniques
developed and to be developed in this framework. At
the top level, WebStrar consists of three components:
CV&V, WS reliability assessment, and ranking.

The idea of CV&V is to involve all parties (WS
providers, brokers, and clients) in verifying and validat-
ing the WS, because the WS provider does not have full
information on how their WS will be used by clients and
brokers in user-composed composite WS [24.45, 46].
Before test-script generation, the consistency and com-
pleteness of the WS specification in OWL-S or web
services description language (WSDL) will be checked
through model checking or other methods, which may
detect inconsistent conditions or incomplete coverage
of the requirements [24.17]. Once the specification
passes this check, Boolean expressions can be extracted,
which can be used for test-script generation. Differ-
ent techniques can be applied here; we have applied
the Swiss cheese [24.17] and BLAST [24.16] tech-
niques in our experiments. The system-generated test
scripts, along with the test scripts provided by other
parties, will be verified for correctness and ranked
according to their effectiveness at detecting faults
in WS.

Group testing is a key technique developed to test
the potentially large numbers of WS available on the
internet [24.46]. WS with the same specification can
be tested in groups and the results are compared by
a discriminant voter, which can identify correct and
faulty output based on the majority principle. The
majority results are used as the oracles for future
testing.

Reliability assessment of WS is different from that of
traditional software. WS reliability models do not have
access to the WS source code. WS reliability can only
be assessed at runtime because WS can be composed
and modified (recomposed) at runtime. A group-testing-
based dynamic reliability model has been developed to
assess WS reliability [24.40]. Reliability is one of the
criteria used to rank WS. Other criteria include security,
performance, real-time ability, etc.

WebStrar allows researchers and WS providers to
submit their models and tools for evaluation and rank-
ing. WebStrar supports ranking of test scripts in terms
of fault-detection capacity, test-script generation algo-
rithms in terms of generation of effective test scripts,
reliability models in terms of the accuracy of their
assessment results, and ranking models themselves in
terms of ranking accuracy.

24.8 Conclusion and Summary

E2E T&E technology was initially developed for DoD
command-and-control systems and later applied in var-

ious industrial projects. It was initially designed as
an integrated testing technology and later developed
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into a full development technology spanning require-
ments; specification; model checking; code generation;
test-case generation; testing; simulation; policy specifi-
cation and enforcement; and reliability, security, and risk
enforcement and assessment. All these techniques are
coherently based on the scenario specification. From the
software architecture point of view, E2E T&E technol-
ogy has evolved from centralized architecture, through
distributed agent architecture, to service-oriented archi-
tecture.

E2E T&E technology has been successfully applied
in several DoD command-and-control projects where
high-assurance computing is required and in several
civilian projects including embedded systems in busi-
ness networks. The application of the technology and its
tools dramatically reduce the development cycle of the
end systems and increase their dependability.

Systems developed using E2E T&E technology have
the following attributes and features.

The developed systems are flexible and can adapt
to changing environments. Some important attributes
of adaptability include speed, scalability, reusability,
partitioning, and integration. In general, the system is
adaptive as it supports rapid development; is scalable
from small applications to large applications; has many
reusable tools that can produce reusable components;
and has an integrated process.

The E2E T&E development process is fast because
it includes tools that perform all jobs automatically
where possible. It generates test cases automatically
from the system specification and policy specification.
It generates an executable automatically, and performs
distributed test execution automatically. The evaluation
process is also automatic.

The E2E T&E process is scalable because it can ap-
ply to large as well as small applications. The scenarios
used in the E2E process are hierarchical and thus can ap-
ply to the hierarchical structure of a large SoS or a small
subsystem.

The E2E T&E process has many reusable tools,
including the scenario specification tool, the test-case
management tool, the scenario simulation tool, and the
distributed test-execution tool. One of the key benefits
of the E2E tool is that specified scenarios are highly
reusable and can be easily changed. System scenarios
keep on changing as new requirements become known
and new technology is introduced during system devel-
opment; changing system scenarios with the E2E tool
is much easier than redeveloping scenarios by hand.
In most cases, new scenarios are developed by chang-
ing existing scenarios, and changing scenarios using the
E2E tool with dependency analysis is easier than start-
ing from scratch without any tool support. Furthermore,
once new scenarios are specified, they can be automat-
ically analyzed by various techniques such as timing
analysis, and new test scripts can be rapidly generated
and executed.

E2E T&E tightly integrates system analysis and
modeling with integration testing because the same tech-
niques, i. e., scenarios, can be used for both system
analysis as well as integration testing. The importance
of testing has recently being emphasized by agile de-
velopment processes such as extreme programming.
While testing is one of their main techniques, agile
processes do not have such tight integration between
system analysis and testing as the DoD E2E T&E. Tight
integration changes the way systems are developed; in-
stead of performing requirement-driven testing only, the
E2E process calls for test-based requirement analysis.
In other words, the requirements should be developed in
a way that can be used for rapid integration testing (by
automated test-script generation, verification patterns,
and distributed test execution) and evaluation (by vari-
ous analyses and simulation). In fact, E2E T&E supports
a test-based development process from requirements to
operation and maintenance, and such a process is com-
patible with agile development processes or incremental
development.
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Statistical Mo25. Statistical Models in Software Reliability
and Operations Research

Statistical models play an important role in
monitoring and control of the testing phase of
software development life cycle (SDLC). The first
section of this chapter provides an introduction
to software reliability growth modeling and
management problems where optimal control is
desired. It includes a brief literature survey and
description of optimization problems and solution
methods.

In the second section a framework has
been proposed for developing general software
reliability models for both testing and operational
phases. Within the framework, pertinent factors
such as testing effort, coverage, user growth
etc. can be incorporated. A brief description of
the usage models have been provided in the
section. It is shown how a new product sales
growth model from marketing can be used for
reliability growth modeling. Proposed models
have been validated on software failure data
sets.

To produce reliable software, efficient man-
agement of the testing phase is essential. Three
management problems viz. release time, testing
effort control and resource allocation are discussed
in Sects. 25.2 to 25.4. The operations research ap-
proach, i. e. with the help of the models, optimal
management decisions can be made regarding the
duration of the testing phase, requirement and
allocation of resources, intensity of testing effort
etc. These optimization problems can be of inter-
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est to both theoreticians and software test
managers. This chapter discusses both of these
aspects viz. model development and optimization
problems.

A scientific way of solving decision-making problems
arising in large and complex systems involves the con-
struction of a model (usually a mathematical model) that
represents the character of the problem. Modeling can
be the most practical way of studying the behavior of
such systems. A model exhibits relationships between
quantitative variables under a definite set of assump-
tions that portray the system. It allows experimentation
with different alternative courses of actions and facili-
tates the use of sophisticated mathematical techniques

and computers for the purpose. Mathematical models
have proved to be useful for understanding the structure
and functioning of a system, predicting future events
and prescribing the best course of actions under known
constraints. The success and popularity of operations
research, a problem-solving approach started with the
above philosophy as its basic working principle, has
demonstrated the utility of mathematical modeling. One
of the fields where mathematical modeling, particu-
larly stochastic modeling, has been applied widely is
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reliability. Stochastic modeling in reliability theory has
continued to be an area of extensive research for more
than four decades. The subject has traditionally been at-
tached to hardware systems. But with ever increasing
use of computers in present times software reliability
has also emerged as a discipline of its own. This chap-
ter endeavors to develop new mathematical models for
software reliability evaluation and propose methods for
efficient management of the testing phase.

The last decade of the 20th century will be noted
in history for the incredible growth in information tech-
nology. The proliferation of the Internet has gone far
beyond even the most outrageously optimistic forecasts.
Consequently computers and computer-based systems
have invaded every sphere of human activity. As more
systems are being automated mankind’s dependence
on computers is rapidly increasing. Though this tech-
nology revolution has made our lives better, concern
for safety and security has never been greater. There
are already numerous instances where the failure of
computer-controlled systems has led to colossal loss of
human lives and money. Computer-based systems typi-
cally consist of hardware and software. Quality hardware
can now be produced at a reasonable cost but the same
cannot be said about software. Software development
consists of a sequence of activities where perfection is
yet to be achieved. Hence there is every possibility that
fault can be introduced and can remain in a software.
A fault occurs when a human makes a mistake, called an
error, in performing some software activity. These faults
can lead to failures with catastrophic results. Therefore
a lot of emphasis is put on avoiding the introduction
of faults during software development and to remove
dormant faults before the product is released for use.

The testing phase is an extremely important com-
ponent of the software development life cycle (SDLC),
where around half the developmental resources are con-
sumed. In this phase the software product is tested to
determine whether it meets the requirement. It is endeav-
ored to remove faults lying dormant in the software. The
theory developed in this chapter primarily addresses the
testing phase. The only way to verify and validate the
software is by testing. The software testing involves run-
ning the software and checking for unexpected behavior
of the software output. A successful test can be consid-
ered to be one that reveals the presence of latent faults.
During testing, resources such as manpower and time
are consumed. A very specialized kind of manpower is
required for test-case generation, running the test cases
and debugging. Time is also a very important resource as
software cannot be tested indefinitely and there is always

pressure to release the software as early as possible. With
the increasing importance of cost and time during soft-
ware development, efficient management of the testing
phase becomes a high-priority issue for an organization.
Therefore it is important to understand the failure pat-
tern and faults causing these failures. The chronology
of failure occurrence and fault removal can be utilized
to provide an estimate of software reliability and the
level of fault content. A software reliability model is a
tool that can be used to evaluate the software quanti-
tatively, develop test status and monitor the change in
reliability performance [25.1]. Numerous software relia-
bility growth models (SRGMs), which relate the number
of failures (faults identified) and execution time (CPU
time/calendar time), have been discussed in the liter-
ature [25.2–9]. These models are used to predict fault
content and the reliability of software. The majority of
these models can be categorized as nonhomogeneous
Poisson process (NHPP) models as they assume a NHPP
model to describe the failure phenomenon [25.3,6,8,10].
New models exploit the mean-value function of the
underlying NHPP by proposing new forms for it; this
chapter takes this modeling approach. Moreover the ex-
pected behavior of the users of the software has also
been included in the modeling process.

Large software systems contain several million lines
of code. The sheer size of the product presents unique
problems in terms of the ability of the software de-
signers to achieve software quality rapidly. the testing
phase, which consumes the largest portion of software
development resources, poses formidable challenges.
Manpower from diverse background are involved in the
testing process. It is this phase where a closer interac-
tion with the users is a must. It is a fact that if software
is tested for a longer period it would result in an in-
crease in reliability. But the cost of testing also increases.
Very often test managers work under tight schedules
and with limited resources. Therefore, to produce reli-
able software, efficient management of the testing phase
is required. Three such management problems viz. the
release-time problem, the testing effort control problem
and the resource allocation problem are discussed in this
chapter.

To know when to stop testing is a pertinent ques-
tion during the testing phase. If the time of release
of the software for operation can be forecasted before-
hand it can help management immensely. The predictive
ability of SRGMs can provide a scientific answer. The
release time should be an optimal tradeoff between
cost and reliability. Due to the obvious importance of
the problem it has received a lot of attention from re-
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searchers [25.3, 8, 11–16]. In this chapter this problem
has been chosen as the first illustration of the application
of the methods of operations research in software relia-
bility engineering. The usage-based SRGMs have been
applied in more realistic mathematical programming for-
mulations of the problem. Often the target reliability
level is fixed for release time during the testing of soft-
ware. Using SRGMs the reliability of the software can
be forecasted for any future time. If it is found that the
target cannot be achieved, the testing effort needs to be
accelerated. The additional resource requirements can
be calculated using

SRGMs [25.17–19]. In Sect. 25.3 we discuss the
above testing effort control problem and provide a new
solution method through an SRGM specially developed

for the purpose. Optimal resource allocation is a prob-
lem that bothers all decision makers. Hence the literature
in this area is very rich. Many operations researchers are
working on new allocation problems arising in systems
that are changing due to the proliferation of technology.
Module testing in the testing phase is one such activity
where optimal resource allocation can be important for
obtaining reliable software [25.17, 20, 21]. In this chap-
ter the mathematical programming approach has been
suggested for the solution of this problem.

The objective of this chapter is to highlight the
importance of modeling and optimization in software
reliability engineering. The first part is devoted towards
model development and, thereafter, three illustrations of
optimization and control are provided.

25.1 Interdisciplinary Software Reliability Modeling

A commercial software developer endeavors to make
its software product popular in the market by providing
value to its customer and thus generating goodwill. Apart
from satisfying customers by meeting all their require-
ments and attaching additional features, the developer at
the same time makes constant efforts to build bug-free
software. As manual systems are increasingly being au-
tomated, a failure due to software can lead to loss of
money, goodwill and even human lives. The competi-
tion in the commercial software market is intense and,
because of the nature of the applications involved, pur-
chasers look for quality in terms of the reliability of
the software. Therefore software developers lay special
emphasis on testing their software.

During the testing phase, test cases that simulate the
user environment are run on the software and any de-
parture from the specifications or requirements is called
a failure and an effort is made immediately to remove
the cause of that failure (a fault in the software). Test-
ing goes on until the management is satisfied with the
reliability of the software. But software cannot be tested
exhaustively within a limited time period. This is the
reason why we often hear about failures of software in
operation and sometimes even in safety-critical systems.
These failures are caused by faults that remain even af-
ter testing. Hence it is important to study how these
failures occur in the user phase. Selling a software is
not a one-off deal. It involves cultivating long-term re-
lationship with the purchasers. Many of the developers
come up with newer versions of their software after the
launch of their product. These new versions can con-
tain codes of the previous version with some additional

modules and modifications. Moreover, some developers
give warranties on their products. Hence any fault that is
reported by the user is corrected. If the number of faults
remaining in the software can be estimated to a rea-
sonable accuracy it can give the management a useful
metric to be used for decision making under the situa-
tions discussed above. Mathematical modeling can help
in developing such a metric.

SRGMs have been widely used to estimate the re-
liability of software during testing. Many authors have
even tried to extend them to represent the failure phe-
nomenon during the operational phase, typically used
in the software release-time problem [25.3, 15, 16]. But
this approach is not correct when usage of software is
different from during testing, which is actually the case
for most commercial software packages. Testing is done
under a controlled environment. Testing resources such
as manpower and consumed (computer) time can be
measured and extended further into the future. Math-
ematical models have been proposed for testing effort
itself but they are not suitable for measuring the us-
age of software in the market. The intensity with which
failures would manifest themselves during operational
use is dependent upon the number of times the software
is used and not much has been done in the literature
for this situation [25.21]. An attempt has been made in
this chapter to model reliability growth, linking it to the
number of users in the operational phase. In this chap-
ter we propose a framework for model development for
the operational phase, which can also connect the test-
ing phase, thus providing a unique approach to modeling
both the testing and operational phases.
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Kenny [25.21] proposed a model to estimate the
number of faults remaining in the software during its
operational use. He has assumed a power function to
represent the usage rate of the software. Though Kenny
argues that the rate at which the commercial software is
used is dependent upon the number of users, the model
proposed by him can fail to capture the growth in the
number of users of a software product. A mathematical
model to capture the growth of users is integrated into
the proposed software reliability growth model.

Although commercial software products have been
on the market for two decades, identifying the target
customers with certainty is impossible. Hence a prod-
uct, which may be similar in many respect to another one
when launched in the market, behaves as a new product
or innovation. The Bass model for innovation diffu-
sion [25.22] in marketing has satisfactorily been used
for this dynamic market of software products [25.23].
This model explicitly categorizes the customers into
innovators and imitators. Innovators have independent
decision-making abilities whereas imitators make the
purchase decisions after getting first-hand opinion from
a user. Here it is assumed that purchasers or users whose
number with respect to time can be modeled as an inno-
vation diffusion phenomenon are those who can report
a failure caused by the software to the developer. Such
a model can correctly describe the growth of users in
terms of:

1. a slow start but a gain in growth rate,
2. a constant addition of users,
3. a big beginning and tail off in the usage rate, as

pointed out by Kenny [25.21].

The model can also describe the situation where
a much-hyped product when launched in a market does
not fare according to expectation. Once the number
of users of the software is known, the rate at which
instructions in the software are executed can be es-
timated. The intensity with which failures would be
reported depends upon this usage. The models devel-
oped in the software reliability engineering literature
can now be used to model the fault exposure phe-
nomenon.

Another important factor that affects software re-
liability immensely is testing coverage, but very few
attempts have been made in the literature to include its
impact [25.24, 25]. With the running of test cases and
corresponding failure-removal processes during the test-
ing phase, more portions of the software, paths, functions
are tested. However, it is also a fact that software can-
not be tested exhaustively. As testing coverage increases

software becomes more reliable. Hence testing cover-
age is very important for both software test managers as
well as users of the software. The model developed in
this chapter for both the testing and operational phases
also takes this factor into account, which is another novel
feature of the chapter.

Notations:

m, m(t): Expected number of faults identified
in the time interval (0,t] during the
testing phase.

m̂, m̂(t): Expected number of faults identified
in the time interval (0,t] during the
operational phase.

e, e(t): Expected number of instructions exe-
cuted on the software in the time
interval (0,t].

W , W(t): Cumulative testing effort in the time
interval (0,t]; d

dt W(t) =w(t).
a: Constant representing the number of

faults lying dormant in the software at
the beginning of testing.

p, p(W(t)): Testing coverage as a function of time
testing effort.

α, β, δ, γ : Constants.
g, h, k, i, j: Constants.
ki , i = 1, . . ., 9: Constants.
W̄ : Constant representing the saturation

point for the growth of users of the
software.

T : Release time of the software.
m∗(t): Number of failures reported during

the operational phase, t > T .
q: Factor by which the operational usage

rate differs from the testing rate per
remaining faults.

Rte(x|t): Reliability of the software during the
testing phase, t < T .

Rop(x|t): Reliability of the software during the
operational phase, t > T .

C1, C2: Costs of testing per unit time and re-
moving a fault, respectively, during
the testing phase.

C3: Cost of a failure and removing it dur-
ing the operational phase.

Ts: Scheduled delivery time of the soft-
ware.

pc(t): Penalty cost

{
0, t ≤ Ts

pc.t otherwise
.

Tw: Warranty period of the software.
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25.1.1 Framework for Modeling

As discussed in the Introduction, several quantitative
measures of growth in reliability of software during the
testing phase have been proposed in the literature and
several of these can be classified as NHPP models [25.3,
8, 9]. These NHPP models are based on the assumption
that ‘Software failures occur at random times during
testing caused by faults lying dormant in the software’.
The assumption appears true for both the testing and
operational phases. Hence NHPP models can be used to
describe the failure phenomenon during both of these
phases. The counting process {N(t), t ≥ 0} of an NHPP
is given as follows.

Pr[N(t) = k] = [m(t)]k
k! e−m(t) , k = 0, 1, 2 ,

and m(t) =
t∫

0

λ(x)dx . (25.1)

The intensity function λ(x) (or the mean-value func-
tion m(t)) is the basic building block of all the NHPP
models existing in the software reliability engineering
literature. These models assume diverse testing envi-
ronments such as the distinction between failure and
removal processes, learning of the testing personnel, the
possibility of imperfect debugging and error generation
etc. In models proposed by Yamada et al. [25.26] and
Trachtenberg [25.27], the effect of the intensity of test-
ing effort on the failure phenomenon has been studied.
Faults if present in the software are exposed when the
software is run. During the testing phase, test cases are
run and in the operational phase the software is used by
the user. Hence the rate at which failures would occur
depends upon its usage (i. e. testing effort during test-
ing or number of users in the operational phase [25.21]).
Hence SRGMs should incorporate the effect of usage.
But this may give rise to more complication and confu-
sion as a number of functions exist in the literature that
describes the testing effort or user growth with time.
In this chapter an attempt has been made to address
this problem. A general framework for model develop-
ment has been proposed here. Using the basic building
blocks of this framework SRGMs for both testing and
operational phases can be developed with ease. The
proposed approach is based upon the following basic
assumptions.

1. Software failure phenomenon can be described
by an NHPP. Software reliability growth models

of this chapter are the mean-value functions of
NHPP.

2. The number of failures during testing/operation is
dependent upon the number of faults remaining in
the software at that time. It is also dependent upon
the rate of testing coverage.

3. Testing coverage increases due to testing effort.
4. As soon as a failure occurs the fault causing that

failure is immediately identified. Identified faults
are removed perfectly and no additional faults are
introduced during the process.

5. The number of instructions executed is a function of
testing effort/number of users.

6. Testing effort/number of users is a function of time.

Using the above assumptions the failure phe-
nomenon can be described with respect to time as
follows [25.21, 27]:

dm

dt
= dm

de

de

dW

dW

dt
. (25.2)

We discuss below individually each component (frac-
tion) on the right-hand side of the above expression.

Component 1
During testing instructions are executed on the software
and the output is matched with the expected results. If
there is any discrepancy a failure is said to have occurred.
Effort is made to identify and later remove the cause of
the failure. The rate at which failures occur depends upon
the number of faults remaining in the software [25.10].
As the coverage of the software is increased more faults
are removed. The rate at which additional faults are
identified is directly dependent upon the rate at which
software is covered through additional test cases being
run [25.24, 25]. It is also dependent upon the size of the
uncovered portion of the software. Based on these facts
the differential equation for fault identification/removal
can be written as:

dm

de
= k1

p′

c− p
(a−m) , (25.3)

where p′ is the rate (with respect to testing effort) with
which the software is covered through testing, c is the
proportion of total software which will be eventually
covered during the testing phase, with 0 < c < 1. If c
is closer to 1, one can conclude that test cases were
efficiently chosen to cover the operational profile. For
a logistic fault removal rate we can assume the following
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form for p′
c−p :

p′

c− p
= g

1+he−gW . (25.4)

Hence, p(W ) = c
1− egW

1+he−gW
. (25.5)

Testing coverage is directly related to testing effort, be-
cause with more testing effort we can expect to cover
a larger portion of the software. Testing effort can be
modeled as a function of time, which will be discussed
later in this chapter.

Component 2
The second component of expression (25.2) relates the
number of instructions executed with the testing effort
or the number of users of the software. For the sake of
simplicity we assume it to be constant

de

dW
= k2 . (25.6)

Substituting (25.3) and (25.6) into (25.2) we have

dm

dt
= k1

g

1+he−gW (a−m)k2
dW

dt
. (25.7)

In the next section the mathematical models for the soft-
ware testing effort (component 3 of (25.2)) are discussed.

25.1.2 Modeling Testing Effort

The resources that govern the pace of testing for almost
all software projects [25.6] are

1. Manpower, which includes

• Failure-identification personnel,• Failure-correction personnel.

2. Computer time

In the literature, either the exponential or Rayleigh func-
tion has been used to explain the testing effort. Both can
be derived from the assumption that, the testing effort
rate is proportional to the testing resources available.

dW(t)

dt
= c(t)[α−W(t)] , (25.8)

where c(t) is the time-dependent rate at which testing
resources are consumed with respect to remaining avail-
able resources. Solving (25.8) under the initial condition
W(0) = 0, we get

W(t) = α

⎧
⎨

⎩1− exp

⎡

⎣
t∫

0

c(x)dx

⎤

⎦

⎫
⎬

⎭ . (25.9)

When c(t) = c, a constant

W(t) = α
(
1− e−ct) . (25.10)

If c(t) = ct, (25.8) gives a Rayleigh-type curve

W(t) = α
(

1− e−ct2/2
)
. (25.11)

Huang et al. [25.28] developed an SRGM, based upon
an NHPP with a logistic testing-effort function. The cu-
mulative testing effort consumed in the interval (0, t]
has the following form

W(t) = p

1+r e−lt
. (25.12)

Where p, r and l are constants. SRGMs with logistic
testing-effort functions provide better results on some
failure data sets.

Yamada et al. [25.29] described the time-dependent
behavior of testing-effort expenditure by a Weibull curve
while proposing an SRGM of

W(t) = α
(

1− e−βtk
)
. (25.13)

Exponential and Rayleigh curves become special cases
of the Weibull curve for k = 1 and k = 2 respectively. To
study the testing-effort process, one of the above func-
tions can be chosen. In the following section we develop
an SRGM where the fault-detection rate is a function of
the testing effort and can have one of the forms discussed
above.

25.1.3 Software Reliability Growth
Modeling

Any one of the testing-effort models can be substituted
in (25.7) to obtain a general software reliability growth
model. Equation (25.7) can be written as follows

(dm/dt)

(dW/dt)
= k

g

1+h e−gW (a−m) , (25.14)

where, k = k1k2. Equation (25.14) is a first-order linear
differential equation. Solving it with the initial condi-
tions m(0) = 0 and W(0) = 0 we have,

m[W(t)] = a

(
1+h e−gW(t)

)k − (1+h)e−gkW(t)

(
1+h e−gW(t)

)k
.

(25.15)
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Next it is shown how a similar modeling approach can be
used to obtain a failure-count model for the operational
phase.

This SRGM is flexible and general in nature. For
different parameter values it can reduce to many well-
known SRGMs. Pham et al. [25.30] have proposed an
alternative approach for the development of a general,
flexible SRGM, though the impact of testing coverage
was not explicitly considered in their model develop-
ment. Moreover the modeling approach of this chapter
can be extended to the operational phase, as shown
next.

25.1.4 Modeling the Number of Users
in the Operational Phase

During the operational phase failures are reported by
the users. Software developers remove faults that cause
these failures in future releases of the software. The
number of failure reports can depend on the number
of users of the software. As the usage grows so does
the number of failure reports. Hence usage during the
operational phase plays a similar role as testing ef-
fort during the testing phase. The failure-count model
for the operational phase is based upon the following
assumptions:

1. The number of unique failure reports and corre-
sponding fault removals of the software during the
operational phase can be described by an NHPP.

2. The number of failures during operation is depen-
dent upon the number of faults remaining in the
software. It is also directly proportional to the size
of the uncovered portion (at the completion of the
testing phase) of the software and the volume of
instructions executed.

3. Once a failure is reported, the same failure report
by other users is not counted. The SRGM developed
can be interpreted as a failure-count model. The de-
bugging process by the developer is assumed to be
perfect.

4. The volume of instructions executed is related to the
number of users.

5. The number of users of the software is a function of
time.

Using the above assumptions the fault-removal phe-
nomenon during the operational phase can be described
as a function of time as follows:

dm̂

dt
= [1− p(T )] dm̂

de

de

dW

dW

dt
, (25.16)

where T is the release time of the software, [1− p(T )] is
the size of the uncovered portion of the software and its
value is known at the time of release of the software, m̂
is the mean-value function of the failure-count model for
the operational phase, i. e., the expected number of faults
removed during the operational phase. The other three
fractions of the right-hand side of (25.16) can be mod-
eled similarly to the process followed in Sect. 25.1.1.
Now fault removal is directly dependent on the number
of instructions executed. It is also a fact that additional
faults are removed during code checking for failure-
cause isolation, but these faults may not have caused
failures. Kapur and Garg [25.31] have discussed this
phenomenon. Based upon these arguments the following
expression can be written

dm̂

de
=

(
k4+ k5

m̂

a1

) (
a1− m̂

)
, (25.17)

where k4 is the rate at which remaining faults cause
failures. It is a constant, as each one of these faults has
an equal probability of causing failure. k5 is the rate at
which additional faults are identified without causing
any failures; it is a constant, but also depends upon the
number of faults already identified. a1 = [a−m(T )] is
the number of faults present in the software when it was
released for use (test time T ).

During the debugging process some of the faults
might be imperfectly removed and can cause failure in
future. If this factor is introduced into the model, (25.17)
can be modified as follows:

dm̂

de
=

(
k4+ k5

m̂(
a1+ m̂

)
)
[(

a1+ k6m̂
)− m̂

]
.

(25.18)

In the above expression k6 is the rate of imperfect de-
bugging. But finding a closed-form solution for (25.18)
is difficult. Therefore we can assume a logistic rate
function as discussed (25.17),

dm̂

de
=

(
i

1+ j e−it

) (
a1− k7m̂

)
, (25.19)

where, k7 = 1−k6. Moreover, assuming that the number
of instructions executed is a constant with respect to
usage growth, the following expression, which is similar
to (25.6), can be written.

de

dW
= k8 . (25.20)
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25.1.5 Modeling the User Growth

Kenny [25.21] used the power function to describe the
growth in the user population of a software

W(t) = t(k+1)

(k+1)
. (25.21)

W(t) here is the number of users of the software in the
operational phase at time t. The function can correctly
describe the users growth in terms of

1. a slow start but a gain in growth rate,
2. a constant addition of users,
3. a big beginning and tail off in the usage rate.

However, in the marketing literature, the power func-
tion is seldom used for the purpose as described above.
One of the reasons may be that the parameters of the
function are not amenable to interpretation. The growth
in the number of users with respect to time can also be
described by the Bass model [25.22] of innovation dif-
fusion. To apply the Bass model it is assumed that there
exists a finite population of prospective users who, with
time, increasingly become actual users of the software
(no distinction is made between users and purchasers
here as the Bass model has been successfully applied
to describe the growth in number of both of them). In
each period there will be both innovators and imitators
using the software product. The innovators are not in-
fluenced in their timing of purchase by the number of
people who have already bought it, but they may be in-
fluenced by the steady flow of nonpersonal promotion.
As the process continues, the relative number of inno-
vators will diminish monotonically with time. Imitators
are, however, influenced by the number of previous buy-
ers and increase relative to the number of innovators as
the process continues.

The combined rate of first purchasing of innovators
and imitators are given by the term

(
α+β

W(t)
W̄

)
and

increases through time because W(t) increases through
time. In fact the rate of first purchasing is shown as
a linear function of the cumulative number of previous
first purchasers. However, the number of remaining non-
adopters, given by

[
W̄ −W(t)

]
decreases through time.

The shape of the resulting sales curve of new adopters
will depend upon the relative rate of these two tenden-
cies. If a software product is successful, the coefficient
of imitation is likely to exceed the coefficient of inno-
vation i. e. α < β. On the other hand, if α > β, the sales
curve will fall continuously.

The following mathematical model, known as the
Bass model [25.22] in the marketing literature, describes

this situation.

dW(t)

dt
=

(
α+β

W(t)

S̄

) [
S̄−W(t)

]
. (25.22)

The solution of (25.22) for W(t = 0) is

W(t) = W̄
1− exp[−(α+β)t]

1+ (β/α) exp[−(α+β)t] . (25.23)

Givon et al. [25.23] have used the modified version of
this model to estimate the number of licensed users as
well as users of pirated copies of the software. Though
it can be reasonably assumed that it is the licensed-
copy holders who would report the failures, (25.23) can
be used to find the expected number of users at any
time during the life cycle of the software. If the new
software is expected to go through the same history as
some previous software (very likely for versions of the
same software) the parameters of an earlier growth curve
may be used as an approximation.

The derivative of (25.23) to be used in expres-
sion (25.16) has the following form

dW(t)

dt
= W̄

β[1+ (β/α)] exp[−(α+β)t]
{
1+ (β/α) exp[−(α+β)t]}2

. (25.24)

After substitution of all the components, (25.16) is
a first-order linear differential equation. Solving it with
the initial condition m(t = 0) = 0 we have,

m̂(t) = a2

k9

[
1−

(
(1+ j)e−iW(t)

1+ j e−iW(t)

)k9
]

, (25.25)

where a2 = k8a1[1− p(T )] and k9 = k7k8[1− p(T )].

25.1.6 Estimation Methods

The testing-effort data or the data pertaining to
the number of users (or usage) of a software can
be collected in the form of testing effort/usage,
wk(−<w1 <w2 < . . . < wn) consumed in time (0, ti ];
i = 1, 2, . . . , n. Then the testing-effort model/usage
growth model parameters can be estimated by the
method of least squares as follows

Minimize
n∑

i=1

(
Wi − Ŵ

)2
(25.26)

subject to Ŵn = Wn (i. e. the estimated value of the
testing effort is equal to the actual value).

To estimate the parameters of the SRGMs obtained
through (25.15) and (25.25), the method of maximum
likelihood (MLE) is used [25.3, 6, 8]. The fault-removal

Part
C

2
5
.1



Statistical Models in Software Reliability and Operations Research 25.1 Interdisciplinary Software Reliability Modeling 485

Table 25.1 Fitting of testing effort data

Data sets α β k R2

DS-1 2669.9 0.000773 2.068 0.99

DS-2 11710.7 0.0235 1.460154 0.98
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Fig. 25.1 Fitting of the effort curve (DS-1)

data is given in the form of cumulative number of faults
removed, yi in time (0, ti ]. Thus the likelihood function
is given as

L[a1, a2,bo,br,q|(yi , Wi )]

=
n∏

i=1

[m(ti )−m(ti−1)]yi−yi−1

(yi − yi−1)! e−[m(ti )−m(ti−1)] .

(25.27)

25.1.7 Numerical Illustrations

To validate the models four real software failure data
sets have been chosen. The first two were collected dur-
ing the testing phase of software while the third and
fourth data sets are based on failure reports of software
in operational use.

Data set 1 (DS-1): The data are cited from Brooks
and Motley [25.11]. The fault data set is for a radar
system of size 124 KLOC (kilo lines of code) tested for
35 months, in which 1301 faults were identified.

Table 25.2 Parameter estimation of the SRGM

Data set a H g k R2

DS-I 1305 4.46445 0.003173 1.0363 0.996

DS-II 110 4.8707 0.000392 1.092 0.997
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Fig. 25.2 Fitting of the testing effort curve (DS-2)
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Fig. 25.3 Fitting of the failure curve (DS-1)

Data set 2 (DS-2): The data set pertains to release 1
of the tandem computer project cited in [25.30]. The
software test data is available for 20 weeks, during which
100 faults were identified.

In both cases the Weibull function (25.13) gave the
best fit to the testing-effort data. The results are presented
in Table 25.1 and the curve fits are depicted in Figs. 25.1
and 25.2, respectively.

The estimation results for the parameters of
SRGM (25.15) have been summarized in Table 25.2
and are graphically presented in Figs. 25.3 and 25.4.
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Table 25.3 Estimation result on DS-3

a2 K9 j i W (α+β) β/α R2

112 0.978 4.352 0.026 × 10−5 31038400 0.010634 2.4469 0.989
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Fig. 25.4 Fitting of the failure curve (DS-2)

Next we estimate the parameters of SRGMs obtained
from equation (25.25) and using usage growth func-
tions (25.21) and (25.23). The following data set has
been chosen for illustration.

Data set 3 (DS-3): This failure data set [25.32] is
for an operating system in its operational phase. The
software consists of hundreds of thousands of delivered
object code instructions. 112 faults were reported during
the observation period of around five months. The Bass
model (25.23) could best describe the usage data and
hence was chosen. Using the estimated values, the rest
of the parameters of the model were estimated. The
estimation results are summarized in Table 25.3 and are
depicted in Figs. 25.5 and 25.6.
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Fig. 25.5 Fitting usage data (DS-3)
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Fig. 25.6 Fitting of number of failures (DS-3)

25.2 Release Time of Software

It is important to know when to stop testing. The opti-
mal testing time is a function of many variables: software
size, level of reliability desired, personnel availability,
market conditions, penalty cost due to delay in deliv-
ery of the product and penalties of in-process failures. If
the release of the software is unduly delayed, the soft-
ware developer may suffer in terms of penalties and
revenue loss, while premature release may cost heavily
in terms of fault removals to be done after release and
may even harm the manufacturer’s reputation. Software
release-time problems have been classified in different

ways. One of them is to find the release time such that
the cost incurred during the remaining phases of the life
cycle (consisting of the testing and operational phases)
of the software is minimized [25.3, 15]. This problem
can also be alternatively defined in terms of maximiz-
ing gain, where gain is defined as the difference in cost
incurred when all faults are removed during the op-
erational phase as against the cost when some faults
are removed during the testing phase and others are re-
moved during the operational phase. It can be proved that
maximizing gain is the same as minimizing cost. Some
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release-time problems are based upon reliability criteria
alone. Models that minimize the number of remaining
faults in the software or the failure intensity fall under
this category [25.3]. Release-time problems have also
been formulated for minimizing cost with minimum reli-
ability requirements or maximizing reliability subject to
budgetary constraints [25.3]. The bicriterion release pol-
icy simultaneously maximizes reliability and minimizes
cost subject to reliability and resource constraints. In all
these formulations software reliability growth models
play a very important role due to their predictive ability.
It is a fact that the longer software is tested, the higher
its reliability. But it cannot be tested indefinitely, due to
time and cost factors. With increasing cost, there is also
a loss of opportunity in earning profit. Again software
can have scheduled delivery time and the developer may
have to pay high penalty costs due to a delay in delivery.
Hence an optimal tradeoff between cost and reliability
is required to find the termination time of testing. All the
costs mentioned above are minimized subject to some
constraints. These constraints are primarily related to
a certain minimum level of testing reliability. The cost
and reliability functions are discussed in detail later in
this section.

The Cost Function
Cost functions discussed in the literature include costs
of testing, removing faults during testing and that of
failures and removals during the operational phase. As
testing is done under a controlled environment, costs
pertaining to testing, removing faults, documentation
etc. can be estimated, but difficulty arises in quanti-
fying the cost of a failure at the user end. As a way
out a more realistic approach of warranty cost is being
considered [25.33]. In release-time problems, costs of
failure and removal of a fault occurring during a limited
warranty period immediately after release need also to
be included. Failure during the operational phase also
amounts to loss of goodwill for the developer. Hence,
in the cost function, failures after testing are counted
and costs for their removal are estimated. Cost due to
delay in delivery [25.34] is normally included in the
overall software development cost. Release-time prob-
lems should include their affect. The cost function can
takes the following form:

C(T ) = c1T + c2m(T )+ c3m∗(T +Tw)+ pc(T ) .
(25.28)

It is assumed above that the costs of removing faults
during testing and operation are constants: c2 and c3,
respectively. The functional forms for m(T ) and m∗(T +

Tw) are also required. SRGMs have been used for m(T )
and the model that best describes the reliability growth
during the testing phase needs to be chosen. To estimate
the number of failures in the warranty period, models
for the operational phase should be used. A typical cost
function with an S-shaped reliability growth curve can
take the form (or a part of it) of the curve, as shown
in Fig. 25.7.

In the release-time problems discussed in the litera-
ture, it has been assumed that failures will occur in the
operational phase in the same manner as they do during
testing [25.15]. Though the testing environment is de-
signed such that it best represents the operational phase,
the intensity of use of the software may differ. It is shown
below how the simple Goel–Okumoto model [25.10]
can be modified for the purpose. For the failure phe-
nomenon of software in operational phase, the following
differential equation is proposed:

d

dt
m∗(t) = b1[a1−m∗(t)] , t > T . (25.29)

This equation is based on the assumption that failures
during the operational phase are dependent on the num-
ber of faults remaining in the software at and after the
time of release. Again the rate at which failures will oc-
cur with respect to the remaining faults is dependent on
perceived usage of the software during this period. It is
also assumed that upon a failure the corresponding fault
is to be removed, at least during the warranty period.
Our primary interest during this phase is to count the
failures, as this directly translates to very high costs on
account of risk, loss of goodwill and removal of faults or
replacement of the entire software. The number of faults
remaining in the software at time T is,

a1 = [a−m(T )] = a−m(T ) . (25.30)

It is expected that there would be no fault generation
during debugging in this phase. It is also assumed that the
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usage in the operational phase differs from that during
the testing phase by a constant factor q. Hence the new
rate is b1 = bq. If q = 1, the intensity of use of the
software during both these phases is similar. For q < 1
(q > 1) the software is expected to be used less (more)
intensely during the operational phase. The solution of
the differential equation (25.29) with the initial condition
m∗(T ) = 0 is

m∗(t) = a1

[
1− e−b1(t−T )

]
, t > T , (25.31)

where m∗(t) represents the expected number of failures
in operational phase by time ‘t’. It is assumed that the
failure phenomenon is still governed by an NHPP but
with a new mean-value function.

Reliability Functions
Reliability expressions for NHPP software reliability
models can easily be derived [25.6, 8, 10]. Software re-
liability is defined as the probability that the software
operates failure-free for a specified time interval, on the
machines for which it was designed, with the condition
that the last failure occurred at a known time epoch. If
the fault-detection process follows an NHPP then it can
be shown that the software reliability at time t for a given
interval (t, t+ x) is given by,

Rte(x|t) = e−[m(t+x)−m(t)] . (25.32)

Software reliability at time ‘t’ during the user phase is
defined as the probability of nonoccurrence of failure in
the interval (t, t+ x], x ≥ 0, t > T ; in the operational
environment. The definition is similar to the defini-
tion for the testing phase. A mathematical expression
for the same can be derived using the SRGM (25.31)
and the NHPP assumption. The following expressions
results [25.6, 22].

Rop(x|t) = e−[m∗(t+x)−m∗(t)] , t > T . (25.33)

The reliability curves for different values of q for a par-
ticular data set are given in Fig. 25.8. It is also observed
that, for particular values of a, b and p, the operational
reliability curve lies above the testing reliability curve
i. e. Rop(x|t)≥ Rte(x|t), t ∈ [0,∞) when q = 1. This re-
sult agrees with that derived in [25.16] when testing and
operational profiles are identical.

25.2.1 Release-Time Problem Formulations

The release-time problem of software is to find a testing
termination time T∗ from an optimal tradeoff be-
tween cost and reliability. Many optimization problems
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Fig. 25.8 Reliability curves for various q

have been formulated in the literature for this pur-
pose [25.13, 15, 16, 33–36]. These problems select one
or more functions from the lists of objective functions
and constraints.

Objectives
(O1) Cost function: minimize C(T );
(O2) Reliability functions:

1. Maximize Rte(x|t),
2. Maximize Rop(x|t).

Constraints
(C1) Budget constraint: C(T ) ≤ B;
(C2) Reliability constraints:

1. Rte(x|t) ≥ Rt,
2. Rop(x|t) ≥ Ro.

Where Rt and Ro are minimum reliability requirements
for the testing and operational reliabilities respectively.
In Table 25.4 some release-time problem formula-
tions [25.3, 8] have been presented.

(R1) is the easiest problem formulation and is ap-
plicable for routinely developed software for which
requirements are well defined. (R2) should be chosen
for safety critical systems, where reliability is of ut-
most importance. (R4) is the most general problem
formulation but is the most difficult to solve. A num-
ber of methods, including visual inspection of the cost
curve, calculus, nonlinear programming, dynamic pro-
gramming and neural networks etc. [25.3, 12, 15, 36],
have been applied to find the optimal solution. Opti-
mization software packages can also be used for this
purpose.
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Table 25.4 Release-time problems

Release time problem Objective(s) Constraints(s)

(R1) Cost criterion Cost function (O1) None

(R2) Reliability criterion Reliability functions Reliability constraints
(O2-a) and (O2-b) (C2-a) and (C2-b)

(R3-A) Cost-reliability critera Cost function (O1) Reliability constraints
(C2-a) and (C2-b)

(R3-B) Reliability-cost critera Reliability functions Budget constraint (C1)
(O2-a) and (O2-b)

(R4) Bicriterion release criteria Cost function (O1) Budget constraint (C1)
Reliability functions Reliability constraints
(O2-a) and (O2-b) (C2-a) and (C2-b)

25.3 Control Problem

Before the release of software, a target reliability
level is fixed. A reliable estimate of the fault content
of software can also be obtained. Hence the man-
agement may desire to remove a certain percentage
of it before release. But during the testing phase it
is frequently realized that this may not be achiev-
able for a number of reasons, such as inadequacy of
the testing effort, inefficiency of the testing team etc.
Hence, there is a need to increase the fault-removal
rate. The problem of accelerating fault removal to
achieve a certain reliability level or to a remove a cer-
tain percentage of total fault content of software is
known as the testing-effort control problem. Yamada
and Ohtera [25.19] took the software reliability growth
modeling approach to solve this problem. In this section
a new method to accelerate fault removal using SRGMs
is proposed.

Additional Notations Used in this Section

α: Total testing resources to be eventually
consumed, a constant;

Wo(t): Cumulative testing effort on failure obser-
vation;

Wr(t): Cumulative testing effort on fault removal;
mf(t): Number of failures observed in (0, t];
bo, br: Constants of proportionality, denoting rates

of failure observation and fault removal,
respectively;

m∗: Number of faults desired to be removed in
time (0, T2];

W(t−T1): W(t)−W(T1), T1 is the time duration;
a1: a−m(T1);
a2: a−mf(T1).

25.3.1 Reliability Model
for the Control Problem

The management of a software development project has
time schedules for testing and release of software, but
it is ignorant about the number and nature of faults ly-
ing dormant in it before the testing is actually done.
SRGMs help in this regard after testing has been car-
ried out for a certain period. The estimated parameters
of the selected SRGM provide information about the
number of faults remaining and the efficiency of the
testing effort. Hence the expected number of faults that
will be removed at any time in the future can be fore-
casted if the effort follows a known pattern. Frequently,
management aspires to a reliability level at release that
can be interpreted in terms of remaining number of
faults. When the forecasted number of faults falls be-
low the desired number, the testing effort needs to be
controlled [25.18]. One obvious method (method I) is
to increase the intensity of the testing effort through
the employment of more manpower, computer time
etc. But with limited resources available, this may not
be feasible. Here it is shown how fault removal can
also be accelerated by manipulating the allocation of
testing resources to the two processes of failure ob-
servation and fault removal (method II). The models
developed earlier in this chapter do not distinguish be-
tween fault identification and removal phenomenon. For
the solution of the control problem we use the following
SRGM.

The software testing phase aims to observe the fail-
ure process and remove the cause of the failure (the
removal process). It is observed that different amounts
of testing resources are consumed by each of these
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processes. In SRGMs developed in the literature, the
time-dependent behavior of the testing effort and the
consequent reliability growth has been studied.

Yamada et al. [25.37], have given an SRGM incor-
porating the time lag between failure observation and
fault removal. Kapur et al. [25.3] developed an S-shaped
SRGM based on an NHPP to model the relationship be-
tween fault removal and testing effort. The cumulative
testing effort was taken as a weighted sum of resources
spent on fault observation and removal processes. We
modify these SRGMs here. It is a common experience
that, during early stages of testing, a large number of
failures are observed, while the corresponding fault re-
movals are lower. On the other hand, during later stages
of testing, failures are harder to observe. Hence the
failure-detection and the fault-removal processes should
be studied distinctly.

Let qo(t) and qr(t) be the proportions of testing effort
used on the failure-observation and fault-removal pro-
cesses i. e. qo(t)= Wo(t)

Wo(t)+Wr(t)
= Wo(t)

W(t) and qr(t)= Wr(t)
W(t) .

Then qo(t)+qr(t) = 1. If we assume qo(t) = q and
qr(t) = (1−q), where q is a constant lying between
0 and 1. Then qW(t) denotes the testing effort on
failure observation and (1−q)W(t), the effort on
fault correction in the interval (0, t]. The NHPP-based
SRGM developed below is based on the following
assumptions:

1. No new faults are introduced into the software sys-
tem during the testing phase.

2. The rate of fault removal to the current testing ef-
fort on removal is proportional to the number of
identified faults that are yet to be removed at that
instant.

The assumptions take the form of the following differ-
ential equations

m′
f(t)

qw(t)
= bo [a−mf(t)] , (25.34)

m′(t)
(1−q)w(t)

= br [mf(t)−m(t)] . (25.35)

Solving the above system of equations with the initial
conditions mf(t = 0) = 0 and m(t = 0) = 0, we get

m(t) = a

{
1− 1

−boq+br(1−q)

×
[
br(1−q)e−boqW(t)−boq e−br(1−q)W(t)

]}
.

(25.36)

Equation (25.36) represents the cumulative number
of faults removed, with respect to the testing effort

consumed in the interval (0, t]. The time-dependent
testing-effort function can have any of the forms
presented in the preceding subsection. The removal
function (25.36) is an S-shaped growth curve, because
of the time lag between failure observation, the removal
of the corresponding fault and the nature of the effort
function.

For q = 1, the model reduces to the exponential
model due to Goel and Okumoto [25.10]. In this case the
process consists of a single step, i. e. faults are removed
as soon as they are identified. With increasing (1−q), the
effort on removal increases. Hence the SRGM (25.36),
captures the severity in faults present in a software. The
model has been validated on actual software reliability
data sets [25.17].

25.3.2 Solution Methods
for the Control Problem

Method I
Suppose that software has been tested for time T1 and it is
to be released by time T2, T2 > T1. Using the test data for
the interval (0,T1] the parameters of the SRGM (25.36),
can be statistically estimated. The testing effort in this in-
terval is W(T1) and the corresponding number of faults
that have been removed is m(T1). Based on the esti-
mates of parameters, the number of faults expected to
be removed by time T2 is,

m(T2) = a

{
1− 1

−boq+br(1−q)
(25.37)

×
[
br(1−q)e−boqW(T2)−boq e−br(1−q)W(T2)

]}

The difference [m(T2)−m(T1)] is the number of faults
that is expected to be removed in the interval (T1, T2].
Often the management aspires to a level of reliability
for the software at the time of release, which can be
translated in terms of the number of faults (m∗) that it

m*
Faults removed

Time

Fig. 25.9 Testing effort control
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desired to be removed. If m∗ > m(T2), the fault-removal
rate has to be increased. This control problem is depicted
in Fig. 25.9.

First the testing effort required to remove [m∗ −
m(T2)] faults in the time interval (T1, T2] is calcu-
lated. Using the assumptions for the SRGM (25.36),
the following expression results for m(t), t > T2

m(t) = m(T1)+a1

(
1− e−br(1−q)W(t−T1)

)

− a2br(1−q)

−boq+br(1−q)

×
(

e−boqW(t−T1)− e−br(1−q)W(t−T1)
)
.

(25.38)

In the above equation if m∗ is substituted for m(t) and
W∗ for W(t−T1), the following expression results,

m∗ = m(T1)+a1

{
1− e−br(1−q)W∗}

− a2br(1−q)

−boq+br(1−q)

×
{

e−boqW∗ − e−br(1−q)W∗}
. (25.39)

With the values of m∗, m(T1), a1, bo, a2, br and q be-
ing known, equation (25.39) can be solved numerically
to obtain the value of W∗, i. e. the amount of additional
resources needed.

Method II
An alternative way to achieve the desired fault-detection
level is to change the allocation factor of resources to
be spent on the failure-identification and fault-removal
processes. During the early stages of the testing phase
a large number of failures may be observed, while the
corresponding fault-removal rate is lower. This is due
to the latency time needed by the removal team to cope
with the workload. In this case it is reasonable to allo-
cate resources in order to increase the testing effort of
the failure-removal team, which may stimulate removal.
On the other hand, during the late stages of testing, fail-
ures may be hard to identify and the removal team would
have had enough time to remove most of the faults. Thus
the fault removal will slow down, due to the lower num-
ber of failure observations. Hence it is more logical to

assign more resources to the failure-identification team.
Again during the later stages of testing it may happen
that most of the failures had already been identified but
not removed. Ideally the testing effort should now be
concentrated on removal.

As discussed above, removal can be accelerated
through proper allocation of resources. The optimal
proportion of resources to be allocated to the failure-
identification process, q∗ to remove m∗ faults can be
found by solving the following equation numerically

m∗ = m(T1)+a1

(
1− e−br(1−q∗)W(T2−T1)

)

− a2br(1−q∗)

−boq∗ +br(1−q∗)

×
(

e−boq∗W(T2−T1)− e−br(1−q∗)W(T2−T1)
)
.

(25.40)

The proportion of testing effort to be spent on fault
removal during the time interval (T1,T2] is (1−q∗). In
the following section, the results derived through the two
methods are illustrated numerically.

In the literature only method I has been proposed
for the control problem, but frequently management has
to deal with limited testing resources. Method II, which
increases fault removal through proper segregation of
resources, can provide a solution. Moreover, following
this method, testing can be done more efficiently by con-
stantly monitoring the effort and fault removal and then
allocating the optimal proportion of resources to the test-
ing teams [25.38]. The control problem and the solution
methods can be further refined. There can be an upper
limit other than the initial fault content on the number
of faults that can be removed by changing the allocation
factor. Again the sensitivity analysis of the parameters
with respect to the estimates and the optimal solution
can provide further insight into the optimal allocation of
testing resources. An early release of software is always
desirable, but this should not undermine its quality. Also
with a limited budget, decision making on the duration
of testing becomes complicated. Hence cost–reliability
criteria for the release of software and control of the
testing effort should be jointly considered.

25.4 Allocation of Resources in Modular Software

Large software consists of modules. Modules can be vi-
sualized as independent pieces of software performing
predefined tasks, mostly developed by separate teams

of programmers and sometimes at different geographi-
cal locations. These modules are later integrated to form
complete software. In module testing, each module is
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tested independently and the software environment is
simulated [25.39]. Typically this phase consumes 25%
of the total development effort. In this phase the objec-
tive is to remove the maximum number of faults lying
dormant in the modules. Though no conclusion can be
drawn on system reliability at this stage, it is definitely
enhanced with each fault removal. However, the test-
ing has to be concluded within a specified time, which
calls for proper allocation of limited resources among
modules. This gives rise to the management problem
of maximization of total fault removal within a finite
time period or testing resource budget. In this section,
we have formulated it as a mathematical programming
problem. Again all modules are not equally important
neither do they contain an equal number of faults. The
severity of a fault in each module can also differ. In
the light of this we have proposed another mathemati-
cal programming problem in that section. To arrive at
a solution to this problem a mathematical relationship
between testing resource consumption and fault removal
is required. SRGMs have been used as a tool to monitor
the progress of the testing phase by quantifying various
reliability measures of the software system such as reli-
ability growth, remaining number of faults, mean time
between failures, testing effort etc. One approach is due
to Musa et al. [25.6], where they have assumed that the
resource consumption isan explicit function of the num-
ber of faults removed and calendar time. We develop
a new model for the testing effort, which is solely de-
pendent upon fault removal. The mathematical model is
based upon the marginal testing effort function (MTEF),
is defined as the effort required to remove an additional
fault at any time. MTEFs are different in each module,
depending on the severity of the faults in it, and using
them we determine the optimal allocation of testing re-
sources among modules; this has never been used before
for optimal allocation of resources.

Using a simpler form of the MTEF a closed-form
solution for optimal allocation of testing resource is ob-
tained. It is very important to give a plausible form, but,
as seen in another optimization problem, when more
practical constraints are added to the same problem, no
closed-form solution could be obtained. The problem is
then solved as a nonlinear programming problem using
a software package.

Additional Notations for this Section

mi : Number of faults removed in the i-th
module;

ci : Cost of unit testing effort in the i-th module;

αi : Relative importance of module i,
N∑

i=1
αi = 1;

w(m): Marginal testing effort when m faults have
been removed;

W(m): Cumulative testing effort when m faults have
been removed;

Wi (m): Cumulative effort to remove m faults in the
i-th module;

wi (m): Marginal testing effort function in the i-th
module;

B: Total testing resource available; budget;
ri : Minimum number of faults desired to be

removed in the i-th module;
N : Number of modules;
k′, p, q, k: Constants of proportionality;
pi , qi , ki : Parameters of marginal testing effort func-

tion for the i-th module;
ai : Number of faults in the i-th module;
di : ciki ;
δ, γ : Probability of imperfect (perfect) debug-

ging, 0 ≤ δ, γ ≤ 1;
δi , γi : Probability of imperfect (perfect) debug-

ging, 0 ≤ δi , γi ≤ 1.

25.4.1 Resource-Allocation Problem

Consider software with ‘N’ modules. During module
testing each module is tested independently. We assume
that the modules have a finite number of faults and we
aspire to remove the maximum number of them. Test-
ing resources such as manpower and computer time are
used and the management has to allocate limited testing
resources among the modules. This problem of optimal
allocation of testing resources among modules can be
formulated as a mathematical programming problem,
which is given below.

maximize
N∑

i=1

mi ,

subject to

N∑

i=1

ci Wi (mi ) = B . (25.41)

Kubat and Koch [25.18] have used SRGMs and through
the method of Lagrangian multipliers have obtained so-
lution to the above problem. However, this method does
not rule out the possibility of negative allocation of re-
sources to some modules. To correct this, algorithms
that are similar in nature have been proposed in these
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papers; they sequentially give zero allocations to these
modules and distribute the values among the others. But
this proposition is also not suitable, as testing cannot be
stopped abruptly. As a way out, management can decide
upon some minimum number of faults that it expects to
remove from each module.

All modules of software are not equally important.
The relative importance of modules can be determined
based upon the frequency with which modules are ex-
pected to be called for execution in the actual user
environment. Accordingly weights can be attached to
each module. Incorporating this, the optimization prob-
lem above (25.41) can be reformulated as

maximize
N∑

i=1

αimi

subject to

mi ≥ ri , i = 1, . . . , N ,

N∑

i=1

ci Wi (mi ) = B . (25.42)

A functional relationship between the testing effort
and fault removal is needed before we solve (25.41)
or (25.42). SRGMs can be used for this purpose. We
adopt the reverse approach and develop a model for re-
source consumption vis-à-vis fault removal in the next
section.

25.4.2 Modeling the Marginal Function

Most SRGMs depict reliability growth with reference
to execution time. Only a few SRGMs incorporate the
effect of a time-dependent testing-effort pattern. Testing-
effort components such as manpower utilization are
dependent on the outcome of testing. Hence how the
resources are consumed with each failure and removal
attempt is a very important factor during decision mak-
ing on resource allocation. Therefore we formulate an
MTEF that gives a functional relationship between test-
ing and fault removal. The time factor is not explicitly
present in the model. Marginal testing effort (MTE) is
the amount of effort required to remove an additional
fault at any given time. Hence, if m faults have already
been removed from the software, the MTE is the test-
ing effort required to remove the (m+1)-th fault. We
propose a mathematical relationship between the MTE
and the number of faults removed based upon the as-
sumption that the MTE is inversely proportional to the
remaining faults in the software, i. e. the more faults we

remove, the greater effort would be required to remove
the next fault.

Mathematically this can be written as

w(m) = k′

a−m
(25.43)

and W(m) = k′ ln a

a−m
. (25.44)

In this expression it is also implicitly assumed that
the software contains a finite number of faults at the
initiation of testing, that fault removal is perfect and
that no new faults are introduced in the process. These
assumptions are similar to those used by Goel and Oku-
moto [25.10] for their SRGM, i. e. the rate of fault
removal is proportional to the remaining faults at any
given time. The SRGM is with respect to execution
time and it is the mean-value function of the under-
lying stochastic process described by an NHPP. As the
optimization problems being studied in this chapter are
with respect to testing resource consumption, MTEF is
better suited for our purpose. But the variability in the
nature of relationship between the variables i. e. resource
consumption and fault removal needs to be captured in
a MTEF. It should also include the effect of learning
on the testing team. With each additional fault removed,
some more faults lying on the execution path are re-
moved and the testing team also gains insight into the
software. To incorporate this, we assume that, the MTE
is also inversely proportional to a linear function of the
number of faults removed. Hence (25.44) can be written
as,

w(m) = k

(p+qm)(a−m)
(25.45)

and W(m) = k

p+aq
ln

a(p+qm)

p(a−m)
. (25.46)

A higher value of q denotes a higher rate of learning of
the testing team and implies a growth rate in the MTE.
In expression (25.45) it is assumed that, on a failure, the
fault causing that failure is immediately removed with
unit probability. Though every care is taken to correct the
cause of a failure, the possibility of imperfect debugging
and fault generation cannot be ruled out [25.3, 6, 40]. If
the fault remains, even after debugging, then it is said
to be imperfectly debugged. New faults can also be in-
troduced during the removal process. In both ways the
fault content enhances the chance of failure in future.
As this phenomenon is a reality, the MTEF should ide-
ally contain the effect of imperfect debugging and fault
generation. We modify (25.45) through the assumption
that the number of faults imperfectly debugged and gen-
erated during the debugging phenomenon is dependent
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upon the number of removal attempts already made. The
following expression results from these assumptions:

w(m) = k

(p+qm)

1

(a+ δm−m)

= k

(p+qm)

1

(a−γm)
, (25.47)

W(m) = k

pγ +aq
ln

a(p+qm)

p(a−γm)
. (25.48)

The modules of a piece of software are independent
pieces of software themselves. Hence the least-squares
method suggested above can be used to estimate the pa-
rameters of the MTEFs of the different modules. For this
it is required that modules have already been tested for
some time and data pertaining to failures and resource
consumption has been recorded.

25.4.3 Optimization

During module testing, modules are tested indepen-
dently, i. e. the testing teams are different. Again each
module can be visualized as independent software and
hence distinct MTEFs can be used to describe their test-
ing resource consumption. After the modules have been
tested for some time, the parameters of the MTEF viz.
ai , pi , qi , ki can be estimated. Based upon these esti-
mates optimal allocation of resources among modules
can be calculated.

Using the MTEF (25.44), the optimization prob-
lem (25.41) can be formulated as

maximize
N∑

i=1

mi

subject to
N∑

i=1

ciki ln
ai

ai −mi
= B . (25.49)

We can solve this problem by the method of Lagrangian
multipliers. Defining the Lagrange function as

L(m1,m2, . . . ,mN , θ)

=
N∑

i=1

mi − θ

⎛

⎝
N∑

i=1

ci

mi∫

0

ki

ai − x
dx− B

⎞

⎠ , (25.50)

we get the following optimality conditions

ciki

ai −mi
= constant ∀i (25.51)

and
N∑

i=1

ciki ln
ai

ai −mi
= B . (25.52)

After some algebraic simplifications, from (25.52)
and (25.52) we obtain

W∗
i =

B− ln
N∏

i=1

(
a j di
d j ai

)d j

N∑
j=1

d j
di

, i = 1, . . ., N .

(25.53)

Which is the optimal allocation of testing resources for
the i-th module in terms of B, ai and di . We have used
here the simplest among the MTEFs proposed above.
Though obtaining closed-form solution such as (25.53)
is always desirable, arriving at one becomes nearly im-
possible if (25.41) is made more complex. Even with the
other two MTEFs in (25.45) and (25.47) the method of
Lagrangian multipliers does not directly provide a solu-
tion. As the objective here is to highlight the use of
marginal effort modeling in allocation problems, we
formulate these optimization problems as nonlinear pro-
gramming problems that could be solved by any of the
known methods.

In the solution obtained through (25.53) some
modules can receive zero allocations. Hence the min-
imum number (percentage) of faults that are desired
to be removed from each module should be added as
a constraint, as in (25.42). Consider the following opti-
mization problem where (25.45) and (25.47) have been
substituted into the problem (25.42).

Maximize
N∑

i=1

αimi

subject to

mi ≥ ri , i = 1, . . . , N ,

N∑

i=1

ciki

pi +aiqi
ln

ai (pi +qimi )

pi (ai −mi )
= B . (25.54)

With the MTEF (25.47) the resource constraint takes the
following form (25.55), the objective function and the
other constraint remaining the same in the problem:

N∑

i=1

ciki

piγi +aiqi
ln

ai (pi +qimi )

pi (ai −γimi )
= B . (25.55)

Equations (25.54) and (25.55) are nonlinear pro-
gramming problems and any of the standard methods
can be used to solve them. But when the number of
modules increases, deriving the solution manually be-
comes difficult. We have solved the problem above with
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the help of a software a packages for higher numbers
of modules. Once the optimal mi are found, they can
be substituted into (25.44) or (25.48) to find the optimal
allocation of resources to the modules. Optimization

techniques such as dynamic programming and fuzzy
mathematical programming have also been used by the
authors for solving more complex resource-allocation
problems [25.20, 41].
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An Experimen26. An Experimental Study of
Human Factors in Software Reliability

Based on a Quality Engineering Approach
In this chapter, we focus on a software design-
review process which is more effective than other
processes for the elimination and prevention
of software faults in software development.
Then, we adopt a quality engineering approach
to analyze the relationships among the quality
of the design-review activities, i.e., software
reliability, and human factors to clarify the
fault-introduction process in the design-review
process.

We conduct a design-review experiment
with graduate and undergraduate students
as subjects. First, we discuss human factors
categorized as predispositions and inducers in the
design-review process, and set up controllable
human factors in the design-review experiment.
In particular, we lay out the human factors
on an orthogonal array based on the method
of design of experiments. Second, in order to
select human factors that affect the quality
of the design review, we perform a software
design-review experiment reflecting an actual
design process based on the method of design
of experiments. To analyze the experimental
results, we adopt a quality engineering approach,
i.e., the Taguchi method. That is, applying the
orthogonal array L18(21 ×37) to the human-factor
experiment, we carry out an analysis of variance
by using the signal-to-noise ratio (SNR), which can
evaluate the stability of the quality characteristics,
discuss effective human factors, and obtain the
optimal levels for the selected predispositions and
inducers.
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Further, classifying the faults detected by
design-review work into descriptive-design
and symbolic-design faults, we discuss the
relationships among them in more detail.

Software faults introduced by human errors in devel-
opment activities of complicated and diverse software
systems have resulted in many system failures in
modern computer systems. Since these faults are
related to the mutual relations among human fac-
tors in such software development projects, it is
difficult to prevent such software failures before-
hand in software production control. Additionally,
most of these faults are detected and corrected af-

ter software failure occurrences during the testing
phase.

If we can make the mutual relations among human
factors [26.1, 2] clear, then we expect the problem of
software reliability improvement to be solved. So far,
several studies have been carried out to investigate the
relationships among software reliability and human fac-
tors by performing software development experiments
and providing fundamental frameworks for understand-
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Requirement analysis Coding Testing

Intermediate product
• Design specification

Design

Design-review

Design-review results

Design oversights
Design faults

are detected

User requirement
• Requirement speci-

fication

(Input)

• Requirement specification
• Design specifiction

Review feed-back

(Input) (Output)

Fig. 26.1 Inputs and outputs in the software design process

ing the mutual relations among various human factors;
see [26.3, 4].

In this chapter, we focus on a software design-
review process that is more effective than other
processes for the elimination and prevention of
software faults. Then, we adopt a quality engineer-
ing approach [26.5, 6] to analyze the relationships
among the quality of the design-review activities,
i. e., software reliability, and human factors to clar-
ify the fault-introduction process in the design-review
process.

Furthermore, classifying the faults detected by
the design-review work into descriptive-design and
symbolical-design faults, we discuss the relationships
among them.

26.1 Design Review and Human Factors

26.1.1 Design Review

The inputs and outputs for the design-review pro-
cess are shown in Fig. 26.1 The design-review
process is the intermediate process between the
design and coding phases, and has software require-
ment specifications as inputs and software design
specifications as outputs. In this process, software
reliability is improved by detecting software faults ef-
fectively [26.7].

26.1.2 Human Factors

The attributes of the software designers and the
design-process environment are related through the
design-review process. Therefore, human factors that

Human factors
Predispositions Inducers

(Attributes of the
design reviewers)

(Attributes of environment
for the design review)

Input
• Requirement

specification

Development
activities
(Design review)

Output
• Design

specification
• Detected faults

influence the design specification are classified into two
kinds of attributes as follows [26.8–11] (Fig. 26.2):

1. Attributes of the design reviewers
(predispositions)
The attributes of the design reviewers are those
of the software engineers who are responsible for
the design-review work, for example, the degree
of understanding of the requirement specifications
and design methods, the aptitude of the pro-
grammers, their experience of and capability for
software design, the volition of achievement of
software design, etc. Most of these are psycho-
logical human factors which are considered to
contribute directly to the quality of software design
specification.

2. Attributes of the design-review environment
(inducers)
In terms of design-review work, many kinds of
influential factors are considered, such as the learn-
ing level of design methods, the type of design
methodologies, physical environmental factors for
the software design work, e.g., temperature, humid-
ity, noise, etc. All of these influential factors may
indirectly affect the quality of the software design
specification.

Fig. 26.2 A human-factor model including the predisposi-
tions and inducers
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26.2 Design-Review Experiment

26.2.1 Human Factors in the Experiment

In order to discover the relationships between the re-
liability of the software design specification and the
human factors that influence it, we have performed
a design-review experiment by selecting five human fac-
tors, as shown in Table 26.1, as control factors concerned
with the review work.

• BGM (background music) of classical music in the
review-work environment (inducer A)
Design-review work for detecting faults requires
concentrated attentiveness. We adopt a BGM of clas-
sical music as a factor of the work environment that
maintains review efficiency.• Time duration of design-review work (inducer B)
In this experiment, we set the subjects design-review
work to be completed in approximately 20 min.
We adopt three time durations for software design-
review work, such as 20 min, 30 min and 40 min.• Check list (inducer E)
We prepare a check list (CL), which indicates the
matters to be noticed in the review work. This factor
has the following three levels: detailed CL, common
CL, and without CL.• Degree of understanding of the design method
(predisposition C)
Predisposition C of the two predispositions is the de-
gree of understanding of the design method R-Net
(requirements network). Based on preliminary tests
of the ability to understand the R-Net technique, the
subjects are divided into the following three groups:
high, common, and low ability.

Table 26.1 Controllable factors in the design-review experiment

Control factor Level
1 2 3

A BGM of classical music to review-work environment
(inducer)

A1: yes A2: no –

B Time duration of design-review work (minute) (inducer) B1: 20 min B2: 30 min B3: 40 min

C Degree of understanding of the design method
(R-Net technique) (predisposition)

C1: high C2: common C3: low

D Degree of understanding of the requirement specification
(predisposition)

D1: high D2: common D3: low

E Check list (indicating the matters that require attention in
the review work) (inducer)

E1: detailed E2: common E3: nothing

• Degree of understanding of the requirement specifi-
cation (predisposition D)
Predisposition D of the two predispositions is the
degree of understanding of the requirement spec-
ification. Similarly to predisposition C, based on
preliminary tests of geometry ability, the subjects
are divided into the following three groups: high,
common, and low ability.

26.2.2 Summary of Experiment

In this experiment, we conduct an experiment to clarify
the relationships among human factors affecting soft-
ware reliability and the reliability of design-review work
by assuming a human-factor model consisting of predis-
positions and inducers, as shown in Fig. 26.2. The actual
experiment has been performed by 18 subjects based
on the same design specification of a triangle program
which receives three integers representing the sides of
a triangle and classifies the kind of triangle that these
sides form [26.12]. We measured the capability of the
18 subjects in terms of their degree of understanding
of the design method and the requirement specification
by using preliminary tests before the design of experi-
ment. Furthermore, we seeded some faults in the design
specification intentionally. We then executed this design-
review experiment in which the 18 subjects detected the
seeded faults.

We performed the experiment using the five control
factors with three levels, as shown in Table 26.1, which
are assigned to the orthogonal array L18(21 × 37) of the
design of experiment, as shown in Table 26.3.
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26.3 Analysis of Experimental Results

26.3.1 Definition of SNR

We define the efficiency of the design review, i. e., the
reliability, as the degree that the design reviewers can
accurately detect correct and incorrect design parts for
a design specification containing seeded faults. There
exists the following relationship among the total number
of design parts, n, the number of correct design parts,
n0, and the number of incorrect design parts containing
seeded faults, n1:

n = n0+n1 . (26.1)

Therefore, the design parts are classified as shown in
Table 26.2 by using the following notation:

n00 = the number of correct design parts detected accu-
rately as correct design parts,

n01 = the number of correct design parts detected by
mistake as incorrect design parts,

n10 = the number of incorrect design parts detected by
mistake as correct design parts,

n11 = the number of incorrect design parts detected
accurately as incorrect design parts,

Table 26.3 Controllable factors in the design-review experiment

Experiment Control factors Observed values SNR (dB)
Error

No. A B C D E e e e n00 n01 n10 n11

1 1 1 1 1 1 1 1 1 110 1 2 16 8.404

2 1 1 2 2 2 2 2 2 108 3 10 8 −0.515

3 1 1 3 3 3 3 3 3 109 2 16 2 −6.050

4 1 2 1 1 2 2 3 3 111 0 2 16 10.008

5 1 2 2 2 3 3 1 1 107 4 4 14 2.889

6 1 2 3 3 1 1 2 2 104 7 11 7 −4.559

7 1 3 1 2 1 3 2 3 111 0 4 14 8.104

8 1 3 2 3 2 1 3 1 106 5 8 10 −0.780

9 1 3 3 1 3 2 1 2 110 1 11 7 2.099

10 2 1 1 3 3 2 2 1 110 1 11 7 2.099

11 2 1 2 1 1 3 3 2 106 5 4 14 2.260

12 2 1 3 2 2 1 1 3 105 6 12 6 −4.894

13 2 2 1 2 3 1 3 2 105 6 10 8 −2.991

14 2 2 2 3 1 2 1 3 108 3 15 3 −5.784

15 2 2 3 1 2 3 2 1 105 6 10 8 −2.991

16 2 3 1 3 2 3 1 2 109 2 2 16 6.751

17 2 3 2 1 3 1 2 3 107 4 4 14 2.889

18 2 3 3 2 1 2 3 1 103 8 9 9 −3.309

Table 26.2 Input and output tables for the two kinds of
error

(i) Observed values

Output 0 (true) 1 (false) Total
Input

0 (true) n00 n01 n0

1 (false) n10 n11 n1

Total r0 r1 n

(ii) Error rates

Output 0 (true) 1 (false) Total
Input

0 (true) 1− p p 1

1 (false) q 1−q 1

Total 1− p+q 1−q+ p 2

where the two kinds of error rate are defined by

p = n01

n0
, (26.2)

q = n10

n1
. (26.3)

Part
C

2
6
.3



An Experimental Study of Human Factors in Software Reliability 26.4 Investigation of the Analysis Results 501

Considering the two kinds of error rate, p and q, we can
derive the standard error rate, p0 [26.6] as

p0 = 1

1+
√(

1
p −1

)(
1
q −1

) . (26.4)

Then, the signal-to-noise ratio based on (26.4) is defined
by [26.6]

η0 =−10 log10

(
1

(1−2p0)2
−1

)
. (26.5)

The standard error rate, p0, can be obtained from trans-
forming (26.5) by using the signal-to-noise ratio of each
control factor as

p0 = 1

2

⎛

⎝1− 1√
10(− η0

10 )+1

⎞

⎠ . (26.6)

26.3.2 Orthogonal Array L18(21 ×37)

The method of experimental design based on orthog-
onal arrays is a special one that requires only a small
number of experimental trials to help discover the main

factor effects. In traditional research [26.4, 8], the de-
sign of experiment has been conducted by using the
orthogonal array L12(211). However, since the orthogo-
nal array L12(211) is applied for grasping the factor effect
between two levels the human factors experiment, the
middle effect between two levels cannot be measured.
Thus, in order to measure it, we adopt the orthogonal ar-
ray L18(21 × 37), which can lay out one factor with two
levels (1, 2) and seven factors with three levels (1, 2, 3),
as shown in Table 26.3, and dispense with 21 × 37 trials
by executing 18 experimentally independent experimen-
tal trials each other. For example, as for experimental
trial no. 10, we executed the design-review work under
the conditions A2, B1, C1, D3, and E3, and obtained
a computed SNR of 2.099 dB from the observed values
n00 = 110, n01 = 1, n10 = 11, and n11 = 7.

Additionally, the interaction between two factors can
be estimated without sacrificing a factor. Any pair of
human factors are partially mixed with the effect of
the remaining factors. Therefore, we have evaluated the
large effects of highly reproducible human factors be-
cause the selected optimal levels of the relatively large
factor has a larger effect than that of the smaller one.

Considering these circumstances, we can obtain the
optimal levels for the selected inhibitors and inducers
efficiently by using the orthogonal array L18(21 × 37).

26.4 Investigation of the Analysis Results

26.4.1 Experimental Results

The experimental results for the observed values of the
design parts discussed in Sect. 26.3.1 in the software
design specification are shown in Table 26.3. The SNR
data calculated using (26.5) are also shown in Table 26.3.

26.4.2 Analysis of Variance

The result of the analysis of variance for the observed
correct and incorrect design parts is shown in Table 26.4
by using the SNR data, as shown in Table 26.3. In
Table 26.4, f , S, V , F0, and ρ represent the degree
of freedom, the sum of squares, the unbiased variance,
the unbiased variance ratio, and the contribution ratio,
respectively, for performing the analysis of variance. In
order to obtain the precise analysis results, the check list
factor (factor E) is pooled with the error factor (factor
e). We then performed the analysis of variance based on
the new pooled error factor (factor e′).

26.4.3 Discussion

As a result of the experimental analysis, the effective
control factors such as the BGM of classical music to
review-work environment (factor A), the duration of the
design-review work (factor B), the degree of understand-
ing of the software design method (Factor C), and the
degree of understanding of the requirement specifica-
tion (factor D) were recognized. In particular, factors A
and B are mutually interacting.

We then find that our experience from actual
software development [26.8] and the experimental re-
sult above based on a design review are equivalent.
Table 26.5 shows the comparisons of SNRs and standard
error rates. The improvement ratio of the reliabil-
ity of design review is calculated as 20.909 dB [i. e.
33.1% measured in the standard error rate in (26.4)
from (26.5)] by using the SNR based on the opti-
mal condition (A1, B3, C1, D1) of the control factors,
such as A, B, C, and D, whose effects are rec-
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Table 26.4 The result of analysis of variance using the SNR

Factor f S V F0 ρ (%)

A 1 36.324 36.324 10.578∗ 7.4

B 2 33.286 16.643 4.847∗ 5.9

C 2 229.230 114.615 33.377∗∗ 49.8

D 2 86.957 43.479 12.661∗∗ 17.9

E 2 3.760 1.880©

A × B 2 33.570 16.785 4.888∗ 6.0

e 6 23.710 3.952© –

e′ 8 27.470 3.434 – 13.0

T 17 446.837 – – 100.0
©: pooled, ∗: 5% level of significance,
∗∗: 1% level of significance

ognized in Fig. 26.3. Therefore, it is expected that
a quantitative improvement in the reliability of de-
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Fig. 26.3 Estimation of significant factors

sign review can be achieved by using these control
factors.

26.5 Confirmation of Experimental Results

Table 26.6 shows the optimal and worst levels of the con-
trol factors for the design-review discussed in Sect. 26.4.
Considering the circumstances, we conduct an addi-
tional experiment to confirm the experimental results
using the SNR.

26.5.1 Additional Experiment

We focus on the effect of faults detected under the
optimal conditions of the design-review work. As for
the design of experiment discussed in Sect. 26.2, the
design specification is for the triangle program re-
viewed by 18 subjects. We measured both their degree
of understanding of the design method and their de-
gree of understanding of the requirement specification
by preliminary tests before the design of the additional
experiment.

We also seeded some faults into the design spec-
ification intentionally. We then executed the same
design-review experiment discussed in Sect. 26.2.2 un-
der the same review conditions (the optimal levels for the
selected predispositions). Additionally, we confirmed
that the selected predispositions divided by the prelimi-
nary tests were consistent with the optimal levels of the
two inducers.

The experimental results for the observed values
of correct and incorrect design parts and the prelimi-
nary tests are shown in Table 26.7 with the SNR data
calculated using (26.5).

26.5.2 Comparison of Factorial Effects
Under Optimal Inducer Conditions

Figure 26.4 shows the optimal levels of the control
factors of the design review based on the additional
experiment. If both inhibitors are at the high state, the
fault-detection rate is improved. Additionally, Table 26.8
shows a comparison of the SNRs and standard error rates
between the optimal levels for the selected inducers. The
improvement ratio of the reliability of the design review

11.0
10.0

9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

–1.0
–2.0
–3.0
–4.0
–5.0

Signal-to-noise ratio (dB)

HighLow Common

(F
ac

to
r D

)

(Factor C)

Common
Low

High

Fig. 26.4 The comparison of factorial effects

Part
C

2
6
.5



An Experimental Study of Human Factors in Software Reliability 26.5 Confirmation of Experimental Results 503

Table 26.5 The comparison of SNR and standard error rates

Optimal conditions Worst conditions Deviation

(A1, B3, C1, D1) (A2, B2, C3, D3)

Signal-to-noise ratio (dB) 10.801 −10.108 ∆ 20.909

Confidence interval ±3.186

Standard error rates (%) 2.0 35.1 ∆ 33.1

Table 26.6 The optimal and worst levels of design review

Control factor Level
Optimal Worst

Inducer A BGM of classical music to review-work environment A1: yes A2: no

Inducer B Time duration of design-review work (minute) B3: 40 min B2: 30 min

Predisposition C Degree of understanding of the design method (R-Net technique) C1: high C3: low

Predisposition D Degree of understanding of the requirement specification D1: high D3: low

Table 26.7 The SNRs in the optimal levels for the selected inducers

No. Observed values SNR Standard Observed values
n00 n01 n10 n11 (dB) error rates Factor C Factor D

1 109 2 3 15 5.613 0.027 High Common
2 111 0 5 13 7.460 0.040 Common High
3 108 3 2 16 3.943 0.078 High Low
4 107 4 4 14 2.889 0.094 High Low
5 111 0 2 16 10.008 0.023 High High
6 109 2 3 15 5.613 0.057 Low High
7 107 4 4 14 2.889 0.094 Common Low
8 107 4 4 14 2.889 0.094 Low Common
9 111 0 2 16 10.008 0.023 High High

10 109 2 4 14 4.729 0.068 Low High
11 107 4 3 15 3.825 0.080 Common Common
12 107 4 6 12 1.344 0.120 Low Common
13 101 10 8 10 −3.385 0.220 Low Low
14 105 6 3 15 2.707 0.097 Common Low
15 107 4 3 16 3.825 0.080 Common Common
16 111 0 4 14 8.104 0.035 Common High
17 111 0 5 13 7.460 0.040 High Common
18 98 13 9 9 −3.369 0.025 Low Low

Table 26.8 The comparison of SNRs and standard error rates between the optimal levels for the selected inducers

Factor C and factor D Deviation

High Low

Signal-to-noise ratio (dB) 10.008 −3.510 ∆ 13.518

Standard error rates (%) 2.3 22.3 ∆ 20.0

is calculated as 13.518 dB (i. e. 20.0% measured in the
standard error rate) by using the signal-to-noise ratio
based on the optimal conditions of the control factors,
such as A, B, C, and D, whose effects are recognized in

Fig. 26.4. Thus, we can confirm that the optimal levels
of the two inducers are consistent with the optimal lev-
els of the two predispositions C and D divided by the
preliminary tests.
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26.6 Data Analysis with Classification of Detected Faults

26.6.1 Classification of Detected Faults

We can distinguish the design parts as follows to be
pointed out in the design review as detected faults into
descriptive-design and symbolical-design parts, denoted
by R1 and R2, respectively.

• Descriptive-design faults
The descriptive-design parts consist of words or
technical terminologies which are described in the
design specification to realize the required func-
tions. In this experiment, the descriptive design faults
are algorithmic, and we can improve the quality of
the design specification by detecting and correcting
them.• Symbolical-design faults
The symbolical-design parts consist of marks or
symbols which are described in the design specifica-
tion. In this experiment, the symbolical-design faults
are notation mistakes, and the quality of the design
specification cannot be improved by detecting and
correcting them.

Table 26.9 The orthogonal array L18(21 × 37) with assigned human factors and experimental data

No. Control factor Observed values SNR

Descriptive-design parts Symbolic-design parts (db)

R1 R2

A B C D E n00 n01 n10 n11 n00 n01 n10 n11 R1 R2

1 1 1 1 1 1 52 0 2 12 58 1 0 4 7.578 6.580

2 1 1 2 2 2 49 3 8 6 59 0 2 2 −3.502 3.478

3 1 1 3 3 3 50 2 12 2 59 0 4 0 −8.769 −2.342

4 1 2 1 1 2 52 0 2 12 59 0 0 4 7.578 8.237

5 1 2 2 2 3 50 2 4 10 57 2 0 4 1.784 4.841

6 1 2 3 3 1 45 7 8 6 59 0 3 1 −7.883 0.419

7 1 3 1 2 1 52 0 2 12 59 0 2 2 7.578 3.478

8 1 3 2 3 2 47 5 6 8 59 0 2 2 −3.413 3.478

9 1 3 3 1 3 52 0 10 4 58 1 1 3 0.583 4.497

10 2 1 1 3 3 52 0 10 4 58 1 1 3 0.583 4.497

11 2 1 2 1 1 47 5 1 13 59 0 3 1 3.591 0.419

12 2 1 3 2 2 46 6 8 6 59 0 4 0 −6.909 −2.342

13 2 2 1 2 3 46 6 10 4 59 0 0 4 −10.939 8.237

14 2 2 2 3 1 49 3 11 3 59 0 4 0 −8.354 −2.342

15 2 2 3 1 2 46 6 10 4 59 0 0 4 −10.939 8.237

16 2 3 1 3 2 50 2 2 12 59 0 0 4 4.120 8.237

17 2 3 2 1 3 50 2 4 10 57 2 0 4 1.784 4.841

18 2 3 3 2 1 44 8 6 8 59 0 3 1 −5.697 0.419

26.6.2 Data Analysis

The experimental results for the observed values clas-
sified into the two types of design parts discussed
in Sect. 26.6.1 are shown in Table 26.9. The SNR
data calculated through (26.5) are also shown in
Table 26.9.

A result of the analysis of variance for the
descriptive-design parts is shown in Table 26.10, and that
for the symbolical-design parts shown in Table 26.11,
based on the SNR data shown in Table 26.9. Figure 26.5
shows the effect for each level in the control factor
that affects the design-review result based on the SNR
calculated from the observation values.

Descriptive-Design Faults
In design-review work, the effective review conditions
for correcting and removing algorithmic faults are BGM
of classical music, “yes(A1)” and design-review time,
“40 minutes(B3)”. The reviewer’s capability, the de-
gree of understanding of the design method (R-Net
Technique), “high(C1)”, and that of the require-
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Table 26.10 The result of analysis of variance (descriptive-
design faults)

Factor f S V F0 ρ (%)

A 1 65.338 65.338 7.915∗ 8.071

B 2 96.907 48.454 5.869∗ 11.367

C 2 263.701 131.851 15.972∗∗ 34.950

D 2 108.953 54.477 6.599∗ 13.070

E 2 13.342 6.671©

A × B 2 106.336 53.168 6.053∗ 12.700

e 6 52.699 8.783© –

e′ 8 66.041 8.255 – 19.842

T 17 707.276 – – 100.0
©: pooled, ∗: 5% level of significance,
∗∗: 1% level of significance

ment specification, “high(D1)”, are derived as optimal
conditions.

Symbolic-Design Faults
In design-review work, the optimal condition for ef-
fective review conditions for correcting and removing
notation mistakes is that the degree of understanding of
the requirement specification is “high(C1)”.

26.6.3 Data Analysis with Correlation
Among Inside and Outside Factors

Furthermore, classifying the detected faults as due to the
outside factor R and the inside control factors A, B, C,
D, and E, as shown in Table 26.9, we can perform the
analysis of variance. Here, the outside factor R has two
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Fig. 26.5 The estimation of significant factors with classi-
fication of detected faults

Table 26.11 The result of analysis of variance (symbolic-
design faults)

Factor f S V F0 ρ (%)

A 1 0.037 0.037©

B 2 29.041 14.521 2.975 8.180

C 2 86.640 43.320 8.875∗∗ 32.618

D 2 38.300 43.320 3.923 12.108

E 2 37.783 18.892 3.870 11.889

A × B 2 4.833 2.416©

e 6 38.759 6.460© –

e′ 9 43.929 4.881 – 35.206

T 17 235.693 – – 100.0
©: pooled, ∗: 5% level of significance,
∗∗: 1% level of significance

Table 26.12 The result of analysis of variance by taking
account of correlation among inside and outside factors

Factor f S V F0 ρ (%)

A 1 37.530 37.530 2.497 3.157

B 2 47.500 23.750 1.580 3.995

C 2 313.631 156.816 10.435∗∗ 26.380

D 2 137.727 68.864 4.582∗ 11.584

E 2 4.684 2.342 0.156 0.394

A × B 2 44.311 22.155 1.474 3.727

e1 6 38.094 6.460 0.422 3.204

R 1 245.941 16.366 16.366∗∗ 20.686

A × R 1 28.145 28.145 1.873 2.367

B × R 2 78.447 39.224 2.610 6.598

C × R 2 36.710 18.355 1.221 3.088

D × R 2 9.525 4.763 0.317 0.801

E × R 2 46.441 23.221 1.545 3.906

e2 8 120.222 15.028 3.870 10.112

T 35 1188.909 100.0
∗: 5% level of significance, ∗∗: 1% level of significance

levels, corresponding to descriptive-design parts (R1)
and symbolical-design parts (R2).

As a result of the analysis of variance, by taking ac-
count of correlation among inside and outside factors,
we can obtain Table 26.12. There are two kinds of er-
rors in the analysis of variance: e1 is the error among the
experiments of the inside factors, and e2 is the mutual
correlation error between e1 and the outside factor. In
this analysis, since there was no significant effect by per-
forming F-testing for e1 with e2, F-testing for all factors
was performed using e2. As a result, the significant con-
trol factors, such as the degree of understanding of the
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Fig. 26.6 The estimation of significant factors with corre-
lation among inside and outside factors

design method (factor C), the degree of understanding of
the requirement specification (factor D), and the classifi-
cation of the detected faults (factor R), were recognized.
Figure 26.6 shows the effect of the factor for each level
in the significant factors that affect the design-review
work.

As a result of the analysis, in the inside factors,
only factors C and D are significant and the inside and
outside factors are not mutually interacting. That is, it
turns out that the reviewers with a high degree of under-
standing of the design method and a high degree of
understanding of the requirement specification can re-
view the design specification efficiently regardless of
the classification of the detected faults. Moreover, the
result that the outside factor R is highly significant, i. e.,
the descriptive-design faults are detected less effectively
than the symbolic-design faults, can be obtained. That
is, although it is a natural result, it is difficult to de-
tect and correct the algorithmic faults which would lead
to an improvement in quality rather than the notation
mistakes. However, it is important to detect and correct
the algorithmic faults as this is an essential problem for
quality improvement in design-review work. Therefore,
in order to increase the rate of detection and correction of
algorithmic faults, which would lead to quality improve-
ment, before design-review work it is necessary to make
reviewers understand fully the design technique used to
describe the design specification and the contents of the
requirement specifications.
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Statistical Mo27. Statistical Models for Predicting Reliability
of Software Systems in Random Environments

After a brief overview of existing models in
software reliability in Sect. 27.1, Sect. 27.2 discusses
a generalized nonhomogeneous Poisson process
model that can be used to derive most existing
models in the software reliability literature.
Section 27.3 describes a generalized random field
environment (RFE) model incorporating both the
testing phase and operating phase in the software
development cycle for estimating the reliability
of software systems in the field. In contrast to
some existing models that assume the same
software failure rate for the software testing and
field operation environments, this generalized
model considers the random environmental
effects on software reliability. Based on the
generalized RFE model, Sect. 27.4 describes two
specific RFE reliability models, the γ-RFE and β-RFE
models, for predicting software reliability in field
environments. Section 27.4 illustrates the models
using telecommunication software failure
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data. Some further research considerations based
on the generalized software reliability model are
also discussed.

Many software reliability models have been proposed to
help software developers and managers understand and
analyze the software development process, estimate the
development cost and assess the level of software relia-
bility. Among these software reliability models, models
based on the nonhomogeneous Poisson process (NHPP)
have been successfully applied to model the software
failure processes that possess certain trends such as re-
liability growth or deterioration. NHPP models are very
useful to predict software failures and software relia-
bility in terms of time, and to determine when to stop
testing and release the software [27.1].

Currently most existing NHPP software reliability
models have been carried out through the fault intensity
rate function and the mean-value functions m(t) within a
controlled operating environment [27.2–13]. Obviously,
different models use different assumptions and therefore
provide different mathematical forms for the mean-value
function m(t). Table 27.1 shows a summary of several
existing models appearing in the software reliability en-
gineering literature [27.14]. Generally, these models are

applied to software testing data and then to make predic-
tions of software failures and reliability in the field. The
underlying assumption for this application is that the
field environments are the same as, or close to, a test-
ing environment; this is valid for some software systems
that are only used in one environment throughout their
entire lifetime. However, this assumption is not valid for
many applications where a software program may be
used in many different locations once it is released.

The operating environments for the software in
the field are quite different. The randomness of the
field environment will affect software failure and soft-
ware reliability in an unpredictable way. Yang and
Xie [27.15] mentioned that the operational reliability
and testing reliability are often different from each
other, but they assumed that the operational failure
rate is still close to the testing failure rate, and hence
that the difference between them is that the opera-
tional failure rate decreases with time, while the testing
failure rate remains constant. Zhang et al. [27.16] pro-
posed an NHPP software reliability calibration model

Part
C

2
7



508 Part C Reliability Models and Survival Analysis

Table 27.1 Summary of NHPP software reliability models [27.14]

Model name Model type MVF [m(t)] Comments

Goel–Okumoto (G–O) Concave m(t) = a(1− e−bt ) Also called exponential model

a(t) = a

b(t) = b

Delayed S-shaped S-shaped m(t) = a[1− (1+bt)e−bt ] Modification of G–O model

a(t) = a to obtain S-shape

b(t) = b2t
1+bt

Inflection S-shaped Concave m(t) = a(1−e−bt )
1+β e−bt Solves a technical condition with

SRGM a(t) = a the G–O model. Becomes the same

b(t) = b
1+β e−bt as G–O if β = 0

HD/G–O model Concave m(t) = log
[
(ea − c)/(eae−bt − c)

]
Same as G–O when c = 0

Yamada exponential Concave m(t) = a
(

1− e−rα(1−e(−βt))
)

Attempts to account for testing effort

a(t) = a

b(t) = rαβ e−βt

Yamada Rayleigh S-shaped m(t) = a

(
1− e−rα(1−e(−βt2/2))

)
Attempts to account for testing effort

a(t) = a

b(t) = rαβt e−βt2/2

Yamada imperfect S-shaped m(t) = ab
α+b (eαt − e−bt ) Assumes exponential fault-content

debugging model (1) a(t) = a eαt function and constant fault-detection

b(t) = b rate

Yamada imperfect S-shaped m(t) = a(1− e−bt )(1− α
b )+αat Assumes constant fault-introduction

debugging model (2) a(t) = a(1+αt) rate α and constant fault-detection

b(t) = b rate

PNZ model S-shaped m(t) = a
1+β

e−bt
[
(1− e−bt )(1− α

b )+αat
]

Assumes introduction rate is

and concave a(t) = a(1+αt) a linear function of testing time,

b(t) = b
1+β e−bt and the fault-detection rate function

is nondecreasing and inflexion S-shaped

Pham–Zhang model S-shaped m(t) = 1
1+β e−bt

[
(c+a)(1− e−bt ) Assume constant introduction rate

and concave − a
b−α

(e−αt − e−bt )
]

is exponential function of testing time,

a(t) = c+a(1− e−αt ) and the error-detection function

b(t) = b
1+β e−bt is nondecreasing with an inflexion

S-shaped model

by introducing a calibration factor. This calibration fac-
tor, K , obtained from software failures in both the
testing and field operation phases will be a multiplier
to the software failure intensity. This calibrated soft-
ware reliability model can be used to assess and adjust
the predictions of software reliability in the operation
phase.

Instead of relating the operating environment to the
failure intensity λ, in this chapter we assume that the ef-
fect of the operating environment is to multiply the unit
failure-detection rate b(t) achieved in the testing envi-
ronment using the concept of the proportional hazard

approach suggested by Cox [27.17]. If the operating en-
vironment is more liable to software failure, then the unit
fault-detection rate increases by some factor η greater
than 1. Similarly, if the operating environment is less li-
able to software failure, then the unit fault-detection rate
decreases by some positive factor η less than 1.

This chapter describes a model based on the NHPP
model framework for predicting software failures and
evaluating the software reliability in random field
environments. Based on this model, developers and en-
gineers can further develop specific software reliability
models customized to various applications.
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Notations

R(t) Software reliability function

η Random environmental factor

G(η) Cumulative distribution function of η

γ Shape parameter of gamma distributions

θ Scale parameter of gamma distributions

α, β Parameters of beta distributions

N(t) Counting process which counts the number of software failures discovered by time t

m(t) Expected number of software failures detected by time t, m(t) = E[N(t)]
a(t) Expected number of initial software faults plus introduced faults by time t

m1(t) Expected number of software failures in testing by time t

m2(t) Expected number of software failures in the field by time t

a1(t) Expected number of initial software faults plus introduced faults discovered in the testing by time t

a Number of initial software faults at the beginning of testing phase, is a software parameter that is directly related

to the software itself

T Time to stop testing and release the software for field operations

aF Number of initial software faults in the field (at time T )

b(t) Failure detection rate per fault at time t, is a process parameter that is directly related to testing and failure process

p Probability that a fault will be successfully removed from the software

q Error introduction rate at time t in the testing phase

MLE Maximum likelihood estimation

RFE-model Software reliability model subject to a random field environment

γ -RFE Software reliability model with a gamma distributed field environment

β-RFE Software reliability model with a beta distributed field environment

NHPP Non-homogeneous Poisson process

SRGM software reliability growth model

HD Hossain–Ram

PNZ Pham–Nordman–Zhang

G–O Goel–Okumoto

NHPP nonhomgeneous Poisson process

MLE maximum likelihood estimation

RFE random field environment

27.1 A Generalized NHPP Software Reliability Model

A generalized NHPP model studied by Zhang et al.[27.7]
can be formulated as follows:

m′(t) = ηb(t)[a(t)− pm(t)] , (27.1)

a′(t) = q ·m′(t) , (27.2)

where m(t) is the number of software failures expected
to be detected by time t. If the marginal conditions are
given as m(0) = 0 and a(0) = a, then for a specific en-

vironmental factor η, the solutions to (27.1) and (27.2)
are, given in [27.7], as follows

mη(t) = a

t∫

0

ηb(u)e−
∫ u

0 η(p−q)b(τ)dτ du , (27.3)

aη(t) = a

⎡

⎣1+
t∫

0

ηqb(u)e−
∫ u

0 η(p−q)·b(τ)dτ du

⎤

⎦ .

(27.4)
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This is the generalized form of the NHPP software
reliability model. When p= 1, η= 1 and q = 0, then for

any given function a(t) and b(t), all the functions listed
in Table 27.1 can easily be obtained.

27.2 Generalized Random Field Environment (RFE) Model
The testing environment is often a controlled environ-
ment with much less variation compared to the field
environments, which may be quite different for the
field application software. Once a software program is
released, it may be used in many different locations and
various applications in industries. The operating envi-
ronments for the software are quite different. Therefore,
the randomness of the field environment will affect the
cumulative software failure data in an unpredictable way.

Figure 27.1 shows the last two phases of the software
life cycle: in-house testing and field operation [27.18]. If
T is the time to stop testing and release the software for
field operations, then the time period 0≤ t ≤ T refers to
the time period of software testing, while the time period
T ≤ t refers to the post-release period—field operation.

The environmental factor η is used to capture the
uncertainty about the environment and its effects on the
software failure rate. In general, software testing is car-
ried out in a controlled environment with very small
variations, which can be used as a reference environ-
ment where η is constant and equal to 1. For the field
operating environment, the environmental factor η is as-
sumed to be a nonnegative random variable (RV) with
probability density function (PDF) f (η), i. e.

η=
⎧
⎨

⎩
1 t ≤ T

RV with PDF f (η) t ≥ T
. (27.5)

If the value of η is less than 1, this indicates that the con-
ditions are less favorable to fault detection than that of
testing environment. Likewise, if the value of η is greater
than 1, it indicates that the conditions are more favorable
to fault detection than that of the testing environment.

From (27.3) and (27.5), the mean-value function and
the function a1(t) during testing can be obtained as

m1(t) = a

t∫

0

b(u)e−
∫ u

0 (p−q)b(τ)dτ du t ≤ T ,

a1(t) = a

[
1+

t∫

0

qb(u)

× e−
∫ u

0 (p−q)·b(τ)dτ du

]
t ≤ T . (27.6)

0 T t

In-house-testing η=1 Field operation

η= random variable

Fig. 27.1 Testing versus field environment where T is the
time to stop testing and release the software

For the field operation where t ≥ T the mean-value
function can be represented as

m2(t)= m1(T )+
∞∫

0

mη(t) f (η)dη

= m1(T )+
∞∫

0

[
aF

t∫

T

ηb(u)

× e−
∫ u

T η(p−q)b(τ)dτ du

]
f (η)dη t ≥ T

= m1(T )+
t∫

T

aFb(u)

[ ∞∫

0

η

× e−η
∫ u

T (p−q)b(τ)dτ f (η)dη

]
du , (27.7)

where aF is the number of faults in the software at time T .
Using the Laplace transform formula, the mean-value
function can be rewritten as

m2(t)= m1(T )+
t∫

T

aFb(u)

×

(
− dF∗(s)

ds

∣∣∣∣
s=∫ u

0 (p−q)b(τ)dτ

)
du ,

t ≥ T

= m1(T )+ aF

(p−q)

×

t∫

T

⎧
⎨

⎩−dF∗
⎡

⎣(p−q)

u∫

T

b(τ)dτ

⎤

⎦

⎫
⎬

⎭ ,
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where F∗(s) is the Laplace transform of the PDF f (x)
and

∞∫

0

x e−x·s f (x)dx =− dF∗(s)

ds

or, equivalently,

m2(t) = m1(T )− aF

(p−q)

× F∗
⎡

⎣(p−q)

u∫

T

b(τ)dτ

⎤

⎦
∣∣∣∣
t

T

, t ≥ T

= m1(T )+ aF

(p−q)

×

⎧
⎨

⎩F∗(0)− F∗
⎡

⎣(p−q)

t∫

T

b(τ)dτ

⎤

⎦

⎫
⎬

⎭ .

Notice that F∗(0) = ∫∞
0 e−0x f (x)dx = 1, so

m2(t) = m1(T )+ aF

(p−q)

×

⎧
⎨

⎩1− F∗
⎡

⎣(p−q)

t∫

T

b(τ)dτ

⎤

⎦

⎫
⎬

⎭ t ≥ T .

The expected number of faults in the software at time T
is given by

aF = a1(T )− pm1(T )

= a

⎡

⎣1−
t∫

0

(p−q)b(u)e−
∫ u

0 (p−q)·b(τ)dτ du

⎤

⎦

= a e−
∫ t

0 (p−q)b(τ)dτ .

The generalized RFE model can be obtained as

m(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a
(p−q)

(
1− e−(p−q)

∫ u
0 b(τ)dτ

)
t ≤ T

a
(p−q)

{
1− e−(p−q)

∫ T
0 b(τ)dτ

×F∗
[
(p−q)

∫ t
T b(τ)dτ

]}
t ≥ T .

(27.8)

The model in (27.8) is a generalized software reliability
model subject to random field environments. The next
section presents specific RFE models for the gamma
and beta distributions of the random field environmental
factor η.

27.3 RFE Software Reliability Models

Obviously, the environmental factor η must be non-
negative. Any suitable nonnegative distribution may
be used to describe the uncertainty about η. In this
section we present two RFE models. The first model
is a γ -RFE model, based on the gamma distribu-
tion, which can be used to evaluate and predict
software reliability in field environments where the
software failure-detection rate can be either greater
or less than the failure detection rate in the testing
environment. The second model is a β-RFE model,
based on the beta distribution, which can be used
to predict software reliability in field environments
where the software failure detection rate can only
be less than the failure detection rate in the testing
environment.

27.3.1 γ-RFE Model

In this model, we use the gamma distribution to describe
the random environmental factor η. This model is called
the γ -RFE model.

Assume that η follows a gamma distribution with a
probability density function as follows

fγ (η) = θγ ηγ−1 e−θ·η

Γ (γ )
, γ, θ > 0; η≥ 0 . (27.9)

The gamma distribution has sufficient flexibility and has
desirable qualities with respect to computations [27.18].
Figure 27.2 shows an example of the gamma density
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Fig. 27.2 A gamma density function
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Fig. 27.3 A PDF curve of the beta distribution

probability function. The gamma function seems to be
reasonable to describe a software failure process in
those field environments where the software failure-
detection rate can be either greater (i. e., η > 1) or less
than (i. e., η < 1) the failure-detection rate in the testing
environment.

The Laplace transform of the probability density
function in (27.9) is

F∗(s) =
(

θ

θ+ s

)γ

. (27.10)

Assume that the error-detection rate function b(t) is
given by

b(t) = b

1+ ce−b·t , (27.11)

where b is the asymptotic unit software-failure detec-
tion rate and c is the parameter defining the shape
of the learning curve, then from (27.8) the mean-
value function of the γ -RFE model can be obtained as
follows

mγ (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(p−q)

[
1−

(
1+c

ebt+c

)(p−q)
]

t ≤ T ,

a
(p−q)

[
1−

(
1+c

ebT+c

)(p−q)

×

(
θ

θ+(p−q) ln
(

c+ebt

c+ebT

)

)γ]
t ≥ T .

(27.12)

27.3.2 β-RFE Model

This section presents a model using the beta distribution
that describes the random environmental factor η, called
the β-RFE model.

The beta PDF is

fβ(η) = Γ (α+β)

Γ (α)Γ (β)
ηα−1(1−η)β−1 ,

0 ≤ η≤ 1, α > 0, β > 0 . (27.13)

Figure 27.3 shows an example of the beta density func-
tion. It seems that the β-RFE model is a reasonable
function to describe a software failure process in those
field environments where the software failure-detection
rate can only be less than the failure-detection rate in
the testing environment. This is not uncommon in the
software industry because, during software testing, the
engineers generally test the software intensely and con-
duct an accelerated test on the software in order to detect
most of the software faults as early as possible.

The Laplace transform of the PDF in (27.13) is

F∗
β (s) = e−s ·HG([β], [α+β], s) , (27.14)

where HG([β], [α+β], s) is a generalized hypergeomet-
ric function such that

HG([a1, a2, ..., am], [b1, b2, ..., bn], s)

=
∞∑

k=0

⎛
⎜⎜⎝

sk
m∏

i=1

Γ (ai+k)
Γ (ai )

n∏
i=1

Γ (bi+k)
Γ (bi )

k!

⎞
⎟⎟⎠ ,

Therefore

F∗
β (s) =e−s

∞∑

k=0

(
Γ (α+β)Γ (β+ k)sk

Γ (β)Γ (α+β+ k)k!
)

=
∞∑

k=0

(
Γ (α+β)Γ (β+ k)

Γ (β)Γ (α+β+ k)

sk e−s

k!
)

=
∞∑

k=0

(
Γ (α+β)Γ (β+ k)

Γ (β)Γ (α+β+ k)
Poisson(k, s)

)
.

where the Poisson probability density function is given
by

Poisson(k, s) = sk e−s

k! .

Using the same error-detection rate function in (27.11)
and replacing F∗(s) by F∗

β (s), the mean-value function
of the β-RFE model is

mβ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a
(p−q)

[
1−

(
1+c

ebt+c

)(p−q)
]

t ≤ T ,

a
(p−q)

[
1−

(
1+c

ebT+c

)(p−q)

×
∞∑

k=0

(
Γ (α+β)Γ (β+k)Poisson(k,s)

Γ (β)Γ (α+β+k)

)]
t ≥ T .

(27.15)

where

s = (p−q)

[
ln

(
c+ ebt

c+ ebT

)]
.
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27.4 Parameter Estimation

27.4.1 Maximum Likelihood Estimation
(MLE)

We use the MLE method to estimate the parameters in
these two RFE models. Let yi be the cumulative number
of software faults detected up to time ti , i = 1, 2, . . ., n.
Based on the NHPP, the likelihood function is given by

L =
n∏

i=1

[
m(ti )−m(ti−1)

]yi−yi−1

(yi − yi−1)! e−[m(ti )−m(ti−1)] .

(27.16)

The logarithmic form of the above likelihood function
is

ln L =
n∑

i=1

{
(yi − yi−1) ln

[
m(ti )−m(ti−1)

]

− [
m(ti )−m(ti−1)

]− ln
[
(yi − yi−1)!]} .

(27.17)

In this analysis, the error-removal efficiency p is
given. Each model has five unknown parameters. For
example, in the γ -RFE model, we need to estimate the
following five unknown parameters: a, b, q, γ and θ.
For the β-RFE model, we need to estimate: a, b, q, α
and β. By taking derivatives of (27.18) with respect to
each parameter and setting the results equal to zero, we
can obtain five equations for each RFE model. After
solving all those equations, we obtain the maximum
likelihood estimates (MLEs) of all parameters for each
RFE model.

Table 27.2 Normalized cumulative failures and times dur-
ing software testing

Time Failures Time Failures Time Failures

0.0001 0.0249 0.0038 0.3483 0.0121 0.6766

0.0002 0.0299 0.0044 0.3532 0.0128 0.7015

0.0002 0.0647 0.0048 0.3682 0.0135 0.7363

0.0003 0.0647 0.0053 0.3881 0.0142 0.7761

0.0005 0.1095 0.0058 0.4478 0.0147 0.7761

0.0006 0.1194 0.0064 0.4876 0.0155 0.8159

0.0008 0.1443 0.0070 0.5224 0.0164 0.8259

0.0012 0.1692 0.0077 0.5473 0.0172 0.8408

0.0016 0.1990 0.0086 0.5821 0.0176 0.8458

0.0023 0.2289 0.0095 0.6119 0.0180 0.8756

0.0028 0.2637 0.0105 0.6368 0.0184 0.8955

0.0033 0.3134 0.0114 0.6468 0.0184 0.9005

Table 27.2 shows a set of failure data from a telecom-
munication software application during software test-
ing [27.16]. The column “Time” shows the normalized
cumulative time spent in software testing for this
telecommunication application, and the column “Fail-
ures” shows the normalized cumulative number of fail-
ures occurring in the testing period up to the given time.

The time to stop testing is T = 0.0184. After the
time T , the software is released for field operations. Ta-
ble 27.3 shows the field data for this software release.
Similarly, the column “Time” shows the normalized
cumulative time spent in the field for this software ap-
plication, and the time in Table 27.3 is continued from
the time to stop testing T . The column “Failures” shows
the normalized cumulative number of failures found af-
ter releasing the software for field operations up to the
given time. The cumulative number of failures is the to-
tal number of software failures since the beginning of
software testing.

To obtain a better understanding of the software de-
velopment process, we show the actual results of the
MLE solutions instead of the normalized results. In this
study, let us assume that testing engineers have a num-
ber of years of experience of this particular product
and software development skills and therefore con-
ducted perfect debugging during the test. In other word,
p = 1. The maximum likelihood estimates of all the
parameters in the γ -RFE model are obtained as shown
in Table 27.4.

Table 27.3 Normalized cumulative failures and their times
in operation

Time Failures Time Failures Time Failures

0.0431 0.9055 0.3157 0.9751 0.7519 0.9900

0.0616 0.9104 0.3407 0.9751 0.7585 0.9900

0.0801 0.9204 0.3469 0.9751 0.7718 0.9900

0.0863 0.9254 0.3967 0.9751 0.7983 0.9900

0.1357 0.9303 0.4030 0.9801 0.8251 0.9900

0.1419 0.9353 0.4291 0.9851 0.8453 0.9900

0.1666 0.9453 0.4357 0.9851 0.8520 0.9900

0.2098 0.9453 0.4749 0.9851 0.9058 0.9900

0.2223 0.9502 0.5011 0.9851 0.9126 0.9900

0.2534 0.9502 0.5338 0.9851 0.9193 0.9900

0.2597 0.9502 0.5731 0.9851 0.9395 0.9950

0.2659 0.9502 0.6258 0.9900 0.9462 0.9950

0.2721 0.9552 0.6656 0.9900 0.9529 1.0000

0.2971 0.9602 0.6789 0.9900 0.9865 1.0000

0.3033 0.9701 0.7253 0.9900 1.0000 1.0000
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Table 27.4 MLE solutions for the γ -RFE model

â b̂ q̂ ĉ γ̂ θ̂

236.58 0.001443 0 0 0.2137 10.713

Similarly, set p = 1, the MLE of all the parameters
in the β-RFE model are obtained as shown in Table 27.5.

For both RFE models, the MLE results can be
used to obtain more insightful information about the
software development process. In this example, at the
time to stop testing the software T = 0.0184, the es-
timated number of remaining faults in the system is
aF = a− (p−q)m(T ) = 55.

27.4.2 Mean-Value Function Fits

After we obtain the MLEs for all the parameters,
we can plot the mean-value function curve fits for
both the γ -RFE and β-RFE models based on the
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Fig. 27.4 Mean-value function curve fits for both RFE models
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Fig. 27.5 Mean-value function fitting comparisons

Table 27.5 MLE solutions for the β-RFE model

â b̂ q̂ ĉ α̂ β̂

236.07 0.001449 0 0 0.1862 8.6922

MLE parameters against the actual software application
failures.

Table 27.6 shows the mean-value function curve fits
for both the models where the column mγ (t) and mβ(t)
show the mean-value function for the γ -RFE model and
the β-RFE model, respectively.

The γ -RFE and β-RFE models yield very close fits
and predictions on software failures. Figure 27.4 shows
the mean-value function curve fits for both the γ -RFE
model and β-RFE model. Both models appear to be a
good fit for the given data set. Since we are particularly
interested in the fits and the predictions for software fail-
ure data during field operation, we also plot the detailed
mean-value curve fits for both the γ -RFE model and the
β-RFE model in Fig. 27.5.

For the overall fitting of the mean-value function
against the actual software failures, the mean squared
error (MSE) is 23.63 for the γ -RFE model fit, and is
23.69 for the β-RFE model. We can also obtain the
fits and predictions for software failures by applying
some existing NHPP software reliability models to the
same set of failure data. Since all these existing mod-
els assumes a constant failure-detection rate throughout
both the software testing and operation periods, we only
apply the software testing data to the software mod-
els and then predict the software failures in the field
environments.

Figure 27.6 shows the comparisons of the mean-
value function curve fits between the two RFE
models and some existing NHPP software reliabil-
ity models. It appears that the two models that

1.2
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Fig. 27.6 Model comparisons
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Table 27.6 The mean-value functions for both RFEs models

Time Failures mγ (t) mβ(t) Time Failures mγ (t) mβ(t)

0.0000 0.0000 0.0000 0.0000 0.1357 0.9303 0.9340 0.9341

0.0001 0.0249 0.0085 0.0085 0.1419 0.9353 0.9352 0.9354

0.0002 0.0299 0.0152 0.0152 0.1666 0.9453 0.9398 0.9399

0.0002 0.0647 0.0219 0.0219 0.2098 0.9453 0.9469 0.9467

0.0003 0.0647 0.0302 0.0302 0.2223 0.9502 0.9487 0.9485

0.0005 0.1095 0.0466 0.0467 0.2534 0.9502 0.9530 0.9525

0.0006 0.1194 0.0547 0.0548 0.2597 0.9502 0.9538 0.9533

0.0008 0.1443 0.0708 0.0709 0.2659 0.9502 0.9545 0.9540

0.0012 0.1692 0.1023 0.1025 0.2721 0.9552 0.9553 0.9547

0.0016 0.1990 0.1404 0.1406 0.2971 0.9602 0.9582 0.9575

0.0023 0.2289 0.1915 0.1917 0.3033 0.9701 0.9589 0.9582

0.0028 0.2637 0.2332 0.2335 0.3157 0.9751 0.9603 0.9594

0.0033 0.3134 0.2667 0.2670 0.3407 0.9751 0.9628 0.9618

0.0038 0.3483 0.3053 0.3056 0.3469 0.9751 0.9635 0.9624

0.0044 0.3532 0.3422 0.3426 0.3967 0.9751 0.9681 0.9667

0.0048 0.3682 0.3718 0.3721 0.4030 0.9801 0.9686 0.9672

0.0053 0.3881 0.4003 0.4007 0.4291 0.9851 0.9708 0.9692

0.0058 0.4478 0.4332 0.4336 0.4357 0.9851 0.9713 0.9697

0.0064 0.4876 0.4648 0.4651 0.4749 0.9851 0.9743 0.9725

0.0070 0.5224 0.4998 0.5002 0.5011 0.9851 0.9761 0.9742

0.0077 0.5473 0.5332 0.5335 0.5338 0.9851 0.9783 0.9762

0.0086 0.5821 0.5772 0.5775 0.5731 0.9851 0.9808 0.9785

0.0095 0.6119 0.6205 0.6208 0.6258 0.9900 0.9839 0.9813

0.0105 0.6368 0.6600 0.6602 0.6656 0.9900 0.9860 0.9833

0.0114 0.6468 0.6953 0.6955 0.6789 0.9900 0.9867 0.9839

0.0121 0.6766 0.7210 0.7211 0.7253 0.9900 0.9890 0.9860

0.0128 0.7015 0.7479 0.7479 0.7519 0.9900 0.9902 0.9871

0.0135 0.7363 0.7684 0.7684 0.7585 0.9900 0.9905 0.9874

0.0142 0.7761 0.7924 0.7924 0.7718 0.9900 0.9911 0.9879

0.0147 0.7761 0.8050 0.8049 0.7983 0.9900 0.9923 0.9890

0.0155 0.8159 0.8294 0.8292 0.8251 0.9900 0.9934 0.9900

0.0164 0.8259 0.8522 0.8520 0.8453 0.9900 0.9943 0.9908

0.0172 0.8408 0.8713 0.8710 0.8520 0.9900 0.9945 0.9910

0.0176 0.8458 0.8804 0.8801 0.9058 0.9900 0.9966 0.9929

0.0180 0.8756 0.8897 0.8893 0.9126 0.9900 0.9969 0.9932

0.0184 0.8955 0.8987 0.8983 0.9193 0.9900 0.9971 0.9934

0.0184 0.9005 0.8995 0.8991 0.9395 0.9950 0.9979 0.9941

0.0431 0.9055 0.9092 0.9092 0.9462 0.9950 0.9981 0.9943

0.0616 0.9104 0.9153 0.9155 0.9529 1.0000 0.9983 0.9945

0.0801 0.9204 0.9208 0.9210 0.9865 1.0000 0.9995 0.9956

0.0863 0.9254 0.9224 0.9227 1.0000 1.0000 1.0000 0.9960

include consideration of the field environment on
the software failure-detection rate perform better in
terms of the predictions for software failures in the
field.

27.4.3 Software Reliability

Once the MLEs of all the parameters in (27.12)
and (27.14) are obtained, the software reliability within
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Fig. 27.7 Reliability prediction comparisons

(t, t+ x) can be determined as

R(x|t) = e−[m(t+x)−m(t)] . (27.18)

Let T = 0.0184, and change x from 0 to 0.004, then
we can compare the reliability predictions between the
two RFE models and some other NHPP models that
assume a constant failure-detection rate for both soft-
ware testing and operation. The reliability prediction
curves are shown in Fig. 27.7. From Fig. 27.7, we can
see that the NHPP models without consideration of the
environmental factor yield much lower predictions for
software reliability in the field than the two proposed
RFE software reliability models.

27.4.4 Confidence Interval

γ-RFE Model
To see how good the reliability predictions given by
the two RFE models are, in this section we describe
how to construct confidence intervals for the prediction
of software reliability in the random field environments.
From Tables 27.4 and 27.5, the MLEs of c and q are equal
to zero and, if p is set to 1, then the model in (27.12)
becomes

m(t) =
⎧
⎨

⎩
a
(
1− e−b·t) t ≤ T ,

a
[
1− e−b·T

(
θ

θ+b(t−T )

)γ ]
t ≥ T .

(27.19)

This model leads to the same MLE results for the pa-
rameters a, b, γ and θ, and also yields exactly the same
mean-value function fits and predictions as the model
in (27.12). To obtain the confidence interval for the re-
liability predictions for the γ -RFE model, we derive

the variance–covariance matrix for all the maximum
likelihood estimates as follows.

If we use xi , i = 1, 2, 3, and 4, to denote all the
parameters in the model, or

x1 → a x2 → b x3 → θ x4 → γ .

The Fisher information matrix H can be obtained as

H =

⎛
⎜⎜⎜⎝

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

⎞
⎟⎟⎟⎠ , (27.20)

where

hij = E

(
− ∂2L

∂xi∂x j

)
i, j = 1, · · · , 6 , (27.21)

where L is the log-likelihood function in (27.18).
If we denote z(tk)=m(tk)−m(tk−1) and ∆yk = yk−

yk−1, k = 1, 2, . . ., n, then we have

∂2L

∂xi∂x j
=

n∑

k=1

[
− ∆yk

z(tk)2

∂z(tk)

∂xi
· ∂z(tk)

∂x j

+
(

∆yk − z(tk)

z(tk)
· ∂

2z(tk)

∂xi∂x j

)]
. (27.22)

Then we can obtain each element in the Fisher informa-
tion matrix H . For example,

h11 = E

(
−∂2L

∂x2
1

)

=
n∑

k=1

{ ∞∑

∆yk=0

[
∆yk

z(tk)2

(
∂z(tk)

∂a

)2
]

×
[z(tk)]∆yk e−z(tk)

(∆yk)!
}

=
n∑

k=1

{ ∞∑

∆yk=0

[
∆yk

z(tk)2

(
z(tk)

a

)2
]

×
[z(tk)]∆yk e−z(tk)

(∆yk)!
}

=
n∑

k=1

⎛

⎝ 1

a2

∞∑

∆yk=0

∆yk
[z(tk)]∆yk e−z(tk)

(∆yk)!

⎞

⎠

=
n∑

k=1

[
1

a2 · z(tk)

]

= 1

a2
m(tn) . (27.23)
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The variance matrix, V , can also be obtained

V = (H)−1 =

⎛
⎜⎜⎜⎝

v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

⎞
⎟⎟⎟⎠ . (27.24)

The variances of all the estimate parameters are given
by

Var(â) =Var(x1) = v11 ,

Var(b̂) =Var(x2) = v22 ,

Var(γ̂ ) =Var(x3) = v33 ,

Var(θ̂) =Var(x4) = v44 . (27.25)

The actual numerical results for the γ -RFE model vari-
ance matrix are

Vγ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

703.8472 −0.005387 −88.6906 −2.6861

−0.005387 7.3655 × 10−8 1.11 × 10−3 3.097 × 10−5

−88.6906 1.11 × 10−3 92.4287 1.1843

−2.6861 3.097 × 10−5 1.1843 0.0238

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(27.26)

β-RFE Model
The model in (27.14) can also be simplified given that
the estimates of both q and c are equal to zero and p is
set to 1. The mean-value function becomes

mβ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1− e−bt) t ≤ T ,

a

[
1− e−bT

×
∞∑

k=0

(
Γ (α+β)Γ (β+k)Poisson[k,b(t−T )]

Γ (β)Γ (α+β+k)

)]

t ≥ T .

(27.27)

This model leads to the same MLE results for the
parameters a, b, α and β, and also yields exactly
the same mean-value function fits and predictions. To
obtain the confidence interval for the reliability pre-
dictions for the β-RFE model, we need to obtain the
variance–covariance matrix for all the maximum likeli-
hood estimates.

If we use xi , i = 1, 2, 3, and 4, to denote all the
parameters in the model, or

x1 → a x2 → b x3 → α x4 → β ,

and go through similar steps as for the γ -RFE model, the
actual numerical results for the β-RFE model variance

matrix can be obtained as

Vβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

691.2 −0.00536 −2.728 −66.2172

−0.00536 7.4485 × 10−8 2.671 × 10−5 0.00085

−2.7652 2.671 × 10−5 0.01820 0.8295

−66.2172 0.00085 0.8295 60.5985

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(27.28)

Confidence Interval
of the Reliability Predictions
If we define a partial derivative vector for the reliability
R(x|t) in (27.18) as

vR(x|t) =
(
∂R(x|t)
∂x1

,
∂R(x|t)
∂x2

,
∂Rb(x|t)

∂x3
,
∂R(x|t)
∂x4

)

(27.29)

then the variance of R(x|t) in (27.18) can be obtained as

Var [R(x|t)] = vR(x|t)V [vR(x|t)]T . (27.30)

Assume that the reliability estimation follows a normal
distribution, then the 95% confidence interval for the
reliability prediction R(x|t) is

[
R(x|t)−1.96 ×

√
Var [R(x|t)] ,

R(x|t)+1.96 ×
√

Var [R(x|t)]
]
. (27.31)

Figures 27.8 and 27.9 show the 95% confidence
interval of the reliability predicted by the γ -RFE and
β-RFE models, respectively.

We plot the reliability predictions and their 95%
confidence interval for both the γ -RFE model and the
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Fig. 27.8 γ -RFE model reliability growth curve and its
95% confidence interval
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Fig. 27.9 β-RFE model reliability growth prediction and
its 95% confidence interval

β-RFE model in Fig. 27.10. For this given application
data set, the reliability predictions for the γ -RFE model
and the β-RFE model are very close to each other, as are
their confidence intervals. Therefore, it would not matter
too much which one of the two RFE models were used
to evaluate the software reliability for this application.
However, will these two RFE models always yield sim-
ilar reliability predictions for all software applications?
or, which model should one choose for applications if
they are not always that close to each other? We will
try to answer these two questions in the next section.
Figure 27.11 shows the 95% confidence interval for the
mean-value function fits and predictions from the γ -RFE
model.
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Fig. 27.10 Reliability growth prediction curves and their
95% confidence intervals for the γ -RFE model and the
β-RFE model
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Fig. 27.11 Mean-value function curve fit and its 95% confi-
dence intervals for the γ -RFE model

27.4.5 Concluding and Remarks

Table 27.7 shows all the maximum likelihood estimates
of all the parameters and other fitness measures. The
maximum likelihood estimates (MLEs) on common pa-
rameters, such as a—the initial number of faults in the
software, and b—the unit software failure-detection rate
during testing, are consistent for both models. Both mod-
els provide very close predictions for software reliability
and also give similar results for the mean and variance
of the random environment factor η.

The underlying rationale for this phenomenon is the
similarity between the gamma and beta distributions
when the random variable η is close to zero. In this ap-
plication, the field environments are much less liable to
software failure than the testing environment. The ran-
dom field environmental factor, η, is mostly much less
than 1 with mean (η) ≈ 0.02.

Figure 27.12 shows the probability density function
curves of the environmental factor η based on the MLEs
of all the parameters for both the γ -RFE model and

Table 27.7 MLEs and fitness comparisons

Parameter γ -RFE β-RFE

â 236.5793016 236.0745369

b̂ 0.001443362 0.001448854

θ̂ 10.7160153

γ̂ 0.213762945

α̂ 0.186224489

β̂ 8.692191792

Mean 0.019948 0.020975

Variance 0.0018615 0.002079

MSE 23.63 23.69

Likelihood −136.1039497 −129.7811199
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Fig. 27.12 Probability density function curves comparison
for the environmental factor η

the β-RFE model. We observe that the PDF curves for
the beta and gamma distributions are also very close to
each other. The two RFEs models give similar results
because this software application is much less likely to
fail in the field environment, with mean (η) = 0.02. If
the mean (η) is not so close to 0, then we would expect to
have different prediction results from the γ -RFE model
and the β-RFE model.

We suggest the following criteria as ways to select
between the two models discussed in this chapter for
predicting the software reliability in the random field
environments:

1. Software less liable to failure in the field than in
testing, i. e., η≤ 1
In the γ -RFE model, the random field environmen-

tal factor, η following a gamma distribution, ranges from
0 to +∞. For the β-RFE model, the random field envi-
ronmental factor, η following a beta distribution, ranging
from 0 to 1. Therefore, theβ-RFE model will be more ap-
propriate for describing field environments in which the
software application is likely to fail than in the controlled
testing environment.

For this given application, we notice that, when
the field environmental factor η is much less than 1
[mean(η) = 0.02], the γ -RFE model yields similar re-
sults to the β-RFE model. However, we also observe that
the γ -RFE model does not always yield similar results
to the β-RFE model when η is not close to 0. In this case,
if we keep using the γ -RFE model instead of the β-RFE
model, we would expect to see a large variance in the
maximum likelihood estimates for all the unknown pa-
rameters, and hence a wider confidence interval for the
reliability prediction.
2. Smaller variance of the RFE factor η

A smaller variance of the random environmental
factor η will generally lead to a smaller confidence
interval for the software reliability prediction. It there-
fore represents a better prediction in the random field
environments.
3. Smaller variances for the common parameters a

and b
The software parameter a and the process parame-

ter b are directly related to the accuracy of reliability
prediction. They can also be used to investigate the soft-
ware development process. Smaller variances of a and
b would lead, in general, to smaller confidence intervals
for the mean-value function predictions and reliability
predictions.
4. Smaller mean squared error (MSE) of the mean-

value function fits
A smaller MSE for the mean-value function fits

means a better fit of the model to the real system failures.
This smaller MSE will usually lead to a better prediction
of software failures in random field environments.

The above criteria can be used with care to deter-
mine which RFE model should be chosen in practice.
They may sometime provide contradictory results. In
the case of contradictions, practitioners can often con-
sider selecting the model with the smaller confidence
interval for the reliability prediction.
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Part D focuses on regression methods and data mining.
The first chapter in this part, Chapt. 28, describes various
diagnostic procedures for detecting single and multiple
outliers and influential observations in linear regression.
It also discusses procedures for detecting high-leverage
outliers in large, high-dimensional data sets. Chapter 29
gives an overview of various logistic regression methods
for fitting models to a binary-valued response variable
and introduces the idea of a logistic regression tree
based on a recursive partitioning algorithm to fit a linear
logistic regression model for solving large, complex
data sets. Chapter 30 introduces the basic structure
of tree-based methods for constructing trees for both
classification and regression problems by recursively
partitioning a learning sample over its input variable
space. It also compares classification and regression
trees to multivariate adaptive regression splines, neural
networks and support-vector machines. Chapter 31
presents the concept of a generalization of least-squares
estimation (LSE), called M estimators, to solve the
statistical problems involving unknown coordinate
systems and image registration problems. This chapter
also discusses in detail the differences between the
LSE and M estimators and presents the statistical
properties of M estimates for spherical regression.

The following three chapters focus on the statistical
analysis of genomic and proteomics data. Chapter 32
provides an overview of the emerging statistical con-

cepts of statistical genetics, which are commonly
used to analyze microarray gene-expression data, and
further introduces recent statistical testing methods,
such as significance analysis of microarray and lo-
cal pooled-error tests, as well as supervised-learning
discovery tools. Chapter 33 describe several statisti-
cal methods, such as the empirical Bayesian approach,
significance analysis of microarray, support-vector
machines, and tree- and forest-based classification,
for analyzing genomic data and their applications in
biochemical and genetic research. Chapter 34 dis-
cusses two proteomics statistical techniques, disease
biomarker discovery and protein/peptide identifica-
tion, and their applications in both the biological and
medical research for analyzing mass-spectrometry
data. The next two chapters focus on data mining
and its applications. Chapter 35 describes the radical
basis-function model architecture and its applica-
tions in bio-informatics and biomedical engineering
and also describes the four algorithms commonly
used for its design: clustering, orthogonal least
squares, regularization, and gradient descent, while
Chapt. 36 presents the basic principles of data-mining
methodologies in databases, including knowledge
discovery, supervised learning, software, the classifica-
tion problem, neural networks, and association rules,
and discusses several popular data-mining methods
with applications in industry and business practice.
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Measures of I28. Measures of Influence and Sensitivity
in Linear Regression

This chapter reviews diagnostic procedures for de-
tecting outliers and influential observations in
linear regression. First, the statistics for detect-
ing single outliers and influential observations are
presented, and their limitations for multiple out-
liers in high-leverage situations are discussed;
second, diagnostic procedures designed to avoid
masking are shown. We comment on the proce-
dures by Hadi and Smirnoff [28.1,2], Atkinson [28.3]
and Swallow and Kianifard [28.4] based on find-
ing a clean subset for estimating the parameters
and then increasing its size by incorporating new
homogeneous observations one by one, until
a heterogeneous observation is found. We also
discuss procedures for detecting high-leverage
outliers in large data sets based on eigenvalue
analysis of the influence and sensitivity matrix, as
proposed by Peña and Yohai [28.5,6]. Finally we
show that the joint use of simple univariate statis-
tics, as predictive residuals, and Cook’s distances,
jointly with the sensitivity statistic

28.1 The Leverage and Residuals
in the Regression Model....................... 524
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28.6 Final Remarks ..................................... 535
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proposed by Peña [28.7] can be a useful diagnostic
tool for large high-dimensional data sets.

Data often contain outliers or atypical observations. Out-
liers are observations which are heterogeneous with the
rest of the data, due to large measurement errors, dif-
ferent experimental conditions or unexpected effects.
Detecting these observations is important because they
can lead to new discoveries. For instance, penicillin was
found because Pasteur, instead of ignoring an outlier,
tried to understand the reason for this atypical effect. As
Box [28.8] has emphasized “every operating system sup-
plies information on how it can be improved and if we
use this information it can be a source of continuous im-
provement”. A way in which this information appears
is by outlying observations, but in many engineering
processes these observations are not easy to detect. For
instance, in a production process a large value in one
of the variables we monitor may be due, among other
causes, to: (1) a large value of one of the input control
variables; (2) an unexpected interaction among the input
variables; (3) a large measurement error due to some de-
fect in the measurement instrument. In the first case, the

outlying observations may provide no new information
about the performance of the process but in the sec-
ond case may lead to a potentially useful discovery and
in the third, to an improvement of the process control.
A related problem is to avoid the situation where these
outliers affect the estimation of the statistical model and
this is the aim of robust estimation methods.

This chapter discusses outliers, influential and sen-
sitive observations in regression models and presents
methods to detect them. Influential observations are
those which have a strong influence on the global prop-
erties of the model. They are obtained by modifying
the weights attached to each case, and looking at the
standardized change of the parameter vector or the vec-
tor of forecasts. Influence is a global analysis. Sensitive
observations can be declared outliers or not by small
modifications in the sample. Sensitivity is more a lo-
cal concept. We delete each sample point in turn and
look at the change that these modifications produce in
the forecast of a single point. We will see that influence
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and sensitivity are important concepts for understanding
the effect of data in building a regression model and in
finding groups of outliers.

Many procedures are available to identify a single
outlier or an isolated influential point in linear regres-
sion. The books of Belsley et al. [28.9], Hawkins [28.10],
Cook and Weisberg [28.11], Atkinson [28.12], Chatter-
jee and Hadi [28.13] Barnett and Lewis [28.14] and
Atkinson and Riani [28.15] present good analyses of this
problem. To identify outliers and to measure influence
the point can be deleted, as proposed by Cook [28.16]
and Belsley et al. [28.9], or its weight decreased, as in
the local influence analysis introduced by Cook [28.17].
See Brown and Lawrence [28.18] and Suárez Rancel
and González Sierra [28.19] for a review of local influ-
ence in regression and many references, and Hartless
et al. [28.20] for recent results on this approach. A re-
lated way to analyze influence has been proposed by
Critchley et al. [28.21] by an extension of the influence-
curve methodology. The detection of influential subsets
or multiple outliers is more difficult, due to the mask-
ing and swamping problems. Masking occurs when one
outlier is not detected because of the presence of oth-
ers; swamping happens when a non-outlier is wrongly
identified due to the effect of some hidden outliers, see
Lawrance [28.22]. Several procedures have been pro-
posed for dealing with multiple outliers, see Hawkins,
Bradu and Kass [28.23], Gray and Ling [28.24], Maras-
inghe [28.25], Kianifard and Swallow [28.26, 27], Hadi
and Simonoff [28.1,2], Atkinson [28.3,28] and Swallow
and Kianifard [28.4]. A different analysis for detecting
groups of outliers by looking at the eigenvectors of an in-

fluence matrix was presented by Peña and Yohai [28.5].
These authors later proposed [28.6] the sensitivity ma-
trix as a better way to find interesting groups of data, and
from this approach Peña [28.7] has proposed a powerful
diagnostic statistic for detecting groups of outliers.

We do not discuss in this chapter, due to lack of
space, robust regression methods and only refer to them
when they are used as a first step in a diagnosis pro-
cedure. See Huber [28.29] for a good discussion of
the complementary role of diagnosis and robustness.
For robust estimation in regression see Rousseeuw and
Leroy [28.30] and Maronna, Martin and Yohai [28.31].
Robust estimation of regression models has also re-
ceived attention in the Bayesian literature since the
seminal article of Box and Tiao [28.32]. See Justel and
Peña [28.33] for a Bayesian approach to this problem
and references.

The paper is organized as follows. In Sect. 28.1 we
present the model and the notation, and define the main
measures which will be used for outlier and influence
analysis. In Sect. 28.2 we review procedures for de-
tecting single outliers and influential observations in
regression. In Sect. 28.3 we discuss the multiple-outlier
problem and two types of diagnostic procedures, those
based on an initial clean subset and those based on eigen-
value analysis of some diagnostic matrices. In Sect. 28.4
we introduce a simple statistic which can be used for
diagnostic analysis of a large data set, avoiding the
masking problem. Section 28.5 includes an example
of the use of diagnostic methods for detecting groups
of outliers and Sect. 28.6 contains some concluding
remarks.

28.1 The Leverage and Residuals in the Regression Model

We assume that we have observed a sample of size n
of a random variable y = (y1, . . . , yn)′ and a set of
p−1 explanatory variables which are linearly related
by

yi = x′iβ+ui , (28.1)

where the ui are the measurement errors, which
will be independent normal zero-mean random vari-
ables with variance σ2, and u = (u1, . . . , un)′. The
xi = (1, x2i , . . . , x pi ) are numerical vectors in Rp and
we will denote by X the n × p matrix of rank p
whose i-th row is x′i . Then, the least-squares estimate
of β is obtained by projecting the vector y onto the
space generated by the columns of X, which leads

to

β̂ = (X′X)−1X′y

and the vector of fitted values, ŷ= (ŷ1, . . . , ŷn)′, is given
by

ŷ = Xβ̂ = Hy, (28.2)

where

H = X(X′X)−1X′

is the idempotent projection matrix. The vector or-
thogonal to the space generated by the X variables is
the residual vector, e = (e1, . . . , en)′, which is defined
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by

e = y− ŷ = (I−H)y (28.3)

and we will let ŝ2
R = e′e/(n− p) be the estimated residual

variance.
From (28.3), inserting Xβ+u instead of y and using

HX=X, we obtain the relationship between the residu-
als and the measurement errors, e= (I−H)u. Thus, each
residual is a linear combination of the measurement er-
rors. Letting hij = x′i

(
X′X

)−1 x j be the elements of the
matrix, H, we have

ei = ui −
n∑

j=1

hiju j (28.4)

and, if the second term is small, the residual ei will be
close to the measurement error, ui . The variance of this
second term is

Var(
n∑

j=1

hiju j ) = σ2
n∑

j=1

h2
ij = σ2hii

and if hii , the diagonal term of H, is large, the difference
between the residual and the measurement error can be
large. The values hii are called the leverage of the obser-
vation and measure the discrepancy of each observation
xi with respect to the mean of the explanatory variables.
It can be shown (see for instance [28.11] p. 12) that

hii = x′i (X′X)−1xi = 1

n

[
1+ (

x̃i − x̄
)′ S−1

xx (̃xi − x̄)
]
,

where x̃h = (x2h, . . . , x ph) does not include the constant
term, x̄ is the vector of means of the p−1 explana-
tory variables and Sxx is their covariance matrix. Note
that, if the variables were uncorrelated, hii would be the
sum of the standardized distances [(xij − x j )/s j ]2. As∑n

i=1 hii = tr(H) = p, the average value of the lever-
age is h̄ =∑

hii/n = p/n, and it can be shown that
1/n ≤ hii ≤ 1. From (28.4) we conclude that the residual
will be close to the measurement error for those observa-
tions close to the center of the explanatory data, where
hii � 1/n, but will be very different for the extreme

points where hii � 1. Note that the residual covariance
matrix is

Var(e) = E[ee′] = E[(I−H)uu′(I−H)]
= σ2(I−H) (28.5)

and Var(ei ) = σ2(1−hii), which will be large when
hii � 1/n, and close to zero if hii � 1. As the mean
of the residuals is zero if the variance of ei is very small
this implies that its value will be close to zero, whatever
the value of ui .

The problem that each residual has a different vari-
ance leads to the definition of the standardized residuals,
given by

ri = ei

ŝR
√

1−hii
(28.6)

which will have variance equal to one. A third type
of useful residuals are the predictive, deleted, or out-
of-sample residuals, defined by e(i) = yi − ŷi(i), where
ŷi(i) is computed in a sample with the i-th observation
deleted. It can be shown that

e(i) = ei

(1−hii )
(28.7)

and the variance of these predictive residuals is σ2/(1−
hii ). If we estimate σ2 by ŝ2

R(i), the residual variance in
a regression which does not include the i-th observation,
the standardization of the predictive residual leads to the
Studentized residual, defined by

t̂i = ei

ŝR(i)
√

1−hii
(28.8)

which has a Student t distribution with n− p−1 degrees
of freedom. An alternative useful expression of these
residuals is based on hii(i) = x′i (X(i)X(i))−1xi = hii/(1−
hii ), where X(i) is the (n−1) × p matrix without the row
x′i , and therefore, we have the alternative expression:

t̂i = e(i)

ŝR(i)
√

1+hii(i)
. (28.9)

28.2 Diagnosis for a Single Outlier

28.2.1 Outliers

If one observation, yh , does not follow the regression
model, either because its expected value is not x′hβ, or
its conditional variance is not σ2, we will say that it is

an outlier. These discrepancies are usually translated to
the residuals. For instance, if the observation has been
generated by a different model, g(x′h)+uh , then

eh = g(x′h)− x′h β̂+uh
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and the deviation
∣∣g(x′h)− x′h β̂

∣∣ will be larger than∣∣x′h(β− β̂)
∣∣. However, we may not detect this observa-

tion because of the key role of the variable x′h . Suppose,
in order to simplify, that we write g(x′h) = x′hα, that is,
the data is also generated by a linear model but with
different parameter values. Then, even if α is very dif-
ferent from β, the size of

∣∣x′h(α− β̂)
∣∣ depends on x′h and

the discrepancy between the parameter values would
be easier to detect when

∣∣x′h
∣∣ is large than when it is

small.
When the observation is an outlier because it has

a measurement error which comes from a distribution
with variance kσ2, where k > 1, we expect that |uh |will
be larger than the rest of the measurement errors. It is
intuitive, and it has been formally shown [28.34], that we
cannot differentiate between a change in the mean and
a change in the variance by using just one observation;
also models which assume a change in the variance are
equivalent to those which assume shifts in the mean of
the observations. Thus, we consider a simple mean-shift
model for a single outlier

yh = x′hβ+w+uh,

where w is the size of the outlier and uh is N(0, σ2).
A test for outliers can be made by estimating the param-
eter w in the model

yi = x′iα+wI (h)
i +ui , i = 1, .., n,

where I (h)
i is a dummy variable given by I (h)

i = 1, when
i = h and I (h)

i = 0, otherwise. We can test for outliers by
fitting this model for h = 1, . . . , n, and checking if the
estimated coefficient ŵ is significant. It is easy to show
that:

1. α̂ = (X′
(i)X(i))−1X′

(i) y(i) = β̂(i), the regression pa-
rameters are estimated in the usual way, but deleting
case (y j , x j );

2. ŵ= yh − x′h α̂, and therefore the estimated residual
at this point, eh = yh − x′hα̂− ŵ= 0.

3. The t statistic to check if the parameter ŵ is sig-
nificant is equal to the Studentized residual, th, as
defined in (28.8).

Assuming that only one observation is an outlier the
test is made by comparing the standardized residual to
the maximum of a t distribution with n− p−2 degrees
of freedom. Often, for moderate n, cases are consid-
ered as outliers if their Studentized residuals are larger
than 3.5.

28.2.2 Influential Observations

An intuitive way to measure the effect of an observation
on the estimated parameters, or on the forecasts, is to
delete this observation from the sample and see how this
deletion affects the vector of parameters or the vector
of forecasts. A measure of the influence of the i− th
observation on the parameter estimate is given by:

D(i) = (̂β− β̂′(i))X′X(̂β− β̂(i))

p̂s2
R

, (28.10)

which, as the covariance of β̂ is ŝ2
R(X′X)−1, measures

the change between β̂ and β̂(i) with relation to the
covariance matrix of β̂, standardized by the dimen-
sion of the vector p. This measure was introduced
by Cook [28.16]. Of course other standardizations are
possible. Belsley et al. [28.9] propose using ŝ2

R(i), the
variance of the regression model when the ith obser-
vation is deleted, instead of ŝ2

R, and Diaz-García and
Gonzalez-Farias [28.35] have suggested standardizing
the vector (̂β− β̂(i)) by its variance, instead of using the
variance of β̂. See Cook, Peña and Weisberg [28.36] for
a comparison of some of these possible standarizations.

Equation (28.10) can also be written as the standard-
ized change in the vector of forecasts:

Di =
(
ŷ− ŷ(i)

)′ (ŷ− ŷ(i)
)

p̂s2
R

, (28.11)

where ŷ(i) = Xβ̂(i) = (ŷ1(i), . . . , ŷn(i))′. Note that
from (28.2) we have that Var(ŷi ) = σ2hii and as the
average value of hii is p/n, (28.11) is standardized by
this average value and by the dimension n of the vec-
tor. A third way to measure the influence of the ith point
is to compare ŷi with ŷ(i), where ŷ(i) = x′i β̂(i). With the
usual standardization by the variance we have:

Di =
(
ŷi − ŷ(i)

)2

p̂s2
Rhii

(28.12)

and, using the relation between the inverse of X′X and
X′

(i)X(i), we obtain

β− β̂(i) = (X′X)−1xi
ei

1−hii
. (28.13)

Inserting this into (28.10) it is easy to see that (28.12) is
equivalent to (28.10) and (28.11). Also, as from (28.13)
we have that

ŷ− ŷ(i) = hi
ei

1−hii
, (28.14)
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where hi is the i− th column of the H matrix, insert-
ing this expression into (28.11) we obtain a convenient
expression for the computation of Cook’s statistics:

Di = r2
i hii

p(1−hii )
, (28.15)

where ri is the standardized residual given by (28.6). For
large n, the expected value of Di can be approximated
by

E(Di ) � hii

p(1−hii )
, (28.16)

and it will be very different for observations with differ-
ent leverage.

Cook proposed judging the values of Di by an
F(p; n− p; 1−α), where F is the distribution used in
building a confidence region for the β parameters. Thus,
we may identify points as influential when they are able
to move the estimate out of the confidence region for
a fixed value of α and declare as influential those ob-
servations which verify Di ≥ F(p; n− p; 1−α). This
solution is not satisfactory for large sample sizes be-
cause it is difficult for any observation to be deemed
influential. Muller and Mok [28.37] have obtained the
distribution of the Di for normal explanatory variables,
but this distribution is complicated.

Cook [28.17] proposed a procedure for the assess-
ment of the influence on a vector of parameters θ of
minor perturbation of a statistical model. This approach
is very flexible and can be used to see the effect of
small perturbations which would not normally be de-
tected by deletion of one observation. He suggested
introducing a n × p vector w of case weights and use
the likelihood displacement [L(θ̂)− L(θ̂w)], where θ̂ is
the maximum likelihood (ML) estimator of θ̂, and θ̂w
is the ML when the case weight w is introduced. Then,

Table 28.1 Three sets of data which differ in one observation

Case 1 2 3 4 5 6 7 8 9 (a) (b) (c)

x1 −2 0 2 −4 3 1 −3 −1 4 0 −3 −3

x2 6.5 7.3 8.3 6.0 8.8 8.0 5.9 6.9 9.5 7.2 9 7.3

y −1.5 0.5 1.6 −3.9 3.5 0.8 −2.7 −1.3 4.1 5 −1.5 4

Table 28.2 Some statistics for the three regressions fitted to the data in Table 28.1

β̂0 t(β̂0) β̂2 t(β̂2) β̂1 t( β̂1) ŝR h28 r28 D28

(0) 2.38 (0.82) −0.30 (0.78) 1.12 (6.24) 0.348 − − −
(a) 13.1 (1.7) −1.72 (−1.66) 1.77 (3.69) 0.96 0.11 4.68 0.92

(b) −2.74 (−2.9) 0.38 (3.08) 0.80 (13.87) 0.36 0.91 1.77 11.1

(c) −25.4 (−5.41) 3.43 (5.49) −0.624 (2.22) 0.91 0.65 4.63 13.5

he showed that the directions of greatest local change
in the likelihood displacement for the linear regression
model are given by the eigenvectors linked to the largest
eigenvalues of the curvature matrix, L= EHE, where E
is the vector of residuals. Later, we will see how this ap-
proach is related to some procedures for multiple-outlier
detection.

28.2.3 The Relationship Between Outliers
and Influential Observations

An outlier may or may not be an influential observa-
tion and an influential observation may or may not be an
outlier. To illustrate this point consider the data in Ta-
ble 28.1. We will use these data to build four data sets.
The first includes cases 1–9 repeated three times, and
has sample size n = 27. The other three are formed by
adding a new observation to this data set. The set (a)
is built by adding case 28(a), the set (b) by adding
case 28(b) and the set (c) by adding case 28(c). Ta-
ble 28.2 shows some statistics of these four data sets
where (0) refers to the set of 27 observations and (a), (b)
and (c) to the sets of 28 observations as defined before.
The table gives the values of the estimated parameters,
their t statistics in parentheses, the residual standard
deviation, the leverage of the added point, the standard-
ized residual for the added point and the value of Cook’s
statistics.

In set (a) observation 28 is clearly an outlier with
a value of the standardized residual of 4.68, but it is not
influential, as D28(a) = 0.92, which is a small value. In
case (b) the 28-th point is not an outlier, as r28(b)= 1.77
is not significant, but it is very influential, as indicated
by the large D28 value. Finally, in set (c) the observa-
tion is both an outlier, r28 = 4.63, and very influential,
D28 = 13.5.
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Note that if the leverage is small hii � 1/n, hii/(1−
hii ) � (n−1)−1, and by (28.15):

Di = r2
i

p

(
1

n−1

)
,

then, if n is large, the observation cannot be influential,
whatever the value of r2

i . On the other hand, high-
leverage observations with hii close to one will have
a ratio hii/(1−hii ) that is arbitrarily large and, even if
r2

i is small, will be influential.

28.3 Diagnosis for Groups of Outliers

The procedures that we have presented in the previ-
ous section are designed for a single outlier. We can
extend these ideas to multiple outliers as follows. Let
I be an index set corresponding to a subset of r data
points. The checking of this subset can be done by in-
troducing dummy variables as in the univariate case.
Assuming normality, the F test for the hypothesis that
the coefficients of the dummy variables are zero is given
by

Fr,(n−p−r) = e′I (I−HI )−1eI

rŝ2
R(I )

where eI is the vector of least-squares residuals, HI the
r ×r submatrix of H, corresponding to the set of obser-
vations included in I , and ŝ2

R(I ) the residual variance of
the regression with the set I deleted. Cook and Weis-
berg [28.11] proposed to measure the joint influence of
the data points with index in I by deleting the set I and
computing, as in the single outlier case,

DI =
(̂β− β̂′(I ))X

′X(̂β− β̂(I ))

p̂s2
R

,

which can also be written as a generalization of (28.15)
by DI = [e′I (I−HI )−1HI (I−HI )−1eI ]/ p̂s2

R. Note that
a large value of DI may be due to a single influen-
tial observation included in the set I or a sum of small
individual effects of a set of observations that are mask-
ing each other. However, in the first case this single
observation will be easily identified. Also, a subset of
individually highly influential points, whose effect is to
cancel each other out, will lead to a small value of DI ;
again in this case, the individual effects will be easy to
identify. However, to build this measure we should com-
pute all sets of I in the n data, which would be impossible
for large I and n.

The procedures for finding multiple outliers in re-
gression can be divided into three main groups. The
first is based on robust estimation. If we can compute
an estimate that is not affected by the outliers, we can
then find the outliers as those cases with large residu-
als with respect to the robust fit. We present briefly here

the least median of squares (LMS) estimate proposed
by Rousseeuw [28.38], which is used as an initial es-
timate in some diagnostic procedures based on a clean
set, which we will review below. Rousseeuw [28.38]
proposed generating many possible values of the pa-
rameters, β1, . . . ,βN , finding the residuals associated
with each parameter value, ei = y−X βi (i = 1, .., N),
and using the median of these residuals as a robust scale

s(βi ) = median(e2
1i , . . . , e2

ni ). (28.17)

The value βi that minimizes this robust scale is the
LMS estimate. Rousseeuw [28.38] generates the pa-
rameter values β1, . . . ,βN by resampling, that is, by
taking many random samples of size p, (Xi , yi ), where
the matrix Xi is p × p and yi is p × 1, and comput-
ing the least-squares estimate (LSE) for each sample,
βi= X−1

i yi . The LMS, although very robust, is not very
efficient, and many other robust methods have been
proposed to keep high robustness and achieve better
efficiency in regression [28.31].

A second class of procedures uses robust ideas to
build an initial clean subset and then combine least-
squares estimates in clean subsets and diagnosis ideas
for outlier detection. Three procedures in this spirit will
be presented next; they can be very effective when p and
n are not large.

For large data sets with many predictors and high-
leverage observations, robust estimates can be very
difficult to compute and procedures based on the clean-
set idea may not work well, because of the difficulty in
selecting the initial subset. The third type of procedures
are based on eigenstructure analysis of some diagnostic
matrices and are especially useful for large data sets.

28.3.1 Methods Based on an Initial Clean
Set

Kianifard and Swallow [28.26, 27] proposed to build a
clean set of observations and check the rest of the data
with respect to this set. If the observation closest to the
clean set is not an outlier, then the clean set is increased
by one observation, and continue to do so until no new
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observations can be incorporated into the basic set. The
key step in this procedure is to find the initial subset,
because if it contains outliers the whole procedure breaks
down. These authors proposed using either the predictive
or standardized residuals, or a measure of influence such
as Di .

A similar procedure was proposed by Hadi and Si-
monoff [28.1, 2]. In [28.2] they recommend building
the initial subset using the LMS. The clean set is built
by computing this robust estimate and then uses the
h =

(
n+p+1

2

)
observations with the smallest residuals

with respect to this robust fit to form the initial clean
set, which we call M. The procedure continues by fit-
ting a regression model by least squares to this clean set
M. Calling β̂M the estimated LSE parameters and σ̂M
the residual standard deviation, a set of in-sample and
out-of-sample residuals is obtained as follows

di =
∣∣yi − x′iβM

∣∣

σ̂M

√
1− x′i (X′

MXM)−1xi

, if i ∈ M,

di =
∣∣yi − x′iβM

∣∣

σ̂M

√
1+ x′i (X′

MXM)−1xi

, if i /∈ M.

That is, di represents the standardized residual (28.6) for
the data in set M and the predictive residual (28.9) for
observations outside this set. Then, all of the observa-
tions are arranged in increasing order according to di .
Let s be the size of the set M (which is h in the first it-
eration, but will change as explained below). If d(s+1)
is smaller than some critical value, a new set of size
s+1 is built with the s+1 observations with smallest d
values. If d(s+1) is larger than some critical value, all ob-
servations out of the set M are declared as outliers and
the procedure stops. If n = s+1 we stop and declare
that there are no outliers in the data. These authors pro-
posed using as critical values those of the t distribution
adjusted by Bonferroni, that is t

(
α

2(s+1) , s− p
)

.
Atkinson [28.3] proposed a similar approach called

the forward search. His idea is again to combine a ro-
bust estimate with diagnostic analysis. He computes the
LMS estimate but, instead of generating a large set of
candidates by random sample, he generates a set of can-
didate values for β̂ by fitting least-squares subsamples
of size p, p+1, . . . , n. The procedure is as follows. We
start by generating a random sample of size p; let Ip be
the indices of the observations selected. Then, we com-
pute the parameters β̂(p) by LSE, and the residual for
all cases, e= y−Xβ̂(p). The residuals are corrected by

u2
i = e2

i , i ∈ I (28.18)

u2
i = e2

i /(1+hii ), i /∈ I

and these residuals u2
i are ordered and the smallest p+1

are selected. With this new sample of size m = p+1 the
process is repeated, that is, the parameters are computed
by LSE and the residuals to this fit for the n points are
obtained. The corrected residuals (28.18) are computed
and the process is continued. In this way we obtain a set
of estimates, β̂(m), m = p, .., n, the corresponding resid-
uals, e(m) = y−Xβ̂(m), and the robust scales (28.17),
s[̂β(m)]. The value selected is the β̂(m) which minimizes
the robust scale. This process is a complete forward
search and several forward searches are done starting
with different random samples. The residuals are then
identified by using this LMS estimate computed from
several forward searches. An improvement of this proce-
dure was proposed by Atkinson and Riani [28.15], which
clearly separates the estimation of the clean subset and
the forward search. The initial estimate is computed, as
proposed by Rousseeuw [28.38], by taking many random
samples of size p. The forward search is then applied,
but stressing the use of diagnostic statistics to monitor
the performance of the procedure.

Finally, Swallow and Kianifard [28.4] also suggested
a similar procedure, which uses a robust estimate of the
scale and determines the cutoff values for testing from
simulations.

These procedures work when both p and n are not
large and the proportion of outliers is moderate, as shown
in the simulated comparison by Wisnowski et al. [28.39].
However, they do not work as well in large data sets with
high contamination. The LMS estimates rely on having
at least a sample of size p without outliers, and we need
an unfeasible number of samples to have a large proba-
bility of this event when p and n are large [28.6]. This
good initial estimate is the key for procedures based on
clean sets. In the next section we will present procedures
that can be applied to large data sets.

28.3.2 Analysis of the Influence Matrix

Let us define the matrix of forecast changes, as the ma-
trix of changes in the forecast of one observation when
another observation is deleted. This matrix is given by

T =

⎛
⎜⎜⎜⎜⎝

ŷ1 − ŷ1(1) ŷ1 − ŷ1(2) . . . ŷ1 − ŷ1(n−1) ŷ1 − ŷ1(n)

ŷ2 − ŷ2(1) ŷ2 − ŷ2(2) . . . ŷ2 − ŷ2(n−1) ŷ2 − ŷ2(n)

. . . . . . . . . . . . . . .

ŷn−1 − ŷn−1(1) ŷn − ŷn(2) . . . ŷn − ŷn(n−1) ŷn − ŷn(n)

ŷn − ŷn(1) ŷn − ŷn(2) . . . ŷn − ŷn(n−1) ŷn − ŷn(n)

⎞
⎟⎟⎟⎟⎠

.

The columns of this matrix are the vectors ti = ŷ− ŷ(i),
and Cook’s statistic is their standardized norm. These
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vectors can also be written as ti = e(i)− e, where e(i)
is the vector of residuals when the i-th observation is
deleted. Therefore, T can also be considered the matrix
of residual changes. Peña and Yohai [28.5] define the
n × n influence matrix M as

M= 1

ps2
R

T′T.

As H is idempotent it can be shown immediately that M
is given by

M= 1

ps2
R

EDHDE, (28.19)

where E is a diagonal matrix with the residuals on the
main diagonal, and D is a diagonal matrix with ele-
ments (1−hii )−1. By (28.7) ED is the diagonal matrix
of predictive residuals. Therefore, the ij-th element of
M, is

mij = eie j hij

(1−hii )(1−h jj)ps2
R

= ei(i)e j( j)hij

ps2
R

.

Assuming that all the residuals are different from
zero, from (28.4) the rank of M is equal to p, the rank
of H. Observe that the diagonal elements of M are the
Cook’s statistics.

Let rij = mij/m1/2
ii m1/2

jj be the uncentered correla-
tion coefficient between ti and t j . Let us show that the
eigenvectors of the matrix M will be able to indicate
groups of influential observations. Suppose that there
are k groups of influential observations I1, . . . , Ik, such
that

1. If i, j ∈ Ih , then |rij | = 1. This means that the effects
on the least-squares fit produced by the deletion of
two points in the same set Ih have correlation 1 or
−1.

2. If i ∈ I j and l ∈ Ih with j �= h, then ril = 0. This
means that the effects produced on the least-squares
fit by observations i and j belonging to different sets
are uncorrelated.

3. If i does not belong to any Ih , then mij = 0 for all
j. This means that data points outside these groups
have no influence on the fit.

Now, according to (1) we can split each set
Ih into I1

h and I2
h such that: (1) if i, j ∈ Iq

h , then
rij = 1; (2) if i ∈ I1

h and j ∈ I2
h , then rij = −1.

Let v1 = (v11, . . . , v1n)′, . . . , vk = (vk1, . . . , vkn)′ be
defined by vh j = m1/2

jj if j ∈ I1
h ; vh j = m1/2

jj if j ∈
I1
h ; vh j =−m1/2

jj if j ∈ I2
h and vh j = 0 if j /∈ Ih . Then,

if (1)–(3) hold, by (28.6) the matrix M is

M =
k∑

i=1

viv
′
i ,

and since the vi are orthogonal, the eigenvectors of
M are v1, . . . , vk, and the corresponding eigenvalues
λ1, . . . , λk are given by

λh =
∑

i∈Ih

mii .

It is clear that, when the matrix M satisfies (1)–
(3), the only sets I with large CI are Iq

h , 1 ≤ h ≤ k,
q = 1, 2, and these sets may be found by looking
at the eigenvectors associated with non-null eigen-
values of M. Note that (28.6) can also be written
as

rij = sign(ei )sign(e j )hij/(hiih jj )
1/2,

which means that, in the extreme case that we have pre-
sented, the H matrix and the signs of the residuals are
able, by themselves, to identify the set of points that
are associated with masking. For real data sets, (1)–
(3) do not hold exactly. However, the masking effect
is typically due to the presence of blocks of influential
observations in the sample having similar or opposite
effects. These blocks are likely to produce a matrix M
with a structure close to that described by (1)–(3). In
fact, two influential observations i, j producing similar
effects should have rij close to 1, and close to −1 when
they have opposed effects. Influential observations with
non-correlated effects have |rij | close to 0. The same will
happen with non-influential observations. Therefore, the
eigenvectors will have approximately the structure de-
scribed above, and the null components will be replaced
by small values.

This suggests that we should find the eigenvectors
corresponding to the p non-null eigenvalues of the influ-
ence matrix M, consider the eigenvectors corresponding
to large eigenvalues, and define the sets I1

j and I2
j

by those components with large positive and negative
weights, respectively. Peña and Yohai [28.5] proposed
the following procedure.

Step 1: Identifying sets of outlier candidates. A set
of candidate outlier is obtained by analyzing the eigen-
vectors corresponding to the non-null eigenvalues of the
influence matrix M, and by searching in each eigenvec-
tor for a set of coordinates with relatively large weight
and the same sign.

Step 2: Checking for outliers. (a) Remove all candi-
date outliers. (b) Use the standard F and t statistics to
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Table 28.3 A simulated set of data

1 2 3 4 5 6 7 8 9(a) 10(a) 9(b) 10(b) 9(c) 10(c)

x 1 2 3 4 5 6 7 8 12 12 12 12 12 12

y 2.0 2.9 3.9 5.1 6.2 6.9 7.8 9.1 19 20 19 7 13 7

Table 28.4 Eigen-analysis of the influence matrix for the data from Table 28.3. The eigenvectors and eigenvalues are
shown

λ1 λ1/λ2 1 2 3 4 5 6 7 8 9 10

(a) 1.27 2.87 −0.17 −0.06 −0.00 −0.00 −0.02 −0.10 −0.22 −0.33 0.42 0.79

(b) 3.78 3.783 0.00 −0.00 −0.00 −0.00 −0.00 0.00 −0.00 −0.00 −0.71 0.71

(c) 3.25 32 −0.05 −0.02 −0.00 −0.00 −0.01 −0.02 −0.04 −0.10 −0.50 0.85

test for groups or individual outliers. Reject sets or in-
dividual points with F or t statistics larger than some
constant c. For the F statistic the c value corresponds to
the distribution of the maximum F over all sets of the
same size, and this distribution is unknown. Therefore,
it is better to use the t statistic and choose the c value by
the Bonferroni inequality or, better still, by simulating
the procedure with normal errors. (c) If the number of
candidate outliers is larger than n/2, the previous pro-
cedure can be applied separately to the points identified
in each eigenvector.

As an illustration we will use the simulated data
from Table 28.3, which are plotted in Fig. 28.1.

The three sets of data have in common cases 1–8 and
differ in cases 9 and 10. In the first set of data the largest
values of the Cook’s statistics are D10 = 0.795, D1 =
0, 29 and D9 = 0.228. The most influential observation
is the 10-th, which has a standardized residual r10 =
1.88, thus there is no evidence that the point is an outlier.
However, the first eigenvector of the influence matrix
leads to the results shown in Table 28.4. We see that
both cases 9 and 10 appear separated from the rest.
When they are deleted from the sample and checked
against the first eight observations we obtain the values
indicated in Table 28.5, where they are clearly declared
as outliers. Thus, in this example the eigenvalues of the
influence matrix are able to avoid the masking effect
which was clearly present in the univariate statistics.

In case (b), as both outliers have a different sign,
they do not produce masking, and both of them are

Table 28.5 Values of the t statistics for testing each point
as an outlier

Case 9 10

(a) 27.69 32.28

(b) 31.94 −32.09

(c) −0.07 −32.09

detected by the univariate analysis: D9 = 1.889, and
D10 = 1.893, and the outlier tests are t10 = 5.20 and
t9 =−5.24. The two points are also shown in the ex-
tremes of the eigenvalue. Finally in case (c) there is only
one outlier which is detected by both the univariate and
multivariate analysis.

The influence matrix M may be considered
a generalization of Cook’s local influence matrix
L = EHE [28.17]. It replaces the matrix of residu-
als E by the matrix of standardized residuals ED.
If there are no high-leverage observations and the
hii are similar for all points, both matrices will
also be similar, and will have similar eigenvectors.
However, when the observations have very different
leverages, the directions corresponding to the eigen-
vectors of the matrix M give more weight to the
influence of the high-leverage observations, which are

0
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Fig. 28.1 The simulated data from Table 28.3
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Table 28.6 Eigenvalues of the sensitivity matrix for the data from Table 28.3

1 2 3 4 5 6 7 8 9 10

v1 0.502 0.455 0.407 0.360 0.312 0.264 0.217 0.170 −0.020 −0.020

v2 −0.191 −0.119 −0.046 0.026 0.099 0.172 0.245 0.318 0.610 0.610

precisely those that are more likely to produce masking
effects.

Note that the rank of the influence matrix M is
p, the same as the rank of H, and therefore we do
not need to compute n eigenvectors as we only have
p eigenvalues linked to nonzero eigenvalues. Thus,
the procedure can be applied for very large data
sets, see Peña and Yohai [28.5] for the details of the
implementation.

28.3.3 The Sensitivity Matrix

If instead of looking at the columns of the matrix of
forecast changes T we look at its rows, a different
perspective appears. The rows indicate the sensitivity
of each point, that is, how the forecast for a given
point changes when we use as the sample the n sets
of n−1 data built by deleting each point of the sam-
ple. In this way we analyze the sensitivity of a given
point under a set of small perturbations of the sample.
Let

si = (ŷi − ŷi(1), ..., ŷi − ŷi(n))
′

be the i-th row of the matrix T. From (28.14) we can
write

si = (hi1e1/(1−h11), ..., hinen/(1−hnn)) = EDhi ,

where E and D are diagonal matrices of residuals and
inverse leverage, respectively, defined in the previous
section, and hi is the i-th column of H. We define the

sensitivity matrix by

P= 1

p̂s2
R

⎛
⎜⎝

s′1s1 . . . s′1sn

. . . . . . . . .

s′1sn . . . s′nsn

⎞
⎟⎠ ,

which can be computed by

P= 1

p̂s2
R

HED2EH , (28.20)

and has elements

pij = 1

p̂s2
R

n∑

k=1

e2
k

(1−hkk)2
hikh jk.

It can be shown that the sensitivity and the influence
matrix have the same eigenvalues and we can obtain
the eigenvectors of one matrix from the eigenvectors
of the other. Peña and Yohai [28.6] have shown that
eigenvectors of the sensitivity matrix are more powerful
for the identification of groups of outliers than those
of the influence matrix, although they often lead to the
same results. These authors also show that these methods
work very well for large sets with many predictors and
high levels of contamination.

In the following example we show the use of this ma-
trix for detecting groups of outliers. If we compute the
eigenvectors of the sensitivity matrix for the data in Ta-
ble 28.3 we obtain the results presented in Table 28.6.
The first eigenvector clearly separates the observations 9
and 10 from the rest. In fact, if we order the coordinates
of this vector we find the largest ratio at 170/20 = 8.5
which separates cases 9 and 10 from the others.

28.4 A Statistic for Sensitivity for Large Data Sets

The analysis of the eigenvalues of the sensitivity ma-
trix is a very powerful method for finding outliers.
However, for large data sets it would be very con-
venient to have a simple statistic, fast to compute,
which can be incorporated into the standard out-
put of regression fitting and which could indicate
groups of high-leverage outliers, which are the most
difficult to identify. This statistic can be obtained

through a proper standardization of the diagonal el-
ements of the sensitivity matrix. Peña [28.7] defines
the sensitivity statistic at the i-th observation Si as
the squared norm of the standardized vector si , that
is,

Si = s′isi

pV̂ar(ŷi )
, (28.21)
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and using (28.14) and V̂ar(ŷi ) = ŝ2
Rhii , this statistic can

be written as

Si = 1

p̂s2
Rhii

n∑

j=1

h2
ji e

2
j

(1−h jj )2
. (28.22)

An alternative way to write Si , is as a linear com-
bination of the sample Cook’s distance. From (28.12)
and (28.22), we have

Si =
n∑

j=1

ρ2
ji D j , (28.23)

where ρij = (h2
ij/hiih jj )1/2 ≤ 1 is the correlation be-

tween forecasts ŷi and ŷ j . Also, using the predictive
residuals, e j( j) = e j/(1−h jj ), we have that

Si = 1

p̂s2
R

n∑

j=1

w ji e
2
j( j) (28.24)

and Si is a weighted combination of the predictive
residuals.

The sensitivity statistics has three interesting prop-
erties. The first is that, in a sample without outliers or
high-leverage observations, all the cases have the same
expected sensitivity, approximately equal to 1/p. This is
an important advantage over Cook’s statistic, which has
an expected value that depends heavily on the leverage
of the case. The second property is that, for large sam-
ple sizes with many predictors, the distribution of the Si

statistic will be approximately normal. This again is an
important difference from Cook’s distance, which has
a complicated asymptotic distribution [28.37]. This nor-
mal distribution allows the computation of cutoff values
for finding outliers. The third property is that, when the
sample is contaminated by a group of similar outliers
with high leverage, the sensitivity statistic will discrim-
inate between the outliers and the good points, and the
sensitivity statistic Si is expected to be smaller for the
outliers than for the good data points.

These properties are proved in Peña [28.7]. The
normality of the distribution of the Si statistic implies
that we can search for outliers by finding observations
with large values of [Si − E(Si )]/std(Si ). As the possible
presence of outliers and high leverage points will affect
the distribution of Si , it is better to use robust estimates
such as as the median or the median of the absolute de-
viations (MAD) from the sample median, and consider
as heterogeneous observations those which satisfy:

|Si −med(S)| ≥ 4.5MAD(Si ) (28.25)

where med(S) is the median of the Si values
and MAD(Si ) = med |Si −med(S)|. For normal data
MAD(Si )/.645 is a robust estimate for the standard de-
viation and the previous rule is roughly equivalent to
taking three standard deviations in the normal case. In
Peña [28.7] it is shown that this statistic can be very
useful for the diagnostic analysis of large data sets.

28.5 An Example: The Boston Housing Data

As an example of the usefulness of the sensitivity statis-
tics and to compare it with the procedures based on
eigenvalues, we will use the Boston housing data set
which consists of 506 observations on 14 variables,
available at Carnegie Mellon University, Department of
Statistics, Pittsburgh (http://lib.stat.cmu.edu). This data
set was given by Belsley et al. [28.9] and we have used the
same variables they considered: the dependent variable
is the logarithm of the median value of owner-occupied
homes.

Figure 28.2 shows the diagnostic analysis of this
data set. The first row corresponds to the residuals of
the regression model. The residuals have been divided
by their standard error and the first plot shows a few
points which can be considered as outliers. The plot
of the Studentized residual is similar and identifies the
same points as outliers. The second row gives informa-
tion about Cook’s D statistics. There are clearly some

points in the middle of the sample which are more
influential than the rest, but all the values of the statis-
tic are small and, as we expect a skewed distribution,
the conclusion is not clear. However, the sensitivity
statistics clearly identifies a group of extreme obser-
vations which are not homogeneous with the rest. The
median of the sensitivity statistic is 0.0762, which is
very close to the expected value 1/p = 1/14 = 0.0714.
The MAD is 0.0195 and the plot indicates that 45 ob-
servations are heterogeneous with respect to the rest.
These observations are most of the cases 366–425 and
some other isolated points. From Belsley et al. [28.9]
we obtain that cases 357–488 correspond to Boston,
whereas the rest correspond to the suburbs. Also, the
45 points indicated by the statistic Si as outliers all cor-
respond to some central districts of Boston, including
the downtown area, which suggests that the relation
among the variables could be different in these dis-
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Fig. 28.2 Residuals, Cook’s statistics and sensitivity statistics for the Boston housing data. Right, histogram; left case
plot of the value of the statistic

tricts than in the rest of the sample. In fact, if we
fit regression equations to these two groups we find
very different coefficients for the regression coeffi-
cients in both groups of data, and in the second group
only five variables are significant. Also, we obtain a
large reduction in the residual sum of squares (RSE)

when fitting different regression equations in the two
groups.

Figure 28.3 shows the first eigenvalues of the matrix
of influence and sensitivity. Although both eigenvec-
tors indicate heterogeneity, the one from the matrix of
sensitivity is more clear.
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Fig. 28.3 First eigenvalue of the influence and sensitivity matrices

28.6 Final Remarks

We have shown different procedures for diagnosis in re-
gression models and have stressed that the detection of
groups of outliers in regression in large data sets can
be made by eigen-analysis of the influence and sensitiv-
ity matrices. We have also shown that a single statistic
of sensitivity is able to reveal masked outliers in many
difficult situations. The most challenging problem to-
day is to identify heterogeneity when we do not have
a central model which explains more than 50% of the
data and groups of outliers, as has been assumed in

this article, but different regression models in differ-
ent regions of the parameter space. In this case robust
methods are no longer useful and we need other meth-
ods to solve this problem. A promising approach is
the split and recombine (SAR) procedure, which has
been applied to find heterogeneity in regression mod-
els by Peña et al. [28.40]. These situations are very
close to cluster analysis and finding clusters around
different regression lines is today a promising line of
research.

References

28.1 A. S. Hadi, J. S. Simonoff: Procedures for the
identification of multiple outliers in linear
models, J. Am. Statist. Assoc. 88, 1264–1272
(1993)

28.2 A. S. Hadi, J. S. Simonoff: Improving the estimation
and outlier identification properties of the least
median of squares and minimum volume ellip-
soid estimators, Parisankhyan Samikkha 1, 61–70
(1994)

28.3 A. C. Atkinson: Fast very robust methods for the
detection of multiple outliers, J. Am. Statist. Assoc.
89, 1329–1339 (1994)

28.4 W. Swallow, F. Kianifard: Using robust scale es-
timates in detecting multiple outliers in linear
regression, Biometrics 52, 545–556 (1996)

28.5 D. Peña, V. J. Yohai: The detection of influential
subsets in linear regression using an influence
matrix, J. R. Statist. Soc. B 57, 145–156 (1995)

Part
D

2
8



536 Part D Regression Methods and Data Mining

28.6 D. Peña, V. J. Yohai: A fast procedure for ro-
bust estimation and diagnostics in large regression
problems, J. Am. Statist. Assoc. 94, 434–445
(1999)

28.7 D. Peña: A new statistic for influence in linear
regression, Technometrics 47(1), 1–12 (2005)

28.8 G. E. P. Box: When Murphy speaks listen, Qual.
Prog. 22, 79–84 (1989)

28.9 D. A. Belsley, E. Kuh, R. E. Welsch: Regression Diag-
nostics: Identifying Influential Data and Sources of
Collinearity (Wiley, New York 1980)

28.10 D. M. Hawkins: Identification of Outliers (Chapman
Hall, New York 1980)

28.11 R. D. Cook, S. Weisberg: Residuals and Influence in
Regression (Chapman Hall, New York 1982)

28.12 A. C. Atkinson: Plots, Transformations and Regres-
sion (Clarendon, Oxford 1985)

28.13 S. Chatterjee, A. S. Hadi: Sensitivity Analysis in Lin-
ear Regression (Wiley, New York 1988)

28.14 V. Barnett, T. Lewis: Outliers in Statistical Data, 3
edn. (Wiley, New York 1994)

28.15 A. C. Atkinson, M. Riani: Robust Diagnostic Regres-
sion Analysis (Springer, Berlin Heidelberg New York
2000)

28.16 R. D. Cook: Detection of influential observations in
linear regression, Technometrics 19, 15–18 (1977)

28.17 R. D. Cook: Assessment of local influence (with dis-
cussion), J. R. Statist. Soc. B 48(2), 133–169 (1986)

28.18 G. C. Brown, A. J. Lawrence: Theory and ilustra-
tion of regression influence diagnostics, Commun.
Statist. A 29, 2079–2107 (2000)

28.19 M. Suárez Rancel, M. A. González Sierra: Regres-
sion diagnostic using local influence: A review,
Commun. Statist. A 30, 799–813 (2001)

28.20 G. Hartless, J. G. Booth, R. C. Littell: Local influ-
ence of predictors in multiple linear regression,
Technometrics 45, 326–332 (2003)

28.21 F. Critchley, R. A. Atkinson, G. Lu, E. Biazi: Influence
analysis based on the case sensitivity function, J.
R. Statist. Soc. B 63(2), 307–323 (2001)

28.22 J. Lawrance: Deletion influence and masking in
regression, J. R. Statist. Soc. B 57, 181–189 (1995)

28.23 D. M. Hawkins, D. Bradu, G. V. Kass: Location of
several oultiers in multiple regression data us-
ing elemental sets, Technometrics 26, 197–208
(1984)

28.24 J. B. Gray, R. F. Ling: K–Clustering as a detection
tool for influential subsets in regression, Techno-
metrics 26, 305–330 (1984)

28.25 M. G. Marasinghe: A multistage procedure for
detecting several outliers in linear regression,
Technometrics 27, 395–399 (1985)

28.26 F. Kianifard, W. Swallow: Using recursive residuals
calculated in adaptively ordered observations to
identify outliers in linear regression, Biometrics 45,
571–585 (1989)

28.27 F. Kianifard, W. Swallow: A Monte Carlo Comparison
of five Procedures for Identifying Outliers in Lineal
Regression, Commun. Statist. (Theory and Methods)
19, 1913–1938 (1990)

28.28 A. C. Atkinson: Masking unmasked, Biometrika 73,
533–41 (1986)

28.29 P. Huber: Between Robustness and Diagnosis. In:
Directions in Robust Statistics and Diagnosis, ed. by
W. Stahel, S. Weisberg (Springer, Berlin Heidelberg
New York 1991) pp. 121–130

28.30 P. J. Rousseeuw, A. M. Leroy: Robust Regression
and Outlier Detection (Wiley, New York 1987)

28.31 R. A. Maronna, R. D. Martin, V. J. Yohai: Robust
Statistics, Theory and Practice (Wiley, New York
2006)

28.32 G. E. P. Box, C. G. Tiao: A Bayesian approach to some
outlier problems, Biometrika 55, 119–129 (1968)

28.33 A. Justel, D. Peña: Bayesian unmasking in lin-
ear models, Comput. Statist. Data Anal. 36, 69–94
(2001)

28.34 D. Peña, I. Guttman: Comparing probabilistic mod-
els for outlier detection, Biometrika 80(3), 603–610
(1993)

28.35 J. A. Diaz-Garcia, G. Gonzalez-Farias: A note on the
Cook’s distance, J. Statist. Planning Inference 120,
119–136 (2004)

28.36 R. D. Cook, D. Peña, S. Weisberg: The likelihood
displacement. A unifying principle for influence,
Commun. Statist. A 17, 623–640 (1988)

28.37 E. K. Muller, M. C. Mok: The disribution of Cook’s D
statistics, Commun. Statist. A 26, 525–546 (1997)

28.38 P. J. Rousseeuw: Least median of squares regres-
sion, J. Am. Statist. Assoc. 79, 871–880 (1984)

28.39 J. W. Wisnowski, D. C. Montgomey, J. R. Simpson:
A comparative analysis of multiple outliers detec-
tion procedures in the linear regression model,
Comput. Statist. Data Anal. 36, 351–382 (2001)

28.40 D. Peña, J. Rodriguez, G. C. Tiao: Identifying mix-
tures of regression equations by the SAR procedure
(with discussion). In: Bayesian Statistics, Vol. 7, ed.
by Bernardo et al. (Oxford Univ. Press, Oxford 2003)
pp. 327–347

Part
D

2
8



537

Logistic Regre29. Logistic Regression Tree Analysis

This chapter describes a tree-structured extension
and generalization of the logistic regression
method for fitting models to a binary-valued
response variable. The technique overcomes
a significant disadvantage of logistic regression
viz. the interpretability of the model in the face
of multi-collinearity and Simpson’s paradox.
Section 29.1 summarizes the statistical theory
underlying the logistic regression model and the
estimation of its parameters. Section 29.2 reviews
two standard approaches to model selection
for logistic regression, namely, model deviance
relative to its degrees of freedom and the Akaike
information criterion (AIC) criterion. A dataset
on tree damage during a severe thunderstorm is
used to compare the approaches and to highlight
their weaknesses. A recently published partial
one-dimensional model that addresses some of
the weaknesses is also reviewed.

Section 29.3 introduces the idea of a logistic
regression tree model. The latter consists of
a binary tree in which a simple linear logistic
regression (i.e., a linear logistic regression using
a single predictor variable) is fitted to each
leaf node. A split at an intermediate node is
characterized by a subset of values taken by a
(possibly different) predictor variable. The objective
is to partition the dataset into rectangular pieces
according to the values of the predictor variables
such that a simple linear logistic regression model

29.1 Approaches to Model Fitting ................. 538

29.2 Logistic Regression Trees ...................... 540

29.3 LOTUS Algorithm .................................. 542
29.3.1 Recursive Partitioning ................ 542
29.3.2 Tree Selection ........................... 543

29.4 Example with Missing Values ................ 543

29.5 Conclusion .......................................... 549

References .................................................. 549

adequately fits the data in each piece. Because
the tree structure and the piecewise models can
be presented graphically, the whole model can
be easily understood. This is illustrated with the
thunderstorm dataset using the LOTUS algorithm.

Section 29.4 describes the basic elements of
the LOTUS algorithm, which is based on recursive
partitioning and cost-complexity pruning. A key
feature of the algorithm is a correction for bias in
variable selection at the splits of the tree. Without
bias correction, the splits can yield incorrect
inferences. Section 29.5 shows an application
of LOTUS to a dataset on automobile crash tests
involving dummies. This dataset is challenging
because of its large size, its mix of ordered and
unordered variables, and its large number of
missing values. It also provides a demonstration
of Simpson’s paradox. The chapter concludes with
some remarks in Sect. 29.5.

Logistic regression is a technique for modeling the prob-
ability of an event in terms of suitable explanatory or
predictor variables. For example, [29.1] use it to model
the probability that a tree in a forest is blown down dur-
ing an unusually severe thunderstorm that occurred on
July 4, 1999, and caused great damage over 477 000
acres of the Boundary Waters Canoe Area Wilderness
in northeastern Minnesota. Data from a sample of 3666
trees were collected, including for each tree, whether it
was blown down (Y = 1) or not (Y = 0), its trunk diam-

eter D in centimeters, its species S, and the local intensity
L of the storm, as measured by the fraction of damaged
trees in its vicinity. The dataset may be obtained from
www.stat.umn.edu/˜sandy/pod.

Let p = Pr(Y = 1) denote the probability that a tree
is blown down. In linear logistic regression, we model
log[p/(1− p)] as a function of the predictor variables,
with the requirement that it be linear in any unknown
parameters. The function log[p/(1− p)] is also often
written as logit(p). If we use a single predictor such
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as L , we have the simple linear logistic regression
model

logit(p) = log[p/(1− p)] = β0+β1L (29.1)

which can be re-expressed in terms of p as p= exp(β0+
β1L)/[1+ exp(β0+β1L)].

In general, given k predictor variables X1, . . . , Xk,
a linear logistic regression model in these vari-
ables is logit(p) = β0+∑k

j=1 β j X j . The parameters
β0, β1, . . . , βk are typically estimated using maximum
likelihood theory. Let n denote the sample size and let
(xi1, . . . , xik, yi ) denote the values of (X1, . . . , Xk,Y )
for the ith observation (i = 1, . . . , n). Treating each yi
as the outcome of an independent Bernoulli random vari-

able with success probability pi , we have the likelihood
function

n∏

i=1

pyi
i (1− pi )

1−yi

=
exp

[∑
i yi

(
β0+∑

j β j xij

)]

∏
i

[
1+ exp

(
β0+∑

j β j xij

)] .

The maximum likelihood estimates (MLEs) (β̂0, β̂1,

. . . , β̂k) are the values of (β0, β1, . . . , βk) that maxi-
mize this function. Newton–Raphson iteration is usually
needed to compute the MLEs.

29.1 Approaches to Model Fitting

The result of fitting model (29.1) is

logit(p) =−1.999+4.407L. (29.2)

Figure 29.1 shows a plot of the estimated p function.
Clearly, the stronger the local storm intensity, the higher
the chance for a tree to be blown down.

Figure 29.2 shows boxplots of D by species. Because
of the skewness of the distributions, we follow [29.1] and
use log(D), the natural logarithm of D, in our analysis.
With log(D) in place of L, the fitted model becomes

logit(p) =−4.792+1.749 log(D) (29.3)

suggesting that tall trees are less likely to survive a storm
than short ones. If we use both log(D) and L, we obtain
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Fig. 29.1 Estimated probability of blowdown computed
from a simple linear logistic regression model using L as
predictor

the model

logit(p) =−6.677+1.763 log(D)+4.420L .

(29.4)

Finally, if we include the product L log(D) to account
for interactions between D and L, we obtain

logit(p) =−4.341+0.891 log(D)

−1.482L+2.235L log(D) . (29.5)

So far, we have ignored the species S of each tree
in our sample. We might get a model with higher pre-
diction accuracy if we include S. As with least-squares
regression, we can include a categorical variable that
takes m distinct values by first defining m−1 indicator
variables, U1, . . . ,Um−1, each taking the value 0 or 1.
The definitions of the indicator variables corresponding

80

60

40

20

A BA BF BS C JP PB RM RP

Trunk diameter (D)

Species

Fig. 29.2 Boxplots of trunk diameter D. The median value
of 14 for D, or 2.64 for log(D), is marked with a dotted line

Part
D

2
9
.1



Logistic Regression Tree Analysis 29.1 Approaches to Model Fitting 539

to our nine-species variable S are shown in Table 29.1.
Note that we use the set-to-zero constraint, which sets
all the indicator variables to 0 for the first category (as-
pen). A model that assumes the same slope coefficients
for all species but that gives each a different intercept
term is

logit(p) =−5.997+1.581 log(D)+4.629L

−2.243U1+0.0002U2+0.167U3

−2.077U4+1.040U5−1.724U6

−1.796U7−0.003U8 . (29.6)

How well do the models (29.2–29.6) fit the data? One
popular method of assessing fit is by means of signifi-
cance tests based on the model deviance and its degrees
of freedom (DF)—see, e.g., [29.2] for the definitions.
The deviance is analogous to the residual sum of squares
in least-squares regression. For the model (29.6), the de-
viance is 3259 with 3655 DF. We can evaluate the fit
of this model by comparing its deviance against that of
a larger one, such as the 27-parameter model

logit(p) = β0+β1 log(D)+β2L+
8∑

j=1

γ jU j

+
8∑

j=1

β1 jU j log(D)+
8∑

j=1

β2 jU j L

(29.7)

which allows the slope coefficients for log(D) and L to
vary across species. Model (29.7) has a deviance of 3163
with 3639 DF. If the model (29.6) provides a suitable fit
to the data, statistical theory says that the difference in
deviance should be approximately distributed as a chi-
square random variable with DF equal to the difference
in the DF of the two models. For our example, the dif-
ference in deviance of 3259−3163 = 96 is much too
large to be explained by a chi-square distribution with
3655−3639= 16 DF.

Table 29.1 Indicator variable coding for the species variable S

Species U1 U2 U3 U4 U5 U6 U7 U8

A (aspen) 0 0 0 0 0 0 0 0

BA (black ash) 1 0 0 0 0 0 0 0

BF (balsam fir) 0 1 0 0 0 0 0 0

BS (black spruce) 0 0 1 0 0 0 0 0

C (cedar) 0 0 0 1 0 0 0 0

JP (jack pine) 0 0 0 0 1 0 0 0

PB (paper birch) 0 0 0 0 0 1 0 0

RM (red maple) 0 0 0 0 0 0 1 0

RP (red pine) 0 0 0 0 0 0 0 1

Rejection of model (29.6) does not necessarily im-
ply, however, that the model (29.7) is satisfactory. To
find out, we need to compare it with a larger model,
such as the 28-parameter model

logit(p) = β0+β1 log(D)+β2L+β3L log(D)

+
8∑

j=1

γ jU j +
8∑

j=1

β1 jU j log(D)

+
8∑

j=1

β2 jU j L (29.8)

which includes an interaction between log(D) and L.
This has a deviance of 3121 with 3638 DF. Model (29.7)
is therefore rejected because its deviance differs from
that of (29.8) by 42 but their DFs differ only by 1. It turns
out that, using this procedure, each of models (29.2–
29.7) is rejected when compared against the next larger
model in the set.

A second approach chooses a model from a given
set by minimizing some criterion that balances model fit
with model complexity. One such is the AIC criterion,
defined as the deviance plus twice the number of esti-
mated parameters [29.3]. It is well known, however, that
the AIC criterion tends to overfit the data. That is, it of-
ten chooses a large model. For example, if we apply it
to the set of all models up to third order for the current
data, it chooses the largest, i. e., the 36-parameter model

logit(p) = β0+β1 log(D)+β2L+
8∑

j=1

γ jU j

+β3L log(D)+
8∑

j=1

β1 jU j log(D)

+
8∑

j=1

β2 jU j L+
8∑

j=1

δ jU j L log(D) .

(29.9)
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Fig. 29.3 Estimated probability of blowdown for seven speci-
esTable 29.1, excluding balsam fir (BF) and black spruce (BS),
according to model (29.10)

Graphical interpretation of models (29.8) and (29.9)
is impossible. The simple and intuitive solution of view-
ing the estimated p-function by a graph such as Fig. 29.1
is unavailable when a model involves more than one
predictor variable. This problem is exacerbated by the
fact that model complexity typically increases with
increasing sample size or number of predictors. In-
terpretation of the estimated coefficients is frequently
futile, because the estimates typically do not remain
the same from one model to another. For example, the

coefficient for L is 4.407, 4.424, 1.870, and 4.632 in
models (29.2), (29.4), (29.5), and (29.6), respectively.
This is due to multi-collinearity among the predictor
variables.

Cook and Weisberg [29.1] try to solve the problem of
interpretation by using a partial one-dimensional (POD)
model, which employs a single linear combination of
the noncategorical variables, Z = δ1 log(D)+ δ2L , as
predictor. For the tree data, they find that if balsam fir
(BF) and black spruce (BS) are excluded, the model
logit(p) = β0+ Z+∑

j γ jU j , with Z = 0.78 log(D)+
4.1L , fits the other species quite well. One advantage
of this model is that the estimated p-functions may be
displayed graphically, as shown in Fig. 29.3. The graph
is not as natural as Fig. 29.1, however, because Z is
a linear combination of two variables. In order to include
the species BF and BS, [29.1] choose the larger model

logit(p) = β0+ Z+
9∑

j=1

γ jU j

+ (θ1 IBF+ θ2 IBS) log(D)

+ (φ1 IBF+φ2 IBS)L (29.10)

which contains separate coefficients, θ j and φ j , for BF
and BS. Here I(·) denotes the indicator function, i. e.,
IA = 1 if the species is A, and IA = 0 otherwise. Of
course, this model does not allow a graphical represen-
tation for BF and BS.

29.2 Logistic Regression Trees

The type of models and the method of selection de-
scribed in the previous section are clearly not totally
satisfactory. As the sample size or the number of
predictor variables increases, so typically does model
complexity. But a more complex model is always
harder to interpret than a simple one. On the other
hand, an overly simple model may have little predictive
power.

A logistic regression tree model offers one way to
retain simultaneously the graphical interpretability of
simple models and the predictive accuracy of richer
ones. Its underlying motivation is that of divide and
conquer. That is, a complex set of data is divided into
sufficiently many subsets such that a simple linear lo-
gistic regression model adequately fits the data in each
subset. Data subsetting is performed recursively, with
the sample split on one variable at a time. This results
in the partitions being representable as a binary decision

tree. The method is implemented by [29.4] in a computer
program called LOTUS.

Figure 29.4 shows a LOTUS model fitted to the tree
data. The data are divided into ten subsets, labeled 0–9.
Balsam fir (BF), one of the two species excluded from
the [29.1] model, is isolated in subsets 0 and 9, where
log(D) is the best linear predictor. The estimated p-
functions for these two subsets are shown in Fig. 29.5.
The estimated p-functions for the trees that are not bal-
sam firs can be displayed together in one graph, as shown
in Fig. 29.6, because they all employ L as the best simple
linear predictor.

From the graphs, we can draw the following conclu-
sions:

1. The probability of blowdown consistently increases
with D and L, although the value and rate of increase
are species-dependent.
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S = BF

0 9 8 7 6

5 1 3 2

S = BA, BF, C, PB, RM

S = A, BS, RP S = A, BS

38/263
log (D)

L � 0.3 log (D) � 2.4 log (D) � 2.2

log (D) � 2.64

L � 0.404

195/396
log (D)

44/459
L

118/591
L

60/237
L

126/391
L

49/60
L

145/ 309
L

137/200
L

4

672/760
L

Fig. 29.4 A piecewise simple linear LOTUS model for estimating the probability that a tree is blown down. A splitting
rule is given beside each intermediate node. If a case satisfies the rule, it goes to the left child node; otherwise the right
child node. The second level split at log(D)= 2.64 corresponds to the median value of D. Beneath each leaf node are the
ratio of cases with Y = 1 to the node sample size and the name of the selected predictor variable

2. Balsam fir (BF) has the highest chance of blowdown,
given any values of D and L.

3. The eight species excluding the balsam fir can be di-
vided into two groups. Group I consists of black
ash (BA), cedar (C), paper birch (PB), and red
maple (RM). They belong to subsets 7 and 8, and
are most likely to survive. This is consistent with
the POD model of [29.1]. Group II contains as-
pen (A), black spruce (BS), jack pine (JP), and red
pine (RP).

4. The closeness of the estimated p-functions for sub-
sets 6 and 7 show that the smaller group II trees
and the larger group I trees have similar blowdown
probabilities for any given value of L.

5. Although aspen (A) and black spruce (BS) are al-
ways grouped together, namely, in subsets 3–6, less
than 15% of the aspen trees are in subsets 5 and 6.
Similarly, only 2% of the red pines (RP) are in
these two subsets. Hence the p-function of aspen

1.0

0.8

0.6

0.4

0.2

0.0
2.0 2.5 3.0 3.5

P (Blowdown)

log (D)

L � 0.3
L � 0.3

Fig. 29.5 Estimated probability of blowdown for balsam
fir (BF), according to the LOTUS model in Fig. 29.4

(A) is mainly described by the curves for subsets 3
and 4, and that for red pine (RP) by the curves for

1.0
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0.0 0.2 0.4 0.6 0.8 1.0
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JP & 2.2 � log(D) � 2.64
JP, RP & log(D) � 2.64 & L � 0.404
A, BS & log(D) � 2.64 & L � 0.404
A, BS, JP, RP & log(D) � 2.64 & L � 0.404
A, BS, RP & 2.2 � log(D) � 2.64
A, BS, JP, RP & log(D) � 2.2
BA, C, PB, RM & log(D) � 2.4
BA, C, PB, RM & log(D) � 2.4

Fig. 29.6 Estimated probability of blowdown for all
species except balsam firs, according to the LOTUS model
in Fig. 29.4
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Fig. 29.7a–c Comparison of fitted logit values among three models. (a) Cook & Weisenberg versus third-order model
(b) LOTUS versus third-order model (c) Cook & Weisenberg versus LOTUS

subsets 2 and 4. We conclude that, after balsam fir
(BF), the three species most at risk of blowdown
are the jack pine (JP), red pine (RP), and aspen (A),
in that order. This ordering of JP, RP, and A is the
same as the POD model of [29.1], as can be seen
in Fig. 29.3.

6. Recall that the black spruce (BS) was the other
species that [29.1] could not include in their
POD model. The reason for this is quite clear
from Fig. 29.6, where we use solid lines to
draw the estimated p-function for black spruce.
Four curves are required, corresponding to sub-
sets 3, 4, 5, and 6. The spread of these curves
suggests that the p-function of black spruce
is highly sensitive to changes in D. This ex-

plains why the species cannot be included in the
POD model.

How does the LOTUS model compare with the
others? The former is clearly superior in terms of in-
terpretability. But does it predict future observations as
well as the other models? Unfortunately, this question
cannot be answered completely, because we do not have
an independent set of data to test the models. The best
we can do is to compare the fitted values from the dif-
ferent models. This is done in Fig. 29.7, which plots the
fitted logit values of the LOTUS model against those of
the POD and the linear logistic regression model with all
interactions up to third order. The plots show that there
is not much to choose among them.

29.3 LOTUS Algorithm

As already mentioned, the idea behind LOTUS is to
partition the sample space into one or more pieces such
that a simple model can be fitted to each piece. This
raises two issues: (i) how to carry out the partitioning,
and (ii) how to decide when a partition is good enough.
We discuss each question in turn.

29.3.1 Recursive Partitioning

Like all other regression tree algorithms, LOTUS splits
the dataset recursively, each time choosing a single
variable X for the split. If X is an ordered vari-
able, the split has the form s = {X ≤ c}, where c
is a constant. On the other hand, if X is a cate-

gorical variable, the split has the form s = {X ∈ ω},
where ω is a subset of the values taken by X.
The way s is chosen is critically important if the
tree structure is to be used for inference about the
variables.

For least-squares regression trees, many algorithms,
such as automatic interaction detector (AID) [29.5],
CART [29.6] and M5 [29.7], choose the split s that
minimizes the total sum of squared residuals of the
regression models fitted to the two data subsets cre-
ated by s. Although this approach can be directly
extended to logistic regression by replacing the sum
of squared residuals with the deviance, it is fundamen-
tally flawed, because it is biased toward choosing X
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variables that allow more splits. To see this, suppose
that X is an ordered variable taking n unique values.
Then there are n−1 ways to split the data along the
X axis, with each split s = {X ≤ c} being such that
c is the midpoint between two consecutively ordered
values. This creates a selection bias toward X vari-
ables for which n is large. For example, in our tree
dataset, variable L has 709 unique values but vari-
able log(D) has only 87. Hence if all other things
are equal, L is eight times more likely to be selected
than log(D).

The situation can be worse if there are one or
more categorical X variables with many values. If X
takes n categorical values, there are 2n−1−1 splits
of the form s = {X ∈ ω}. Thus the number of splits
grows exponentially with the number of categorical val-
ues. In our example, the species variable S generates
29−1−1= 255 splits, almost three times as many splits
as log(D).

Doyle [29.8] was the first to warn that this bias
can yield incorrect inferences about the effects of the
variables. The GUIDE [29.9] least-squares regression
tree algorithm avoids the bias by employing a two-step
approach to split selection. First, it uses statistical signif-
icance tests to select X. Then it searches for c or ω. The
default behavior of GUIDE is to use categorical vari-
ables for split selection only; they are not converted into
indicator variables for regression modeling in the nodes.
LOTUS extends this approach to logistic regression. The
details are given in [29.4], but the essential steps in
the recursive partitioning algorithm can be described as
follows.

1. Fit a logistic regression model to the data using only
the noncategorical variables.

2. For each ordered X variable, discretize its values
into five groups at the sample quintiles. Form a 2 × 5
contingency table with the Y values as rows and the
five X groups as columns. Compute the significance
probability of a trend-adjusted chi-square test for
nonlinearity in the data.

3. For each categorical X variable, since they are not
used as predictors in the logistic regression mod-
els, compute the significance probability of the
chi-square test of association between Y and X.

4. Select the variable with the smallest significance
probability to partition the data.

By using tests of statistical significance, the selection-
bias problem due to some X variables taking more values
than others disappears. Simulation results to support the
claim are given in [29.4].

After the X variable is selected, the split value c or
split subset ω can be found in many ways. At the time of
this writing, LOTUS examines only five candidates. If
X is an ordered variable, LOTUS evaluates the splits at
c equal to the 0.3, 0.4, 0.5, 0.6, and 0.7 quantiles of X.
If X is categorical, it evaluates the five splits around the
subset ω that minimizes a weighted sum of the binomial
variance in Y in the two partitions induced by the split.
The full details are given in [29.4]. For each candidate
split, LOTUS computes the sum of the deviances in the
logistic regression models fitted to the data subsets. The
split with the smallest sum of deviances is selected.

29.3.2 Tree Selection

Instead of trying to decide when to stop the partitioning,
GUIDE and LOTUS follow the CART method of first
growing a very big tree and then progressively pruning
it back to the root node. This yields a nested sequence
of trees from which one is chosen. If an independent test
dataset is available, the choice is easy: just apply each
tree in the sequence to the test set and choose the tree
with the lowest prediction deviance.

If a test set is not available, as is the case in our
example, the choice is made by ten-fold crossvalida-
tion. The original dataset is divided randomly into ten
subsets. Leaving out one subset at a time, the entire tree-
growing process is applied to the data in the remaining
nine subsets to obtain another nested sequence of trees.
The subset that is left out is then used as a test set to
evaluate this sequence. After the process is repeated ten
times, by leaving out one subset in turn each time, the
combined results are used to choose a tree from the orig-
inal tree sequence grown from all the data. The reader
is referred to [29.6, Chapt. 3] for details on pruning and
tree selection. The only difference between CART and
LOTUS here is that LOTUS uses deviance instead of the
sum of squared residuals.

29.4 Example with Missing Values

We now show how LOTUS works when the dataset has
missing values. We use a large dataset from the Na-

tional Highway Transportation Safety Administration
(ftp://www.nhtsa.dot.gov/ges) on crash tests of vehicles
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Table 29.2 Predictor variables in the crash-test dataset. Angular variables crbang, pdof, and impang are measured
in degrees clockwise (from -179 to 180) with 0 being straight ahead

Name Description Variable type

make Vehicle manufacturer 63 categories

model Vehicle model 466 categories

year Vehicle model year continuous

body Vehicle body type 18 categories

engine Engine type 15 categories

engdsp Engine displacement continuous

transm Transmission type 7 categories

vehtwt Vehicle test weight continuous

vehwid Vehicle width continuous

colmec Steering column collapse mechanism 10 categories

modind Vehicle modification indicator 4 categories

vehspd Resultant speed of vehicle before impact continuous

crbang Crabbed angle continuous

pdof Principal direction of force continuous

tksurf Test track surface 5 categories

tkcond Test track condition 6 categories

impang Impact angle continuous

occloc Occupant location 6 categories

occtyp Occupant type 12 categories

dumsiz Dummy size percentile 8 categories

seposn Seat position 6 categories

rsttyp Restraint type 26 categories

barrig Rigid or deformable barrier 2 categories

barshp Barrier shape 15 categories

1

2

54

8

1716 18

9

19

39

78 79

38

6

3

14 15

7

model ∈ S1

dumsiz ∈
{6C, ΟΤ}

occtyp ∈
{E2, P5, S2, S3}

seposn ∈
{NO, UN}

64/7913
+ vehspd

54/651
+ vehwid

50/3532
– year

60/550
– impang

68/414
104/272
– year

model ∈ S9

216/455
– year

occtyp = H3

model ∈ S7

126/706
+ vehspd

390/1098
– year

276/350
– impangvehspd � 55.8

body ∈ {2C, 2S, 5H,
PU, SW, UV}

Fig. 29.8 LOTUS model for the crash-test data. Next to each leaf node is a fraction showing the number of cases with
Y = 1 divided by the sample size, and the name of the best predictor variable, provided it is statistically significant. If
the latter has a positive regression coefficient, a plus sign is attached to its name; otherwise a minus sign is shown. The
constituents of the sets S1, S7, and S9 may be found from Tables 29.3 and 29.4

Part
D

2
9
.4



Logistic Regression Tree Analysis 29.4 Example with Missing Values 545

involving test dummies. The dataset gives the results of
15 941 crash tests conducted between 1972 and 2004.
Each record consists of measurements from the crash of
a vehicle into a fixed barrier. The head injury criterion
(hic), which is the amount of head injury sustained by
a test dummy seated in the vehicle, is the main variable of
interest. Also reported are eight continuous variables and
16 categorical variables; their names and descriptions
are given in Table 29.2. For our purposes, we define
Y = 1 if hic exceeds 1000, and Y = 0 otherwise. Thus
Y indicates when severe head injury occurs.

One thousand two hundred and eleven of the records
are missing one or more data values. Therefore a lin-
ear logistic regression using all the variables can be
fitted only to the subset of 14 730 records that have
complete values. After transforming each categorical
variable into a set of indicator variables, the model
has 561 regression coefficients, including the con-
stant term. All but six variables (engine, vehwid,
tkcond, impang, rsttyp, and barrig) are statis-
tically significant. As mentioned in Sect. 29.1, however,
the regression coefficients in the model cannot be relied
upon to explain how each variable affects p= P(Y = 1).
For example, although vehspd is highly significant
in this model, it is not significant in a simple linear
logistic model that employs it as the only predictor.
This phenomenon is known as Simpson’s paradox.
It occurs when a variable has an effect in the same
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Fig. 29.9a–d Fitted probabilities of severe head injury in the leaf nodes of Fig. 29.8. (a) Nodes 5, 14, 18 and 79
(b) Nodes 6, 16, and 78 (c) Nodes 15 and 38 (d) Node 17

direction within subsets of the data, but when the sub-
sets are combined, the effect vanishes or reverses in
direction.

Being composed of piecewise simple linear logistic
models, LOTUS is quite resistant to Simpson’s para-
dox. Further, by partitioning the dataset one variable at
a time, LOTUS can use all the information in the dataset,
instead of only the complete data records. Specifically,
when LOTUS fits a simple linear logistic model to a data
subset, it uses all the records that have complete informa-
tion in Y and the X variable used in the model. Similarly,
when X is being evaluated for split selection, the chi-
square test is applied to all the records in the subset that
have complete information in X and Y .

Figure 29.8 gives the LOTUS tree fitted to the crash-
test data. The splits together with the p-functions fitted
to the leaf nodes in Fig. 29.9 yield the following conclu-
sions:

1. The tree splits first on model, showing that there
are significant differences, with respect to p, among
vehicle models. The variable is also selected for
splitting in nodes 7 and 9. Tables 29.3 and 29.4 give
the precise nature of the splits.

2. Immediately below the root node, the tree splits on
dumsiz and occtyp, two characteristics of the
test dummy. This shows that some types of dummies
are more susceptible to severe injury than others. In
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Table 29.3 Split at node 7 of the tree in Fig. 29.8

Make Node 14 Node 15

American Concord

Audi 4000, 5000

Buick Electra

Champion Motorhome

Chevrolet K20 Pickup, Monza, Nova, S10 Blazer, Spectrum, Sportvan Astro, Malibu, Sprint

Chrysler Imperial, Lebaron Intrepid

Comuta-Car Electric

Dodge Aries, Challenger, Colt, Lancer, Magnum Colt Pickup, St. Regis

Ford Clubwagon MPV, Courier, E100 Van, EXP, Fairmont, Fiesta, Torino

Granada, Merkur

GMC Sportvan

Hyundai Excel GLS

Isuzu Impulse, Spacecab I-Mark, Trooper II

Jeep Comanche

Kia Sorento

Lectric Leopard

Mazda GLC B2000

Mercury Bobcat

Mitsubishi Montero, Tredia Pickup

Nissan 2000, 210, Kingcab Pickup, Murano

Oldsmobile 98

Peugeot 504, 505

Plymouth Champ, Fury, Horizon Breeze, Volare

Pontiac T1000

Renault 18, Alliance, LeCar, Medallion Fuego, Sportswagon

Saab 38235

Saturn L200

Subaru GF, GLF, Wagon

Suzuki Sidekick

Toyota Celica, Starlet

Volkswagen Fox, Scirocco Beetle, EuroVan

Volvo 244, XC90

Yugo GV

particular, the cases in node 5 contain mainly dum-
mies that correspond to a six-year-old child. The
fitted p-function for this node can be seen in the up-
per left panel of Fig. 29.9. Compared with the fitted
p-functions of the other nodes, this node appears to
have among the highest values of p. This suggests
that six-year-old children are most at risk of injury.
They may be too big for child car seats and too small
for adult seat belts.

3. The split on seposn at node 8 shows that passen-
gers in vehicles with adjustable seats are ten times
(average p of 0.008 versus 0.08) less likely to suf-
fer severe head injury than those with nonadjustable

seats. This could be due to the former type of vehicle
being more expensive and hence able to withstand
collisions better.

4. Similarly, the split on body at node 39 shows that
passengers in two-door cars, pick-ups, station wag-
ons, and sports utility vehicles (SUVs) are twice as
likely (average p of 0.38 versus 0.16) to suffer severe
head injury than other vehicles.

5. The linear predictor variables selected in each leaf
node tell us the behavior of the p-function within
each partition of the dataset. Four nodes have year
as their best linear predictor. Their fitted p-functions
are shown in the upper left panel of Fig. 29.9. The
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Logistic Regression Tree Analysis 29.4 Example with Missing Values 547

Table 29.4 Split at node 9 of the tree in Fig. 29.8

Make Node 18 Node 19

Acura Integra, Legend, Vigor 2.5TL, 3.2TL, 3.5RL, MDX,

RSX

American Gremlin, Matador, Spirit

Audi 100, 200, 80 A4, A6, A8

Battronics Van

BMW 325I, 525I 318, 328I, X5, Z4 Roadster

Buick Century, LeSabre, Regal, Riviera, Skyhawk, Skylark, ParkAvenue, Rendezvous,

Somerset Roadmaster

Cadillac Deville, Seville Brougham, Catera, Concourse,

CTS, Eldorado, Fleetwood

Chevrolet Beretta, Camaro, Cavalier, Celebrity, Chevette, Citation, Avalanche, Beauville, Blazer,

Corsica, Corvette, Elcamino, Impala, Lumina, LUV, C-1500, K2500 Pickup,

MonteCarlo, Pickup, S-10, Vega Silverado, Suburban, Tahoe,

Tracker, Trailblazer, Venture,

Chinook Motorhome

Chrysler Cirrus, Conquest, FifthAvenue, Newport, NewYorker LHS, Pacifica, PT Cruiser,

Sebring Convertible

Daewoo Leganza, Nubira

Daihatsu Charade

Delorean Coupe

Dodge 400, 600, Caravan, D-150, Dakota, Daytona, Diplomat, Avenger, Durango,

Dynasty, Mirada, Neon, Rampage, Ramwagonvan, Grand Caravan, Intrepid, Omni,

Sportsman Ram150, Ram1500, Ram,

Ram250 Van, Shadow, Spirit,

Stratus

Eagle Medallion, MPV, Premier Summit, Vision

Eva Evcort

Fiat 131, Strada

Ford Bronco, Bronco II, Crown Victoria, Escort, F150 Pickup, Aerostar, Aspire, Contour,

F250 Pickup, F350 Pickup, Festiva, LTD, Mustang, Pickup, E150 Van, Escape, Escort ZX2,

Probe, Ranger, Taurus, Thunderbird, Van, Windstar EV Ranger, Expedition, Explorer,

Focus, Freestar, Other, Tempo

Geo Metro, Prizm Storm, Tracker

GMC Astro Truck, Vandura EV1

Holden Commodore Acclaim

Honda Accord Civic, CRV, Element, Insight,

Odyssey, Pilot, Prelude, S2000

Hyundai Elantra, Scoupe, Sonata Accent, Pony Excel, Santa Fe,

Tiburon

IH Scout MPV

Infinity G20, M30 J30

Isuzu Amigo, Pup Axiom, Pickup, Rodeo, Stylus

Jaguar X-Type

Jeep CJ, Wrangler Cherokee, Cherokee Laredo,

Grand Cherokee, Liberty

Jet Courier, Electrica, Electrica 007

Kia Sephia Rio, Sedona, Spectra, Sportage
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Table 29.5 Split at node 9 of the tree in Fig. 29.8 (cont.)

Make Node 18 Node 19

Landrover Discovery, Discovery II

Lectra 400, Centauri

Lexus ES250 ES300, GS300, GS400, IS300,

RX300, RX330

Lincoln Continental, Town Car LS, Mark, Navigator

Mazda 323, 323-Protege, 929, Miata, Millenia, MPV, MX3, MX6, 626, Mazda6, MX5

Pickup, RX

Mercedes 190, 240, 300 C220, C230, C240, E320,

ML320

Mercury Capri, Cougar, Lynx, Marquis, Monarch, Sable, Topaz, Mystique

Tracer, Villager, Zephyr

Mini Cooper

Mitsubishi Diamante, Eclipse, Galant, Mightymax, Mirage, Precis, 3000GT, Cordia, Endeavor,

Starion, Van Lancer, Montero Sport, Outlander

Nissan 240SX, 810, Altima, Axxess, Pathfinder, Pulsar, Quest, 200SX, 300ZX, 350Z, Frontier,

Sentra, Van Maxima, Pickup, Stanza, Xterra

Odyssey Motorhome

Oldsmobile Calais, Cutlass, Delta 88, Omega, Toronado Achieva, Aurora, Intrigue, Royale

Other Other

Peugeot 604

Plymouth Acclaim, Caravelle, Laser, Reliant, Sundance, Voyager Colt Vista, Conquest, Neon

Pontiac Bonneville, Fiero, Firebird, Grand AM, Lemans, Parisienne, Aztek, Grand Prix, Sunfire,

Sunbird Trans Sport

Renaissance Tropica

Renault Encore

Saab 900 38233, 9000

Saturn SL1 Ion, LS, LS2, SC1, SL2, Vue

Sebring ZEV

Solectria E-10, Force

Subaru DL, Impreza, Justy, XT Forestee, GL, Legacy

Suzuki Samurai Swift, Vitara

Toyota Camry, Corolla, Corona, Cosmo, Landcruiser, MR2, Paseo, 4Runner, Avalon, Camry Solara,

T100, Tercel, Van Cressida, Echo, Highlander,

Matrix, Pickup, Previa, Prius,

Rav4, Sequoia, Sienna, Tacoma,

Tundra

UM Electrek

Volkswagen Cabrio, Corrado, Golf, Passat, Quantum, Rabbit Jetta, Polo, Vanagon

Volvo 240, 740GL, 850, 940, DL, GLE 960, S60, S70, S80

Winnebago Trekker

decreasing trends show that crash safety is improv-
ing over time.

6. Three nodes have vehspd as their best linear
predictor, although the variable is not statisti-
cally significant in one (node 78). The fitted
p-functions are shown in the upper right panel

of Fig. 29.9. As expected, p is nondecreasing
in vehspd.

7. Two nodes employ impang as their best linear pre-
dictor. The fitted p-functions shown in the bottom
left panel of Fig. 29.9 suggest that side impacts are
more serious than frontal impacts.
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8. One node has vehwid as its best linear predictor.
The decreasing fitted p-function shown in the lower

right panel of Fig. 29.9 shows that vehicles that are
smaller are less safe.

29.5 Conclusion

Logistic regression is a statistical technique for model-
ing the probability p of an event in terms of the values
of one or more predictor variables. The traditional ap-
proach expresses the logit of p as a linear function of
these variables. Although the model can be effective
for predicting p, it is notoriously hard to interpret. In
particular, multi-collinearity can cause the regression
coefficients to be misinterpreted.

A logistic regression tree model offers a practical
alternative. The model has two components, namely,
a binary tree structure showing the data partitions and
a set of simple linear logistic models, fitted one to
each partition. It is this division of model complexity
that makes the model intuitive to interpret. By divid-
ing the dataset into several pieces, the sample space
is effectively split into different strata such that the
p-function is adequately explained by a single predic-
tor variable in each stratum. This property is powerful
because: (i) the partitions can be understood through
the binary tree, and (ii) each p-function can be vi-

sualized through its own graph. Further, stratification
renders each of the individual p-functions resistant
to the ravages of multi-collinearity among the pre-
dictor variables and to Simpson’s paradox. Despite
these advantages, it is crucial for the partitioning al-
gorithm to be free of selection bias. Otherwise, it is
very easy to draw misleading inferences from the tree
structure. At the time of writing, LOTUS is the only
logistic regression tree algorithm designed to control
such bias.

Finally, as a disclaimer, it is important to remem-
ber that, in real applications, there is no best model for
a given dataset. This situation is not unique to logistic
regression problems; it is prevalent in least-squares and
other forms of regression as well. Often there are two or
more models that give predictions of comparable aver-
age accuracy. Thus a LOTUS model should be regarded
as merely one of several possibly different ways of ex-
plaining the data. Its main virtue is that, unlike many
other methods, it provides an interpretable explanation.
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Tree-Based M30. Tree-Based Methods and Their Applications

The first part of this chapter introduces the
basic structure of tree-based methods using two
examples. First, a classification tree is presented
that uses e-mail text characteristics to identify
spam. The second example uses a regression tree to
estimate structural costs for seismic rehabilitation
of various types of buildings. Our main focus in this
section is the interpretive value of the resulting
models.

This brief introduction is followed by a more
detailed look at how these tree models are
constructed. In the second section, we describe
the algorithm employed by classification and
regression tree (CART), a popular commercial
software program for constructing trees for both
classification and regression problems. In each
case, we outline the processes of growing and
pruning trees and discuss available options. The
section concludes with a discussion of practical
issues, including estimating a tree’s predictive
ability, handling missing data, assessing variable
importance, and considering the effects of changes
to the learning sample.

The third section presents several alternatives
to the algorithms used by CART. We begin with
a look at one class of algorithms – including
QUEST, CRUISE, and GUIDE– which is designed
to reduce potential bias toward variables with
large numbers of available splitting values. Next,
we explore C4.5, another program popular in
the artificial-intelligence and machine-learning
communities. C4.5 offers the added functionality
of converting any tree to a series of decision
rules, providing an alternative means of viewing
and interpreting its results. Finally, we discuss
chi-square automatic interaction detection
(CHAID), an early classification-tree construction
algorithm used with categorical predictors. The
section concludes with a brief comparison of
the characteristics of CART and each of these
alternative algorithms.

In the fourth section, we discuss the use
of ensemble methods for improving predictive
ability. Ensemble methods generate collections of
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trees using different subsets of the training data.
Final predictions are obtained by aggregating
over the predictions of individual members of
these collections. The first ensemble method
we consider is boosting, a recursive method of
generating small trees that each specialize in
predicting cases for which its predecessors perform
poorly. Next, we explore the use of random
forests, which generate collections of trees based
on bootstrap sampling procedures. We also
comment on the tradeoff between the predictive
power of ensemble methods and the interpretive
value of their single-tree counterparts.

The chapter concludes with a discussion of
tree-based methods in the broader context of
supervised learning techniques. In particular, we
compare classification and regression trees to
multivariate adaptive regression splines, neural
networks, and support vector machines.
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30.1 Overview

Given a data set for a particular application, a researcher
will typically build a statistical model with one (or both)
of the following objectives in mind: (1) to use infor-
mation from this data to make useful predictions about
future observations, and (2) to gain some insights into
the underlying structure of the data. Tree-based models
are attractive because of their potential to blend both of
these characteristics quite effectively.

Tree-based models comprise one set of tools use-
ful for supervised learning tasks. In supervised learning
problems, a researcher is trying to use a set of inputs,
or independent variables, to predict an output, or de-
pendent variable. If the output is a categorical variable,
we call this a problem of classification. On the other
hand, if the output is a continuous variable, we call this
a problem of regression.

Tree-based models approach these problems by re-
cursively partitioning a learning sample over its input
variable space and fitting a simple function to each re-
sulting subgroup of cases. In classification, this function
is assignment to a single category; in regression, the
function could be a constant. We shall discuss several
tree-fitting procedures in detail throughout this chapter.

To see the tree-based models at work, we present
two applications in this section.

30.1.1 Classification Example:
Spam Filtering

First, we consider the task of designing an automatic
spam (junk e-mail) filter. The data for this task are
publicly available from the University of California,
Irvine (UCI) machine learning repository [30.1], and
were donated by George Forman from Hewlett–Packard
laboratories in Palo Alto, California.

The data consist of 58 variables describing 4601
messages. The dependent variable indicates whether or
not each message is spam. The 57 predictor variables
are all continuous, and describe the relative frequencies
of various keywords, characters, and strings of consec-
utive uppercase letters. A resulting tree model is shown
in Fig. 30.1, and the variables present in the tree are
summarized in Table 30.1.

In Fig. 30.1, we see that the messages are first par-
titioned based on the frequency of the “$” character.
Messages with few dollar signs are sent down the left
branch, and messages with many dollar signs are sent
down the right branch. Following the right branch, we
find that those messages with many dollar signs are fur-

CFdollar � 0.0555

WFremove � 0.055 WFhp � 0.4

CFexclam � 0.378

30/300
1 10

63/7 70/990

CRLtotal � 55.5
0

2462/275

WFfree � 0.845

33/189
1

1
1/20129/32

0

Fig. 30.1 A classification tree for the spam filtering data.
Terminal nodes labeled “1” are classified as spam, and those
labeled “0” are classified as non-spam

ther partitioned based on the frequency of the word “hp”.
If “hp” appears only infrequently, the message is clas-
sified as spam, otherwise, it is classified as a legitimate
message. This splitting makes sense in the context of
this data set, because messages containing “hp” most
likely address company business.

Following the left branch from the root (top) node,
we find that a message will be classified as spam if it
has a high frequency of the word “remove”, or a combi-
nation of exclamation points and either the word “free”
or many strings of uppercase letters. The structure of
the tree is consistent with our intuition about the mes-
sage characteristics that separate spam from legitimate
e-mail.

Table 30.1 Electronic mail characteristics

Variable Definition

spam 1 if spam, 0 if not

CFdollar percent of “$” characters in message

CFexclam percent of “!” characters in message

CRLtotal sum of lengths of uppercase letter strings

WFfree percent of “free” words in message

WFhp percent of “hp” words in message

WFremove percent of “remove” words in message
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Tree-Based Methods and Their Applications 30.1 Overview 553

Table 30.2 Seismic rehabilitation cost-estimator variables

Variable Definition

AGE Year of construction

AREA Building area in square feet

MODELC1 Building has concrete moment frame (yes = 1, no = 0)

MODELC3 Building has concrete frame w/ infill walls (yes = 1, no = 0)

MODELS5 Building has steel frame w/ infill walls (yes = 1, no = 0)

MODELURM Building has unreinforced masonry (yes = 1, no = 0)

MODELW1 Building has light wood frame (yes = 1, no = 0)

POBJ_DC Performance objective is damage control (yes = 1, no = 0)

POBJ_IO Performance objective is immediate occupancy (yes = 1, no = 0)

POBJ_RR Performance objective is risk reduction (yes = 1, no = 0)

SEISMIC Location seismicity on a scale from 1 (low) to 7 (very high)

We have chosen a small tree for the sake of illustra-
tion. For this particular application, one may consider
competing methods such as logistic regression or logis-
tic regression trees described in Chapt. 29 by Loh; also
see Chan and Loh [30.2]. Having seen a successful clas-
sification example, we now examine a regression tree
application.

30.1.2 Regression Example: Seismic
Rehabilitation Cost Estimator

The seismic rehabilitation cost estimator is an online
program developed by the Federal Emergency Manage-
ment Agency (FEMA) [30.3,4] that enables calculation
of structural cost estimates for seismic rehabilitation of
buildings. A group of structural engineers collaborated
with us to develop two tree models based on data from
over 1900 seismic rehabilitation projects.

The first model is designed for use early in devel-
oping budget estimates when specific building details
are not yet available. This model requires informa-
tion about a building’s original year of construction,
its size, its structural system, the seismic zone in which
it resides, and the rehabilitation performance objective.
We summarize the 11 relevant predictor variables in
Table 30.2.

The regression tree is presented in Fig. 30.2. We see
that the first split is based on the building’s original
date of construction. As one might expect, rehabilitation
tends to be more costly for older buildings. Regard-

less of the age of the building, the cost estimate is
refined based on the purpose of the rehabilitation ef-
fort. Far more expense is required to prepare a building
for immediate occupancy than for other purposes. Fur-
ther down the tree, these cost estimates may be adjusted
based on the building’s structural characteristics, size,
and location.

The second model is used to refine these estimates as
more comprehensive data become available. In addition
to the basic information included in the smaller model,
this larger model uses information about occupancy,
number of floors, diaphragm type, the rehabilitation
project scope, and other details. More detailed infor-
mation about the data set used to build these models can
be found in FEMA [30.3, 4].

30.1.3 Outline

In the rest of this chapter, we will review various
tree-based methods for classification and predic-
tion. Section 30.2 details the classification and
regression trees (CART) method [30.5] and dis-
cusses issues common to all tree-building algorithms.
Section 30.3 outlines competing methods, includ-
ing QUEST [30.6], CRUISE [30.7], GUIDE [30.8],
C4.5 [30.9], and chi-square automatic interaction detec-
tion (CHAID) [30.10]. Section 30.4 introduces ensemble
methods. Finally, Sect. 30.5 discusses briefly how tree
methods compare to a broader spectrum of classification
and prediction methods.
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Node 1
N = 1978
Median = 11.278
Age � 1916.500

Node 2
N = 195
Median = 27.581
POBJ_IO � 0.500

Terminal Node 1
N = 173
Median = 24.948
Q1 = 13.88; Q3 = 40.85
QR = 2.9425

Node 3
N = 22
Median = 52.690
SBSMIC � 3.500

Terminal Node 2
N = 10
Median = 39.040
Q1 = 15.11; Q3 = 49.01
QR = 3.2437

Terminal Node 3
N = 12
Median = 73.244
Q1 = 48.82; Q3 = 96.05
QR = 1.9675

Node 5
N = 1487
Median = 9.513
POBJ_RR � 0.500

Node 6
N = 1433
Median = 9.845
MODELC3
� 0.500

Terminal Node 13
N = 54
Median = 1.795
Q1 = 0.73; Q3 = 4.30
QR = 5.8819

Node 7
N = 1245
Median = 9.286
MODELS5 � 0.500

Terminal Node 12
N = 188
Median = 14.641
Q1 = 8.08; Q3 = 27.33
QR = 3.3807

Node 8
N = 1158
Median = 8.910
AREA � 1170.000

Terminal Node 11
N = 87
Median = 18.118
Q1 = 9.81; Q3 = 23.55
QR = 2.4001

Terminal Node 4
N = 34
Median = 20.637
Q1 = 13.50; Q3 = 32.57
QR = 2.4126

Node 9
N = 1124
Median = 8.554
AGE � 1969.500

Node 10
N = 1005
Median = 9.108
POBJ_DC � 0.500

Terminal Node 10
N = 119
Median = 4.762
Q1 = 2.24; Q3 = 9.83
QR = 4.3866

Terminal Node 8
N = 68
Median = 15.019
Q1 = 8.47; Q3 = 26.89
QR = 3.1733

Node 11
N = 661
Median = 7.957
MODELC1 � 0.500

Terminal Node 9
N = 344
Median = 11.348
Q1 = 5.79; Q3 = 20.73
QR = 3.5802

Node 12
N = 593
Median = 7.564
SEISMIC � 3.500

Node 13
N = 148
Median = 10.332
MODELURM
� 0.500

Terminal Node 7
N = 445
Median = 7.115
Q1 = 4.36; Q3 = 11.59
QR = 2.6598

Terminal Node 5
N = 94
Median = 5.691
Q1 = 2.15; Q3 = 11.09
QR = 5.1382

Terminal Node 6
N = 54
Median = 19.070
Q1 = 12.55; Q3 = 24.95
QR = 1.9874

Yes No

Yes No

Yes No

NoYes

NoYes

NoYes

NoYes

NoYes

NoYes

NoYes

NoYes

NoYes

Fig. 30.2 FEMA seismic rehabilitation cost estimator
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Node 4
N = 1783
Median = 10.281
POBJ_IO � 0.500

Node 14
N = 296
Median = 17.188
AREA � 5002.500

Terminal Node 15
N = 45
Median = 34.088
AGE � 1968.000

Node 16
N = 251
Median = 16.408
MODELW1
� 0.500

Terminal Node 14
N = 32
Median = 38.938
Q1 = 30.81; Q3 = 52.50
QR = 1.7042

Terminal Node 20
N = 17
Median = 3.129
Q1 = 2.06; Q3 = 6.89
QR = 3.3402

Yes No

NoYesNoYes

Terminal Node 15
N = 13
Median = 17.188
Q1 = 6.94; Q3 = 26.80
QR = 3.8613

NoYes

Node 17
N = 234
Median = 116.719
MODELS5 � 0.500

Terminal Node 19
N = 10
Median = 42.850
Q1 = 24.61; Q3 = 82.54
QR = 3.3539

Node 18
N = 224
Median = 16.502
SEISMIC � 3.500

Terminal Node 16
N = 141
Median = 15.563
Q1 = 8.81; Q3 = 22.06
QR = 2.5040

Node 19
N = 83
Median = 24.243
MODELC3 � 0.500

Terminal Node 17
N = 62
Median = 18.897
Q1 = 7.34; Q3 = 38.56
QR = 5.2541

Terminal Node 18
N = 21
Median = 39.128
Q1 = 34.22; Q3 = 59.67
QR = 1.7439

NoYes

NoYes

NoYes

30.2 Classification and Regression Tree (CART)

30.2.1 Introduction

A widely used tree-based method and software is called
CART, which stands for classification and regression
tree [30.5]. CART is based on statistical methodology
developed for classification with categorial outcomes
or regression with continuous outcomes. We shall start
with classification trees in Sect. 30.2.2 and 30.2.3 and
then discuss the regression tree in Sect. 30.2.4.

Take the iris data classification problem [30.11] as
an example. The iris data set contains the lengths and
widths of sepals and petals of three types of irises:

Setosa, Versicolor, and Virginica. The purpose of the
analysis is to learn how one can discriminate among
the three types of flowers, Y , based on four measures
of width and length of petals and sepals, denoted by
X1, X2, X3, and X4, respectively. Figure 30.3 presents
the classification tree constructed by CART. The whole
sample sits at the top of the tree. The tree first splits
the entire sample into two groups at X2 = 2.45. Obser-
vations satisfying the condition X2 < 2.45 are assigned
to the left branch and classified as Setosa, while the
other observations (X2 ≥ 2.45) are assigned to the right
branch and split further into two groups at X1 = 1.75.
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Petal. Length � 2.45

Petal. Width � 1.75

Petal. Length � 4.95 Petal. Length � 4.95

Sepal. Length � 5.15
virginica virginica virginica

versicolor versicolor

setosa

Fig. 30.3 A classification tree for the iris data

At the end, the tree partitions the whole sample into
six exclusive subgroups (terminal nodes in the tree).
This tree indicates that a good classification rule can
be constructed based on the width and length of the
petal, and the length of the sepal. The binary tree
structure also makes the classification rule easily un-
derstood. For example, if the sepal length of an iris
with unknown type is 3 cm, its petal length is 4 cm
and width is 1.3 cm, then this iris will be classified
as a Versicolor iris.

The basic idea of CART is to first grow a very large
and complicated tree classifier that explains the sam-
ple very accurately but may have poor generalization
characteristics, and then prune this tree using cost-
complexity pruning to avoid overfitting but still with
good accuracy. The CART algorithm grows the classi-
fication tree by recursive binary partitioning the sample
into subsets. It first splits the entire sample into two sub-
sets, and classifies the observations in each subset using
the majority rule. Other class assignment rules can be
derived based on preassigned classification costs for dif-
ferent classes. Then one or both of these subsets are split
further into more subsets, and this process is continued
until no further splits are possible or some stopping rule
is triggered. A convenient way to represent this recursive
binary partition of the feature space is to use a binary tree
like the one in Fig. 30.3, in which subsets are represented
by nodes.

30.2.2 Growing the Tree

Let us first look at how CART grows the tree, i. e., how to
determine the splitting variable and the split point at each
partition. The fundamental idea is to select each split of

a node so that the observations in each of the descendant
nodes are purer than those in the parent node.

Consider a classification problem with a categorical
response Y taking values 1, 2, . . . , K , and p predictors
X1, . . . , X p based on a sample of size N . At node m,
which contains a subset of Nm observations, define the
node proportion of class k by

p̂m(k) = 1

Nm

Nm∑

i=1

I(yi = k), k = 1, . . . , K ,

where I(A) = 1 when condition A is satisfied and 0
otherwise.

Before discussing how CART splits at a node, we
first describe how it classifies a node. In its basic form,
CART classifies observations in node m to the majority
class k(m)= arg maxk

[
p̂m(k)

]
. A more general rule is to

assign node m to class k(m) = arg mink [rk(m)], where
rk(m) is the expected misclassification cost for class k.
Letting πm(k) be the prior probability of node m as class
k, and c(i| j) be the cost of classifying a class j case
as a class i case that satisfies c(i| j) ≥ 0 if i �= j and
c(i| j) = 0 if i = j, we have

rk(m) =
∑

j

c(k| j )πm( j ) .

The application of this rule takes into account the
severity of misclassifying cases to certain class. If the
misclassification cost is constant and the priors πm( j)
are estimated by the node proportions, it converts back
to the basic form.

CART has two types of splitting criteria: the Gini
criterion and the twoing criterion. In general, for a nom-
inal outcome variable, either criterion can be used; for an
ordinal outcome variable, the twoing criterion is used.

Gini Criterion
By the Gini criterion, we seek the splitting variable and
the split point for node m by maximizing the decrease in
the Gini index. The Gini index is an impurity measure
defined as a nonnegative function of node proportions
p̂m(k), k = 1, . . . , K ,

i(m) =
K∑

k=1

p̂m(k)
[
1− p̂m(k)

]= 1−
K∑

k=1

[
p̂m(k)

]2
.

(30.1)

This impurity measure attains its minimum when all
cases at a node belong to only one class, so i(m) = 0
defines node m as a pure node. Let mL and mR be the
left and right branches resulting from splitting node m
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on predictor x j , and qL and qR be the proportion of
cases in node m classified into mL and mR, respectively.
For each predictor x j , the algorithm finds the split by
maximizing the decrease in the impurity measure

∆i j (t,m) = i(m)−[qLi(mL)+qRi(mR)] . (30.2)

This is equivalent to minimizing the weighted average
of the two child nodes’ impurity measures, qLi(mL)+
qRi(mR). When x j is continuous or ordinal, mL and mR
are given by x j < t and x j ≥ t for a splitting point t,
and the solution of t can be obtained quickly; if x j is
nominal with a large number of levels, finding the split
point t by exhaustive subset search can be computa-
tionally prohibitive. The computer program CART only
searches over all possible subsets of a categorical predic-
tor for a limited number of levels. The CART algorithm
proceeds with a greedy approach that scans through all
predictor variables to find the best pair ( j, t) with the
largest decrease in ∆i j (t,m).

Possible choices of i(m) include

• Cross-entropy or deviance:

K∑

k=1

p̂m(k) log p̂m(k) . (30.3)

• Misclassification error:

1

Nm

Nm∑

i=1

I [yi �= k(m)] . (30.4)

The cross-entropy measure (30.3) was used in the
early development of CART but the Gini index was
adopted in later work. The misclassification error mea-
sure (30.4) is typically used during the pruning stage
(Sect. 30.2.3). For further discussion of the impurity
measures, we refer to Hastie et al. [30.12].

Twoing Rule
Under the second splitting criterion, the split at a node
m is determined by minimizing the twoing rule

qLqR

[
K∑

k=1

| p̂mL (k)− p̂m R (k)|
]2

.

When K is large, twoing is a more desirable splitting
criterion.

Comparisons between the Gini and twoing splitting
criteria have shown only slight differences, but the Gini
criterion is preferred by the inventors of CART and im-
plemented as the default option in the commercial CART
software by Salford Systems.

A tree continues to grow until either (1) there is only
one observation in each of the terminal nodes, or (2) all
observations within each terminal node have an identi-
cal distribution of independent variables or dependent
variable, making splitting impossible, or (3) it reaches
an external limit on the number of observations in each
terminal node set by the user.

30.2.3 Pruning the Tree

Growing a very large tree can result in overfitting, that
is, the tree classifier has small classification errors on
the training sample, but may perform poorly on a new
test data set. To avoid overfitting but still capture the
important structures of the data, CART reduces the tree
to an optimal size by cost-complexity pruning. Suppose
the tree-growing algorithm stops at a large tree Tmax. The
size of Tmax is not critical as long as it is large enough.
Define a subtree T ⊂ Tmax to be any tree that can be
obtained by pruning Tmax, that is, collapsing any number
of its nodes. The idea is first to find subtrees Tα ⊂ Tmax
for a given tuning parameter α ≥ 0 that minimize the
cost-complexity criterion

Rα(T ) = R(T )+α|T | =
|T |∑

m=1

Nmi(m)+α|T | ,
(30.5)

where m indexes the terminal nodes, |T | is the number of
terminal nodes in tree T , and Nm and i(m) are the num-
ber of observations and the impurity measure of node m,
respectively. Then the optimal tree is selected from this
sequence of Tαs. The cost-complexity criterion is a com-
bination of the misclassification cost of the tree, R(T ),
and its complexity |T |. The constant α can be interpreted
as the complexity cost per terminal node. If α is small,
the penalty for having a larger tree is small and hence Tα

is large. Asα increases, |Tα| also increases. Typically, the
misclassification error impurity measure (30.4) is used
in pruning the tree. Equation (30.5) presents a special
form of the misclassification cost R(T ) when the cost
of misclassifying an observation of class j to class i is
the same for all i �= j. Other misclassification cost func-
tions R(T ) can be applied; see Breiman et al. [30.5], but
our description of the algorithm will be based on (30.5).

CART uses weakest-link pruning to find the Tαs.
The algorithm successively collapses the branch that
produces the smallest per-node increase in R(T ) from
the bottom up and continues until it produces the
single-node (root) tree. This gives us a sequence of
nested subtrees {T0, T1, T2, . . . , TI } with decreasing
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complexity and increasing cost. It is shown in Breiman
et al. [30.5] that this sequence of subtrees is char-
acterized by distinct and increasing αis and the α

corresponding to the optimal size tree can be found from
{αi |i = 0, . . . , I}.

The weakest-link pruning works as follows. Define
Tm as a branch of Ti+1 containing a node m and its
descendants. When Ti is pruned at node m, its mis-
classification cost increases by R(m)− R(Tm ), while its
complexity decreases by |Tm |−1. Hence the ratio

gi(m) = R(m)− R(Tm)

|Tm |−1

measures the increase in misclassification cost per
pruned terminal node, and Ti+1 is obtained by prun-
ing all nodes in Ti with the lowest value of gi (m),
i. e., the weakest link. The α associated with tree Ti
is given by αi = minm gi (m) and it is easily seen that
αi < αi+1. The first tree T0 is obtained by pruning Tmax
of those branches whose g0(m) value is 0. Starting with
T0, the cost-complexity pruning algorithm initially tends
to prune off large branches with many terminal nodes.
As the trees get smaller, it tends to cut off fewer at a time.
The pruning stops when the last subtree TI is the root
tree. These recursive pruning steps are computationally
rapid and require only a small fraction of the total tree
construction time.

CART then identifies from {Ti |i = 0, 1, . . . , I} the
optimal subtree as the one with the minimal classifica-
tion error (0-SE rule) or the smallest tree within one
standard error of the minimum error rate (1-SE rule).
The classification error of each subtree Ti can be es-
timated using test samples when data are sufficient or
V -fold cross-validation. The reason for using the 1-SE
rule is to favor smaller trees with estimated misclassifi-
cation errors close to that of the minimum error tree. The
1-SE rule is good for small data sets, whereas the 0-SE
rule works better on large data sets. With sufficient data,
one can simply divide the sample into learning and test
sub-samples. The learning sample is used to grow Tmax
and to obtain the subsequence {Ti |i = 0, 1, . . . , I}. The
test sample is then used to estimate the misclassification
error rate for the Tis.

When the data are insufficient to allow a good-sized
test sample, CART employs cross-validation to estimate
the misclassification rate. Cross-validation is a compu-
tationally intensive method for validating a procedure
for model building, which avoids the requirement for
a new or independent validation data set. For V -fold
cross-validation, CART proceeds by dividing the learn-
ing sample into V parts, stratified by the dependent

variable, to assure that a similar outcome distribution
is present in each of the V subsets of data. CART takes
the first V −1 parts of the data, constructs the auxil-
iary trees for {Ti |i = 0, 1, . . . , I} characterized by the
αis, and uses the remaining data to obtain initial es-
timates of the classification error of selected subtrees.
The same process is then repeated on other V −1 parts
of the data. The process repeats V times until each part
of the data has been held in reserve one time as a test
sample. The estimates of the classification errors for
{Ti |i = 0, 1, . . . , I} are then given by averaging their
initial estimates over V artificial test samples.

Many other pruning methods are also available
for decision trees, such as reduced error pruning
(REP), pessimistic error pruning (PEP), minimum er-
ror pruning (MEP), critical value pruning (CVP) and
error-based pruning (EBP). Esposito et al. [30.13] pro-
vides a comprehensive empirical comparison of these
methods.

30.2.4 Regression Tree

CART constructs a regression tree when the outcome
variable is continuous. The process of constructing a re-
gression tree is similar to that for a classification tree,
but differs in the criteria for splitting and pruning. CART
constructs the regression tree by detecting the hetero-
geneity that exists in the data set and then purifying
the data set. At each node, the predicted value of the
dependent variable is a constant, usually as the aver-
age value of the dependent variable within the node. An
example of a regression tree is given in Fig. 30.4. The
analysis tried to construct a predictive model of cen-

cach � 27

mmax � 6100 mmax � 28000

mmax � 1750 syct � 360

1.089 1.427

chim � 5.5

1.699 1.974

1.280

cach � 96.5 cach � 56

2.324

mmax � 11240

2.268 2.667

Fig. 30.4 A regression tree for predicting CPU perfor-
mance
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tral processing unit (CPU) performance using nine CPU
characteristics (Table 30.3) based on a learning sample
of 209 CPUs [30.14].

When CART grows a regression tree, it determines
the splitting variable and split point by minimizing the
mean square error (MSE) or the mean absolute deviation
from the median. Since the mechanisms for the two
rules are similar, we only describe the former. Under
this circumstance, the node impurity is measured by

i(m) = 1

Nm

∑

i

[
yi − ȳ(m)

]2
, (30.6)

where ȳ(m) is the average value of the dependent vari-
able at node m. The best split ( j, t) is hence determined
by solving

min
j,t

⎧
⎨

⎩
∑

i∈mL

[
yi − ȳ(mL )

]2+
∑

i∈m R

[
yi − ȳ(m R)

]2

⎫
⎬

⎭ ,

(30.7)

where mL is the left descendent node given by x j < t,
and mR is for the right branch. An alternative criterion
to (30.7) is the weighted variance

pLi(mL)+ pRi(mR) ,

where pL and pR are the proportions of cases in node
m that go left and right, respectively. Correspondingly,
the cost-complexity criterion in the pruning process also
adopts (30.6).

30.2.5 Some Algorithmic Issues

In this section, we discuss several algorithmic issues of
CART that are important in practice.

Estimating Within-Node Classification Error
In practice, the users desire to know not only the class as-
signment from a CART tree for any future case, but also
about a classification error associated with this predic-
tion. This classification error can be represented by the
probability of misclassification given that the case falls
into a particular terminal node. We denote this value
by r(m) if a case falls into terminal node m. A naive
estimate of r(m) is the proportion of cases that are mis-
classified by the tree constructed from the entire sample,
as shown in (30.4). This estimate however can be mis-
leading since it is computed from the same data used in
constructing the tree. It is also unreliable if the terminal
node m is tracked down through many splits from the
root and has a relatively small number of observations.

Table 30.3 Characteristics of CPUs

Variable Definition

name Manufacturer and model

syct Cycle time in nanoseconds

mmin Minimum main memory in kilobytes

mmax Maximum main memory in kilobytes

cach Cache size in kilobytes

chmin Minimum number of channels

chmax Maximum number of channels

perf Published performance on a benchmark mix

relative to an IBM 370/158-3

estperf Estimated performance by the authors

Breiman et al. [30.5] proposed an ad hoc estimate
that is significantly better than the naive one,

r̂(m) = r̂o(m)+ ε

Nm +λ
, (30.8)

where r̂o(m) is defined in (30.4), Nm is the size of node
m, and ε and λ are constants to be determined below. De-
fine the resubstitution classification error of the tree T by
aggregating the classification errors across all terminal
nodes as follows,

R̂o(T ) =
|T |∑

m=1

r̂o(m)Nm .

Denote the cross-validated classification error of tree T
by R̂CV(T ). Then the constants λ and ε are obtained
from the following equations

λ

|T |∑

m=1

Nm

Nm +λ
= R̂CV(T )− R̂o(T )

2 minV R̂CV(TV )
,

ε = 2λmin
V

R̂CV(TV ) ,

where minV R̂CV(TV ) is the minimum obtained during
V -fold cross-validation. If R̂CV(T ) ≤ R̂o(T ), the naive
estimate (30.4) is used.

Splitting on a Linear Combination of Variables
Sometimes, the data are intrinsically classified by some
hyperplanes. This can possibly challenge the tree-based
method in its original form using binary partitions,
which tends to produce a large tree in trying to ap-
proximate the hyperplanes by many hyperrectangular
regions. It is also very hard for the analysts to recognize
the neat linear structure from the output. The CART al-
gorithm deals with this problem by allowing splits over
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linear combination of predictor variables
∑

j a j X j . The
weights a j and split point t are optimized to minimize
the relevant criterion (such as the Gini index). While this
can improve the predictive power of the tree, the results
are no longer invariant under monotone transformations
of individual independent variables. The introduction of
linear combinations also causes a loss in interpretability
that is viewed as an important advantage of tree-based
methods.

Missing Data on Predictors
We often have incomplete data with missing values on
some independent variables. We might exclude these
incomplete observations from analysis, but this could
lead to serious depletion of the learning sample. A com-
mon alternative is to impute the missing values [30.15].
CART however uses two different approaches. A simple
treatment for categorical predictors is to put the miss-
ing values into a new “missing” category. This however
puts all observations with missing values into the same
branch of the tree, which could be misleading in prac-
tice. A more refined approach is to use surrogate splits.
This approach makes full use of the data to construct
the tree, and results in a tree that can classify cases with
missing information. Surrogate variables are constructed
as follows. When we consider a split on a predictor x j
with missing values, only the cases containing values
of x j are used, and we find the best split as discussed
in Sect. 30.2.2. The first surrogate split is the split on
a predictor that most accurately predicts the action of
the best split in terms of a predictive measure of as-
sociation. The second surrogate is the split on another
predictor that does second best, and so on; for details
see [30.5]. The surrogate splits can cope with missing
observations during both the training phase of CART
and prediction. If a case has missing values so that the
best split is not useable, the next best surrogate split
would be used.

Variable Importance
Another nice feature of CART is that it automatically
produces a variable ranking. The ranking considers the
fact that an important variable might not appear in any
split in the final tree when the tree includes another
masking variable. If we remove the masking variable,
this variable could show up in a prominent split in

a new tree that is almost as good as the original. The
importance score of a particular variable is the sum
of the improvement of impurity measures across all
nodes in the tree when it acts as a primary or surrogate
splitter.

Instability of Trees
Small changes in the learning sample may cause dra-
matic changes in the output tree. Thus two similar
samples could generate very different classification
rules, which is against human intuition and compli-
cates interpretation of the trees. The major reason for
this instability is the hierarchical nature of the recur-
sive partitioning. For example, if at some partition, there
are surrogate splits that are almost as good as the pri-
mary split, the tree could be very sensitive to small
changes, because a minor change in the learning sample
could cause the surrogate split to become slightly su-
perior to the primary split. This effect in the top nodes
can cascade to all their descendant nodes. Aggregating
methods, such as bagging [30.16] and boosting [30.17]
have been incorporated into the algorithm to mitigate
the instability problem, but the improvement comes at
the price of sacrificing the simple interpretability of
a single tree.

30.2.6 Summary

CART makes no distributional assumptions on any
dependent or independent variable, and allows both cat-
egorical and continuous variables. The algorithm can
effectively deal with large data sets with many indepen-
dent variables, missing values, outliers and collinearity.
Its simple binary tree structure offers excellent in-
terpretability. Besides, CART ranks the independent
variables in terms of their importance to prediction
power and therefore serves as a powerful exploratory
tool for understanding the underlying structure in the
data.

However, CART does have limitations. While it
takes advantages of the simple binary tree structure,
it suffers from instability and has difficulty capturing
additive structures. In general, if a parametric statisti-
cal model fits the data well and its assumptions appear
to be satisfied, it would be preferable to a CART
tree.
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30.3 Other Single-Tree-Based Methods

30.3.1 Loh’s Methods

One drawback of exhaustive-search tree-growth algo-
rithms such as that used in CART is the potential
for variable selection bias. In particular, such algo-
rithms tend to choose variables that provide greater
numbers of potential splitting points. Hence, contin-
uous variables tend to be favored over categorical
variables, and polychotomous variables are selected
more frequently than dichotomous ones. These char-
acteristics complicate interpretation of resulting trees,
because any insights gained from the tree structure
could potentially be clouded by systematic biases to-
ward certain variables. The methods developed by
Loh and his coauthors attempt to address this bias
issue.

QUEST
Loh and Shih [30.6] developed the quick, unbiased
and efficient statistical tree (QUEST) algorithm to
address this variable selection bias issue. The algo-
rithm is an enhancement of the much earlier fast
algorithm for classification trees (FACT) of Loh
and Vanichsetaukul [30.18], which was primarily de-
signed as a computationally efficient alternative to
exhaustive-search methods, but still suffered from
variable-selection bias in the presence of categorical
predictors.

The basic strategy employed by QUEST is to se-
lect each splitting variable and its associated split value
sequentially rather than simultaneously. To determine
the splitting variable at a particular node, a series of
statistical tests is performed:

1. Specify an overall level of significance, α ∈ (0, 1).
Let K be the number of variables, and K1 be the
number of continuous and ordinal variables.

2. Identify the variable with the smallest p-value re-
sulting from the appropriate analysis of variance test
(for continuous or ordinal variables) or Pearson’s χ2

test (for categorical variables). If this p-value is less
than α/K , split on this variable.

3. If the lowest p-value exceeds this threshold, per-
form Levene’s F-test for unequal variances on
each continuous/ordinal variable. If the smallest
of these p-values from the F-tests is less than
α/(K +K1), split on its associated variable. Other-
wise, split on the variable with the smallest p-value
in step 2.

The Bonferroni-adjusted thresholds used above is
meant to render the potential variable-selection bias
negligible.

Once the splitting variable is selected, the split point
is needed. If more than two classes are present at the
node, they are first combined into two superclasses
using two-means clustering [30.19]. Then, a modified
quadratic discriminant analysis is employed to select the
split point. Categorical variables must be transformed
into ordered variables before this split can be performed.
This is accomplished by recoding the represented cate-
gories as 0–1 dummy vectors and projecting them onto
their largest discriminate coordinate.

The algorithm described above focuses on univariate
splits. However, as with CART, QUEST can also be used
to build trees with linear-combination splits. Generally,
QUEST trees based on linear-combination splits tend
to be shorter and more accurate than those based on
univariate splits.

The QUEST package may be obtained from
http://www.stat.wisc.edu/˜loh/loh.html. The full pack-
age includes an exhaustive-search algorithm to mimic
basic CART, and offers options for pruning or stopping
rules.

CRUISE
Kim and Loh [30.7] extended the unbiased variable
selection idea beyond the capabilities of QUEST.
First, while QUEST forces binary splits at each node,
classification rule with unbiased interaction selection
and estimation (CRUISE) allows multiway splitting.
Moreover, CRUISE includes look-ahead methods for
detecting two-variable interactions during variable se-
lection.

Multiway splitting offers two key advantages over
binary splitting. First, although any multiway split can
be represented by a series of binary splits, trees that
allow multiway splits are often shorter and thus more
easily interpreted. Second, Kim and Loh demonstrate
that, with binary trees, some dependent variable cat-
egories can be completely dropped after pruning. For
example, a tree intended to classify cases into two cate-
gories might ultimately include paths to only two of the
classes of interest. Trees employing multiway splits are
less apt to losing categories in this manner.

Another key benefit of CRUISE is the inclusion of
look-ahead methods for detecting two-variable interac-
tions during variable selection. CRUISE contains two
methods for splitting-variable selection: 1D and 2D. The
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1D method is similar to what is used in the QUEST algo-
rithm. p-values are obtained from F-tests for continuous
and ordinal variables and from Pearson’sχ2 tests for cat-
egorical variables. If the smallest p-value is significant,
its associated variable is selected for the split. Other-
wise, Levene’s test for unequal variances is carried out
for the continuous and ordinal variables to select the
splitting variable. A major drawback of the 1D method
is that, because analysis of variation (ANOVA) and Lev-
ene’s tests do not look ahead, strong interactions are
often completely overlooked. In addition, because these
tests restrict their attention to differences in means and
variances, other distributional differences may remain
unnoticed.

The 2D method uses contingency tables to rem-
edy these problems. First, consider interaction detection.
Given a pair of categorical variables, category pairs are
tabulated against classifications. Then, Pearson’s χ2 test
for independence is performed. If a strong interaction is
present between the two categorical variables, the test
is likely to result in a low p-value. Interactions involv-
ing continuous variables are detected similarly. Prior
to testing, each continuous variable is transformed into
a dichotomous variable by partitioning its domain at the
median.

The same idea is applied to identify marginal distri-
butional effects. For each categorical variable, Pearson’s
χ2 test for independence is performed. Continuous vari-
ables are handled similarly, first transforming them into
four-category variables by partitioning at their quartiles.
The basic idea is that the one- or two-variable table
with the smallest p-value should determine the split-
ting variable. However, this simple procedure would be
somewhat biased toward categorical variables, so Kim
and Loh employ a bootstrap adjustment prior to variable
selection.

Once the splitting variable has been selected,
CRUISE uses linear discriminant analysis (LDA) to
determine the splitting points. Since LDA is best ap-
plied to normally distributed data, Kim and Loh apply
a Box–Cox transformation to the selected variable prior
to running the discriminant analysis. Categorical vari-
ables must be converted to their discriminant coordinate
values before this process is carried out. A shift trans-
formation may be needed to produce the positive-valued
inputs required for the Box–Cox procedure. Split points
are converted back to the original scale when construct-
ing the tree.

Our description thus far assumes the availability of
complete data, but an important advantage of CRUISE is
the elimination of the variable-selection bias that often

results from the treatment of missing data. Kim and
Loh note that, because CART uses proportions rather
than sample sizes to determine variable selections, the
procedure is biased toward variables with more missing
data. CRUISE on the other hand, through its use of
statistical tests that take account of sample size, does not
encounter this type of bias. This bias may not be critical
if it does not affect the overall predictive quality of the
tree, but it may have a large impact on the interpretation
of CART’s variable-importance measures.

GUIDE
With generalized, unbiased interaction detection and
estimation (GUIDE), Loh [30.8] expanded unbiased
variable selection to regression tree applications.
GUIDE includes procedures for weighted least squares,
Poisson regression and quantile regression. In addi-
tion, categorical variables may be used for prediction
through dummy coding, or they may be restricted to
node-splitting.

30.3.2 Quinlan’s C4.5

Quinlan [30.9, 20] wrote his first decision tree program
in 1978 while visiting Stanford University. His iterative
dichotomizer 3rd (ID3) and its replacement, C4.5, pro-
grams have served as the primary decision tree programs
in the artificial-intelligence and machine-learning com-
munities. He attributes the original ideas to the concept
learning systems of Hunt et al. [30.21].

Splitting Rules
Suppose a node T contains |T | observations that fall
into K classes. Letting pk(T ) represent the proportion
of these cases belonging to class k, we define the infor-
mation contained within T (also known as the entropy
of T ) by:

Info(T ) =−
K∑

k=1

pk(T ) × log2 [pk(T )] .

Now suppose that a candidate variable X partitions T
into n smaller nodes, T1, T2, . . . , Tn . The information
of T given the value of X is given by the weighted aver-
age of the information contained within each subnode:

Info(X, T ) =
n∑

i=1

|Ti |
|T | × Info(Ti ) .

Therefore, the information gain provided by the split is
simply

Gain(X, T ) = Info(T )− Info(X, T ) . (30.9)
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ID3 selects attributes and splits to maximize the in-
formation gain at each node. However, this procedure
tends to heavily favor variables with many categories.
To compensate for this effect at least partially, C4.5 in-
stead uses the gain ratio criterion. The gain ratio of
a split is defined as the ratio of the information gain to
the information contained in the resulting split:

GainRatio(X, T ) = Gain(X, T )

SplitInfo(X, T )
, (30.10)

where

SplitInfo(X, T ) =−
n∑

i=1

|Ti |
|T | × log2(

|Ti |
|T | ) .

The C4.5 algorithm creates binary splits on con-
tinuous variables and multiway splits on categorical
variables. To determine the best splits on categorical
variables, each category is first assigned to a unique
branch. Then, pairs of branches are iteratively merged
until only two branches exist. The split with the max-
imum gain ratio among those observed becomes the
candidate split for that variable. This search method is, of
course, heuristic and might not actually find the categor-
ical split with the largest gain ratio. On the other hand,
searches on continuous variables always find the best
possible binary split. To determine the ultimate split-
ting variable, the algorithm first restricts its choices to
those variables achieving at least average information
gain (30.9). The split is then selected to maximize the
gain ratio (30.10) among these choices.

Variable-Selection Bias
Even if the gain ratio is used as an alternative to straight
information gain to alleviate the algorithm’s bias toward
continuous variables, this original remedy is far from
perfect. Dougherty et al. [30.22] demonstrated that, for
many data sets, the predictive performance of C4.5 was
improved by first discretizing all continuous variables.
This result suggested that the existing selection method
was biased toward continuous variables.

In C4.5 release 8, Quinlan [30.23] introduces
a complexity-cost parameter into the information gain
expression for continuous variables. For a continuous
variable with n distinct values, the information gain is
redefined as

Gain(X, T ) = Info(T )− Info(X, T )

− log2(n−1)/|T | .
Effectively, each continuous variable is penalized for
the information required to search among its numerous
potential splitting points.

Missing Values
The description of C4.5 has thus far assumed complete
data. Cases with missing values for a particular variable
are excluded from the split search on that variable, and
also from the numerator of the gain ratio. The entropy
of the split is computed as if missing values constitute
an additional branch.

When a missing value prevents the application of
a splitting rule to a new case, the case is replaced by
weighted replicates, each being assigned to a differ-
ent branch. The weights are equal to the proportion
of non-missing training cases assigned to that branch.
Class probabilities for the original case are based on
the weighted sum of the probabilities of the generated
observations.

Pruning
Quinlan [30.9] advocates retrospective pruning instead
of stopping rules. If enough data were available, the
pruning process would use data withheld from training
the tree to compare error rates of candidate sub-trees.
The software does not assume that data are withheld
from training, so it implements pessimistic pruning. In
each node, an upper confidence limit of the number
of misclassified cases is estimated assuming a binomial
distribution around the observed number of misclassified
cases. The confidence limit serves as an estimate of the
error rate on future data. The pruned tree minimizes the
sum over leaves of upper confidence limits.

Decision Rules
C4.5 includes the capability to convert its decision trees
to an equivalent simplified set of decision rules. Deci-
sion rules are often preferred to the tree structure because
their interpretation is very straightforward. Given a de-
cision tree, rule-set generation proceeds as follows:

1. Convert every decision tree path to a decision rule.
(Each decision encountered along a path becomes a
test in the resulting decision rule.)

2. Prune each decision rule by removing as many tests
as possible without reducing its accuracy.

3. Track the estimated accuracy of each resulting rule,
and classify new items based on high-accuracy rules
first.

Improvements in C5.0/See5
C5.0 and See5 are the current commercial implementa-
tions of Quinlan’s methods. These programs offer sev-
eral enhancements to C4.5, including the ability to spec-
ify unequal misclassification costs, the application of
fuzzy splits on continuous variables, and boosting trees.
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30.3.3 CHAID

Chi-square automatic interaction detection (CHAID) is
a parametric recursive partitioning technique that builds
non-binary classification trees. It was originally devel-
oped by Kass [30.10] to handle categorical predictors
only. Continuous predictors need to be discretized into
a number of categories with approximately equal num-
ber of observations. In dealing with missing values
on predictors, CHAID simply places them in an ad-
ditional category. The algorithm employs a sequential
merge-and-split procedure based on significance tests
on predictor variables to generate node splits and deter-
mine the size of a tree. It is worth noting that CHAID
differs from CART in that it determines where to stop in
tree growth rather than using retrospective pruning after
growing an oversized tree.

CHAID produces non-binary trees that are some-
times more succinct representations than equivalent
binary trees. For example, it may yield a split on
an income variable that divides people into four

Table 30.4 Comparison of tree-based algorithms

Feature CART C4.5 CHAID CRUISE QUEST GUIDE

Dependent variable

Discrete x x x x x

Continuous x x x

Split at each node

Binary x x x

Multiple x x x

Split on linear combinations x x x x

Searching splitting variable

Exhaustive x x x x x

Heuristic x x

Splitting criterion

Impurity measure x x

Twoing rule x

Statistical test x x x x

Split variable selection

Unbiased selection x x x

Pairwise interaction detection x

Tree size control

Cost-complexity pruning x x x x

Pessimistic error pruning x

Stopping rules x x

Missing data

Surrogate x x

Imputation x x x

An additional level x x

income groups according to some important consumer-
behavior-related variable (e.g., types of cars most likely
to be purchased). In this case, a binary tree is not an effi-
cient representation and can be hard to interpret. On the
other hand, CHAID is primarily a step-forward model-
fitting method. Known problems with forward stepwise
regression fitting models are probably applicable for this
type of analysis.

30.3.4 Comparisons
of Single-Tree-Based Methods

We have discussed six single-tree methods, viz.
CART, C4.5, CHAID, CRUISE, GUIDE and QUEST.
Table 30.4 lists the features offered by these six meth-
ods. Among these methods, GUIDE is a regression tree
method, CHAID, CRUISE and QUEST are classifica-
tion tree methods, and CART and C4.5 deal with both
classification and regression problems.

Empirical comparisons on real data sets [30.24]
showed that, among all these methods, there is none
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Table 30.5 Data-mining software for tree-based methods

Software CART C4.5 CHAID Software Provider

AnswerTree x x x SPSS Inc.

Clementine x Integral Solutions, Ltd.

Darwin x Thinking Machines, Corp.

Enterprise Miner x x x SAS Institute

Gain Smarts x x Urban Science

MineSet x x Silicon Graphics, Inc.

Model 1 x x Group 1/Unica Technologies

Model Quest x AbTech Corp.

CART x Salford Systems

R x R Foundation for Statistical Computing

S-Plus x MathSoft

See5 x RuleQuest Research

that is absolutely superior to the others in terms of accu-
racy, complexity, interpretability and computation time.
There is no significant difference in terms of prediction
accuracy among these methods. Therefore, users may
choose algorithms based on desired features for their
applications, e.g., binary-split, multi-split, split on com-
bination of variables. C4.5 tends to produce trees with
many more leaves than other algorithms possibly due to
under-pruning. In general, the multi-split tree methods
(C4.5, CHAID, CRUISE) take more computation time
than the binary-split methods. In problems with mixtures

of continuous variables and categorical variables having
different numbers of levels, methods such as QUEST,
CRUISE, and GUIDE may be preferable because they
are likely to protect against variable-selection bias.

CART, CHAID and C4.5 have been implemented
in several commercial software platforms; see the list
of software providers in Table 30.5. Free software
for CRUISE, GUIDE, and QUEST can be obtained
from the website http://www.stat.wisc.edu/˜loh/. An
earlier version of C4.5 is available free of charge
http://www.cse.unsw.edu.au/˜quinlan/.

30.4 Ensemble Trees

Instability of single trees provides room for improve-
ment by ensemble methods. Ensemble methods create
a collection of prediction/classification models by apply-
ing the same algorithm on different samples generated
from the original training sample, then make final pre-
dictions by aggregating (voting) over the ensembles. It
has been shown to improve the prediction/classification
accuracy of a single model with significant effectiveness;
see Bauer and Kohavi [30.25], Breiman [30.16, 26, 27],
Dietterich [30.28], and Freund and Schapire [30.29].
The mechanism used by the ensemble methods to re-
duce prediction errors for unstable prediction models,
such as trees, is well understood in terms of variance
reduction due to averaging [30.12]. In this section, we
will discuss two ensemble tree methods: boosting de-
cision trees [30.17] and random forests [30.26, 27] that
are motivated by boosting [30.29] and bagging [30.16],
the two most widely used ensemble techniques today.
However, it should be realized that better performance

of ensemble trees comes at the price of sacrificing the
explicit structure of a single tree and hence becoming
less interpretable.

30.4.1 Boosting Decision Trees

Boosting was originally developed to improve the per-
formance of binary classifiers. In his original boosting
algorithm, Schapire [30.30] enhances a weak learner
(i. e., a binary classifier with slightly better performance
than random guessing) by using it to train two additional
classifiers on specially filtered versions of the training
data. The first new classifier is trained on cases for which
the original weak learner performs no better than random
guessing. The second new classifier is trained on cases
where the first two learners disagree. In this way, each
successive learner is trained on cases which are increas-
ingly difficult to classify. The final boosted classifier
is obtained by taking the majority vote of the orig-
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inal weak learner and its two subsequent derivatives.
Schapire’s strength of weak learnability theorem proves
that this simple boosted classifier always improves on
the performance of the original weak learner.

In later work, Freund [30.31] improved on the per-
formance of Schapire’s method by expanding to a much
larger ensemble of combined weak learners and again
employing the majority vote principle. Subsequent theo-
retical improvements led to the more flexible AdaBoost
algorithm [30.29] and various derivatives.

Our presentation of boosting algorithms and their
application to classification and regression trees is based
on the example of Hastie et al. [30.12].

AdaBoost
We begin by presenting the most popular of the Ad-
aBoost algorithms, AdaBoost.M1 [30.32], which is used
for binary classification problems.

Consider a binary classification problem with cate-
gories coded as Y ∈ {−1, 1}. Given a predictor vector X,
the classifier G(X) takes on values in {−1, 1}. The error
rate on the training sample is given by:

err = 1

N

N∑

i=1

I [yi �= G(xi )]

and the expected future prediction error is

EXY I [Y �= G(X)] .

The AdaBoost.M1 algorithm proceeds as follows:

1. Initialize the observation weights wi = 1/N, i =
1, 2, . . . , N.

2. For m = 1 to M:
a) Fit a classifier Gm(x) to the training data using

the weights wi .
b) Compute

errm =
∑N

i=1 wi I [yi �= Gm(xi )]∑N
i=1 wi

;

c) Compute

αm = log

(
1− errm

errm

)
;

d) Set wi ←wi exp {αm I [yi �= Gm(xi )]} ,
i = 1, 2, . . . , N .

3. Define the boosted classifier as G(x)

= sign
[∑M

m=1 αm Gm(x)
]
.

This boosting process begins with a weak learner,
G1, which is developed using an unweighted train-
ing set. The data are then weighted to deemphasize

correctly classified observations and focus on incor-
rectly classified observations. A new weak classifier,
G2, is then trained from this weighted data. Next, these
two classifiers are weighted according to their indi-
vidual error rates (with the more accurate classifier
given greater influence). Based on the weighted per-
formance of the two classifiers, the training data is again
reweighted for emphasis on difficult-to-classify obser-
vations, and the process iterates. Each new learner, Gm ,
is thus designed to address increasingly difficult aspects
of the classification problem. The final boosted clas-
sifier, G(x) = sign

[∑M
m=1 αm Gm(x)

]
, is derived from

the weighted votes of the M individual weak classifiers.
The error rates of the individual weak classifiers Gm
tend to increase with each iteration, but prediction from
the overall ensemble, G, tends to improve.

Our discussion of boosting thus far applies to classi-
fiers in general. We now narrow our discussion to the
particular application of boosting techniques to tree-
based models.

Boosting Trees
Boosting procedures in general fit additive expansions of
weak classifiers or regressors. In the case of tree models,
such expansions have the form

f (x) =
M∑

m=1

βm T (x;Θm) ,

where the parameter Θ includes information about the
structure of each tree.

Such models are fit by minimizing a loss function,
L , averaged over the training data, that is, y solving

min{β,Θ}

N∑

i=1

L

[
yi ,

M∑

m=1

βm T (xi ;Θm)

]
.

The solution to this problem is approximated using
a forward stagewise additive algorithm. The idea is to
build the expansion one term at a time. At a given itera-
tion m, the optimal basis tree and scaling coefficient are
sought to append to the old expansion fm−1, producing
fm . The algorithm goes as follows:

1. Initialize f0(x) = 0.
2. For m = 1 to M:

a) Compute

(βm,Θm)

= arg min
β,Θ

N∑

i=1

L
[
yi , fm−1(xi )+βT (xi;Θ)

]
.
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b) Set fm(x) = fm−1(x)+βm T (x;Θm).

Friedman et al. [30.33] discovered that, under the expo-
nential loss, L [y, T (x;Θ)] = exp [−y f (x)], for binary
classification problems, the forward stagewise algorithm
is equivalent to the AdaBoost.M1 procedure discussed
earlier. The expansion

∑M
m=1 αm Gm(x) produced by

the AdaBoost procedure estimates half the log-odds of
P(Y = 1|x). Therefore, taking the sign of this expression
provides a reasonable classification rule.

For K -class classification and regression problems,
the multiple additive regression trees (MART) procedure
is used. MART is based on the gradient tree-boosting
algorithm for regression, and can be implemented us-
ing a variety of available loss functions; see Hastie
et al. [30.12] for details.

Selecting Component Tree Sizes
One consideration when applying boosting to tree mod-
els is the appropriate size of each weak learner tree.
Early tree boosting applications, of which Drucker
and Cortes’s [30.17] optical character-recognition prob-
lem was the first, applied standard pruning methods
to each weak learner in sequence. However, as Hastie
et al. [30.12] note, this method implicitly prunes each
weak learner as if it were the last in the sequence.
This can result in poor predictive performance of the
ensemble, as well as some unnecessary computations.

A common strategy to avoid this problem is to re-
strict each tree in the ensemble to a fixed number,
J , of terminal nodes. The choice of this parameter is
dependent on the problem at hand. Of course, the de-
gree of variable interaction will be affected by the tree
size. For example, boosting tree stumps (i. e., trees with
only one split) considers no interaction effects, whereas
boosting three-node trees can capture two-variable in-
teractions. If each weak learner consists of J terminal
nodes, interactions of up to J −1 variables may be
estimated.

In practice, J is typically determined through trial
and error to maximize performance. Hastie et al. [30.12]
indicate that 4≤ J ≤ 8 terminal nodes per tree typically
work well, with little sensitivity to choices within that
range. For some applications, boosting stumps (J = 2)
may be sufficient, and very rarely is J > 10 needed.

Interpretation
Although boosting trees provides significant improve-
ments in classification and predictive accuracy, these
benefits do come at a cost. Because the final model
is comprised of the weighted average of many weaker

models, we lose the attractive structural interpretability
of a single tree.

However, additional useful information can still be
gleaned from the data. As we discussed in Sect. 30.2.5,
Breiman et al. [30.5] provide a measure of the relative
importance of predictor variables in a single tree. This
measure is easily generalized to the context of boosting.
Single-tree importance measures are calculated for each
weak learner and averaged over the group. In K -class
classification problems, importance measures are gen-
erated in this manner for each class. These values can
be averaged across classes to obtain overall importance
measures for each variable, or across subsets of variables
to determine the relevance of each subset in predicting
each class.

Once the most relevant variables are identified, cer-
tain visualization tools can aid interpretation. Hastie
et al. [30.12] suggest the use of partial dependence plots
to look for interactions between variables.

30.4.2 Random Forest

Breiman [30.26, 27] developed random forests (RF)
based on bagging and random feature selection [30.28,
34]. Bagging is a resampling procedure that produces
bootstrap samples by randomly sampling with replace-
ment from the original training sample. A random forest
is essentially an ensemble of CART trees in which each
tree is grown in accordance with a different bootstrap
sample. Suppose M bootstrap samples are generated,
viewing them as realizations of independent identically
distributed (iid) random vectors Θ1, . . . , ΘM , we de-
note the random forest by h(x;Θ) as an ensemble of
individual CART trees h(x;Θ j ), j = 1, . . . , M. For
classification problems, the final prediction of the forest
is made by majority vote,

h(x;Θ)= arg max
k

M∑

j=1

I
[
h(x;Θ j ) = k

] ;

for regression problems, the final prediction is obtained
by aggregating over M trees, typically using equal
weights,

h(x;Θ)= 1

M

M∑

j=1

h(x;Θ j ) .

In accordance with the basic principle of bagging
to reduce prediction errors from averaging over the en-
semble, better accuracy of the random forest can be
obtained by keeping errors of individual trees low, and
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minimization of the correlation between multiple trees.
Therefore, individual trees are not pruned but grown to
maximum depth. Recently, Segal [30.35] suggested that
this strategy can overfit the data and it is beneficial to
regulate tree size by limiting the number of splits and/or
the size of nodes for which splitting is allowed. In ad-
dition, the correlation of multiple trees can be reduced
by random feature selection. Instead of determining the
split at a given node in an individual tree using all the
predictors, only m < p randomly selected predictors are
considered for the split. This also enables the algorithm
to build models for high-dimensional data very quickly.
Alternatives to this random feature selection include:
(1) picking the best out of several random feature sub-
sets by comparing how well the subsets perform on the
samples left out of the bootstrap training sample (out-of-
bag samples), and (2) using random linear combinations
of features in the selected feature subset, i. e., selected
features are added together with coefficients that are
uniform random numbers on [−1, 1]. Due to the large
number of simple trees and the minimized correlations
among the individual trees, the prediction error of the
forest converges toward the error rates comparable to
AdaBoost [30.29].

Usually, about one third of the observations are left
out of each bootstrap sample. These out-of-bag (oob)
observations are used to internally estimate prediction
error for future data, the strength of each tree, and cor-
relation between trees; see details in Breiman [30.27].
This avoids the cross-validation needed for construction
of a single tree and greatly enhances the computational
efficiency of random forests.

With random forests, an intuitive measure of variable
importance can be computed as follows. In every tree
grown in the forest, put down the oob cases and count the

number of votes cast for the correct class. Now randomly
permute the values of variable m in the oob cases and
put these cases down the tree. Subtract the number of
votes for the correct class in the variable-m-permuted
oob data from the number of votes for the correct class
in the untouched oob data. The average of this number
over all trees in the forest is the raw importance score
for the variable m.

For each case, consider all the trees for which it is
oob. Subtract the percentage of votes for the correct class
in the variable-m-permuted oob data from the percentage
of votes for the correct class in the untouched oob data.
This is the local importance score for variable m for
this case, and is used in the graphics program RAFT
(Random Forest Tool).

For further details on random forests, please refer
to the random forests website http://www.math.usu.edu/
˜adele/forests/cc_home.htm maintained by Professor
Adele Cutler at Utah State University.

In summary, random forests do not overfit and and
enjoy prediction accuracy that is as good as AdaBoost
and sometimes better. The algorithm runs fast on large
high-dimensional data and is somewhat robust to out-
liers. It also has an effective mechanism for handling
missing data. In the forest-building process, it internally
estimates the classification error, the strength of each
tree and the correlation between trees. It also distin-
guishes itself from some black-box methods (e.g. neural
networks) by providing the importance score for each
predictor, and hence makes the output more interpretable
to users. Furthermore, random forests can serve as an
exploratory tool to find interactions among predictors,
locate outliers and provide interesting views of the data.
Its application can also be extended to unsupervised
clustering.

30.5 Conclusion

In this chapter, we have discussed several tree-based
methods for classification and regression. Of course,
many more supervised learning methods are avail-
able, including multivariant adaptive regression splines
(MARS), neural networks, and support vector ma-
chines (SVM). In this last section, we discuss the
relative merits of tree-based methods among this
much larger set of well-known supervised learning
tools.

Hastie et al. [30.12] note that typical charac-
teristics found in real-world data sets make direct
application of most supervised-learning tools diffi-

cult. First, data-mining applications tend to involve
very large data sets in terms of both the number
of observations and the number of variables (the
majority of which are often irrelevant). Moreover,
these data sets generally contain both quantitative and
qualitative variables. The quantitative variables are typi-
cally measured on different scales, and the qualitative
variables may have different numbers of categories.
Missing data are abundant, and outliers are also very
common.

Tree-based methods are particularly well-suited to
deal with these difficulties. Trees grow quickly, so the
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size of a data set is not a big concern. Tree algorithms
readily admit mixed variable types, and feature selection
is a part of the building process, so irrelevant variables
have little impact on the resulting model. Tree-building
methods account for missing data in an effective way,
and the results for classification or prediction are often
robust against outliers.

Many other supervised learning methods fall short in
some of these areas. MARS has difficulty with outliers
in predictor variables, and transformations on variables
can dramatically impact its results. Neural networks and
SVM both require dummy coding of categorical vari-
ables, they are not adept at handling missing values, and
they are sensitive to outliers and transformations.

Tree-based methods have one other important advan-
tage over black-box techniques such as neural networks;
tree models are much more readily interpretable. This
characteristic is vital to those applications for which
predictive accuracy is secondary to the main goal of

obtaining qualitative insight into the structure of the
data.

In spite of these advantages, tree-based meth-
ods do suffer one key drawback: a relative lack of
predictive power. Neural networks and support vec-
tor machines commonly outperform classification and
regression trees, particularly when the underlying struc-
ture of the data depends on linear combinations of
variables. As we discussed in Sect. 30.4, ensemble meth-
ods such as boosting and random forests can be quite
effective at improving their accuracy. However, this
predictive improvement comes with some cost. En-
semble methods lose the interpretive value in a single
tree, and they are much more computationally expen-
sive. The tree-based methods do not always yield the
best possible results for classification and prediction,
but they are worth a try in a wide variety of ap-
plications. In any scientific application, we certainly
encourage you to see the forest – not just a few trees.
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Image Registr31. Image Registration and
Unknown Coordinate Systems

This chapter deals with statistical problems
involving unknown coordinate systems, either in
Euclidean 3-space R

3 or on the unit sphere Ω3 in
R

3. We also consider the simpler cases of Euclidean
2-space R

2 and the unit circle Ω2. The chapter has
five major sections.

Although other problems of unknown co-
ordinate systems have arisen, a very important
problem of this class is the problem of image
registration from landmark data. In this prob-
lem we have two images of the same object (such
as satellite images taken at different times) or
an image of a prototypical object and an ac-
tual object. It is desired to find the rotation,
translation, and possibly scale change, which
will best align the two images. Whereas many
problems of this type are two-dimensional, it
should be noted that medical imaging is often
three-dimensional.

After introducing some mathematical prelimi-
naries we introduce the concept of M-estimators,
a generalization of least squares estimation. In
least squares estimation, the registration that
minimizes the sum of squares of the lengths of
the deviations is chosen; in M estimation, the
sum of squares of the lengths of the deviations is
replaced by some other objective function. An im-
portant case is L1 estimation, which minimizes the
sum of the lengths of the deviations; L1 estima-
tion is often used when the possibility of outliers
in the data is suspected.

The second section of this chapter deals
with the calculation of least squares estimates.
Then, in the third section, we introduce an
iterative modification of the least squares
algorithm to calculate other M-estimates. Note
that minimization usually involves some form of
differentiation and hence this section starts with
a short introduction to the geometry of the group
of rotations and differentiation in the rotation
group. Many statistical techniques are based
upon approximation by derivatives and hence
a little understanding of geometry is necessary to
understand the later statistical sections.

The fourth section discusses the statistical
properties of M-estimates. A great deal of
emphasis is placed upon the relationship
between the geometric configuration of the
landmarks and the statistical errors in the image
registration. It is shown that these statistical
errors are determined, up to a constant, by
the geometry of the landmarks. The constant
of proportionality depends upon the objective
function and the distribution of the errors in the
data.

General statistical theory indicates that, if the
data error distribution is (anisotropic) multivariate
normal, least squares estimation is optimal. An
important result of this section is that, even in this
case when least squares estimation is theoretically
the most efficient, the use of L1 estimation can
guard against outliers with a very modest cost
in efficiency. Here optimality and efficiency refer
to the expected size of the statistical errors.
In practice, data is often long-tailed and L1

estimation yields smaller statistical errors than
least squares estimation. This will be the case
with the three-dimensional image registration
example given here.

Finally, in the fifth section, we discuss
diagnostics that can be used to determine
which data points are most influential upon
the registration. Thus, if the registration is
unsatisfactory, these diagnostics can be used to
determine which data points are most responsible
and should be reexamined.
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31.1 Unknown Coordinate Systems and Their Estimation

31.1.1 Problems
of Unknown Coordinate Systems

Wahba [31.1] posed the following question. Suppose we
have the directions of certain stars with respect to the
unknown coordinate system of a satellite. How can we
estimate the orientation of the satellite? Let A be the
unknown 3 × 3 matrix whose rows represent the axes of
the satellite’s coordinate system with respect to a fixed
and known (Earth) coordinate system. Furthermore let
ui be the directions of the stars with respect to the known
coordinate systems, where each ui is written as a three-
dimensional column vector with unit length. Similarly
let vi be the directions of the stars with respect to the
satellite’s coordinate system. Then

vi = Aui + error . (31.1)

In essence the question was to estimate A. Wahba gave
the least squares solution.

Chapman et al. [31.2] posed the same question in the
following form. Suppose we have an object defined by
a computer-aided design (CAD) program and a proto-

type is measured using a coordinate measuring machine
(CMM). The orientations of lines on the object can be
defined by unit vectors parallel to the lines and the orien-
tations of planes can be defined by unit vectors normal
to the planes. So we have unit vectors ui defined by the
CAD program and the corresponding unit vectors vi as
measured by the CMM. If A is the coordinate system
of the CMM relative to the CAD program, then (31.1)
holds.

Chapman et al. again used a least squares estimate
Â of A. The main question of interest, that is the geo-
metric integrity of the prototype, was then answered by
analyzing the residuals of vi from Âui .

Since the ui and vi are of unit length, these two
problems involve spherical data.

31.1.2 Image Registration

If we enlarge the inquiry to Euclidean space data,
we arrive at the widely used image registration prob-
lem. Suppose ui ∈ R

p represent the locations of some
landmarks in one image, and vi ∈ R

p the locations of
corresponding landmarks in a second image of the same
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object. The usual applications occur with p = 2.3. Un-
der certain conditions, it might be reasonable to suppose
that

vi = Bui +b+ error (31.2)

for an unknown p × p matrix B and an unknown p-
dimensional column vector b. The matrix B represents
a coordinate change and the vector b represents a trans-
lation of coordinates. The image registration problem is
to estimate B and b.

The model (31.2) also arises in a slightly different
context. Suppose we have landmarks ui on a prototypical
face. For example the ui might represent the locations
of the nose, the two eyes, the base of the chin, etc. For
the purpose of automated processing of a large number
of facial images of different subjects, we might want to
bring each facial image into alignment with the proto-
typical image using a transformation of the form (31.2)
where the vi represent the same locations (nose, two
eyes, base of chin, etc.) on the subject facial image.

In the absence of measurement error, one does not
expect the landmarks on two faces to be related using
a transformation of the form

vi = Bui +b . (31.3)

The reader might be puzzled why a transformation of this
form is under consideration. Statistical error, however, is
not limited to measurement error. Statistical error incor-
porates all effects not included in the systematic portion
of the model. In building a model of the form (31.2),
we hope to separate out the most important relationship
(31.3) between the landmarks ui on one object and the
corresponding landmarks vi on the other object; the rest
is placed in the statistical error.

Unlike the Wahba problem, the unknown (B, b) of
the image registration problem, or the unknown A in
the Chapman et al. problem, are not of primary inter-
est. Rather, they must be estimated as a preliminary step
to more interesting problems. We will discuss herein
the properties of various methods of estimating these
unknowns. These properties will hopefully help the in-
terested reader to choose a good estimation technique
which will hopefully yield better results after this pre-
liminary step is completed.

31.1.3 The Orthogonal
and Special Orthogonal Matrices

Consider, for example the data set in Table 31.1 from
Chang and Ko [31.3], which we will analyze repeatedly

in what follows. This data consists of the digitized loca-
tions of 12 pairs of landmarks on the left and right hands
of one of the authors. This is a p = 3 three-dimensional
image registration problem. We might decide that, apart
from the statistical error term, the shape of the two hands
is the same; that is the distance between two points
on one hand is the same as the distance between the
corresponding two points on the other hand.

This condition translates mathematically to the equa-
tion BTB = Ip, the p × p-dimensional identity matrix.
We outline a derivation of this well-known mathemati-
cal fact for the primary purpose of introducing the reader
to the mathematical style of the remainder of this chap-
ter. The distance between two p-dimensional column
vectors v1 and v2 is

||v2−v1|| =
√

(v2−v1)T(v2−v1) , (31.4)

where the operations on the right-hand side of (31.4) are
matrix multiplication and transposition. If the vi and ui
are related by (31.3),

(
v j −vi

)T (
v j −vi

)= [
B(u j −ui )

]T ×
[
B(u j −ui )

]

= [
(u j −ui )

]
BTB

[
(u j −ui )

]
.

Thus if ||v j −vi || = ||u j −ui || for all i and j, and if
the ui do not all lie in a (p−1)-dimensional hyperplane
of R p ,

Ip = BTB = BBT . (31.5)

Table 31.1 12 digitized locations on the left and right hand

Left hand ui Right hand vi

A 5.17 11.30 16.18 5.91 11.16 16.55

B 7.40 12.36 17.50 8.63 10.62 18.33

C 8.56 12.59 17.87 10.09 10.60 18.64

D 9.75 13.62 17.01 10.89 10.95 17.90

E 11.46 14.55 12.96 12.97 10.13 13.88

F 7.10 13.12 12.56 8.79 11.21 13.17

G 8.85 13.82 12.60 10.70 11.10 13.42

H 6.77 13.07 10.32 8.47 11.09 11.35

I 6.26 11.62 13.34 7.28 12.52 14.04

J 6.83 12.00 13.83 8.05 12.42 14.56

K 7.94 12.29 13.84 9.07 12.39 14.86

L 8.68 12.71 13.67 10.15 12.17 14.44

A: Top of little finger; B: Top of ring finger; C: Top of middle

finger; D: Top of forefinger; E: Top of thumb; F: Gap between

thumb and forefinger; G: Center of palm; H: Base of palm;

I: Little finger knuckle; J: Ring finger knuckle; K: Middle

finger knuckle; L: Forefinger knuckle
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Note that the first equality of (31.5) implies that
B−1 = BT and hence the second equality follows. Ma-
trices which satisfy condition (31.5) are said to be
orthogonal.

On the other hand, we might want to hypothesize that
the two hands (again apart from statistical error) have
the same shape except that one hand might be larger than
the other. In this case we are hypothesizing

B = γA (31.6)

where A is orthogonal and γ is a positive real number.
In the Wahba and Chapman et al. problems, the rows

of A are known to be an orthonormal basis of R 3. Since
the (i, j ) entry of AAT is the dot product of the i-th and
j-th rows of A, it follows that A is orthogonal. However,
more is known. Since the unknown coordinate system is
known to be right-handed,

ATA = Ip, det(A) = 1 , (31.7)

where det(A) is the determinant of the matrix A. Such
matrices are said to be special orthogonal.

In the hands data of Table 31.1, if we use the model
(31.2) with condition (31.6), then A will not be special
orthogonal. This is because the left and right hands have
different orientations. However, it is common in image
registration problems to assume that condition (31.6) is
true with A assumed to be special orthogonal.

Following standard mathematical notation, we will
use O(p) to denote the p × p orthogonal matrices [that is
the set of all matrices which satisfy (31.5) and SO(p) to
denote the subset of O(p) of special orthogonal matrices
[that is the set of all matrices which satisfy (31.7)].

31.1.4 The Procrustes
and Spherical Regression Models

In this chapter, we will be concerned with statistical
methods which apply to the model (31.2) for Eu-
clidean space data ui , vi ∈ R

p , for arbitrary p, where
B satisfies the condition (31.6) with A constrained to
be either orthogonal or special orthogonal. Following
Goodall [31.4], we will call this model the Procrustes
model.

We will also consider models of the form (31.1),
where the p-vectors ui and vi are constrained to be of
unit length, that is

ui , vi ∈Ωp = Sp−1 = (
x ∈ R

p
∣∣ xTx = 1

)

and A is constrained to be either orthogonal or special
orthogonal. Following Chang [31.5], we will call this
model the spherical regression model.

The statistical methodology for these two models can
easily be described in parallel. In general, we will focus
on the Procrustes model, while giving the modifications
that apply to the spherical regression model.

31.1.5 Least Squares, L1, and M Estimation

In Sect. 31.2, we will derive the least squares esti-
mate of A, γ, b for the Procrustes model. This estimate
minimizes

ρ2(A, γ, b) =
∑

i

||vi −γAui −b||2 (31.8)

over all A in either O(p) or SO(p), constants γ > 0, and
p-vectors b ∈ R

p . For the spherical regression model,
the least squares estimate minimizes

ρ2(A) =
∑

i

||vi −Aui ||2 (31.9)

= 2n−2
∑

i

vT
i Aui (31.10)

over all A in either O(p) or SO(p). For the second
equality in (31.9), we have used that if 1 = vTv= uTu,
then

||v−Au||2 = (v−Au)T (v−Au)

= vTv−vTAu− (Au)Tv+uTATAu

= 2−2vTAu .

Least squares estimates have the advantage that an
explicit closed-form solution for them is available. They
have the disadvantage that they are very sensitive to
outliers, that is points (ui , vi ) for which the error term
in (31.2) is unusually large. In the image registration
problem, an outlier can arise in several contexts. It can
be the result of a measurement error, or it can be the
result of a misidentified landmark. Perhaps the image is
not very clear, or the landmark (e.g. ‘point of the nose’)
cannot be very precisely determined, or the landmark is
obscured (by clouds or shrubs, etc.). Or perhaps there are
places in the image where the image is not really rigid,
that is the ideal match (31.3) does not apply very well.
It is easy to conceive of a myriad of situations which
might give rise to outliers.

L1 estimators are often used to ameliorate the effects
of outliers. These estimators minimize

ρ1(A, γ, b) =
∑

i

||vi −γAui −b|| , (31.11)
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for the Procrustes model, or the sum of the distances
along the surface of the sphere

ρ1(A) =
∑

i

arccos(vT
i Aui ) (31.12)

for the spherical regression model. Unfortunately,
an explicit closed-form solution for the L1 esti-
mate is not available and it must be calculated by
numerical minimization. We will offer a few sugges-
tions on approaches for numerical minimization in
Sect. 31.3.5.

The least squares and L1 estimators are special
cases of the so-called M estimators. These estimators
minimize an objective function of the form

ρ(A, γ, b) =
∑

i

ρ0(si ) , (31.13)

where

si = ||vi −γAui −b||
and ρ0 is some increasing function. Intermediate be-
tween the least squares and L1 estimate is the Huber
estimate for which

ρ0(s) =
{

(s/b)2 s < b

s/b s ≥ b

for some preset constant b. Or we can Windsorize the
estimate

ρ0(s) =
{

(s/b)2 s < b

1 s ≥ b
.

In the linear regression context, these and other objective
functions are discussed in Huber [31.6].

For the spherical regression model, an M-estimator
minimizes an objective function of the form

ρ(A) =
∑

i

ρ0(ti ) , (31.14)

where

ti = vT
i Aui .

Notice that, as v moves away from Au towards the
antipodal point −Au, t = vTAu decreases from 1 to
−1. Thus, for the spherical case, ρ0(t) is chosen to be
a decreasing function of t.

In Sect. 31.4 we will discuss the statistical proper-
ties of M-estimates. We will see how the geometry of
the data translates into the error structure of the estimate.
In the image registration problem, this information can
be used, for example, to help select landmarks. Gen-
eral statistical theory indicates under certain conditions
(“normal distribution”) the least squares solution is op-
timal. However, if we were to use a L1 estimate to guard
against outliers, we would suffer a penalty of 13% for
image registrations in two dimensions and only 8% for
image registrations in three dimensions, even when least
squares is theoretically optimal. We will make more
precise in Sect. 31.4 how this penalty is defined. The
important point to realize is that, especially for three-
dimensional image registrations, L1 estimators offer
important protections against outliers in the data at very
modest cost in the statistical efficiency of the estimator.

In Sect. 31.5, we will discuss diagnostics for the
Procrustes and spherical regression models. If the im-
age registration is not satisfactory, this section will give
tools to determine which of the landmarks is causing
the unsatisfactory registration. It will follow, for exam-
ple, that landmarks which greatly influence A will have
negligible influence on γ and vice versa.

31.2 Least Squares Estimation

31.2.1 Group Properties of O(p) and SO(p)

It is important to note that O(p) and SO(p) are groups
in the mathematical sense. That is, if A,B ∈O(p), then

(AB)T(AB) = BTATAB = BTIpB = Ip

since both A and B satisfy (31.5). Thus AB ∈O(p). Sim-
ilarly if A ∈O(p), then (31.5) implies that A−1 = AT ∈
O(p). This implies that O(p) is a group. Furthermore, if
det(A) = det(B) = 1, then det(AB) = det(A)det(B) = 1

and det(A−1) = 1/det(A) = 1. In summary we have

If A,B ∈O(p), then AB ∈O(p)

and A−1 = AT ∈O(p) (31.15)

If A,B ∈ SO(p), then AB ∈ SO(p)

and A−1 = AT ∈ SO(p) .

Notice also that, if A satisfies (31.5), then

1 = det(ATA)= [det(A)]2

so that det(A) = 1,−1.

Part
D

3
1
.2



576 Part D Regression Methods and Data Mining

31.2.2 Singular Value Decomposition

Given a p ×q matrix X its singular value decomposition
is

X= O1ΛOT
2 , (31.16)

where O1 ∈ O(p), O2 ∈O(q) and � is p × q. If p ≤ q,
� has block form

�= [
diag(λ1, · · · , λp) 0(p,q−p)

]

Here diag(λ1, · · · , λp) is a diagonal matrix with entries
λ1 ≥ · · · ≥ λp and 0(p,q−p) is a p × (q− p) matrix with
all zeros. If q ≤ p

�=
(

diag(λ1, · · · , λq)

0(p−q,q)

)
.

Most mathematical software packages now include
the singular value decomposition. However, it can
be computed using a package which only computes
eigen-decompositions of symmetric matrices. Suppose
temporarily p ≤ q. Since XXT is a symmetric nonneg-
ative definite matrix, its eigen-decomposition has the
form

XXT = O1�1OT
1 ,

where O1 ∈O(p) and �1 = diag(λ2
1, · · · , λ2

p) with λ1 ≥
· · · ≥ λp ≥ 0. The columns of O1 are the eigenvectors of
XXT and λ2

1, · · · , λ2
p are the corresponding eigenvalues.

Suppose λp > 0 and let Õ2 = XTO1�
−1/2
1 . Õ2 is q × p,

but

ÕT
2 Õ2 =�

−1/2
1 OT

1 XXTO1�
−1/2
1

=�
−1/2
1 OT

1 O1�1OT
1 O1�

−1/2
1

=�
−1/2
1 �1�

−1/2
1 = Ip ,

so that the columns of Õ2 are orthonormal. Furthermore

O1�
1/2
1 ÕT

2 = O1�
1/2
1 �

−1/2
1 OT

1 X = X .

Filling �
1/2
1 with q− p columns of zeros, and complet-

ing the columns of Õ2 to an orthonormal basis of R
q

yields the decomposition (31.16).
Extensions to the cases when λp = 0 or when q ≤ p

will not be difficult for the careful reader.

31.2.3 Least Squares Estimation
in the Procrustes Model

The least squares estimation of the Procrustes model
(31.2) has long been known (see, for example,

Goodall [31.4]). Let u= n−1 ∑
i ui , where n is the num-

ber of pairs (ui , vi ) and let v be similarly defined. Define
the p × p matrix X by

X =
∑

i

(ui −u)(vi −v)T .

Then

ρ2(A, γ, b) =
∑

i

||vi −γAui −b||2

=
∑

i

||vi −v−γA(ui −u)

− [b− (v−γAu)] ||2
=

∑

i

||vi −v||2

−γ
∑

i

(ui −u)TAT(vi −v)

−γ
∑

i

(vi −v)TA(ui −u)

+γ 2
∑

i

||ui −u||2

+n||b− (v−γAu)||2 .

All the other cross-product terms sum to zero. Now
∑

i

(vi −v)TA(ui −u)

=
∑

i

Tr
[
(vi −v)TA(ui −u)

]

=
∑

i

Tr
[
A(ui −u)(vi −v)T

]
= Tr (AX)

and ∑

i

(ui −u)TAT(vi −v)

=
∑

i

(vi −v)TA(ui −u) = Tr (AX) .

Therefore

ρ2(A, γ, b) =
∑

i

||vi −v||2−2γTr (AX)

+γ 2
∑

i

||ui −u||2

+n||b− (v−γAu)||2 . (31.17)

Substituting (31.16),

Tr (AX)= Tr
(

AO1�OT
2

)
= Tr

(
OT

2 AO1�
)

=
∑

i

λi eii ,
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where eii are the diagonal entries of OT
2 AO1 ∈O(p).

Now |eii | ≤ 1 and hence Tr (AX) is maximized when
eii = 1 or, equivalently, when OT

2 AO1 = Ip. This implies
A = O2OT

1 .
Thus if

(
Â, γ̂ , b̂

)
minimizes (31.17),

Â = O2OT
1 ,

γ̂ =
(
∑

i

||ui −u||2
)−1

Tr
(
ÂX

)

=
(
∑

i

||ui −u||2
)−1 ∑

i

λi , (31.18)

b̂ = v− γ̂ Âu .

If A is constrained to lie in SO(p), we use a modified
singular value decomposition. Let X = Õ1�̃ÕT

2 be the
(usual) singular value decomposition of X and let

E = diag(1, · · · , 1,−1) (31.19)

be the identity matrix with its last entry changed to −1 .

Let O1 = Õ1Eδ1 where δ1 = 0 if Õ1 ∈ SO(p) and δ1 = 1
otherwise.

Similarly define δ2 and O2. Finally write � =
�̃Eδ1+δ2 . Then (31.16) is valid with O1,O2 ∈ SO(p)
and λ1 ≥ · · · ≥ λp−1 ≥ |λp|.

This is the modified singular value decomposition.
The least squares estimates, subject to the contraint

Â ∈ SO(p), is still given by (31.18) when a modified
singular value decomposition is used for X.

31.2.4 Example: Least Squares Estimates
for the Hands Data

Consider, for example, the hands data in Table 31.1. For
this data

u =
⎛

⎝
7.8975

12.7542
14.3067

⎞

⎠ , v=
⎛

⎝
9.2500

11.3633
15.0950

⎞

⎠ ,

X =
⎡

⎣

⎛

⎝
5.17

11.30
16.18

⎞

⎠−u

⎤

⎦

⎡

⎣

⎛

⎝
5.91

11.16
16.55

⎞

⎠−v

⎤

⎦
T

+

· · ·+
⎡

⎣

⎛

⎝
8.68

12.71
13.67

⎞

⎠−u

⎤

⎦

⎡

⎣

⎛

⎝
10.15
12.17
14.44

⎞

⎠−v

⎤

⎦
T

=
⎛

⎝
34.0963 −6.9083 3.5769
17.3778 −4.9028 −5.6605
−2.3940 −5.7387 57.8598

⎞

⎠ .

The singular value decomposition X = O1�OT
2 is

given by

O1 =
⎛
⎜⎝

0.0465 −0.8896 −0.4544

−0.1012 −0.4567 0.8838

0.9938 −0.0048 0.1112

⎞
⎟⎠ ,

O2 =
⎛
⎜⎝
−0.0436 −0.9764 −0.2114

−0.0944 0.2147 −0.9721

0.9946 −0.0224 −0.1015

⎞
⎟⎠

�= diag(58.5564, 39.1810, 1.8855) .

Hence (31.18) yields

Â =
⎛
⎜⎝

0.9627 0.2635 −0.0621

0.2463 −0.9477 −0.2030

0.1123 −0.1801 0.9772

⎞
⎟⎠ ,

γ̂ = 0.9925 , (31.20)

b̂ =
(
−0.7488 24.3115 2.6196

)T
.

Notice that det(Â) =−1 so Â /∈ SO(3). We expect this
result since, as previously remarked, the left and right
hands have different orientations. The value of γ̂ is
somewhat puzzling since the subject is right-handed
and one would expect, therefore, γ > 1. Although, as
we will see in Sect. 31.4, the difference between γ̂

and 1 is not significant, a better estimate would have
been achieved if the L1 objective function (31.11)
were numerically minimized instead. In this case
γ̂ = 1.0086. Our analysis will show that the hands
data set has an outlier and we see here an exam-
ple of the superior resistance of L1 estimates to
outliers.

31.2.5 Least Squares Estimation
in the Spherical Regression Model

Least squares estimation for the spherical regres-
sion model is similar to least squares estimation in
the Procrustes model. Let X =∑

i uiv
T
i and define

O1,O2 ∈O(p) using a singular value decomposition of
X. Then Â=O2OT

1 . If, on the other hand, it is desired to
constrain Â to SO(p), one defines O1,O2 ∈ SO(p) us-
ing a modified singular value decomposition and, again,
Â = O2OT

1 .
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31.3 Geometry of O(p) and SO(p)
O(p) and SO(p) arise because they give distance-
preserving transformations of R

p , and to formulate
properly the statistical properties of Â defined by
(31.18), it is important to understand the geometry of
these two groups.

31.3.1 SO(p) for p = 2

For p = 2,

SO(2) =
{
Φ2(h) =

(
cos(h) −sin(h)

sin(h) cos(h)

)∣∣∣∣∣ h ∈ R
1

}
.

(31.21)

Physically Φ2(h) represents a rotation of R 2 by an an-
gle of h radians. Since Φ2(h) =Φ2(h+2π), SO(2) is
geometrically a circle.

Since each element of SO(2) has four entries, it is
tempting to think of SO(2) as four-dimensional. How-
ever as (31.21) makes clear, SO(2) can be described
by one parameter h ∈ R

1. Thus SO(2) is really one-
dimensional. Suppose we were constrained to live on
a circle Ω2 (instead of the sphere Ω3). At each point on
Ω2 we can only travel to our left or to our right, and, if
our travels were limited, it would appear as if we only
had one-dimensional travel. Mathematicians describe
this situation by saying that SO(2) is a one-dimensional
manifold.

Notice also Φ2(0) = I2 and that, if h is small, then
Φ2(h) is close to I2. Thus, if h is small,Φ2(h)x is close to
x for all x ∈ R

2. As we shall see, this simple observation
is key to understanding our approach to the statistical
properties of Â.

31.3.2 SO(p) for p = 3

SO(3) can be described as the collection of all rotations
in R

3. That is

SO(3) =
{
Φ3(h) | h ∈ R

3
}
, (31.22)

where Φ3(h) is right-hand rule rotation of ||h|| radi-
ans around the axis ||h||−1h. Writing θ = ||h|| and
ξ = ||h||−1h, so that ξ is a unit-length three-dimensional
vector, it can be shown that

Φ3(h)

=Φ3(θξ)

= cos(θ)I3+ sin(θ)M3(ξ)+ [1− cos(θ)] ξξT ,

(31.23)

where

M3(ξ) = M3

⎛
⎜⎝

ξ1

ξ2

ξ3

⎞
⎟⎠=

⎛
⎜⎝

0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

⎞
⎟⎠ .

Thus, although each A ∈ SO(3) has nine entries, SO(3)
is actually a three-dimensional manifold.

Again we notice that Φ3(0) = I3 and that if ||h|| is
small then Φ3(h)x is close to x for all x ∈ R

3.
For future use, we note that if C ∈ SO(3), then the

axis ξ of the rotation represented by C satisfies Cξ = ξ .
Thus ξ is the eigenvector associated to the eigenvalue
1 of C. By re-representing C in an orthonormal ba-
sis which includes ξ , one can show that the angle of
rotation θ of the rotation represented by C satisfies
1+2cos(θ) = Tr(C). Thus, if ξ and θ are calculated in
this way, Φ3(θξ) = C.

31.3.3 SO(p) and O(p), for General p,
and the Matrix Exponential Map

For general p, let H be a p × p skew-symmetric matrix;
that is

HT =−H .

We define the matrix exponential map by

exp(H) =
k=∞∑

k=0

Hk

k! .

It can be shown that the skew-symmetry condition im-
plies that exp(H)

[
exp(H)

]T = Ip and indeed

SO(p) = [
exp(H) | H is skew-symmetric

]
. (31.24)

A skew-symmetric matrix must have zeros on its main
diagonal and its entries below the main diagonal are de-
termined by its entries above the main diagonal. Thus
the skew-symmetric p × p matrices have p(p−1)/2 in-
dependent entries and hence SO(p) is a manifold with
dimension p(p−1)/2.

Let 0(p,p) be a p × p matrix of zeros. Then

exp(0(p,p)) = Ip . (31.25)

Thus, if the entries of H are small (in absolute value),
then exp(H) will be close to the identity matrix.

For p = 3, it can be shown, by using (31.23), that
Φ3(h)= exp [M3(h)] for h ∈ R

3. Similarly we define for
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h ∈ R
1 the skew-symmetric matrix

M2(h) =
(

0 −h

h 0

)

and it follows that Φ2(h) = exp [M2(h)]. Thus (31.21)
and (31.22) are indeed special cases of (31.24).

O(p) has two connected components; one is SO(p)
and the other is

SO(p)E = {AE | A ∈ SO(p)} ,
where E has been previously defined in (31.19). No-
tice that E is a reflection of R

p through the (p−
1)-dimensional hyperplane perpendicular to the last co-
ordinate vector. Indeed all reflections of R p are in O(p).

31.3.4 Geometry and the Distribution
of M-Estimates

So, heuristically speaking, suppose we have estimates(
Â, γ̂ , b̂

)
which minimize an objective function of the

form (31.13). What values of the unknown parameters
(A, γ, b) should we consider as reasonable given the
data? The obvious answer, which is fully consistent
with the usual practices of statistics, is those (A, γ, b)
which do not excessively degrade the fit of the best-fit
parameters

(
Â, γ̂ , b̂

)
; that is those (A, γ, b) for which

ρ(A, γ, b)−ρ
(
Â, γ̂ , b̂

)

=
∑

i

[
ρ0(||vi −γAui −b||)

−ρ0(||vi − γ̂ Âui − b̂||)]

is not too large.
Recall that, for p = 3, if h is small, then Φ3(h)ui

will be close to ui . This suggests writing

Â = AΦ3(̂h) , (31.26)

where ĥ ∈ R
3. Then Aui = ÂΦ3(−ĥ)ui will be close to

Âui when ĥ is small. Rather than focus on the distri-
bution of Â, we will focus on the distribution of the
deviation of Â from A as measured by the (hopefully)
small vector ĥ.

Similarly, for p = 2, we will write

Â = AΦ2(̂h) , (31.27)

where ĥ ∈ R
1. For general p, one writes

Â = Aexp(Ĥ) , (31.28)

where Ĥ is p × p skew-symmetric.

The most elementary procedures in statistics are
based upon the fact

If X1, · · · , Xn are independent and each Xi is dis-
tributed N(µ, σ2), then X is distributed N(µ, σ2/n).

An equivalent result is

If X1, · · · , Xn are independent and each Xi is
distributed N(µ, σ2), then X −µ is distributed
N(0, σ2/n).

In the latter form, we have an estimator (in this case
X) and the distribution of the deviation ĥ = X−µ of
the estimator from the unknown parameter µ. This is
sufficient for both confidence intervals and hypothesis
testing and is analogous to what we propose to do in
Sect. 31.4.

We note that Φ3(h) = I3 whenever ||h|| = 2π. This
implies that Φ3 will have a singularity as ||h|| → 2π.
However, Φ3 behaves very well for small h and hence
(31.26) is a good way to parameterize Â close to A.

All parameterizations of SO(3) have singularities
somewhere. By using parameterizations such as (31.26),
(31.27), or (31.28), we put those singularities far away
from the region of interest, that is far away from A. As
we will see in Sects.31.4 and 31.5, the result is very clean
mathematics. However, some formulations of Euler an-
gles [31.7] have a singularity at h= 0. This means that
Euler angles are an especially poor parameterization of
small rotations in SO(3) (that is, for A close to I3) and
that, if we were to repeat the calculations of Sect. 31.4
and 31.5 using Euler angles, the results would be much
messier.

31.3.5 Numerical Calculation
of M-Estimates
for the Procrustes Model

We use here the geometric insights into SO(p) to pro-
pose a method of minimizing the objective function
(31.13) for the Procrustes model. The simplifications
necessary to minimize the objective function (31.14)
for the spherical regression model should be reasonably
clear.

In what follows, it will be convenient to rewrite the
Procrustes model

vi = γAui +b+ error

in the equivalent form

vi = γA(ui −u)+β+ error , (31.29)

where β = γAu+b.
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Let ψ(s) = ρ′0(s). Differentiating (31.13) with re-
spect to γ and β we get that the M-estimates (Â, γ̂ , β̂)
must satisfy.

0 =
∑

i

ψ(si )s
−1
i

[
vi − γ̂ Â(ui −u)− β̂

]T

× Â(ui −u) , (31.30)

0 =
∑

i

ψ(si )s
−1
i

[
vi − γ̂ Â(ui −u)− β̂

]
, (31.31)

where si =
∣∣∣∣vi − γ̂ Â(ui −u)− β̂

∣∣∣∣.
To differentiate (31.13) with respect to A, we note

that, if H is any skew-symmetric matrix, and using
(31.25),

0 = d

dt

∣∣∣
t=0

{∑

i

ρ0
[∣∣∣∣vi − γ̂ Âexp(tH)

× (ui −u)− β̂
∣∣∣∣]

}

=−γ
∑

i

ψ(si )s
−1
i

[
vi − γ̂ Â (ui −u)− β̂

]T

× ÂH(ui −u)

=−γTr(X̃H),

where

X̃=
∑

i

ψ(si )s
−1
i (ui −u) [vi

−γ̂ Â(ui −u)− β̂
]T Â .

Since H is any skew-symmetric matrix, X̃ is symmetric.
Equivalently

X=
∑

i

ψ(si )s
−1
i (ui −u)(vi − β̂)TÂ is symmetric .

(31.32)

Equations (31.32), (31.30), and (31.31) lead to the
following iterative minimization algorithm. Start with

the least squares solution given in Sect. 31.2.3 and use
these estimates to calculate si . Using these si and the
current guess for Â, solve (31.30) and (31.31) to update
the guesses for γ̂ and β̂. Now writing X = O1�OT

2 for
the singular value decomposition of X, the next guess
for Â is O2OT

1 . This yields a minimum in O(p). If mini-
mization in SO(p) is desired, a modified singular value
decomposition is used for X instead. Having updated the
guesses for

(
Â, γ̂ , β̂

)
, we now iterate.

For example consider the hands data of Table 31.1.
We calculate the L1 estimate for which ψ(s) = 1. Start-
ing with the least squares estimates in (31.20), we
convert b̂ to

β̂ = γ̂ Âu+ b̂ =
(

9.2500 11.3633 15.0950
)T

.

(31.33)

We use these least squares estimate as an initial guess;
a single iteration of the minimization algorithm yields
the updated guess

Â =
⎛
⎜⎝

0.9569 0.2823 −0.0690

0.2614 −0.9399 −0.2199

0.1269 −0.1924 0.9731

⎞
⎟⎠ ,

γ̂ = 1.0015 ,

β̂ =
(

9.2835 11.4092 15.0851
)T

.

Convergence is achieved after around a dozen iterations.
We arrive at the L1 estimates

Â =
⎛
⎜⎝

0.9418 0.3274 −0.0760

0.3045 −0.9268 −0.2200

0.1425 −0.1840 0.9725

⎞
⎟⎠ ,

γ̂ = 1.0086 , (31.34)

β̂ =
(

9.2850 11.4255 15.0883
)T

.

31.4 Statistical Properties of M-Estimates

31.4.1 The Σ Matrix and the Geometry
of the ui

Let � be the p × p matrix

� = n−1
∑

i

(ui −u)(ui −u)T

� is nonnegative definite symmetric and hence its eigen-
values are real and its eigenvectors form an orthonormal
basis of R p . We can use this eigen-decomposition of �

to summarize the geometry of the point ui . More specifi-
cally, let λ1 ≥ · · · ≥ λp ≥ 0 be the eigenvalues of � with
corresponding eigenvectors e1, · · · , ep. Then e1 points
in the direction of the greatest variation in the ui , and ep
in the direction of the least variation.

Part
D

3
1
.4



Image Registration and Unknown Coordinate Systems 31.4 Statistical Properties of M-Estimates 581

31.4.2 Example: Σ for the Hands Data

For example, for the data of Table 31.1,

u =
⎛
⎜⎝

7.8975

12.7542

14.3067

⎞
⎟⎠

� = 1

12

⎧
⎪⎨

⎪⎩

⎡
⎢⎣

⎛
⎜⎝

5.17

11.30

16.18

⎞
⎟⎠−u

⎤
⎥⎦

⎡
⎢⎣

⎛
⎜⎝

5.17

11.30

16.18

⎞
⎟⎠−u

⎤
⎥⎦

T

+

· · ·+
⎡
⎢⎣

⎛
⎜⎝

8.68

12.71

13.67

⎞
⎟⎠−u

⎤
⎥⎦

⎡
⎢⎣

⎛
⎜⎝

8.68

12.71

13.67

⎞
⎟⎠−u

⎤
⎥⎦

T⎫⎪⎬

⎪⎭

=
⎛
⎜⎝

2.6249 1.2525 0.1424

1.2525 0.8095 −0.5552

0.1424 −0.5552 4.9306

⎞
⎟⎠ ,

λ1 = 5.004 , λ2 = 3.255 , λ3 = 0.1054 ,

e1 =
⎛
⎜⎝
−0.0115

−0.1346

0.9908

⎞
⎟⎠ , e2 =

⎛
⎜⎝
−0.8942

−0.4420

−0.0704

⎞
⎟⎠ ,

e3 =
⎛
⎜⎝
−0.4474

0.8869

0.1152

⎞
⎟⎠ .

Examining the data of Table 31.1, one sees that u is
close to point G, the center of the left palm. Examining
the displacement of G to C, top of the middle finger, it
is evident that left hand was close to vertically oriented.
This is the direction e1. Examining the displacement of
G to E, the top of the thumb, it appears that the left thumb
was pointed in roughly the direction of the x-axis. This
is the direction of −e2. Thus the left hand was roughly
parallel to the x–z plane. The normal vector to the plane
of the left hand is thus approximately parallel to the y-
axis. This is the direction of e3. Notice that λ3 is much
smaller than λ1 or λ2, indicating that the thickness of
the hand is much smaller than its length or breadth.

31.4.3 Statistical Assumptions
for the Procrustes Model

Before giving the statistical properties of
(
Â, γ̂ , b̂

)
it is

necessary to make explicit the statistical assumptions of
the Procrustes model (31.2). These assumptions are:

• u1, · · · ,un ∈ R
p are fixed (non-random) vectors.• v1, · · · , vn ∈ R
p are independent random vectors.

• The distribution of vi is of the form f0(si ), where
si = ||vi −γAui −b||. Here (A, γ, b) are unknown,
A ∈ SO(p) or O(p), γ is a positive real constant,
and b ∈ R

p .

The most obvious example of a suitable distribution
f0 is

f0(s) = (2πσ2)−p/2 e−
s2

2σ2 (31.35)

for a fixed constant σ2. In what follows, we will not need
to know the value of σ2. In fact, we will not even need
to know the form of f0, only that the distribution of vi
depends only upon its distance si from γAui +b.

The distribution (31.35) is a multivariate normal dis-
tribution with mean vector γAui +b and covariance
matrix σ2Ip. Equivalently, the p components of vi are
independent and each has variance σ2. If the compo-
nents of vi were to have different variances, then the
distribution of vi would not satisfy the Procrustes model
assumptions.

In essence we assume that vi is isotropically (i.e.,
that all directions are the same) distributed around its
mean vector.

31.4.4 Theorem (Distribution of (̂A‚γ̂‚̂b)
for the Procrustes Model)

Suppose
(
Â, γ̂ , b̂

)
minimize an objective function of

the form (31.13). Let β = γAu+b and β̂ = γ̂ Âu+ b̂.
Then

• Â, γ̂ , and β̂ are independent;• β̂ is distributed multivariate normal with mean β and
covariance matrix k

n Ip;
• If p = 2, write Â = AΨ2(̂h), for ĥ ∈ R

1. Then ĥ
is normally distributed with mean 0 and variance

k
nTr(Σ) ;

• If p = 3, write Â = AΨ3(̂h), for ĥ ∈ R
3. Let

Σ= λ1e1eT
1 +λ2e2eT

2 +λ3e3eT
3 be the spectral de-

composition of � . Then ĥ is distributed trivariate
normal with mean 0 and covariance matrix

k

n

[
(λ2+λ3)−1e1eT

1 + (λ3+λ1)−1e2eT
2

+ (λ1+λ2)−1e3eT
3

]
.

• For general p, write Â=Aexp(Ĥ), where Ĥ is p × p
skew-symmetric. Then Ĥ has a multivariate normal
density proportional to exp

[− n
2k Tr(ĤT�Ĥ)

]
;• γ̂ is normally distributed with mean γ and variance

k
nTr(� ) .
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These results are asymptotic, that is they are large-
sample approximate distributions.

The constant k is defined to be

k = pE
[
ψ(s)2

]

E2
[
ψ

′ (s)+ (p−1)ψ(s)s−1
] , (31.36)

where ψ(s) = ρ
′
0(s). Thus k can be estimated from the

sample by

k̂ = n p
∑

i ψ(si )2

{∑
i

[
ψ

′ (si )+ (p−1)ψ(si )s
−1
i

]}2
, (31.37)

where si =
∣∣∣∣vi − γ̂ Âui − b̂

∣∣∣∣.
Theorem 31.4.4 is proven in Chang and Ko [31.3].

(In [31.3], s is defined to be s = ||v− γ̂ Âu− b̂||2 and this
causes the formulas (31.36) and (31.37) to be somewhat
different there.)

31.4.5 Example: A Test of γ = 1

For the hands data, the least squares estimates were given
in Example 31.2.4. Table 31.2 gives the calculation of
the si . Substituting p = 3, ρ0(s) = s2, ψ(s) = 2s into
(31.37), k̂ = (3n)−1 ∑

i s2
i = 0.0860.

To test if the two hands are the same size, we test
γ = 1. Using Example 31.4.2, Tr(� ) = 8.365. Hence
the variance of γ̂ is 0.000 860 and hence its standard
error is 0.0293. Since γ̂ = 0.9925, we see that γ̂ is not
significantly different from 1.

The L1 estimate of γ is 1.0086. To calculate the
standard error of this estimate, we use ρ0(s) = s and
ψ(s) = 1. Hence for the L1 estimate, (31.37) yields k̂ =
0.75

(
n−1 ∑

i s−1
i

)−2
. After recomputing the si using

L1 estimates of (A, γ, b), we obtain k̂ = 0.023. Thus the
L1 estimate of γ has a standard error of 0.0150 and this
estimate is also not significantly different from 1.

Apparently, the two hands have the same size.
General statistical theory implies that if the vi were

really normally distributed, the least squares estimates
would be the most efficient. In other words, least squares
estimates should have the smallest standard errors. Evi-
dently this is not true for the hands data and it appears
that this data is not, in fact, normally distributed.

31.4.6 Example: A Test on A

As discussed in 31.4.2, the eigenvector e3 of � is per-
pendicular to the plane of the left palm. It might be of
interest to test if the two hands have the same orienta-
tion; that is, after reflecting the left hand in the plane

perpendicular to e3, do the fingers and thumb of the two
hands point in the same directions. We formulation this
hypothesis as H0 : A = Re3 where Re3 is the matrix of
the reflection in plane perpendicular to e3.

Re3 = I3−2e3eT
3

=
⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠

−2

⎛
⎜⎝
−0.4474

0.8869

0.1152

⎞
⎟⎠

⎛
⎜⎝
−0.4474

0.8869

0.1152

⎞
⎟⎠

T

=
⎛
⎜⎝

0.5996 0.7936 0.1031

0.7936 −0.5731 −0.2044

0.1031 −0.2044 0.9734

⎞
⎟⎠ ,

ĥ is defined by

Φ3(̂h) = RT
e3

Â

=
⎛
⎜⎝

0.7843 −0.6127 −0.0976

0.5999 0.7890 −0.1327

0.1583 0.0455 0.9863

⎞
⎟⎠ ,

(31.38)

where Â was calculated in 31.2.4.
To solve for ĥ we use the results at the end of

Sect. 31.3.2. The matrix of (31.38) has an eigenvector of
ξ = (0.1395 −0.2003 0.9494)T corresponding to the
eigenvalue of 1. Its angle of rotation is given by

θ = arccos
[
0.5Tr

(
RT

e3
Â
)
−0.5

]
= 0.6764 .

Thus ĥ= θξ = (0.0944 −0.1355 0.6422)T.
By Theorem 31.4.4, if H0 is true, ĥ is trivariate

normally distributed with mean 0 and covariance matrix

k

n

[
(λ2+λ3)−1e1eT

1 + (λ3+λ1)−1e2eT
2

+ (λ1+λ2)−1e3eT
3

]
.

The constant k was estimated in 31.4.5 and the λi and ei
were calculated in 31.4.2. Using these calculations, the
covariance matrix of ĥ is estimated to be

Ĉov(̂h)

=
⎛
⎜⎝

0.001 296 0.000 2134 0.000 019 23

0.000 2134 0.000 9951 −0.000 1520

0.000 019 23 −0.000 1520 0.002 112

⎞
⎟⎠.
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Table 31.2 Calculation of residual lengths for data from Table 31.1

Predicted v̂i Residual si

γ̂ Âui + b̂ vi − v̂i ||vi − v̂i ||
A 6.148 11.687 16.868 −0.238 −0.527 −0.318 0.660

B 8.475 10.969 18.207 0.155 −0.349 0.123 0.401

C 9.620 10.962 18.654 0.470 −0.362 −0.014 0.593

D 11.080 10.457 17.769 −0.190 0.493 0.131 0.544

E 13.206 10.816 13.865 −0.236 −0.686 0.015 0.726

F 8.691 11.176 13.247 0.099 0.034 −0.077 0.129

G 10.544 10.938 13.355 0.156 0.162 0.065 0.234

H 8.501 11.594 11.046 −0.031 −0.504 0.304 0.589

I 7.449 12.225 14.178 −0.169 0.295 −0.138 0.367

J 8.062 11.908 14.649 −0.012 0.512 −0.089 0.520

K 9.198 11.904 14.730 −0.128 0.486 0.130 0.519

L 10.026 11.724 14.573 0.125 0.446 −0.133 0.481

Under the null hypothesis

χ2 = ĥ TĈov(̂h)
−1

ĥ= 213

has an approximate χ2 distribution with three degrees
of freedom.

We emphatically conclude that, after reflecting the
left hand, the orientations of the two hands are not the
same.

31.4.7 Asymptotic Relative Efficiency
of Least Squares and L1 Estimates

Examining Theorem 31.4.4, we see that the covariance
of the M-estimate

(
Â, γ̂ , b̂

)
is determined, up to a con-

stant k, by the geometry of the ui , as summarized by the
matrix � . Only the constant k, see (31.36), depends upon
the probability distribution of the vi and the objective
function (31.13) that

(
Â, γ̂ , b̂

)
minimize. Furthermore,

a sample estimate of k, see (31.37) is available which
does not require knowledge of the distribution of the vi .

Let k( f0, L2) denote the constant k as defined in
(31.36) when the underlying density is of the form f0
and least squares (L2) estimation is used, and k( f0, L1)
the corresponding value when L1 estimation is used. The
ratio ARE(L1, L2; f0) = k( f0, L2)/k( f0, L1) is called
the asymptotic relative efficiency of the L1 to the least
squares estimators at the density f0.

We see that

ARE(L1, L2; f0)

= variance of least squares estimator

variance of L1estimator
, (31.39)

where we recognize that both variances are matrices, but
the two variance matrices are multiples of each other.

If f0 is a p-dimensional normal density (31.35), it
can be shown from (31.36) that

ARE(L1, L2; Np) = 2Γ 2 [(p+1)/2]

pΓ 2(p/2)
. (31.40)

We have used Np in (31.40) to denote the p-dimensional
normal density function.

The Γ function in (31.40) has the properties

Γ (1) = 1 Γ (0.5) =√
π

Γ (q+1) = qΓ (q) .

Thus when p = 2.3

ARE(L1, L2; N2) = π

4
= 0.785 ,

ARE(L1, L2; N3) = 8

3π
= 0.849 . (31.41)

ARE(L1, L2; Np) increases to 1 as p →∞.
When the underlying distribution is normal, statis-

tical theory indicates that least squares procedures are
optimal, that is, they have the smallest variance. Using
(31.39) and (31.41), we see that, even when the data
is normal, the use of L1 methods results in only an 8%
penalty in standard error. And L1 methods offer superior
resistance to outliers.

Indeed, as we saw in Example 31.4.5, the standard
error of the L1 estimator was smaller than the standard
error of the least squares estimator. Evidently the hands
data set is long-tailed, that is it has more outliers than
would be expected with normal data.
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31.4.8 The Geometry of the Landmarks
and the Errors in ̂A

In this section we will constrain our discussion to the
case p = 3.

Suppose we write the estimate Â in the form

Â= AΦ3(̂h) . (31.42)

Φ3(̂h) is a (hopefully) small rotation which expresses
the deviation of the estimate Â from the true value A.

Recall that Φ3(̂h) is a rotation of ||̂h|| radians around
the axis ||̂h||−1ĥ.

In particular Φ3(̂h)−1 =Φ3(−ĥ) and

A= ÂΦ3(−ĥ) .

According to Theorem 31.4.4, the covariance matrix
of ĥ has the form

Cov(̂h) = k

n

[
(λ2+λ3)−1e1eT

1 + (λ3+λ1)−1e2eT
2

+ (λ1+λ2)−1e3eT
3

]
, (31.43)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of Σ with cor-
responding eigenvectors e1, e2, e3. Since ĥ is normally
distributed

χ2 = ĥ T [
Cov(̂h)

]−1
ĥ

is distributed χ2 with three degrees of freedom.
Thus a confidence region for A is of the form
{

ÂΦ3(−ĥ)
∣∣ ĥ T [

Cov(̂h)
]−1

ĥ < χ2
3,α

}
, (31.44)

where χ2
3,α is the appropriate critical point of a χ2

3
distribution.

Let θ = ||̂h|| and ξ =−||̂h||−1ĥ so that ĥ=−θξ .
Thus Φ3(−ĥ) is a rotation of θ radians around the

axis ξ .
Substituting (31.43) into the confidence region

(31.44), we can re-express this confidence region as
{

ÂΦ3(θξ) | θ2 n

k

[
(λ2+λ3)(ξTe1)2+ (λ3+λ1)

× (ξTe2)2+ (λ1+λ2)(ξTe3)2]< χ2
3,α

}
. (31.45)

Now

λ2+λ3 ≤ λ3+λ1 ≤ λ1+λ2 .

Thus the confidence region (31.45) constrains θ the most
(that is the limits on θ are the smallest) when ξ points in
the direction e3. It bounds θ the least when ξ points in
the direction e1.

Recall also that e1 is the direction of the greatest
variation in the ui and e3 the direction of the least
variation.

For the hands data of Table 31.1, e1 points in the
direction of the length of the left hand and e3 in the
normal direction to the palm.

Thus the angle θ of the small rotation Φ3(θξ) is the
most constrained when its axis ξ points in the direction
of the least variation in the ui . θ is least constrained
when ξ points in the direction of the greatest variation
of the ui .

For the hands data, if ĥ is in the direction of e1,
the length of the hand, it represents a small rotation at
the elbow with the wrist held rigid. The variance of the
deviation rotation ĥ in the direction e1 is (λ2+λ3)−1 =
0.298. If ĥ points in the direction of e2, the width of the
hand, it represents a forwards and backwards rotation
at the wrist; the variance of ĥ in this direction is (λ2+
λ3)−1 = 0.196. Finally if ĥ points in the direction of e3,
the normal vector to the hand, it represents a somewhat
awkward sideways rotation at the wrist (this rotation
is represented in Fig. 31.1b; the variance of ĥ in this
direction is (λ1+λ2)−1 = 0.121. If the variability of the
component of ĥ in the direction of a rotation at the elbow

e1

e2

d (C, e3)
C

E

d (E, e1)

a) b)

C

E

Fig. 31.1 (a)A hand with axes e1, e2; axis e3 points out of
paper. X marks the center point u. The distances d(C, e3)
and d(E, e1) are the lengths of the indicated line segments.
(b)The effect of a rotation of angle θ around the axis e3.
The point C moves a distance of approximately d(C, e3)θ.
Under a rotation of θ around e1 (not shown), the point E
moves a distance of approximately d(E, e1)θ. Notice that
d(E, e1) < d(C, e3), and, indeed, the landmarks ui tend to
be closer to e1 than to e3. It follows that a rotation of θ

around e3 will move the figure more than a rotation of θ

around e1
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is unacceptably large, we need to increase λ3; in effect to
create, if possible, landmarks which effectively thicken
the palm.

A heuristic derivation of this result is due to Stock
and Molnar [31.8, 9]. It appeared in the geophysical lit-
erature and is considered a major development in our
understanding of the uncertainties in tectonic plate re-
constructions. We will present their argument below,
suitably modified for the image registration context.

It is convenient to rewrite the model, as in The-
orem 31.4.4, in the form (31.29). If we substitute
A = ÂΦ3(θξ), we see that A first perturbs the ui −u
by the small rotation Φ3(θξ) and then applies the best
fitting orthogonal matrix Â.

Let d(ui , ξ) be the distance of the landmark ui to
the line through the center point u and in the direction
of the axis ξ . Refer to Fig. 31.1. Since the landmarks
vary most in the direction e1 and least in the direction
e3, the distances d(ui , e3) will tend to be biggest and the
distances d(ui , e1) smallest.

A point x will move a distance of approximately
d(x, ξ)θ under a rotation of angle θ around the axis ξ .
It follows that a rotation of angle θ will most move the
landmarks ui if the axis is e3. It will move the landmarks
ui least if the axis is e1. In other words, for a fixed θ,
the small rotation Φ3(θξ) will most degrade the best fit,
provided by Â, if ξ = e3; it will least degrade the best fit
if ξ = e1.

An orthogonal transformation A = ÂΦ3(θξ) is con-
sidered a possible transformation if it does not degrade
the best fit by too much. It follows that θ is most con-
strained if ξ = e3, the direction of the least variation in
the landmarks ui , and is least constrained if ξ = e1, the
direction of greatest variation in the landmarks ui .

Suppose instead we were to write the estimate Â in
the form

Â =Φ3(̂hv)A , (31.46)

A =Φ3(−ĥv)Â .

Then (31.43) is replaced by

Cov(̂hv) = k

n

[
(λ2+λ3)−1(Ae1)(Ae1)T

+ (λ3+λ1)−1(Ae2)(Ae2)T

+ (λ1+λ2)−1(Ae3)(Ae3)T
]
.

The same reasoning then expresses the errors of ĥv, and
hence of Â, in terms of the geometry of the landmarks
vi . In other words, for the hands data, using the defi-
nition (31.46) expresses the errors of Â in terms of the
orientation of the right hand.

31.4.9 Statistical Properties of M-Estimates
for Spherical Regressions

The statistical assumptions of the spherical regression
model (31.1) are:

• u1, · · · ,un ∈Ωp are fixed (non-random) vectors.• v1, · · · , vn ∈Ωp are independent random vectors.• The distribution of vi is of the form f0(ti ) where
ti = vT

i Aui . Here A ∈ SO(p) or O(p) is unknown.

A commonly used distribution for spherical data x ∈
Ωp is the distribution whose density (with respect to
surface measure, or uniform measure, on Ωp) is

f (x; θ)= c(κ)exp(κxTθ) . (31.47)

This distribution has two parameters: a positive real
constant κ which is commonly called the concentra-
tion parameter and θ ∈Ωp. It is easily seen that f (x)
is maximized over x ∈Ωp at θ and hence θ is usually
refered to as the modal vector; c(κ) is a normalizing
constant.

If κ = 0, (31.47) is a uniform density on Ωp. On the
other hand as κ →∞, the density (31.47) approaches
that of a multivariate normal distribution in p−1 di-
mensions with a covariance matrix of κ−1Ip−1. Thus
intuitively we can think of κ as σ−2, that is think of κ
as the inverse variance. As κ→∞, (31.47) approaches
a singular multivariate normal distribution supported on
the (p−1)-dimensional subspace θ⊥ ⊂ R

p . As a singu-
lar multivariate normal distribution in R

p its covariance
matrix is κ−1(Ip− θθT).

For the circle Ω1, (31.47) is due to von Mises. For
general Ωp, it is due (independently) to Fisher and to
Langevin. More properties of the Fisher–von Mises–
Langevin distribution can be found in Watson [31.10] or
in Fisher et al. [31.11].

The distribution of an M-estimator Â which mini-
mizes an objective function of the form (31.14) is similar
to the distribution given in Theorem 31.4.4:

• If p = 2, write Â = AΨ2(̂h), for ĥ ∈ R
1. Then ĥ is

normally distributed with mean 0 and variance k
n .

• If p = 3, write Â = AΨ3(̂h), for ĥ ∈ R
3. Let

� = λ1e1eT
1 +λ2e2eT

2 +λ3e3eT
3 be the spectral de-

composition of � . Then ĥ is distributed trivariate
normal with mean 0 and covariance matrix

k

n

[
(λ2+λ3)−1e1eT

1 + (λ3+λ1)−1e2eT
2

+ (λ1+λ2)−1e3eT
3

]
.
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• For general p, write Â = Aexp(Ĥ), where Ĥ is p × p
skew-symmetric. Then Ĥ has a multivariate normal
density proportional to exp

[− n
2k Tr(ĤT�Ĥ)

]
.

Let ψ(t) =−ρ
′
0(t). (The sign of ψ has been chosen to

makeψ(t) nonnegative, since ρ0 is a decreasing function
of t.) The constant k and its sample estimate k̂ are given
by

k = (p−1)E[ψ(t)2(1− t2)]
E2[(p−1)ψ(t)t−ψ

′ (t)(1− t2)] ,

k̂ = n(p−1)
∑

i ψ(ti )2(1− t2
i )

{∑
i [(p−1)ψ(ti )ti −ψ

′ (ti )(1− t2
i )]}2

. (31.48)

For the spherical case, the matrix � =∑
i uiuT

i . Its
dominant eigenvector e1 points in the direction of the
center of the ui . The e2 is the vector perpendicular to
e1 so that the two-dimensional plane spanned by e1 and
e2 (and the origin) best fits the ui . This continues un-
til e1, · · · , ep−1 is the (p−1)-dimensional hyperplane,
among the collection of all (p−1)-dimensional hyper-
planes that bests fits the data. This latter hyperplane is, of
course, the hyperplane perpendicular to ep. Except for
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0.92

0.90

0.88

0.86

0.84

0.82
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AREa)

κ

ARE
b)

κ

Fig. 31.2a,b Asymptotic efficiency of L1 estimators
relative to least squares estimators for Fisher–von Mises–
Langevin distributions onΩp as a function of κ for (a) p= 2
and (b) p = 3. Horizontal lines are asymptotic limits as
κ →∞.

this slight reinterpretation of the geometric meaning of
the ei , our previous comments about the relationship of
the uncertainties in ĥ to the geometry of the u-points, as
summarized by the eigen-decomposition of � , remain
valid. Indeed the original Stock and Molnar insights
about the uncertainties of tectonic plate reconstructions
were actually in the spherical data context.

Thus, as before, the uncertainties in Â are deter-
mined up to the constant k by the geometry of the
u-points. Only the constant k depends upon the under-
lying data distribution f0 or upon the objective function
ρ. We can define the asymptotic relative efficiency as
in Sect. 31.4.7 without change. Its interpretation (31.39)
also remains valid.

Equation (31.48) implies that we can, as before,
define the asymptotic efficiency of the L1 estimator rel-
ative to the least squares estimator, at the density f0,
as ARE(L1, L2; f0) = k( f0, L2)/k( f0, L1). The inter-
pretation (31.39) remains valid. The constants k( f0, L2)
and k( f0, L1) come from (31.48) using the underlying
density f0 under consideration and ρ0(t) = 2−2t [re-
fer to (31.9)], ψ(t) = 2, for the least squares case, or
ρ0(t) = arccos(t), ψ(t) = (1− t2)

1
2 , for the L1 case. If

f0 is the Fisher–von Mises–Langevin density (31.47) on
Ωp (which we will denote by Fκ,p in the following)

ARE(L1, L2; Fκ,p)

=
[∫ 1
−1 eκt(1− t2)(p−2)/2 dt

]2

[∫ 1
−1 eκt(1− t2)(p−1)/2 dt

]

×
1[∫ 1

−1 eκt(1− t2)(p−3)/2 dt
] . (31.49)

As κ→∞, the limit of (31.49) is

limκ→∞ARE(L1, L2; Fκ,p)

= 2Γ 2(p/2)

(p−1)Γ 2[(p−1)/2] . (31.50)

Comparing (31.40) with (31.50), we see that (31.50)
is the same as (31.40) with p replaced by p−1. This
is as expected because, as noted above, for large κ

the Fisher–von Mises–Langevin distribution approaches
a (p−1)-dimensional multivariate normal distribution.
Figure 31.2 gives a graph of ARE(L1, L2; Fκ,p) for
p = 2, 3.

In particular for p= 3, ARE(L1, L2; Fκ, 3)→ π/4.
For the Fisher–von-Mises–Langevin distribution, least
squares methods are optimal. Nevertheless, in standard
error terms, the penalty for using L1 methods is at
most 13%.
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31.5 Diagnostics

We discuss in this section influence function diagnostics
for the Procrustes model. Suppose the registration pro-
vided by the estimates (Â, γ̂ , b̂) is unsatisfactory. These
diagnostics will determine which points are influential
for the estimated orthogonal matrix Â, which points are
influential for the estimated scale change γ̂ , and which
are influential for the estimated translation b̂.

31.5.1 Influence Diagnostics
in Simple Linear Regression

As background discussion, we consider first the simple
linear regression model

yi = α+βxi + error , (31.51)

where xi , yi ∈ R
1. For simplicity, we will assume∑

i xi = 0. This can be accomplished by a centering
transformation similar to that used in (31.29).

For the model (31.51), the least squares estimates
are

α̂= y ,

β̂ =
(
∑

i

x2
i

)−1 (∑

i

xi yi

)
. (31.52)

Suppose we delete the i-th observation (xi , yi ) and
recompute the estimates (31.52). The resulting estimates
would be [see Cook and Weisberg [31.12], (3.4.6)]

α̂(i) = α̂− (1−vii )
−1 ei

n
,

β̂(i) = β̂− (1−vii)
−1 xiei∑

k x2
k

, (31.53)

where

ei = yi − α̂− β̂xi

is the residual, and

vii = 1

n
+ x2

i∑
k x2

k

is the i-th diagonal entry of the so-called hat matrix. It
can be shown that

0 ≤ vii ≤ 1 ,
∑

i

vii = 2 . (31.54)

If |xi | is big, 1−vii can be close to zero, although
because of (31.54), if n is large, this will usually not

be the case. Ignoring the factor of (1−vii )−1, it follows
from (31.53) that deletion of (xi , yi ) will be influential
for α̂ when the magnitude of the residual |ei | is big.
Deletion of (xi , yi ) will be influential for β̂ when both
|xi | and |ei | are big. Points with large values of |xi | [typ-
ically, due to (31.54), |xi |> 4

n ] are called high-leverage
points, whereas points with large values of |ei | are called
outliers. (Recall we have centered the data so that x = 0.)

Thus influence on α̂ and on β̂ are different. Outliers
are influential for α̂, whereas influence for β̂ is a combi-
nation of being an outlier and having high leverage. For
the model (31.51) with the least squares estimators, the
influence function works out to be

IF [ α̂; (xi , yi )] = yi −α−βxi

n
, (31.55)

IF
[
β̂; (xi , yi )

]= xi (yi −α−βxi )∑
k x2

k

, (31.56)

where α and β are the ‘true’ population values in the
model (31.51). We will not give a formal definition of the
influence function here, but refer the reader to Cook and
Weisberg [31.12] for a more comprehensive discussion
of the influence function in the regression model.

It should be noted tthat to actually calculate (31.55)
and (31.56) from a sample, it is necessary to estimate α

andβ. Thus, even though in the left-hand sides of (31.55)
and (31.56), α̂ and β̂ are least squares estimates, we
should substitute in the right-hand sides of (31.55) and
(31.56) better estimates, if available, of α and β. There
is no contradiction in using L1 estimates to estimate the
influence function of the least squares estimators.

31.5.2 Influence Diagnostics
for the Procrustes Model

Chang and Ko [31.3] calculated the standardized in-
fluence functions (SIF) for M-estimates (31.13) in the
Procrustes model (31.29). (The influence functions of
the estimates Â and β̂ are vectors; the standardization
calculates their square length in some metric.) Using
their notation

||SIF
[
β̂; (ui, vi )

] ||2 = kIψ(si )
2 , (31.57)

where si = ||vi −γA(ui −u)−β|| and ψ(s) = ρ
′
0(s).

Therefore

• the influence of (ui , vi ) on the estimate β̂ of the
translation parameter depends only upon the length
si of the residual.
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This behavior is similar to that of simple linear regres-
sion (31.55). The constant kI is given by

kI = pE[g′ (s)2]
E2[ψ ′ (s)+ (p−1)ψ(s)s−1] ,

where g(s) = log f0(s) and f0(s) is defined in
Sect. 31.4.3.

For the scale parameter γ , let � = n−1 ∑
i (ui −

u)(ui −u)T. Then

||SIF [ γ̂ ; (ui , vi )] ||2 = kIψ(si )2

Tr(� )

[
wT

i A(ui −u)
]2

.

(31.58)

Here

wi = [vi −γA(ui −u)−β] /si .

Notice that vi −γA(ui −u)−β is the residual of the i-th
data point and si is its length. Thus wi is a unit-length
vector in the direction of the i-th data point. We conclude

• For a given length si of residual, a point (ui , vi )
will be influential for the estimate γ̂ of the scale
parameter if ui is far from the center u of the data
and if its residual is parallel to A(ui −u).

For simplicity, we restrict the formulas of influence
on the estimate of the orthogonal matrix A to the cases
p = 2, 3. For p = 2,

||SIF
[
Â; (ui, vi )

] ||2 = kIψ(si )2

Tr(� )
||wi

× [A(ui −u)]||2 . (31.59)

The product on the right-hand side of (31.59) is the
vector ‘cross’ product. Therefore

• For p = 2, for a given length si of residual, a point
(ui , vi ) will be influential for the estimate Â of the
orthogonal matrix if ui is far from the center u of the
data and if its residual is perpendicular to A(ui −u).
Thus points which are influential for Â will not be
influential for γ̂ , and vice versa. Indeed

||SIF [ γ̂ ; (ui, vi )]
∣∣∣∣2+||SIF

[
Â; (ui, vi )

] ∣∣∣∣2

= kIψ(si )2

Tr(� )
||ui −u||2 .

For p = 3, let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of
Σ and let e1, e2, e3 be the corresponding eigenvectors.
Write

wi ×

(
A

ui −u
||ui −u||

)
= x1Ae1+ x2Ae2+ x3Ae3 .

Then

SIF
[
Â; (ui , vi )

]= kIψ(si )
2||ui −u||2

×

(
x2

1

λ2+λ3
+ x2

2

λ3+λ1
+ x2

3

λ1+λ2

)
. (31.60)

It follows

• For p = 3, for a given length si of residual and dis-
tance ||ui −u|| of ui from the center of the data,
a point (ui , vi ) will be maximally influential for the
estimate Â of the orthogonal matrix if both ui −u is
perpendicular to the dominant eigenvector e1 of �

and the residual

wi =±A
(

ui −u
||ui −u|| × e1

)
.

• The influence of (ui , vi ) on Â will be zero if

wi =±A
(

ui −u
||ui −u||

)
.

• The maximum influence of the data on the estimate
Â of the orthogonal matrix can be minimized for
fixed Tr(� ) by making λ1 = λ2 = λ3. Thus the opti-
mal choice of landmarks would make the landmarks
spherically symmetric around the center point u.

31.5.3 Example:
Influence for the Hands Data

For the Procrustes model (31.29) and the hands data, we
compare here the influence statistics for the least squares
estimates

(
Â2, γ̂2, β̂2

)
[given in (31.20) and (31.33)] to

those for the the L1 estimates
(
Â1, γ̂1, β̂1

)
[in (31.34)].

These estimates correspond to ψ2(s) = s and ψ1(s) = 1
respectively. In the right-hand sides of (31.57), (31.58),
and (31.60), we substituted si = ||vi − γ̂1Â1(ui −u)−
β̂1|| to calculate the influence functions for both the
L1 and least squares estimates. Similarly the wi were
calculated using the L1 estimates. Furthermore when
(31.57), (31.58), and (31.60) were calculated for the i-th
observation (ui , vi ), ui was not used to calculate � .

Using (31.57),
∣∣∣∣SIF

[
β̂2; (ui , vi )

] ∣∣∣∣2 ∝ s2
i ,

∣∣∣∣SIF
[
β̂1; (ui , vi )

] ∣∣∣∣2 ∝ 1 ,

so that E (top of thumb), followed by H (base of palm),
are the most influential for β̂2. All points are equally
influential for β̂1.
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In what follows we will be interested in determining
which data points are most influential for which esti-
mates. In other words we will be interested in the relative
values of ||SIF||2. Thus, for each estimator, we renor-
malized the values of ||SIF||2 so that their sum (over the
12 data points) equals 1. The results, together with the
values of si , are shown in Fig. 31.3.

We have from (31.58) and (31.60)

||SIF [̂γ2; (ui , vi )] ||2 ∝ s2
i

[
wT

i A(ui −u)
]2

,

||SIF [̂γ1; (ui , vi )] ||2 ∝
[
wT

i A(ui −u)
]2

,
∣∣∣∣SIF

[
Â2; (ui, vi )

] ||2 ∝ s2
i

∣∣∣∣ui −u||2
(

x2
1

λ2+λ3
+ x2

2

λ3+λ1
+ x2

3

λ1+λ2

)
,

∣∣∣∣SIF
[
Â1; (ui, vi )

] ||2 ∝ ∣∣∣∣ui −u||2
(

x2
1

λ2+λ3
+ x2

2

λ3+λ1
+ x2

3

λ1+λ2

)
,

wi ×

[
Â1

ui −u
||ui −u||

]
= x1Â1e1+ x2Â1e2+ x3Â1e3 .

Examining Fig. 31.3, we see that point E is by far
the most influential point for Â. Its relative influence
however can be somewhat diminished by using L1 esti-
mates. The value of ||uE−u|| is also the largest of the
||ui −u||. It turns out that uE−u makes an angle of 13◦
with e2 and that the unit length wE makes an angle of
12◦ with Â1e3. Thus x1 will be relatively big and x2, x3
relatively small. This accounts for the strong influence
of point E on both estimates of A. Notice that sE and
||uE−u|| are sufficiently big that, despite the directions
of wE and Â1(uE−u), E is still fairly influential for γ̂2.
However, its influence on γ̂1, which does not depend
upon sE, is quite small.

The point H (base of the palm) is the most influ-
ential point for γ̂ . H is perhaps the least well-defined
point so that it is not surprising that its residual length
sH is relatively big. It also defines the length of the
hand, so that its influence on γ̂ is not surprising. In-
deed if H were completely deleted, γ̂2 would change
from 0.9925 to 1.0110 and γ̂1 changes from 1.0086
to 1.0262.

One might think that C (top of the middle finger)
would also be influential for γ̂ . In a coordinate system
of the eigenvectors of � ,

uH−u=
[
−3.98 1.15 0.33

]T

uC−u=
[

3.55 −0.77 −0.03
]T

so that uH−u≈−(uC−u). It is useful here to remember
that e1 is approximately in the direction of the length of
the left hand. Furthermore sC and sH are reasonably
close.

However Fig. 31.3 indicates that C has negligible
influence on both estimates of γ . Indeed if C were com-
pletely deleted, γ̂2 would only change from 0.9925 to
0.9895 and γ̂1 change from 1.0086 to 1.0047. These
changes are much smaller than those caused by the
deletion of H.

The difference is that Â1(uC−u) makes an angle
of 88◦ with wC. In other words Â1(uC−u) and wC
are very close to perpendicular (Perhaps the close to
perpendicularity of the residual at C to Â1(uC−u) is to
be expected. The uncertainty in locating C is roughly
tangential to the middle finger tip.) Hence the influence
of C on γ̂ is negligible.

On the other hand, Â1(uH−u) makes an angle of
124◦ with wH. This accounts for the greater influence
of H.

Thus if the registration between the two hands is
unsatisfactory in either the translation or rotation param-
eters, point E should be inspected. If it is unsatisfactory
in the scale change, point H should be checked.

0.6

0.4

0.2

0.0

Square influence on γ̂

Square influence on Â
0.0 0.2 0.4 0.6

si

Aa 0.478
Bb 0.383
Cc 0.642
Dd 0.436
Ee 1.086
Ff 0.029
Gg 0.072
Hh 0.716
Ii 0.363
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Kk 0.457
Ll 0.363
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Fig. 31.3 Relative influence of hands data points on least
squares (upper case) and L1 estimates (lower case) of γ

and A
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Statistical Gen32. Statistical Genetics for Genomic Data Analysis

In this chapter, we briefly summarize the
emerging statistical concepts and approaches that
have been recently developed and applied to
the analysis of genomic data such as microarray
gene expression data. In the first section we
introduce the general background and critical
issues in statistical sciences for genomic data
analysis. The second section describes a novel
concept of statistical significance, the so-called
false discovery rate, the rate of false positives
among all positive findings, which has been
suggested to control the error rate of numerous
false positives in large screening biological data
analysis. In the next section we introduce two
recent statistical testing methods: significance
analysis of microarray (SAM) and local pooled
error (LPE) tests. The latter in particular, which
is significantly strengthened by pooling error
information from adjacent genes at local intensity
ranges, is useful to analyze microarray data
with limited replication. The fourth section
introduces analysis of variation (ANOVA) and
heterogenous error modeling (HEM) approaches
that have been suggested for analyzing microarray
data obtained from multiple experimental
and/or biological conditions. The last two
sections describe data exploration and discovery
tools largely termed supervised learning and
unsupervised learning. The former approaches
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include several multivariate statistical methods
for the investigation of coexpression patterns of
multiple genes, and the latter approaches are
used as classification methods to discover genetic
markers for predicting important subclasses of
human diseases. Most of the statistical software
packages for the approaches introduced in this
chapter are freely available at the open-source
bioinformatics software web site (Bioconductor;
http://www.bioconductor.org/).

Accelerated by the Human Genome Project, recent
advances in high-throughput biotechnologies have dra-
matically changed the horizon of biological and
biomedical sciences. Large screening expression pro-
filing techniques such as DNA microarrays, mass
spectrometry, and protein chips offer great promise for
functional genomics and proteomics research, and have
the potential to transform the diagnosis and treatment
of human diseases [32.1]. In particular, DNA microar-
ray and GeneChipTMgene expression approaches are
becoming increasingly important in current biomedical
studies [32.2–4].

Analysis of such genome-wide data, however, has
brought extreme challenges not only in the biological
sciences but also in the statistical sciences. Fundamen-
tal difficulties exist in applying traditional statistical
approaches to genome-wide expression data, namely
the multiple comparisons issue and the small n–large
p problem [32.5]. The former problem arises because
classical statistical hypothesis testing, modeling, and
inference strategies are designed for studying a small
number of candidate targets at a time, whereas one of-
ten investigates tens of thousands of genes’ differential
expression in a single microarray study. For example,
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when a two-sample t-test is applied for evaluating sta-
tistical significance of thousands of genes’ differential
expression patterns in a microarray study, the p-values
obtained from this within-gene test must be adjusted to
take into account the random chance of all the candidate
genes in the array data.

The latter difficulty, the small n–large p problem,
arises due to the fact that many biological and biomed-
ical microarray studies are performed with a small
number of replicated arrays, or without replication.
Unlike DNA sequence information, gene expression
data are context-dependent and offer different inter-
pretations depending on (patient) sample condition,
time point, and treatment for a single subject [32.6].
In addition to the high costs of microarray experi-
ments, certain biological or human patient specimens
are often limited, thereby necessitating that microarray
studies be performed with limited replication. Con-
sequently, one must perform statistical inference on
a small number of observations (n) compared to a large
number of potential predictor genes (p). The latter
number of tens of thousands of genes is simply too
large to be considered in standard statistical testing
and modeling, whereas the sample size (or number
of replicated arrays at each condition) of a microar-
ray study is typically small, a few tens at most and
often only one or two replicates. This presents great
difficulty for the application of traditional statistical ap-
proaches, which generally require a reasonably large
sample size for maximal performance. As microar-
ray (and similar high-throughput) technology becomes
an important tool in biological and biomedical inves-
tigation, the lack of appropriate statistical methods
for large screening microarray data will undoubtedly
become a great obstacle in the current biological sci-
ences. In this chapter, we will briefly summarize the
statistical approaches that have been applied to microar-

ray gene expression data analysis by avoiding these
pitfalls.

We also introduce several multivariate statistical
methods that have been used to investigate the coreg-
ulation structures of multiple genes as unsupervised
learning and to discover genetic markers for predicting
important subclasses of human diseases and biological
targets as supervised learning. In particular, clustering
approaches have been widely applied to the analysis
of gene expression microarray data. The method of vi-
sualizing gene expression data based on cluster order,
so-called cluster-image map (CIM) analysis, is found
to be very efficient in summarizing the thousands of
gene expression values and aiding in the identification of
some interesting patterns of gene expression [32.3,7,8].
Since a clustering algorithm provides an efficient di-
mension reduction for extremely high-dimensional data
based on their association, it is much easier to simul-
taneously screen thousands of gene expression values
and to identify interesting patterns on the image maps.
The statistical software packages for most of these
approaches are freely available at the open-source
bioinformatics development web site (Bioconductor;
http://www.bioconductor.org/).

We note that this kind of microarray data analysis
is implemented based on certain standard preprocess-
ing procedures. Suppose we have gene expression data
with n genes and p arrays. A matrix of this gene ex-
pression data is defined by Yn×p with n rows and p
columns. The data are then typically log2-transformed
to remedy the right-skewed distribution, to make er-
ror components additive, and to aplly other statistical
procedures that are based on underlying Gaussian dis-
tributional assumptions. Each column of the matrix (or
each array) is scaled or normalized to a common baseline
by matching interquartile ranges or by nonparametric
regression methods, e.g., lowess.

32.1 False Discovery Rate

In order to avoid a large number of false positive findings
(or type I errors) in genomic data analysis, the classical
family-wise error rate (FWER) has initially been used
to control for the random chance of multiple candidates
by evaluating the probability that at most one false pos-
itive is included at a cutoff level of a statistic [32.9].
However, FWER adjustment has been found to be very
conservative in microarray studies, resulting in a high
false-negative error rate [32.10]. To avoid pitfalls such

as this, a novel statistical significance concept, the so-
called false discovery rate (FDR) and its refinement,
the q-value, have been suggested [32.11, 12] (qvalue
package at Bioconductor). FDR is defined as follows.
Consider a family of m simultaneously tested null hy-
potheses of which m0 are true. For each hypothesis Hi
a test statistic is calculated along with the corresponding
p-value, Pi . Let R denote the number of hypotheses
rejected by a procedure, V the number of true null
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hypotheses erroneously rejected, and S the number of
false hypotheses rejected as summarized in Table 32.1.
Now let Q denote V/R when R > 0 and 0 otherwise.
Then the FDR is defined as the expectation of Q, i. e.
FDR= E(Q).

As shown in [32.11], the FDR of a multiple com-
parison procedure is always smaller than or equal to
the FWER, where equality holds if all null hypotheses
are true. Thus, control of the FDR implies control of
the FWER only when all null hypotheses are true, but
it generally controls such an error rate much less con-
servatively than FWER because there exist quite a few
true positives in practical data analysis. In the context
of gene expression analysis, this result means that, if
FDR is controlled at some level q, then the probabil-
ity of erroneously detecting any differentially expressed
genes among all genes identified by a certain selection

Table 32.1 Outcomes when testing m hypotheses

Hypothesis Accept Reject Total

Null true U V m0

Alternative true T S m1

Total W R m

criterion is less than or equal to q. Intuitively, FDR con-
trols the expected proportion of false positives among
all candidate genes identified significantly by a test-
ing criterion. Therefore, based on FDR, researchers can
now assess their statistical confidence among the iden-
tified targets with a much smaller false-negative error
rate. FDR evaluation has been rapidly adopted for mi-
croarray data analysis including the significance analysis
of microarrays (SAM) and local pooled error (LPE)
approaches [32.9, 10, 13].

32.2 Statistical Tests for Genomic Data

Each gene’s differential expression pattern in a mi-
croarray experiment is usually assessed by (typically
pairwise) contrasts of mean expression values among
experimental conditions. Such comparisons have been
routinely assessed as fold changes whereby genes with
greater than two or three fold changes are selected for
further investigation. It has been frequently found that
a gene showing a high fold-change between experi-
mental conditions might also exhibit high variability
and hence its differential expression may not be sig-
nificant. Similarly, a modest change in gene expression
may be significant if its differential expression pattern is
highly reproducible. A number of authors have pointed
out this fundamental flaw in the fold-change-based ap-
proach [32.14]. In order to assess differential expression
in a way that controls both false positives and false
negatives, a standard approach is emerging based on sta-
tistical significance and hypothesis testing, with careful
attention paid to the reliability of variance estimates and
multiple comparison issues.

The classical two-sample t-statistic has initially been
used for testing each gene’s differential expression; pro-
cedures such as the Westfall–Young step-down method
have been suggested to control FWER [32.9]. These t-
test procedures, however, rely on reasonable estimates
of reproducibility or within-gene error to be constructed,
requiring a large number of replicated arrays. When
a small number of replicates are available per condition,
e.g. duplicate or triplicate, the use of naive, within-
gene estimates of variability does not provide a reliable

hypothesis-testing framework. For example, a gene may
have very similar differential expression values in du-
plicate experiments by chance alone. This can lead to
inflated signal-to-noise ratios for genes with low but
similar expression values. Furthermore, the comparison
of means can be misled by outliers with dramatically
smaller or bigger expression intensities than other repli-
cates. As such, error estimates constructed solely within
genes may result in underpowered tests for differential
expression comparisons and also result in large numbers
of false positives.

A number of approaches to improving estimates of
variability and statistical tests of differential expression
have thus recently emerged. Several variance func-
tion methods have been proposed. Reference [32.15]
suggested a simple regression estimation of local
variances; [32.16] used a smoothing-spline pooled-
error method by regressing standard error estimates
on the mean log intensities; and [32.17] estimates
a two-parameter variance function of mean expres-
sion intensity. Reference [32.18] compared some of
these variance-estimation methods. Recently, [32.19]
suggested the use of data-adapted robust estimate of ar-
ray error based on a smoothing spline and standardized
local median absolute deviation (MAD). The vari-
ance function methods described above borrow strength
across genes in order to improve reliability of variance
estimates in differential expression tests. This is con-
ceptually similar to the SAM method of [32.10] and
the empirical Bayes methods of [32.20] and [32.21].
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These methods also shrink the within-gene variance es-
timate towards an estimate including more genes, and
construct signal-to-noise ratios using the shrunken vari-
ance in a similar fashion to the local-pooled-error (LPE)
test described below.

The local-pooled-error (LPE) estimation strategy
has also been introduced for within-gene expression er-
ror, whereby variance estimates for genes are formed
by pooling variance estimates for genes with simi-
lar expression intensities from replicated arrays within
experimental conditions [32.13]. The LPE approach
leverages the observations that genes with similar
expression intensity values often show similar array-
experimental variability within experimental conditions;
and that variance of individual gene expression mea-
surements within experimental conditions typically
decreases as a (nonlinear) function of intensity [32.5,22].
The LPE approach handles the situation where a gene
with low expression may have very low variance by
chance and the resulting signal-to-noise ratio is un-
realistically large. The pooling of errors within local
intensities shrinks such variances to the variance of
genes with similar intensities. In this chapter, two re-
cent statistical testing procedures – SAM and LPE –
are described in more detail while many classical test-
ing and p-value adjustment strategies can be found
elsewhere [32.9].

32.2.1 Significance Analysis of Microarrays

The significance analysis of microarrays (SAM) ap-
proach is based on analysis of random fluctuations in
the data [32.10] (siggenes package at Bioconductor).
Based on the observation that the signal-to-noise ratio
decreases with decreasing gene expression, as shown
in [32.13], fluctuations are considered to be gene spe-
cific even for a given level of expression in [32.10]. To
account for gene-specific fluctuations, a statistic is de-
fined based on the ratio of change in gene expression to
standard deviation in the data for that gene. The relative
difference d(i) in gene expression is:

d(i) = x̄ I (i)− x̄U (i)

s(i)+ s0
, (32.1)

where xI (i) and xU (i) are defined as the average levels
of expression for gene (i) in states I and U , respectively.
The gene-specific scatter s(i) is the standard deviation
of repeated expression measurements:

s(i)=
√

a
{∑

m

[xm(i)−x̄ I (i)]2+
∑

n

[xn(i)−x̄U (i)]2
}
,

(32.2)

where
∑

m and
∑

n are summations of the expres-
sion measurements in states I and U , respectively,
a = (1/n1+1/n2)/(n1+n2−2), and n1 and n2 are the
numbers of measurements in states I and U . To compare
values of d(i) across all genes, the distribution of d(i)
is assumed to be independent of the level of gene ex-
pression. At low expression levels, variance in d(i) can
be high because of small values of s(i). To ensure that
the variance of d(i) is independent of gene expression,
a small positive constant s0 is added to the denominator
of (32.1). The coefficient of variation of d(i) is com-
puted as a function of s(i) in moving windows across
the data. The value for s0 was chosen to minimize the
coefficient of variation.

32.2.2 The Local-Pooled-Error Test

The local-pooled-error (LPE) method has been in-
troduced specifically for analysis of small-sample
microarray data, whereby error variance estimates for
genes are formed by pooling variance estimates for
genes with similar expression intensities from replicated
arrays within experimental conditions [32.13] (LPE
package at Bioconductor). The LPE approach lever-
ages the observations that genes with similar expression
intensity values often show similar array-experimental
variability within experimental conditions; and that
variance of individual gene-expression measurements
within experimental conditions typically decreases as a
(nonlinear) function of intensity, as shown in Fig. 32.1.
This is due, in part, to common background noise at
each spot of the microarray. At high levels of expression
intensity, this background noise is dominated by the ex-
pression intensity, while at low levels the background
noise is a larger component of the observed expression
intensity. The LPE approach controls the situation where
a gene with low expression may have very low variance
by chance and the resulting signal-to-noise ratio is un-
realistically large. The LPE method borrows strength
across genes in order to improve accuracy of error vari-
ance estimation in microarray data. This is conceptually
similar to the SAM method above and the empirical
Bayes methods of [32.20], which shrink the within-gene
variance estimate towards an estimate including more
genes in a similar fashion to LPE.

To take into account heterogeneous error variability
across different intensity ranges in microarray data, the
LPE method can be applied as follows (refer to [32.13]
for a more detailed technical description). For oligo
array data, let xijk be the observed expression inten-
sity at gene j for array k and sample i. For duplicate

Part
D

3
2
.2



Statistical Genetics for Genomic Data Analysis 32.2 Statistical Tests for Genomic Data 595

arrays, k = 1, 2, plots of A = log 2(xij1 xij2 )/2 versus
M = log 2(xij1/xij2 ), j = 1, . . . , J , can facilitate the in-
vestigation of between-duplicate variability in terms of
overall intensity. The A versus M (or AM) plot provides
a very raw look at the data and is useful in detecting
outliers and patterns of intensity variation as a function
of mean intensity [32.9]. At each of the local intensity
regions of the AM plot under a particular biological
condition, the unbiased estimate of the local variance is
obtained. A cubic spline is then fit to these local variance
estimates to obtain a smoothing variance function. The
optimal choice of the effective degree of freedom d fλ
of the fitted smoothing spline is obtained by minimizing
the expected squared prediction error. This two-stage
error estimation approach – estimation of the error of
M within quantiles and then nonparametric smoothing
on these estimates – is used because direct nonparamet-
ric estimation often leads to unrealistic (small or large)
estimates of error when only a small numbers of obser-
vations are available at a fixed-width intensity range.
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Fig. 32.1a–c Log intensity ratio log2
Xij1
Xij2

(M) as a function of average gene expression log2
√

xij1xij2 (A). The top row
of panels (a), (b) and (c) represent local pooled error (LPE) for naive, 48 h activated, and T-cell clone D4 conditions,
respectively, in the mouse immune-response microarray study in [32.13]. Variance estimates in percentile intervals are
shown as points, and a smoothed curve superimposing these points is also shown. The bottom row of panels represent the
corresponding M-versus-A graphs. The horizontal line represents identical expression between replicates

Based on the LPE estimation above, statistical sig-
nificance of the LPE-based test is evaluated as follows.
First, each gene’s medians under the two compared con-
ditions are calculated to avoid artifacts from outliers.
The approximate normality of medians can be assumed
with a small number of replicates based on the fact that
the individual log-intensity values within a local inten-
sity range follow a normal distribution [32.13]. The LPE
statistic for the median (log-intensity) difference z is
then calculated as:

z = (m1−m2)/spooled , (32.3)

where m1 and m2 are the median intensities in
two the compared array-experimental conditions X
and Y , and spooled is the pooled standard error,[
s2

x (m1)/n1+ s2
y(m2)/n2

]1/2 from the LPE-estimated
baseline variances of s2

x and s2
y. The LPE approach

shows a significantly better performance than two-
sample t-test, SAM, and Westfall–Young permutation
tests, especially when the number of replicates is smaller
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than ten. In a simulation study from a Gaussian distribu-
tion without extreme outliers, the LPE method showed

a significant improvement of statistical power with three
and five replicates (see Figure 2 in [32.13]).

32.3 Statistical Modeling for Genomic Data

Microarray gene-expression studies are also frequently
performed for comparing complex, multiple biologi-
cal conditions and pathways. Several linear modeling
approaches have been introduced for analyzing micro-
array data with multiple conditions. Reference [32.23]
considered an analysis of variance (ANOVA) model
to capture the effects of dye, array, gene, condition,
array–gene interaction, and condition–gene interaction
separately on cDNA microarray data, and [32.24] pro-
posed a two-stage mixed model that first models cDNA
microarray data with the effects of array, condition, and
condition–array interaction, and then fits the residuals
with the effects of gene, gene–condition interaction,
and gene–array interaction. Several approaches have
also been developed under the Bayesian paradigm
for analyzing microarray data including: the Bayesian
parametric modeling [32.25], the Bayesian regularized
t-test [32.21], the Bayesian hierarchical modeling with
a multivariate normal prior [32.26], and the Bayesian
heterogeneous error model (HEM) with two error com-
ponents [32.27]. The ANOVA and HEM approaches are
introduced in this chapter.

32.3.1 ANOVA Modeling

Reference [32.23] first suggested the use of analysis
of variance (ANOVA) models to both estimate relative
gene expression and to account for other sources of vari-
ation in microarray data. Even though the exact form
of the ANOVA model depends on the particular data
set, a typical ANOVA model for two-color-based cDNA
microarray data can be defined as

yijkg = µ+ Ai +D j +Vk +Gg+ (AD)ij

+ (AG)ig+ (DG)ig+ (VG)kg+ εijkg ,

(32.4)

where yijkg is the measured intensity from array i, dye
j, variety k, and gene g on an appropriate scale (typ-
ically the log scale). The generic term variety is often
used to refer to the mRNA samples under study, such
as treatment and control samples, cancer and normal
cells, or time points of a biological process. The terms
A, D, and AD account for all effects that are not gene-
specific. The gene effects Gg capture the average levels

of expression for genes and the array-by-gene interac-
tions (AG)ig capture differences due to varying sizes of
spots on arrays. The dye-by-gene interactions (DG) jg
represent gene-specific dye effects. None of the above
effects are of biological interest, but amount to a nor-
malization of the data for ancillary sources of variation.
The effects of primary interest are the interactions be-
tween genes and varieties, (VG)kg. These terms capture
differences from overall averages that are attributable to
the specific combination of variety k and gene g. Differ-
ences among these variety-by-gene interactions provide
the estimates for the relative expression of gene g in
varieties 1 and 2 by

(VG)1g− (VG)2g .

Note that AV , DV , and other higher-order interaction
terms are typically assumed to be negligible and con-
sidered together with the error terms. The error terms
εijkg are often assumed to be independent with mean
zero and variance σ2. However, such a global ANOVA
model is difficult to implement in practice due to its
computational restriction. Instead, one often considers
gene-by-gene ANOVA models like:

yijkg = µg+ Ai +D j +Vk

+ (AD)ij + (VG)kg+ εijkg . (32.5)

Alternatively, a two-stage ANOVA model is used [32.24].
The first layer is for the main effects that are not specific
to the gene

yijkg = µ+ Ai +D j +Vk

+ (AD)ij + (AG)ig+ εijkg . (32.6)

Let rijkg be the residuals from this first ANOVA fit.
Then, the second-layer ANOVA model for gene-specific
effects is considered as

rijkg = Gg++(AG)ig+ (DG)ig+ (VG)kg+νijkg .

(32.7)

Except the main effects of G and V and their interaction
effects, the other terms A, D, (AD), (AG), and (DG)
can be considered as random effects. These within-
gene ANOVA models can be implemented using most
standard statistical packages, such as R, SAS, or SPSS.
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32.3.2 The Heterogeneous Error Model

Similarly to the statistical tests for comparing two
sample conditions, the above within-gene ANOVA mod-
eling methods are underpowered and have inaccurate
error estimation in microarray data with limited repli-
cation. Using a Bayesian hierarchical approach with
LPE-based (or error-pooling) empirical Bayes prior
constructions, [32.27] have constructed a heteroge-
neous error model (HEM) with two layers of error
to decompose the total error variability into the tech-
nical and biological error components in microarray
data (HEM package at Bioconductor). Utilizing the
LPE-estimated error-distribution information of mi-
croarray data for its empirical Bayes prior specifications,
this modeling strategy provides separate estimates of
the technical and biological error components in mi-
croarray data, especially the former error component,
significantly more accurately. The first layer is con-
structed to capture the array technical variation due
to many experimental error components, such as sam-
ple preparation, labeling, hybridization, and image
processing

yijkl = xijk + εijkl , where

εijkl ∼ iid Normal
[
0, σ2

ε (xijk)
]
, (32.8)

where i = 1, 2, . . . , G; j = 1, 2, . . . , C; k = 1, 2,
. . . , mij ; l = 1, 2, . . . ,nijk, and iid means independently
and identically distributed. The second layer is then hi-
erarchically constructed to capture the biological error
component:

xijk = µ+ gi + c j +rij +bijk , where

bijk iid Normal
[
0, σ2

b (ij)
]
. (32.9)

Here, the genetic parameters are for the grand mean
(shift or scaling) constant, gene, cell, interaction ef-
fects, and the biological error; the last error term
varies and is heterogeneous for each combination of
different genes and conditions. Note that the biolog-
ical variability is individually assessed for discovery
of biologically relevant expression patterns in this
approach.

Bayesian posterior estimates and distributions are
quite dependent on their prior specifications when the
sample size is small in a microarray study. This diffi-
culty in Bayesian applications to microarray data has
been well-recognized and several authors have sug-
gested the use of more-informative empirical Bayes

priors [32.28, 29]. In these studies, empirical Bayes
(EB) priors are used for defining distributions of genes
with different expression patterns, e.g., distributions for
equivalently and differentially expressed genes. Such
specifications would be useful to determine each gene’s
expression pattern when the number of different ex-
pression patterns is small. However, as the number
of conditions increases, the number of expression pat-
terns increases exponentially, and these EB approaches
quickly become impractical; many of these prior distri-
butions also become unidentifiable. Conversely, the EB
priors in HEM are used for specification of the two lay-
ers of error – technical and biological errors – which can
be directly observed from each array data set, and can
also be reliably estimated by the LPE method, pooling
information from the genes with similar expression in-
tensity. Thus, a nonparametric EB prior for the technical
error σ2(xijk) that is estimated by the LPE method and
sampled by bootstrapping at each intensity xijk, whereas
a parametric EB prior, Gamma (α, βij ) is used because
this error should freely vary to reflect the actual sam-
pling variability of different biological subjects. Using
these error-pooling-based prior specifications, HEM has
demonstrated its improved performance in small sample
microarray data analysis both in simulated and practical
microarray data, see Fig. 32.2.
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ANOVA

Fig. 32.2 ROC curves from HEM (solid lines) and ANOVA
(dotted lines) models with two and five replicated arrays;
The horizontal axis is 1−FPR = 1−Pr(positive|negative)
and the vertical axis is 1−FNR= 1−Pr(negative|positive)
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32.4 Unsupervised Learning: Clustering

Clustering analysis is widely applied to search for
the groups (clusters) in microarray data because these
techniques can effectively reduce the high-dimensional
gene-expression data into a two-dimensional dendro-
gram organized by each gene’s expression-association
patterns. These clustering approaches first need to be
defined by a measure or distance index of similarity or
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Fig. 32.3 Clustered image maps (CIMs) for hierarchical clustering of the cDNA and oligo array expression patterns.
Each gene expression pattern is designated as coming from the cDNA or oligo array set. A region of CIM occupied by
melanoma genes from the combined set of 3297 oligo and cDNA transcripts [32.3]

dissimilarity such as

• Euclidean: d(x, y) =∑
k(xk − yk)2 ;• Manhattan: d(x, y) =∑ |xk − yk| ;• Correlation: d(x, y) = 1− r(x, y), where r(x, y) is

the Pearson or Spearman sample-correlation coeffi-
cient.
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Note that if x and y are standardized, i. e., subtracted by
each mean and divided by each standard deviation, then
Euclidean and correlation distances can be easily shown
to be mathematically equivalent:

∑

k

(xk − yk)2 =
∑

k

(
x2

k + y2
k −2xk yk

)

= 2

(
1−

∑

k

xk yk

)

= 2[1−r(x, y)] .
Two classes of clustering algorithms have been used
in genomic data analysis. The first class of clus-
tering algorithms is based on hierarchical allocation
including

1. Agglomerative methods:
a) average linkage based on group average dis-

tance [32.3, 7]
b) single linkage based on minimum nearest dis-

tance
c) complete linkage based on maximum furthest

distance.
2. Probability-based clustering: Bayes factor or poste-

rior probability for choosing k clusters
3. Divisive methods: monothetic variable division,

polythetic division

A cluster-image map is shown for the microarray data
of the NCI 60 cancer cell lines in Fig. 32.3.

The second class is the partitioning algorithms that
divide the data into a prespecified number of subsets
including:

1. Self-organizing map: divides the data into a geomet-
rically preset grid structure of subclusters [32.8];

2. Kmeans: iterative relocation clustering into a prede-
fined number of subclusters;

3. Pam (partitioning around medoids) similar to, but
more robust than Kmeans clustering;

4. Clara: clustering for applications to large data sets;
5. Fuzzy algorithm: provide fractions of membership,

rather than deterministic allocations.

One of the most difficult aspects of using these
clustering analyses is to interpret their heuristic, often
unstable clustering results. To overcome this shortcom-
ing, several refined clustering approaches have been
suggested. For example, [32.23] suggest the use of boot-
strapping to evaluate the consistency and confidence of
each gene’s membership to particular cluster groups.
The gene shaving approach has been suggested to find
the clusters directly relevant to major variance directions
of an array data set [32.30]. Recently, tight clustering,
a refined bootstrap-based hierarchical clustering is pro-
posed to formally assess and identify the groups of genes
that are most tightly clustered to each other [32.31].

32.5 Supervised Learning: Classification

Applications of microarray data have received con-
siderable attention in many challenging classification
problems in biomedical research [32.2, 32, 33]. In par-
ticular, such applications have been conducted in cancer
research as alternative diagnostic techniques to the tra-
ditional ones such as classification by the origin of
cancer tissues and/or the microscopic appearance; the
latter are far from satisfaction for the prediction of
many critical human disease subtypes [32.34]. Several
different approaches to microarray classification mod-
eling have been proposed, including gene voting [32.2],
support vector machines (SVMs) [32.35, 36], Bayesian
regression models [32.33], partial least squares [32.37],
genetic-algorithm k-nearest-neighbor (GA/KNN)
method [32.38], and between-group analysis [32.39].

Microarray data often have tens of thousands of
genes on each chip whereas only a few tens of sam-

ples or replicated arrays are available in a microarray
study. Therefore, it is desirable to avoid overfitting
and to find a best subset of the thousands of genes
for constructing classification rules and models that
are robust to different choices of training samples and
provide consistent prediction performance for future
samples. In particular, to avoid inflated evaluation of
prediction performance from a large screening search
on many candidate models, feature selection must be
simultaneously performed with classification model
construction on a training set under a particular classifi-
cation method. Evaluation of prediction performance
should then be carefully conducted among the ex-
tremely large number of competing models, especially
in using appropriate performance selection criteria and
in utilizing the whole data for model training and
evaluation.
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32.5.1 Measures for Classification Model
Performance

Several different measures are currently used to evaluate
the performance of classification models: classifica-
tion error rate, area under the receiver operating
characteristics curve (AUC), and the product of pos-
terior classification probabilities [32.40–42]. However,
when a large number of candidate models, e.g., more
than 108 two-gene models on 10 k array data, are
compared in their performance, these measures are
often quickly saturated; their maximum levels are
achieved by many competing models, so that iden-
tification of the best prediction model among them
is extremely difficult. Furthermore, these measures
cannot capture an important aspect of classification
model performance as follows. Suppose three sam-
ples are classified using two classification models (or
rules). Suppose also that one model provides cor-
rect posterior classification probabilities 0.8, 0.9, and
0.4, and the other 0.8, 0.8, and 0.4 for the three
samples. Assuming these were unbiased estimates of
classification error probabilities (on future data), the
former model would be preferred because this model
will perform better in terms of the expected number
of correctly classified samples in future data. Note
that the two models provide the same misclassifi-
cation error rate, 1/3. This aspect of classification
performance cannot be captured by evaluating the
commonly used error rate or AUC criteria, which
simply add one count for each correctly classified
sample ignoring its degree of classification error
probability.

To overcome this limitation, the so-called mis-
classification penalized posterior (MiPP) criterion has
recently been suggested [32.43]. This measure is the
sum of the correct-classification (posterior) probabili-
ties of correctly classified samples subtracted by the
sum of the misclassification (posterior) probabilities
of misclassified samples. Suppose there are m classes
from populations πi (i = 1, . . . ,m) and a total of
N =∑m

i=1 ni samples. Let Xij , j = 1, . . . , ni , be the
j-th sample vector from the i-th class under a particular
prediction model (e.g., one-gene or two-gene model),
denoted as RM and a rule R, e.g., linear discriminant
analysis (LDA) or SVMs. For sample vector Xij , the
posterior classification probability to be assigned to class
k (under RM) is defined as pk(Xij ) = P

(
Xij ∈ πk|Xij

)
.

(We omit the notation RM for simplicity.) For exam-
ple, pk(Xk j ) is thus the posterior probability of correct
classification for the sample Xk j . MiPP is then defined

as:

ψp =
∑

correct

pk(Xk j )−
∑

wrong

[
1− pk(Xk j )

]
.

(32.10)

Here correct and wrong correspond to the samples
that are correctly and incorrectly classified, respec-
tively. In the two-class problem, correct simply
means pk(Xk j ) > 0.5, but in general, it occurs when
pk(Xk j ) = maxi=1,... ,m[pi (Xk j )].

It can be shown that MiPP is simply the sum of the
posterior probabilities of correct classification penalized
by the number of misclassified samples (NM)

ψp =
∑

correct

pk(Xk j )+
∑

wrong

pk(Xk j )

−
∑

wrong

1 =
∑

pk(Xk j )− NM . (32.11)

That is, MiPP increases as the sum of correct-
classification posterior probabilities increases, as the
number of misclassified samples decreases, or both.
Thus, MiPP is a continuous measure of classification
performance that takes into account both the degree of
classification certainty and the error rate, and is sensitive
enough to distinguish subtle differences in prediction
performance among many competing models. MiPP
can be directly derived from the posterior classification
probabilities of class membership in LDA, quadratic dis-
criminant analysis (QDA), and logistic regression (LR),
but it is slightly differently obtained for SVMs because
they do not directly provide an estimate of posterior
classification probability. In this case, a logit-link-based
estimation can be used to derive a pseudo posterior
classification probabilities as suggested by [32.44].

32.5.2 Classification Modeling

As described above, several classification modeling ap-
proaches are currently used in genomic data analysis.
These approaches often adopt certain cross-validation
techniques, such as leave-one-out or training-and-
validation-set strategies for their modeling search and
fitting.

Gene Voting
Adopting the idea of aggregating power by multiple pre-
dictors, the so-called gene voting classification method
has been proposed for the prediction of subclasses of
acute leukemia patients observed by microarray gene-
expression data [32.2]. This method gains accuracy by
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aggregating predictors built from a learning set and by
casting their voting weights. For binary classification,
each gene casts a vote for class 1 or 2 among p samples,
and the votes are aggregated over genes. For gene g j the
vote is

v j = a j (g j −b j ) ,

where a j = (µ̂1− µ̂2)/(σ̂1+ σ̂2) and b j = (µ̂1+ µ̂2)/2.
Using this method based on 50 gene predictors, [32.2]
has correctly classified 36 of 38 patients in an inde-
pendent validation set between acute myeloid leukemia
(AML) and acute lymphoblastic leukemia (ALL).

LDA and QDA
Linear discriminant analysis can be applied with leave-
one-out classification as follow. Assume each of fk(x),
k = 1, . . . , K , follows a multivariate normal (µk,Σ)
distribution with mean vector µk a common variance–
covariance matrix Σ. Then,

log Pr(G = k|X = x)/Pr(G = j|X = x)

= log[ fk(x)/ f j (x)]+ log(πk/π j )

= log(πk/π j )− 1

2
(µk +µ j )

TΣ−1(µk −µ j )

+ xTΣ−1(µk −µ j ) .

A sample vector xo will then be allocated to group k
if the above equation is greater than zero or to group j
otherwise.

The quadratic discriminant analysis can be similarly
performed except that the variance–covariance matrix
Σ is now considered differently for each subpopula-
tion group. The differences between LDA and QDA
are typically small, especially if polynomial factors are
considered in LDA. In general, QDA requires more
observations to estimate each variance–covariance ma-
trix for each class. LDA and QDA have consistently
shown high performance not because the data likely from
Gaussian distributions, but more likely because simple
boundaries such as linear or quadratic are sufficientto
define the different classes in the data [32.42].

Logistic Regression (LR)
LR discriminant analysis requires less assumptions than
the aforementioned LDA and QDA approaches. LR
methods simply maximize the conditional likelihood
Pr(G = k|X), typically by a Newton–Raphson algo-
rithm [32.45]. The allocation decision on a sample vector
xo by LR is based on the logit regression fit:

Logit(pi ) = log[pi/(1− pi )] ∼ β̂Tx ,

where β̂ is the LR estimated coefficient vector for
the microarray data. LR discriminate analysis is often
used due to its flexible assumption about the un-
derlying distribution, but if it is actually applied to
a Gaussian distribution, LR shows a loss of 30% ef-
ficiency in the (misclassification) error rate compared
to LDA.

Support Vector Machines (SVMs)
SVMs separate a given set of binary labeled training data
with a hyperplane that is maximally distant from them;
this is known as the maximal margin hyperplane [32.35].
Based on a kernel, such as a polynomial of dot products,
the current data space will be embedded in a higher-
dimensional space. The commonly used kernels are:

• Radial basis kernel: K (x, y) = exp
(
−|x−y|2

2σ2

)
,

• Polynomial kernel: K (x, y)=< x, y >d or K (x, y)=
(< x, y >+c)d ,

where <, > denotes the inner-product operation. Note
that the above polynomial kernel is of order d and is
linear when d = 1. Using a training set, we derive a hy-
perplane with maximal separation and validate against
a validation set.

SVMs often consider linear classifiers:

fw,b(x) =<w, x >+b ,

which lead to linear prediction rules: hw,b(x) =
sign[ fw,b(x)] for the decision boundary of the hyper-
plane fw,b(x). SVMs maps each vector-valued example
into a feature space:

x → [ψ1(x), ψ2(x), . . . , ψN (x)] .

32.5.3 Stepwise Cross-Validated
Discriminant Analysis

Classification techniques must be carefully applied in
prediction model training on genomic data. In par-
ticular, if all the samples are used both for model
search/training and for model evaluation in a large
screening search for classification models, a serious
selection bias is inevitably introduced [32.46]. In or-
der to avoid such a pitfall, a stepwise (leave-one-out)
cross-validated discriminant procedure (SCVD) that
gradually adds genes to the training set has been
suggested [32.42, 47]. It is typically found that the pre-
diction performance is continuously improved (or not
decreased) by adding more features into the model.
This is again due to a sequential search and selection
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strategy against an astronomically large number of can-
didate models; some of them can show over-optimistic
prediction performance for a particular training set by
chance. Note also that even though a leave-one-out or
similar cross-validation strategy is used in this search,
the number of candidate models is too big to eliminate
many random ones that survived from such a spe-
cific cross-validation strategy by chance. Thus, test data
should be completely independent from the training
data to obtain an unbiased estimate of each model’s
performance.

The SCVD Procedure
Using the MiPP criterion above, the SCVD classifi-
cation model is constructed sequentially as follows.
Given a classification rule R, the models are con-
structed on a training data set in a forward stepwise
cross-validated discriminant fashion. Suppose we have
a training data set consisting of N samples and g
candidate features (genes). A schematic summary of
the MiPP-based SCVD model construction is shown
in Fig. 32.4.

The initial step begins by fitting each feature individ-
ually on the training set. For each of the G features, MiPP
is calculated based on leave-one-out cross-validation (so

Step 1: Choose the classification rule
Step 2: Create optimal models on training data by sequent-

tially adding and backward-validating features, eval-
uating leave-one-out cross-validated MiPP ψp

Step 3: Evaluate the performance θ (= ψp or error rate) of
each optimal model on independent test data, and
determine the final robust classification model: rule
and k

Initial
stage 2nd stage

kth stage

Find optimal
one gene model
G1 with max ψp

Keep the gene in G1 and add
each of remaining features
to find optimal two-gene mo-
del G2 with max ψp; back-
ward-validate the gene in G1

Yields optimal gene model Gk;
stop at k when ψp does not in-
crease

( f1, ψp
1)

( f2, ψp
2)

( f6817, ψp
6817)

…

θ̂1, θ̂2,…,θ̂k

Fig. 32.4 A schematic diagram for classification modeling
based on the stepwise cross-validated discriminant (SCVD)
procedure

MiPP for a gene is the average of MiPPs of the N leave-
one-out fits for that particular gene). The gene with the
maximal value of MiPP is then retained, and the opti-
mal one-gene model O1 is fit using all training samples.
The second step adds each of the G−1 features and of
these G−1 two-gene models, the one with the maximal
value of MiPP is similarly retained and used to construct
the optimal two-gene model O2. This process continues
adding features in this sequential fashion until the train-
ing model becomes saturated at the L-th step, i. e., MiPP
converges to a certain maximum level and the L-gene
MiPP is not bigger than the (L-1)-gene MiPP (note that
MiPP has an upper bound of N).

Because of the sequential selection of features in this
model construction, the performance of the prediction
model improves when there a large number of features
in a model and this cannot be used as an objective
measure of classification performance. Therefore, the
performance of each of the optimal models O1, . . . , OL
is assessed on a completely independent test data set to
determine the final robust prediction model. In this case,
both MiPP and the error rate can be evaluated since the
latter can be used among the small number of compet-
ing optimal models with different numbers of model
features.

Comparison of Classification Methods
Using this SCVD strategy based on MiPP, several widely
used classification rules such as linear discriminant anal-
ysis (LDA), quadratic discriminant analysis (QDA),
logistic regression (LR), and support vector machines
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Fig. 32.5 Values of MiPP for each classification rule con-
structed for models with up to four genes. The best gene
model of all the gene models for a given classification rule
is denoted by a •
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Table 32.2 Classification results of the classification rules and the corresponding gene model

Training data Test data
Method Model ER% ψp ER % ψp

LDA 1882+1144 0 37.91 2.94 31.46

QDA 4847+5062 0 37.96 5.88 29.81

Logistic 1807+4211+575 0 37.998 11.76 25.64

SVM K=Linear 2020+4377+1882 0 35.16 0 29.26

SVM K=RBF 4847+3867+6281 0 32.52 5.88 21.713

(SVMs) with linear or radial basis function (RBF) ker-
nels have been compared. The leukemia microarray
data in [32.2] had a training set of 27 ALL and 11
AML samples and an independent test set of 20 ALL
and 14 AML samples. Since two distinct data sets ex-
ist, the model is constructed on the training data and
evaluated on the test data set. Figure 32.5 shows the
performance of each classification rule on the test data
set. Each rule identified a different subset of features
and the performance of the best subset for each clas-
sification rule along with its performance is shown in
Table 32.2. This best subset is simply the point at
which each line from Fig. 32.5 reaches its maximum
value.

In terms of error rate, it appears as if the SVM with
a linear kernel is the most accurate rule. However, LDA
only misclassified one sample and the SVM with the
RBF kernel and QDA misclassified two samples on the
independent test data. Logistic regression does not seem
to perform as well as the other rules, by misclassify-

ing 4 out of 34 samples. Note again that comparing the
rules on the basis of MiPP is somewhat tricky for SVMs
since the estimated probabilities of correct classification
from SVMs are based upon how far samples are from
a decision boundary. As a result, unlike the LDA, QDA,
and LR cases, these are not true posterior classification
probabilities. In an application to a different microar-
ray study on colon cancer, the RBF-kernel SVM model
with three genes was found to perform best among these
classification techniques.

Therefore, using the MiPP-based SCVS procedure,
the most parsimonious classification models were de-
rived with a very small number of features, only two or
three genes from microarray data, outperforming many
previous models with 50–100 features. This may imply
that a set of a small number of genes may be sufficient to
explain the discriminativeinformation of different types
of a particular desease, even though it is often found that
there exist multiple sets (of small numbers of genes)
with similar classification prediction performance.
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Statistical Me33. Statistical Methodologies
for Analyzing Genomic Data

The purpose of this chapter is to describe and
review a variety of statistical issues and methods
related to the analysis of microarray data. In the
first section, after a brief introduction of the DNA
microarray technology in biochemical and genetic
research, we provide an overview of four levels
of statistical analyses. The subsequent sections
present the methods and algorithms in detail.

In the second section, we describe the methods
for identifying significantly differentially expressed
genes in different groups. The methods include
fold change, different t-statistics, empirical
Bayesian approach and significance analysis of
microarrays (SAM). We further illustrate SAM using
a publicly available colon-cancer dataset as an
example. We also discuss multiple comparison
issues and the use of false discovery rate.

In the third section, we present various
algorithms and approaches for studying the
relationship among genes, particularly clustering
and classification. In clustering analysis, we
discuss hierarchical clustering, k-means and
probabilistic model-based clustering in detail
with examples. We also describe the adjusted
Rand index as a measure of agreement between
different clustering methods. In classification
analysis, we first define some basic concepts
related to classification. Then we describe four
commonly used classification methods including
linear discriminant analysis (LDA), support vector
machines (SVM), neural network and tree-and-
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forest-based classification. Examples are included
to illustrate SVM and tree-and-forest-based
classification.

The fourth section is a brief description of the
meta-analysis of microarray data in three different
settings: meta-analysis of the same biomolecule
and same platform microarray data, meta-analysis
of the same biomolecule but different platform
microarray data, and meta-analysis of different
biomolecule microarray data.

We end this chapter with final remarks on
future prospects of microarray data analysis.

Since the seminal work on microarray technology of
Schena et al. [33.1], microarray data have attracted
a great deal of attention, as reflected by the ever increas-
ing number of publications on this technology in the past
decade. The applications of the microarray technology
encompass many fields of science from the search for
differentially expressed genes [33.2], to the understand-
ing of regulatory networks [33.3], DNA sequencing and
mutation study [33.4], single nucleotide polymorphism
(SNP) detection [33.5], cancer diagnosis [33.6], and
drug discovery [33.7].

Accompanying the advancement of the microar-
ray technology, analyzing microarray data has arguably
become the most active research area of statistics
and bioinformatics. Figure 33.1 provides a four-level
overview of the analytic process. The first challenge in
dealing with the microarray data is to preprocess the
data, which involves background subtraction, array nor-
malization, and probe-level data summarization. The
purpose of this preprocessing is to remove noise and
artifacts in order to enhance and extract hybridization
signals. This data preprocessing is also often referred as
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First-level analysis
(also called low-level
analysis)

Background subtraction

Second-level analysis

Third-level analysis
(also called high-level
analysis)

Fourth-level analysis
(also called meta-
analysis)

Normalization

Probe-level summarization

Etc.

Gene filtration

Identify differentially
expressed genes

Clustering analysis

Classification analysis

Pathway analysis

Etc.

Same biomolecule and same
platform meta-analysis.
E.g., two cDNA arrays

Same biomolecule but diffe-
rent platform meta-analysis.
E.g., one cDNA and one oli-
gonucleotide arrays

Etc.

Different biomolecule micro-
array meta-analyses. E.g.,
one DNA array and one Pro-
tein array

Fig. 33.1 Diagram of the four-level analysis of microarray
data

the low-level analysis [33.8]. After the data are pro-
cessed and cleaned, they are analyzed for different
purposes. The focus of this article is on the methods
for this postprocessing analysis.

The second-level analysis usually contains two
steps: one is to filter unusual genes whose expres-
sion profiles are suspicious due to noise or are too
extreme, and the other is to identify the differentially
expressed genes across different samples. The gene fil-
tration process is generally heuristic and specific to
known biological contents. Thus, we will not discuss it
here. To identify genes that have significantly different
expression profiles, the commonly used approaches in-
clude the estimation of fold change, Student’s T-test, the
Wilcoxon rank sum test, the penalized T-test, empirical

Bayes [33.9], and significance analysis of microarray
(SAM, Tusher et al. [33.10]). We will review these
methods in Sect. 33.1.

We will review the third-level analysis in Sect. 33.2.
This type of analysis is also called high-level analy-
sis [33.11], and it includes clustering, classification and
pathway analysis. This is usually conducted on a subset
of genes that are selected from the second-level analysis.
To identify genes that may be correlated to each other,
clustering analysis has become particularly popular, and
the approaches include hierarchical clustering [33.12],
k-means [33.13], self-organization maps (SOM) [33.14],
principle-component analysis (PCA) [33.15], and prob-
abilistic model-based clustering [33.16].

To classify tissue samples or diagnose diseases based
on gene expression profiles, both classic discriminant
analysis and contemporary classification methods have
been used and developed. The methods include k-nearest
neighbors (KNN) [33.17], linear discriminant analysis
(LDA) [33.18], support vector machine (SVM) [33.19],
artificial neural networks (ANN) [33.20], classifi-
cation trees [33.21], and random and deterministic
forests [33.18]. It is noteworthy that tree- and forest-
based approaches can be easily applied to the entire
microarray dataset without restricting our attention to
a subset of selected genes.

To identify genes that may be on the same
pathway of a particular biological process, relevance
networks [33.22], linear differential equation [33.23],
Boolean networks [33.24], Bayesian networks [33.25]
and the probabilistic rational model (PRM) [33.26] have
been used and developed.

The fourth-level analysis, also referred as meta-
analysis, is a relative new topic for the analysis of
microarray data. Because many different types and
platforms of microarrays can be designed to address
the same (or similar) biological problems, it is useful
to compare and synthesize the results from different
studies.

Before we introduce specific methods, we should
point out that, as a result of high-throughput technology,
the unique challenge from analyzing microarray data
is the large number of genes (tens of thousands) and
relatively small sample sizes (commonly on the order of
tens or hundreds). In this article, n denotes the number of
genes and m the number of arrays. n is generally much
greater than m.
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33.1 Second-Level Analysis of Microarray Data

33.1.1 Notation

For a two-channel cDNA microarray data [33.1], we
have a 2n × m matrix of imaging data reflecting the red
(cy5) and green (cy3) signals for each of the n genes
on m arrays. The log ratio of the red to green signal
is usually taken for each gene, and the analysis will be
based on an n × m data matrix.

For one-channel Affymetrix Oligonucleotide Gene-
Chip data [33.27], we have a 2

∑n
i=1 pi × m matrix of

raw image data where pi is the number of probes for
the i-th gene. Note that, for each probeset, Affymetrix
uses a pair of perfect match (PM) and mismatch (MM).
As for oligonucleotide microarrays, steps [differences,
ratios, analysis of variance (ANOVA) models, etc.]
can be taken to summarize the PM and MM sig-
nals for each gene, and we still have an n × m data
matrix.

A major objective of microarray analysis is to infer
significantly differentially expressed genes (abbreviated
as SDE genes) across different samples, e.g., m1 tumor
samples versus m2 normal samples.

Let Yij,k be the expression level of the i-th gene on
the j-th array in the k-th sample. Let Yi.,1 and Yi.,2 denote
the average expression level of the i-th gene in samples 1
and 2, respectively.

33.1.2 Fold Change

Many studies identify SDE genes in two samples based
on simple fold-change thresholds such as a two-fold
change in means. Although the choice of a threshold is
somewhat arbitrary, fold change is intuitive and biologi-
cally meaningful, and serves as an effective preliminary
step to eliminate a large portion of genes whose data are
of little interest in a particular study.

33.1.3 t-Statistic

As in many clinical studies, the t-statistic provides a sim-
ple, extremely useful tool to compare the data from two
samples. Let M be the mean difference between the ex-
pression profiles of a gene in two groups and se(M) be
the standard error of M. The t-statistic, defined as

t = M

sd(M)
,

is useful to test a null hypothesis that the gene is
not differentially expressed in the two groups against

the alternative hypothesis that the gene is differentially
expressed.

Unlike a typical clinical study, in which we have
one pair or a very few pairs of hypotheses to test, in
microarray analysis we have a pair of hypotheses for
every gene of interest. This means that we inevitably
deal with the multiple comparison issue. Although this
issue is difficult and there is no clear-cut, ideal answer,
many reasonable solutions have been proposed.

Efron et al. [33.9] proposed to inflate se(M) by
adding a constant that equals the 90-th percentile of the
standard errors of all the genes. Tusher et al. [33.10] call
such a constant a fudge factor, and propose to estimate
it by minimizing the coefficient of variation of the ab-
solute t-values. We will discuss this approach in detail
in Sect. 33.1.4. Other approaches have also been pro-
posed; for example, Smyth [33.28] replaces se(M) with
a Bayesian shrinkage estimator of the standard deviation.

The permutation test is also commonly used to
compare the microarrays. Permutations are usually per-
formed at the array level to create a situation similar to
the null hypothesis while maintaining the dependence
structure among the genes [33.10]. In every permuta-
tion, a t-statistic can be calculated for each gene. Once
a large number of permutations are completed, we have
an empirical distribution for the t-statistic under the null
hypothesis, which then can be used to identify SDE
genes.

33.1.4 The Multiple Comparison Issue

As we mentioned earlier, we have to control the type I
error rate α while testing a large number of hypotheses
simultaneously. There are two commonly used ap-
proaches to deal with this issue. One is to control the
family-wise error rate (FWER) and the other is to control
the false discovery rate (FDR).

The FWER controls the probability of making at
least one false positive call at the desired significance
level. FWER guarantees that the type I error rate is
less than or equal to a specified value for any given set
of genes. The most known example of FWER is Bon-
ferroni correction that divides the desired significance
level α by total number of hypotheses. If the desired
significance level is 0.05 and we compare expression
profiles in 10 000 genes, a gene is declared to have signi-
ficantly different profiles in two groups if the P-value is
not greater than 0.05

10 000 = 5 × 10−6. Another FWER ap-
proach is the so-called Šidák correction in which the
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adjusted type I error rate is at 1− (1−α)
1
n [33.29],

which is close to α/n. Clearly, Bonferroni and Šidák
corrections are sufficient but not necessary condi-
tions [33.30], and FWER approaches are generally very
conservative and set a stringent bar to declare SDE
genes.

Because of the conservative nature of the FWER
approaches, the FDR concept has flourished since it was
proposed by [33.31]). FDR is defined as the mean of the
ratio of the number, denoted by V , of falsely rejected
hypotheses to the total rejected hypotheses, denoted by
R, namely,

FDR = E

(
V

R
|R > 0

)
Pr(R > 0) ,

where Pr(R > 0) is the probability of rejecting at least
one hypothesis.

The FDR can be controlled at a given α level through
the following steps. First, for n genes, we have n
null hypotheses and n p values, denoted by p1, . . . , pn .
Then, we sort the p-values in ascending order such that
p(1) ≤ · · · ≤ p(n). We reject any gene i that satisfies the
condition p(i) ≤ i

n × α
p0

, where p0 is the proportion of
genes for which the null hypotheses are indeed true.
Because p0 is unknown in practice, the most conserva-
tive approach is to replace it with 1. Recently, attempts
have been made to estimate p0 as in Tusher et al.’s SAM,
where they used a permutation procedure to estimate p0.
Similar to the classical p-values, the significance mea-
sures for each gene in terms of FDR are called q-values,
a name that was introduced by Storey [33.32, 33].

In addition, the FDR concept has been general-
ized. For example, Storey and Tibshirani [33.9] and
Storey et al. [33.32] proposed positive FDR (pFDR),
which corrects the error rate only when they are positive
findings. For microarray data, many gene profiles are
correlated, Troendle [33.34] proposed an adjusted FDR
to address the correlation and demonstrated the benefit
in terms of gained power.

33.1.5 Empirical Bayesian Approach

Using microarray data from a breast cancer study,
Efron et al. [33.9, 35] described the empirical Bayesian
method. As an initial step, a summary statistic, Z, needs
to be defined for every gene to reflect the scientific
interest; this can be the t-statistic as described above,
a Wilcoxon rank statistic, or another choice. All genes
are perceived to belong to either the differentially or
nondifferentially expressed group. The density of Zi
is f0(zi ) if gene i is in the nondifferentially expressed

group, and f1(zi ) otherwise. Without knowing the group,
Zi has the following mixture distribution:

p0 f0(zi )+ p1 f1(zi ) ,

where p0 is the prior probability that gene i is not
differentially expressed, and p1 = 1− p0.

Based on Bayes’ theorem, the posterior probability
that gene i is not differentially expressed given Zi is

p0 (zi)= p0
f0 (zi)

f (zi)
.

We can estimate the mixture density f (zi) by the em-
pirical distribution f̂ (zi) because the genes of interest
are naturally a mixture of the two groups. In addi-
tion, the null density f0 (zi) can be estimated through
the permutation that artificially generates data under
the null hypothesis. In other words, we can derive
the posterior probability p0 (zi) for a given prior p0.
The choice of p0 can be subjective. One conservative
possibility is to choose p0 to be the minimum of
f̂ (zi) / f̂0 (zi) so that the posterior probability p1 (zi)

that gene i is differentially expressed is non-negative.
Note that p1 (zi)= 1− p0 (zi). Finally, all genes can
be ranked according to p1 (zi) and highly probably
differentially expressed genes can be selected.

Efron et al. [33.9, 35] did not assume a specific
form for f (zi). In contrast, Lonnstedt and Speed [33.36]
assumed that the data comes from the mixture of nor-
mal distributions and used the conjugate priors for the
variances and the means. Under those assumptions,
they derived the log odds posterior test. Smyth [33.28]
extended the hierarchical model of Lonnstedt and
Speed [33.36] to deal with microarray experiments with
more than two sample groups. The method is called the
Limma algorithm.

33.1.6 Significance Analysis
of Microarray (SAM)

Tusher et al. [33.10] introduced the SAM algorithm.
SAM identifies genes with statistically significant
changes in expression by assimilating a set of gene-
specific t-tests in which the standard error is adjusted
by adding a small positive constant. It performs a ran-
dom permutation among experiments and declares the
significant genes based on a selected threshold. For the
given threshold, SAM estimates the FDR by comparing
the number of genes significant in the permuted sam-
ples with the number of genes significant in the original
sample.
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SAM can be downloaded from http://www-stat.
stanford.edu/∼tibs/SAM/. Specifically, first, for each
gene i, SAM computes a t-like statistic

ti = ri

si + s0
,

where ri is the difference between the expression means
of gene i in the two groups (expression is on a logarithm
scale), si is the standard error, and s0 is the fudge factor
to be estimated. Secondly, similarly to the FDR scheme,
all ti values are sorted into the order statistics

t(1) ≤ t(2) ≤ . . .≤ t(n) .

To choose the significance threshold, the expression data
are permuted in the two groups within each gene B
times, and during each permutation, we repeat the first
two steps, which leads to a set of order statistics:

tb
(1) ≤ tb

(2) ≤ . . .≤ tb
(n) .

After the permutations, we calculate the mean of the
order statistics for each gene as follows

t(i) = 1

B

B∑

b=1

tb
(i) .

For a given threshold ∆, a gene is considered signifi-
cant if |t(i)− t(i)|>∆, and the FDR is estimated by the
ratio of the number of genes found to be significant in
the permutation samples to the number of genes called
significant in the original sample.

Example 1: Identification of SDE Genes Using SAM.
In this example, we apply SAM to examine a pub-
licly available colon-cancer dataset [33.37]. This dataset
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Fig. 33.2 The quantile–quantile plot from SAM for the
colon-cancer dataset. Genes are declared significantly
changed when their corresponding t-values are outside the
two dashed lines. The white square and triangle points cor-
respond to the genes that are significantly overexpressed
and underexpressed, respectively

contains the expression profiles of 2000 genes using
an Affymetrix oligonucleotide array in 22 normal and
40 colon-cancer tissues.

Figure 33.2 displays the quantile–quantile plot from
SAM. The two dashed lines determine a boundary to
call genes SDE depending on the choice of ∆. For ex-
ample, ∆ was chosen as 0.9857 in Fig. 33.2 to control
the FDR at about 5%. The white square and triangle
points in the figure correspond to the genes that are
declared to be significantly overexpressed and under-
expressed respectively. Out of the 490 declared SDE
genes (440 overexpressed and 50 underexpressed), 25
genes are expected to be declared falsely.

33.2 Third-Level Analysis of Microarray Data

The third-level microarray analysis includes clustering,
classification and pathway analysis. These approaches
usually, though not always, follow the second-level
microarray analysis because most of them can work
effectively on only a small number of genes.

33.2.1 Clustering

Clustering is arguably the most commonly used ap-
proach at the third-level of analysis [33.38, 39]. It is
an unsupervised learning algorithm from a machine-
learning viewpoint, because the gene classes are

unknown or not used, and need to be discovered from
the data. Therefore, the goal of clustering analysis is to
group genes (or arrays) based on their similarity in the
feature space (e.g., expression pattern).

The underlying assumption behind clustering is that
genes with similar expression profiles should share some
common biological behaviors, e.g., belonging to the
same protein complex or gene family [33.40], having
common biological functions [33.41], being regulated
by common transcription factors [33.3], belonging to
the same genetic pathway, or coming from the same
origin [33.39].
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After the clusters are formed, a dendrogram or a tree
of all genes will be viewed, although the views are not
unique, because there is a left-or-right selection at each
splitting step. Two popular programs for gene clustering
are Eisen et al.’s TreeView program [33.12] and Li and
Wong’s dChip programs [33.8]. Routines are also avail-
able in standard statistical packages such as R, Splus,
and SAS.

Distance
In order to group objects (genes or arrays) together, we
need to define a measure to quantify the similarity among
objects in the feature space. Such a measure of similar-
ity is called a distance. There are several commonly
used definitions of distance. Suppose that the expres-
sion profiles of two genes are Yi = (yi1, yi2, . . . , yim)
and Y j = (y j1, y j2, . . . , y jm).

The Euclidean distance between Yi and Y j is

dE
(
Yi ,Y j

)=
[

m∑

k=1

(
yik − y jk

)2

] 1
2

.

The city-block distance between Yi and Y j is

dC
(
Yi ,Y j

)=
m∑

k=1

|yi1− y j1| .

The Pearson correlation distance between Yi and Y j is

dR
(
Yi ,Y j

)= 1−rYi Y j ,

where rYi Y j is the Pearson correlation coefficient be-
tween Yi and Y j .

The Spearman correlation distance between Yi and
Y j uses the rank-based correlation coefficient in which
the expression levels are replaced with the ranks.

More definitions can be found in the book by
Draghici [33.30]. We should note that the Euclidean and
city-block distance look for similar expression numer-
ical values while the Pearson and Spearman distances
tend to emphasize similar expression patterns.

The distances defined above measure the gene-wise
distance. When clusters are found, we also need to define
the distance between two clusters. The four approaches
are: single linkage distance (the minimum distance be-
tween any gene in one cluster and any gene in the other
cluster), complete linkage distance (the maximum dis-
tance between any gene in one cluster and any gene in
the other cluster), average linkage distance (the aver-
age of all pair-wise distances between any gene in one
cluster and any gene in the other cluster), and centroid
linkage distance (the distance between the centroids of
the two clusters).

Clustering Methods
When a distance measure is chosen, there are different
ways to execute the clustering process. The clustering
methods broadly fall into two categories: hierarchi-
cal methods and partitioning methods. Hierarchical
methods build up a hierarchy for clusters, from the low-
est one (all genes are in one cluster) to the highest one (all
genes are in their own clusters) while partitioning meth-
ods group the genes into the different clusters based on
their expression profiles. Therefore, one does not need
to provide the cluster number for hierarchical clustering
methods but it is necessary for the partitioning clustering
methods.

Hierarchical methods include agglomerative hierar-
chical methods and divisive hierarchical methods.

The agglomerative hierarchical methods use
a bottom-up strategy by treating each individual gene
as a cluster at the first step. Then two nearest genes are
found and assigned into a cluster where the nearest is de-
fined by the distance between these two genes, e.g., for
a Pearson distance nearest means the two genes having
the largest correlation coefficient. Then an agglomera-
tive hierarchical method assigns a new expression profile
for the formed clusters, and repeats these steps until there
is only one cluster left.

The divisive hierarchical methods, on the other hand,
treat all genes belonging to one cluster at the beginning.
Then in each step they choose a partitioning method
to divide all genes into a predecided number of clus-
ters, e.g., using k-means to partition genes into two
clusters at each single step. Therefore, the decisive hi-
erarchical clustering methods employ the bottom-down
strategy.

The k-means clustering is the simplest and fastest
clustering algorithm [33.42] among the partitioning
methods. It has been widely used in many microarray
analyses. To form K clusters, the k-means algorithm al-
locates the observations into different groups in order to
minimize the within-group sum of squares

min
SK

⎡

⎣
K∑

k=1

∑

i∈SK

m∑

j=1

(
yij − yk j

)2

⎤

⎦ ,

where K is the prespecified cluster number, Sk is the set
of objects in the k-th cluster and yk j is the mean of group
j in cluster k. In other words, k-means clustering uses
the Euclidean distance.

The k-means clusters are formed through iterations
as follows: First, k center genes are randomly selected,
and every other gene is assigned to the closest center
gene. Then, the center is redefined for each cluster to
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minimize the sum of squares toward the center. In fact,
the coordinates of a cluster center are the mean expres-
sions of all the genes in that cluster. After the centers
are redefined, all genes are regrouped and the iteration
process continues until it converges.

After analyzing a yeast cell-cycle expression dataset,
Duan and Zhang [33.43] noted that it could be particu-
larly useful to use a weighted sum of squares for gene
clustering to take into account the loss of synchrony of
cells. We refer to Duan and Zhang [33.43] for the details.

Another widely used partitioning clustering algo-
rithm is self-organizing maps (SOMs) which were
developed by Kohonen [33.44]. In essence, SOM clus-
tering is a spatial version of the k-means clustering.
For a prespecified grid (i. e., a 6 × 8 hexagonal grid),
SOMs project high-dimensional gene expression data
onto a two- or three-dimensional map and place similar
genes close to each other. Here, the centroid positions of
clusters are related to one another via a spatial topology
(e.g., the squared map), and are also iteratively adjusted
according to the data.

Both the k-means and SOMs are algorithmic meth-
ods and do not have a probabilistic justification.
Probabilistic model-based clustering (PMC) analysis,
on the other hand, assumes that the data is generated by
a mixture of underlying probability distributions, and
uses the maximum-likelihood method to estimate par-
ameters that define the number of clusters as well as
the clusters. Hence, we do not need to specify the num-
ber of clusters. Using the probabilistic model, we can
even consider covariates while determining the clus-
tering memberships of the genes. However, the model
can quickly become complicated as the number of clus-
ters increases. Thus, we must try to use parsimonious
models as much as possible. Finally, PMC and k-means
are also closely related. In fact, k-means can be inter-
preted as a parsimonious model of simple independent
Gaussians [33.15, 45, 46].

Example 2: Clustering Analysis. In this example, first
we perform a hierarchical clustering analysis on the 490
SDE genes from example 1. The clustering analysis is
applied in two directions: clustering on samples and
clustering on genes. Although we do not present the
entire the clustering tree here, two major clusters are
formed to distinguish tumor and normal samples. For
clustering on the genes, there are roughly five major
patterns in terms of the gene expressions. One pattern
corresponds to the underexpressed genes and the other
four corresponds to the overexpressed genes in the tumor
samples versus the normal ones.

For illustration, we selected the first 10 normal
arrays and the first 10 cancer arrays, and 20 overex-
pressed and 20 underexpressed genes randomly from
the 490 SDE genes. Figure 33.3 is from the heatmap
function in R. Though not perfect, two patterns are
formed mostly along the line of normal versus tu-
mor tissues. There are roughly five major patterns
in terms of expression profiles. Overexpressed and
underexpressed genes tend to belong to different clus-
ters. For example, pattern 3 (P3) and pattern 4 (P4)
are mainly composed of underexpressed genes while
the other three clusters contain mainly overexpressed
genes.

Following the hierarchical clustering analysis pre-
sented above, we also applied the k-means approach
to the 490 SDE genes and set the number of clusters to
five. Furthermore, we applied probabilistic model-based
clustering (PMC) to the same dataset. We examined
the BIC (Bayesian information criterion) for different
numbers of clusters, and it turned out that the value of
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Fig. 33.3 Hierarchical clustering based on a subset of the colon-
cancer dataset. Each column corresponds to a sample, and each row
a gene. The underexpressed genes were assigned numbers above
440, and the overexpressed genes at or below 440
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Table 33.1 The numbers of genes belonging to the intersects of the five k-means clusters and the 13 PMC clusters

k-Means PMC Clusters

Clusters 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 11 0 0 0 57 35 0 0 0 0 29 0

2 25 8 0 0 62 5 0 0 0 0 0 0 0

3 0 0 2 13 0 0 0 0 23 0 0 0 0

4 0 0 15 0 0 0 0 0 1 31 0 0 41

5 0 2 0 0 0 0 1 65 0 34 24 6 0

BIC reaches its minimum at 13 clusters, which is much
more than heuristic choice of five. Table 33.1 displays
the numbers of genes belonging to the intersects of the
five k-means clusters and the 13 PMC clusters. Each of
the five k-means clusters is a union of four or so PMC
clusters. In fact, if we choose five PMC clusters, they
are very similar to the formation of the five k-means
clusters, and we will assess this similarity in the next
section.

Measure of Agreement
Between Two Sets of Clusters
From both the methodological and biologic points of
view, there is a need to compare the clusters from dif-
ferent clustering methods. For example, to evaluate the
performance of a new clustering approach, we need to
compare the derived clusters with the underlying mem-
bership in a simulation study. We may also be interested
in comparing clustering results derived from the same
mRNA samples but being hybridized and analyzed in
two different laboratories.

A commonly used measure of agreement between
two sets of clusters is the so-called adjusted Rand index
(ARI) [33.15, 47, 48]. Let us consider the partitions U
and V , and let nij be the number of genes falling in the
intersect of the i-th cluster in U and the j-th cluster in
V . The ARI is defined as

∑
i, j

(nij
2

)−
[∑

i

(ni.
2

)∑
j

(n. j
2

)]
/
(n

2

)

1
2

[∑
i

(ni.
2

)+∑
j

(n. j
2

)]−
[∑

i

(ni.
2

)∑
j

(n. j
2

)]
/
(n

2

) ,

where ni· and n· j are the numbers of genes in the i-th
cluster of U and the j-th cluster of V , respectively.

We suggested some similarity between the k-means
and PMC clusters. In fact, the ARI value between the
two sets of clusters is 0.425, and it increases to 0.94
if both methods use five clusters. This similarity is
expected, because PMC and k-means are equivalent
if PMC assumes an independent Gaussian covariance
structure [33.15].

33.2.2 Classification

In most microarray experiments, we know the groups
on the arrays. For example, some mRNA samples were
extracted from tumor cells and the others from nor-
mal cells. This is similar to the situation in Sect. 33.1.1.
Therefore, it is natural to use this information in anal-
ysis and to class cells based on the expression profiles.
This is so-called supervised learning.

In Sect. 33.1.1, Yij,k denotes the expression level of
the i-th gene on the j-th array in the k-th sample. Here,
we also use (Yij , Z = k) to reflect the fact that the ex-
pression level Yij of the i-th gene on the j-th array comes
from the k-th sample. In other words, the sample group
is represented by Z, which is the response or dependent
variable in classification.

The essence of classification is to define domains in
the feature space spanned by Yij and to assign a class
membership Z to each domain. Classification methods
differ in the choice of the shape for the domain and in
the algorithm to identify the domain. Some elementary
concepts are useful to distinguish these differences. The
first one is linearity. It refers to a linear combination of
the features (expressions of different genes) that forms
a hyperplane separating different domains in the fea-
ture space. The second term is separability. It reflects
the extent that the different classes of samples are separ-
able. The third concept is misclassification. Often, data
are only partially separable, and misclassification is in-
evitable. In this circumstance, we may need to define
a cost function to accommodate different classification
errors.

In the machine-learning literature, there is also a dis-
tinction between the learning (i.e., training) and the test
samples. The learning data are used to train the clas-
sification algorithm and the test data are used to test
the predictive ability of the trained classification algo-
rithm. In practice, however, we usually have one dataset
and have to split the sample into the training and test
samples by leaving a portion of data out during the
learning process and saving it as the test data. This pro-
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cedure is called cross-validation. More precisely, for a
v-fold cross-validation, we first divide the data into v

approximately equal sub-samples. Then, we use v−1
sub-samples as the training data to construct a classifi-
cation rule and the left-over subsample as the test data
to validate the classification rule. After rotating every
sub-sample between training and test data, the perfor-
mance of the classification rule is assessed through the
average in the v runs of validation in the test sample.

In the next subsections, we will review four clas-
sification methods that are useful for classifying tissue
samples based on gene expression profiles. The methods
are linear discriminant analysis (LDA), support vector
machines (SVM), artificial neural networks (ANN), and
tree-based classification.

LDA
LDA was introduced by Fisher in 1936 for classify-
ing samples by finding a hyperplane that maximizes the
between-class variances. Let SY be the common sample
covariance matrix of all gene expressions, Ȳ1 and Ȳ2 be
the average expression levels of the genes in groups 1
and 2, respectively. The solution to LDA is S−1

Y (Ȳ1− Ȳ2).

SVM
SVM was first proposed by Boser et al. [33.49] and
Cortes and Vapnik [33.50]. SVM finds an optimal hy-
perplane to separate samples and to allow the maximum
separation between different classes of samples. The
margin of the region that separates samples is supported
by a few vectors, termed support vectors.

In a two-class classification problem, let Z = 1
or −1 denote the two classes. If the two classes
of samples are separable, we find a hyper-
plane

{
y : yTβ+β0 = 0, ||β|| = 1

}
such that (yTβ+

β0)Z ≥C ≥ 0, where C is the margin optimized to allow
the maximal space between the two classes of samples.

For nonseparable case, the procedure is much com-
plicated. Some points will inevitably be on the wrong
side of the hyperplane. The idea is to introduce a slack
variable to reflect how far a sample is on the wrong side,
and then look for the hyperplane at the condition of
the total misclassification less than a user-selected limit
(i. e., bound the sum of slack variables by a constant).
We refer to Vapnik [33.51] for the details.

Example 3: Support Vector Machine (SVM). In this
example, we perform a classification analysis on the
colon-cancer data by SVM. We use M26697 and
M63391, the two most significant genes that were iden-
tified by SAM from example 1. Specifically, M26697

is the most significant overexpressed gene and M63391
is the most significant underexpressed gene. We used
the SVM function in R with the cost equal to 100, γ
of 1 and tenfold cross-validation, where γ is the coef-
ficient of the radial kernel used to form a hyperplane.
Figure 33.4 displays the contour plot of the SVM result.
The prediction model correctly classifies 37 cancer and
20 normal samples, but misclassifies three cancer and
two normal samples.

Neural Network
The artificial neural network (ANN) is a very pop-
ular methodology in machine learning. Also referred
to as connectionist architectures, parallel distributed
processing, and neuromorphic systems, ANN is an
information-processing paradigm with collections of
mathematical models that emulate the densely intercon-
nected, parallel structure of the mammalian brain and
adaptive biological learning. It is composed of a large
number of highly interconnected processing elements
that are analogous to neurons and are tied together with
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Fig. 33.4 Contour plot of the SVM result using two genes: M26997
and M63391 for the colon-cancer data. C represents cancer and N
represents normal. The light-gray area is the cancer region and the
brown area is the normal region. Square points represent the support
vectors and the triangle points represent the data points other than
support vectors. The brown and white points belong to the cancer
and the normal regions, respectively
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weighted connections that are analogous to synapses.
Learning typically occurs by example through training,
or exposure to a true set of input/output data where
the training algorithm iteratively adjusts the connection
weights (synapses). These connection weights store the
knowledge necessary to solve specific problems.

ANN can be used for feature selection and feature
extraction. The former amounts to variable selection and
reduction in statistics and the latter is a generation of the
statistical techniques such as principal component analy-
sis, factor analysis, and linear discriminant analysis that
are intended to identify lower-dimensional data struc-
tures such as linear directions. These lower-dimensional
structures usually depend on all of the original variables
(i. e., features). Thus, ANN is in essence a computation-
ally intensive version of traditional statistical methods
such as regression, classification, clustering, and fac-
tor analysis. However, ANN is designed in a way that
mimics neural networks and is biologically intuitive and
appealing in many applications. This is the major rea-
son that we plan to consider ANN as one of the primary
tools to explore the unknown relationship in our data,
which is usually referred to as pattern recognition.

The advantage of ANNs lies in their resilience
against distortions in the input data and their capability
for learning. They are often good at solving problems
that are too complex for conventional technologies (e.g.,
problems that do not have an algorithmic solution, or
for which an algorithmic solution is too complex to be
found), and are often well-suited to problems that people
are good at solving, but for which traditional methods
are not.

There are multitudes of different types of ANNs.
Some of the more popular include the multilayer
perceptron, which is generally trained with the
back-propagation of error algorithm, learning vector
quantization, radial basis functions, Hopfield, and Ko-
honen, to name a few. Some ANNs are classified as
feed-forward while others are recurrent (i. e., imple-
ment feedback) depending on how data is processed
through the network. Some ANNs employ supervised
training while others are referred to as unsupervised or
self-organizing.

Figure 33.5 illustrates a conventional three-layer
neural network with n features and K classes. For this
feed-forward neural network, the inputs are y1, · · · , yn
which correspond to the gene expression profiles and the
outputs are z1, · · · , zK , which correspond to the K sam-
ples in the microarray data. The middle layer consists of
many hidden units (also called neurons) and the num-
ber of hidden units can be freely chosen and determine

the maximum nonlinearity. Each line in Fig. 33.5 indi-
cates a weight—the edge—in the network. This weight
represents how much the two neurons which are con-
nected by it can interact. If the weight is larger, then
the two neurons can interact more, that is, a stronger
signal can pass through the edge. The nature of the in-
terconnections between two neurons can be such that
one neuron can either stimulate (a positive weight α) or
inhibit (a negative weight α) the other. More precisely,
in each hidden unit, we have

Xm = σ
(
α0m +αT

mY
)
,

where σ is called the activation function or neural func-
tion and (α0m,α

T
m) are the weights. A common choice

for σ is the sigmoid function,

σ (υ)= 1

1+ e−υ
.

The output function allows a final transformation of the
linear combinations of the hidden unit variables,

fk (z)= gk

(
β0k +βT

k X
)
.

For a K -class classification, a softmax (logistic) function
is usually chosen for the output function

gk (T )= eTk

K∑
l=1

eTl

.

During the training period we present the perceptron
with inputs one at a time and see what output it gives. If

Z1 Z2 ZK…

Y1 Y1 Y1 Yn–1… Yn

X1 X2 X3 Xm…

Fig. 33.5 Architecture of a conventional three-layered
feed-forward neural network
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the output is wrong, we will tell it that it has made a mis-
take. It should then change its weights and/or threshold
properly to avoid making the same mistake later.

33.2.3 Tree- and Forest-Based
Classification

One of the most convenient and intuitive approaches for
classification is classification trees [33.52, 53]. Classifi-
cation trees, and their expansion to forests, are based on
the so-called recursive partitioning technique. The basic
idea of recursive partitioning is to extract homogeneous
strata of the tissue samples through expression profiles
depending on the expression levels of a particular gene.

Zhang and Yu [33.54] reanalyzed the dataset from
Hedenfalk et al. [33.55] to classify breast cancer mu-
tations in either the BRCA1 or BRCA2 gene using
gene expression profiles. Hedenfalk et al. [33.55] col-
lected and analyzed biopsy specimens of primary breast
cancer tumors from seven and eight patients with germ-
line mutations of BRCA1 and BRCA2, respectively.
In addition, seven patients with sporadic cases of pri-
mary breast cancer whose family history was unknown
were also identified. They obtained cDNA microarrays
from 5361 unique genes, of which 2905 are known
genes and 2456 are unknown. Thus, in this dataset, Let
Z = 1, 2, 3 denote BRCA1, BRCA2, and sporadic cases,
respectively.

If we use this entire breast cancer dataset to construct
a tree, these 22 samples form the initial learning sample,
which is called the root node and labeled as node 1 in the
tree diagram (Fig. 33.6). The tree structure is determined
by recursively selecting a split to divide an upper layer
node into two offspring nodes. To do this, we need to
evaluate the homogeneity, or the impurity to its opposite,
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Fig. 33.6 Classification tree for breast-cancer data

of any node. A common measure of node impurity is the
entropy function,

it =−
K∑

k=1

P(Z = k|node t) log[P(Z = k|node t)] .

If node t is the root node, then P(Z = 1|node t) =
7/22, P(Z = 2|node t) = 8/22, and P(Z = 3|node t) =
7/22. Thus, the impurity it of the root node can be
calculated easily as follows: it =−(7/22) log(7/22)−
(8/22) log(8/22)− (7/22) log(7/22) = 1.097.

How good is the root node? The impurity is zero for
a perfect node in which P(Z = k|Node t) is either 0 or 1,
and reaches its worst level when P(Z = k|node t) = 1

3
with it = 1.099. Therefore, the impurity of the root
node is near the worst level by design, motivating us
to partition the root node into small nodes to reduce the
impurity.

The first step of the recursive partitioning process is
to divide the root of 32 samples in Fig. 33.6 into two
nodes, namely, nodes 2 and 3 in Fig. 33.6. There are
many ways of partitioning the root node, because we
can take any of the 5361 genes and split the root node
according to whether the expression level of this chosen
gene is greater than any threshold c. After comparing all
possible partitions, we choose the gene and its thresh-
old to keep both i2 in node 2 and i3 in node 3 at their
lowest possible levels simultaneously. Mathematically,
we achieve this goal by minimizing the weighted impu-
rity r2i2+r3i3, where r2 and r3 are the proportions of
tissue samples in nodes 2 and 3, respectively. This is pre-
cisely how the first split (i. e., whether ST13 > 0.835) in
Fig. 33.6 is determined.

Once the root is split into nodes 2 and 3, and we can
apply the same procedure to potentially split nodes 2
and 3 further. Indeed, the tree in Fig. 33.6 divides the 22
samples into four groups using Heping Zhang’s RTREE
(http://peace.med.yale.edu). Nodes 2 and 3 are divided
based on the expression levels of genes ARF3 and
LRBA.

Using a variety of analytic techniques including
a modified F- and t-test and a mutual-information scor-
ing, Hedenfalk et al. [33.55] selected nine differentially
expressed genes to classify BRCA1-mutation-positive
and negative tumors and then 11 genes for BRCA2-
mutation-positive and negative tumors. Clearly, the tree
in Fig. 33.6 uses fewer genes and is a much simpler
classification rule.

Although Fig. 33.6 is simple, it does not contain the
potentially rich information in the dataset. To improve
the reliability of the classification and to accommo-
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date potentially multiple biological pathways, Zhang
and Yu [33.54] and Zhang et al. [33.56] proposed ex-
panding trees to forests. The large number of genes
in microarray makes it an ideal application for these
forests.

The most common approach to constructing forests
is to perturb the data randomly, form a tree from the
perturbed data, and repeat this process to form a series
of trees; this is called a random forest. After a forest is
formed, we aggregate information from the forest. One
such scheme, called bagging (bootstrapping and aggre-
gating), generates a bootstrap sample from the original
sample. The final classification is then based on the
majority vote of all trees in the forest [33.57].

It is well-known that random forests [33.18, 57] im-
prove predictive power in classification. After observing
the fact that there are typically many trees that are of
equally high predictive quality in analyzing genomic
data, Zhang et al. [33.18] proposed a method to con-
struct forests in a deterministic manner. Deterministic

forests eliminate the randomness in the random forests
and maintain a similar, and sometimes improved, level
of precision as the random forests.

The procedure for constructing the deterministic
forests is simple. We can search and collect all distinct
trees that have a nearly perfect classification or are bet-
ter than any specified precision. This can be carried out
by ranking the trees in deterministic forests. One limi-
tation for the forests (random or deterministic) is that
we cannot view all trees in the forests. However, we
can examine the frequency of genes as they appear in
the forests. Frequent and prominent genes may then be
used and analyzed by any method as described above.
In other words, forest construction offers a mechanism
for data reduction. For the breast-cancer data, one of the
most prominent genes identified in the forests is ERBB2.
Kroll et al. [33.58] analyzed the gene expression pat-
terns of four breast-cancer cell lines: MCF-7, SK-BR-3,
T-47D, and BT-474, and reported unique high levels of
expressions in the receptor tyrosine kinase ERBB2.

33.3 Fourth-Level Analysis of Microarray Data

Nowadays, different types and platforms of microarray
have been developed to address the same (or similar) bi-
ological problems. How to integrate and exchange the
information contained in different sources of studies ef-
fectively is an important and challenging topic for both
biologists and statisticians [33.59]. The strategy depends
on the situation. When all studies of interest were con-
ducted under the same experimental conditions, this is
a standard situation for meta-analysis. There are situ-
ations where the experiments are similar, but different
platforms were measured, such as the integration of one
cDNA array-based study and one oligonucleotide array-
based study. There are also situations where different
biomolecule microarrays were collected, such as the in-
tegration of a genomic array study and a proteomic array
study.

Integrating a cDNA array and an Affymetrix chip
is complicated because genes on a cDNA array may

correspond to several genes (or probesets) on the
Affymetrix chip based on the Unigene cluster-matching
criteria [33.60]. Instead of matching by genes, match-
ing by the sequence-verified probes may increase the
correlation between two studies [33.61].

Most meta-analyses of microarray data have been
performed in a study-by-study manner. For example,
Yauk et al. [33.62] use the Pearson coefficient to mea-
sure the correlation across studies, Rhodes et al. [33.63]
and Wang et al. [33.64] use the estimations from one
study as prior knowledge while analyzing other stud-
ies, and Welsh et al. [33.65] treat DNA microarrays as
a screening tool and then use protein microarrays to
identify the biomarker in cancer research. While they
are convenient, these strategies are not ideal [33.63,66].
Thus, it is imperative and useful to develop better meth-
ods to synthesize information from different genomic
and proteomic studies [33.59, 62, 67].

33.4 Final Remarks

The technology of gene and protein chips is advancing
rapidly, and the entire human genome can be simul-
taneously monitored on a single chip. The analytic

methodology is evolving together with the technology
development, but is far from satisfactory. This article
reviews some of the commonly used methods in ana-
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lyzing microarrays. Analyzing microarray data is still
challenging; some of the important issues include how
to interpret the results in the biological context, how

to improve the reproducibility of the conclusions, and
how to integrate information from related but different
studies.
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Statistical Me34. Statistical Methods in Proteomics

Proteomics technologies are rapidly evolving and
attracting great attention in the post-genome era.
In this chapter, we review two key applications
of proteomics techniques: disease biomarker
discovery and protein/peptide identification. For
each of the applications, we state the major
issues related to statistical modeling and analysis,
review related work, discuss their strengths and
weaknesses, and point out unsolved problems for
future research.

We organize this chapter as follows. Section 34.1
briefly introduces mass spectrometry (MS) and
tandem MS/MS with a few sample plots showing
the data format. Section 34.2 focuses on MS data
preprocessing. We first review approaches in peak
identification and then address the problem of
peak alignment. After that, we point out unsolved
problems and propose a few possible solutions.

Section 34.3 addresses the issue of feature
selection. We start with a simple example showing
the effect of a large number of features. Then
we address the interaction of different features
and discuss methods of reducing the influence of
noise. We finish this section with some discussion
on the application of machine learning methods
in feature selection. Section 34.4 addresses the
problem of sample classification. We describe the
random forest method in detail in Sect. 34.5.

In Sect. 34.6 we address protein/peptide
identification. We first review database searching
methods in Sect. 34.6.1 and then focus on de novo
MS/MS sequencing in Sect. 34.6.2. After reviewing
major protein/peptide identification programs like
SEQUEST and MASCOT in Sect. 34.6.3, we conclude
the section by pointing out some major issues
that need to be addressed in protein/peptide
identification.
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Proteomics technologies are considered the
major player in the analysis and understanding
of protein function and biological pathways.
The development of statistical methods and
software for proteomics data analysis will continue
to be the focus of proteomics for years to
come.

34.1 Overview

In the post-genome era, proteomics has attracted more
and more attention due to its ability to probe biological
functions and structures at the protein level. Although

recent years have witnessed great advancement in the
collection and analysis of gene expression microar-
ray data, proteins are in fact the functional units that
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are of biological relevance. The often poor correla-
tion that exists between levels of mRNA versus protein
expression [34.1], and the rapid advances in mass spec-
trometry (MS) instrumentation and attendant protein
profiling methodologies have substantially increased
interest in using MS approaches to identify peptide
and protein biomarkers of disease. This great level of
interest arises from the high potential of biomarkers
to provide earlier diagnosis, more accurate prognosis
and disease classification; to guide treatment; and to
increase our understanding at the molecular level of
a wide range of human diseases. This chapter focuses
on two key applications of proteomics technologies:
disease biomarker discovery and protein identification
through MS data. We anticipate that statistical meth-
ods and computer programs will contribute greatly to
the discovery of disease biomarkers as well as the
identification of proteins and their modification sites.
These methods should help biomedical researchers to
better realize the potential contribution of rapidly evolv-
ing and ever more sophisticated MS technologies and
platforms.

The study of large-scale biological systems has be-
come possible thanks to emerging high-throughput mass
spectrometers. Basically, a mass spectrometer consists
of three components: ion source, mass analyzer, and de-
tector. The ion source ionizes molecules of interest into
charged peptides, the mass analyzer accelerates these
peptides with an external magnetic field and/or elec-
tric field, and the detector generates a measurable signal
when it detects the incident ions. This procedure of pro-
ducing MS data is illustrated in Fig. 34.1. Data resulting
from MS sources have a very simple format consist-
ing entirely of paired mass-to-charge ratio (m/z value)
versus intensity data points. Figure 34.2 shows a few
examples of the raw MALDI-MS data.

The total number of measured data points is
extremely large (about 105 for a conventional MALDI-
TOF instrument, as compared to perhaps 106 for
a MALDI-FTICR instrument covering the range from
700–28 000 Da), while the sample size is usually on
the order of hundreds. This very high ratio of data
size to sample size poses unique statistical challenges
in MS data analysis. It is desirable to find a limited
number of potential peptide/protein biomarkers from the
vast amount of data in order to distinguish cases from
controls and enable classification of unknown samples.
This process is often referred to as biomarker discov-
ery. In this chapter, we review key steps in biomarker
discovery: preprocessing, feature selection, and sample
classification.
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ment

A biomarker discovered in the MS data may corre-
spond to many possible biological sources (so a spectral
peak can arise from different proteins). Therefore, it is
necessary to identify peptides and their parent proteins
in order to fully understand the relation between protein
structure and disease development. This understanding
can also be very useful in drug design and development.

In order to identify proteins in complex mixtures, the
tandem MS technique (MS/MS) coupled with database

searching has become the method of choice for the rapid
and high-throughput identification, characterization, and
quantification of proteins. In general, a protein mixture
of interest is enzymatically digested, and the resulting
peptides are then further fragmented through collision-
induced dissociation (CID). The resulting tandem MS
spectrum contains information about the constituent
amino acids of the peptides and therefore information
about their parent proteins. This process is illustrated
in Fig. 34.3.

Many MS/MS-based methods have been developed
to identify proteins. The identification of peptides con-
taining mutations and/or modifications, however, is still
a challenging problem. Statistical methods need to be
developed to improve identification of modified pro-
teins in samples consisting of only a single protein
and also in samples consisting of complex protein
mixtures.

We organize the rest of the chapter as follows: Sec-
tion 34.2 describes MS data preprocessing methods.
Section 34.3 focuses on feature selection. Section 34.4
reviews general sample classification methodology and
Sect. 34.5 mainly describes the random forest algorithm.
Section 34.6 surveys different algorithms/methods for
protein/peptide identification, each with its strengths
and weaknesses. It also points out challenges in the
future research and possible statistical approaches to
solving these challenges. Section 34.7 summarizes the
chapter.

34.2 MS Data Preprocessing

When analyzing MS data, only the spectral peaks
that result from the ionization of biomolecules such
as peptides and proteins are biologically meaningful
and of use in applications. Different data preprocess-
ing methods have been proposed to detect and locate
spectral peaks. A commonly used protocol for MS data
preprocessing consists of the following steps: spec-
trum calibration, baseline correction, smoothing, peak
identification, intensity normalization and peak align-
ment [34.2–4].

Preprocessing starts with aligning individual spectra.
Even with the use of internal calibration, the maxi-
mum observed intensity for an internal calibrant may
not occur at exactly the same m/z value in all spec-
tra. This challenge can be addressed by aligning spectra
based on the maximum observed intensity of the in-
ternal calibrant. For the sample collected, the distance

between each pair of consecutive m/z ratios is not
constant. Instead, the increment in m/z values is approx-
imately a linear function of the m/z values. Therefore,
a log-transformation of m/z values is needed before
any analysis is performed so that the scale on the pre-
dictor is roughly comparable across the range of all
m/z values. In addition to transforming the m/z val-
ues, we also need to log-transform intensities to reduce
the dynamic range of the intensity values. In summary,
log-transformations are needed for both m/z values and
intensities as the first step in MS data analysis. Fig-
ure 34.4 shows an example of MS data before and after
the log-transformation.

Chemical and electronic noise produce background
fluctuations, and it is important to remove these
background fluctuations before further analysis. Lo-
cal smoothing methods have been utilized for baseline
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Fig. 34.4 Top: Original raw data. Bottom: MS data af-
ter the log-transformation (top). The result of baseline
correction is also shown (bottom)

subtraction to remove high frequency noise, which is ap-
parent in MALDI-MS spectra. In the analysis of MALDI
data, Wu et al. [34.5] used a local linear regression
method to estimate the background intensity values, and
then subtracted the fitted values from the local linear
regression result. Baggerly et al. [34.4] proposed a semi-
monotonic baseline correction method in their analysis
of SELDI data. Liu et al. [34.6] computed the convex
hull of the spectrum, and subtracted the convex hull
from the original spectrum to get the baseline-corrected
spectrum. An example of baseline correction is shown
in Fig. 34.4 as well.

Among the above steps, peak identification and
alignment are arguably the most important ones. The
inclusion of non-peaks in the analysis will undoubtedly
reduce our ability to identify true biomarkers, while the
peaks identified need to be aligned so that the same
peptide corresponds to the same peak value.

In the following, we give an overview of the ex-
isting approaches related to peak detection and peak
alignment.

34.2.1 Peak Detection/Finding

Normally, spectral peaks are local maxima in MS data.
Most published algorithms on peak identification use
local intensity values to define peaks; in other words
peaks are mostly defined with respect to nearby points.
For example, Yasui et al. [34.3, 7] defined a peak as the
m/z value that has the highest intensity value within
its neighborhood, where the neighbors are the points
within a certain range from the point of interest. In
addition, a peak must have an intensity value that is
higher than the average intensity level of its broad
neighborhood. Coombes et al. [34.4] considered two
peak identification procedures. For simple peak find-
ing, local maxima are first identified. Then, those local
maxima that are likely noise are filtered out, and nearby
maxima that likely represent the same peptides are
merged. There is a further step needed to remove un-
likely peak points. In simultaneous peak detection and
baseline correction, peak detection is first used to ob-
tain a preliminary list of peaks, and then the baseline
is calculated by excluding candidate peaks. The two
steps are iterated and some peaks are further filtered out
if the signal-to-noise ratio is smaller than a threshold.
Similarly, Liu et al. [34.6] declared a point in the spec-
trum to be a peak if the intensity is a local maximum,
its absolute value is larger than a particular thresh-
old, and the intensity is larger than a threshold times
the average intensity in the window surrounding this
point.

All of these methods are based on similar intuitions
and heuristics. Several parameters need to be specified
beforehand in these algorithms, such as the number of
neighboring points and the intensity threshold value. In
fact, the parameter settings in the above algorithms are
related to our understanding/modeling of the underly-
ing noise. To address this issue, Coombes et al. [34.4]
defined noise as the median absolute value of intensity.
Satten et al. [34.8] used the negative part of the nor-
malized MS data to estimate the variance of the noise.
Wavelet-based approaches [34.9,10] have also been pro-
posed to remove noise in the MS data before peak
detection. Based on the observation that there are sub-
stantial measurement errors in the measured intensities,
Yasui and colleagues [34.3] argued that binary peak/non-
peak data is more useful than the absolute values of
intensity, while they still used a local maximum search
method to detect peaks. Clearly, the success of noise-
estimation-plus-threshold methodology depends largely
on the validity of the noise model, which remains to be
seen.
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Another issue in peak detection is to avoid false
positive detections. This is often done by adding an
additional constraint (such as the peak width con-
straint [34.3]) or by choosing a specific scale level after
wavelet decomposition of the original MS data (Ran-
dolph and Yasui) [34.10]. In the case of high-resolution
data, it has been proposed that more than one isotopic
variant of a peptide peak should be present before a spec-
tral peak is considered to result from peptide ionization
(Yu et al.) [34.11]. It may also be possible to use prior
information about the approximate expected peak inten-
sity distribution of different isotopes arising from the
same peptide during peak detection; the theoretical rel-
ative abundance of the first peptide isotope peak may
range from 60.1% for polyGly (n=23, MW 1329.5 Da)
to 90.2% for poly Trp (n=7, MW 1320.5 Da) (personal
communication 11/1/04 from Dr. Walter McMurray,
Keck Laboratory). Certainly we also have to consider
the issue of limited resolution and the consequent over-
lapping effect of neighboring peaks.

34.2.2 Peak Alignment

After peaks have been detected, we have to align them
together before comparing peaks in different data sets.
Previous studies have shown that the variation of peak
locations in different data sets is nonlinear [34.12, 13].
The example in Yu et al. [34.11] shows that this varia-
tion still exists even when we use technical replicates.
The reasons that underlie data variation are extremely
complicated, including differences in sample prepara-
tion, chemical noise, cocrystallization and deposition of
the matrix-sample onto the MALDI-MS target, laser po-
sition on the target, and other factors. Although it is of
interest to identify these reasons, we are more interested
in finding a framework to reduce the variation and align
these peaks together.

Towards this direction, some methods have been pro-
posed. Coombes et al. [34.4] pooled the list of detected
peaks that differed in location by three clock ticks or
by 0.05% of the mass. Yasui et al. [34.3] believed that
the m/z axis shift of the peaks is approximately± 0.1%
to ±0.2% of the m/z value. Thus, they expanded each
peak to its local neighborhood with the width equal to
0.4% of the m/z value of the middle point. This method
certainly oversimplifies the problem. In another study
(Yasui et al.) [34.7], they first calculated the number of
peaks in all samples allowing certain shifts, and selected
m/z values using the largest number of peaks. This set
of peaks is then removed from all spectra and the proce-
dure is iterated until all peaks are exhausted from all the

samples. In a similar spirit, Tibshirani et al. [34.14] pro-
posed to use complete linkage hierarchical clustering in
one dimension to cluster peaks, and the resulting den-
drogram is cut off at a given height. All of the peaks in
the same cluster are considered to be the same peak in
further analysis.

Randolph and Yasui [34.10] used wavelets to repre-
sent the MS data in a multiscale framework. They used
a coarse-to-fine method to first align peaks at a domi-
nant scale and then refine the alignment of other peaks
at a finer scale. From a signal representation point of
view, this approach is very interesting. But it remains to
be determined whether the multiscale representation is
biologically reasonable.

Johnson et al. [34.15] assumed that the peak vari-
ation is less than the typical distance between peaks
and they used a closest point matching method for
peak alignment. The same idea was also used in Yu
et al. [34.11] to address the alignment of multiple peak
sets. Certainly, this method is limited by the data quality
and it cannot handle large peak variation.

Dynamic programming (DP) based approaches
[34.12, 16] have also been proposed. DP has been used
in gene expression analysis to warp one gene expres-
sion time series to another similar series obtained from
a different biological replicate [34.17], where the cor-
respondence between the two gene expression time
series is guaranteed. In MS data analysis, however, the
situation is more complicated since a one-to-one cor-
respondence between two data sets does not always
exist. Although it is still possible to apply DP to deal
with the lack-of-correspondence problem, some mod-
ifications are necessary (such as adding an additional
distance penalty term to the estimation of correspon-
dence matrix). It also remains unclear how DP can
identify and ignore outliers during the matching.

Eilers [34.13] proposed a parametric warping model
with polynomial functions or spline functions to align
chromatograms. In order to fix warping parameters,
he added calibration example sequences into chro-
matograms. While the idea of using a parametric model
is interesting, it is difficult to repeat the same parameter
estimation method in MS data since we cannot add many
calibrator compounds into the MS samples. Also, it is
unclear whether a second-order polynomial would be
enough to describe the nonlinear shift in the MS peaks.

Although all of these methods are ad hoc, the rela-
tively small number of peaks (compared to the number
of collected points) and the relatively small shifts from
spectrum to spectrum ensure that these heuristic peak
alignments should work reasonably well in practice.
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34.2.3 Remaining Problems
and Proposed Solutions

Current peak detection methods (such as the local max-
imum search plus threshold method) export detection
results simply as peaks or non-peaks. Given the noisy
nature of MS data, this simplification is prone to being
influenced by noise (noise may also produce some local
maximal values) and is very sensitive to specific param-
eter settings (including the intensity threshold value).
In addition, a uniform threshold value may exclude
some weak peaks in the MS data, while the exis-
tence/nonexistence of some weak peaks may be the most
informative biomarkers.

Instead of using a binary output, it would be better to
use both peak width and intensity information as quan-
titative measures of how likely it is that a candidate is
a true peak. We can use a distribution model to describe
the typical peak width and intensity. The parameters of
the distribution can be estimated using training sam-
ples. Then a likelihood ratio test can be used to replace
the binary peak detection result (either as peak (one) or
as non-peak (zero)) with a real value. This new mea-

sure should provide richer information about peaks. We
believe this will help us to better align multiple peak
sets.

The challenge in peak alignment is that current meth-
ods may not work if we have large peak variation [like
with LC/MS (liquid chromatography/mass spectrome-
try) data]. Another unsolved problem is that it may not
be valid to assume that the distribution of peaks is not
corrupted by noise (false positive detection).

To address these problems, we may consider the
“true” locations of peaks as random variables and re-
gard the peak detection results as sampling observations.
Then, the problem of aligning multiple peak sets is con-
verted to the problem of finding the mean (or median)
values of random variables since we can assume that
the majority of peaks should be located close to the
“true” locations, with only a few outliers not obeying
this assumption. After the mean/median values have
been found/estimated, the remaining task is to simply
align peaks w.r.t. the mean/median standard. Intuitively,
the relative distance between a peak and its mean/median
standard may also be used as a confidence measure in
alignment.

34.3 Feature Selection

For current large-scale genomic and proteomic datasets,
there are usually hundreds of thousands of features (also
called variables in the following discussion) but limited
sample size, which poses a unique challenge for statis-
tical analysis. Feature selection serves two purposes in
this context: biological interpretation and to reduce the
impact of noise.

Suppose we have n1 samples from one group (e.g.
cancer patients) and n0 samples from another group (e.g.
normal subjects). We have m variables (X1, . . . , Xm)
(e.g. m/z ratios). For the kth variable, the observations
are

X1
k = (xk1, . . . , xkn1 )

for the first group and

X0
k =

(
xk(n1+1) , . . . , xk(n1+n0)

)

for the second group. They can be summarized in a data
matrix, X = (xij ). Assume X1

k are n1 i.i.d. samples
from one distribution fk1(x) and X0

k are n0 i.i.d. samples
from another distribution fk0(x).

Two sample t-test statistics or variants thereof are
often used to quantify the difference between two groups

in the analysis of gene expression data [34.18–20]

Ti = x̄i1− x̄i0√
1

n1
σ̂2

i1+ 1
n0
σ̂2

i0

, (34.1)

where

x̄i1 =
n1∑

k=1

xik, x̄i0 =
n1+n0∑

k=n1+1

xik,

σ̂2
i1 =

1

n1−1

n1∑

k=1

(xik − x̄i1)2 ,

σ̂2
i0 =

1

n0−1

n1+n0∑

k=n1+1

(xik − x̄i0)2 .

Ti can be interpreted as the standardized difference
between these two groups. It is expected that the
larger the standardized difference, the more separated
the two groups are. One potential problem with us-
ing t-statistics is its lack of robustness, which may
be a serious drawback when hundreds of thousands
of features are being screened to identify informative
ones.
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34.3.1 A Simple Example of the Effect
of Large Numbers of Features

Although there are hundreds of thousands of peaks
representing peptides, we expect the number of peaks
that provide information on disease classification to
be limited. This, coupled with the limited num-
ber of samples available for analysis, poses great
statistical challenges for the identification of informa-
tive peaks. Consider the following simple example:
suppose that there are n1 = 10, n2 = 10, m0 = 103

peptides showing no difference, and m1 = 40 pep-
tides showing differences between the two groups with
λ= µ/σ = 1.0. We can numerically calculate the ex-
pected number of significant features for these two
groups

N0 = 2m0 [1−T (x, d f = 18)] ,
N1 = m1 [T (−x, d f = 18, λ= 1.0)

+1−T (x, d f = 18, λ= 1.0)] ,
where T (x, d f ) is the t-distribution function with d f
degrees of freedom, T (x, d f, λ) is the t-distribution
function with d f degrees of freedom and noncentral par-
ameter λ, and the significance cut-off values are chosen
as |T |> x. Figure 34.5 gives a comparison of true and
false positives for this example, where a diagonal line is
also shown. We can clearly see the dominant effect of
noise in this example.

This artificial example reveals the difficulty that ex-
tracting useful features among a large number of noisy

150
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Fig. 34.5 Comparison of true positive and false positive for
the simulation example. N1 is the number of true positive,
N0 false positive. The diagonal line is also plotted as a solid
line. Different points correspond to different settings of
critical values in the t-test

features entails. In practice, due to the noisy nature of
MS data, the variance σ for individual peptide intensity
will be very large, reflecting the difficulties with re-
producibility that are commonly observed for MS data.
Also, the number of noisy features m0 (mostly uninfor-
mative) are increasing exponentially with the advance
of technology (e.g. MALDI-FTICR data). The combi-
nation of these two factors will increase the ratio of
false/true positives.

In this simple example, we ignore the interaction of
different proteins. For complex diseases, such as can-
cer, it is quite possible that the effects result from the
joint synergy of multiple proteins, while they individu-
ally show nonsignificant differences. Novel statistical
methods are needed to account for the effects of noise
and interactions among features.

34.3.2 Interaction

In ordinary or logistic regression models, we describe
the interaction of different variables by including the
interaction terms. This approach quickly becomes unfea-
sible with an increasing number of variables. Therefore,
standard regression models are not appropriate due to
n � p.

Instead of using univariate feature selection meth-
ods, it may be useful to consider multivariate feature
selection methods. Lai et al. [34.21] analyzed the co-
expression pattern of different genes using a prostate
cancer microarray dataset, where the goal is to
select genes that have differential gene–gene coex-
pression patterns with a target gene. Some interesting
genes have been found to be significant and reported
to be associated with prostate cancer, yet none of
them showed marginal significant differential gene
expressions.

Generally, multivariate feature selection is a combi-
natorial approach. To analyze two genes at a time we
need to consider n2 possibilities instead of n for the uni-
variate feature selection. To analyze the interaction of
K genes we need to consider nK possibilities, which
quickly becomes intractable.

A classification and regression tree (CART) [34.22]
naturally models the interaction among different
variables, and it has been successfully applied to
genomic and proteomic datasets where n � p is ex-
pected [34.23].

There are several new developments that are gen-
eralizations of the tree model. Bagging stands for
bootstrap aggregating. Intuitively, bagging uses boot-
strap to produce pseudoreplicates to improve prediction
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accuracy [34.24]. The boosting method [34.25] is a se-
quential voting method, which adaptively resamples
the original data so that the weights are increased for
those most frequently misclassified samples. A boost-
ing model using a tree as the underlying classifier has
been successfully applied to genomic and proteomic
datasets [34.26, 27].

34.3.3 Reducing the Influence of Noise

For most statistical models, the large number of vari-
ables may cause an overfitting problem. Just by chance,
we may find some combinations of noise that can po-
tentially discriminate samples with different disease
status. We can incorporate some additional informa-
tion into our analysis. For MS data, for instance,
we only want to focus on peaks resulting from pep-
tide/protein ionization. In previous sections we have
addressed and emphasized the importance of MS data
preprocessing.

34.3.4 Feature Selection with Machine
Learning Methods

Isabelle et al. [34.28] have reported using SVM to select
genes for cancer classification from microarray data. Qu
et al. [34.29] applied a boosting tree algorithm to classify
prostate cancer samples and to select important peptides
using MS analysis of sera. Wu et al. [34.5] reported
using random forest to select important biomarkers from
ovarian cancer data based on MALDI-MS analysis of
patient sera.

One distinct property of these learning-based fea-
ture selection methods compared to traditional statistical
methods is the coupling of feature selection and sample
classification. They implicitly approach the feature se-
lection problem from a multivariate perspective. The
significance of a feature depends strongly upon other
features. In contrast, the feature selection methods em-
ployed in Dudoit et al. [34.30] and Golub et al. [34.31]
are univariate and interactions among genes are ignored.

34.4 Sample Classification

There are many well established discriminant methods,
including linear and quadratic discriminant analysis, and
k-nearest neighbor, which have been compared in the
context of classifying samples using microarray and MS
data [34.5, 30]. The majority of these methods were de-
veloped in the pregenome era, where the sample size
n was usually very large while the number of fea-
tures p was very small. Therefore, directly applying
these methods to genomic and proteomic datasets does
not work. Instead, feature selection methods are usu-
ally applied to select some “useful” features at first and
then the selected features are used to carry out sample
classification based on traditional discriminant methods.
This two-step approach essentially divides the problem
into two separate steps: feature selection and sample
classification, unlike the recently developed machine

learning methods where the two parts are combined
together.

The previously mentioned bagging (Breiman) [34.24],
boosting (Freund and Schapire) [34.25], random for-
est (Breiman) [34.32], and support vector machine
(Vapnik) [34.33] approaches have all been success-
fully applied to high-dimension genomic and proteomic
datasets.

Due to the lack of a genuine testing dataset, cross-
validation (CV) has been widely used to estimate the
error rate for the classification methods. Inappropriate
use of CV may seriously underestimate the real clas-
sification error rate. Ambroise and McLachlan [34.34]
discussed the appropriate use of CV to estimate classi-
fication error rate, and recommended the use of K -fold
cross-validation, e.g. K = 5 or 10.

34.5 Random Forest:
Joint Modelling of Feature Selection and Classification

Wu et al. [34.5] compared the performance of several
classical discriminant methods and some recently devel-
oped machine learning methods for analyzing an ovarian
cancer MS dataset. In this study, random forest was
shown to have good performance in terms of feature
selection and sample classification. Here we design an

algorithm to get an unbiased estimation of the classifi-
cation error using random forest and at the same time
efficiently extract useful features.

Suppose the preprocessed MS dataset has n sam-
ples and p peptides. We use {Xk ∈ R

p, k = 1, 2, · · · , n}
to represent the intensity profile of the kth individ-
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ual, and {Yk, k = 1, 2, · · · , n} to code the sample
status.

The general idea of random forest is to combine
random feature selection and bootstrap resampling to
improve sample classification. We can briefly summa-
rize the general idea as the following algorithm.

General random forest algorithm

1. Specify the number of bootstrap samples B, say 105.
2. For b = 1, 2, · · · , B,

a) Sample with replacement n samples from
{Xk} and denote the bootstrap samples by
Xb = {Xb1 , · · · , Xbn }, the corresponding re-
sponse being Yb = {Yb1 , · · · ,Ybn }.

b) Randomly select m out of p peptides. Denote the
selected subset of features by {r1, · · · , rm}, and the
bootstrap samples restricted to this subset by Xb

m .
Build a tree classifier Tb using Yb and Xb

m . Predict
those samples not in the bootstrap samples using Tb.

3. Average the prediction over bootstrap samples to
produce the final classification.

For the random forest algorithm from Breiman [34.32],
randomness is introduced at each node split. Specifi-
cally, at each node split, a fixed number of features is
randomly selected from all of the features and the best
split is chosen among these selected features. For the ran-
dom subspace method developed by Ho [34.35], a fixed
number of features is selected at first and is used for
the same original data to produce a tree classifier. Thus,
both models have the effect of randomly using a fixed
subset of features to produce a classifier, but differ in the
underlying tree-building method.

Figure 34.6 shows a simple comparison of the two
methods. We selected 78 peptides from the ovarian can-
cer MS data reported by Wu et al. [34.5]. Then we apply
the two algorithms to numerically evaluate their sample
classification performance using the selected subset of
features. We want to emphasize that the calculated clas-
sification error rate is not a true error rate because we
have used the sample status to select 78 peptides first.
Our purpose here is just to show a simple numerical
comparison of these two methods.

Other important issues in the analysis of MS data in-
clude specification of the number of biomarkers and the
sample size being incorporated into the experimental de-
sign. To estimate the classification error Err, as discussed
in Cortes et al. [34.36], the inverse power law learning
curve relationship between Err and sample size N ,

Err(N) = β0 N−α+β1 , (34.2)

is approximately true for large sample size datasets

(usually about tens of thousands of samples); β1 is the
asymptotic classification error and (α, β0) are positive
constants.

Current MS data usually have a relatively small
sample size (N ≈ 102) compared to the high-dimension
feature space (p ≈ 105). In this situation, it may not be
appropriate to rely on the learning curve model to ex-
trapolate β1, which corresponds to an infinite training
sample size N =∞. But within a limited range, this
model may be useful to extrapolate the classification er-
ror. To estimate parameters (α, β0, β1), we need to obtain
at least three observations.

Obviously the classification error Err also depends
on the selected number of biomarkers m. We are going
to use the inverse-power-law (34.2) to model Err(N,m).

We proposed the following algorithm to get an un-
biased estimate for the classification error rate, which
also provides an empirical method to select the number
of biomarkers (Wu et al.) [34.37].
CV error estimation using random forest algorithm

1. Specify the number of folders K , say 5, and the
range for the number of biomarkers m, say M =
{20, 21, · · · , 100}. Randomly divide all N samples
into balanced K groups.

2. For k = 1, 2, · · · , K do the following:
a) Use samples in the kth group as the testing set Ts

and all the other samples as the training set Tr.
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Fig. 34.6 Comparison of the error rates of two random forest algo-
rithms on an ovarian cancer data set. 78 features selected by t-test are
used in both algorithms. The two methods give similar performances
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b) Apply the random forest algorithm (or any other
feature selection method) to the training data
Tr. Rank all of the features according to their
importance.

c) Use the first m ∈ M most important features and
construct a classifier based on the training set Tr
and predict samples in the testing set Ts. We will
get a series of error estimates

{
ε

(
k,m,

K −1

K
N

)
,m ∈ M

}
,

where K−1
K N is the effective size of the training

set.
d) Use samples in the ith and jth group as the test-

ing set and other K −2 groups as the training
set. Repeat steps (2.2) and (2.3) to get the error
estimate{

ε

(
k,m,

K −2

K
N

)
,m ∈ M

}
,

where K−2
K N is the effective size of the training

set.
e) We can repeat step (2.4) using n of the groups as

a testing set and get the error rate
{
ε

(
k,m,

K −n

K
N

)
,m ∈ M

}
,

n = 1, 2, · · · , K −1 .
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Fig. 34.7 Fivefold cross-validation estimation of classifi-
cation error rate achieved by applying a random forest
algorithm to the ovarian dataset. The error rates for sample
size N = 34, 68, 102, 136 are obtained from the fivefold
CV and the error rate for N = 170 is extrapolated from the
inverse power law model fitting

3. Average ε[k,m, N(K −n)/K ] over K folders to get
the final error estimation ε̄[m, N(K −n)/K ] for m
biomarkers and sample size N(K −n)/K .

4. Fit the inverse power law model (34.2) to
ε̄[m, N(K −n)/K ] for every fixed m and extrapolate
the error rate to N samples, ε̄(m, N).

The estimated error rate curve ε̄(m, n) can be used as
a guidance for sample size calculation and to select the
number of biomarkers.

For K folders, the previous algorithm will involve
a total of 2K training set fittings. If K is relatively large,
say 10, the total number of fittings will be very large(
2K = 1024

)
. Note that in the inverse power law model

(34.2) we only have three parameters (α, β0, β1). We
can carry out just enough training data fitting, say 10, to
estimate these three parameters. Then we can use the fit-
ted model to interpolate or extrapolate the classification
error rate for other sample size.

Figure 34.7 displays the fivefold CV estimate of
the classification error rate achieved by applying the
random forest algorithm to the serum mass spectrometry
dataset for 170 ovarian cancer patients reported in Wu
et al. [34.5], where the error rates for the training sample
size N = 34, 68, 102, 136 are derived from the fivefold
CV, and the error rate for N = 170 is extrapolated from
the inverse power law model fitting.

34.5.1 Remaining Problems in Feature
Selection and Sample Classification

As we discussed before, the univariate feature selection
based on t-statistics is very sensitive to noise. We can
reduce the influence of noise marginally by using ad-
ditional biological information. But more importantly,
we need to develop robust statistical methods. It is con-
jectured that random forest (Breiman) [34.32] does not
over-fit. Our experience shows that we can dramati-
cally reduce the classification error rate by incorporating
feature selection with the random forest algorithm.

Intuitively, the sample classification error rate will
increase with too much noise in the data. In this sense,
feature selection will help us to improve the performance
of algorithm classification. However, feature selection
is usually affected by the small sample size (n � p)
in genomic and proteomic datasets. If we only select
a small number of features, we may miss many “useful”
features. One approach would be to couple the fast uni-
variate feature selection with computationally intensive
machine learning methods. For example, we can first
use univariate feature selection to reduce the number of
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features to a manageable size M0. Then, we can apply
the machine learning methods to refine our selection to
a small number of target features M1. Certainly, deter-
mining M0 is a trade-off issue: if M0 is too small, we
will miss many informative features; if M0 is too large,
we will have a heavy computing burden for the follow-
ing machine learning methods and also make the feature
selection unstable.

For the genomic and proteomic data, the large n
and small p will make the majority of the traditional
statistical methods unusable. Most recently developed
machine learning methods are computationally inten-
sive and are often evaluated by empirical performance
on some datasets. Statistical methods needed to be de-
veloped to bridge the traditional model-based principles
and the newly developed machine learning methods.

34.6 Protein/Peptide Identification

34.6.1 Database Searching

MS in combination with database searching has emerged
as a key platform in proteomics for high-throughput
identification and quantification of proteins. A single
stage MS provides a “mass fingerprint” of the pep-
tide products of the enzymatically digested proteins,
and this can be used to identify proteins [34.38–45].
This approach is useful for identifying purified proteins
(such as proteins in dye-stained spots from 2-D poly-
acrylamide gels), and may also succeed with simple
mixtures containing only 2–3 major proteins. Protein
identification based on peptide mass database search-
ing requires both high mass accuracy and that observed
peptide masses be matched to a sufficient fraction (e.g.
>25%) of the putatively identified protein. The latter
task will be made more difficult if the protein has been
post-translationally modified at multiple sites. Alterna-
tively, the resulting peptide ions from the first stage MS
can be isolated in the mass spectrometer and individually
fragmented through CID to produce a tandem MS. In ad-
dition to the parent peptide mass, tandem MS provides
structural information that can be used to deduce the
amino acid sequences of individual peptides. Since tan-
dem MS often identifies proteins using the CID-induced
spectrum obtained from a single peptide, this technol-
ogy is capable of identifying proteins in very complex
mixtures such as cell extracts [34.43, 44, 46–61]. In
general, database searching methods compare the exper-
imentally observed tandem MS with features predicted
for hypothetical spectra from candidate peptides (of
equal mass) in the database and then return a ranked
listing of the best matches, assuming that the query
peptide exists in the protein sequence database. The
statistical challenge in MS- and MS/MS-based protein
identification is to assess the probability that a putative
protein identification is indeed correct. In the case of
MS/MS-based approaches, a commonly used criterion
is that the observed MS/MS spectra must be matched

to at least two different peptides from each identified
protein.

34.6.2 De Novo Sequencing

An alternative approach to database searching of un-
interpreted tandem MS for peptide identification is De
Novo MS/MS sequencing [34.62–65], which attempts
to derive a peptide sequence directly from tandem MS
data. Although de novo MS/MS sequencing can handle
situations where a target sequence is not in the protein
database searched, the utility of this approach is highly
dependent upon the quality of tandem MS data, such as
the number of predicted fragment ion peaks that are ob-
served and the level of noise, as well as the high level
of expertise of the mass spectroscopist in interpreting
the data, as there is no currently accepted algorithm ca-
pable of interpreting MS/MS spectra in terms of a de
novo peptide sequence without human intervention. Be-
cause of the availability of DNA sequence databases,
many of which are genome-level, and the very large
numbers of MS/MS spectra (e.g., tens of thousands) gen-
erated in a single isotope coded affinity tag or another
MS-based protein profiling analysis of a control ver-
sus experimental cell extract, highly automated database
searching of uninterpreted MS/MS spectra is by neces-
sity the current method of choice for high-throughput
protein identification [34.43, 46, 49].

34.6.3 Statistical
and Computational Methods

Due to the large number of available methods/alogrithms
for MS- and MS/MS-based protein identification, we
focus on what we believe are currently the most widely
used approaches in the field.

• SEQUEST (Eng et al.) [34.46]
SEQUEST is one of the foremost yet sophisticated algo-
rithms developed for identifying proteins from tandem
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MS data. The analysis strategy can be divided into
four major steps: data reduction, search for potential
peptide matches, scoring peptide candidates and cross-
correlation validation. More specifically, it begins with
computer reduction of the experimental tandem MS
data and only retains the most abundant ions to elim-
inate noise and to increase computational speed. It then
chooses a protein database to search for all possible con-
tiguous sequences of amino acids that match the mass of
the peptide with a predetermined mass tolerance. Limit-
ed structure modifications may be taken into account as
well as the specificity of the proteolytic enzyme used to
generate the peptides. After that, SEQUEST compares
the predicted fragment ions from each of the peptide se-
quences retrieved from the database with the observed
fragment ions and assigns a score to the retrieved peptide
using several criteria such as the number of matching
ions and their corresponding intensities, some immo-
nium ions, and the total number of predicted sequence
ions. The top 500 best fit sequences are then subjected
to a correlation-based analysis to generate a final score
and ranking for the sequences.

SEQUEST correlates MS spectra predicted for pep-
tide sequences in a protein database with an observed
MS/MS spectrum. The cross-correlation score func-
tion provides a measure of the similarity between the
predicted and observed fragment ions and a ranked
order of relative closeness of fit of predicted frag-
ment ions to other isobaric sequences in the database.
However, since the cross-correlation score does not
have probabilistic significance, it is not possible to
determine the probability that the top-ranked and/or
other matches result from random events and are thus
false positives. Although lacking a statistical basis,
Eng et al. [34.46] suggest that a difference greater
than 0.1 between the normalized cross-correlation func-
tions of the first- and second-ranked peptides indicates
a successful match between the top-ranked peptide se-
quence and the observed spectrum. A commonly used
guideline for Sequest-based protein identification is
that observed MS/MS spectra are matched to two or
more predicted peptides from the same protein and
that each matched peptide meets the 0.1 difference
criterion.

• MASCOT (Perkins et al.) [34.43]
MASCOT is another commonly used database search-
ing algorithm, which incorporates a probability-based
scoring scheme. The basic approach is to calculate the
probability (via an approach that is not well described
in the literature) that a match between the experimen-
tal MS/MS data set and each sequence database entry is

a chance event. The match with the lowest probability
of resulting from a chance event is reported as the best
match. MASCOT considers many key factors, such as
the number of missed cleavages, both quantitative and
nonquantitative modifications (the number of nonquan-
titative modifications is limited to four), mass accuracy,
the particular ion series to be searched, and peak inten-
sities. Hence, MASCOT iteratively searches for the set
with the most intense ion peaks, which provide the high-
est score – with the latter being reported as−10 log(P),
where P is the probability of the match resulting from
a random, chance event. Perkins et al. [34.43] suggested
that the validity of MASCOT probabilities should be
tested by repeating the search against a randomized se-
quence database and by comparing the MASCOT results
with those obtained via the use of other search engines.

• Other Methods
In addition to SEQUEST and MASCOT, many other
methods have been proposed to identify peptides and
proteins from tandem MS data. They range from the
development of probability-based scoring schemes, the
identification of modified peptides, and checking the
identities of peptides and proteins in other miscellaneous
fields. Here we give a brief review of these approaches.

Bafna and Edwards [34.49] proposed the use of
SCOPE to score a peptide with a conditional probability
of generating the observed spectrum. SCOPE models
the process of tandem MS spectrum generation using
a two-step stochastic process. Then SCOPE searches
a database for the peptide that maximizes the condi-
tional probability. The SCOPE algorithm works only as
well as the probabilities assumed for each predicted frag-
ment of a peptide. Although Bafna and Edwards [34.49]
proposed using a human-curated database of identified
spectra to compute empirical estimates of the fragmen-
tation probabilities required by this algorithm, to our
knowledge this task has not yet been carried out. Thus,
SCOPE is not yet a viable option for most laboratories.

Pevzner et al. [34.48] implemented spectral convo-
lution and spectral alignment approaches to identifying
modified peptides without the need for exhaustive gen-
eration of all possible mutations and modifications. The
advantages of these approaches come with a tradeoff in
the accuracy of their scoring functions, and they usually
serve as filters to identify a set of “top-hit” peptides for
further analysis. Lu and Chen [34.60] developed a suf-
fix tree approach to reduce search time when identifying
modified peptides, but the resulting scores do not have
direct probabilistic interpretations.

PeptideProphet [34.53] and ProteinProphet (Nesvizh-
skii et al.) [34.61] were developed at the Institute for
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Systems Biology (ISB) to validate peptide and pro-
tein identifications using robust statistical models. After
scores are derived from the database search, Peptide-
Prophet models the distributions of these scores as
a mixture of two distributions, with one consisting
of correct matches, and the other consisting of incor-
rect matches. ProteinProphet takes as input the list of
peptides along with probabilities from PeptideProphet,
adjusts the probabilities for observed protein group-
ing information, and then discriminates correct from
incorrect protein identifications.

Mann and Wilm [34.47] proposed a “peptide se-
quence tag” approach to extracting a short, unambiguous
amino acid sequence from the peak pattern that, when
combined with the mass information, infers the compo-
sition of the peptide. Clauser et al. [34.44] considered

the impact of measurement accuracy in protein iden-
tification. Kapp et al. [34.66] proposed two different
statistical methods, the cleavage intensity ratio (CIR)
and a linear model, to identify the key factors that in-
fluence peptide fragmentation. It has been known for
a long time that peptides do not fragment equally and
that some bonds are more likely to break than others.
However, the chemical mechanisms and physical pro-
cesses that govern the fragmentation of peptides are
highly complex. One can only take results from previous
experiments and try to find indicators about such mecha-
nisms. The use of these statistical methods demonstrates
that proton mobility is the most important factor. Other
important factors include local secondary structure and
conformation as well as the position of a residue within
a peptide.

34.7 Conclusion and Perspective

While the algorithms for protein identification from
tandem MS mentioned above have different emphases,
they contain the elements of the following three mod-
ules [34.49]:

1. Interpretation [34.67], where the input MS/MS data
are interpreted and the output may include parent
peptide mass and possibly a partial sequence.

2. Filtering, where the interpreted MS/MS data are used
as templates in a database search in order to identify
a set of candidate peptides.

3. Scoring, where the candidate peptides are ranked
with a score.

Among these three modules, a good scoring scheme is
the mainstay. Most database searching algorithms assign
a score function by correlating the uninterpreted tandem
MS with theoretical/simulated tandem MS for certain
peptides derived from protein sequence databases. An
emerging issue is the significance of the match between
a peptide sequence and tandem MS data. This is es-
pecially important in multidimensional LC/MS-based
protein profiling where, for instance, our isotope-coded
affinity tag studies on crude cell extracts typically iden-
tify and quantify two or more peptides from only a few
hundred proteins as compared to identifying only a sin-
gle peptide from a thousand or more proteins. Currently,
we require that two or more peptides must be matched
to each identified protein. However, if statistically sound
criteria could be developed to permit firm protein iden-
tifications based on only a single MS/MS spectrum, the
useable data would increase significantly. Therefore, it

is important and necessary to develop the best possible
probability-based scoring schemes, particularly in the
case of the automated high-throughput protein analyses
used today.

Even for the probability-based algorithms, the ef-
ficiencies of score functions can be further improved
by incorporating other important factors. For example,
statistical models proposed by Kapp et al. [34.66] may
be used to predict the important factors that govern the
fragmentation pattern of peptides and subsequently im-
prove the fragmentation probability as well as the score
function in SCOPE [34.49]. In addition, some intensity
information can be added to improve score function.

One common drawback of all of these algorithms
is the lack of ability to detect modified peptides. Most
of the database search methods are not mutation- and
modification-tolerant. They are not effective at detect-
ing types and sites of sequence variations, leading to low
score functions. A few methods have incorporated mu-
tation and modification into their algorithms, but they
can only handle at most two or three possible modifica-
tions. Therefore, the identification of modified peptides
remains a challenging problem. Theoretically, one can
generate a virtual database of all modified peptides for
a small set of modifications and match the spectrum
against this virtual database. But the size of this vir-
tual database increases exponentially with the number
of modifications allowed, making this approach un-
feasible. Markov chain Monte Carlo is an appealing
approach to identifying mutated and modified peptides.
The algorithm may start from a peptide corresponding
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to a protein and a “new” candidate peptide with mod-
ifications/mutations is proposed according to a set of
prior probabilities for different modifications and mu-
tations. The proposed “new” peptide is either rejected
or accepted and the procedure can be iterated to sample

the posterior distribution for protein modification sites
and mutations. However, the computational demands
can also be enormous for this approach. Parallel com-
putation and better-constructed databases are necessary
to make this approach more feasible.
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Radial Basis F35. Radial Basis Functions for Data Mining

This chapter deals with the design and applications
of the radial basis function (RBF) model. It
is organized into three parts. The first part,
consisting of Sect. 35.1, describes the two data
mining activities addressed here: classification
and regression. Next, we discuss the important
issue of bias-variance tradeoff and its relationship
to model complexity. The second part consists
of Sects. 35.2 to 35.4. Section 35.2 describes the
RBF model architecture and its parameters. In
Sect. 35.3.1 we briefly describe the four common
algorithms used for its design: clustering,
orthogonal least squares, regularization, and
gradient descent. In Sect. 35.3.2 we discuss an
algebraic algorithm, the SG algorithm, which
provides a step-by-step approach to RBF design.
Section 35.4 presents a detailed example to
illustrate the use of the SG algorithm on a small
data set. The third part consists of Sects. 35.5 and
35.6. In Sect. 35.5 we describe the development
of RBF classifiers for a well-known benchmark
problem to determine whether Pima Indians have
diabetes. We describe the need for and importance
of partitioning the data into training, validation,
and test sets. The training set is employed to
develop candidate models, the validation set is
used to select a model, and the generalization
performance of the selected
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model is assessed using the test set. Sec-
tion 35.6 describes a recent data mining
application in bioinformatics, where the
objective is to analyze the gene expres-
sion profiles of Leukemia data from patients
whose classes are known to predict the tar-
get cancer class. Finally, Sect. 35.7 provides
concluding remarks and directs the reader to re-
lated literature. Although the material in this
chapter is applicable to other types of ba-
sis funktions, we have used only the Gaussian
function for illustrations and case studies be-
cause of its popularity and good mathematical
properties.

Neural networks have been used extensively to model
unknown functional relationships between input and
output data. The radial basis function RBF model is
a special type of neural network consisting of three
layers: input, hidden, and output. It represents two se-
quential mappings. The first nonlinearly maps the input
data via basis functions in the hidden layer. The second,
a weighted mapping of the basis function outputs, gen-
erates the model output. The two mappings are usually
treated separately, which makes RBF a very versa-
tile modeling technique. There has been some debate
about whether RBF is biologically plausible, and hence
whether it really is a neural network model. Neverthe-

less, it has become an established model for diverse
classification and regression problems. For example, it
has been successfully employed in areas such as data
mining, medical diagnosis, face and speech recognition,
robotics, forecasting stock prices, cataloging objects in
the sky, and bioinformatics.

RBF networks have their theoretical roots in regular-
ization theory and were originally developed by Russian
mathematicians in the 1960s. They were used for
strict interpolation among multidimensional data [35.1],
where it is required that every input be mapped to
a corresponding output. Broomhead and Lowe [35.2]
used the RBF model for approximation. The relation-
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640 Part D Regression Methods and Data Mining

ship between the use of RBF for strict interpolation and
approximation is of special interest in this chapter. Fur-
ther, they have been shown to possess very important
mathematical properties of universal and best approx-
imation [35.3]. A function approximation scheme is
said to have the property of universal approximation
if the set of functions supported by the approxima-
tion scheme is dense in the space of the continuous
functions defined on the input domain, and it has the
property of best approximation if there is one func-
tion among this set that has the lowest approximating
error for any given function to be approximated. This
provides a strong mathematical justification for their
practical application, since the popular multilayer per-
ceptrons approach, for example, does not possess the
property of best approximation.

In this chapter we describe the radial basis network
architecture, its design and applications. The data mining
problem we address is described in Sect. 35.1. The RBF
model and its parameters are described in Sect. 35.2.
Sect. 35.3 presents some common design algorithms.
An important design problem relates to determining the
number of basis functions in the hidden layer and their
parameters. A new algebraic algorithm, the SG algo-
rithm, provides a systematic methodology for doing so
and is also discussed in Sect. 35.3. An illustrative model-
ing example is described in Sect. 35.4, and a benchmark
case study about diabetes classification is presented
in Sect. 35.5. An important data mining application for
cancer class prediction based on microarray data analy-
sis is described in Sect. 35.6. Finally, some concluding
remarks are presented in Sect. 35.7.

35.1 Problem Statement

Knowledge discovery applications are aimed at extract-
ing accurate, previously unknown, useful, and actionable
information from databases, and the related discipline is
known as knowledge discovery in databases KDD. The
usual steps in this process, often followed iteratively, are:
selection of the target data from the raw databases; its
processing and transformation; information extraction
(called “data mining”) using algorithmic approaches;
interpretation of the information gained; and its useful
application. Data mining is the key phase in this pro-
cess and is main interest in this chapter. For a detailed
description of this discipline, see [35.4–6].

The data available is a collection of records, each
record itself being a collection of fields or data items.
This tabular data is the input to a data mining algo-
rithm, the output of which is the desired information
or the knowledge sought. Usual data mining applica-
tions include data characterization, pattern recognition,
rule extraction, clustering, trend analysis, and visualiza-
tion. In this chapter, we address only pattern recognition.
The pattern recognition task can be described as the
construction of a model for input-output mapping on
the basis of available tabular data. Such data are called
the training sample. The inputs are d-dimensional in-
dependent variables or features (x’s), and the output
is a one-dimensional dependent variable (y). The two
common pattern recognition tasks are classification and
regression. In the case of classification, y represents
one of a possible L classes. Most applications, how-
ever, are binary classification problems; in other words

L = 2 in most practical cases. In regression problems
y is a continuous variable. The constructed model is
employed to predict the output y for future observed
input x’s. The objective is to seek a data mining algo-
rithm that predicts y as accurately as possible. In other
words, we seek to minimize the prediction error on future
data.

In classification problems, a commonly used pre-
diction error measure is the “classification error” (CE),
which is defined as the ratio of misclassified objects to
the total number of objects. For regression problems,
the mean squared error (MSE) is generally employed.
It is the averaged sum of squared discrepancies be-
tween the actual and the predicted values. The model
performance is computed for the training data. An in-
dependent data set that is representative of the data
used for training and is called the “validation set” is
employed to compare the performance of the derived
models. Then, yet another independent data set, called
the “test set”, is employed to assess the test error of
the selected model as a performance measure on future
data, for which the model was developed in the first
place.

In the design and selection of RBF models, we pre-
fer a parsimonious model; in other words, one with the
smallest number of terms that provides the desired per-
formance. However, it is well known that a model with
too few terms can suffer from underfitting, while one
with too many can result in overfitting and will there-
fore fail to generalize well on future data. This problem
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Radial Basis Functions for Data Mining 35.2 RBF Model and Parameters 641

is also known as the “bias-variance dilemma” in ma-
chine learning and statistics literature [35.5,7,8]. Simple
models tend to have high bias and low variance, while
complex models tend to have low bias and high variance.
A graphical illustration of this phenomenon is shown in
Fig. 35.1. The objective of modeling is to seek a compro-
mise or tradeoff between bias and variance, and to find
a model of just the right complexity. For the RBF model,
as we discuss below, this means that we seek a model
with just enough basis functions in the hidden layer. In
other words, we seek a model that has a low training
error and a low generalization error as assessed by the
error on test data. In Fig. 35.1 this idealized situation is
labeled as the “best model”.

Model error

Model complexity

Too much bias Too much variance

Test error

Training
error

Best model

Fig. 35.1 Typical behavior of training error and test error

35.2 RBF Model and Parameters

A typical RBF network is shown in Fig. 35.2. It has three
layers: input, hidden and output. The input layer consists
of an n × d input data matrix X:

X = (x1, x2, ..., xn)T ∈ R
n×d , (35.1)

where xi , i= 1, 2, . . . , n are the d-dimensional vectors
and n is the size of the data. The hidden layer has m ba-
sis functions φ1(·), φ2(·), . . . , φm(·) centered at basis
function centers µ1, µ2, . . . , µm , respectively, and con-
nected to the output layer with weights w1, w2, . . ., wm ,
respectively. The basis functions transform the input
data matrix via nonlinear mappings based on using the
Euclidean distance between the input vector x and the
prototype vectors µ j, j = 1, . . ., m. This mapping can
be represented as follows, where ‖ · ‖ is the Euclidean
norm:

φ j (x) = φ
(∥∥x−µ j

∥∥) , j = 1, 2, ...,m. (35.2)

The n × d input matrix is thus transformed by the m
basis functions into the following n ×m design matrix �.
In this matrix, the jth column represents the outputs
from the jth basis function, j = 1, 2, . . .,m.

�=

Φ1 � Φ j � Φm⎛
⎜⎜⎜⎝

φ1(x1) � φ j (x1) � φm(x1)

φ1(x2) � φ j (x2) � φm(x2)

� � � � �

φ1(xn) � φ j (xn) � φm(xn)

⎞
⎟⎟⎟⎠

. (35.3)

Several types of basis function have been considered
in the literature. The common ones are Gaussian, thin

plate spline, inverse multiquadratic, and cubic [35.7, 9].
However, the basis function most commonly used for
most applications is the Gaussian. Its form is φ(r) =
exp

(− r2

2σ2

)
, where σ is a parameter that controls the

smoothness properties of the approximating function.
The expression for the jth Gaussian function mapping
can be explicitly written as

φ j (x) = exp

(
−
∥∥x−µ j

∥∥2

2σ2
j

)
, (35.4)

where µ j is the center and σ j is the width of the jth basis
function, j = 1, 2, . . .,m. On substituting in (35.3), we

Input layer Hidden layer Output layer
x1

xd

�1

�m

W1

Wm

y

Fig. 35.2 Radial basis function network
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can write the expression for a Gaussian design matrix,
�, as

Φ1 � Φ j � Φm

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp

(
−‖x1−µ1‖2

2σ2
1

)
� exp

⎛

⎝−
∥∥∥x1−µ j

∥∥∥
2

2σ2
j

⎞

⎠ � exp

(
−‖x1−µm‖2

2σ2
m

)

exp

(
−‖x2−µ1‖2

2σ2
1

)
� exp

⎛

⎝−
∥∥∥x2−µ j

∥∥∥
2

2σ2
j

⎞

⎠ � exp

(
−‖x2−µm‖2

2σ2
m

)

� � � � �

exp

(
−‖xn−µ1‖2

2σ2
1

)
� exp

⎛

⎝−
∥∥∥xn−µ j

∥∥∥
2

2σ2
j

⎞

⎠ � exp

(
−‖xn−µm‖2

2σ2
m

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35.5)

For the special case where the number of basis func-
tions equals the number of data vectors (when m = n),
and if we use the n input data vectors as the basis
function centers, the matrix in (35.5) is called the in-
terpolation matrix. It is this matrix that is employed
for the strict interpolation problem mentioned earlier
and is of special interest in the SG algorithm. To com-
pute the output, the entries in the matrix given by
(35.5) are combined linearly according to the weights.
The resulting values at the output node are then given

by

f (x) =
m∑

j=1

w j exp

(
−
∥∥x−µ j

∥∥2

2σ2
j

)
, (35.6)

where f (x) represents the Gaussian RBF output
for the input vector x. Thus, for n input vectors
(x1, x2, . . ., xn)T, the output layer consists of n outputs,
one for each x, as indicated below,

[
f (x1), f (x2), ..., f (xn)

]T =�w . (35.7)

Thus, we see that a Gaussian RBF model is fully de-
fined by the number of basis functions (m), their centers
[µ= (µ1, µ2, . . . , µm)], widths [σ = (σ1, σ2, . . ., σm)],
and the weights [w= (w1, w2, . . ., wm)] to the output
layer. In most applications, and in this chapter, a global
width σ is used for each basis function. The parame-
ters m, µ and σ define the hidden layer (the nonlinearity
of the RBF model). The weights (w) define the linear
part as indicated in Fig. 35.2. This completes discussion
of the radial basis function model and its parameters.
We now move on to discuss RBF model development;
in other words, the determination of its parameters
from the training sample or the given input-output data
set.

35.3 Design Algorithms

A common characteristic of most design or training
algorithms used for RBF models is that they employ
a two-stage training procedure. In the first stage, only
the input data is used to determine the basis function pa-
rameters. For the Gaussian case, these are the number of
basis functions, their centers, and their widths. Once the
basis function parameters are determined, the weights
are found in the second stage to minimize some error
measure. There are a large number of procedures avail-
able in the literature for RBF design. We first describe
the four commonly used ones and then a relatively new
algorithm called the SG algorithm.

35.3.1 Common Algorithms

Clustering: [35.10] A set of centers for basis functions
can be obtained by employing clustering techniques on
the input data. The k-means clustering algorithm [35.5]
is used to locate a set of k basis function centers. For
a specified k, the algorithm seeks to partition the input
data into k disjoint subsets, each of which corresponds
to a cluster. Once the cluster membership is determined,

the averages of the data points in these clusters are cho-
sen as the centers of the k basis functions in the RBF
model, and m is taken to equal k. Next, the widths of the
basis functions are determined by a P-nearest neigh-
bor heuristic [35.5]. Thus, if P=1, the width of the
jth basis function is set to be the Euclidean distance
between its own center and the center of its nearest
neighbor.

Orthogonal Least Square: [35.11] In this procedure
a set of vectors is constructed in the space spanned by
the vectors of hidden unit outputs for the training set
and then by directly finding the center of an additional
basis function such that it gives the greatest reduction
in residual sum-of-square error. The stopping criterion
employed is a threshold on the fraction of the variance
explained by the model.

Regularization: [35.7] These procedures are moti-
vated by the theory of regularization. A regularization
parameter is used to control the smoothness properties
of a mapping function by adding an extra term to the
minimized error function that is designed to penalize
mappings that are not smooth.
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Gradient Descent: [35.10] Such training algorithms
are fully supervised gradient-descent methods over some
error measure. Specifically, the model parameters are
updated as a function of this error measure according to
some specified learning rates associated with the RBF
parameters.

35.3.2 SG Algorithm

In the SG algorithm, the parameters (m, σ,µ) of the
nonlinear mapping are first determined from the input
matrix X without referencing the output values. Then,
the linear parameters (w) are determined by referencing
the output y′s. The SG algorithm consists of four steps,
given below. These steps are shown schematically in
Fig. 35.3.

• Step 1: Select a range of values for global width, σ ,
and a representation capability measure, δ, according
to the heuristics given below.• Step 2: Determine a value of m that satisfies the δ

criterion. This step involves singular value decom-
position of the interpolation matrix computed from
the input data matrix X for a chosen Xσ .• Step 3: Determine centers for the m basis functions
that maximize structural stability provided by the
selected model complexity, m. This step involves
the use of QR factorization.• Step 4: Compute weights using the pseudoinverse
and estimate the output values.

Step 1

Step 2

Step 3

Step 4

Interpolation matrix,
singular value decomposition (SVD)

m

QR factorization with column pivoting

Pseudo-inverse, y

Estimate output values

σ, δ, X

µ

Fig. 35.3 The four steps of the SG RBF modeling algorithm

Note that the choice of parameters in Step 1 affects the
quality of the developed model. Heuristically, we take σ

to be approximately in the range of 0 to 0.75
√

d/2, and δ

is taken to be in the range 0.1% to 1.0% [35.12], where
d is the dimensionality of the input data points. RBF
models are then developed for a few judicially chosen
values of these parameters. The performance of these
models is assessed using some prespecified approach,
and the most appropriate model is selected. This process
is illustrated in Sects. 35.5 and 35.6 for two real-world
data sets.

35.4 Illustrative Example

In this section we illustrate the use of the SG algorithm
on a small data set generated from the following sine
function [35.7]:

h(x) = 0.5+0.4 sin(2πx) .

Five values of the above function are computed at equal
intervals of x in the range 0.0 to 1.0. Then random

Table 35.1 Dataset for illustrative example

i xi h(xi ) yi

1 0.00 0.50 0.5582

2 0.25 0.90 0.9313

3 0.50 0.50 0.5038

4 0.75 0.10 0.1176

5 1.00 0.50 0.4632

noise values, generated from a Gaussian distribution
with mean zero and variance 0.25, are added to h(x)
to obtain five data points. The data set is listed in Ta-
ble 35.1 along with the true h(x) values. Our objective is
to seek a good approximation for the unknown function
h(x), based only on the x and observed y data. A plot
of the true h(x) and the observed y values is shown in
Fig. 35.4. Also shown is an approximated or estimated
function found using interpolation, as discussed next.

First, we consider the strict interpolation problem
for this data set, then we illustrate the use of the SG al-
gorithm for approximation. The interpolation problem
is to determine a Gaussian RBF that gives exact outputs
for each x; in other words, we seek a model whose out-
put is exactly equal to the y value corresponding to that
x given in Table 35.1. For this we construct an inter-
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polation matrix with five basis functions, one centered
at each input value x. Suppose we use a global width
σ = 0.4. Then the five Gaussian basis functions, each
with σ = 0.4, will be centered at the five x values of
Table 35.1 and will map the input data into an interpola-
tion matrix according to the expressions in (35.5) with
m = n = 5. For example, the column �2 in matrix � is
obtained according to (35.3) and (35.4) by substituting
µ= 0.25 and the five x values given below.

Φ2(x) =

⎛
⎜⎜⎜⎜⎜⎝

φ2(x1)

φ2(x2)

φ2(x3)

φ2(x4)

φ2(x5)

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp
(
−‖0.00−0.25‖2

2(0.4)2

)

exp
(
−‖0.25−0.25‖2

2(0.4)2

)

exp
(
−‖0.50−0.25‖2

2(0.4)2

)

exp
(
−‖0.75−0.25‖2

2(0.4)2

)

exp
(
−‖1.00−0.25‖2

2(0.4)2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0.8226

1.0000

0.8226

0.4578

0.1724

⎞
⎟⎟⎟⎟⎟⎠

.

Other columns of the matrix are similarly computed for
different µ’s. The final 5×5 interpolation matrix is given
below.

Φ1 Φ2 Φ3 Φ4 Φ5

1.0000 0.8226 0.4578 0.1724 0.0439

0.8226 1.0000 0.8226 0.4578 0.1724

�= 0.4578 0.8226 1.0000 0.8226 0.4578

0.1724 0.4578 0.8226 1.0000 0.8226

0.0439 0.1724 0.4578 0.8226 1.0000

(35.8)

1
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0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

x

Estimated
Observed
True

Fig. 35.4 Data and plots for the illustrative example

This matrix is symmetric because we have chosen
a global width for the basis functions. Also, its diagonal
values are 1.0 because the x values are listed in increas-
ing order and because the height of the basis function
at its center is always 1.0. The above interpolation ma-
trix and the yi vector in Table 35.1 are used to compute
weights w= (w1, w2, . . ., w5)T of the links to the output
node using the pseudoinverse. Finally, the interpolated
function is obtained from (35.6) and (35.7) as

ŷ = −2.09 exp

(
−‖x−0.0‖2

2(0.4)2

)

+3.87 exp

(
−‖x−0.25‖2

2(0.4)2

)

−0.06 exp

(
−‖x−0.50‖2

2(0.4)2

)

+3.63 exp

(
−‖x−0.75‖2

2(0.4)2

)

+2.91 exp

(
−‖x−1.0‖2

2(0.4)2

)
.

Note that here ŷ is the weighted sum of the basis function
outputs and consists of five terms, one corresponding to
each basis function. A plot of this function is shown in
Fig. 35.4, where the estimated values are exactly equal
to the observed y’s since we are dealing with exact
interpolation.

In practical problems, exact interpolation is undesir-
able because it represents extreme overfitting. Referring
to Fig. 35.1, this indicates a very complex model that
will not perform well on new data in the sense that it
will exhibit a high generalization error. In practice, we
seek an approximate model according to the guidelines
discussed in Sect. 35.1. To achieve this goal we use the
SG algorithm, where the user controls the tradeoff be-
tween underfitting and overfitting or between bias and
variance by specifying the values of δ [35.12]. As in-
dicated above, for practical applications, δ = 0.1% to
1% seems to be a good set of values to consider. The
RBF model is then designed according to the above
four-step procedure. We provide a description of this
procedure for the sine data below. However, details of
the singular value decomposition and QR factorization
are beyond the scope of this chapter and can be found
in [35.12, 13].

The starting point in the SG algorithm is the
selection of σ and δ. For the sine data, suppose
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σ = 0.4 and δ = 0.01. The 5 × 5 interpolation matrix
for this σ is computed as shown above. In step 2,
its singular value decomposition yields five singular
values. Using these and δ = 0.01, for this example
data, we obtain m = 4. Then, in step 3, QR fac-
torization identifies the four centers for the basis
functions as being µ1 = 1.00, µ2 = 0.00, µ3 = 0.75
and µ4 = 0.25. Finally, the weights are obtained
in step 4 as w1 = −2.08, w2 = 3.82, w3 = −3.68
and w4 = 2.92. Thus, an approximation of the un-
known function h(x) based on the available data
x and y in Table 35.1 is provided by an RBF

model

ŷ =
4∑

j=1

w j exp

(
−
∥∥x−µ j

∥∥2

2σ2
j

)
,

where w j and µ j are as listed above and σ j = 0.4 for
j = 1, 2, 3, 4. This estimate of y is based on the four ba-
sis functions selected by the SG algorithm for δ= 0.01.
Note that in this simple example we obtained a value of
m that is almost the same as n. However, in practical ap-
plications with real-world data, the design value of m is
generally much smaller than the n as seen in Sects. 35.5
and 35.6.

35.5 Diabetes Disease Classification

This benchmark problem is taken from the Proben1
data set of the UCI repository [35.14]. It was studied
in Lim [35.15] using the SG algorithm. The objective is
to develop a classification model to determine whether
diabetes of Pima Indians is positive or negative, based
on personal data such as age, number of times pregnant,
and so on. Other factors considered include the results
from medical examinations, such as data on blood pres-
sure, body mass index, and results of glucose tolerance
tests. There are eight inputs, two outputs, 768 examples,
and no missing values in this data set. A summary of
the input and output attributes and the encoding scheme
employed for data processing is given in Table 35.2.
Here, all inputs are continuous and each is normalized
to a range of 0 to 1 for data preprocessing. Attribute num-
ber 9 is the output, consisting of two values, diabetes or
no diabetes. Before proceeding with RBF model devel-

Table 35.2 Data description for the diabetes example

Inputs (8)
Attribute No. No. of attributes Attribute meaning Values and encoding

1 1 Number of times pregnant 0 . . . 17 → 0 . . . 1

2 1 Plasma glucose concentration after 2 h in an oral 0 . . . 199 → 0 . . . 1

glucose tolerance test

3 1 Diastolic blood pressure (mm Hg) 0 . . . 122 → 0 . . . 1

4 1 Triceps skin fold thickness (mm) 0 . . . 99 → 0 . . . 1

5 1 2-hour serum insulin (mu U/ml) 0 . . . 846 → 0 . . . 1

6 1 Body mass index (weight in kg/(height in m)2) 0 . . . 67.1 → 0 . . . 1

7 1 Diabetes pedigree function 0.078 . . . 2.42 → 0 . . . 1

8 1 Age (years) 21 . . . 81 → 0 . . . 1

Output (2)

9 2 No diabetes 1 0

Diabetes 0 1

opment we need to decide upon an approach to model
evaluation. This point is discussed next.

The generalization performance of an RBF model
relates to its predictive ability on some future data.
Therefore, we need to be able to assess this performance
during the model building process. For applications
where we have adequate data, the best approach is to
randomly divide the available data into three sets: train-
ing set, validation set, and test set [35.5]. We use the
training set for model development, the validation set to
compare the developed models and, usually, select the
model with the smallest error on the validation set. The
test set is not used until after the final model is selected.
The performance of the selected model on the test set
is used as a measure of its generalization performance.
A common practice is to split the data into 50% for train-
ing and 25% each for validation and test sets. Using this
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646 Part D Regression Methods and Data Mining

Table 35.3 RBF models for the diabetes example

δ = 0.01
Model m σ Classification error (CE) (%)

Training Validation Test

A 18 0.6 20.32 23.44 24.48

B 9 0.7 21.88 21.88 22.92

C 9 0.8 22.66 21.35 23.44

D 8 0.9 22.92 21.88 25.52

E 8 1.0 23.44 21.88 25.52

F 7 1.1 26.04 30.21 30.21

G 6 1.2 25.78 28.13 28.13

H 5 1.3 25.26 31.25 30.73

split for this application, we divide the set of 768 pa-
tients into 384 for training, 192 for validation and 192
for the test set.
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Fig. 35.5 Plots of training and validation errors for the
diabetes example (δ= 0.01)

We employ the heuristics given in Sect. 35.3 and se-
lect values of width (σ) in the range 0.6 to 1.3. Also,
we use δ= 0.01, 0.005 and 0.001. The algorithm is then
executed to develop RBF models. For each model, the
training and validation classification errors(CE) are also
computed. However, to provide a better insight, the test
error is also computed here. The classification results
for eight models (A to H) for δ= 0.01 are shown in Ta-
ble 35.3. We note that as σ decreases from 1.3 to 0.6, the
m value increases, and the training CE decreases from
25.26% to 20.32%. However, the validation CE first de-
creases from 31.25% to 21.35% and then increases to
23.44%. The test error first decreases with increasing
m and then begins to increase. The validation errors,
though used for different purposes, tend to exhibit sim-
ilar behavior with respect to m. The pattern of CE error
behavior is shown graphically in Fig. 35.5. Here, the er-
rors are shown with respect to m and σ in Fig. 35.5a and
as a function of m alone in Fig. 35.5b. We note that the
training and validation error behavior is quite similar to
the theoretical pattern discussed above and that depicted
in Fig. 35.1. However, for some models the validation
error is smaller than the training error. Also, the error
behavior is not monotonic. This can and does happen
in practical applications due to random variations in the
real-world data assigned to the training, validation, and
test sets.

To select the model, we evaluate the validation CE
for models A to H. The minimum value occurs for
model C, and hence this model is selected as the pre-
ferred model. The test CE for this model is 23.44. Next,
models were developed for δ= 0.005 and 0.001. How-
ever, the details of these models are not shown here. The
best models for these two cases and for δ = 0.01 are
listed in Table 35.4.

To select the final model, we consult the results in
Table 35.4 and note that the RBF model with the smallest
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Radial Basis Functions for Data Mining 35.6 Analysis of Gene Expression Data 647

Table 35.4 Selected models and error values for the diabetes example

Classification error (CE) (%)
δ m σ Training Validation Test

0.01 9 0.8 22.66 21.35 23.44

0.005 9 0.8 22.66 21.35 23.44

0.001 10 1.2 22.66 20.83 23.96

validation error is the model with m = 10, σ = 1.2. This
is our final choice for modeling the classification of
diabetes. Its test error is 23.96. What this says is that
when this model is used to evaluate future patients for
diabetes or no diabetes, the model will misclassify, on
average, about 24% of the patients. Also, note that the
design value of m, the number of basis functions, is

only 10, while n = 384 for the training data. Thus, we
see that a much simpler model than strict interpolation
requires provides a good classifier. If we were to use
m = n = 384 in this case, all patients in the training set
would be correctly classified with CE = 0.0. However,
the n performance of such a model on the validation and
test sets is likely to be very poor.

35.6 Analysis of Gene Expression Data

Now we describe a data mining application of the RBF
model to binary cancer classification based on gene
expression data from DNA microarray hybridization ex-
periments [35.16]. Cancer class prediction is crucial to
its treatment, and developing an automated analytical
approach for classification based upon the microarray
expression is an important task [35.16]. A generic ap-
proach to classifying two types of acute leukemia based
on the monitoring of gene expression by DNA microar-
rays was originally pioneered by [35.17]. We employ
their data set to illustrate the classifier development pro-
cess and use sensitivity analyses in order to select an
appropriate cancer classification model. The goal is to
construct a classifier that distinguishes between two can-
cer classes based on gene expression data from patients
whose class, AML (acute myeloid leukemia) or ALL
(acute lymphoblastic leukemia), is known. This classi-
fier will be used to predict the cancer class of a future
patient about whom only the gene expression will be
known, not the class.

Table 35.5 Classification results for the cancer gene example

Model σ m Classification error (%)
Training Test

A 32 12 5.26 26.47

B 30 15 2.63 20.59

C 28 21 2.63 17.65

D 26 29 0 14.71

E 24 34 0 14.71

F 22 38 0 17.65

G 20 38 0 17.65

The dataset consists of 72 samples. The number of
gene expression levels for each patient in this dataset is
7129. In other words, 7129 attributes or features are used
to describe a patient in this dataset. Since the set is rela-
tively small, it is split into 38 training samples and 34 test
samples, where each sample represents a patient [35.17].
The test set error is used for model selection here.

The classification results for the training data set,
using the SG algorithm of Sect. 35.3, are summarized
in Table 35.5 for δ= 0.01. Results for test data are also
included. Here we have seven models (A to G) for σ

ranging from 32 to 20, and the design values of m vary
from 12 to 38.

The CE for the training set varies from 0% to 5.26%
and for the test set from 14.71% to 26.47%. Next, the
behavior of the training and test error in the (m–σ) plane
is shown in Fig. 35.6. Comparing it to Fig. 35.1, we
note that the training error decreases as m increases,
becoming 0% at m = n = 38. This happens when the
classification model represents exact interpolation.
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648 Part D Regression Methods and Data Mining

Next, we discuss model selection based on the test
CE in Table 35.5. This error first decreases with in-
creasing m and then increases, a pattern similar to the
theoretical behavior depicted in Fig. 35.1. Based on the

discussion in Sect. 35.2, the best model is D. Note that
here we have a somewhat degenerate case, where the
training error is zero and the test error is minimum for
the selected model.

35.7 Concluding Remarks
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Fig. 35.6 Classification errors for the cancer gene example

In this chapter we introduced the RBF model and pro-
vided a detailed discussion of its design by evaluating
the training, validation and test errors as surrogates for

bias-variance phenomena. A simple example was used
for illustration and then a benchmark data set was an-
alyzed. Finally, the RBF model was used for a recent
data mining application, cancer class prediction based
on gene expression data. In our presentation we used
only Gaussian basis functions because of their popular-
ity and good mathematical properties. The methodology,
however, is applicable to several other types of basis
functions.

There is a vast body of literature on the topic of
radial basis functions. The chapters in Bishop [35.7],
Haykin [35.9], and Kecman [35.18] provide good cov-
erage. Buhmann [35.19] is a rather theoretical book on
this subject. A recent collection of methodologies and
applications of the RBF model appears in (see Howlett
and Jain [35.20]). Some other applications can be found
in Shin and Goel [35.13, 21]. New developments in the
theory and applications of radial basis functions can also
be found in most journals and conference proceedings
on neural networks and machine learning.
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Data Mining M36. Data Mining Methods and Applications

In this chapter, we provide a review of the
knowledge discovery process, including data
handling, data mining methods and software,
and current research activities. The introduction
defines and provides a general background to
data mining knowledge discovery in databases.
In particular, the potential for data mining to
improve manufacturing processes in industry is
discussed. This is followed by an outline of the
entire process of knowledge discovery in databases
in the second part of the chapter.

The third part presents data handling issues,
including databases and preparation of the data
for analysis. Although these issues are generally
considered uninteresting to modelers, the largest
portion of the knowledge discovery process is
spent handling data. It is also of great importance
since the resulting models can only be as good as
the data on which they are based.

The fourth part is the core of the chapter
and describes popular data mining methods,
separated as supervised versus unsupervised
learning. In supervised learning, the training
data set includes observed output values (“correct
answers”) for the given set of inputs. If the
outputs are continuous/quantitative, then we
have a regression problem. If the outputs
are categorical/qualitative, then we have a
classification problem. Supervised learning
methods are described in the context of both
regression and classification (as appropriate),
beginning with the simplest case of linear models,
then presenting more complex modeling with
trees, neural networks, and support vector
machines, and concluding with some methods,
such as nearest neighbor, that are only for
classification. In unsupervised learning, the
training data set does not contain output values.
Unsupervised learning methods are described
under two categories: association rules and
clustering. Association rules are appropriate for
business applications where precise numerical
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data may not be available while clustering
methods are more technically similar to the
supervised learning methods presented in this
chapter. Finally, this section closes with a review
of various software options.

The fifth part presents current research
projects, involving both industrial and business
applications. In the first project, data is collected
from monitoring systems, and the objective is to
detect unusual activity that may require action.
For example, credit card companies monitor
customers’ credit card usage to detect possible
fraud. While methods from statistical process
control were developed for similar purposes, the
difference lies in the quantity of data. The second
project describes data mining tools developed
by Genichi Taguchi, who is well known for his
industrial work on robust design. The third project
tackles quality and productivity improvement in
manufacturing industries. Although some detail
is given, considerable research is still needed
to develop a practical tool for today’s complex
manufacturing processes.

Finally, the last part provides a brief discussion
on remaining problems and future trends.
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Data mining (DM) is the process of exploration and
analysis, by automatic or semiautomatic means, of

large quantities of data to discover meaningful pat-
terns and rules [36.1]. Statistical DM is exploratory
data analysis with little or no human interaction using
computationally feasible techniques, i. e., the attempt to
find unknown interesting structure [36.2]. Knowledge
discovery in databases (KDD) is a multidisciplinary
research field for nontrivial extraction of implicit, previ-
ously unknown, and potentially useful knowledge from
data [36.3]. Although some treat DM and KDD equiva-
lently, they can be distinguished as follows. The KDD
process employs DM methods (algorithms) to extract
knowledge according to the specifications of measures
and thresholds, using a database along with any ne-
cessary preprocessing or transformations. DM is a step
in the KDD process consisting of particular algorithms
(methods) that, under some acceptable objective, pro-
duces particular patterns or knowledge over the data. The
two primary fields that develop DM methods are statis-
tics and computer science. Statisticians support DM by
mathematical theory and statistical methods while com-
puter scientists develop computational algorithms and
relevant software [36.4]. Prerequisites for DM include:
(1) Advanced computer technology (large CPU, parallel
architecture, etc.) to allow fast access to large quantities
of data and enable computationally intensive algorithms
and statistical methods; (2) knowledge of the business
or subject matter to formulate the important business
questions and interpret the discovered knowledge.

With competition increasing, DM and KDD have
become critical for companies to retain customers and
ensure profitable growth. Although most companies are
able to collect vast amounts of business data, they are
often unable to leverage this data effectively to gain new
knowledge and insights. DM is the process of applying
sophisticated analytical and computational techniques to
discover exploitable patterns in complex data. In many
cases, the process of DM results in actionable knowl-
edge and insights. Examples of DM applications include
fraud detection, risk assessment, customer relationship
management, cross selling, insurance, banking, retail,
etc.

While many of these applications involve customer
relationship management in the service industry, a po-
tentially fruitful area is performance improvement and
cost reduction through DM in industrial and manu-
facturing systems. For example, in the fast-growing
and highly competitive electronics industry, total rev-
enue worldwide in 2003 was estimated to be $900
billion, and the growthrate is estimated at 8% per year

(www.selectron.com). However, economies of scale,
purchasing power, and global competition are making
the business such that one must either be a big player or
serve a niche market. Today, extremely short life cycles
and constantly declining prices are pressuring the elec-
tronics industry to manufacture their products with high
quality, high yield, and low production cost.

To be successful, industry will require improvements
at all phases of manufacturing. Figure 36.1 illustrates the
three primary phases: design, ramp-up, and production.
In the production phase, maintenance of a high perfor-
mance level via improved system diagnosis is needed.
In the ramp-up phase, reduction in new product de-
velopment time is sought by achieving the required
performance as quickly as possible. Market demands
have been forcing reduced development time for new
product and production system design. For example, in
the computer industry, a product’s life cycle has been
shortened to 2–3 years recently, compared to a life cy-
cle of 3–5 years a few years ago. As a result, there are
a number of new concepts in the area of production sys-
tems, such as flexible and reconfigurable manufacturing
systems. Thus, in the design phase, improved system
performance integrated at both the ramp-up and produc-
tion phases is desired. Some of the most critical factors
and barriers in the competitive development of mod-
ern manufacturing systems lie in the largely uncharted
area of predicting system performance during the design
phase [36.5, 6]. Consequently, current systems necessi-
tate that a large number of design/engineering changes
be made after the system has been designed.

Define & validate
product

Define & validate
process

Design &
refinement

Launch/
Ramp-up

Production

Product and process design
Ramp-up
time Procuction

Lead time

(KPCs)

(KCCs)

(KPCs, KCCs)

(KPCs,
KCCs)

Fig. 36.1 Manufacturing system development phases.
KPCs = Key product characteristics. KCCs = Key control
characteristics
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At all phases, system performance depends on many
manufacturing process stages and hundreds or thou-
sands of variables whose interactions are not well
understood. For example, in the multi-stage printed
circuit board (PCB) industry, the stages include pro-
cess operations such as paste printing, chip placement,
and wave soldering; and also include test opera-
tions such as optical inspection, vision inspection,

and functional test. Due to advancements in informa-
tion technology, sophisticated software and hardware
technologies are available to record and process huge
amounts of daily data in these process and testing
stages. This makes it possible to extract important
and useful information to improve process and prod-
uct performance through DM and quality improvement
technologies.

36.1 The KDD Process

The KDD process consists of four main steps:
1. Determination of business objectives,
2. Data preparation,

a) Create target data sets,
b) Data quality, cleaning, and preprocessing,
c) Data reduction and projection,

Source
systems

• Legacy systems
• External systems

Identify data needed
and sources

Model
discovery file

Model
evaluation file

Business
objectives

Extract data from
source systems

Cleanse and
aggregate data

Fig. 36.2 Data preparation flow chart

Model
discovery file Explore data Construct model

Model
evaluation file

Evaluate
model

Transform
model into
usable format

Models

Ideas

Reports

Fig. 36.3 Data mining flow chart

Knowledge
database

Communicate/
Transport knowledge

Models

Ideas

Reports Extract knowledge
Make business
decisions and
improve model

Fig. 36.4 Consolidation and application flow chart

3. Data mining
a) Identify DM tasks,
b) Apply DM tools,

4. Consolidation and application,
a) Consolidate discovered knowledge,
b) Implement in business decisions.
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654 Part D Regression Methods and Data Mining

As an example of formulating business objectives,
consider a telecommunications company. It is criti-
cally important to identify those customer traits that
retain profitable customers and predict fraudulent be-
havior, credit risks and customer churn. This knowledge
may be used to improve programs in target market-
ing, marketing channel management, micro-marketing,
and cross selling. Finally, continually updating this

knowledge will enable the company to meet the chal-
lenges of new product development effectively in
the future. Steps 2–4 are illustrated in figs. 36.2–
36.4. Approximately 20–25% of effort is spent on
determining business objectives, 50–60% of effort
is spent on data preparation, 10–15% of is spent
on DM, and about 10% is spent on consolidation/
application.

36.2 Handling Data

The largest percentage effort of the KDD process is spent
on processing and preparing the data. In this section,
common forms of data storage and tools for accessing
the data are described, and the important issues in data
preparation are discussed.

36.2.1 Databases and Data Warehousing

A relational database system contains one or more
objects called tables. The data or information for the
database are stored in these tables. Tables are uniquely
identified by their names and are comprised of columns
and rows. Columns contain the column name, data type
and any other attributes for the column. Rows contain
the records or data for the columns. The structured query
language (SQL) is the communication tool for relational
database management systems. SQL statements are used
to perform tasks such as updating data in a database, or
retrieving data from a database. Some common rela-
tional database management systems that use SQL are:
Oracle, Sybase, Microsoft SQL Server, Access, and In-
gres. Standard SQL commands, such as Select, Insert,
Update, Delete, Create, and Drop, can be used to ac-
complish almost everything that one needs to do with
a database.

A data warehouse holds local databases assembled
in a central facility. A data cube is a multidimensional
array of data, where each dimension is a set of sets rep-
resenting domain content, such as time or geography.
The dimensions are scaled categorically, for example,
region of country, state, quarter of year, week of quar-
ter. The cells of the cube contain aggregated measures
(usually counts) of variables. To explore the data cube,
one can drill down, drill up, and drill through. Drill
down involves splitting an aggregation into subsets, e.g.,
splitting region of country into states. Drill up involves
consolidation, i. e., aggregating subsets along a dimen-
sion. Drill through involves subsets crossing multiple
sets, e.g., the user might investigate statistics within

a state subset by time. Other databases and tools in-
clude object-oriented databases, transactional databases,
time series and spatial databases, online analytical pro-
cessing (OLAP), multidimensional OLAP (MOLAP),
and relational OLAP using extended SQL (ROLAP).
See Chapt. 2 of Han and Kamber [36.7] for more
details.

36.2.2 Data Preparation

The purpose of this step in the KDD process is to identify
data quality problems, sources of noise, data redun-
dancy, missing data, and outliers. Data quality problems
can involve inconsistency with external data sets, un-
even quality (e.g., if a respondent fakes an answer), and
biased opportunistically collected data. Possible sources
of noise include faulty data collection instruments (e.g.,
sensors), transmission errors (e.g., intermittent errors
from satellite or internet transmissions), data entry er-
rors, technology limitations errors, misused naming
conventions (e.g., using the same names for different
meanings), and incorrect classification.

Redundant data exists when the same variables have
different names in different databases, when a raw vari-
able in one database is a derived variable in another, and
when changes in a variable over time are not reflected
in the database. These irrelevant variables impede the
speed of the KDD process because dimension reduc-
tion is needed to eliminate them. Missing data may be
irrelevant if we can extract useful knowledge without
imputing the missing data. In addition, most statisti-
cal methods for handling missing data may fail for
massive data sets, so new or modified methods still
need to be developed. In detecting outliers, sophisti-
cated methods like the Fisher information matrix or
convex hull peeling are available, but are too complex
for massive data sets. Although outliers may be easy
to visualize in low dimensions, high-dimensional out-
liers may not show up in low-dimensional projections.
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Currently, clustering and other statistical modeling are
used.

The data preparation process involves three steps:
data cleaning, database sampling, and database reduc-
tion and transformation. Data cleaning includes removal
of duplicate variables, imputation of missing values,
identification and correction of data inconsistencies,
identification and updating of stale data, and creat-
ing a unique record (case) identification (ID). Via
database sampling, the KDD process selects appropri-
ate parts of the databases to be examined. For this to
work, the data must satisfy certain conditions (e.g.,

no systematic biases). The sampling process can be
expensive if the data have been stored in a database
system such that it is difficult to sample the data the
way you want and many operations need to be exe-
cuted to obtain the targeted data. One must balance
a trade-off between the costs of the sampling process
and the mining process. Finally, database reduction is
used for data cube aggregation, dimension reduction,
elimination of irrelevant and redundant attributes, data
compression, and encoding mechanisms via quantiza-
tions, wavelet transformation, principle components,
etc.

36.3 Data Mining (DM) Models and Algorithms
The DM process is illustrated in Fig. 36.5. In this pro-
cess, one will start by choosing an appropriate class of
models. To fit the best model, one needs to split the sam-
ple data into two parts: the training data and the testing
data. The training data will be used to fit the model and
the testing data is used to refine and tune the fitted model.
After the final model is obtained, it is recommended to
use an independent data set to evaluate the goodness of
the final model, such as comparing the prediction er-
ror to the accuracy requirement. (If independent data are
not available, one can use the cross-validation method to
compute prediction error.) If the accuracy requirement
is not satisfied, then one must revisit earlier steps to re-
consider other classes of models or collect additional
data.

Before implementing any sophisticated DM
methods, data description and visualization are used
for initial exploration. Tools include descriptive
statistical measures for central tendency/location, dis-
persion/spread, and distributional shape and symmetry;
class characterizations and comparisons using analyti-
cal approaches, attribute relevance analysis, and class
discrimination and comparisons; and data visualiza-
tion using scatter-plot matrices, density plots, 3-D
stereoscopic scatter-plots, and parallel coordinate plots.
Following this initial step, DM methods take two forms:
supervised versus unsupervised learning. Supervised
learning is described as
textitlearning with a teacher, where the teacher provides
data with correct answers. For example, if we want to
classify online shoppers as buyers or non-buyers using
an available set of variables, our data would include
actual instances of buyers and non-buyers for training
a DM method. Unsupervised learning is described as

Start
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Build/Fit model

Consider
alternate
models

Collect
more data

Make
desicions

Sample
data

Train data

Test data
(Validation

data)

Evaluation
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(Test data)

Score data

Refine/Tune model
(model size & diagnostics)

Evaluate model
(e. g. prediction error)

No

Yes

Prediction

Meet accuracy
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Fig. 36.5 Data mining process

learning without a teacher. In this case, correct answers
are not available, and DM methods would search for pat-
terns or clusters of similarity that could later be linked
to some explanation.

36.3.1 Supervised Learning

In supervised learning, we have a set of input variables
(also known as predictors, independent variables, x) that
are measured or preset, and a set of output variables
(also known as responses, dependent variables, y) that
are measured and assumed to be influenced by the in-

Part
D

3
6
.3



656 Part D Regression Methods and Data Mining

puts. If the outputs are continuous/quantitative, then we
have a regression or prediction problem. If the outputs
are categorical/qualitative, then we have a classifica-
tion problem. First, a DM model/system is established
based on the collected input and output data. Then, the
established model is used to predict output values at new
input values. The predicted values are denoted by ŷ.

The DM perspective of learning with a teacher,
follows these steps:

• Student presents an answer (ŷi given xi );• Teacher provides the correct answer yi or an error ei
for the student’s answer;• The result is characterized by some loss function or
lack-of-fit criterion:LOF(y, ŷ);• The objective is to minimize the expected loss.

Supervised learning includes the common engineering
task of function approximation, in which we assume
that the output is related to the input via some function
f (x, ε), where ε represents a random error, and seek to
approximate f (·).

Below, we describe several supervised learning
methods. All can be applied to both the regression and
classification cases, except for those presented below
under Other Classifikation Methods. We maintain the
following notation. The j-th input variable is denoted
by x j (or random variable X j ) and the correspond-
ing boldface x (or X) denotes the vector of p input
variables (x1, x2, . . . , x p)T, where boldface xi denotes
the i-th sample point; N is the number of sample
points, which corresponds to the number of observa-
tions of the response variable; the response variable
is denoted by y (or random variable Y ), where yi de-
notes the i-th response observation. For the regression
case, the response y is quantitative, while for the clas-
sification case, the response values are indices for C
classes (c= 1, . . . ,C). An excellent reference for these
methods is Hastie et al. [36.8].

Linear and Additive Methods
In the regression case, the basic linear method is simply
the multiple linear regression model form

µ(x;β) = E[Y | X = x] = β0+
M∑

m=1

βmbm(x),

where the model terms bm(x) are pre-specified func-
tions of the input variables, for example, a simple
linear term bm(x) = x j or a more complex interaction
term bm(x) = x j x2

k . The key is that the model is lin-
ear in the parameters β. Textbooks that cover linear

regression are abundant (e.g., [36.9, 10]). In particu-
lar, Neter et al. [36.11] provides a good background
on residual analysis, model diagnostics, and model se-
lection using best subsets and stepwise methods. In
model selection, insignificant model terms are elimi-
nated; thus, the final model may be a subset of the
original pre-specified model. An alternate approach is to
use a shrinkage method that employs a penalty function
to shrink estimated model parameters towards zero, es-
sentially reducing the influence of less important terms.
Two options are ridge regression [36.12], which uses the
penalty form

∑
β2

m , and the lasso [36.13], which uses
the penalty form

∑ |βm |.
In the classification case, linear methods generate

linear decision boundaries to separate the C classes.
Although a direct linear regression approach could be
applied, it is known not to work well. A better method is
logistic regression [36.14], which uses log-odds (or logit
transformations) of the posterior probabilities µc(x) =
P(Y = c|X= x) for classes c= 1, . . . ,C−1 in the form

log
µc(x)

µC(x)
= log

P(Y = c|X = x)

P(Y = C|X = x)

= βc0+
p∑

j=1

βc j x j ,

where the C posterior probabilities µc(x) must sum
to one. The decision boundary between class c < C
and class C is defined by the hyperplane

{
x | βc0+∑

βc j x j = 0
}
, where the log-odds are zero. Similarly,

the decision boundary between classes c �=C and d �=C,
derived from the log-odds for classes c and d, is defined
by {x | βc0+∑

βc j x j = βd0+∑
βd j x j}. In the binary

case (C = 2), if we define µ(x)= P(Y = 1|X = x), then
1−µ(x)= P(Y = 2|X = x). The logit transformation is
then defined as g(µ)= µ/(1−µ).

Closely related to logistic regression is linear dis-
criminant analysis [36.15], which utilizes exactly the
same linear form for the log-odds ratio, and defines
linear discriminant functions δc(x), such that x is clas-
sified to class c if its maximum discriminant is δc(x).
The difference between the two methods is how the pa-
rameters are estimated. Logistic regression maximizes
the conditional likelihood involving the posterior prob-
abilities P(Y = c|X) while linear discriminant analysis
maximizes the full log-likelihood involving the uncondi-
tional probabilities P(Y = c, X). More general forms of
discriminant analysis are discussed below under Other
Classifikation Methods.

Finally, it should be noted that the logistic regres-
sion model is one form of generalized linear model
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(GLM) [36.16]. GLM forms convert what appear to be
nonlinear models into linear models, using tools such as
transformations (e.g., logit) or conditioning on nonlinear
parameters. This then enables the modeler to use tra-
ditional linear modeling analysis techniques. However,
real data often do not satisfy the restrictive conditions of
these models.

Rather than using pre-specified model terms, as
in a linear model, a generalized additive model
(GAM) [36.17], provides a more flexible statistical
method to enable modeling of nonlinear patterns in each
input dimension. In the regression case, the basic GAM
form is

µ(x) = β0+
p∑

j=1

f j (x j ) ,

where the f j (·) are unspecified (smooth) univariate
functions, one for each input variable. The additive re-
striction prohibits inclusion of any interaction terms.
Each function is fitted using a nonparametric regres-
sion modeling method, such as running-line smoothers
(e.g., lowess, [36.18]), smoothing splines or kernel
smoothers [36.19–21]. In the classification case, an
additive logistic regression model utilizes the logit trans-
formation for classes c = 1, . . . ,C−1 as above

log
µc(x)

µC(x)
= log

P(Y = c|X = x)

P(Y = C|X = x)

= β0+
p∑

j=1

f j (x j ) ,

where an additive model is used in place of the linear
model. However, even with the flexibility of nonpara-
metric regression, GAM may still be too restrictive. The
following sections describe methods that have essen-
tially no assumptions on the underlying model form.

Trees and Related Methods
One DM decision tree model is chi-square automatic in-
teraction detection (CHAID) [36.22, 23], which builds
non-binary trees using a chi-square test for the classi-
fication case and an F-test for the regression case. The
CHAID algorithm first creates categorical input vari-
ables out of any continuous inputs by dividing them
into several categories with approximately the same
number of observations. Next, input variable categories
that are not statistically different are combined, while
a Bonferroni p-value is calculated for those that are sta-
tistically different. The best split is determined by the
smallest p-value. CHAID continues to select splits un-

til the smallest p-value is greater than a pre-specified
significance level (α).

The popular classification and regression trees
(CART) [36.24] utilize recursive partitioning (binary
splits), which evolved from the work of Morgan and
Sonquist [36.25] and Fielding [36.26] on analyzing sur-
vey data. CARTs have a forward stepwise procedure
that adds model terms and backward procedure for
pruning. The model terms partition the x-space into
disjoint hyper-rectangular regions via indicator func-
tions: b+(x; t) = 1{x > t}, b−(x; t) = 1{x ≤ t}, where
the split-point t defines the borders between regions. The
resulting model terms are:

fm(x) =
Lm∏

l=1

bsl,m (xv(l,m); tl,m) , (36.1)

where, Lm is the number of univariate indicator func-
tions multiplied in the m-th model term, xv(l,m) is the
input variable corresponding to the l-th indicator func-
tion in the m-th model term, tl,m is the split-point
corresponding to xv(l,m), and sl,m is +1 or −1 to in-
dicate the direction of the partition. The CART model
form is then

f (x;β)= β0+
M∑

m=1

βm fm(x) . (36.2)

The partitioning of the x-space does not keep the
parent model terms because they are redundant. For
example, suppose the current set has the model term:

fa(x) = 1{x3 > 7} ·1{x4 ≤ 10} ,
and the forward stepwise algorithm chooses to add

fb(x) = fa(x) ·1{x5 > 13}
= 1{x3 > 7} ·1{x4 ≤ 10} ·1{x5 > 13} .

Then the model term fa(x) is dropped from the current
set. Thus, the recursive partitioning algorithm follows
a binary tree with the current set of model terms fm(x)
consisting of the M leaves of the tree, each of which
corresponds to a different region Rm .

In the regression case, CART minimizes the squared
error loss function,

LOF( f̂ ) =
N∑

i=1

[
yi − f̂ (xi )

]2
,

and the approximation is a piecewise-constant function.
In the classification case, each region Rm is classi-
fied into one of the C classes. Specifically, define the
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proportion of class c observations in region Rm as

δ̂mc = 1

Nm

∑

xi∈Rm

1{yi = c} ,

where Nm is the number of observations in the region
Rm . Then the observations in region Rm are classified
into the class c corresponding to the maximum pro-
portion δ̂mc. The algorithm is exactly the same as for
regression, but with a different loss function. Appro-
priate choices include minimizing the misclassification
error (i. e., the number of misclassified observations),
the Gini index,

∑C
c=1 δ̂mc(1− δ̂mc), or the deviance∑C

c=1 δ̂mclog(δ̂mc).
The exhaustive search algorithms for CART simul-

taneously conduct variable selection (x) and split-point
selection (t). To reduce computational effort, the fast
algorithm for classification trees [36.27] separates the
two tasks. At each existing model term (leaf of the tree),
F-statistics are calculated for variable selection. Then
linear discriminant analysis is used to identify the split-
point. A version for logistic and Poisson regression was
presented by Chaudhuri et al. [36.28].

The primary drawback of CART and FACT is a bias
towards selecting higher-order interaction terms due to
the property of keeping only the leaves of the tree.
As a consequence, these tree methods do not provide
robust approximations and can have poor prediction ac-
curacy. Loh and Shih [36.29] address this issue for FACT
with a variant of their classification algorithm called
QUEST that clusters classes into superclasses before
applying linear discriminant analysis. For CART, Fried-
man et al. [36.30] introduced to the statistics literature
the concepts of boosting [36.31] and bagging [36.32]
from the machine learning literature. The bagging ap-
proach generates many bootstrap samples, fits a tree to
each, then uses their average prediction. In the frame-
work of boosting, a model term, called a base learner,
is a small tree with only L disjoint regions (L is se-
lected by the user), call it B(x, a), where a is the vector
of tree coefficients. The boosting algorithm begins by
fitting a small tree B(x, a) to the data, and the first ap-
proximation, f̂1(x), is then this first small tree. In the
m-th iteration, residuals are calculated, then a small tree
B(x, a) is fitted to the residuals and combined with the
latest approximation to create the m-th approximation:

f̂m(x;β0, β1, . . . , βm) = f̂m−1(x;β0, β1,

. . . , βm−1)+βm B(x, a) ,

where a line search is used to solve for βm . The resulting
boosted tree, called a multiple additive regression tree

(MART) [36.33], then consists of much lower-order in-
teraction terms. Friedman [36.34] presents stochastic
gradient boosting, with a variety of loss functions, in
which a bootstrap-like bagging procedure is included in
the boosting algorithm.

Finally, for the regression case only, multivariate
adaptive regression splines (MARS) [36.35] evolved
from CART as an alternative to its piecewise-constant
approximation. Like CART, MARS utilizes a forward
stepwise algorithm to select model terms followed by
a backward procedure to prune the model. A univariate
version (appropriate for additive relationships) was pre-
sented by Friedman and Silverman [36.36]. The MARS
approximation bends to model curvature at knot loca-
tions, and one of the objectives of the forward stepwise
algorithm is to select appropriate knots. An important
difference from CART is that MARS maintains the par-
ent model terms, which are no longer redundant, but are
simply lower-order terms.

MARS model terms have the same form as (36.1),
except the indicator functions are replaced with trun-
cated linear functions,

[b+(x; t)= [+(x− t)]+, b−(x; t)= [−(x− t)]+ ,

where [q]+ = max(0, q) and t is an univariate knot.
The search for new model terms can be restricted to
interactions of a maximum order (e.g., Lm ≤ 2 per-
mits up through two-factor interactions). The resulting
MARS approximation, following (36.2), is a continuous,
piecewise-linear function. After selection of the model
terms is completed, smoothness to achieve a certain
degree of continuity may be applied.

Hastie et al. [36.8] demonstrate significant im-
provements in accuracy using MART over CART. For
the regression case, comparisons between MART and
MARS yield comparable results [36.34]. Thus, the pri-
mary decision between these two methods is whether
a piecewise-constant approximation is satisfactory or
if a continuous, smooth approximation would be pre-
ferred.

Artificial Neural Networks
Artificial neural network (ANN) models have been very
popular for modeling a variety of physical relation-
ships (for a general introduction see Lippmann [36.37]
or Haykin [36.38]; for statistical perspectives see
White [36.39], Baron et al. [36.40], Ripley [36.23], or
Cheng and Titterington [36.41]). The original motiva-
tion for ANNs comes from how learning strengthens
connections along neurons in the brain. Commonly, an
ANN model is represented by a diagram of nodes in vari-
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ous layers with weighted connections between nodes in
different layers (Fig. 36.6). At the input layer, the nodes
are the input variables and at the output layer, the nodes
are the response variable(s). In between, there is usually
at least one hidden layer which induces flexibility into
the modeling. Activation functions define transforma-
tions between layers (e.g., input to hidden). Connections
between nodes can feed back to previous layers, but
for supervised learning, the typical ANN is feedforward
only with at least one hidden layer.

The general form of a feedforward ANN with one
hidden layer and activation functions b1(·) (input to
hidden) and b2(·) (hidden to output) is

fc(x;w, v, θ, γc) =

b2

⎡

⎣
H∑

h=1

whc ·b1

⎛

⎝
p∑

j=1

v jh x j + θh

⎞

⎠+γc

⎤

⎦ ,

(36.3)

where c= 1, . . . ,C and C is the number of output vari-
ables, p is the number of input variables, H is the number
of hidden nodes, the weights v jh link input nodes j to
hidden nodes h and whc link hidden nodes h to out-
put nodes c, and θh and γc are constant terms called
bias nodes (like intercept terms). The number of coef-
ficients to be estimated is (p+1)H+ (H+1)C, which
is often larger than N . The simplest activation function
is a linear function b(z) = z, which reduces the ANN
model in (36.3) with one response variable to a multiple
linear regression equation. For more flexibility, the rec-
ommended activation functions between the input and
hidden layer(s) are the S-shaped sigmoidal functions or

Inputs Hidden layer Outputs

X1

X2

X3

Y1

Y2

Y3

Z1

Z2

V11

V12

V21

V22

V31

V32

W11

W21

W12

W13

W22

W23

Fig. 36.6 Diagram of a typical artificial neural network
for function approximation. The input nodes correspond to
the input variables, and the output node(s) correspond to
the output variable(s). The number of hidden nodes in the
hidden layer must be specified by the user

the bell-shaped radial basis functions. Commonly used
sigmoidal functions are the logistic function

b(z) = 1

1+ e−z

and the hyperbolic tangent

b(z) = tanh(z) = 1− e−2x

1+ e−2x
.

The most common radial basis function is the Gaussian
probability density function.

In the regression case, each node in the output layer
represents a quantitative response variable. The output
activation function may be either a linear, sigmoidal, or
radial basis function. Using a logistic activation function
from input to hidden and from hidden to output, the ANN
model in (36.3) becomes

fc(x;w, v, θ, γc) =
[
1+ exp

(
−

H∑

h=1

whczh +γc

)]−1

,

where for each hidden node h

zh =
⎡

⎣1+ exp

⎛

⎝−
p∑

j=1

v jh x j + θh

⎞

⎠

⎤

⎦
−1

.

In the classification case with C classes, each class is
represented by a different node in the output layer. The
recommended output activation function is the softmax
function. For output node c, this is defined as

b(z1, . . . , zC; c)= ezc

C∑

d=1

ezd

.

This produces output values between zero and one that
sum to one and, consequently, permits the output values
to be interpreted as posterior probabilities for a categor-
ical response variable.

Mathematically, an ANN model is a nonlinear sta-
tistical model, and a nonlinear method must be used to
estimate the coefficients (weights v jh and whc, biases θh
and γc) of the model. This estimation process is called
network training. Typically, the objective is to minimize
the squared error lack-of-fit criterion

LOF( f̂ ) =
C∑

c=1

N∑

i=1

[
yi − f̂c(xi )

]2
.

The most common method for training is backpropa-
gation, which is based on gradient descent. At each
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iteration, each coefficient (say w) is adjusted according
to its contribution to the lack-of-fit

∆w= α
∂(LOF)

∂w
,

where the user-specified α controls the step size; see
Rumelhart et al. [36.42] for more details. More effi-
cient training procedures are a subject of current ANN
research.

Another major issue is the network architecture, de-
fined by the number of hidden nodes. If too many hidden
nodes are permitted, the ANN model will overfit the data.
Many model discrimination methods have been tested,
but the most reliable is validation of the model on a test-
ing data set separate from the training data set. Several
ANN architectures are fitted to the training data set and
then prediction error is measured on the testing data set.
Although ANNs are generally flexible enough to model
anything, they are computationally intensive, and a sig-
nificant quantity of representative data is required to
both fit and validate the model. From a statistical per-
spective, the primary drawback is the overly large set of
coefficients, none of which provide any intuitive under-
standing for the underlying model structure. In addition,
since the nonlinear model form is not motivated by the
true model structure, too few training data points can
result in ANN approximations with extraneous nonlin-
earity. However, given enough good data, ANNs can
outperform other modeling methods.

Support Vector Machines
Referring to the linear methods for classification
described earlier, the decision boundary between
two classes is a hyperplane of the form

{
x | β0+∑

β j x j = 0
}
. The support vectors are the points that

are most critical to determining the optimal decision
boundary because they lie close to the points belong-
ing to the other class. With support vector machines
(SVM) [36.43, 44], the linear decision boundary is gen-
eralized to the more flexible form

f (x;β) = β0+
M∑

m=1

βm gm(x), (36.4)

where the gm(x) are transformations of the input
vector. The decision boundary is then defined by
{x | f (x;β) = 0}. To solve for the optimal decision
boundary, it turns out that we do not need to specify
the transformations gm(x), but instead require only the
kernel function [36.21, 45]:

K (x, x′)=〈[
g1(x), . . ., gM(x)

]
,
[
g1(x′), . . ., gM(x′)

]〉
.

Two popular kernel functions for SVM are polynomials
of degree d, K (x, x′) = (1+〈x, x′〉)d , and radial basis
functions, K (x, x′) = exp(−‖x− x′‖2/c).

Given K (x, x′), we maximize the following
Lagrangian dual-objective function:

max
α1,...αN

N∑

i=1

αi − 1

2

N∑

i=1

N∑

i ′=1

αiαi ′ yi yi ′ K (xi , x′i )

s.t. 0 ≤ αi ≤ γ , for i = 1, . . . , N and
N∑

i=1

αi yi = 0 ,

where γ is an SVM tuning parameter. The optimal
solution allows us to rewrite f (x;β) as

f (x;β)= β0+
N∑

i=1

αi yi K (x, xi ) ,

where β0 and α1, . . . , αN are determined by solv-
ing f (x;β) = 0. The support vectors are those xi
corresponding to nonzero αi . A smaller SVM tuning pa-
rameter γ leads to more support vectors and a smoother
decision boundary. A testing data set may be used to
determine the best value for γ .

The SVM extension to more than two classes solves
multiple two-class problems. SVM for regression uti-
lizes the model form in (36.4) and requires specification
of a loss function appropriate for a quantitative re-
sponse [36.8,46]. Two possibilities are the ε-insensitive
function

Vε(e) =
{

0 if |e|< ε ,

|e|− ε otherwise ,

which ignores errors smaller than ε, and the Hu-
ber [36.47] function

VH(e) =
{

e2/2 if |e| ≤ 1.345 ,

1.345|e|− e2/2 otherwise ,

which is used in robust regression to reduce model
sensitivity to outliers.

Other Classification Methods
In this section, we briefly discuss some other concepts
that are applicable to DM classification problems. The
basic intuition behind a good classification method is
derived from the Bayes classifier, which utilizes the
posterior distribution P(Y = c|X = x). Specifically, if
P(Y = c|X = x) is the maximum over c = 1, . . . ,C,
then x would be classified to class c.
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Nearest neighbor (NN) [36.48] classifiers seek to es-
timate the Bayes classifier directly without specification
of any model form. The k-NN classifier identifies the
k closest points to x (using Euclidean distance) as the
neighborhood about x, then estimates P(Y = c|X = x)
with the fraction of these k points that are of class c. As k
increases, the decision boundaries become smoother;
however, the neighborhood becomes less local (and
less relevant) to x. This problem of local representation
is even worse in high dimensions, and modifications
to the distance measure are needed to create a prac-
tical k-NN method for DM. For this purpose, Hastie
and Tibshirani [36.49] proposed the discriminant adap-
tive NN distance measure to reshape the neighborhood
adaptively at a given x to capture the critical points to
distinguish between the classes.

As mentioned earlier, linear discriminant analysis
may be too restrictive in practice. Flexible discrimi-
nant analysis replaces the linear decision boundaries
with more flexible regression models, such as GAM or
MARS. Mixture discriminant analysis relaxes the as-
sumption that that classes are more or less spherical in
shape by allowing a class to be represented by mul-
tiple (spherical) clusters; see Hastie et al. [36.50] and
Ripley [36.23] for more details.

K-means clustering classification applies the K -
means clustering algorithm separately to the data for
each of the C classes. Each class c will then be
represented by K clusters of points. Consequently, non-
spherical classes may be modeled. For a new input vector
x, determine the closest cluster, then assign x to the the
class associated with that cluster.

Genetic algorithms [36.51, 52] use processes such
as genetic combination, mutation, and natural selection
in an optimization based on the concepts of natural evo-
lution. One generation of models competes to pass on
characteristics to the next generation of models, until
the best model is found. Genetic algorithms are useful
in guiding DM algorithms, such as neural networks and
decision trees [36.53].

36.3.2 Unsupervised Learning

In unsupervised learning, correct answers are not avail-
able, so there is no clear measure of success. Success
must be judged subjectively by the value of discov-
ered knowledge or the effectiveness of the algorithm.
The statistical perspective is to observe N vectors from
the population distribution, then conduct direct infer-
ences on the properties (e.g. relationship, grouping) of
the population distribution. The number of variables or

attributes is often very high (much higher than that in
supervised learning). In describing the methods, we de-
note the j-th variable by x j (or random variable X j ),
and the corresponding boldface x (or X) denotes the
vector of p variables (x1, x2, . . . , x p)T, where boldface
xi denotes the i-th sample point. These variables may be
either quantitative or qualitative.

Association Rules
Association rules or affinity groupings seek to find as-
sociations between the values of the variables X that
provide knowledge about the population distribution.
Market basket analysis is a well-known special case, for
which the extracted knowledge may be used to link spe-
cific products. For example, consider all the items that
may be purchased at a store. If the analysis identifies that
items A and B are commonly purchased together, then
sales promotions could exploit this to increase revenue.

In seeking these associations, a primary objective
is to identify variable values that occur together with
high probability. Let Sj be the the set of values for X j ,
and consider a subset s j ⊆ Sj . Then we seek subsets
s1, . . . , sp such that

P

⎡

⎣
p⋂

j=1

(X j ∈ s j )

⎤

⎦ (36.5)

is large. In market basket analysis, the variables X are
converted to a set of binary variables Z, where each
attainable value of each X j corresponds to a variable
Zk. Thus, the number of Zk variables is K =∑ |Sj |. If
binary variable Zk corresponds to X j = v, then Zk = 1
when X j = v and Zk = 0 otherwise. An item set κ is
a realization of Z. For example, if the Zk represent the
possible products that could be purchased from a store,
then an item set would be the set of items purchased
together by a customer. Note that the number of Zk = 1
in an item set is at most p. Equation (36.5) now becomes

P

[
⋂

k∈κ
(Zk = 1)

]
,

which is estimated by

T (κ) =
Number of observations for which

item set κ occurs
N

.

T (κ) is called the support for the rule. We can select
a lower bound t such that item sets with T (κ) > t would
be considered to have large support.
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Further knowledge may be extracted via the a priori
algorithm [36.54] in the form of if–then statements. For
an item set κ, the items with Zk = 1 would be partitioned
into two disjoint item subsets such that A

⋃
B = κ. The

association rule would be stated as “if A, then B” and
denoted by A ⇒ B, where A is called the antecedent and
B is called the consequent. This rule’s support T (A ⇒
B) is the same as T (κ) calculated above, an estimate of
the joint probability. The confidence or predictability of
this rule is

C(A ⇒ B) = T (A ⇒ B)

T (A)
,

which is an estimate of the conditional probability
P(B|A). The expected confidence is the support of B,
T (B), and an estimate for the unconditional probabil-
ity P(B). The lift is the ratio of the confidence over the
expected confidence,

L(A ⇒ B)= C(A ⇒ B)

T (B)
,

which, if greater than , can be interpreted as the increased
prevalence of B when associated with A. For example,
if T (B)= 5%, then B is estimated to occur uncondition-
ally 5% of the time. If C(A ⇒ B)= 40%, then given A
occurs, B is estimated to occur 40% of the time. This re-
sults in a lift of 8, implying that B is 8 times more likely
to occur if we know that A occurs.

Cluster Analysis
The objective of cluster analysis is to partition the N
observations of x into groups or clusters such that the
dissimilarities within each cluster are smaller than the
dissimilarities between different clusters [36.55]. Typ-
ically the variables x are all quantitative, and a distance
measure (e.g., Euclidean) is used to measure dissimilar-
ity. For categorical x variables, a dissimilarity measure
must be explicitly defined. Below, we describe some of
the more common methods.

K-means [36.56] is the best-known clustering tool.
It is appropriate when the variables x are quantitative.
Given a prespecified value K , the method partitions the
N observations of x into exactly K clusters by mini-
mizing within-cluster dissimilarity. Squared Euclidean
distance

d
(
xi , x′i

)=
p∑

j=1

(
xij − xi ′ j

)2

is used to measure dissimilarity. For a specific cluster-
ing assignment C = (C1, . . . ,CK ), the within-cluster

dissimilarity is measured by calculating d(xi , x′i ) for all
points xi , x′i within a cluster Ck, then summing over
the K clusters. This is equivalent to calculating

W(C) =
K∑

k=1

∑

i∈Ck

d(xi , x̄k) ,

where the cluster mean x̄k is the sample mean vector of
the points in cluster Ck. Given a current set of cluster
means, the K -means algorithm assigns each point to the
closest cluster mean, calculates the new cluster means,
and iterates until the cluster assignments do not change.

Unfortunately, because of its dependence on the
squared Euclidean distance measure, K -means clus-
tering is sensitive to outliers (i. e., is not robust).
K-mediods [36.57] is a generalized version that uti-
lizes an alternately defined cluster center in place of
the cluster means and an alternate distance measure.

Density-based clustering (DBSCAN) [36.58] algo-
rithms are less sensitive to outliers and can discover
clusters of irregular (p-dimensional) shapes. DBSCAN
is designed to discover clusters and noise in a spatial
database. The advantage of DBSCAN over other cluster-
ing methods is its ability to represent specific structure
in the analysis explicitly. DBSCAN has two key pa-
rameters: neighborhood size (ε) and minimum cluster
size (nmin). The neighborhood of an object within a ra-
dius ε is called the ε-neighborhood of the object. If the
ε-neighborhood of an object contains at least nmin ob-
jects, then the object is called a core object. To find
a cluster, DBSCAN starts with an arbitrary object o in
the database. If the object o is a core object w.r.t. ε

and nmin, then a new cluster with o as the core object
is created. DBSCAN continues to retrieve all density-
reachable objects from the core object and add them to
the cluster.

GDBSCAN [36.59] generalizes the two key param-
eters of the DBSCAN algorithm such that it can cluster
point objects and spatially extended objects according
to an arbitrarily selected combination of attributes. The
neighborhood of an object is now defined by a binary
predicate η on a data set that is reflexive and symmet-
ric. If η is true, then the neighborhood of an object is
called the η-neighborhood of an object. In other words,
the η-neighborhood of an object is a set of objects, S,
which meet the condition that η is true. Corresponding
to nmin, another predicate, wmin of the set of objects, S,
is defined such that it is true if and only if the weighted
cardinality for the set, wCard(S ), is greater or equal to
the minimum cardinality (MinCard), i. e. wCard(S ) ≥
MinCard.
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Finally, ordering points to identify the clustering
structure (OPTICS) [36.60] is a method of cluster analy-
sis that produces an augmented ordering of the database
representing its density-based clustering structure. This
method by itself does not produce a clustering of a data
set explicitly. The information produced by OPTICS
includes representative points, arbitrarily shaped clus-
ters and intrinsic clustering structure, which can then be
used by a clustering algorithm when selecting clustering
settings. This same information can also be used by a hu-
man expert to gain insight into the clustering structure
of the data.

Self-Organizing (Feature) Maps (SOMs) [36.61] be-
long to the class of ANNs called unsupervised learning
networks. SOMs can be organized as a single layer or
as two layers of neuron nodes. In this arrangement,
the input layer consists of p nodes corresponding to
the real-valued input vector of dimension p. The input
layer nodes are connected to a second layer of nodes U .
By means of lateral connections, the nodes in U form
a lattice structure of dimensionality M. Typically M
is much smaller than p. By means of a learning al-
gorithm, the network discovers the clusters within the
data. It is possible to alter the discovered clusters by
varying the learning parameters of the network. The
SOM is especially suitable for data survey because it has
appealing visualization properties. It creates a set of pro-
totype vectors representing the data set and carries out
a topology-preserving projection of the prototypes from
the p-dimensional input space onto a low-dimensional
(typically two-dimensional) grid. This ordered grid can
be used as a convenient visualization surface for show-
ing different features of the SOM (and thus of the data),
for example, the cluster structure. While the axes of such
a grid do not correspond to any measurement, the spa-
tial relationships among the clusters do correspond to
relationships in p-dimensional space. Another attractive
feature of the SOM is its ability to discover arbitrarily
shaped clusters organized in a nonlinear space.

36.3.3 Software

Several DM software packages are available at a wide
range of prices, of which six of the most popular pack-
ages are:

• SAS Enterprise Miner
(www.sas.com/technologies/analytics/datamining/
miner/),• SPSS Clementine (www.spss.com/clementine/),• XLMiner in Excel (www.xlminer.net),

• Ghostminer (www.fqspl.com.pl/ghostminer/),• Quadstone (www.quadstone.com/),• Insightful Miner (www.splus.com/products/iminer/).

Haughton et al. [36.62] present a review of the first
five listed above. The SAS and SPSS packages have the
most complete set of KDD/DM tools (data handling,
DM modeling, and graphics), while Quadstone is the
most limited. Insightful Miner was developed by S+
[www.splus.com], but does not require knowledge of the
S+ language, which is only recommended for users that
are familiar with statistical modeling. For statisticians,
the advantage is that Insightful Miner can be integrated
with more sophisticated DM methods available with S+,
such as flexible and mixture discriminant analysis. All
six packages include trees and clustering, and all except
Quadstone include ANN modeling. The SAS, SPSS,
and XLMiner packages include discriminant analysis
and association rules. Ghostminer is the only one that
offers SVM tools.

SAS, SPSS, and Quadstone are the most expensive
(over $ 40 000) while XLMiner is a good deal for the
price (under $ 2 000). The disadvantage of XLMiner is
that it cannot handle very large data sets. Each pack-
age has certain specializations, and potential users must
carefully investigate these choices to find the package
that best fits their KDD/DM needs. Below we de-
scribe some other software options for the DM modeling
methods presented.

GLM or linear models are the simplest of DM tools
and most statistical software can fit them, such as SAS,
SPSS, S+, and Statistica [www.statsoftinc.com/]. How-
ever, it should be noted that Quadstone only offers a
regression tool via scorecards, which is not the same as
statistical linear models. GAM requires access to more
sophisticated statistical software, such as S+.

Software for CART, MART, and MARS is avail-
able from Salford Systems [www.salford-systems.com].
SAS Enterprise Miner includes CHAID, CART, and the
machine learning program C4.5 [www.rulequest.com]
[36.63], which uses classifiers to generate decision
trees and if–then rules. SPSS Clementine and Insight-
ful Miner also include CART, but Ghostminer and
XLMiner utilize different variants of decision trees.
QUEST [www.stat.wisc.edu/ l̃oh/quest.html] is avail-
able in SPSS’s AnswerTree software and Statistica.

Although ANN software is widely available, the
most complete package is Matlab’s [www.mathworks
.com] Neural Network Toolbox. Information on SVM
software is available at [www.support-vector.net/soft-
ware.html]. One good option is Matlab’s SVM Toolbox.
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36.4 DM Research and Applications

Many industrial and business applications require mod-
eling and monitoring processes with real-time data of
different types: real values, categorical, and even text.
DM is an effective tool for extracting process knowledge
and discovering data patterns to provide a control aid for
these processes. Advanced DM research involves com-
plex system modeling of heterogeneous objects, where
adaptive algorithms are necessary to capture dynamic
system behavior.

36.4.1 Activity Monitoring

One important DM application is the development
of an effective data modeling and monitoring sys-
tem for understanding customer profiles and detecting
fraudulent behavior. This is generally referred to as
activity monitoring for interesting events requiring ac-
tion [36.64]. Other activity monitoring examples include
credit card or insurance fraud detection, computer intru-
sion detection, some forms of fault detection, network
performance monitoring, and news story monitoring.

Although activity monitoring has only recently re-
ceived attention in the information industries, solutions
to similar problems were developed long ago in the
manufacturing industries, under the moniker statisti-
cal process control (SPC). SPC techniques have been
used routinely for online process control and monitor-
ing to achieve process stability and to improve process
capability through variation reduction. In general, all
processes are subject to some natural variability regard-
less of their state. This natural variability is usually
small and unavoidable and is referred to as common
cause variation. At the same time, processes may be
subject to other variability caused by improper ma-
chine adjustment, operator errors, or low-quality raw
material. This variability is usually large, but avoidable,
and is referred to as special cause variation. The basic
objective of SPC is to detect the occurrence of spe-
cial cause variation (or process shifts) quickly, so that
the process can be investigated and corrective action
may be taken before quality deteriorates and defective
units are produced. The main ideas and methods of
SPC were developed in the 1920s by Walter Shewhart
of Bell Telephone Laboratories and have had tremen-
dous success in manufacturing applications [36.65, 66].
Montgomery and Woodall [36.67] provide a comprehen-
sive panel discussion on SPC, and multivariate methods
are reviewed by Hayter and Tsui [36.68] and Ma-
son et al. [36.69].

Although the principle of SPC can be applied to
service industries, such as business process monitoring,
fewer applications exist for two basic reasons that Mont-
gomery [36.65] identified. First, the system that needs
to be monitored and improved is obvious in manufactur-
ing applications, while it is often difficult to define and
observe in service industries. Second, even if the system
can be clearly specified, most non-manufacturing op-
erations do not have natural measurement systems that
reflect the performance of the system. However, these
obstacles no longer exist, due to the many natural and
advanced measurement systems that have been devel-
oped. In the telecommunications industry, for example,
advanced software and hardware technologies make it
possible to record and process huge amounts of daily
data in business transactions and service activities. These
databases contain potentially useful information to the
company that may not be discovered without knowledge
extraction or DM tools.

While SPC ideas can be applied to business data,
SPC methods are not directly applicable. Existing SPC
theories are based on small or medium-sized samples,
and the basic hypothesis testing approach is intended to
detect only simple shifts in a process mean or variance.
Recently, Jiang et al. [36.70] successfully generalized
the SPC framework to model and track thousands of di-
versified customer behaviors in the telecommunication
industry. The challenge is to develop an integrated strat-
egy to monitor the performance of an entire multi-stage
system and to develop effective and efficient techniques
for detecting the systematic changes that require action.

A dynamic business process can be described by the
dynamic linear models introduced by West [36.71],

Observation equation : Xt = Atθt +∆t ,

System evolution equation : θt = Btθt−1+Λt ,

Initial information : π(S0) ,

where At and Bt represent observation and state tran-
sition matrices, respectively, and ∆t and Λt represent
observation and system transition errors, respectively.
Based on the dynamic system model, a model-based
process monitoring and root-cause identification method
can be developed. Monitoring and diagnosis includes
fault pattern generation and feature extraction, isolation
of the critical processes, and root-cause identifica-
tion. Jiang et al. [36.70] utilize this for individual
customer prediction and monitoring. In general, in-
dividual modeling is computationally intractable and
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cluster models should be developed with mixture
distributions [36.72].

One particularly competitive industry is telecom-
munications. Since divestiture and government dereg-
ulation, various telephone services, such as cellular,
local and long distance, domestic and commercial, have
become battle grounds for telecommunication service
providers. Because of the data and information ori-
ented nature of the industry, DM methods for knowledge
extraction are critical. To remain competitive, it is impor-
tant for companies to develop business planning systems
that help managers make good decisions. In particular,
these systems will allow sales and marketing people
to establish successful customer loyalty programs for
churn prevention and to develop fraud detection modules
for reducing revenue loss through market segmentation
and customer profiling.

A major task in this research is to develop and im-
plement DM tools within the business planning system.
The objectives are to provide guidance for targeting
business growth, to forecast year-end usage volume and
revenue growth, and to value risks associated with the
business plan periodically. Telecommunication business
services include voice and non-voice services, which
can be further categorized to include domestic, local, in-
ternational, products, toll-free calls, and calling cards.
For usage forecasting, a minutes growth model is uti-
lized to forecast domestic voice usage. For revenue
forecasting, the average revenue per minute on a log
scale is used as a performance measure and is forecasted
by a double exponential smoothing growth function.
A structural model is designed to decompose the busi-
ness growth process into three major subprocesses: add,
disconnect, and base. To improve explanatory power,
the revenue unit is further divided into different cus-
tomer groups. To compute confidence and prediction
intervals, bootstrapping and simulation methods are
used.

To understand the day effect and seasonal effect, the
concept of bill-month equivalent business days (EBD)
is defined and estimated. To estimate EBD, the fac-
tor characteristics of holidays (non-EBD) are identified
and eliminated and the day effect is estimated. For sea-
sonality, the US Bureau of the Census X-11 seasonal
adjustment procedure is used.

36.4.2 Mahalanobis–Taguchi System

Genichi Taguchi is best known for his work on ro-
bust design and design of experiments. The Taguchi
robust design methods have generated a considerable

amount of discussion and controversy and are widely
used in manufacturing [36.73–77]. The general consen-
sus among statisticians seems to be that, while many
of Taguchi’s overall ideas on experimental design are
very important and influential, the techniques he pro-
posed are not necessarily the most effective statistical
methods. Nevertheless, Taguchi has made significant
contributions in the area of quality control and quality
engineering. For DM, Taguchi has recently popularized
the Mahalanobis–Taguchi System (MTS), a new set of
tools for diagnosis, classification, and variable selection.
The method is based on a Mahalanobis distance scale
that is utilized to measure the level of abnormality in ab-
normal items as compared to a group of normal items.
First, it must be demonstrated that a Mahalanobis dis-
tance measure based on all available variables is able to
separate the abnormal from the normal items. Should
this be successfully achieved, orthogonal arrays and
signal-to-noise ratios are used to select an optimal com-
bination of variables for calculating the Mahalanobis
distances.

The MTS method has been claimed to be very power-
ful for solving a wide range of problems, including
manufacturing inspection and sensing, medical diag-
nosis, face and voice recognition, weather forecasting,
credit scoring, fire detection, earthquake forecasting, and
university admissions. Two recent books have been pub-
lished on the MTS method by Taguchi et al. [36.78]
and Taguchi and Jugulum [36.79]. Many successful case
studies in MTS have been reported in engineering and
science applications in many large companies, such as
Nissan Motor Co., Mitsubishi Space Software Co., Xe-
rox, Delphi Automotive Systems, ITT Industries, Ford
Motor Company, Fuji Photo Film Company, and oth-
ers. While the method is getting a lot of attention in
many industries, very little research [36.80] has been
conducted to investigate how and when the method is
appropriate.

36.4.3 Manufacturing Process Modeling

One area of DM research in manufacturing indus-
tries is quality and productivity improvement through
DM and knowledge discovery. Manufacturing sys-
tems nowadays are often very complicated and involve
many manufacturing process stages where hundreds
or thousands of in-process measurements are taken
to indicate or initiate process control of the system.
For example, a modern semiconductor manufactur-
ing process typically consists of over 300 steps, and
in each step, multiple pieces of equipment are used
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to process the wafer. Inappropriate understanding of
interactions among in-process variables will create in-
efficiencies at all phases of manufacturing, leading to
long product/process realization cycle times and long
development times, and resulting in excessive system
costs.

Current approaches to DM in electronics manufac-
turing include neural networks, decision trees, Bayesian
models and rough set theory [36.81, 82]. Each of these
approaches carries certain advantages and disadvan-
tages. Decision trees, for instance, produce intelligible
rules and hence are very appropriate for generating pro-
cess control or design of experiments strategies. They
are, however, generally prone to outlier and imperfect
data influences. Neural networks, on the other hand, are
robust against data abnormalities but do not produce
readily intelligible knowledge. These methods also dif-
fer in their ability to handle high-dimensional data, to
discover arbitrarily shaped clusters [36.58] and to pro-
vide a basis for intuitive visualization [36.83]. They
can also be sensitive to training and model building
parameters [36.60]. Finally, the existing approaches
do not take into consideration the localization of pro-
cess parameters. The patterns or clusters identified
by existing approaches may include parameters from
a diverse set of components in the system. There-
fore, a combination of methods that complement each
other to provide a complete set of desirable features is
necessary.

It is crucial to understand process structure and yield
components in manufacturing, so that problem localiza-
tion can permit reduced production costs. For example,
semiconducture manufacturing practice shows that over
70% of all fatal detects and close to 90% of yield
excursions are caused by problems related to process
equipment [36.84]. Systematic defects can be attributed
to many categories that are generally associated with
technologies and combinations of different process op-
erations. To implement DM methods successfully for
knowledge discovery, some future research for manu-
facturing process control must include yield modeling,
defect modeling and variation propagation.

Yield Modeling
In electronics manufacturing, the ANSI stand-
ards [36.85] and practice gene rally assume that the
number of defects on an electronics product follows
a Poisson distribution with mean λ. The Poisson random
variable is an approximation of the sum of independent
Bernoulli trials, but defects on different components
may be correlated since process yield critically de-

pends on product groups, process steps, and types of
defects [36.86]. Unlike traditional defect models, an ap-
propriate logit model can be developed as follows. Let
the number of defects of category X on an electronics
product be

UX =
∑

YX

and

logit
[
E(YX )

]= α0
X +αO

X ·OX

+αC
X ·CX +αOC

X ·OX ·CX ,

where logit(z) = log[z/(1− z)] is the link function for
Bernoulli distributions, and YX is a Bernoulli random
variable representing a defect from defect category X.
The default logit of the failure probability is α0

X , and
αO

X and αC
X are the main effects of operations (OX )

and components (CX ). Since the YX s are correlated,
this model will provide more detailed information about
defects.

Multivariate Defect Modeling
Since different types of defects may be caused by the
same operations, multivariate Poisson models are nec-
essary to account for correlations among different types
of defects. The trivariate reduction method suggests an
additive Poisson model for the vector of Poisson counts
U = (U1,U2, · · · ,Uk)′,

U = AV ,

where A is a matrix of zeros and ones, and
V = (v1, v2, · · · , vp)′ consists of independent Poisson
variables vi . The variance–covariance matrix takes the
form Var(U) = AΣA′ =Φ+νν′, where Φ = diag(µi )
is a diagonal matrix with the mean of the individual se-
ries, and ν is the common covariance term. Note that
the vi are essentially latent variables, and a factor anal-
ysis model can be developed for analyzing multivariate
discrete Poisson variables such that

log[E(U)] = µ+ L · F ,

where U is the vector of defects, L is the matrix of factor
loadings, and F contains common factors representing
effects of specific operations. By using factor analysis,
it is possible to relate product defects to the associated
packages and operations.

Multistage Variation Propagation
Inspection tests in an assembly line usually have func-
tional overlap, and defects from successive inspection
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stations exhibit strong correlations. Modeling seri-
ally correlated defect counts is an important task for
defect localization and yield prediction. Poisson re-
gression models, such as the generalized event-count
method [36.87] and its alternatives, can be utilized to

account for serial correlations of defects in different
inspection stations. Factor analysis methods based on
hidden Markov models [36.88] can also be constructed
to investigate how variations are propagated through
assembly lines.

36.5 Concluding Remarks

While DM and KDD methods are gaining recognition
and have become very popular in many compa-
nies and enterprises, the success of these methods
is still somewhat limited. Below, we discuss a few
obstacles.

First, the success of DM depends on a close collab-
oration of subject-matter experts and data modelers. In
practice, it is often easy to identify the right subject-
matter expert, but difficult to find the qualified data
modeler. While the data modeler must be knowledgeable
and familiar with DM methods, it is more important to
be able to formulate real problems such that the existing
methods can be applied. In reality, traditional academic
training mainly focuses on knowledge of modeling al-
gorithms and lacks training in problem formulation and
interpretation of results. Consequently, many modelers
are very efficient in fitting models and algorithms to
data, but have a hard time determining when and why
they should use certain algorithms. Similarly, the ex-

isting commercial DM software systems include many
sophisticated algorithms, but lack of guidance on which
algorithms to use.

Second, implementation of DM is difficult to apply
effectively across an industry. Although it is clear that
extracting hidden knowledge and trends across an in-
dustry would be useful and beneficial to all companies
in the industry, it is typically impossible to integrate the
detailed data from competing companies due to confi-
dentiality and proprietary issues. Currently, the industry
practice is that each company will integrate their own
detailed data with the more general, aggregated industry-
wide data for knowledge extraction. It is obvious that
this approach will be significantly less effective than
the approach of integrating the detailed data from all
competing companies. It is expected that, if these obs-
tacles can be overcome, the impact of the DM and KDD
methods will be much more prominent in industrial and
commercial applications.
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Part E contains ten chapters and focuses on statistical
methods and modeling. Chapt. 37 provides an overview
of several well-known bootstrap methods, including
Efron’s bootstrap and Studentized bootstrap interval
for constructing confidence intervals and introduces
some recently developed bootstrap methods such as the
estimation-function bootstrap and the Markov-chain
marginal bootstrap. Chapter 38 discusses general-
ized linear mixed models for correlated non-normal
data and various methods for random-effect model
parameters including the EM algorithms, penalized
quasi-likelihood, the Markov-chain Newton–Raphson,
the stochastic approximation, and the S–U algorithm.
Chapter 39 focuses on the design and analysis of
cluster randomized trials. This chapter also describes
cost-efficiency models with covariates and the robust-
ness of optimal designs, including both the number of
clusters and cluster size. Chapter 40 discuss a semi-
parametric estimation method for an extension of the
semiparametric regression model, called the two-way
semilinear model, for normalization to estimate normal-
ization curves and its applications to microarray data.
Chapter 41 covers the development of latent-variable
models for longitudinal data such as the generalized
linear latent and mixed model, hierarchical latent-
variable models, the linear mixed model for multivariate
longitudinal responses as well as structural-equation
models with latent variables for longitudinal data.

The next two chapters focus on genetic algo-
rithms and scan statistics. Chapter 42 provides an
overview of the concept of genetic algorithms, including

hybrid genetic algorithms, adaptive genetic algorithms
and fuzzy-logic controllers, and their applications
in scheduling problems, network design, reliability
design-optimization problems, logistic network, and
transportation-related problems. Chapter 43 describes
the concepts of scan statistics and the various types
used to localize large clusters in continuous time, space,
and on a two-dimensional lattice. It also discusses
recent double-scan statistics methods that allow prac-
titioners to test for some unusual lagged clustering
of different types of events and complex systems.

The final three chapters focus on various issues
in maintenance modeling. Chapter 44 describes
a condition-based failure-prediction method con-
sisting of both a computer simulation and an
experiment on a DC motor for preventive main-
tenance using the Kalman filter. The applications
of the method and experimental set ups with re-
lated system parameters and experimental results
are also discussed. Chapter 45 gives a brief in-
troduction to maintenance modeling and discusses
generalized multistate maintenance models for
repairable systems as well as condition-based inspec-
tion strategies for degraded systems with multiple,
competing failure processes such as degradation
processes and random shocks, while Chapt. 46
presents a review of major maintenance models
and policies in the maintenance literature that are
commonly used in practice and discusses various
recent maintenance models with consideration of
repair policies and inspection with human errors.
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In this chapter, we first review bootstrap methods
for constructing confidence intervals (regions).
We then discuss the following three important
properties of these methods: (i) invariance under
reparameterization; (ii) automatic computation;
and (iii) higher order accuracy. The greatest
potential value of the bootstrap lies in complex
situations, such as nonlinear regression or
high-dimensional parameters for example. It
is important to have bootstrap procedures that
can be applied to these complex situations,
but still have the three desired properties. The
main purpose of this chapter is to introduce
two recently developed bootstrap methods:
the estimation function bootstrap, and the
Markov chain marginal bootstrap method. The
estimating function bootstrap has all three
desired properties and it can also be applied to
complex situations. The Markov chain marginal
bootstrap is designed for high-dimensional
parameters.
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37.1 Overview

For a statistical model involving an unknown parameter
θ, the two main statistical inference issues are usually:
(i) point estimation θ̂ (how to estimate the unknown pa-
rameter θ); and (ii) how to assess the accuracy of this
estimator θ̂ (in terms of the standard deviation or confi-
dence interval of the unknown θ). Statisticians usually
try to find the exact distribution or asymptotic distri-
bution of the estimator θ̂. However, it is difficult to
obtain the exact distribution or asymptotic distribution
in a lot of situations. Sometimes the asymptotic distribu-
tion can be obtained, but the distribution of θ̂ is not well
approximated. Bootstrap provides a general methodol-
ogy for constructing confidence intervals for unknown
parameters.

In this chapter, we first discuss bootstrap methods
in terms of the following three important properties:
(1) invariance under reparameterization, (2) automatic
computation, and (3) higher order accuracy. To illustrate

these three properties, let’s consider the following simple
model. Assume that Y1, . . . ,Yn is a random sample from
some unknown distribution F. Let y = (y1, . . . , yn) be
the realization of Y . Suppose that θ = θ(F) is the un-
known parameter of interest. This θ could be the mean,
or variance, or some other function of the distribution
F. Let θ̂ = θ̂(y1, . . . , yn) be the estimator of θ based on
the observation y.

37.1.1 Invariance
under Reparameterization

Suppose θ is a scale parameter and that h(θ) is a strictly
monotonic function in the parameter space of θ. Then
the new reparameterized statistical model is based on
(Y1, . . . ,Yn) and the parameter ξ = h(θ). Suppose that
an estimation procedure gives θ̂ as the estimator of θ

based on (Y1, . . . ,Yn) and parameter θ, and ξ̂ as the
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estimator of ξ based on (Y1, . . . ,Yn) and parameter
ξ respectively. This procedure is said to be invariant
under reparameterization if ξ̂ = h(θ̂). It is well known
that the maximum likelihood procedure is invariant
under reparameterization. But the moment estimation
procedure is usually not invariant under reparameter-
ization. A confidence interval procedure is invariant
under reparameterization, if [θ̂(α/2), θ̂(1−α/2)] is the
1−α level confidence interval of θ based on this pro-
cedure, and [h(θ̂[α/2]), h(θ̂[1−α/2])] is the 1−α level
confidence interval of ξ based on this procedure. Here
we assume that h(θ) is a strictly increasing function.
When a procedure is not invariant under reparameter-
ization, it is usually very important to select a good
transformation and perform statistical inference after
transformation. This has been a topic of research in
classical statistics.

37.1.2 Automatic Computation

One of the most important advantages of the bootstrap
method is its automatic computation; in other words it
does not depend on theoretical calculation. A proce-
dure is called an “automatic computation” if it does not
depend on any extra analytical inference. In many ap-
plications, it is very difficult (sometimes impossible) to
perform analytical calculations.

37.1.3 First and Higher Order Accuracy

Suppose that θ is a scale parameter and that θ̂[α] is
the α confidence limit of θ, based on a certain pro-
cedure. Then the procedure is said to be first-order
accurate if P

(
θ < θ̂[α])= α+O(n−1/2). It is second-

order-accurate if P
(
θ < θ̂[α]) = α+O(n−1). Higher

order accuracy is defined in the same way. It is well
known that the standard confidence interval,

[
θ̂− σ̂z(α/2) , θ̂+ σ̂z(α/2)

]
,

is only first-order-accurate under some conditions. Here
z(α/2) is defined by P(Z ≥ z(α)) = α for a standard nor-
mal random variable Z, while σ̂ is an estimator of the
standard deviation of θ̂. One advantage of using the
bootstrap method is getting confidence intervals that are
accurate to the second order.

In Sect. 37.2 we will introduce Efron’s bootstrap
for iid samples. To construct a second-order-accurate
confidence interval, four different bootstrap methods are

reviewed and discussed in terms of the three proper-
ties described above. We then consider three bootstrap
methods for a linear model and discuss their properties.

In some more complex situations, the observa-
tions could be heteroscedastic; in other words the
variances of Yi are different. It is important to have
a bootstrap procedure that remains consistent under
heteroscedasticity. When θ is a high-dimensional vec-
tor it is usually more difficult to apply a bootstrap
procedure because it is: (i) computational intensive;
(ii) difficult to construct a good confidence region.
For high dimension problems, it is often important to
have reliable computational results. Some new boot-
strap methods have been proposed for these complex
situations.

The main propose of this chapter is to introduce
some recent developments in bootstrap methodology.
We consider two bootstrap methods. The first is the es-
timating function (EF) bootstrap proposed in Hu and
Kalbfleisch [37.1]. Instead of resampling the data it-
self, the EF bootstrap resamples some functions of the
data in order to achieve robustness to heteroscedasticity.
This EF bootstrap is often the simplest computationally
and it is straightforward to define studentized ver-
sions of the EF bootstrap which are invariant under
reparameterization and require very little additional cal-
culation. This method can be used to get confidence
regions that are accurate to higher orders for multidi-
mensional parameters. When the estimating function is
differentiable, it can be easily extended to deal with nui-
sance parameter problems. Another method is called the
Markov chain marginal bootstrap (MCMB), which is
useful for constructing confidence intervals or regions
for high dimension parameters. The MCMB is differ-
ent from most bootstrap methods in two aspects: first,
it solves only one-dimensional equations for a problem
with any number of dimensions; second, it produces
a Markov chain rather than a (conditionally) independent
sequence.

In Sect. 37.3, we introduce the EF bootstrap and
discuss the properties of the EF bootstrap. Some
examples are used to illustrate the procedure. The
Markov chain marginal bootstrap method is intro-
duced in Sect. 37.4. In Sect. 37.5, we use the simple
linear model to illustrate the MCMB algorithm
and its properties. We also apply the EF boot-
strap and MCMB method to different examples. In
Sect. 37.6, we discuss some issues with using bootstrap
methods.
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37.2 Classical Bootstrap

37.2.1 Efron’s Bootstrap

To start, let’s consider the simplest case. Assume that
Y1, . . . ,Yn is a random sample from some unknown
distribution F. Let y = (y1, . . . , yn) be the realization
of Y . Suppose that θ = θ(F ) is the unknown parameter
(scale) of interest. This θ could be the mean, the vari-
ance, or some other function of the distribution F. Let
θ̂ = θ̂(y1, . . . , yn) be the estimator of θ based on the
observation y.

The main statistical goal is to find the distribution
of θ̂− θ. If we know this distribution, then we can do
all kinds of statistical inference, (including deriving
standard deviations and confidence intervals). Before
Efron’s bootstrap paper [37.2], researchers focused on
finding the exact distribution or asymptotical distribu-
tion based on different theoretical approaches. Most of
these methods depended on certain assumptions for the
distribution F.

Efron’s basic idea was to use computer simulation
to investigate the distribution of θ̂− θ. If F is a given
(known) distribution, then we can use Monte Carlo
simulation to get the distribution of θ̂− θ. When F is
unknown, the best nonparametric estimator of F is the
empirical distribution, F̂, which gives a weight of 1/n
to each yi . The bootstrap procedure can be summarized
as follows:

• [i.] Draw a bootstrap sample z∗1, . . . , z∗n from distri-
bution F̂, which is the same as drawing z∗1, . . . , z∗n
from (y1, . . . , yn) with replacement;• [ii.] Calculate the bootstrap estimator θ̂∗ =
θ̂(z∗1, . . . , z∗n);• [iii.] Repeat steps (i) and (ii) B (the bootstrap sample
size) times to get θ̂∗1 , . . . , θ̂∗B . Now we define the
empirical distribution:

Ĝ(x) = B−1
n∑

i=1

I(θ̂∗i ≤ x) .

Where I(·) is the indication function.• [iv.] Use the empirical distribution of θ̂∗ − θ̂ to ap-
proximate the distribution of θ̂− θ.

In early work, the bootstrap estimators described
above were used to estimate the bias of the estima-
tor θ̂ [37.2, 3]. However, the main contribution of the
bootstrap method is to provide a new way to assess the
accuracy of the estimator θ̂. Here we discuss two main

applications: (i) estimating the standard deviation of θ̂,
and (ii) estimating the confidence interval of θ.

Standard Deviation
A commonly used measure of the accuracy of θ̂ is the
standard deviation of θ̂. Based on the bootstrap esti-
mators, we can easily calculate the bootstrap variance
estimator as:

σ̂∗ =
⎡

⎣(B−1)−1
B∑

j=1

(
θ̂∗j − θ̄∗

)2

⎤

⎦
1/2

,

where θ̄∗ = B−1 ∑B
j=1 θ̂

∗
j . Under very general condi-

tions, this is a consistent estimator of the true standard
deviation [37.3]. The advantage of this bootstrap stand-
ard deviation, σ̂∗, is that it does not depend on analytical
inference. Instead, we can get it by computer simula-
tion. When σ̂ is not available, this σ̂∗ can be used as the
estimator of the standard deviation of θ̂.

Based on σ̂∗, we can construct an approximate con-
fidence interval for the unknown parameter θ as

[
θ̂− σ̂∗z(α/2) , θ̂+ σ̂∗z(α/2)

]
.

While this confidence interval conforms to “automatic
computation”, it is not “invariant under reparameteriza-
tion”, and is only first-order-accurate.

Confidence Interval
First we consider the following two distributions: (i) the
distribution of the estimator θ̂,

H(t)= P
[
n−1/2(θ̂− θ

)≤ t
] ;

and the corresponding distribution of the bootstrap esti-
mator θ̂∗,

Ĥ(t) = P
[
n−1/2(θ̂∗ − θ̂

)≤ t
]
.

Under certain conditions, it can be shown that [37.4]

max
t∈[−∞,∞] |H(t)− Ĥ(t)| = Op

(
n1/2) .

By using the distribution of θ̂∗ − θ̂ to approximate the
distribution of θ̂− θ, we can construct the level 1−α

confidence interval of θ as
[
2θ̂− θ̂∗(1−α/2), 2θ̂− θ̂∗(α/2)

]
,

where θ̂∗(α) is the αth quantile of the bootstrap distri-
bution Ĝ. This confidence interval is also obtained via
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“automatic computation”, but it is not “invariant under
reparameterization”, and is only first-order-accurate.

Another way to construct the confidence interval is
by using the distribution of θ̂∗ directly. The confidence
interval is defined as

[
θ̂∗(α/2), θ̂∗(1−α/2)

]
.

This interval is obtained via “automatic computation”
and is “invariant under reparameterization”, but is only
first-order-accurate.

37.2.2 Second-Order-Accurate Confidence
Intervals

One of the problems that has been studied the most
in bootstrap literature is how to construct higher ac-
curate bootstrap confidence intervals; see for example
[37.5–8]. Here we review four commonly used meth-
ods: (i) studentized bootstrap interval; (ii) bias-corrected
and accelerated method (BCa method); (iii) approxi-
mated bootstrap confidence (ABC) interval; and (iv)
prepivoting bootstrap interval. The advantages and dis-
advantages of these four methods are also discussed.

Studentized Bootstrap Interval
Instead of considering n1/2

(
θ̂− θ

)
directly, we use the

studentized statistic

T = n1/2(θ̂− θ)

σ̂(y1, . . . , yn)
,

where σ̂2 = σ̂2(y1, . . . , yn) is an estimate of the asymp-
totic variance Var

(
n1/2θ̂

)
. The corresponding bootstrap

studentized statistic is then

T∗ =
n1/2

(
θ̂∗ − θ̂

)

σ̂∗(z∗1, . . . , z∗n)
.

A large number (B, say) of independent replications give
the following estimated percentiles:

T̂ (α) = αth quantile of (T∗(b), b = 1, . . . , B) .

The 100αth bootstrap-t confidence endpoint θ̂T [α] is
then defined to be

θ̂T [α] = θ̂− σ̂ T̂ (1−α) .

Based on Edgeworth expansions of the statistics T and
T∗, Hall [37.9] showed that

P(T < v)− P(T∗ < v) = Op(n−1) ,

where the second probability is under the bootstrap
distribution, so the bootstrap-t intervals are usually
second-order-accurate. The advantage of this studen-
tized bootstrap is that it is intuitive and easy to
understand.

But this method is not “automatic computation”; it
depends on the existence of a reliable estimator of the
standard deviation, σ̂(y1, . . . , yn). In a lot of applica-
tions, this may not be available. Secondly, as pointed
in [37.8], even with a reliable estimator of the standard
deviation, the studentized bootstrap algorithm can be
numerically unstable, resulting in very long confidence
intervals. Third, the studentized bootstrap intervals are
not “invariant under reparameterization”.

BCa Interval
The distribution of θ̂∗ is usually not symmetric but in-
stead skewed to one side. The BCa (“bias-corrected and
accelerated”) intervals were studied in [37.5–8] based
on the bootstrap distribution. The BCa intervals de-
pend on two numerical parameters: a bias-correction
parameter z0 and an acceleration a. The upper endpoint
θ̂BCa [α] of a one-sided level-α BCa interval is defined
as

θ̂BCa [α] = Ĝ−1
[
Ψ

(
z0+ z0+ zα

1−a(z0+ zα)

)]
,

where Ĝ is the empirical distribution function of the
bootstrap samples, and Ψ is the standard normal cdf
with zα = Ψ−1(α).

The bias-correction parameter z0 is usually esti-
mated from the bootstrap sample as

ẑ0 = Ψ−1

{
B−1

B∑

b=1

I
[
θ̂∗(b) < θ̂

]}
.

On the other hand, the acceleration parameter a is more
subtle and cannot be estimated as directly from the
bootstrap sample. Di Ciccio and Efron [37.8] presented
several ways to estimate the acceleration parameter
a. The second-order accuracy of the BCa intervals is
discussed in [37.8].

The BCa intervals are “invariant under reparameter-
ization”. Under some conditions, the BCa intervals are
second-order-accurate. However, the BCa intervals de-
pend on the acceleration parameter a, which cannot be
estimated directly from the bootstrap replications. The
need to estimate a makes the BCa method less intuitive
to users. Therefore, the BCa intervals are not obtained
via “automatic computation”.
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ABC Method
The ABC method (short for “approximate bootstrap con-
fidence” interval) is an analytic version of BCa applied
to smoothly defined parameters in exponential families.
Instead of estimating z0 using a bootstrap distribution
as in the BCa method, the ABC method estimates z0
and the acceleration parameter a analytically. The ABC
method requires one further estimate of a nonlinearity
parameter. Based on these estimates, we can then con-
struct ABC intervals. DiCiccio and Efron [37.8] provide
the details of this ABC method, and they also show the
second-order accuracy of this method. The ABC inter-
vals are “invariant under reparameterization”, but are not
obtained via “automatic computation”.

Prepivoting Method (Bootstrap Calibration)
Calibration is a bootstrap technique for getting con-
fidence intervals accurate to higher orders. Concepts
related to it have been proposed and studied in [37.9–12].

Suppose that θ̂[α] is the upper endpoint of a one-side
level-α approximate confidence bound for parameter θ.
Let

γ (α) = P
[
θ < θ̂(α)

]

be the calibration curve. If the approximation is perfect,
then γ (α) = α for any given α. Otherwise, we can use
the calibration curve. For example, if γ (0.03) = 0.025
and γ (0.96)= 0.975, then we can use

(
θ̂[0.03], θ̂[0.96])

instead of
(
θ̂[0.025], θ̂[0.975]) as our approximate 0.95-

level confidence interval.
In applications, we do not usually know the calibra-

tion curve γ (α). But we can use the bootstrap method to
estimate γ (α) as follows:

γ̂ (α) = P∗
(
θ̂ < θ̂[α]∗

)
,

where P∗ indicates the bootstrap sample and θ̂[α]∗ is the
upper α bound based on the bootstrap sample.

We can use bootstrap calibration asymptotically to
obtain a higher order confidence interval from a given
system of confidence intervals. Therefore, it can be ap-
plied to all of the methods reviewed in this chapter.
For example, we can use bootstrap calibration to obtain
third-order-accurate confidence intervals from studen-
tized bootstrap intervals. However, bootstrap calibration
involves more computation. For example, if we use
B = 1000 (bootstrap sample size), then the bootstrap
calibration will require 1 000 000 recomputations of the
original statistic θ̂. In practice, the sample size n is usu-
ally not very large, so we can usually use one bootstrap
calibration.

37.2.3 Linear Regression

The bootstraps discussed so far are based on iid samples,
but in many applications this assumption does not hold.
Consider the linear model

Yi = xiβ+ ei ,

where xi is a k ×1 vector which may be a random or fixed
variable. Here β is the k × 1 parameter vector of inter-
est, and e1, . . . , en are uncorrelated errors with means
of zero and variances of Var(ei ) = σ2

i , i = 1, . . . , n, re-
spectively. We assume that ei and xi are uncorrelated for
all i when x1, ..., xn are random. Let

Y = (Y1, . . . ,Yn)T , e = (e1, . . . , en)T ,

and X = (x1, . . . , xn)T

The least square estimator is then

β̂ = (
XTX

)−1
XTY .

Here XTX is assumed to be nonsingular. Let
y = (y1, . . . , yn) denote the observed Y.

When e1, . . . , en are independent and identically
distributed

(
σ2

i = σ2 for all i
)
, [37.2] proposed the

following bootstrap method based on residuals. Let
ri = yi − xT

i β̂, i = 1, . . . , n. We can treat r1, . . . , rn as
observations of e1, . . . , en . We can resample r∗1 , . . . , r∗n
from (r1, . . . , rn) with replacement. Now define the
bootstrap sample as

y∗i = xT
i β̂+r∗i , i = 1, . . . , n .

Let Y∗ = (y∗1, . . . , y∗n)T. The corresponding bootstrap
estimator is

β̂∗ = (
XTX

)−1
XTY∗ .

Based on these bootstrap estimators, we can then apply
the techniques in Sect. 37.2.1 and Sect. 37.2.2 to estimate
the standard deviation of β̂ and the confidence intervals
for β. However, when xi are random and the σ2

i values
are not the same, Efron’s bootstrap, which is based on
resampling the residuals, does not provide a consistent
result.

To deal with this heteroscedasticity, Freedman
[37.13] suggests the following “Pair” bootstrap: resam-
ple

(
x∗1, y∗1

)
, . . . ,

(
x∗n, y∗n

)
from (x1, y1), . . . , (xn, yn)

with replacement and compute the bootstrap least
squares estimate

β̂∗ =
(

X∗TX∗)−1
X∗TY∗ ,

where X∗ = (
x∗1, . . . x∗n

)T and Y∗ = (
y∗1, . . . , y∗n

)T. This
method is consistent for heteroscedastic errors.
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Hu and Zidek [37.14] propose another bootstrap
method based on the observation that the estimator β̂

can be rewritten as

β̂ = (
XTX

)−1
XTY

= (
XTX

)−1
n∑

i=1

xi yi = β+ (XTX)−1
n∑

i=1

xi ei .

If we treat zi = xiri (i = 1, . . . , n) as an estimate of xi ei ,
it is natural to suggest that the bootstrap estimator is:

β̂∗ = β̂+ (
XTX

)−1
n∑

i=1

z∗i ,

where z∗1, . . . , z∗n is the bootstrap sample, which is
drawn from (z1, . . . , zn) with replacement. This boot-
strap method is also consistent for heteroscedastic
errors.

As pointed out in [37.14], the numerical result of
Freedman’s “pair” bootstrap can be unstable. This is
because the design matrix X∗ changes for each boot-
strap sample. For the bootstrap method proposed by Hu
and Zidek [37.14], the design matrix X maintains the
sample for each bootstrap sample. This is very impor-
tant for cases with a small sample size n. When we
applied the studentized bootstrap to both methods with
heteroscedastic errors, Hu and Zidek’s bootstrap was

found to be easy to extend and has substantial numerical
advantages over the “pair” bootstrap [37.14].

37.2.4 Some Remarks

We have discussed four second-order-accurate bootstrap
methods. These methods are mainly useful for sim-
ple situations. However, resample methods are often
needed in complex situations, such as nonlinear estima-
tors and models with high-dimensional parameters. In
these situations, there are clearly several difficulties that
are encountered when using the traditional bootstraps:
(i) it is difficult to derive an estimate for the accelera-
tion parameter for the BCa and ABC methods; (ii) for
models with high-dimensional parameters, it is difficult
to apply the studentized bootstrap and the prepivoting
method; (iii) models with high-dimensional parameters
are computationally intensive; (iv) the bootstrap sample
may be quite different from the original sample which
may produce unstable results.

In the following two sections, we will describe two
recent proposals intended for complex models. The esti-
mating function (EF) bootstrap is designed for estimates
obtained from estimating equations. We show that the
studentized estimating function bootstrap has the three
desired properties. The Markov chain marginal boot-
strap (MCMB) is mainly used to reduce computation in
models with high-dimensional parameters.

37.3 Bootstrap Based on Estimating Equations

The traditional bootstrap methods based involve resam-
pling the original data over and over again. Typically,
the estimator is obtained from some estimating equation
(Godambe and Kale [37.15]). The estimating function
(EF) bootstrap proposed by [37.1, 14, 16] emphasizes
the estimating function and the equation from which the
estimator is obtained.

Following the same notations used by Hu and
Kalbfleisch [37.1], let y1, . . . , yn be a sequence of inde-
pendent random vectors of dimension q, and θ ∈Ω ⊂ R

p

be an unknown parameter vector. For specified functions
{gi} : Rq → Rp, suppose that E[gi (yi , θ)] = 0 for all
i = 1, . . . , n and θ ∈Ω. We suppose that θ̂ is the solution
of the following unbiased linear estimating equation

S(y, θ) = n−1/2
∑

gi (yi , θ) = 0 . (37.1)

Here the normalizing constant
(
n−1/2

)
is chosen for

the convenience of expressing asymptotic results. For

simplicity, we also assume that S(y, θ) is a 1 : 1 func-
tion of θ and our main consideration will be the
construction of confidence regions for the whole pa-
rameter vector θ, or for components or some functions
of θ.

When the random vector S(y, θ) is exactly piv-
otal [37.17, 18], we can use exact methods to obtain
confidence intervals or regions. However, in most cases,
S(y, θ) is only approximately pivotal and we rely on
asymptotic normality and χ2 approximations to ob-
tain the confidence intervals or regions of θ. Here we
propose to use resampling methods to approximate the
distribution of S(y, θ).

37.3.1 EF Bootstrap
and Studentized EF Bootstrap

The EF Bootstrap
Let zi = gi

(
yi , θ̂

)
.
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1. Draw a bootstrap sample (z∗1, . . . , z∗n) from
(z1, . . . , zn) with replacement.

2. Compute S∗ = n−1/2 ∑ z∗i . The bootstrap distribu-
tion of S∗ can be used to approximate the distribution
of S(y, θ).

3. Compute θ∗ by solving S(y, θ) = S∗.

The EF bootstrap generates a bootstrap sequence θ∗j
( j = 1, . . . , B where B is the bootstrap sample size)
by repeating the above process B times. Based on θ∗j
( j = 1, . . . , B), we can then construct confidence re-
gions of the parameter of interest (some functions of θ).
Like Efron’s bootstrap, this usually produces confi-
dence intervals that are accurate only to the first order.
Hu and Kalbfleisch [37.16] proposed one type of stu-
dentization. This studentization gives an approximation
to second-order accuracy, but it is not invariant under
reparameterization.

Here we introduce the studentized EF bootstrap
proposed in [37.1]. We define

V(y, θ) = n−1
∑

[gi (yi , θ)− ḡ][gi (yi , θ)− ḡ]T ,

(37.2)

where ḡ = n−1 ∑ gi (yi , θ). In practice, we use the vari-
ance estimate

V̂ = V(y, θ̂) . (37.3)

Instead of approximating the distribution of S(y, θ), we
use a bootstrap method to approximate the distribution
of

St(y, θ) = V(y, θ)−1/2 S(y, θ) . (37.4)

In most cases, St(y, θ) is a better approximated pivotal.

Studentized EF Bootstrap
First we obtain (z∗1, . . . , z∗n) as in the EF bootstrap;
compute

S∗t = V∗−1/2S∗ ,

where V∗ = n−1 ∑(
z∗i − z̄∗

)(
z∗i − z̄∗

)T and z̄∗ =
n−1 ∑ z∗i , and finally solve

St(y, θ) = S∗t .

Under fairly general conditions [37.1], the studentized
EF bootstrap is second-order-accurate and also invariant
under reparameterization. The simplicity of its compu-
tation is discussed in the following two subsections.

37.3.2 The Case of a Single Parameter

When the parameter θ is a scalar and S(y, θ) is a mono-
tonic function of θ, confidence intervals for θ based
on the EF bootstrap are obtained as follows. For any
specified α, we can find S∗(α), the αth quantile of the
bootstrap distribution of S∗. The two-sided interval(
θ∗(α/2), θ

∗
(1−α/2)

)
obtained from

S
(
y, θ∗(α/2)

)= S∗(α/2)

and S
(
y, θ∗(1−α/2)

)= S∗(1−α/2) ,

is the 100(1−α)% EF bootstrap confidence interval for
θ. To obtain this interval, the equation S(y, θ)= S∗ needs
to be solved at only two points.

We can obtain higher order accuracy by using the stu-
dentized version based on (37.4). To do this, let S∗t(α) be
the αth quantile of the distribution of S∗t . If St(y, θ)
is monotonic in θ, then the equation St(y, θ) = S∗t(α)
yields an endpoint for the interval. The confidence
intervals obtained using the studentized EF bootstrap
are usually second-order-accurate, and their perfor-
mances are comparable to those of the BCa and ABC
methods [37.1].

From this simple model, we can see that the EF boot-
strap has several advantages over Efron’s bootstrap: (i) it
is often computationally simpler, because we just have to
solve the equation at two points; (ii) the studentized EF
bootstrap is straightforward, while the classical studen-
tized bootstrap requires a stable estimate of the variance;
(iii) the studentized statistic St(y, θ) is invariant un-
der reparameterization, as are the confidence intervals
or regions based on studentized EF bootstrap. By con-
trast, the EF bootstrap is not invariant and it is usually
first-order-accurate.

37.3.3 The Multiparameter Case

For a p-dimensional vector parameter θ, we use the
approximate pivotal

Q(y, θ) = S(y, θ)TV(y, θ)−1S(y, θ)

= St(y, θ)TSt(y, θ) . (37.5)

The distribution of Q(y, θ) can be approximated by the
bootstrap distribution of

Q∗ = S∗TV∗−1S∗T = S∗T
t S∗t

using the calculations described in Sect. 37.3.1.
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We define q∗α to be the αth quantile of Q∗, which
is determined by P∗(Q∗ > q∗α) = α. An approximate
100(1−α)% confidence region for θ is then given by

C1−α(y) = {θ : Q(y, θ) ≤ q∗α} . (37.6)

This is based on the approximation

P[θ ∈ C1−α(y)] = P[Q(y, θ) ≤ qα]
≈ P∗(Q∗ ≤ qα) = 1−α . (37.7)

Hu and Kalbfleisch [37.1] show that the confidence re-
gion in (37.7) is accurate up to order Op

(
n−3/2

)
. This

improves on the usual χ2 approximation, which is accu-
rate up to order Op

(
n−1

)
. To construct the confidence

region for a given confidence coefficient 1−α, one
only needs to solve (37.6) for the relevant contour. This
method is invariant under reparameterization.

The above approach does not generally work for in-
ference on components or functions of θ. When S(y, θ) is
a differentiable function of θ, Hu and Kalbfleisch [37.1]
proposed a simple method based on some projections.
However, the proposed method is usually accurate up to
order Op

(
n−1

)
, and it is not invariant under reparame-

terization. When S(y, θ) is not differentiable, one needs
to use the Markov chain marginal bootstrap (MCMB)
proposed by He and Hu [37.19], which is introduced in
Sect. 37.4.

37.3.4 Some Examples

Example 1. Estimating the population mean. Ob-
servations y1, . . . , yn are made on independent and
identically distributed random variables, each with
an unspecified distribution function, F. Interest fo-
cuses on the mean, µ, of F which is estimated with
µ̂= ȳ. In the usual classical bootstrap (Efron’s boot-
strap), we (i) draw the bootstrap sample {y∗1, . . . , y∗n}
from {y1, . . . , yn} and (ii) calculate the bootstrap sam-
ple mean µ̂∗C = n−1 ∑ y∗i . These steps are repeated
and the empirical distribution of the

(
µ̂∗C − µ̂

)
is the

bootstrap approximation to the sampling distribution
of µ̂−µ.

In contrast, the EF bootstrap begins with the
estimating equation

∑
(yi −µ) = 0, whose solu-

tion is µ̂ = ȳ. The component functions yi −µ

are estimated with zi = yi − ȳ, i = 1, . . . ., n. The
method proceeds as follows: (i) draw a boot-
strap sample {z∗1, . . . , z∗n} from {z1, . . . , zn}; (ii)
calculate S∗ = n−1/2 ∑ z∗i . The bootstrap distribu-
tion of S∗ approximates the sampling distribu-
tion of S(y, µ) =√

n(µ̂−µ). Note that if µ∗ is

the solution to S(y, µ) = S∗, the bootstrap dis-
tribution of µ∗ − µ̂ approximates the distribution
of µ− µ̂.

The difference between the methods is evident, even
though they give, in the end, identical results. With
the classical bootstrap, µ̂∗C − µ̂ approximates µ̂−µ,
whereas in the EF procedure, µ∗ − µ̂ approximates
µ− µ̂. As a consequence, µ∗ is “bias corrected”.
The comparison between the studentized versions is
similar.
Example 2. Common mean with known and unknown
variances. Suppose that y1, . . . , yn are from populations
with Eyi = µ and var(yi ) = σ2

i . When σ2
i are known,

the estimating equation,

∑ yi −µ

σ2
i

= 0

gives rise to the weighted least squares estimator,

µ̂=
(∑

yi/σ
2
i

)
/
(∑

1/σ2
i

)
.

The EF and classical bootstraps can be applied to this
problem in a straightforward way. (As noted above, the
classical bootstrap is equivalent to the classical pro-
cedure of resampling (yi , σi ), i = 1, . . . , n.) Hu and
Kalbfleisch [37.16] compare the EF bootstrap with
the classical bootstrap and the asymptotic normal ap-
proximation assuming normal and uniform errors. All
methods do reasonably well, though the studentized
versions of the EF and classical bootstraps do some-
what better than the other methods with abnormal
errors.

Suppose there are k independent strata and in
the ith stratum yij ∼ N

(
µ, σ2

i

)
, j = 1, . . . , ni indepen-

dently, where ni ≥ 3 and i = 1, . . . , k. The variances
σ2

i are unknown and interest centers on the estima-
tion of µ. This problem has received much attention in
the literature [37.20–24] [Bartlett (1936), Neyman and
Scott (1948), Kalbfleisch and Sprott (1970), Barndorff-
Nielsen (1983). Neyman and Scott (1948) showed that
the maximum likelihood estimator can be inefficient.
They (and many others) proposed the estimating equa-
tion

k∑

i=1

ni (ni −2)(ȳi −µ)

Ti (µ)
= 0 ,

where Ti (µ) =∑ni
j=1(yij −µ)2 and ȳi =∑ni

j=1 yij/ni .
More generally, we could relax the condition of normal
errors and still use the above equation to estimate µ.
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When the number of strata k is large and the individ-
ual ni ’s are small, usual inferential techniques can cause
substantial difficulty. This is the case considered here,
although other situations are also of interest and will be
discussed elsewhere.

Let yi = (yi1, . . . , yini ) and gi (yi , µ) = ni (ni −2)
(ȳi −µ)/Ti (µ). The estimating equation can therefore

be rewritten as

k∑

i=1

gi(yi , µ) = 0 ,

and the EF bootstrap can now be applied in a straight-
forward manner.

37.4 Markov Chain Marginal Bootstrap

For statistical models with high-dimensional param-
eters, it is usually difficult to apply the bootstrap method
because it is computationally intensive. For example,
if one needs one minute to obtain the estimator, then
one needs 1000 min to apply the bootstrap method to a
sample of size B = 1000. To reduce the computational
complexity of applying common bootstrap methods to
high-dimensional parameters, He and Hu [37.19] pro-
pose the Markov chain marginal bootstrap (MCMB).
In this section, we only review the MCMB for M-
estimators of a linear model. Please see [37.19] for more
general models and estimators.

Consider the linear regression problem Yi = x′iβ+
ei , (i = 1, · · · , n) with independently and identically
distributed errors ei . An M-estimator, β̂, solves

n−1
n∑

i=1

ψ
(
Yi − x′iβ

)
xi = 0 (37.8)

for a score function ψ. In most applications, the
function ψ is bounded and continuous. An important
exception is the least absolute deviation estimator with
ψ(r) = sgn(r). In this case, the equation (37.8) may
not be solved exactly, but minimizing

∑n
i=1 |Yi − x′iβ|

over β ∈ R
p guarantees a solution so that (37.8) holds

approximately.
Under some suitable conditions [37.25], the estima-

tor β̂ is consistent and asymptotically normal,

n1/2(β̂−β
)

→ N
(
0,

{
Eψ2(e)/[Eψ′(e)]2}(X′X

)−1)
,

where X is the design matrix. A direct estimate of the
variance does not always produce reliable confidence
levels for inference. This is because it is difficult to
estimate the constant

[
Eψ′(e)

]2 in a lot of cases.
For example, consider the minimum Ld-norm es-

timator that minimizes
∑n

i=1 |yi − x′iβ|d (d = 1.5). In
this case, Eψ′(e) = 0.5E|e|−0.5. One needs to estimate

the constant E|e|−0.5 to construct a confidence interval
based on the asymptotic variance. A natural estimator is
the average of n absolute residuals ri = yi − x′i β̂n . When
n = 20 and e has a standard normal distribution and the
residuals resemble a random sample drawn from it, then
a simple simulation shows that the average of |ri |−0.5 has
a mean of 1.71 and standard error of 0.80. When one or
a few residuals are very close to 0, the estimate could
be very large. Therefore, the confidence intervals con-
structed from this estimated asymptotic variance would
be poor.

To avoid estimating the asymptotic variance di-
rectly, one can use the usual bootstrap methods (residual
bootstrap or pair-wise bootstrap). In this case, a p-
dimensional nonlinear system has to be solved for each
bootstrap sample. This can become a computational bur-
den for large p. Also, the pair-wise bootstrap can be
numerical unstable, because the design matrix changes
for each bootstrap sample. The EF bootstrap or stu-
dentized EF bootstrap is often more stable because it
uses all of the design points in each resample, but its
computational complexity is no less than that of the
usual bootstrap methods. When ψ is differentiable, one
can solve the computational problem using projection
[37.1]. However, ψ is not differentiable in a lot of cases.

MCMB overcomes the computational complexity by
breaking up the p-dimensional system into p marginal
(one-dimensional) equations. The algorithm proceeds as
follows. Let subscript β j be the jth component of β and
subscript β(k) be the kth iteration of the algorithm. Sup-
pose that β̂ is the estimate from (37.8) and ri = yi − xi β̂

are the residuals. Let zi =ψ(ri )xi be the scores. The jth
component of zi will be denoted by zij (i = 1, . . . , n and
j = 1, . . . , p). For the kth iteration with k = 0, 1, ..., we
perform

1. For the jth component, we resample
{
z∗ij , i =

1, ..., n} from {zij , i = 1, . . . , n
}

without replace-
ment.
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2. Let s(k)
j =∑n

i=1 z∗ij and solve β
(k)
j from

n∑

i

ψ(yi −
j−1∑

l=1

xilβ
(k)
l − xijβ j

−
n∑

l= j+1

xilβ
(k−1)
l )xij = s(k)

j . (37.9)

These two steps are performed for j = 1, . . . , p.
This algorithm yields a sequence β(0) = β̂,

β(1), . . .β(k), . . . . It is clearly a Markov chain. This
method is called the Markov chain marginal bootstrap
(MCMB), since a resampling process (bootstrap) is
used with each marginal equation (37.9). In fact, the
MCMB shares two properties with MCMC. That is, both
methodologies aim to break up a high-dimensional prob-
lem into several one-dimensional ones, and both yield
Markov chains as products. However, we must note that
MCMB does not use any MCMC algorithm, and it is not
derived from the MCMC framework.

Now we explain why the MCMB method reduces
the computational complexity of the usual bootstrap
method. To generate an additional variateβ(k)

j , one needs
to resample and solve a one-dimensional equation, both
of which are of the complexity O(n). For β(k), the com-

plexity is O(n p) for large n and p. However, common
bootstrap methods have to solve a p-dimensional sys-
tem. Even the simplest system (a linear system) requires
of the order of O(n p2) computations. Therefore, the
MCMB method reduces the computational complexity
for large p. Some other studies have been discussed in
[37.19].

Like the EF bootstrap, the MCMB method has an-
other advantage; that all of the design points are used in
each iteration. This leads to more reliable numerical re-
sults, especially when there are leverage points present in
the data, as compared to the pairwise bootstrap method
that can suffer from poor bootstrap estimates when
a leverage point is excluded or duplicated in a resample.

The MCMB method can be used for the maximum
likelihood estimators from general parametric models.
The asymptotic validity of the MCMB method for gen-
eral parametric models has been given in [37.19]. The
use of MCMB for general M-estimators (or GEE esti-
mators) is explored in [37.26].

The MCMB is usually not invariant under reparam-
eterization. He and Hu [37.19] also show that the MCMB
is first-order-accurate. However, it is unknown whether
MCMB is second-order-accurate. Future research is
clearly needed to understand the MCMB method.

37.5 Applications

In this section, we will apply the above bootstraps to two
examples. The first example is a simple linear model.
We use this example to illustrate the MCMB algorithm
and show why the MCMB bootstrap works. The sec-
ond example involves a linear estimating equation from
Lq estimation. For more discussions of these examples,
please refer to [37.1, 19].

Example 1. Simple linear model. First, we consider
a simple regression model with sample size n and p= 2.
In this special case, we have

n−1/2
n∑

i=1

(
Yi − xi1β̂

(k)
1 − xi2β̂

(k−1)
2

)
xi1 = d(k)

1

and

n−1/2
n∑

i=1

(
Yi − xi1β̂

(k)
1 − xi2β̂

(k)
2

)
xi2 = d(k)

2 ,

where d(k)
1 = n−1/2 ∑n

i=1 xi1e∗(k)
i1 and d(k)

2 = n−1/2

×
∑n

i=1 xi2e∗(k)
i2 , and both e∗(k)

i1 and e∗(k)
i2 are drawn in-

dependently with replacement from ri = Yi − β̂1xi1−
β̂2xi2 (i = 1, · · · , n), the residuals from the param-
eter estimate (β̂1, β̂2). Now let s11 = n−1 ∑n

i=1 x2
i1,

s12 = n−1 ∑n
i=1 xi1xi2 and s22 = n−1 ∑n

i=1 x2
i2. Then

the two equations can be written as

s11n1/2
(
β̂1− β̂

(k)
1

)
= d(k)

1 − s12n1/2
(
β̂2− β̂

(k−1)
2

)
,

s22n1/2
(
β̂2− β̂

(k)
2

)
= d(k)

2 − s12n1/2
(
β̂1− β̂

(k)
1

)
.

Note that the right hand sides of the above equa-
tions are sums of two independent variables, so by
using variance–covariance operation and assuming that
the covariance matrix of n1/2

(
β̂− β̂(k)

)
stabilizes to

V = (vij )2×2 as k →∞, we have

s2
11v11 = s11σ

2+ s2
12v22 ,

s2
22v22 = s22σ

2+ s2
12v11 ,

s22v12 = − s12v11 .

Using some simple calculations, we can show that
V = σ2[(sij )2×2]−1. That is, the bootstrap variance–
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covariance of n1/2
(
β̂− β̂(k)

)
stabilizes to the desired

asymptotic covariance matrix for the least squares
estimator.

Now we move to a real example about grade point
prediction. The director of admissions of a small college
administered a newly designed entrance test to eight
students selected at random from the new freshman class
in a study to determine whether a student’s grade point
average (GPA) at the end of the freshman year (Y ) can
be predicted from their entrance test score (x).

The eight pairs of scores were: (5.5, 3.1), (4.8, 2.3),
(4.7, 3.0), (5.9, 3.8), (4.1, 2.2), (4.7, 1.5), (4.5, 3.0) and
(5.3, 3.6). After we fit the linear regression, we get the
estimated regression line

Ŷ = −1.646+0.903x .

The residuals are r = (−0.22, −0.39, 0.53, 0.12, 0.14,
−1.10, 0.57, 0.45). For the above MCMB algo-
rithm, we have n = 8, xi1 = 1 for i = 1, . . . , 8,
(x12, . . . , x82) = (5.5, . . . , 5.3). Then we can apply the
MCMB algorithm to k = 200 to get the 95% confidence
intervals: β1: [−5.526,2.134] and β2: [0.138,1.668].
In this example, it is very easy to calculate the con-
fidence intervals from other methods, but we are just
using it to show how MCMB can be applied. In this
simple example, there is no advantage to using the
MCMB method. As we mentioned earlier, the main
advantage of the MCMB is that it works well for the
following two cases: (i) high-dimensional parameters,
and (ii) estimating equations that are not differen-
tiable. More complete simulation studies can be found
in [37.19].

Example 2. The Lq estimation. Consider a linear estimat-
ing equation in which gi(yi , θ) is not differentiable with
respect to θ. Such situations are quite common in non-
parametric and semiparametric models [37.27, 28] and
in robust regression [37.25]. Estimating functions that
are not differentiable can give rise to various difficul-
ties. Classical statistical results do not apply in general,
and other methods (bootstrap methods) for confidence
interval estimation are needed.

Table 37.1 Minimum Lq distance estimator (q = 1.5). Simulated coverage probabilities and average confidence intervals
(fixed design)

β0 β1 β2

MCMB 90.8 [0.56, 1.43] 89.0 [0.55, 1.46] 87.6 [0.66, 1.33]

NORM 76.8 [0.63, 1.35] 76.4 [0.62, 1.38] 75.6 [0.72, 1.29]

PAIR 88.0 [0.53, 1.43] 86.0 [0.52, 1.50] 86.2 [0.62, 1.38]

We consider the general regression model

yi = β0+β1x1i +β2x2i + ei , i = 1, . . . , n , (37.10)

and suppose that β is to be estimated by minimizing
n∑

i=1

|yi − (β0+β1x1i +β2x2i )|1.5 .

The corresponding estimating equation
n∑

i=1

sgn
(
yi − xT

i β
)

xi |yi − xT
i β|1/2 = 0 , (37.11)

where xi = (1, x1i , x2i )T and β = (β0, β1, β2)T. The EF
bootstrap procedure for estimating the whole parame-
ter β or components of β can be applied to this problem
in a straightforward manner.

Consider a fixed design where n = 20, x1 =
(1.27, −1.10, 2.19, 0.73, −0.07, 0.42, 0.37, 0.45,
−0.78, 0.76, 0.44, 1.32, −0.40, 0.33, −0.40, 0.55,
0.51, −0.11, −1.15, 1.71), and x2 = (1.60, 1.09,
−0.02, −0.83, 3.05, 0.34, −0.87, 0.45, −0.78, 0.76,
0.44, 1.32, −0.40, 0.33, −1.85, 0.69, 0.11, 1.47,
0.87, 0.12), and yi are generated from (37.10) with
β0 = β1 = β2 = 1.

For the whole parameter vector β, the studentized es-
timating function bootstrap method can be used to obtain
a highly accurate Op

(
n−3/2

)
confidence region. Here we

just report a result based on 1000 simulations. For each
simulation, we can construct a 95% confidence region
for β. Of the 1000 confidence regions, 963 confidence
regions cover the true parameter β = (1, 1, 1).

For single parameters, the estimating function
bootstrap method depends on whether the estimating
function is differentiable. In this example, the estimating
function is not differentiable at the point 0, so we cannot
use the simple method proposed by Hu and Kalbfleisch
[37.1]. In this case, the MCMB method can be used to
construct the confidence interval for each component
of β.

The average confidence interval in Table 37.1 is ob-
tained by taking the averages of the two end points of
the intervals over 500 cases. We consider three methods
here. NORM represents the usual confidence interval
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based on normal approximation. PAIR represents the
paired bootstrap introduced in Sect. 37.2.

For each of the 500 samples there is an estimate ofβ0,
β1 and β2. Based on these estimators, we can calculate
the standard deviations, and they are 0.24, 0.28 and 0.22
respectively. The confidence intervals, constructed from

these estimators using the standard formula of the av-
erage plus or minus 1.64 times the SD, are [0.56,1.42],
[0.55,1.48] and [0.66,1.34], respectively. We may use
these three intervals as benchmarks for the other meth-
ods under consideration. It is clear from Table 37.1 that
MCMB performed well.

37.6 Discussion

We have reviewed different bootstrap methods for
independent observations. However, for a lot of appli-
cations, the observations may depend on each other.
For stationary processes, several bootstrap procedures
have been proposed, which include the block boot-
strap and others. The estimating function bootstrap can
also be extended to dependent observations. Hu and
Kalbfleisch [37.29] considered linear and nonlinear au-
toregressive models.

One important application of bootstrap is in longi-
tudinal data analysis. In this application, a generalized
estimating equation (GEE) is usually available. Within
each stratum (for each patient), the observations are de-
pendent. But the observations are independent between
stratums. The estimating function bootstrap can be ap-
plied as in the common mean problem in Sect. 37.3.
However, some modifications are necessary to apply the
classical bootstrap procedures.

Major problems with using bootstrap for high-
dimensional parameters include that it is computation-
ally intensive and can produce unreliable numerical
results. The estimating function bootstrap method solves
this problem by fixing one side of the estimating equa-
tion. When the estimating function is differentiable, we
can use EF bootstrap to construct confidence intervals
(regions). When the estimating function is not differen-
tiable, we can then use the MCMB to solve this problem
by considering a one-dimensional equation at each step.

In applications, it is also important to choose the
bootstrap sample size B appropriately. When the orig-
inal process (to get the estimator, θ̂) does not involve
intensive computation, B = 1000 or 2000 is recom-
mended. In general, to estimate the variance–covariance
matrix, we may only need a bootstrap sample size of
100 to 200. For confidence intervals based on quan-
tiles, it would be better to use B = 1000 or 2000.
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Random Effec38. Random Effects

This chapter includes well-known as well as state-
of-the-art statistical modeling techniques for
drawing inference on correlated data, which occur
in a wide variety of studies (during quality control
studies of similar products made on different
assembly lines, community-based studies on
cancer prevention, and familial research of linkage
analysis, to name a few).

The first section briefly introduces statistical
models that incorporate random effect terms,
which are increasingly being applied to the
analysis of correlated data. An effect is classified
as a random effect when inferences are to be
made on an entire population, and the levels
of that effect represent only a sample from that
population.

The second section introduces the linear mixed
model for clustered data, which explicitly models
complex covariance structure among observations
by adding random terms into the linear predictor
part of the linear regression model. The third
section discusses its extension – generalized linear
mixed models (GLMMs) – for correlated nonnormal
data.

The fourth section reviews several common
estimating techniques for GLMMs, including the
EM and penalized quasi-likelihood approaches,
Markov chain Newton-Raphson, the stochastic
approximation, and the S-U algorithm. The fifth
section focuses on some special topics related
to hypothesis tests of random effects, including
score tests for various models. The last section is
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a general discussion of the content of the chapter
and some other topics relevant to random effects
models.

38.1 Overview

Classical linear regression models are a powerful tool for
exploring the dependence of a response (such as blood
pressure) on explanatory factors (such as weight, height
and nutrient intake). However, the normality assump-
tion required for these response variables has severely
limited its applicability. To accommodate a wide variety
of independent nonnormal data, Nelder and Wedder-
burn [38.1] and McCullagh and Nelder [38.2] introduced

generalized linear models (GLMs), a natural general-
ization of linear regression models. The GLMs allow
responses to have nonGaussian distributions. Hence,
data on counts and proportions can be conveniently fitted
into this framework. In a GLM, the mean of a response
is typically linked to linear predictors via a nonran-
dom function, termed the link function. For analytical
convenience, the link function is often determined by
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688 Part E Modelling and Simulation Methods

the response’s distribution. As an example, for Pois-
son data, the link is routinely chosen as log, whereas
for Bernoulli responses, the link is usually chosen to be
logit.

In many applications, however, responses are corre-
lated due to unobservable factors, such as circumstantial
or genetic factors. Consider the problem of investigating
the strength of the beams made by randomly selected
manufacturers. Beams made at the same factory are
likely to be correlated because the were made using
the same manufacturing procedures. Other examples
include a longitudinal study of blood pressure, where
repeated observations taken from the same individuals
are likely be correlated, and a familial study in cardio-
vascular disease, where the incidents of heart failure
from family members are likely to be related. In the last
two decades, random effects models have emerged as
a major tool for analyzing these kinds of correlated data
(see [38.3–7] among others).

Indeed, using random effects in the modeling of cor-
related data provides several benefits. First, it provides
a framework for performing data modeling in unbal-
anced designs, especially when measurements are made
at arbitrary irregularly spaced intervals over many obser-
vational studies (as opposed to ANOVA, which requires
a balanced dataset). Secondly, random effects can be
used to model subject-specific effects, and they offer
a neat way to separately model within- and between-
subject variations. Thirdly, the framework of random
effects provides a systematic way to estimate or predict
individual effects.

Though conceptually attractive, GLMMs are of-
ten difficult to fit because of the intractability of the

underlying likelihood functions. Only under special
circumstances, such as when both response and ran-
dom effects are normally or conjugately distributed,
will the associated likelihood function have a closed
form. Cumbersome numerical integrations often have
to be performed. To alleviate this computational bur-
den, various modeling techniques have been proposed.
For example, Stiratelli et al. [38.4] proposed an EM
algorithm for fitting serial binary data; Schall [38.5] de-
veloped an iterative Newton-Raphson algorithm; Zeger
and Karim [38.6] and McCulloch [38.7] considered
Monte Carlo EM methods. All of these commonly used
inferential procedures will be presented and discussed
in this chapter.

The rest of this chapter is structured as follows. Sec-
tion 38.2 introduces the linear mixed model for clustered
data and Sect. 38.3 discusses its extension, generalized
linear mixed models, for correlated nonnormal data. Sec-
tion 38.4 reviews several common estimating techniques
for GLMMs, including the EM approach, penalized
quasi-likelihood, Markov chain Newton-Raphson, the
stochastic approximation and the S–U algorithm. Sec-
tion 38.5 focuses on some special topics related to
hypothesis tests of random effects. Section 38.6 con-
cludes this chapter with discussion and some other topics
relevant to random effects models.

Throughout this chapter, f (·) and F(·) denote
the probability density (or probability mass) function
(with respect to some dominating measure, such as
the Lebesgue measure) and the cumulative distribution
function, respectively. If the context is clear, we do not
use separate notations for random variables and their
actual values.

38.2 Linear Mixed Models

A clustered data structure is typically characterized by
a series of observations on each of a collection of obser-
vational clusters. Consider the problem of investigating
whether the beam produced from iron is more resilient
than that from an alloy. To do this, we measure the
strength of the beams made of iron and alloy from ran-
domly selected manufacturers. Each manufacturer may
contribute multiple beams, in which case each manufac-
turer is deemed as a cluster, while each beam contributes
to a unit of observation. Other examples include the mea-
surements of products produced by a series of assembly
lines, and blood pressure taken weekly on a group
of patients, in which cases the clusters are assembly
lines and patients respectively. Clustering typically in-

duces dependence among observations. A linear mixed
model [38.3] explicitly models the complex covariance
structure among observations by adding random terms
into the linear predictor part of a linear regression model.
Thus, both random and fixed effects will be present in an
LMM. In data analysis, the decision on whether a fac-
tor should be fixed or random is often made on the basis
of which effects vary with clusters. That is, clusters are
deemed to be a random sample of a larger population,
and therefore any effects that are not constant for all
clusters are regarded as random.

As an example, let’s say that Yi denotes the re-
sponse vector for the ith of a total of m clusters, where
ni measurements of blood pressure were taken for the
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ith patient. Xi the known covariate matrix (ni × p) as-
sociated with the observations, such as the patient’s
treatment assignment and the time when the observa-
tion was taken, bi is the vector of random effects and
Zi is the known design matrix associated with the ran-
dom effects. Usually, the columns of Zi are vectors of
ones and a subset of those of Xi for modeling random
intercepts and slopes. A linear mixed model can thus be
specified as

Yi = Xiβ+Zibi + εi , (38.1)

where we typically assume that the random error vec-
tor εi ∼ MVN(0, σ2Ini ) and εi is independent of bi ,
which is assumed to have an expectation of zero for
model identifiability. Here, Ini is an identity matrix of or-
der ni . In practice, we often assume bi ∼ MVN(0,� (θ)),
where its variance–covariance matrix is dependent on
a fixed q-dimensional (a finite number) parameter,
say, θ = (θ1, . . . , θq)′, termed “variance components”.
These variance components convey information about
the population that the clusters are randomly selected
from and are often of interest to practitioners, aside from
the fixed effects.

To encompass all data, we denote the concatenated
collections of Yi ’s, Xi ’s, bi ’s and εi ’s by Y,X, b, ε. For
example, Y = (Y′

1, . . . ,Y′
m)′. We now denote a block

diagonal matrix whose ith diagonal block is Zi by Z. In
this case (38.1) can be rewritten compactly as

Y = Xβ+Zb+ ε , (38.2)

where b ∼ MVN(0,D), ε ∼ MVN(0, σ2IN ) and b and
ε are independent. Here, D is a block diagonal matrix
whose diagonal blocks are � (θ), and IN is an identity
matrix of order N , where N is the total number of
observations (so N =∑m

i=1 ni ).
Indeed, model (38.2) accommodates a much more

general data structure beyond clustered data. For ex-
ample, with properly defined Z and random effects b,
model (38.2) encompasses crossed factor data [38.8]
and Gaussian spatial data [38.9].

38.2.1 Estimation

Fitting model (38.1) or its generalized version (38.2)
is customarily likelihood-based. A typical maximum
likelihood estimation procedure is as follows.

First observe that Y is normally distributed, Y ∼
MVN(Xβ,V), where V=ZDZ′ +σ2IN , so that the log-

likelihood for the observed data is

 =− 1

2
(Y−Xβ)′V−1(Y−Xβ)

− 1

2
log |V|− N

2
log 2π . (38.3)

Denote the collection of unknown parameters in the
model by γ = (β′, θ ′, σ2)′. Setting ∂ /∂γ = 0 gives the
maximum likelihood equation. Specifically, a direct cal-
culation of ∂ /∂β yields the ML equation for β:

β = (X′V−1X)−1X′V−1Y . (38.4)

Denote by θk the kth element of the variance components
(θ, σ2), where we label θq+1 = σ2. Equating ∂ /∂θk = 0
gives

− 1

2

[
tr

(
V−1 ∂V

∂θk

)
− (Y−Xβ)′

× V−1 ∂V
∂θk

V−1(Y−Xβ)

]
= 0 , (38.5)

where tr(·) denotes the trace of a square matrix. In prac-
tice, iterations are required between (38.4) and (38.5) to
obtain the MLEs. Furthermore the asymptotic sampling
variance is routinely obtained from the inverse of the
information matrix, which is minus the expected value
of the matrix of second derivatives of the log-likelihood
(38.3).

It is, however, worth pointing out that the MLEs
obtained from (38.4, 5) are biased, especially for the
variance components when the sample size is small. This
is because the estimating equation (38.5) for the variance
components fails to account for the loss of degrees of
freedom when the true β is replaced by its estimate, β̂.
To address this issue, an alternative maximum likelihood
procedure, called the restricted maximum likelihood
procedure, has been proposed for estimating the vari-
ance components [38.10]. The key idea is to replace the
original response Y by a linear transform, so that the re-
sulting ‘response’ contains no information about β. The
variance components can then be estimated based on
this transformed response variable.

More specifically, choose a vector a such that
a′X = 0. For more efficiency we use the maximum
number, N − p, of linearly independent vectors a and
write A = (a1, . . . , aN−p), which has a full row rank
of N − p. The restricted MLE will essentially apply the
MLE procedure on A′Y, in lieu of the original Y.

To proceed, we note that A′Y ∼ MVN(0,A′VA). The
ML equations for the variance components can now
be derived in a similar way to those for the original
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690 Part E Modelling and Simulation Methods

Y ∼ MVN(Xβ,V), namely by replacing Y, X and V
with A′Y, 0 and AVA′ respectively in (38.5).

Caution must be exercised if the MLEs or the
RMLEs of the variance components fall outside of
the parameter space, as in the case of a negative es-
timate for a variance, in which case those solutions
must be adjusted to yield estimates in the parameter
space; see a more detailed discussion in McCulloch and
Searle [38.11].

38.2.2 Prediction of Random Effects

A fixed effect differs from a random effect in that the
former is considered to be constant and is often the main
parameter we wish to estimate. In contrast, a random
effect is considered to be an effect deriving from a pop-
ulation of effects. Consider again the aforementioned
study of beam strength. Aside from the differences
between the beams made from iron and alloy, there
should be at least two sources of variability: (1) among
beams produced by the same manufacturer; (2) between
manufacturers. A simple random effects model can be
specified as

E(Yij |bi ) = Xijβ+bi ,

where Yij is the strength of the j-th beam produced by
the ith manufacturer and Xij indicates whether iron or
alloy was used to produce such a beam. Note that bi is
the effect on the strength of the beams produced by the
i-th manufacturer, and this manufacturer was just the one
among the selected manufacturers that happened to be
labeled i in the study. The manufacturers were randomly
selected as representative of the population of all man-
ufacturers in the nation, and inferences about random
effects were to be made about that population. Hence,
estimating the variance components is of substantial in-
terest for this purpose. On the other hand, one may wish

to gain information about the performance of particular
manufacturers. For instance, one may want to rank var-
ious manufacturers in order to select the best (or worst)
ones. In these cases we are interested in predicting bi .

In general the ‘best’ prediction of b in (38.2) based
on observed response Y is required to minimize the mean
squared error

∫
(b̂−b)′G(b̂−b) f (Y, b)d Yd b , (38.6)

where the predictor b̂ depends only on Y, f (Y, b) is the
joint density function of Y and b, and G is a given non-
random positive definite matrix. It can be shown for any
given G that the minimizer is E(b|Y); in other words
the conditional expectation of b given the observed
response Y.

If the variance components are known, an analytical
solution exists based on the linear mixed model (38.2).
That is, assuming Y and b follow a joint multinormal
distribution, it follows that

E(b|Y) = DZ′V−1(Y−Xβ) .

Replacing β by its MLE

β̂ = (X′V−1X)−1X′V−1Y

would yield the Best linear unbiased predictor (BLUP)
of random effects [38.12]. Because D and V are usu-
ally unknown, they are often replaced by their MLEs or
RMLEs when calculating the BLUP, namely

b̂ = D̂Ẑ′V̂−1(Y−Xβ̂) .

Extensive derivation for the variance of the BLUP when
the variance components are known has been given by
Henderson et al. [38.12]. The variance of the BLUP with
unknown variance components is not yet fully available.

38.3 Generalized Linear Mixed Models

Nonnormal data frequently arise from engineering stud-
ies. Consider again the beam study, where we now
change the response to be a binary variable, indicating
whether a beam has satisfied the criteria of quality con-
trol. For such nonnormal data, statistical models can be
traced back to as early as 1934, when Bliss [38.13] pro-
posed the first probit regression model for binary data.
However, it took another four decades before Nelder and
Wedderburn [38.1] and McCullagh and Nelder [38.2]
proposed generalized linear models (GLMs) that could

unify models and modeling techniques for analyzing
more general data (such as counted data and polyto-
mous data). Several authors [38.3–5] have considered
a natural generalization of the GLMs to accommodate
correlated nonnormal data. Their approach was to add
random terms to the linear predictor parts, and the result-
ing models are termed generalized linear mixed models
(GLMMs).

As an example, let Yi j denote the status (such as
a pass or a fail from the quality assurance test) of the
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Random Effects 38.3 Generalized Linear Mixed Models 691

jth beam from the i-th manufacturer. We might create
a model such as

Yij |bi
iid∼ Bernoulli

(
µb

ij

)
;

i = 1, . . . ,m, j = 1, . . . , ni ,

logit
(
µb

ij

)
= X′

ijβ+bi ,

bi
iid∼ N

(
0, σ2

u

)
,

where logit(µ)= log[µ/(1−µ)] is the link function that
bridges the conditional probability and the linear predic-
tors. The normal assumption for the random effects bi is
reasonable because the logit link carries the range of pa-
rameter space of µij from [0, 1] into the whole real line.
Finally, we use independent bi ’s to model the indepen-
dent cluster effects and the within-cluster correlations
among observations.

It is straightforward to generalize the above formu-
lation to accommodate more general data. Specifically,
let Xij be a p × 1 covariate vector associated with
response Yij . Conditional on an unobserved cluster-
specific random variable bi (an r × 1 vector), Yij are
independent and follow a distribution of exponentials,
that is

Yij |bi
iid∼ f (Yij |bi ) , (38.7)

f (Yij |bi ) = exp
{
[Yijαij −h(αij )]/τ2− c(Yij , τ)

}
.

(38.8)

The conditional mean of Yij |bi , µb
ij , is related to αij

through the identity µb
ij = ∂h(αij )/∂αij , the transforma-

tion of which is to be modeled as a linear model in both
the fixed and random effects:

g
(
µb

ij

)
= X′

ijβ+ Z′ijbi , (38.9)

where g(·) is termed a link function, often chosen to be in-
vertible and continuous, and Zij is an r × 1 design vector
associated with the random effect. The random effects
bi are mutually independent with a common underly-
ing distribution F(·; θ) [or density f (·; θ)], where the
variance components θ is an unknown scalar or vector.

Model (38.9) is comprehensive and encompasses
a variety of models. For continuous outcome data, by
setting

h(α) = 1

2
α2, c(y, τ2) = 1

2
y2/τ2− 1

2
log(2πτ2)

and g(·) to be an identity function, model (38.9) reduces
to a linear mixed model. For binary outcome data, let

h(α) = log[1+ exp(α)] .

Choosing g(µ) = logit(µ) yields a logit random effects
model, while choosing g(µ) =Φ−1(µ), where Φ(·) is
the CDF for a standard normal, gives a probit random
effects model.

From (38.7) and (38.8) it is easy to construct the
likelihood that the inference will be based on. That is,

 =
m∑

i=1

log
∫ ni∏

j=1

f (Yij |bi;β) f (bi; θ)d bi ,

where the integration is over the r-dimensional random
effect bi and the summation results from independence
across clusters.

We can also reformulate model (38.9) in a compact
form that encompasses all of the data from all of the clus-
ters. Using Y,X,Z, b as defined in the previous section,
we write

g[E(Y|b)] = Xβ+Zb . (38.10)

Hence, the log-likelihood function can be rewritten as

 (Y;β, θ)= log L(Y;β, θ)

= log
∫

f (Y|b;β) f (b; θ)d b , (38.11)

where f (Y|b;β) is the conditional likelihood for Y and
f (b; θ) is the density function for b, often assumed to
have a mean of zero.

Model (38.10) is not a simple reformat – it accom-
modates more complex data structures than clustered
data. For example, with a properly defined Z and ran-
dom effects b it encompasses crossed factor data [38.8]
and nonnormal spatial data [38.14]. Hence, for more
generality, the inferential procedures that we encounter
in Sect. 38.4 will be based on (38.10, 11).

The GLMM is advantageous when the objective is to
make inferences about individuals rather than the pop-
ulation average. Within its framework, random effects
can be estimated and each individual’s profile or growth
curve can be obtained. The best predictor of random
effects minimizing (38.6) is E(Y|b), which is not neces-
sarily linear in Y. However, if we confine our interest to
the predictors that are linear in Y, or of the form

b̂ = c+QY

for some conformable vector c and matrix Q, minimizing
the mean squared error (38.6) with respect to c and Q
leads to the best linear predictor

b̂ = E(b)+ cov(b,Y)var(Y)[Y− E(Y)] , (38.12)
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which holds true without any normality assump-
tions [38.11].

For example, consider a beta-binomial model for
clustered binary outcomes such that

Yij |bi ∼ Bernoulli(bi )

and the random effect bi ∼ Beta (α, η), where α, η > 0.

Using (38.12) we obtain the best linear predictor
for bi ,

b̂i = α+ Ȳi

α+β+1
,

where Ȳi =∑ni
j=1 Yij/ni .

38.4 Computing MLEs for GLMMs

A common theme when fitting a GLMM has been
the difficulty involved with computating likelihood-
based inference. Indeed, computing the likelihood itself
is often challenging for GLMMs, mostly because of
intractable integrals. This section presents various com-
monly used likelihood-based approaches to estimating
the coefficients and variance components in GLMMs.

38.4.1 The EM Approach

The EM algorithm [38.15] is a widely used approach to
calculating MLEs with missing observations. The basic
idea behind its application to the random effects models
is to treat the random terms as ‘missing’ data, and to im-
pute the missing information based on the observed data.
Imputations are often made via conditional expectations.

When drawing inference, our goal is to maximize
the marginal likelihood of the observed data in order to
obtain the MLEs for unknown β and variance compo-
nents θ. If random effects (b) were observed, we would
be able to write the ‘complete’ data as (Y, b) with a joint
log-likelihood

 (Y, b;β, θ)= log f (Y|b;β)+ log f (b; θ) .
(38.13)

However, since b is unobservable, directly comput-
ing (38.13) is not feasible. Instead, the EM algorithm
adopts a two-step iterative process. The expectation
step (“E” step) computes the expectation of (38.13)
conditional on the observed data. That is,

 ̃= E{ (Y, b;β, θ)|Y,β0, θ0} ,
where β0, θ0 are the current values, followed by the
maximization step (“M” step), which maximizes  ̃ with
respect to β and θ. The E and M steps are iterated until
convergence is achieved. Generally, the E step is com-
putationally intensive, because it still needs to calculate
a high-dimensional integral.

Indeed, since the conditional distribution of b|Y
involves the marginal distribution f (Y), which is an
intractable integral, a direct Monte Carlo simulation
cannot fulfill the expectation step. In view of this
difficulty, McCulloch [38.7] utilized the Metropolis–
Hastings algorithm to make random draws from b|Y
without calculating the marginal density f (Y).

The Metropolis–Hastings algorithm, dated back
to the papers by Metropolis et al. [38.16] and
Hastings [38.17], can be summarized as follows. Choose
an auxiliary function q(u, v) such that q(., v) is a pdf for
all v. This function is often called a jumping distribu-
tion from point v to u. Draw b∗ from q(., b), where b
is the current value of the Markov chain. Compute the
ratio of importance

ω= f (b|Y)q(b∗, b)

f (b∗|Y)q(b, b∗)
.

Set the current value of the Markov chain as b∗ with
probability min(1, ω), and b has a probability max(0, 1−
ω). It can be shown that, under mild conditions, the
distribution of b drawn from such a procedure converges
weakly to f (b|Y) (see, for example, [38.18]). Since the
unknown density f (Y) cancels out in the calculation of
ω, the Metropolis–Hastings algorithm has successfully
avoided computing f (Y).

The ideal Metropolis–Hastings algorithm jumping
rule is to sample the point directly from the target distri-
bution. That is, in our case, q(b∗, b)= f (b∗|Y) for all b.
Then the ratio of importance, ω, is always 1, and the it-
erations of b∗ are a sequence of independent draws from
f (b∗|Y). In general, however, iterative simulation is ap-
plied to situations where direct sampling is not possible.
Efficient jumping rules have been addressed by Gelman
et al. [38.19].

We can now turn to the Monte Carlo EM algorithm,
which takes the following form.

1. Choose initial values β0 and θ0.

Part
E

3
8
.4



Random Effects 38.4 Computing MLEs for GLMMs 693

2. Denote the updated value at iteration s by
(βs, θs). Generate n values of b1, . . . , bn from
f (b|Y;βs, θs).

3. At iteration s+1, choose βs+1 to maximize
1
n

∑n
k=1 log f (Y|bk;β).

4. Find θs+1 to maximize 1
n

∑n
k=1 log f (bk; θ).

5. Repeat steps 2–4 until convergence.

While computationally intensive, this algorithm is
relatively stable since the log marginal likelihood in-
creases at each iteration step and it is convergent at
a linear rate [38.15].

38.4.2 Simulated
Maximum Likelihood Estimation

Implementation of the EM is often computationally
intensive. A naive approach would be to numerically
approximate the likelihood (38.11) and maximize it di-
rectly. For example, when the random effects (b) follow
a normal distribution, we may use Gaussian quadrature
to evaluate (38.11) and its derivatives. However, this
approach quickly fails when the dimensions of b are
large. We now consider a simulation technique, namely,
simulated maximum likelihood estimation, to approxi-
mate the likelihood directly and, further, to obtain the
MLEs. The key idea behind this approach is to approx-
imate (38.11) and its first- and second-order derivatives
by Monte Carlo simulations while performing Newton-
Raphson iterations.

We begin with the likelihood approximation. Fol-
lowing Geyer and Thompson [38.20] and Gelfand and
Carlin [38.21], one notices that for any density func-
tion h(b) with the same support as f (b; θ),

L(Y;β, θ)=
∫

f (Y|b;β) f (b; θ)

h(b)
h(b)d b . (38.14)

Hence, Monte Carlo simulations can be applied to eval-
uate L(Y;β, θ). Explicitly, if b1, . . . , bn are generated
independently from h(b) (termed an importance sam-
pling distribution), (38.14) can be approximated by

1/n
n∑

i=1

f (Y|bi;β) f (bi; θ)

h(bi )
(38.15)

with an accuracy of order Op(n−1/2). The optimal (in
the sense that the Monte Carlo approximation has zero
variance) importance sampling distribution is f (b|Y),
evaluated at the MLEs [38.22]. However, since the
MLEs are unknown and the conditional distribution
cannot be evaluated, such an optimal distribution is
never meaningful practically. Nevertheless, we can find

a distribution (such as a normal distribution) to approx-
imate f (b|Y).

More specifically, notice that

f (b|Y) = c × f (Y|b;β) f (b; θ)

= c × exp[−K (Y, b)] ,
where c (which does not depend on b) is used to ensure
a proper density function. We use

h(b;β, θ)=||2π�̂ ||−1/2

× exp

[
−1

2
(b− b̂)′�̂−1(b− b̂)

]
,

where || · || denotes the determinant of a square matrix,
b̂= argminb[K (Y, b)] and �̂ = [ ∂

∂b∂b′ K (Y, b̂)]−1, to ap-
proximate the conditional density f (b|Y) evaluated at β

and θ. Similarly, the derivatives of L(Y;β, θ) can also
be approximated by Monte Carlo simulations.

Then the algorithm proceeds as follows:

1. Choose the initial values γ 0 = (β0, θ0) for
γ = (β, θ).

2. Denote the current value at the sth step by γ s .
Generate b1, . . . , bn based on h(b|γ s).

3. Calculate the approximate derivatives of the
marginal likelihood function L(Y;β, θ) evaluated at
γ s:

Bs
β =

1

n

n∑

k=1

f (bk; θs)

h(bk; γ s)

∂

∂β
f (Y|bk;β)|βs ,

Bs
θ =

1

n

n∑

k=1

f (Y|bk;βs)

h(bk; γ s)

∂

∂θ
f (bk; θ)|βs ,

As
ββ =

1

n

n∑

k=1

f (bk; θs)

h(bk; γ s)

∂2

∂β∂β′
f (Y|bk;β)|βs ,

As
θθ =

1

n

n∑

k=1

f (Y|bk,βs)

h(bk; γ s)

∂2

∂θ∂θ ′
f (bk; θ)|θs ,

As
βθ =

1

n

n∑

k=1

1

h(bk; γ s)

∂

∂β
f (Y|bk;β)|βs

×

[
∂

∂θ
f (bk; θ)|θs

]′
.

4. Compute the updated value at the (s+1)th step

γ s+1 = γ s − (As)−1Bs ,

where As =
⎛

⎝
As

ββ As
βθ(

As
βθ

)′
As

θθ

⎞

⎠

and Bs =
(
Bs

β
′
,Bs

θ
′)′

.
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5. Repeat steps 2–4 until convergent criteria are met.
Upon convergence, set γ̂ = γ s and the Hessian ma-
trix A=As.

The covariance of the resulting γ̂ is approximated
(ignoring the Monte Carlo error) by the inverse of the
observed information matrix, given by

− ∂2

∂γ∂γ ′
log L(Y;β, θ)|γ̂ .=−L̂−1A ,

where L̂ and A are the approximations of L(Y;β, θ) and
the Hessian matrix evaluated at γ̂ = (β̂, θ̂), respectively.

38.4.3 Monte Carlo
Newton-Raphson (MCNR)/
Stochastic Approximation (SA)

Monte Carlo Newton-Raphson and stochastic approxi-
mation are two similar approaches to finding the MLEs
for the GLMMs. They both approximate the score func-
tion using simulated random effects and improve the
precision of the approximation at each iteration step.

We first describe a typical (MCNR) algorithm. Con-
sider the decomposition of the joint density of the
response vector and random effects vector

f (Y, b; γ )= f (Y; γ ) f (b|Y; γ ) .

Hence
∂ log f (Y, b; γ )

∂γ
= S(γ )+ ∂ log f (b|Y; γ )

∂γ
, (38.16)

where S(γ ) = ∂ log f (Y; γ )/∂γ , the score function of
main interest. In view of

E

(
∂ log f (b|Y; γ )

∂γ
|Y

)
= 0 ,

(38.16) can be written in the format of a regression
equation

∂ log f (Y, b; γ )

∂γ
= S(γ )+ error ,

where the “error” term substitutes ∂ log f (b|Y; γ )/∂γ ,
a mean zero term. Thus, inserting values of b ∼ f (b|Y)
into ∂ log f (Y, b; γ )/∂γ yields “data” to perform such
a regression.

The MCNR algorithm is typically implemented as
follows. Denote by γ (s) the value of the estimate of
γ at iteration step s. Generate via the Metropolis-
Hastings algorithm a sequence of realized values
b(s,1), . . . , b(s,n) ∼ f (b|Y; γ (s)). At the (s+1)th step,
compute

γ (s+1) = γ (s)−as Ê

(
∂ log f (Y, b; γ )

∂γ
|γ=γ (s)

)
.

(38.17)

Here as is a constant, incorporating information about
the expectation of the derivative of ∂ log f (Y, b; γ )/∂γ
at the root, an unknown quantity. In practice, as is
often set to be the inverse of a Monte Carlo esti-
mate of the expectation based on the realized values
of b(s,1), . . . , b(s,n).

The SA differs from the MCNR in that the SA uses
a single simulated value of random effects in (38.17),
that is

γ (s+1) = γ (s)−as
∂ log f (Y, b(s); γ )

∂γ
|γ=γ (s) ,

and as is chosen to gradually decrease to zero. Ruppert
and Gu and Kong have recommended that

as = e

(s+κ)α

[
Ê

(
∂2 log f (Y, b; γ )

∂γ∂γ ′

)]−1

,

where e = 3, κ = 50 and α = 0.75 as chosen by Mc-
Culloch and Searle [38.11]. The multiplier as decreases
the step size as the iterations increase in the SA and
eventually serves to eliminate the stochastic error in-
volved in the Metropolis-Hastings steps. McCulloch and
Searle [38.11] stated that the SA is advantageous in that
it can use all of the simulated data to calculate estimates
and only uses the simulated values one at a time; how-
ever, the detailed implementations of both methods are
yet to be settled on in the literature.

38.4.4 S–U Algorithm

The S–U algorithm is a technique for finding the so-
lution of an estimating equation that can be expressed
as the expected value of a full data estimating equa-
tion, where the expectation is taken with respect to the
missing data, given the observed data. This algorithm al-
ternates between two steps: a simulation step wherein the
missing values are simulated based on the conditional
distributions given the observed data, and an updating
step wherein parameters are updated without perform-
ing a numerical maximization. An attractive feature of
this approach is that it is sequential – the number of
Monte Carlo replicates does not have to be specified in
advance, and the values of previous Monte Carlo repli-
cates do not have to be stored or regenerated for later
use. In the following, we will apply this approach in
order to solve the maximum likelihood equations.
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Differentiating the log-likelihood (38.26) with re-
spect to the unknown parameters, γ = (β, θ), gives

Sb(β, θ) = ∂ 

∂β
= 1

f (Y; γ )

×
∫

Sb(Y|b;β) f (Y|b;β) f (b; θ)d b ,

(38.18)

St(β, θ) = ∂ 

∂θ
= 1

f (Y; γ )

×
∫

St(b; θ) f (Y|b;β) f (b; θ)d b ,

(38.19)

where f (Y; γ ) is the marginal likelihood of the
observed data set, and Sb(Y|b;β), St(b; θ) are con-
ditional scores when treating b as observed con-
stants, that is Sb(Y|b;β) = ∂ log f (Y|b;β)/∂β, and
St(b; θ) = ∂ log f (b; θ)/∂θ.

Some algebra gives the second derivatives of the
log-likelihood, which are needed in the algorithm. More
specifically,

Sbb(β, θ) = ∂2 

∂β∂β′
= −S⊗2

b (β, θ)+ 1

f (Y; γ )

×
∫
{Sbb(Y|b;β)

+ S⊗2
b (Y|b;β)} f (Y|b;β) f (b; θ)d b , (38.20)

Sbt(β, θ) = ∂2 

∂β∂θ ′
= −Sb(β, θ)S′t(β, θ)+ 1

f (Y; γ )

×
∫

Sb(β, θ)S′t(b; θ) f (Y|b;β) f (b; θ)d b ,

(38.21)

Stt(β, θ) = ∂2 

∂θ∂θ ′
= −S⊗2

t (β, θ)+ 1

f (Y; γ )

×
∫ {

Stt(b; θ)+ S⊗2
t (b; θ)

}
f (Y|b;β) f (b; θ)d b ,

(38.22)

where Sbb(Y|b;β), Stt(b; θ) are conditional informa-
tion when treating b as observed constants, that is
Sbb(Y|b;β) = ∂2 log f (Y|b;β)/∂β∂β′, and Stt(b; θ) =
∂2 log f (b; θ)/∂θ∂θ ′. Here for a column vector a,
a⊗2 = aa′.

Hence, one can use the importance sampling
scheme [38.23] to approximate these functions and their
derivatives. We proceed as follows.

Having obtained the approximants γ̂1 = (β̂1, θ̂1), . . . ,
γ̂ j = (β̂ j , θ̂ j ) to γ̂ = (β̂, θ̂), the true MLE, at the jth S-
step of the algorithm, we simulate b( j,l ), l = 1, . . . , n,

independently from f (b; θ̂ j ). Denote w( j,l ) by

w( j,l ) = f
(

Y|b( j,l ); β̂ j

)

and let

w̄ j = 1

j ·n
j∑

j ′=1

n∑

l=1

w( j ′,l ) .

As j →∞, the law of large numbers gives that w̄ j is

asymptotically equal to f (Y; γ̂ ) provided that γ̂ j
p→ γ̂ .

We write

S̄b, j = 1

jnw̄ j

j∑

j ′=1

n∑

l=1

w( j ′,l )Sb

(
Y|b( j ′,l ); β̂ j

)
,

S̄t, j = 1

jnw̄ j

j∑

j ′=1

n∑

l=1

w( j ′,l )St

(
b( j ′,l ); θ̂ j

)
,

S̄bb, j =− S̄
⊗2
b, j +

1

jnw̄ j

j∑

j ′=1

n∑

l=1

w( j ′,l )

×
[
Sbb

(
Y|b( j ′,l );β̂ j

)
+ S⊗2

b

(
Y|b( j ′,l );β̂ j

)]
,

S̄tt, j =− S̄
⊗2
t, j +

1

jnw̄ j

j∑

j ′=1

n∑

l=1

w( j ′,l )

×
[

Stt

(
b( j ′,l ); β̂ j

)
+ S⊗2

t

(
b( j ′,l ); β̂ j

)]
,

S̄bt, j =− S̄b, j S̄′t, j +
1

jnw̄ j

j∑

j ′=1

n∑

l=1

w( j ′,l )

×
[

Sb

(
Y|b( j ′,l ); β̂ j

)
S′t

(
b( j ′,l ); β̂ j

)]
,

With j sufficiently large, S̄b, j , S̄t, j , S̄bb, j , S̄bt, j , S̄tt, j
provide good estimates for (38.18, 22).

Denote Sj = (S′b, j , S′t, j )
′ and

Hj =
(

S̄bb, j S̄bt, j

S̄
′
bt, j S̄tt, j

)
.

Then, at the jth U-step, the updated value for γ̂ is

γ ( j+1) = γ ( j)−a j H−1
j Sj ,

where the tuning parameter a j can be chosen as dis-
cussed in the previous section. Note that each of the
quantities required at this step, such as S̄ j , S̄β, j , and so
on, can be calculated recursively so that the past values
of these intermediate variables never need to be stored.

Following Satten and Datta [38.24], as j →∞, γ̂ j
almost surely converges to γ̂ . Denote the S–U estimate
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by γ̂SU. The total sampling variance of γ̂SU around γ0
is the sum of the variance of γ̂SU around γ̂ due to the
S–U algorithm and the sampling variance of γ̂ around
γ0 [38.25]. In most cases, the S–U algorithm should be
iterated until the former is negligible compared to the
latter. In theory, the starting value for the S–U algorithm
is arbitrary. However, a poor starting value might cause
instability at the beginning of this algorithm. Hence,
in the next section, we consider several approximate
methods that generate a starting value sufficiently close
to the true zero of the estimating equations.

38.4.5 Some Approximate Methods

In view of the cumbersome and often intractable inte-
grations required for a full likelihood analysis, several
techniques have been made available for approximate
inference in the GLMMs and other nonlinear variance
component models.

The penalized quasi-likelihood (PQL) method intro-
duced by Green [38.26] for semiparametric models was
initially exploited as an approximate Bayes procedure
to estimate regression coefficients. Since then, several
authors have used the PQL to draw approximate in-
ferences based on random effects models: Schall [38.5]
and Breslow and Clayton [38.8] developed iterative PQL
algorithms, Lee and Nelder [38.27] applied the PQL di-
rectly to hierarchical models. We present the PQL from
the likelihood perspective below.

Consider the GLMM (38.10). For notational sim-
plicity, we write the integrand of the likelihood function

f (Y|b;β) f (b; θ)= exp[−K (Y, b)] . (38.23)

More generally, if one only specifies the first two condi-
tional moments of Y given b in lieu of a full likelihood
specification, f (Y|b;β) in (38.23) can be replaced by
the quasi-likehood function exp[ql(Y|b;β)], where

ql(Y|b;β)=
m∑

i=1

ni∑

j=1

µb
ij∫

Yij

Yij − t

V (t)
d t .

Here µb
ij = E(Yij |b;β) and V (µb

ij ) = var(Yij |b;β).

Next evaluate the marginal likelihood. We temporar-
ily assume that θ is known. For any fixed β, expanding
K (Y, b) around its mode b̂ up to the second-order term,
we have

L(Y;β,θ)=
∫

exp[−K (Y, b)]d b

=
∣∣∣
∣∣∣2π

[
K ′′(Y, b̃)

]−1
∣∣∣
∣∣∣
1/2

exp
[−K (Y,b̂)

]
,

where K ′′(Y, b) denotes the second derivative of K (Y, b)
with respect to b, and b̃ lies in the segment joining
zero and b̂. If K ′′(Y, b) does not vary too much as
b changes (for instance, K ′′(Y, b) = constant for nor-
mal data), maximizing the marginal likelihood (38.11)
is equivalent to maximizing

e−K (Y,b̂) = f (Y|b̂,β) f (b̂; θ) .

Or, equivalently, β̂(θ) and b̂(θ) are obtained by jointly
maximizing f (Y|b;β) f (b; θ) w.r.t. β and b with θ being
held constant. If θ is unknown, it can be estimated by
maximizing the approximate profile likelihood of θ,

∣∣∣
∣∣∣2π

{
K ′′[Y, b̂(θ)]}−1

∣∣∣
∣∣∣
1/2

exp
{−K [Y, b̂(θ)]} .

A more detailed discussion can be found in Breslow and
Clayton [38.8].

As no closed-form solution is available, the PQL is
often performed through an iterative process. In partic-
ular, Schall [38.5] derived an iterative algorithm where
the random effects follow normal distributions. Specif-
ically, with the current estimated values of β, θ and b,
a working ‘response’ Ỹ is constructed by the first-order
Taylor expansion of g(Y) around µb, or explicitly,

Ỹ = g(µb)+ g′(µb)(Y−µb)

= Xβ+Zb+ g′(µb)(Y−µb) , (38.24)

where g(·) is defined in (38.9).
Viewing the last term in (38.24) as a random er-

ror, (38.24) suggests fitting a linear mixed model on Ỹ
to obtain the updated values of β, b and θ, which are
used to recalculate the working ‘response’. The itera-
tion continues until convergence. Computationally, the
PQL is easy to implement; it only requires repeatedly
calling in existing software, for example, SAS ‘PROC
MIXED’. The PQL procedure yields exact MLEs for
normally distributed data and for some cases when the
conditional distribution of Y and the distribution of b are
conjugate.

Other approaches, such as the Laplace method and
the Solomon-Cox approximation, have also received
much attention. The Laplace method (see for example
Liu and Pierce [38.28]) differs from the PQL only in that
the former obtains b̂(β, θ) by maximizing the integrand
e−K (Y,b) with β and θ being held fixed, and subsequently
estimates (β̂, θ̂) by jointly maximizing

∣∣∣
∣∣∣2π

[
K ′′(Y, b̂)

]−1
∣∣∣
∣∣∣
1/2

exp
[−K (Y, b̂)

]
.

On the other hand, with the assumption of
E(b) = 0, the Solomon-Cox technique approximates

Part
E

3
8
.4



Random Effects 38.5 Special Topics: Testing Random Effects for Clustered Categorical Data 697

the integral
∫

f (Y|b) f (b)d b by expanding the in-
tegrand f (Y|b) around b = 0; see Solomon and
Cox [38.29].

In general, none of these approximate methods pro-
duce consistent estimates,h except in some special cases,

for example with normal data. Moreover, these meth-
ods are essentially based on normal approximation, and
they often do not perform well for sparse data, such
as binary data, and when the cluster size is relatively
small [38.30].

38.5 Special Topics:
Testing Random Effects for Clustered Categorical Data

It is useful to test for correlation within clusters and the
heterogeneity among clusters when (or prior to) fitting
random effects models. Tests have been proposed that
are based on score statistics for the null hypothesis that
variance components are zero for clustered continuous,
binary and Poisson outcomes within the random effects
model framework [38.31, 32]. However, literature that
deals with tests for clustered polytomous data is scarce.

A recent article by Li and Lin [38.33] investigated
tests for within-cluster correlation for clustered poly-
tomous and censored discrete time-to-event data by
deriving score tests for the null hypothesis that variance
components are zero in random effects models. Since
the null hypothesis is on the boundary of the parameter
space, unlike the Wald and likelihood ratio tests whose
asymptotic distributions are mixtures of chi-squares, the
score tests are advantageous because their asymptotic
distributions are still chi-square. Another advantage of
the score tests is that no distribution needs to be assumed
for the random effects except for their first two moments.
Hence they are robust to mis-specifying the distributions
of the random effects. Further, the Wald tests and the LR
tests involve fitting random effects models that involve
numerical integration, in contrast with the score tests,
which only involve fitting standard models under the
null hypothesis using existing standard software, and do
not require numerical integration.

A common problem in the analysis of clustered data
is the presence of covariate measurement errors. For
example, in flood forecasting studies, the radar mea-
surements of precipitation are ‘highly susceptible’ to
error due to improper electronic calibration [38.34]; in
AIDS studies, CD4 counts are often measured with er-
ror [38.35]. Valid statistical inference needs to account
for measurement errors in covariates. Li and Lin [38.33]
have extended the score tests for variance components
to the situation where covariates are measured with er-
rors. They applied the SIMEX method [38.36] to correct
for measurement errors and develop SIMEX score tests
for variance components. These tests are an extension
of the SIMEX score test of Lin and Carroll [38.37] to

clustered polytomous data with covariate measurement
error.

Random effects-generalized logistic models and
cumulative probability models have been proposed
to model clustered nominal and ordinal categorical
data [38.38, 39]. This section focuses on the score tests
for the null hypothesis that the variance components
are zero in such models to test for the within-cluster
correlation.

38.5.1 The Variance Component Score Test
in Random Effects-Generalized
Logistic Models

Suppose that, for the jth ( j = 1, . . . , ni ) subject in the
i-th (i = 1, . . . ,m) cluster, a categorical response Yij
belongs to one of N categories indexed by 1, . . . , N .
Conditional on the cluster-level random effect bi , the
observations Yij are independent and the conditional
probability Pij,k = P(Yij = k|bi ) depends on the p × 1
covariate vector Xij through a generalized logistic model

log

(
Pij,k

Pij,N

)
= αk + X′

ijβk +bi = X′
ij,kβ+bi ,

k = 1, . . . , N −1 (38.25)

where βk is a p × 1 vector of fixed effects, bi ∼ F(bi; θ)
for some distribution function F that has zero mean
and a variance θ, X′

ij,k = e′k ⊗ (1, X′
ij );⊗ denotes a Kro-

necker product, ek is an (N −1) × 1 vector with the kth
component equal to 1 and the rest of the components set
to zero, and β = (α1,β

′
1, · · · , αN−1,β

′
N−1)′.

The marginal log-likelihood function for (β, θ) is

 (β, θ)=
m∑

i=1

log
∫

exp[ i (β, bi )]d F(bi; θ) ,

(38.26)

where  i (β, bi ) =∑ni
j=1

∑N
k=1 yij,k log Pij,k , yij,k =

I(Yij = k) and I(·) is an indicator function. The mag-
nitude of θ measures the degree of the within-cluster
correlation. We are interested in testing H0 : θ = 0
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vs. H1 : θ > 0, where H0 : θ = 0 corresponds to no
within-cluster correlation. Since the null hypothesis is
on the boundary of the parameter space, neither the like-
lihood ratio test nor the Wald test follows a chi-square
distribution asymptotically [38.40].

Li and Lin [38.33] considered a score test for H0
and showed that it still follows a chi-square distribution
asymptotically. Specifically, they showed that the score
statistic of θ evaluated under H0 : θ = 0 is

Uθ (β) = ∂ (β, θ)

∂θ

∣∣∣∣
θ=0

=
m∑

i=1

1

2

[
∂2 i (β, bi )

∂b2
i

+
(
∂ i (β, bi )

∂bi

)2
]∣∣∣∣∣

bi=0
(38.27)

= 1

2

m∑

i=1

⎧
⎪⎨

⎪⎩

⎡

⎣
ni∑

j=1

(Ỹij − P̃ij )

⎤

⎦
2

−
ni∑

j=1

P̃ij (1− P̃ij )

⎫
⎪⎬

⎪⎭
,

(38.28)

where

Ỹij =
N−1∑

k=1

yij,k = I(Yij ≤ N −1)

and

P̃ij =
N−1∑

k=1

exp(X ′
ij,k β)

/
[

1+
N−1∑

k=1

exp(X ′
ij,kβ)

]

is the mean of Ỹij under H0. It is interesting to note
that the form of (38.28) resembles the variance com-
ponent score statistic for clustered binary data [38.31].
It can be shown that under H0 : θ = 0, E[Uθ (β)] = 0
and m−1/2Uθ (β) is asymptotically normal MVN(0, Iθθ ),
where Iθθ is given in (38.30).

To study the properties of Uθ (β) under H1 : θ > 0,
they expanded E(Ỹij |bi ) as a quadratic function of bi ,
and showed that, under H1 : θ > 0,

E[Uθ (β)]

≈ 1

2

m∑

i=1

⎡

⎣
ni∑

j=1

ni∑

k �= j

aijaik + 1

2

ni∑

j=1

aij{a′ij}2
⎤

⎦ θ ,

where aij = P̃ij (1− P̃ij ) and a′ij = 1−2P̃ij . As a result,
E[Uθ (β)] is an increasing function of θ. Hence the test is
consistent and one would expect a large value of Uθ (β)
for a large value of θ.

Since β is unknown under H0 and needs to be
estimated, the score statistic for testing H0 is

S =Uθ (β̂)/ Ĩ 1/2
θθ (β̂) , (38.29)

where β̂ is the MLE of β under H0 and can be eas-
ily obtained by fitting the generalized logistic model
log(Pij,k/Pij,N )= X′

ij,kβ, (using SAS PROC CATMOD
for example), and Ĩθθ = Iθθ − Iθβ′ I

−1
ββ′ Iβθ is the effi-

cient information of θ evaluated under H0 : θ = 0. Using
L’Hôpital’s rule, some calculations show that

Iθθ = E

[(
∂ 

∂θ

)2
]

= 1

4

m∑

i=1

⎡

⎣
ni∑

j=1

P̃ij Q̃ij (1−6P̃ij Q̃ij )

+ 2

⎛

⎝
ni∑

j=1

P̃ij Q̃ij

⎞

⎠
2
⎤
⎥⎦ , (38.30)

Iββ′ =
m∑

i=1

E

(
∂ i

∂β

∂ i

∂β′

)
=

m∑

i=1

X′
i�iXi , (38.31)

Iθβ′ =
m∑

i=1

E

(
∂ i

∂θ

∂ i

∂β′

)
= 1

2

m∑

i=1

P′i{IN−1⊗Gi}Xi ,

(38.32)

where the expectations are taken under H0; IN−1 de-
notes an (N −1) × (N −1) identity matrix, and Xi =
(X′

i1, . . . , X′
ini

)′, where Xij = (Xij,1, . . . , Xij,N−1)′,
Q̃ij = 1− P̃ij , and �i = (�i,rl), which is an (N −1) ×
(N −1) block matrix whose (r, l)-th block is

�i,rr=diag[Pi1,r (1− Pi1,r ), . . . , Pini ,r (1− Pini ,r )]
�i,rl=diag[−Pi1,r Pi1,l, . . . ,−Pini ,r Pini ,l] , r �= l ,

Gi = diag(2P̃2
ij −3P̃ij +1, . . . , 2P̃2

ini
−3P̃ini +1) and

Pi=(P′
i,1,. . . ,P

′
i,N−1)′, where Pi,r=(Pij,r ,. . . ,Pini ,r )′ .

Standard asymptotic calculations show that S is asymp-
totically N(0, 1) under H0 and one rejects H0 if S is
large and the test is one-sided.

The score test S for H0 : θ = 0 has several attrac-
tive features. First, it can be easily obtained by fitting
the generalized logistic model log(Pij,k/Pij,N )= X′

ij,kβ,
which is model (38.25) under H0, using standard soft-
ware, such as SAS PROC CATMOD. Hence calculations
of S do not involve any numerical integration. Secondly,
it is the most powerful test locally. Finally it is robust,
as no distribution is assumed for the random effect bi .
We discuss an application of the test based on (38.25) in
Sect. 38.5.4.
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38.5.2 The Variance Component Score Test
in Random Effects
Cumulative Probability Models

A widely used model for clustered ordinal data is the cu-
mulative probability random effects model obtained by
modeling the cumulative probabilities rij,k = P(Yij ≤ k)
as

g(rij,k) = αk + X′
ijβx +bi = X′

ij,kβ+bi ,

k = 1, . . . , N −1 , (38.33)

where g(·) is a link function, Xij,k = (e′k, X′
ij )
′,

β = (α1, · · · , αN−1,β
′
x), and bi ∼ F(., θ) for some dis-

tribution function F with zero mean and variance θ. For
g(·)= logit(·) and g(·)= log[− log (1−·)], we have pro-
portional odds and complementary log-log models. De-
fine oij,k = I(Yij ≤ k). Denote rij = (rij,1, . . . , rij,N−1)′,
Ri = (r ′i1, . . . , r ′ini

)′ and define oij , Oi similarly. Some
calculations show that the score statistic of θ under
H0 : θ = 0 is

Uθ (β) = 1

2

m∑

i=1

[
(Oi − Ri )

′Γ −1
i Hib f 1ib f 1′i HiΓ

−1
i

× (Oi − Ri )−b f 1′i W̃ib f 1i

]
, (38.34)

where 1i is an ni (N −1) × 1 vector of ones; the weight
matrices of Hi ,Γi and W̃i are given in Appendix A.2
of Li and Lin [38.33]. Though seemingly complicated,
(38.34) essentially compares the empirical variance of
the weighted responses to its nominal variance.

The score statistic for testing H0 : θ = 0 is
S =Uθ (β̂)

/
Ĩ 1/2
θθ (β̂), where β̂ is the MLE of β under

H0, and it can be easily obtained by fitting the stan-
dard cumulative probability model g(rij,k)= X′

ij,kβ, and
Ĩθθ (β̂) is the efficient information of θ. Computing the
information matrices is tedious since the calculations in-
volve the third and fourth cumulants of a multinomial
distribution. The explicit expressions of the information
matrices are given in Li and Lin [38.33].

Standard asymptotic calculations show that the score
statistic S follows N(0, 1) asymptotically below H0,
and has the same optimality and robustness properties
stated at the end of Sect. 38.5.1. It can be easily cal-
culated by fitting the standard cumulative probability
model g(rij,k) = X′

ij,kβ using existing software, such
as SAS PROC CATMOD, and does not require any
numerical integration. Again a one-sided test is used
and H0 is rejected for a large value of S. An ap-
plication of score test based on (38.33) is presented
in Sect. 38.5.4.

38.5.3 Variance Component Tests
in the Presence
of Measurement Errors in Covariates

Li and Lin [38.33] extended the variance component
score tests to the situation when covariates are measured
with error. To proceed, we denote a vector of unob-
served covariates (such as the true precipitation level or
the true CD4 count) by Xij and Cij denotes other accu-
rately measured covariates (such as rainfall location or
patients’ gender).

The random effects cumulative probability model
(38.33) and the random effects generalized logistic
model (38.25) can be written in a unified form

g(pij,k) = αk + X′
ijβx,k +C′

ijβc,k +bi , (38.35)

where bi follows some distribution F(., θ) with
mean 0 and variance θ. For the random effects cu-
mulative probability model (38.33), pij,k = rij,k and
βx,1 = . . . = βx,N−1 and βc,1 = . . .= βc,N−1. For the
random effects generalized logistic model (38.25),
pij,k = Pij,k/Pij,N and g(·)= log(·).

Suppose the observed covariates Wij (such as radar
measurements of rainfall or observed CD4 counts) mea-
sure Xij (such as the true precipitation amount or the
true CD4 counts) with error. It is customary to postulate
a nondifferential additive measurement error model for
Wij [38.41],

Wij = Xij +Uij , (38.36)

where the Uij are independent measurement errors fol-
lowing MVN(0,�u). Suppose that the measurement
error covariance �u is known or is estimated as �̂u ,
using replicates or validation data for example. We
are interested in testing for no within-cluster correla-
tion H0 : θ = 0 in the random effects measurement error
models (38.35) and (38.36). Li and Lin [38.33] have pro-
posed using the SIMEX method by extending the results
in the previous two sections to construct score tests for
H0 to account for measurement errors.

Simulation extrapolation (SIMEX) is a simulation-
based functional method for inference on model
parameters in measurement error problems [38.36],
where no distributional assumption is made about the
unobserved covariates Xij . We first briefly describe pa-
rameter estimation in random effects measurement error
models (38.35, 36) using the SIMEX method, then dis-
cuss how to use the SIMEX idea to develop SIMEX
score tests for H0 : θ = 0.
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The SIMEX method involves two steps: the simu-
lation step and the extrapolation step. In the simulation
step, data W∗

ij is generated by adding to Wij a ran-
dom error following N(0, η�u) for some constant η > 0.
Naive parameter estimates are then calculated by fit-
ting (38.35) with Xij replaced by W∗

ij . This gives
the naive estimates if the measurement error covari-
ance is (1+η)�u . This procedure is repeated for
a large number B of times (for example B = 100),
and the mean of the resulting B naive parameter es-
timates is calculated. One does this for a series of
values of η (such as η = 0.5, 1, 1.5, 2). In the ex-
trapolation step, a regression (such as a quadratic)
model is fitted to the means of these naive estimates
as a function of η, and is extrapolated to η = −1,
which corresponds to zero measurement error variance.
These extrapolated estimates give the SIMEX estimates
for the model parameters. For details of the SIMEX
method, see Cook and Stefanski [38.36] and Carroll
et al. [38.41]. The SIMEX idea can be utilized to con-
struct score tests for H0 : θ = 0 in the random effects
measurement error models (38.35) and (38.36) by ex-
tending the results in Sects. 38.5.1 and 38.5.2. The
resulting SIMEX score tests are an extension of the
work of Lin and Carroll [38.37] to random effects
measurement error models for clustered polytomous
data.

In the absence of measurement error, the score
statistics for testing H0 : θ = 0 under (38.35) take the
same form Uθ (β̂)

/
Ĩ 1/2
θθ (β̂), where Uθ (β̂) is given in

(38.34) for random effects cumulative probability mod-
els and in (38.28) for random effects generalized logistic
models. The denominator Ĩθθ (β̂) is in fact the vari-
ance of Uθ (β̂|). The main idea of the SIMEX variance
component score test is to treat the score statistic in
the numerator Uθ (·) as if it were a parameter esti-
mator and use the SIMEX variance method (Carroll
et al. [38.41]) to calculate the variance of this ‘es-
timator’. Specifically, in the SIMEX simulation step,
one simply calculates naive score statistics using the
score formulae (38.34) and (38.28) by replacing Xij
with the simulated data W∗

ij . The rest of the steps
parallel those in the standard SIMEX method for pa-
rameter estimation. Denoting the results by Usimex(·)
and Ĩθθ,simex respectively, the SIMEX score statistic is
simply

Ssimex =Usimex/ Ĩ 1/2
θθ,simex , (38.37)

which follows N(0, 1) asymptotically when the true
extrapolation function is used. Since the true extrapola-
tion function is unknown in practice, an approximation

(such as a quadratic) is used. The simulation study re-
ported by Li and Lin [38.33] shows that the SIMEX
score tests perform well. The theoretical justification
for the SIMEX score tests can be found in Lin and
Carroll [38.37].

The SIMEX score test possesses several important
advantages. First, it can be easily calculated by fitting
standard cumulative probability models using available
software such as SAS PROC CATMOD. Secondly, it
is robust in the sense that no distribution needs to
be assumed for the frailty bi and for the unobserved
covariates X.

38.5.4 Data Examples

To illustrate the variance component score tests for
clustered polytomous data, we examine data from a lon-
gitudinal study on the efficacy of steam inhalation for
treating common cold symptoms, conducted by Mack-
nin et al. [38.42]. This study included 30 patients
with colds of recent onset. At the time of enrolment,
each patient went through two 20 min steam inhalation
treatments spaced 60–90 minutes apart. Assessment
of subjective response was made on an individual
daily score card by the patient from day 1 (base-
line) to day 4. On each day, the severity of nasal
drainage was calibrated into four ordered categories
(no symptoms, mild, moderate and severe symptoms).
The study examined whether the severity improved
following the treatment, and tested whether the obser-
vations over time for each subject were likely to be
correlated.

Li and Lin [38.33] considered models (38.25) and
(38.33) with the time from the baseline as a co-
variate. They first assumed a random effects logistic
model (38.25), and obtained a variance component score
statistic 5.32 (p-value < 0.001), which provided strong
evidence for within-subject correlation over time. Simi-
lar results were found when they fitted a random effects
proportional odds model (38.33) (score statistic = 9.70,
p-value < 0.001). In these two tests they assumed no
distribution for the random effect bi .

To further examine the effect of time, they fit-
ted (38.33) by further assuming that the random
effect bi followed N(0, θ). The MLE of the coeffi-
cient of time was −0.33 (SE = 0.21), which suggested
that the severity improved following the treatment
but that improvement was not statistically significant
(p-value = 0.11). The estimated variance component
was 2.31 (SE = 0.45). This result was consistent with
the test results.
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38.6 Discussion

Central to the idea of mixed modeling is the idea of
fixed and random effects. Each effect in a model must
be classified as either a fixed or a random effect. Fixed
effects arise when the levels of an effect constitute
the entire population of interest. For example, if an
industrial experiment focused on the effectiveness of
three brands of a machine, machine would be a fixed
effect only if the experimenter’s interest did not go
beyond the three machine brands. On the other hand,
an effect is classified as a random effect when one
wishes to make inferences on an entire population, and
the levels in the experiment represent only a sample
from that population. Consider an example of psychol-
ogists comparing test results between different groups
of subjects. Depending on the psychologists’ particu-
lar interest, the group effect might be either fixed or
random. For example, if the groups are based on the
sex of the subject, sex would be a fixed effect. But
if the psychologists are interested in the variability in
test scores due to different teachers, they might choose
a random sample of teachers as being representative
of the total population of teachers, and teacher would
be a random effect. Returning to the machine exam-
ple presented earlier, machine would also be considered
to be a random effect if the scientists were interested
in making inferences on the entire population of ma-
chines and randomly chose three brands of machines for
testing.

In summary, what makes a random effect unique is
that each level of a random effect contributes an amount
that is viewed as a sample from a population of ran-
dom variables. The estimate of the variance associated
with the random effect is known as the variance compo-
nent because it measures the part of the overall variance
contributed by that effect. In mixed models, we combine
inferences about means (of fixed effects) with inferences
about variances (of random effects).

A few difficulties arise from setting up the likelihood
function to draw inference based on a random effects
model. The major obstacle lies in computation, as, for
practitioners, the main issue focuses on how to handle
the intractable MLE calculations. This chapter reviews
some commonly used approaches to estimating the re-

gression coefficients and the variance components in
the (generalized) linear mixed models. We note that the
EM algorithm can yield maximum likelihood estimates,
which are consistent and most efficient under regularity
conditions. However, its computational burden is sub-
stantial, and the convergence rate is often slow. Laplace
approximation greatly reduces the computational load,
but the resulting estimates are generally biased. The sim-
ulated maximum likelihood estimation is considerably
less computationally burdensome compared to the EM.
For example, the rejection sampling is avoided, saving
much computing time. However, its obvious drawback is
the local convergence – a ‘good’ initial point is required
to achieve the global maximizer. The so-called SA and
S–U algorithms seem to be promising, as they make full
use of the simulated data and obtain the estimates re-
cursively. However, the detailed implementation of both
methods have yet to be finalized in the literature.

It is worth briefly discussing marginal models,
another major tool for handling clustered data. In
a marginal model, the marginal mean of the response
vector is modeled as a function of explanatory vari-
ables [38.43]. Thus, in contrast to the random effect
models, the coefficients in a marginal model have pop-
ulation average interpretations. This type of model is
typically fitted via the so-called generalized estimating
equation (GEE). An appealing feature is that, for the
right mean structure, even when the covariance struc-
ture of the response is mis-specified, the GEE acquires
consistent estimates. However, the GEE method faces
several difficulties, which may easily be neglected. First,
the GEE estimator’s efficiency becomes problematic
when the variance function is mis-specified. Secondly,
the consistency of the estimator is only guaranteed under
noninformative censoring; informative censoring gener-
ally leads to biased estimates. More related discussion
can be found in Diggle et al. [38.43].

Lastly, we point out other active research areas
in mixed modeling, including evaluating the model’s
goodness of fit, choosing the best distribution for the
random effects and selecting the best collection of co-
variates for a model. Readers are referred to some
recent articles on these topics (such as [38.44–47]).
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Cluster Rando39. Cluster Randomized Trials: Design and Analysis

The first section of this chapter gives an introduc-
tion to cluster randomized trials, and the reasons
why such trials are often chosen above simple
randomized trials. It also argues that more ad-
vanced statistical methods for data obtained from
such trials are required, since these data are
correlated due to the nesting of persons within
clusters. Traditional statistical techniques, such
as the regression model ignore this dependency,
and thereby result in incorrect conclusions with
respect to the effect of treatment. In the first sec-
tion it is also argued that the design of cluster
randomized trials is more complicated than that
of simple randomized trials; not only the total
sample size needs to be determined, but also the
number of clusters and the number of persons per
cluster.

The second section describes and compares the
multilevel regression model and the mixed effects
analysis of variance (ANOVA) model. These models
explicitly take into account the nesting of persons
within clusters, and thereby the dependency of
outcomes of persons within the same cluster. It
is shown that the traditional regression model
leads to an inflated type I error rate for treatment
testing.

Optimal sample sizes for cluster randomized
trials are given in Sects. 39.3 and 39.4. These
sample sizes can be shown to depend on the
intra-class correlation coefficient, which measures
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the amount of variance in the outcome variable
at the cluster level. A guess of the true value of
this parameter must be available in the design
stage in order to calculate the optimal sample
sizes. Section 39.5 focuses on the robustness of
the optimal sample size against incorrect guesses
of this parameter. Section 39.6 focuses on optimal
designs when the aim is to estimate the intra-class
correlation with the greatest precision.

Cluster randomized trials are experiments in which
complete clusters of persons, rather than the persons
themselves, are randomized to treatment conditions.
Such trials are frequently used in the agricultural,
(bio-)medical, social, and behavioral sciences. Exam-
ples are school-based smoking prevention and cessation
interventions with pupils nested within classes within
schools, clinical trials with patients nested within clin-
ics or general practices, and studies on interventions
to reduce absences due to sick leave with employ-
ers nested within divisions within companies. Cluster

randomized trials are very natural in the case of ex-
isting clusters, but can also be used when groups
are created for the purpose of the trial. An exam-
ple is a trial with therapy groups to reduce alcohol
addiction. Alcoholics are assigned to small therapy
groups, which in turn are assigned to treatment con-
ditions. The difference is that, in trials with existing
clusters, the persons also meet and interact out-
side the time slots during which the intervention
is delivered, resulting in a larger degree of mutual
influence.
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39.1 Cluster Randomized Trials

Cluster randomized trials are often chosen above simple
randomized trials that randomize persons to treatment
conditions, although cluster randomized trials can eas-
ily be shown to be less efficient (Sect. 39.2). The reasons
why cluster randomized trials are so often adopted must
rest on other considerations than statistical efficiency,
and these are often of an administrative, financial, po-
litical or ethical nature. As an example consider a study
on the impact of vitamin A supplementation on child-
hood mortality [39.1]. In this study complete villages in
Indonesia were randomly assigned to either the supple-
mentation or control group because it was not considered
politically feasible to randomize children. Another ad-
vantage of adopting a cluster randomized trial in this
example is that the capsules containing the vitamin A
supplements only have to be delivered to those villages in
the supplementation group, which results in a reduction
of travel costs. A trial that randomizes children would
suffer from control-group contamination if the children
in the control group were able to get access to the vi-
tamin A from children in the supplementation group in
the same village. In some cases there is no alternative to
cluster randomized trials, such as in community-based
interventions where the intervention will necessarily af-
fect all members in the community. Another reason to
adopt a cluster randomized trial is the wish to increase
compliance. It may be reasonable to expect that com-
pliance increases in a study where complete families,
rather that just a few family members, are randomized
to treatment conditions.

Due to the nesting of persons within clusters, the de-
sign and analysis of cluster randomized trials is more
complicated than for simple randomized trials. The tra-
ditional assumption of independence is by definition
violated when data have a nested structure. This is ob-
vious, since there is mutual influence among persons
within the same cluster. So a person’s opinion, behavior,
attitude or health is influenced by that of other persons
in the same cluster. Furthermore, persons are influenced
by cluster policy and cluster leaders. In school-based
smoking prevention interventions, for instance, a pupil’s
smoking behavior is influenced by that of other pupils
within the same class and (to a lesser degree) school, that
of teachers, the school policy towards smoking and the
availability of cigarettes and advertisements on smoking
in the school and its neighborhood.

The traditional regression model, which assumes in-
dependent outcomes, cannot be used for the analysis of
nested data. Naively using this model may lead to in-

correct point estimates and standard errors of regression
coefficients, and therefore to incorrect conclusions on
the effect of treatment conditions and covariates on the
outcome [39.2–5]. The appropriate model is the mul-
tilevel model [39.6], which is also referred to as the
hierarchical (linear) model [39.7], or random coefficient
model [39.6]. The multilevel model treats the persons
as the unit of analysis, but explicitly takes into account
nesting of persons within clusters and the correlation of
outcomes of persons within the same cluster. It assumes
that the clusters in the study represent a random sample
from their population, and treats their effects as ran-
dom in the regression analysis so that the results can be
generalized to this population. Multilevel models are an
extension of the variance components models and mixed
effects ANOVA (analysis of variance) models [39.8] that
have long been used in the biological and agricultural
sciences. They are an extension in the sense that they
do not only include categorical, but also continuous ex-
planatory variables. They have been developed since the
early 1980s, and in the first instance especially gained
attention from the educational sciences, where data by
nature have a multilevel structure due to the nesting of
pupils within classes within schools. Nowadays, multi-
level models are used in various fields of science, ranging
from political sciences to nursery, and from studies on
interviewer effects to studies with longitudinal data. It
is to be expected that multilevel analysis will become
part of the standard statistical techniques in the near fu-
ture and that editors of scientific journals will no longer
consider contributions that use old-fashioned methods
to analyze multilevel data.

The design of cluster randomized trials is more com-
plicated than that of simple randomized trials, since it
does not only involve the calculation of the required
number of persons, but also the calculation of the opti-
mal allocation of units, that is, the optimal sample sizes
at the cluster level and the person level. One may wonder
if it is more efficient to sample many small clusters or to
sample just a few large clusters. Of course, the number
of available clusters is limited and the optimal number
of clusters cannot therefore be larger than the available
number of clusters. Likewise, the optimal cluster size
cannot be larger than the actual cluster size, and such
preconditions must be taken into account when calcu-
lating the optimal design. Furthermore, it is often less
expensive to sample a person within an already sampled
cluster than to sample a new cluster. So, the costs of
sampling persons and clusters and the available budget
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should also be taken into account, and it is worthwhile to
calculate the required budget to achieve a pre-specified
power level to detect a relevant treatment effect, or vice
versa, the maximum power level given a fixed budget.

A concern in the design of cluster randomized tri-
als is the fact that the optimal design depends on the
true value of the intra-class correlation coefficient, a pa-
rameter which measures the amount of variance of the
outcome variable at the cluster level. Of course, the true
value is not known at the design stage, and an edu-
cated guess of this parameter must be used instead. Such
a guess can be obtained from knowledge of the subject
matter or from similar studies in the past. There is, how-
ever, no guarantee that such an educated guess is correct,
and it is therefore worthwhile to study the robustness of
optimal designs against an incorrect prior value of the

intra-class correlation coefficient, and to development
robust optimal design techniques.

The contents of this chapter are as follows. In the next
section the multilevel regression model and the mixed
effects ANOVA model are described and compared.
Section 39.3 gives formulae for the optimal allocation
of units for models without covariates. The extension
to models with covariates is the topic of Sect. 39.4.
In Sect. 39.5 we focus on the robustness properties of
optimal designs. In Sect. 39.6 we present designs that
are useful when interest lies in the degree of the intra-
class correlation. Finally, conclusions and a discussion
are given in Sect. 39.7. For the sake of simplicity, we
focus on optimal designs for models with two levels
of nesting, two treatment conditions, and a continuous
outcome.

39.2 Multilevel Regression Model and Mixed Effects ANOVA Model

In the simplest version of a cluster randomized trial
we wish to compare the effects of an intervention and
a control on a single continuous outcome variable. The
multilevel regression model relates outcome yij for per-
son i in cluster j to treatment condition z j

yij = β0+β1z j +u j + eij . (39.1)

In this chapter, the treatment condition is coded
z j =−0.5 for the control condition and z j =+0.5 for
the intervention condition. So, β0 is the mean out-
come, and β1 is the treatment effect, which is estimated
by the difference in mean outcomes in both treatment
groups. The null hypothesis of no treatment effect is

tested by the statistic t = β̂1/

√
ˆvar(β̂1), which has a t-

distribution with n2−2 degrees of freedom under the
null hypothesis.

The multilevel model differs from the traditional re-
gression model since it contains two random error terms.
The term u j ∼ N(0, τ2) at the cluster level is the devia-
tion of cluster j from the mean outcome in its treatment
condition, and the term eij ∼ N(0, σ2) at the person level
is the deviation of person i from the mean outcome in
cluster j. These two error terms are assumed to be in-
dependent of each other and of possible covariates in
the model. In general, the within-cluster variance σ2 is
much larger than the between-cluster variance τ2.

The first two terms and the right-hand side of (39.1)
are the fixed part of the model, whereas the second two
terms are the random part. Since it contains both fixed

and random effects, the multilevel model is a mixed ef-
fects model. Fixed effects are effects that are attributable
to a finite set of levels of a factor, and they occur in the
data because interest lies only in them, and not in any
other levels of that factor. An example of a fixed effect
is a treatment factor in a smoking prevention interven-
tion with two levels: intervention and control. We are
only interested in the comparison of these two treatment
conditions, and not in any other. Random effects, on the
other hand, are attributable to an infinite set of levels
of a factor, of which only a random sample is included
in the study at hand. An example of a random effect is
the school effect in a school-based smoking prevention
intervention. Although not all schools of the popula-
tion under study are included in the study, we wish to
generalize its findings to all schools in the population.
Therefore, school is included as a random effect rather
than a fixed effect.

The variances σ2 and τ2 are called the variance com-
ponents since they sum up to the total variance of the
outcome of person i within cluster j:

var(yij ) = σ2+ τ2 . (39.2)

Furthermore, there is correlation between outcomes of
two persons within the same cluster j:

cov(yij , yi ′ j ) = τ2 . (39.3)

The intra-class correlation coefficient ρ measures the
proportion of variation in the outcomes at the cluster
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level, that is

ρ = var(yij )

cov(yij , yi ′ j )
= τ2

σ2+ τ2 . (39.4)

This parameter may be interpreted as the standard Pear-
son correlation coefficient between any two outcomes
in the same cluster. Intra-class correlation coefficients
are often considerably larger in small clusters such as
households, than in large clusters such as postcode lev-
els. This can be explained by the fact that members in
small clusters meet each other more often, which results
in a higher level of mutual influence. As we will see in
the next section, the intra-class correlation coefficient
plays a crucial role in calculating the optimal sample
sizes.

In a balanced design, randomization is done such
that both treatment conditions have 1

2 n2 clusters, and
each cluster consists of n1 persons. The variance of the
treatment effect estimator is then given by

var(β̂1)=4
σ2+n1τ

2

n1n2
= 4

σ2+ τ2

n1n2
[1+ (n1−1)ρ] .

(39.5)

This variance is larger than that obtained with the tra-
ditional regression model due to the inclusion of the
factor [1+ (n1−1)ρ]. This factor is called the design
effect, and it increases with the cluster size n1 and the
intra-class correlation coefficient ρ. Since it is always
larger than 1, a cluster randomized trial is less efficient
than a trial that randomizes persons to treatment con-
ditions. Even for small values of ρ, the design effect
may already be considerable. For example, if ρ = 0.1
and n1 = 10 the design effect is equal to 1.9, and so the
var(β̂1) as obtained with the multilevel model is about
twice that obtained with ordinary regression analysis.
So, incorrectly using the traditional regression model
results in a value of var(β̂1) that is too low, and con-
sequently in an inflated type I error rate [39.2]. This
is especially the case when the cluster size n1 and the
intra-class correlation coefficient ρ are large.

When treatment condition is the only predic-
tor variable we can write the multilevel model in

Table 39.1 Values for the mixed effects ANOVA model

Source Degrees of freedom Mean squares Expected MS

Treatment 1 MStreatment σ2+n1τ
2+n1n2

∑
t α

2
t

Clusters within treatment n2−2 MScluster σ2+n1τ
2

Persons within clusters n1n2−n2 MSperson σ2

Total n1n2 −1

terms of a mixed effects ANOVA model. For per-
son i = 1, . . . , n1 in cluster j = 1, . . . , n2 in treatment
t = 1, 2 we have

yijt = µ+αt +u jt + eijt . (39.6)

Here, µ is the grand mean, αt is the fixed effect of the
t-th treatment, and u jt and eijt are the random effects at
the cluster and person level, which are assumed to be
normally distributed with zero mean and variances of
τ2 and σ2 respectively. Since clusters are nested within
treatment conditions, we have a nested ANOVA model.

When t = 1 corresponds to the control group and
t = 2 corresponds to the intervention group the cor-
respondence between the parameters in the multilevel
regression model in (39.1) and the mixed effects
ANOVA model in (39.6) is given by

µ= β0, α2−α1 = β1, u jt = u j , eijt = eij .

(39.7)

Table 39.1 gives the expected means squares (MS) for
the mixed effect ANOVA model. The test statistic for
the null hypothesis of no treatment effect is given by
F =MStreatment/MScluster, which, under the null hypoth-
esis, has an F-distribution with 1 and n2−2 degrees of
freedom. The value of the F-test statistic for the mixed
effects ANOVA model can be shown to be equal to the
square of the value of the t-test statistic for the multilevel
regression model [39.9]. The two variance components
are estimated by

σ̂2 = MSperson , (39.8)

and

τ̂2 = (
MScluster−MSperson

)
/n , (39.9)

and the intra-class correlation coefficient is estimated by

ρ̂2 = MScluster−MSperson

MScluster+ (n−1)MSperson
. (39.10)

For a long time the estimation of mixed models
was a difficulty because of the lack of suitable estima-
tion methods and computer programs. Different models
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were used but these can be shown to result in incorrect
estimates of regression coefficients and their standard
errors [39.2]. One such model is the traditional ordinary
regression model, which assumes independent outcomes
and thereby ignores nesting of persons within clusters
and correlation of outcomes within the same cluster.
Another approach is to calculate mean scores of vari-
ables at the cluster level and to use these in a regression
model. With this approach, clusters are used as the unit
of analysis, which results in loss of information. A third
approach is to include clusters as fixed effects in the re-
gression model, even if the results have to be generalized
to the populations of clusters.

A method for estimation of mixed effects model be-
came available with the development of full-information
maximum-likelihood (ML), and restricted maximum-
likelihood estimators (REML). The first calculates the
regression coefficients and (co-)variance components
such that the log likelihood log (L) is maximized,
where

log(L) =−1

2

∑

j

n1 j log2π− 1

2
log|V|

− 1

2
(y−Xβ)′V−1(y−Xβ) . (39.11)

The vector y is the vector of outcomes, β is the
vector of regression coefficients, and V is the covari-

ance matrix of the outcomes, which is a function of
the variance components. The design matrix X con-
tains the measures on the predictor variables. REML
is an adjustment of ML since it takes into account
the loss of degrees of freedom resulting from esti-
mating the fixed effects while estimating the variance
components. So, the ML estimates of the variance
components are downward-biased, while those for
REML are not. For a large number of clusters (say
n2 > 30), the difference between the two estimates is
negligible.

During the 1980s much attention was paid to the
development of methods for the computation of ML
and REML estimates, such as iterative generalized
least squares (IGLS) [39.10], and restricted iterative
generalized least squares (RIGLS) [39.11], which in
the normal case produce ML and REML estimates,
respectively. Furthermore, attention was paid to the ap-
plication of existing methods, such as the Fisher scoring
algorithm [39.12], and the expectation-maximization
(EM) algorithm [39.13, 14]. The introduction and
widespread use of personal computers have initiated
the development of specialized computer programs
for multilevel analysis, such as MLwin [39.15] and
HLM [39.16]. Nowadays, multilevel analysis is part of
general-purpose statistical software, such as SPSS and
STATA.

39.3 Optimal Allocation of Units

39.3.1 Minimizing Costs
to Achieve a Fixed Power Level

The primary aim of an experiment is to gain insight
into the magnitude of the treatment effect, and to test
if it is different from zero. Thus, we wish to test the
null hypothesis H0 : β1 = 0 against the alternative that
its value is different from zero. This hypothesis is tested

by the test statistic t = β̂1/

√
ˆvar(β̂1), which has a t-

distribution with n2−2 degrees of freedom under the
null hypothesis. When the number of clusters is large, the
standard normal distribution can be used as an approxi-
mation, as will be done in the remainder of this chapter.
For a two-sided alternative hypothesis H1 : β1 �= 0, the
power 1−γ , type I error rate α, and the true value of β1
are related to the variance var(β̂1) as follows:

var(β̂1) =
(

β1

z1−α/2+ z1−γ

)2

, (39.12)

where z1−α/2 and z1−γ are the 100(1−α/2)% and
100(1−γ )% standard normal deviates. For a one-sided
alternative hypothesis, 1−α/2 may be replaced by
1−α. In general, the true value of the treatment ef-
fect β1 is unknown at the design stage, and it is replaced
by the minimal relevant deviation of β1 from zero. If
this effect is expressed in terms of units of the standard
deviation

√
σ2+ τ2 of the outcome yij , then it is a rela-

tive treatment effect. Relative treatment effects equal to
0.2, 0.5, and 0.8 can be considered small, medium, and
large, respectively, where a medium treatment effect is
visible to the naked eye of a careful researcher [39.17].

As follows from (39.12), the power increases with
the true value of β1, which is obvious since large treat-
ment effects are easier to detect than small treatment
effects. Also, the power increases with the type I er-
ror rate, since null hypotheses are easier rejected if the
probability of a type I error is large. Furthermore, the
power is inversely related to the var(β̂1). So, maximiz-
ing the power corresponds to minimizing the variance
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710 Part E Modelling and Simulation Methods

of the estimated treatment effect. For studies with non-
nested data this variance is related to the total sample
size, and minimal sample sizes can be found in, for in-
stance, Cochran [39.18]. For studies with two levels of
nesting, var(β̂1) does not only depend on the total sam-
ple size n1n2, but also on the cluster size n1, as follows
from (39.5). Note that we use non-varying cluster sizes
since that leads to the most efficient design [39.19]. In
reality, cluster sizes generally vary, so that we have to
take a sample of size n1 from each cluster, meaning that
not all persons in the sampled clusters are enrolled in
the experiment.

The required sample sizes n1 and n2 can be calcu-
lated by substituting var(β̂1) from (39.5) into (39.12).
For fixed cluster size n1 the required number of clusters
is equal to

n2 = 4
σ2+ τ2

n1
[1+ (n1−1)ρ]

(
z1−α/2+ z1−γ

β1

)2

.

(39.13)

For a fixed number of clusters n2, the required cluster
size is equal to

n1 = 4σ2

(
β1

z1−α/2+z1−γ

)2
n2−4τ2

(39.14)

Figure 39.1 shows the power to detect a small relative
treatment effect in a two-sided test with a type I error
rate of α = 0.05 as a function of the cluster size n1,
number of clusters n2, and the intra-class correlation co-
efficient ρ. As is obvious, more clusters, larger cluster
sizes and a lower intra-class correlation lead to higher
power levels. For instance, 114 clusters are needed to

Power

Number of clusters
0

0

50 100 150

0.2

0.4

0.6

0.8

1.0

Power

Cluster size
0

0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

ρ = 0.05, n1 = 10
ρ = 0.05, n1 = 30
ρ = 0.10, n1 = 10
ρ = 0.10, n1 = 30

ρ = 0.05, n2 = 50
ρ = 0.05, n2 = 100
ρ = 0.10, n2 = 50
ρ = 0.10, n2 = 100

Fig. 39.1 Power as a function of cluster size, number of clusters, and intra-class correlation

achieve a power of 0.8 when there are 10 persons per
cluster and the intra-class correlation coefficient is equal
to ρ = 0.05. For a cluster size of n1 = 30 only 66 clus-
ters are needed. However, the total sample size for the
first scenario (n1n2 = 1140) is smaller than that for the
second (n1n2 = 1980). So, the first scenario is favor-
able when the aim is to minimize the total sample size,
whereas the second should be selected when the aim is to
minimize the number of clusters, provided that enough
clusters with 30 persons are available.

As follows from the left pane in Fig. 39.1 the power
increases to one when the number of clusters increases
and the cluster size is fixed. On the other hand the power
increases to a value not necessarily equal to one when the
cluster size increases, given a fixed number of clusters.
This can be explained by the fact that the cluster size n1
appears in both the numerator and denominator of the
var(β̂1), which is inversely related to power, whereas the
number of clusters n2 appears in both. So

lim
n1→∞ var(β̂1) = lim

n1→∞ 4
σ2+n1τ

2

n1n2
= 4

τ2

n2
,

(39.15)

and

lim
n2→∞ var(β̂1) = lim

n2→∞ 4
σ2+n1τ

2

n1n2
= 0 , (39.16)

which explains why a low number of clusters cannot be
compensated by a larger cluster size in order to achieve
sufficient power.

When both n1 and n2 are free to vary, the optimal
sample sizes are calculated such that the costs C for
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Fig. 39.2 Power as a function of cluster size and number of clusters for various budgets C and costs c1 = 300 and c2 = 10

recruiting and measuring persons and clusters are mini-
mized. These costs are a function of the total number of
persons n1n2, the number of clusters n2, the costs per
person c1, and the costs per cluster c2:

C = c1n1n2+ c2n2 . (39.17)

Since the design is balanced, c1 and c2 are the costs at the
person and cluster level averaged over the two treatment
conditions. In general the costs at the cluster level will
be much higher than the costs at the person level. The
optimal cluster size can be shown to be equal to

n1 =
√

c2(1−ρ)

c1ρ
. (39.18)

and n2 follows from (39.13). Equation (39.18) was
derived by expressing n2 in terms of n1 and C us-
ing (39.17), substituting in (39.5) for var(β̂1), and
minimizing with respect to n1. In some cases the op-
timal number of persons per cluster is larger than the
actual number of persons per cluster. Then, all persons
have to be sampled, and additional money should be
spent on sampling more clusters.

39.3.2 Maximizing Power
Given a Fixed Budget

Equation (39.18) gives the optimal cluster size to achieve
a pre-specified power level while minimizing costs C.
On the other hand, we can also calculate the optimal
cluster size for maximizing the power level when the
budget is fixed to a constant C. The optimal cluster size
is again equal to that given in (39.18), and the optimal

number of clusters is equal to

n2 = C√
1−ρ
ρ

c1c2+ c2

. (39.19)

The variance of the treatment effect estimator can
be calculated by substituting the optimal n1 and n2
from (39.18) and (39.19) into (39.5), which gives

var(β̂1) = (σ2+ τ2)

[√
ρc2+√(1−ρ)c1

]2

C
.

(39.20)

As is obvious, a larger budget C results in a smaller op-
timal var(β̂1). Furthermore, a larger budget C results in
sampling more clusters, but not in sampling more per-
sons per cluster since the optimal cluster size does not
depend on C. The optimal cluster size is an increas-
ing function of the intra-class correlation coefficient ρ,
so that larger cluster sizes are required when there is
much variation in the outcome at the person level. Fur-
thermore, the optimal cluster size is a function of the
costs c2 for recruiting a cluster relative to the costs c1
for sampling a person. So, fewer clusters will be sam-
pled in favor of sampling more persons per cluster when
it is relatively expensive to sample a cluster.

Figure 39.2 shows the power to detect a small treat-
ment effect as a function of the cluster size, number of
clusters and total budget C when c1 = 300 and c2 = 10
and ρ = 0.05. The optimal cluster size is n1 = 24 and
this value does not depend on the budget. A budget ap-
proximately equal to C = 75 000 is required to achieve
a power level of 0.9 to detect a small treatment effect.
The optimal number of clusters is an increasing function
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of the budget C. For a large budget the power curve is
rather flat around it optimum, but this is not the case for
lower budgets. Of course, these power curves hold when

dropout is absent, and a somewhat larger sample size is
required when persons and/or clusters are expected to
drop out.

39.4 The Effect of Adding Covariates

Until now we have only considered optimal designs for
models without covariates. This section focuses on the
effects of adding a single covariate xij that varies at the
cluster and/or person level on the optimal sample sizes.
The extension to multiple covariates is straightforward
and not given here. The between- and within-cluster
effect of the covariate on the outcome are not necessarily
the same [39.20]. The covariate is therefore split up into
a between-cluster component x̄. j and a within-cluster
component (xij − x̄. j ), and the multilevel model is given
by

yij = β∗0 +β∗1 z j +β∗2 x̄. j +β∗3(xij − x̄. j )+u∗j + e∗ij ,
(39.21)

where β∗2 �= β∗3 . As in the model without covariates,
the random terms u∗j ∼ N(0, τ∗2) and e∗ij ∼ N(0, σ∗2)
are assumed to be independent of each other and the
covariate.

When the covariate only varies at the cluster level,
the term β∗3(xij − x̄. j ) is equal to zero and may be
removed from model. An example of a cluster-level co-
variate is the type of school (public versus private) in
a school-based smoking prevention intervention. Like-
wise, when the covariate only varies at the person level,
the term β∗2 x̄. j is equal to zero and may be removed
from the model. An example of such a covariate is gen-
der, given that the percentage of boys per school does
not vary across the schools.

Note that the regression coefficients and random
terms are superscripted with an asterisk in order to stress
that their values may differ from those in the model
without covariates (39.1). Given a grand-mean centered
covariate and treatment condition coded z j =−0.5 for
the control group and z j =+0.5 for the intervention
group, the treatment effect is estimated by

β̂∗1 =
∑

z j yij
∑

x2
j −

∑
z j x j

∑
x j yij

n1n2
∑

x2
j (1−r2

xc)
, (39.22)

with variance

var(β̂∗1) = 4
σ∗2+n1τ

∗2

n1n2

1

(1−r2
zx)

. (39.23)

When comparing formulae (39.23) with that for the
variance in a model without covariates, we see that an

additional factor 1/(1−r2
zx) is introduced. This factor

is often called the variance inflation factor (VIF), and
var(β̂∗1) reaches it minimum when the correlation r2

zx
between the treatment condition and covariate is equal
to zero. The within-cluster component (xij − x̄. j ) and
the treatment condition z j are orthogonal, and therefore
r2

zx is equal to the correlation between the between-
cluster component x̄. j and the treatment condition z j .
For normally and binary covariates this correlation
is approximately normally distributed with variance
1/n2 [39.21], and thus r2

zx ∈ (0, 4/n2) with 95% proba-
bility. So, this correlation will be small when the number
of clusters is large, and clusters are randomly assigned
to treatment conditions. When the cluster randomized
trial only has a small number of clusters, a correlation
r2

zx equal to zero may be achieved by pre-stratification
on the covariate, which means that for each value of x̄. j
half of the clusters are randomized to the control condi-
tion while the others are randomized to the intervention
condition.

In the remainder of this section we will assume that
the correlation between covariate and treatment condi-
tion is zero. Then, the estimated treatment effect is equal
to that in a model without covariates, and the optimal
sample sizes are equal to those in a model without co-
variates as given in (39.18) and (39.19) with τ2 and
σ2 replaced by τ∗2 and σ∗2, respectively [39.22]. The
relations between the variance components in a model
with and without covariates can be established using
the method described in [39.23]. During the analysis
stage the total variation in the outcome yij is given by
the observed data and the estimated variance compo-
nents change if covariates are added to or excluded
from the model. The chance in the estimated vari-
ance components can be derived by assuming that the
variance of the observed outcomes and covariance of
two outcomes within the same cluster are given by
the data and are therefore equal for model (39.21)
and (39.1):

var(yij ) = var(β1z j+u j+eij )

= var
[
β∗1 z j+β∗2(xij−x̄. j )+β∗3 x̄. j+u∗j+e∗ij

]

(39.24)
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Table 39.2 Changes in the variance components due to the inclusion of a covariate

Changes due to the inclusion of x̄. j Changes due to the inclusion of (xi j − x̄. j )

τ2− τ∗2 = β̂∗2
2 var(x̄. j ) > 0 τ2− τ∗2 = β̂∗2

3 cov(xij − x̄. j , xi, j − x̄. j ) < 0

≈ 0 for large n1

σ2−σ∗2 = 0 σ2−σ∗2 = β̂∗2
3

[
var(xij − x̄. j )− cov(xij − x̄. j , xi, j − x̄. j )

]
> 0

≈ β̂∗2
3 var(xij − x̄. j ) > 0 for large n1

Note: It is assumed that r2
zx = 0

and

cov(yij , yi ′ j ) = cov(β1z j +u j , β1z j +u j )

= cov
[
β∗1 z j +β∗2(xij − x̄. j )+β∗3 x̄. j

+u∗j , β∗1 z j +β∗2(xi ′ j − x̄. j )

+β∗3 x̄. j +u∗j
]
. (39.25)

Table 39.2 shows the changes in the estimated vari-
ance components due to the inclusion of one covariate.
The variance component at the person level remains
unchanged when a cluster-level covariate is added to
the model, and decreases when a person-level covari-
ate is added to the model. The variance component
at the cluster level decreases when a cluster-level
component is added, but increases when a person-
level covariate is added. However, for large cluster
sizes this increase is negligible, and it may be
nullified by the decreasing effect of adding a cluster-
level covariate. So, adding covariates will in general

lead to a decrease in the variance components, and
therefore in a more efficient design, given a zero
correlation between the covariate and treatment con-
dition.

Of course, costs are associated with measuring co-
variates and one may wonder when adding a covariate
may be a more cost-efficient strategy to increase the
power to detect a treatment effect than sampling more
clusters. Both strategies have recently been compared,
and it was concluded that adding covariates is more ef-
ficient when the costs to measure these covariates are
small and the correlation between the covariate and the
outcome is large [39.24]. Adding a covariate at the clus-
ter level is recommended when clusters are large (say
n1 = 100) and the costs to recruit and measure a cluster
are small in relation to the costs to recruit and measure
a person. Vice versa, adding a covariate that only varies
at the person level is recommended when clusters are
small (say n1 = 4) and the relative costs to recruit and
measure a cluster are large.

39.5 Robustness Issues

In the Sect. 39.3 it was shown that the optimal sample
sizes depend on the value of the intra-class correlation
coefficient. The value of this parameter is generally un-
known at the design stage and an educated guess must
be obtained from subject-matter knowledge or similar
studies in the past. Table 1 in [39.25] gives an overview
of recent papers that report values of the intra-class cor-
relation coefficient. There is, however, no guarantee that
the values of similar studies in the past are the true val-
ues for the current study at hand, since the study may be
conducted in a different year of country, or may target
a different population (e.g. elementary-school children
instead of high-school children).

As an example consider a cluster randomized trials
that aims at detecting a small relative treatment effect at
power level 0.9 in a two-sided test with α = 0.05. The
cluster size is equal to n1 = 30, and the true but unknown

intra-class correlation is ρ = 0.05. The required number
of clusters at prior value ρ = 0.05 is equal to n2 = 86,
and this results in a power equal to 0.9, since the priorρ is
equal to the true ρ. However, if the prior estimate is equal
to ρ = 0.10, then the required number of clusters can be
calculated to be equal to n2 = 138. Thus, the number of
clusters is overestimated by 60%, and the power level
at the true ρ is equal to 0.98. For a prior estimate as
small as ρ = 0.025, the required number of clusters is
equal to n2 = 62, which results in a power level of 0.78
at the true ρ. Hence, cluster randomized trials are not
very robust against an incorrect prior estimate of the
intra-class correlation coefficient.

Since it is increasingly difficult to obtain adequate
financial recourses, and since cluster randomized trials
require the willingness of clusters and persons to par-
ticipate, it is extremely important to design trials such
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Table 39.3 Assumptions about the intra-class correlation coefficient, with associated power with 86 groups and required
number of groups for a power level of 0.9

Intra-class correlation coefficient Power with 86 groups Number of groups for power = 0.9

Median (95% interval) Median (95% interval) Median (95% interval)

0.05–0.051 0.90–0.898 86–88

0.008–0.099 0.734–0.995 44–136

that they are not under- or overpowered. Two proce-
dures to calculate robust optimal designs are Bayesian
optimal designs, where a prior distribution on the intra-
class correlation is used, and designs with sample-size
re-estimation based on data obtained from a pilot.

39.5.1 Bayesian Optimal Designs

Bayesian methods allow us to implicitly take uncertainty
about model parameters into account by using a prior
distribution on the parameters. Consider the example
given above and suppose that we assume the intra-class
correlation to be around 0.05, but that there is some
change that it is up to 0.10. This uncertainty may be
reflected by a normal distribution with mean 0.05 and
standard deviation 0.025, but truncated at zero so that
we exclude negative values. We can now sample from
this prior distribution and calculate the required number
of clusters to achieve a power level of 0.9. In addition,
we can also calculate the power level that is achieved
with 86 clusters.

The results in Fig. 39.3 and Table 39.3 were ob-
tained after 100 000 iterations, which took less that
one minute on a desktop computer with a 2.8-GHz
CPU and 1 Gb of RAM. The median intra-class cor-
relation coefficient is equal to 0.051, at which there
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Fig. 39.3 Densities of the prior distribution of the intra-class correlation coefficient, the required number of clusters to
achieve a power level 0.9, and the power at 86 clusters

are hardly any values larger than 0.1. The median
power achieved with 86 clusters is equal to 0.0898,
so there is a change of about 50% that the power is
less than the required level of 0.9. In some cases, it
can even be as small as 0.7. The median required num-
ber of clusters is equal to 88, whereas the boundaries
of the 95% interval are 44 and 136. So, on the ba-
sis of the results in Fig. 39.3 and Table 39.3 we might
decide to use a number of clusters larger than 86 to
be reasonably confident that the study has sufficient
power.

39.5.2 Designs
with Sample-Size Re-Estimation

Designs with sample-size re-estimation have been pro-
posed by Stein [39.26] in the context of comparing two
treatment conditions with respect to a continuous out-
come. His procedure includes two stages. In the first
stage (the internal pilot) the variance of the outcome
is estimated using the observations collected so far,
and the total sample size is re-estimated based on the
variance estimate. In the second stage the remainder
of the observations is collected such that re-estimated
total sample size is achieved. Only the observations
of the first stage are used to estimate the variance
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Table 39.4 Empirical type I error rate α and power 1−β for the standard design and re-estimation design for three values
of the prior ρ. The true ρ = 0.05

Prior ρ Standard design Re-estimation design

π = 0.25 π = 0.5 π = 0.75

α 1−β α 1−β α 1−β α 1−β

0.025 0.0538 0.7812 0.0526 0.8690 0.0600 0.9072 0.0586 0.9012

0.05 0.0480 0.9004 0.0576 0.8886 0.0530 0.9094 0.0556 0.8986

0.10 0.0502 0.9832 0.0534 0.8964 0.0588 0.9114 0.0532 0.9474

of the outcomes, while all observations are used in
the calculation of the group means. This procedure
was modified by Wittes and Britain [39.27] such that
all data are used in the final analysis. In contrast
to the Stein procedure, the Wittes and Britain pro-
cedure does not preserve the type I error rate since
the total sample size depends on the variance esti-
mate in the pilot. Internal pilots have been shown
to work well for cluster randomized trials by Lake
et al. [39.28].

We consider the same example where we wish to
detect a small relative treatment effect at power level
0.9. The true ρ = 0.05, and we have three prior values
ρ = 0.025, 0.05, and 0.10. Table 39.4 shows the empir-
ical type I error rates and power levels in a simulation
study with 5000 runs. The power levels for the design
without sample-size re-estimation (i. e. the standard de-
sign) are too small when the prior ρ is underestimated
and too large when the prior ρ is overestimated. The
values of the type I error rate are close to their nominal
value of α= 0.05.

For designs with sample-size re-estimation the re-
quired number of clusters is calculated on the basis
of the prior ρ . Then, a predefined proportion π of
this number of clusters is used in the internal pilot.
The required number of clusters in the second stage
is calculated on the basis of the parameter estimates ob-
tained from data collected in the internal pilot. When
the size of the internal pilot is already sufficiently large,
a second stage is not needed. Table 39.4 shows that
the power levels for studies with incorrect prior val-
ues ρ are much closer to the value 0.9 than they are in
the standard design. For π = 0.25 and prior ρ = 0.025,
the power is somewhat lower than 0.9, which is ex-
plained by the fact that the size of the internal pilot
is somewhat too small to result in a good estimate
of the true ρ. For π = 0.75 and prior ρ = 0.10, the
power is larger than 0.9, which is explained by the
fact that the size of the internal pilot is already too
large. The empirical type I error rates are somewhat,
but not dramatically, larger than the nominal value
α= 0.05.

39.6 Optimal Designs for the Intra-Class Correlation Coefficient

So far we have focussed on optimal designs that
maximize the power to detect a treatment effect or,
equivalently, minimize the variance of the treatment
effect estimator. Another option is to design a study
such that it minimizes the variance of the intra-class
correlation coefficient estimator, which is equal to

var(ρ̂) = 2(1−ρ)2(1+ (n1−1)ρ)2

(n1−1)(n1n2−n1)
. (39.26)

Such optimal designs are especially useful for pilot
studies that aim at an estimate of the intra-class corre-
lation coefficient. Again, we can minimize this variance
under the precondition that the costs for recruiting per-
sons and clusters do not exceed the budget, as specified
by (39.17). Closed-form equations for the optimal n1

and n2 do not exist. Instead, the optimal design may be
found by expressing n2 in terms of n1, c1, c2 and C us-
ing (39.17): n2 = C/(c1n1+c2). This relation may then
be substituted into (39.26), from which the optimal n1
may be calculated.

For most trials the main focus lies on the treatment
effect, but researchers may also be interested in the
degree of variability of the outcome that is between clus-
ters. If the amount of between-cluster variability turns
out to be high, then one may wish to identify those
schools for which the intervention performs worst and
try to characterize these schools in terms of their school-
level variables. The intervention can then be adjusted for
these types of schools. For instance, a smoking preven-
tion intervention that works well for high schools may
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have to be adjusted for schools for lower vocational
education.

When a researcher has multiple objectives in mind,
he or she may design a multiple-objective optimal de-
sign. Suppose that we wish to design a trial that aims
at estimating both the treatment effect and intra-class
correlation with largest precision, that is, it aims at min-
imizing var(β̂1) and var(ρ̂1). These two variances are the
two objectives and the first is the most important since
the trial is, in the first instance, designed to gain insight
into the value of the treatment effect, whereas the intra-
class correlation coefficient is of secondary importance.
The two-objective optimal design is the one that does
best under the criterion var(ρ̂1) subject to the constraint
that the value var(β̂1) is smaller than a user-specified
constant c:

min var(ρ̂) subject to var(β̂1) ≤ c . (39.27)

The design that satisfies this criterion is often called
a constrained optimal design. For convenience, this
criterion is often rewritten as

min var(ρ̂) subject to eff(β̂1) ≥ e , (39.28)

where eff(β̂1) is the efficiency in estimating the treat-
ment effect. So, the least important optimality criterion
is minimized subject to the constraint that the efficiency
in estimating the treatment effect is larger than a user-
selected constraint. The efficiency is calculated as the
var(β̂1) obtained with the optimal sample sizes as given
by (39.18) and (39.19) divided by the var(β̂1) obtained
with any other sample sizes n1 and n2. The efficiency
varies between zero and one. Its interpretation is that,
if N observations are used in the optimal design, then
N/eff(β̂1) observations are used in the suboptimal design
to obtain the same amount of information.

Constrained optimal designs are often difficult to de-
rive, and one may wish to construct a compound optimal
design to minimize

λ var(ρ̂)+ (1−λ) var(β̂1) . (39.29)

Compound optimal designs are generally easier to solve,
either numerically or analytically. Under convexity and
differentiability constrained and compound optimal de-
signs are equivalent [39.29]. So, in order to derive
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Fig. 39.4 Efficiency plot

the constrained optimal design one may first de-
rive the compound optimal design as a function of the
weight λ in (39.29). That is, for each value of λ the sam-
ple sizes n1 and n2 that minimize (39.29) are derived.
Subsequently, an efficiency plot is drawn in which the
efficiencies eff(β̂1) and eff(ρ̂) are plotted as a function of
λ. The constrained optimal design is the design for which
eff(β̂1) ≥ e and eff(ρ̂) is maximized. In most practical
situations the constant e is chosen to be 0.8 or 0.9.

Figure 39.4 shows an efficiency plot for a trial with
C = 50 000, c1 = 30, c2 = 10 and ρ = 0.025. The opti-
mal design for estimating ρ with the greatest precision is
n1 = 45.4 and n2 = 103.4 and is achieved when λ= 1.
The efficiency for ρ is a decreasing function of λ.
The optimal for estimating β1 with largest precision is
n1 = 10.8 and n2 = 362.8, and is achieved when λ= 0.
The efficiency for β1 is a increasing function of λ. Note
that the two lines do not necessarily meet at the point.
When we wish to estimate ρ with the greatest precision,
given the condition that eff(β̂1) ≥ 0.9, then we draw
a horizontal line at e = 0.9 to intersect the graph of
eff(β̂1). Then a vertical line is drawn from this point of
intersection to meet the λ-axis. This results in λ= 0.17,
which corresponds to n1 = 23.42 and n2 = 189.3, and
eff(ρ̂) = 0.876. Of course, these sample sizes have to
rounded off to integer values. Large efficiencies are
possible for both criteria, which are therefore called
compatible.
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39.7 Conclusions and Discussion

Cluster randomized trials randomize complete groups of
persons, rather than the persons themselves, to treatment
conditions. They are often used in situations where the
intervention is delivered to groups of persons, such as
in school-based smoking prevention interventions with
class teaching on smoking and health. Since the out-
comes of persons in a group cannot be considered to be
independent, a larger sample size is required to achieve
a pre-specified power level than in a simple random-
ized trial, especially when the intra-class correlation
coefficient and/or the cluster size are large.

Multisite trials are an alternative to cluster random-
ized trials. Multisite trials randomize persons within
clusters to treatment conditions, such that all treatments
are available within each cluster. So, for multisite tri-
als cluster and treatment condition are crossed, whereas
for cluster randomized trails clusters are nested within
treatment conditions. Multisite trials have two advan-
tages above cluster randomized trials: they are more
powerful, and they allow for the estimation of the clus-
ter by treatment interaction [39.30]. A main drawback of
multisite trials is that they do not protect from control-
group contamination, which occurs when information
on the intervention leaks from the individuals in the in-
tervention group to those in the control group [39.31].
In some cases blinding may be an option to prevent
control-group contamination, such as in double-blind
placebo-controlled multicentre clinical trial with pa-
tients nested within clinics. This is an option when the
experimental treatment is a new pill, which only dif-
fers from the pills in the control group by the amount
of active substance. When patients are randomly as-
signed to treatment conditions and neither the patient nor
the researchers know who belongs to which treatment,
a multisite study may be an alternative to a cluster ran-
domized trial. Blinding is of course no option when the

intervention consists of interpersonal relationships, such
as in peer-pressure groups. Control-group contamination
may also be due to the person delivering the interven-
tion, such as in guideline trials with patients nested
within family practices. If both a control and intervention
group are available in each practice, it will be extremely
difficult for the physician not to let patients in the con-
trol group benefit from the intervention. Of course, the
choice for a cluster randomized trial does not guarantee
the absence of control-group contamination. An exam-
ple is a trial in which general practices are randomized
to treatment conditions and the intervention consists of
leaflets to promote healthy lifestyles. Control-group con-
tamination can occur when staff members work between
practices and distribute leaflets in the control practices.
Another example is a school-based smoking prevention
intervention where children from different families at-
tend different schools, and thereby encounter different
treatment conditions.

This chapter has given an introduction to the design
and analysis of cluster randomized trails. It focused on
models with two levels of nesting, two treatment condi-
tions, and continuous outcomes. The extension to three
or more levels of nesting is straightforward and can be
found elsewhere [39.30, 32]. The optimal sample sizes
were shown to depend on the value of the intra-class cor-
relation coefficient and it was shown that an incorrect
prior may lead to an under- or overpowered study. This
may be overcome by using a robust optimal design, such
as a Bayesian optimal design or a design using sample-
size re-estimation. Such designs are also very useful for
the planning of cluster randomized trials with binary out-
comes, since then the optimal sample size can be shown
not only to depend on the intra-class correlation coeffi-
cient, but also on the probabilities of a positive response
in each treatment condition [39.33, 34].
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A Two-Way Se40. A Two-Way Semilinear Model for Normalization
and Analysis of Microarray Data

A proper normalization procedure ensures
that the normalized intensity ratios provide
meaningful measures of relative expression
levels. We describe a two-way semilinear model
(TW-SLM) for normalization and analysis of
microarray data. This method does not make
the usual assumptions underlying some of the
existing methods. The TW-SLM also naturally
incorporates uncertainty due to normalization
into significance analysis of microarrays. We
propose a semiparametric M-estimation method
in the TW-SLM to estimate the normalization
curves and the normalized expression values,
and discuss several useful extensions of the
TW-SLM. We describe a back-fitting algorithm
for computation in the model. We illustrate
the application of the TW-SLM by applying
it to a microarray data set. We evaluate the
performance of TW-SLM using simulation studies
and consider theoretical results concerning the
asymptotic distribution and rate of convergence
of the least-squares estimators in the TW-
SLM.
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Microarrays are a useful tool for monitoring gene ex-
pression levels on a large scale and has been widely
used in functional genomics [40.1, 2]. In a microarray
experiment, cDNA segments representing the collec-
tion of genes and expression sequence tags (ESTs)
to be probed are amplified by the polymerase chain
reaction (PCR) and spotted in high density on glass
microscope slides using a robotic system. Such slides
are called microarrays. Each microarray contains thou-
sands of reporters of the collection of genes or ESTs.
The microarrays are queried in a co-hybridization as-
say using two fluorescently labeled biosamples prepared
from the cell populations of interest. One sample is la-
beled with the fluorescent dye Cy5 (red), and another
with the fluorescent dye Cy3 (green). Hybridization
is assayed using a confocal laser scanner to measure
fluorescence intensities, allowing simultaneous determi-
nation of the relative expression levels of all the genes
represented on the slide [40.3]. The ability to moni-

tor gene expressions on a large scale promises to have
a profound impact on the understanding of basic cellular
processes, developing better tools for disease diagnos-
tics and treatment, cancer classification, and identifying
drug targets, among others. Indeed, microarrays have
already been used for detecting differentially expressed
genes in different cell populations, classifying differ-
ent cancer subtypes, identifying gene clusters based on
co-expressions [40.4–7].

Because a microarray experiment monitors thou-
sands of genes simultaneously, it routinely produces
a massive amount of data. This and the unique nature
of microarray experiments present a host of challenging
statistical issues. Some of these can be dealt with us-
ing the existing statistical methods, but many are novel
questions that require innovative solutions. One such
question is normalization. The purpose of normaliza-
tion is to remove bias in the observed expression levels
and establish the baseline ratios of intensity levels from

Part
E

4
0



720 Part E Modelling and Simulation Methods

the florescent dyes Cy3 and Cy5 across the whole dy-
namic range. A proper normalization procedure ensures
that the intensity ratios provide meaningful measures of
relative expression levels. In a microarray experiment,
many factors may cause bias in the observed expression
levels, such as differential efficiency of dye incorpo-
ration, differences in concentration of DNA on arrays,
difference in the amount of RNA labeled between the
two channels, uneven hybridizations, differences in the
printing pin heads, among others.

Many researchers have considered various nor-
malization methods; see for example [40.8–13]. For
reviews of some of the existing normalization methods,
see [40.14, 15]. More recently, Fan et al. [40.16] pro-
posed a semilinear in-slide model (SLIM) method that
makes use of replications of a subset of the genes in an
array. If the number of replicated genes is small, the ex-
pression values of the replicated genes may not cover the
entire dynamic range or reflect the spatial variation in an
array. Fan et al. [40.17] generalized the SLIM method
to account for across-array information, resulting in an
aggregated SLIM, so that replication within an array is
no longer required.

A widely used normalization method is the local
regression lowess [40.18] normalization proposed by
Yang et al. [40.11]. This method estimates the normal-
ization curves using the robust lowess for log-intensity
ratio versus log-intensity product using all the genes in
the study. The underlying assumption of this normal-
ization method is either that the number of differentially
expressed genes is relatively small or that the expression
levels of up- and down-regulated genes are symmetric,
so that the lowess normalization curves are not af-
fected significantly by the differentially expressed genes.
If it is expected that many genes will have differen-
tial expressions, Yang et al. [40.11] suggested using
dye-swap for normalization. This approach makes the
assumption that the normalization curves in the two
dye-swaped slides are symmetric. Because of the slide-
to-slide variation, this assumption may not always be
satisfied.

Strictly speaking, an unbiased normalization curve
should be estimated using genes whose expression levels
remain constant and cover the whole range of the inten-
sity. Thus Tseng et al. [40.12] first used a rank-based
procedure to select a set of invariant genes that are likely
to be non-differentially expressed, and then use these
genes for lowess normalization. However, they pointed
out that the number of invariant genes may be small and
not cover the whole dynamic range of the expression val-
ues, and extrapolation is needed to fill in the gaps that are
not covered by the invariant genes. In addition, a thresh-
old value is required in this rank-based procedure. The
level of the sensitivy of the final result to the threshold
value may need to be evaluated on a case-by-case basis.

A common practice in microarray data analysis is
to consider normalization and detection of differentially
expressed genes separately. That is, the normalized val-
ues of the observed expression levels are treated as data
in the subsequent analysis. However, because normaliza-
tion typically includes a series of statistical adjustments
to the data, there are variations associated with this pro-
cess. These variations will be inherited in any subsequent
analysis. It is desirable to take them into account in order
to assess the uncertainty of the analysis results correctly.

We have proposed a two-way semilinear model (TW-
SLM) for normalization and analysis of microarray
data [40.19–21]. When this model is used for normaliza-
tion, it does not require some of the assumptions that are
needed in the lowess normalization method. Below, we
first give a description of this model, and then suggest
an M-estimation (including the least squares estimator
as a special case) and a local regression method for
estimation in this model. We describe a back-fitting al-
gorithm for computation in the model. We then consider
several useful extensions of this model. We illustrate
the application of the TW-SLM by applying it to the
Apo A1 data set [40.7]. We evaluate the performance of
TW-SLM using simulation studies. We also state the-
oretical results concerning the asymptotic distribution
and rate of convergence of the least squares estimator of
the TW-SLM.

40.1 The Two-Way Semilinear Model

Suppose there are J genes and n slides in the study.
Let Rij and Gij be the red (Cy 5) and green (Cy 3)
intensities of gene j in slide i, respectively. Let yij be
the log-intensity ratio of the red over green channels
of the j-th gene in the i-th slide, and let xij be the
corresponding average of the log-intensities of the red

and green channels. That is,

yij = log2
Rij

Gij
, xij = 1

2
log2(Rij Gij ),

i = 1, . . . , n, j = 1, . . . , J .
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Let zi ∈ R
d be a covariate vector associated with the i-th

slide. It can be used to code various types of designs.
The TW-SLM model decomposes the observed intensity
ratio yij in the following way:

yij = fi (xij )+ z′iβ j +σijεij ,

i = 1, . . . , n, j = 1, . . . , J , (40.1)

where fi is the intensity-dependent normalization curve
for the i-th slide, β j ∈ R

d is the effect associated with
the j-th gene; σij are the residual standard deviation,
εij have mean 0 and variance 1. We note that fi can
be considered as the log-intensity ratios in the absence
of the gene effects. From a semiparametric modeling
standpoint, these fi functions are nonparametric com-
ponents in the model and are to be estimated. In model
(40.1), it is only made explicit that the normalization
curves fi are slide-dependent. It can also be made de-
pendent upon regions of a slide to account for spatial
effects. For example, it is straightforward to extend the
model with an additional subscript in (yij , xij ) and fi and
make fi also depend on the printing-pin blocks within
a slide. We describe this and two other extensions of
TW-SLM in Sect. 40.4. Below, we denote the collection
of the normalization curves by f = { f1, . . . , fn} and the
matrix of the gene effects by β= (β1, . . . , βJ )′ ∈ R

J×d .
Let Ω J×d

0 be the space of all J × d matrices β satisfy-
ing

∑J
j=1 β j = 0. From the definition of the TW-SLM

model (40.1), β is identifiable only up to a member in
Ω J×d

0 .
We call (40.1) TW-SLM since it contains the two-

way analysis of variation (ANOVA) model as a special
case with fi (xij )= αi and zi = 1. Our approach naturally
leads to the general TW-SLM

yij = fi (xij )+ z′ijβ j + εij , (40.2)

which could be used to incorporate additional prior
knowledge in the TW-SLM (Sect. 40.3). The identifi-
ability condition

∑
j β j = 0 is no longer necessary in

(40.2) unless zij = zi as in (40.1).
The TW-SLM is an extension of the semi-

parametric regression model (SRM) proposed by
Wahba [40.22] and Engle et al. [40.23]. Specifically,
if f1 = · · · = fn ≡ f and J = 1, then the TW-SLM
simplifies to the SRM, which has one nonparamet-
ric component and one finite-dimensional regression
parameter. Much work has been done concerning the
properties of the semiparametric least squares estimator
(LSE) in the SRM, see for example, Heckman [40.24]
and Chen [40.25]. It has been shown that, under ap-
propriate regularity conditions, the semiparametric least
squares estimator of the finite-dimensional parameter
in the SRM is asymptotically normal, although the rate
of convergence of the estimator of the nonparametric
component is slower than n1/2.

40.2 Semiparametric M-Estimation in TW-SLM

We describe two approaches of semiparametric M-
estimation in the TW-SLM. The first one uses linear
combinations of certain basis functions (e.g. B-splines)
to approximate the normalization curves. The second
one uses the local regression technique for estima-
tion in the TW-SLM. Three important special cases in
each approach include the least squares estimator, the
least absolute deviation estimator, and Huber’s robust
estimator [40.26].

40.2.1 Basis-Based Method

Let xi = (xi1, . . . , xi J )′, yi = (yi1, . . . , yi J )′ and f (xi )≡
[ f (xi1), . . . , f (xi J )]′ for a univariate function f . We
write the TW-SLM (40.1) in vector notation as

yi = βzi + fi (xi )+ εi , i = 1, . . . , n . (40.3)

Let Ω J×d
0 be the space of all J × d matrices

β ≡ (β1, . . . , βJ )′ satisfying
∑J

j=1 β j = 0. It is clear

from the definition of the TW-SLM model (40.3) that β

is identifiable only up to a member in Ω J×d
0 , since we

may simply replace β j by β j −∑J
k=1 βk/J and fi (x)

by fi (x)+∑J
k=1 β

′
kzi/J in (40.1). In what follows, we

assume

β ∈Ω J×d
0 ≡

⎧
⎨

⎩β :
J∑

j=1

β j = 0

⎫
⎬

⎭ . (40.4)

Let bi1, . . . , bi,Ki be Ki B-spline basis functions[40.27].
Let

Si ≡ {bi0(x) ≡ 1, bik(x), k = 1, . . . , Ki} (40.5)

be the spaces of all linear combinations of the basis
functions. We note that wavelet, Fourier and other types
of basis functions can also be used. We approximate fi
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by

αi0+
Ki∑

k=1

bik(x)αik ≡ bi (x)′αi ,∈ Si

where bi (x) = [1, bi1(x), . . . , bi,Ki (x)]′, and αi =
(αi0, αi1, . . . , αiKi )

′ are coefficients to be estimated
from the data. Let b f = ( f1, . . . , fn) and

Ms(β, f ) =
n∑

i=1

J∑

j=1

ms

[
yij − fi (xij )−β′j zi

]
,

(40.6)

where ms is an appropriate convex function which may
also depend on a scale parameter s. Three important
special cases are ms(t) = t2,ms(t) = |t|, and the Huber
ρ function. We define the semiparametric M-estimator
of {β, f } to be the {β̂, f̂ } ∈Ω J×d

0 ×
∏n

i=1 Si that mini-
mizes Ms(β, f ). It is often necessary to consider a scale
parameter s in robust estimation. This scale parameter
usually needs to be estimated jointly with (β, f ).

One question is how to determine the number of ba-
sis functions Ki . For the purpose of normalization, it is
reasonable to use the same K for all the arrays, that is,
let K1 = · · · = Kn ≡ K . This will make normalization
consistent across the arrays. For the cDNA microarray
data, the total intensity has positive density over a fi-
nite interval, typically [0, 16]. For the cubic polynomial
splines, we have used the number of knots K = 12, and
the data percentiles as the knots in the R function bs.

40.2.2 Local Regression (Lowess) Method

We can also use the lowess method [40.18] for the esti-
mation of TW-SLM. Let Wλ be a kernel function with
window width λ. Let

sp(t;α, x) = α0(x)+α1(x)t+· · ·+αp(x)t p

be a polynomial in t with order p, where p = 1 or 2 are
common choices. The objective function of the lowess
method for the TW-SLM is

Ms(α,β) =
n∑

i=1

J∑

j=1

J∑

k=1

Wλ(xik, xij )ms

[
yik

− sp(xik;α, xij )− z′iβk

]
. (40.7)

Let (α̂, β̂) be the value that minimizes ML . The lowess
M-estimator of fi at xij is f̂i (xij ) = sp(xij , α̂, xij ).

40.2.3 Back-Fitting Algorithm in TW-SLM

In both the basis-based and local regression methods, we
use a back-fitting algorithm [40.28] to compute the semi-
parametric M-estimators. For the M-estimator based on
the basis spaces Si defined in (40.6), set β(0) = 0. For
k = 0, 1, 2, . . . ,

• Step 1: compute f (k) by minimizing Ms
(

f ,β(k)
)

with respect to the space
∏n

i=1 Si .• Step 2: for the f (k) computed above, obtain β(k+1) by
minimizing Ms

(
f (k),β

)
with respect to β in Ω J×d

0 .

Iterate between steps 1 and 2 until the desired conver-
gence criterion is satisfied.

For strictly convex m, e.g., m(t) = t2 or m(t) = |t|,
the algorithm converges to the unique global optimal
point. The back-fitting algorithm can be also applied to
the lowess M-estimators. When m(t) = t2, then com-
putation consists of a series of weighted regression
problems.

40.2.4 Semiparametric Least Squares
Estimation in TW-SLM

An important special case of the M-estimator is the least
squares (LS) estimator, which has an explicit form in the
TW-SLM [40.19, 20]. The LS objective function is

D2(β, f ) =
n∑

i=1

J∑

j=1

[
yij − fi (xij )− z′iβ j

]2
.

The semiparametric least squares estimator (SLSE) of
{β, f } is the {β̂, f̂ } ∈Ω J×d

0 ×
∏n

i=1 Si that minimizes
D2(β, f ). That is,

(
β̂, f̂

)= arg min(β, f )∈Ω J×d
0 ×

∏n
i=1 Si

D2(β, f ) .

(40.8)

Denote the spline basis matrix for the i-th array by

Bi =

⎛
⎜⎜⎝

B′i1
...

B′i J

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1 bi1(xi1) . . . biKi (xi1)
...

...
...

...

1 bi1(xi J ) . . . biKi (xi J )

⎞
⎟⎟⎠ .

Define the projection matrix Qi as

Qi = Bi
(
B′i Bi

)−1
B′i , i = 1, . . . , n .

Let αi = (αi0, . . . , αiKi )
′ be the spline coefficients for

the estimation of fi and α= (α1, . . . , αn)′. We can write
D2(β,α) = D2(β, f ). Then the problem of minimizing
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D2(β,α) with respect to (β,α) is equivalent to solving
the linear equations:

β̂

n∑

i=1

zi z
′
i +

n∑

i=1

Bi α̂i z
′
i =

n∑

i=1

yi z
′
i , B′i Bi α̂i + B′i β̂zi

= B′i yi .

Let (β̂, α̂) be the solution. We define f̂i (x) ≡
bi (x)′α̂i , i = 1, . . . , n.

Using (40.3), it can be shown that the SLSE (40.8)
equals

β̂ = arg minβ

n∑

i=1

KKKKKyi − (IJ −Qi)βzi

KKKKK

2

. (40.9)

In the special case when d = 1 (scalar β j ) and β is
a vector in R

J , (40.9) is explicitly

β̂ = Λ̂−1

[
1

n

n∑

i=1

(IJ −Qi )yi z
′
i

]
, (40.10)

since IJ −Qi are projections in R J , where zi = 1 (scalar)
and, where

Λ̂J,n ≡ 1

n

n∑

i=1

(IJ −Qi )⊗ zi z
′
i . (40.11)

We note that Λ̂ can be considered as the observed
information matrix. Here and below, A−1 denotes
the generalized inverse of matrix A, defined by
A−1x ≡ arg min

(∣∣∣∣b
∣∣∣∣ : Ab = x

)
. If A is a symmetric

matrix with eigenvalues λ j and eigenvectors v j , then
A=∑

j λ jv jv
′
j and A−1 =∑

λ j �=0 λ
−1
j v jv

′
j .

For general zi and d ≥ 1, (40.9) is still given by
(40.10) with

Λ̂J,n ≡ 1

n

n∑

i=1

(IJ −Qi )⊗ zi z
′
i . (40.12)

The information operator (40.11) is an average of ten-
sor products, i. e. a linear mapping from Ω J×d

0 to Ω J×d
0

defined by Λ̂β ≡ n−1 ∑n
i=1(IJ −Qi )βzi z′i .

Although the SLSE has an explicit expression, direct
computation of SLSE involves inversion of a large J × J
matrix. So we use the back-fitting algorithm. In this case,
computation in each step of the back-fitting algorithm
becomes an easier least squares problem and has explicit
expressions as follows. Set β(0) = 0. For k = 0, 1, 2, . . . ,

• Step 1: compute α(k) by minimizing D2(β(k),α) with
respect to α. The explicit solution is

α
(k)
i = (

B′i Bi
)−1

B′i
(
yi −β(k)zi

)
, i = 1, . . . , n .

• Step 2: given the α(k) computed in step 1, let
f (k)
i (x) = bi (x)′α(k)

i , compute β(k+1) by minimizing
Dw

(
β,α(k)

)
with respect to β. The explicit solution

is

β̂
(k+1)
j =

(
n∑

i=1

zi z
′
i

)−1 n∑

i=1

zi

[
yij− f (k)

i

(
xij

)]
,

j = 1, . . . , J . (40.13)

The algorithm converges to the sum of residual squares.
Suppose that the algorithm meets the convergence cri-
terion at step K . Then the estimated values of β j are
β̂ j = β

(K )
j , j = 1, . . . , J , and the estimated normaliza-

tion curves are

f̂i (x) = bi (x)′α(K )
i = bi (x)′(B′i Bi )

−1 B′i (yi − β̂zi ) ,

i = 1, . . . , n . (40.14)

The algorithm described above can be conveniently
implemented in the statistical computing environ-
ment R [40.29]. Specifically, steps 1 and 2 can be solved
by the function lm in R. The function bs can be used to
create a basis matrix for the polynomial splines.

Let xi = (xi1, . . . , xi J )′ and fi (xi ) = [ fi (xi1), . . . ,
fi (xi J )]′. Let Qi = Bi (B′i Bi )−1 B′i . By (40.14), the esti-
mator of fi (xi ) is

f̂i (xi ) = Qi (yi − β̂zi ) .

Thus the normalization curve is the result of the lin-
ear smoother Qi operating on yi − β̂zi . The gene effect
β̂zi is removed from yi . In comparison, the lowess nor-
malization method does not remove the gene effect.
An analogue of the lowess normalization, but using
polynomial splines, is

f̃i (xi ) = Qi yi = Biα
(0)
i . (40.15)

We shall call (40.15) a spline normalization method.
Comparing f̂i (xi ) with f̃i (xi ), we find that, if there is
a relatively large percentage of differentially expressed
genes, the difference between these two normalization
curves can be large. The magnitude of the difference
also depends on the magnitude of the gene effects.
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40.3 Extensions of the TW-SLM

In this section, we describe three models that are ex-
tensions of the basic TW-SLM. These models include
the multi-way SLM (MW-SLM); a model that incorpo-
rates control genes in the normalization; and a model for
simultaneous location and scale normalization.

40.3.1 Multi-Way Semilinear Models

Just as TW-SLM is a semilinear extension of two-way
ANOVA, for data sets with a higher-dimensional struc-
ture, multi-way ANOVA can be extended to multi-way
semilinear models (MW-SLM) in the same manner by
including nonparametric and linear functions of covari-
ates as the main and interactive terms/effects in the
model. This connection between ANOVA and MW-
SLM is important in design of experiments and in
understanding and interpretation of the contribution of
different effects and identifiability conditions. The ex-
amples below are motivated by real data sets.

In model (40.1), it is only made explicit that the
normalization curve fi is array-dependent. It is straight-
forward to construct a 3W-SLM to normalize the data at
the printing-pin block level:

yik j = fik(xik j )+ z′iβk j + εik j , (40.16)

with the identifiability condition
∑

j βk j = 0, where
yik j and xik j are the log-intensity ratio and log-
intensity product of gene j in the k-th block of array
i, respectively. Model (40.16) includes nonparametric
components for the block and array effects and their in-
teraction and linear components for the gene effects and
their interaction with the block effects. It was used in
Huang et al. [40.21] to analyze the Apo A1 data [40.7],
as an application of the TW-SLM (for each fixed k) at the
block level. The interaction between gene and block ef-
fects is present in (40.16) since we assume that different
sets of genes are printed in different blocks. If a repli-
cation of the same (or entire) set of genes is printed
in each block, we may assume no interaction between
gene and block effects (βk j = β j ) in (40.16) and reduce
it to the TW-SLM with (i, k) as a single index, treating
a block/array in (40.16) as an array in (40.1).

As an alternative to (40.16) we may also use con-
stants to model the interaction between array and block
effects as in ANOVA, resulting in the model

yik j = fi (xik j )+γik + z′iβk j + εik j , (40.17)

with identifiability conditions
∑

i γik =∑
k γik = 0

and
∑

k j βk j = 0. This can be viewed as an exten-

sion of the three-way ANOVA model Eyik j = µ+
αi•• +γik• +β•k• +β•k j +β•• j without {i, j} and three-
way interactions, via µ+αi•• ⇒ fi and β•k• +
β•k j +β•• j ⇒ βk j . Note that the main block effects
are represented by fik in (40.16) and by βk j in
(40.17).

Our approach easily accommodates designs where
genes are printed multiple times in each array. Such
a design is helpful for improving the precision and for
assessing the quality of an array using the coefficient of
variation [40.12]. Suppose there is a matrix of printing-
pin blocks in each array and that a replication of the
same (or entire) set of genes is printed in each column
of blocks in the matrix in each array. As in (40.17),
a 4W-SLM can be written as

yicr j = fi (xicr j )+γicr + z′iβr j + εicr j (40.18)

for observations with the j-th gene in the block at c-th
column and r-th row of the matrix in the i-th array,
with identifiability conditions

∑
i γicr =∑

r γicr = 0
and

∑
r j βr j = 0, with or without the three-way inter-

action or the interaction between the column and row
effects in γicr . Note that the matrix of blocks does
not have to match the physical columns and rows of
printing-pin blocks. In model (40.18), the only non-
parametric component is the array effects and the block
effects are modeled as in ANOVA. If the block effects
also depend on the log-intensity product xicr j , the fi
and γicr in (40.18) can be combined into ficr (xicr j ), re-
sulting in the TW-SLM (for each fixed r) at the row
level, which is equivalent to (40.16). If the replication of
genes is not balanced, we may use a MW-SLM derived
from an ANOVA model with incomplete/unbalanced
design or the modeling methodologies described in
Sect. 40.2.

From the above examples, it is clear that, in an MW-
SLM, the combination of main and interactive effects
represented by a term is determined by the labeling of
the parameter (not that of the covariates) of the term
as well as the presence or absence of associated iden-
tifiability conditions. Furthermore, since the center of
a nonparametric component, e.g.

∑
j fi (xij ) in a TW-

SLM, is harder to interpret, identifiability conditions are
usually imposed on parametric components. As a result,
a nonparametric component representing an interactive
effect usually represents all the associated main effects
as well, and many MW-SLMs are equivalent to an im-
plementation of the TW-SLM with a suitable partition
of data, as in (40.16).
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40.3.2 Spiked Genes and Incorporation
of Prior Knowledge in the MW-SLM

We describe three methods to incorporate prior knowl-
edge in an MW-SLM: augmenting models, coding
covariates, and imposing linear constraints. An impor-
tant application of these methods is inclusion of spiked
genes in normalization.

In many customized microarray experiments, it is
possible to include a set of spiked genes with equal con-
centrations in the Cy5 and Cy3 channels. An important
reason to use spiked genes is to calibrate scanning par-
ameters, for example, intensity levels from the spiked
genes can be used for tuning the laser power in each
scanning channel in order to balance the Cy5 and Cy3
intensities. Spiked genes do not necessarily show an
observed 1:1 ratio due to experimental variations. Be-
cause the number of spiked genes is often small, it is
not adequate just to use the spiked genes as the basis for
normalization.

Let ys
ik and xs

ik be the log-intensity ratio and product
of the k-th spiked gene in the i-th array, i = 1, . . . , n, k =
1, . . . , K . Then we can augment the TW-SLM (40.1)
as follows:

ys
ik = fi

(
xs

ik

)+ εs
ik, yij = fi

(
xij

)+ z′iβ j + εij .

(40.19)

The first equation is for the spiked genes, whose cor-
responding βs

k are zero. Since a common fi is used in
(40.19) for each array, data from both spiked genes and
genes under study contribute to the estimation of nor-
malization curves as well as gene effects. Note that the

identifiability condition
∑

j β j = 0 in (40.1) is neither
necessary nor appropriate for (40.19).

We may also use the general TW-SLM (40.2) to
model spiked genes by simply setting zij = 0 if a spiked
gene is printed at the j-th spot in the i-th array and
zij = zi otherwise, where zi are the design variable for
the i-th array as in (40.1).

A more general (but not necessarily simpler) method
of incorporating prior knowledge is to impose con-
straints in addition or as alternatives to the identifiability
conditions in an MW-SLM. For example, we set β j = 0
if j corresponds to a spiked gene, and β j1 = · · · = β jr if
there are r replications of a experimental gene at spots
{ j1, . . . , jr} in each array.

40.3.3 Location and Scale Normalization

The models we described above are for location nor-
malization. It is often necessary to perform scale
normalization to make arrays comparable in scale. The
standard approach is to perform scale normalization
after the location normalization, as discussed in Yang
et al. [40.11], so that normalization is completed in two
separate steps. We can extend the MW-SLM to incorp-
orate the scale normalization by introducing a vector of
array-specific scale parameters (τ1, . . . , τn), as in

yij − fi (xij )

τi
= z′iβ j + εij , i = 1, . . . , n ,

j = 1, . . . , J , (40.20)

for the TW-SLM, where τ1 ≡ 1 and the τi are restricted
to be strictly positive. A more general model would
allow τi also to depend on the total intensity levels.

40.4 Variance Estimation and Inference for β

In addition to being a standalone model for normal-
ization, the TW-SLM can also be used for detecting
differentially expressed genes. For this purpose, we need
to estimate the variance of β̂. This requires the estimation
of residual variances.

We have considered the model in which the resid-
ual variances depend smoothly on the total intensity
values, and such dependence may vary from array to
array [40.21]. The model is

σ2
ij = σ2

i (xij ), i = 1, . . . , n, j = 1, . . . , J ,

where σ2
i is a smooth positive function. This model takes

into account the possible array-to-array variations in
the variances. Because of the smoothness assumption

on σ2
i , this model says that, in each array, the genes

with similar expression intensity values also have simi-
lar residual variances. This is a reasonable assumption,
since for many microarray data, the variability of the
log-intensity ratio depends on the total intensity. In par-
ticular, it is often the case that the variability is higher in
the lower range of the total intensity than in the higher
range.

We use the method proposed by Ruppert
et al. [40.30] and Fan and Yao [40.31] in estimating the
variance function in a nonparametric regression model.
For each i = 1, . . . , n, we fit a smooth curve through the
scatter plot (xij , ε̂

2
ij ), where ε̂2

ij = (yij − f̂i (xij )− z′i β̂ j )2.
This is equivalent to fitting the nonparametric regression
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model

ε̂2
ij = σ2

i (xij )+ τij , j = 1, . . . , J ,

for i = 1, . . . , n, where τij is the residual term in this
model. We use the same spline bases as in the estimation
of fi (40.14). The resulting spline estimator σ̂2

i can be
expressed as

σ̂2
i (x) = b′i (x)(B′i Bi )

−1 B′i ε̂2
i , (40.21)

where ε̂2
i = (ε̂2

i1, . . . , ε̂
2
i J )′. The estimator of σ2

ij is then
σ̂2

ij = σ̂2
i (xij ).

We can now approximate the variance of β̂ j as fol-
lows [40.21]. Let Zn =∑n

i=1 zi z′i . Based on (40.13), we
have

var(β̂ j ) ≈ Z−1
n

[
n∑

i=1

zi z
′
ivar(εij )

]
Z−1

n

+ Z−1
n

[
n∑

i=1

zi z
′
ivar

[
f̂i (xij )

]
]

Z−1
n

≡Σε, j +Σ f, j .

The variance of β̂ j consists of two components. The first
component represents the variation due to the residual
errors in the TW-SLM, and the second component is due
to the variation in the estimated normalization curves.

For the first term Σε, j , we have

Σε, j = Z−1
n

(
n∑

i=1

zi z
′
iσ

2
ij

)
Z−1

n .

Suppose that σ̂2
ij is a consistent estimator of σ2

ij , which
will be given below. We estimate Σε, j by

Σ̂ε, j = Z−1
n

(
n∑

i=1

zi z
′
i σ̂

2
ij

)
Z−1

n .

For the second term Σ f, j , we approximate f̂i by the
ideal normalization curve, that is,

f̂i (xi ) = Qi
(
yi − β̂zi

)≈ Qi
(
yi −βzi

)

= Qi [εi + fi (xi )] .
Therefore, conditional on xi , we have,

var
[

f̂i (xi )
]
≈ Qivar(εi )Qi ,

and

var
[

f̂i (xij )
]
= e′j Qivar(εi )Qie j ,

where e j is the unit vector whose j-th element is 1. Let
Σ̂i be an estimator of var(εi ). We estimate Σ f, j by

Σ̂ f, j = Z−1
n e′j

(
n∑

i=1

QiΣ̂i Qi

)
e j Z−1

n .

Finally, we estimate var
(
β̂ j

)
by

Σ̂β, j = Σ̂ε, j + Σ̂ f, j . (40.22)

Then a test for the contrast c′β j , where c is a known
contrast vector, is based on the statistic

t j = c′β̂ j√
c′Σ̂β, j c

.

As is shown in Sect. 40.6, for large J , the distribu-
tion of t j can be approximated by the standard normal
distribution under the null c′β j = 0. However, to be
conservative, we use a t distribution with an appro-
priate number of degrees of freedom to approximate
the null distribution of t j when c′β j = 0. For ex-
ample, for a direct comparison design, the number
of degrees of freedom is n−1. For a reference de-
sign in a two sample comparison, the variances for
the two groups can be estimated separately, and then
Welch’s correction for the degrees of freedom can
be used. Resampling methods such as permutation or
bootstrap can also be used to evaluate the distribution
of t j .

Another approach is to estimate σ2
ij jointly with

( f ,β). This approach is computationally more inten-
sive but may yield more efficient estimates of (β, f ) and
σ2

ij . Consider an approximation to σ2
ij using the spline

basis functions:

σ2
ij = σ2

i (xij ) =
Ki∑

k=1

γikbk(xij ) . (40.23)

Let γ be the collection of the γik. Assuming normality
for εij , the negative likelihood function is

 (β, f , γ ) =−
n∏

i=1

J∏

j=1

1

σij
φ

(
yij− fi (xij )−β′j zi

σij

)
,

(40.24)

where φ is the density of N(0, 1). For robust M-
estimation, we define the M-estimation objective
function as

Ms(β, f , γ ) =
n∑

i=1

J∑

j=1

σijms

(
yij− fi (xij )−β′j zi

σij

)
.

(40.25)

Again, we can use a back-fitting algorithm for com-
puting the M-estimators, but with an extra step in each
iteration for γ .
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40.5 An Example and Simulation Studies

40.5.1 Apo A1 Data

We now illustrate the TW-SLM for microarray data by
the Apo A1 data set of Callow et al. [40.7]. The analysis
described here is from Huang et al. [40.21]. The purpose
of this experiment is to identify differentially expressed
genes in the livers of mice with very low high-density
lipoprotein (HDL) cholesterol levels compared to inbred
mice. The treatment group consists of eight mice with
the apo A1 gene knocked out and the control group con-
sists of eight C57BL/6 mice. For each of these mice,
target cDNA is obtained from mRNA by reverse tran-
scription and labeled using a red fluorescent dye (Cy5).
The reference sample (green fluorescent dye Cy3) used
in all hybridizations was obtained by pooling cDNA
from the eight control mice. The target cDNA is hy-
bridized to microarrays containing 5548 cDNA probes.
This data set was analyzed by Callow et al. [40.7] and
Dudoit et al. [40.32]. Their analysis uses lowess nor-
malization and the two-sample t-statistic. Eight genes
with multiple comparison adjusted permutation p-value
≤ 0.01 are identified.

We apply the proposed normalization and analysis
method to this data set. As in Dudoit et al. [40.32],
we use printing-tip-dependent normalization. The TW-
SLM model used here is

yik j = fik(xik j )+ z′iβk j + εik j ,

where i = 1, . . . , 16, k = 1, . . . , 16, and j = 1, . . . ,
399. Here i indexes arrays, k indexes printing-tip blocks,
and j index genes in a block. εik j are residuals with
mean 0 and variance σ2

ik j . We use the model

σ2
ik j = σ2

ik(xik j ) ,

where σ2
ik are unknown smooth functions. We apply

the printing-pin-dependent normalization and estima-
tion approach described in Sect. 40.3.2. The covariate
zi = (1, 0)′ for the treatment group (apo A1 knock-out
mice) and zi = (0, 1)′ for the control group (C57BL/6
mice). The coefficient βk j = (βk j1, βk j2). The con-
trast βk j1−βk j2 measures the expression difference
for the j-th gene in the k-th block between the two
groups.

To compare the proposed method with the exist-
ing ones, we also analyzed the data using the lowess
normalization method as in Dudoit et al. [40.32], and
a lowess-like method where, instead of using local
regression, splines are used in estimating the normaliza-

tion curves described in (40.15) at the end of Sect. 40.2.
We refer to this method as the spline (normalization)
method below.

As examples of the normalization results, Fig. 40.1
displays the M–A plots and printing-tip-dependent nor-
malization curves in the 16 printing-pin blocks of the
array from one knock-out mouse. The solid line is the
normalization curve based on the TW-SLM model, and
the dashed line is the lowess normalization curve. The
degrees of freedom used in the spline basis function in
the TW-SLM normalization is 12, and following Dudoit
et al. [40.32], the span used in the lowess normaliza-
tion is 0.40. We see that there are differences between
the normalization curves based on the two methods. The
lowess normalization curve attempts to fit each indi-
vidual M–A scatter plot, without taking into account
the gene effects. In comparison, the TW-SLM normal-
ization curves do not follow the plot as closely as the
lowess normalization. The normalization curves esti-
mated using the spline method with exactly the same
basis functions used in the TW-SLM closely resem-
ble those estimated using the lowess method. Because
they are indistinguishable by eye, these curves are not
included in the plots.

Figure 40.2 displays the volcano plots of − log10
p-values versus the mean differences of log-expression
values between the knock-out and control groups. In the
first (left panel) volcano plot, both the normalization and
estimation of β are based on the TW-SLM. We estimated
the variances for β̂k j1 and β̂k j2 separately. These vari-
ances are estimated based on (40.21), which assumes
that the residual variances depend smoothly on the to-
tal log-intensities. We then used Welch’s correction for
the degrees of freedom in calculating the p-values. The
second (middle panel) plot is based on the lowess nor-
malization method and use the two-sample t-statistics
as in Dudoit et al. [40.32], but the p-values are obtained
based on Welch’s correction for the degrees of freedom.
The third (right panel) plot is based on the spline normal-
ization method and uses the same two-sample t-statistics
as in the lowess method. The eight solid circles in the
lowess volcano plot are the significant genes that were
identified by Dudoit et al. [40.32]. These eight genes are
also plotted as solid circles in the TW-SLM and spline
volcano plots, and are significant based on the TW-SLM
and spline methods, as can be seen from the volcano
plots. Comparing the three volcano plots, we see that:
(i) the − log10 p-values based on the TW-SLM method
tend to be higher than those based on the lowess and
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Fig. 40.1 Apo AI data: comparison of normalization curves in the 16 blocks of the array from one knock-out mouse
in the treatment group. Solid line: normalization curve based on TW-SLM; dashed line: normalization curve based on
lowess

spline methods; (ii) the p-values based on the lowess
and spline methods are comparable.

Because we use exactly the same smoothing proced-
ure in the TW-SLM and spline methods, and because
the results between the lowess and spline methods are
very similar, we conclude that the differences between
the TW-SLM and lowess volcano plots are mostly due to

the different normalization methods and two difference
approaches for estimating the variances. We first exam-
ine the differences between the TW-SLM normalization
values and the lowess as well as the spline normaliza-
tion values. We plot the three pairwise scatter plots of
estimated mean expression differences based on the TW-
SLM, lowess, and spline normalization methods, see
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Fig. 40.3. In each scatter plot, the solid line is the fitted
linear regression line. For the TW-SLM versus lowess
comparison (left panel), the fitted regression line is

y = 0.00029+1.090x . (40.26)

The standard error of the intercept is 0.0018, so the inter-
cept is negligible. The standard error of the slope is 0.01.
Therefore, on average, the mean expression differences
based on the TW-SLM normalization method are about
10% higher than those based on the lowess normaliza-
tion method. For the TW-SLM versus spline comparison
(middle panel), the fitted regression line and the standard
errors are virtually identical to (40.26) and its associated
standard errors. For the spline versus lowess comparison
(right panel), the fitted regression line is

y = 0.00027+1.00257x . (40.27)

The standard error of the intercept is 0.000 25, and the
standard of the slope is 0.0015. Therefore, the mean
expression differences based on the lowess and spline
normalization methods are essentially the same, as can
also be seen from the scatter plot in the right panel in
Fig. 40.3.

Figure 40.4 shows the histograms of the stan-
dard errors obtained based on intensity-dependent
smoothing defined in (40.21) using the residuals
from the TW-SLM normalization (top panel), and
the standard errors calculated for individual genes
using the lowess and spline methods (middle and
bottom panels). The standard errors (SE) based
on the individual genes have a relatively large
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a) Mean expression difference
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Fig. 40.3a–c Comparison of normalized expression values. Left panel: the scatter plot of normalized mean expression
differences based on TW-SLM versus those based on lowess. Middle panel: The scatter plot of normalized mean expression
differences based on TW-SLM versus those based on the spline method. Right panel: The scatter plot of normalized mean
expression differences based on spline versus those based on lowess. (a) TW-SLM versus lowess, (b) TW-SLM versus
spline, (c) spline versus lowess
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Fig. 40.2 Volcano plots: scatter plot of − log10(p−value) versus
estimated mean expression value. The left panel shows the volcano
plot based on the TW-SLM; the middle panel shows the plot based
on the lowess method; the right panel shows the result based on the
spline method

range of variation, but the range of standard errors based
on intensity-dependent smoothing shrinks towards the
middle. The SEs based on the smoothing method are
more tightly centered around the median value of about
0.13. Thus, the analysis based on the smooth estimate of
the error variances is less susceptible to the problem of
artificially small p-values resulting from random small
standard errors calculated from individual genes.
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Fig. 40.4a–c Comparison of variance estimation methods.
Top panel: The histogram of SE estimated based on smooth-
ing as described in Sect. 40.3.2. Middle panel: SE estimated
based on individual genes using the lowess method. Bot-
tom panel: SE estimated based on individual genes using
the spline method. (a) TW-SLM: SE based on smoothing
(b) lowess: SE based on individual genes (c) spline: SE
based on individual genes

40.5.2 Simulation Studies

We use simulation to compare the TW-SLM, lowess, and
spline normalization methods with regard to the mean
square errors (MSE) in estimating expression levels
β j . The simulation models and results are from Huang
et al. [40.21]. Letα1 andα2 be the percentages of up- and
down-regulated genes, respectively, and let α= α1+α2.
We consider four models in our simulation.

• Model 1: there is no dye bias. So the true nor-
malization curve is set at the horizontal line at 0.
That is fi (x) ≡ 0, 1 ≤ i ≤ n. In addition, the ex-
pression levels of up- and down-regulated genes are
symmetric and α1 = α2.• Model 2: as in model 1, the true normalization curves
fi (x) ≡ 0, 1 ≤ i ≤ n, but the percentages of up- and
down-regulated genes are different. We setα1 = 3α2.

• Model 3: there are nonlinear and intensity-dependent
dye biases. The expression levels of up- and down-
regulated genes are symmetric and α1 = α2.• Model 4: there is nonlinear and intensity-dependent
dye bias. The percentages of up- and down-regulated
genes are different. We set α1 = 3α2.

Models 1 and 2 can be considered as the baseline
ideal case in which there is no channel bias. The data-
generating process is as follows:

• Generateβ j . For most of the genes, we simulateβ j ∼
N
(
0, τ2

j

)
. The percentage of such genes is 1−α.

For up-regulated genes, we simulateβ j ∼ N
(
µ, τ2

U j

)

whereµ> 0. For down-regulated genes, we simulate
β j ∼ N

(−µ, τ2
D j

)
. We use τ j = 0.6, µ= 2, τU j =

τD j = 1.• Generate xij . We simulate xij ∼ 16 × Beta(a, b),
where a = 1, b = 2.5.• Generate εij . We simulate εij ∼ N(0, σ2

ij ), where
σij = σ

(
xij

)
. Here σ(x) = 0.3∗ x−1/3. So the error

variance is higher at lower intensity range than at
higher intensity range.• In models 1 and 2, the log-intensity ratios are com-
puted as yij = fi (xij )+β j + εij .

In models 3 and 4, the log-intensity ratios are computed
according to a printing-tip-dependent model with yij =
β j + fi k( j)(xij )+ εij , where the function k( j) indicates
the printing-pin block. This is equivalent to the model
used in the analysis of the Apo A1 data in Sect. 40.5.1,
with zi = 1 there. We use

fik = aik1x2 sin(x/π)

1+aik2x2
,

where ai1 and ai2 are generated independently from the
uniform distribution U(0.6, 1.4). Thus the normalization
curves vary from block to block within an array and
between arrays.

The number of printing-pin blocks is 16, and in each
block there are 400 spots. The number of arrays in each
data set is 10. The number of replications for each simu-
lation is 10. Based on these 10 replications, we calculate
the bias, variance, and mean square error of estimated
expression values relative to the generating values. In
each of the four cases, we consider two levels of the per-
centage of differentially expressed genes: α= 0.01 and
0.06.

Tables 40.1–40.4 present the summary statistics of
the MSEs for estimating the relative expression levels
β j in the four models described above. In Table 40.1
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Table 40.1 Simulation results for model 1. 10 000 × Summary of MSE. The true normalization curve is the horizontal
line at 0. The expression levels of up- and down-regulated genes are symmetric: α1 = α2, where α1+α2 = α

Min. 1st quartile Median Mean 3rd quartile Max.

α= 0.01 TW-SRM 3.74 51.59 75.08 88.88 106.20 4980.00

Lowess 3.38 50.72 72.77 87.89 105.10 7546.00

Splines 7.08 58.93 85.35 98.25 121.10 4703.00

α= 0.06 TW-SRM 6.53 50.03 74.74 93.92 107.30 5120.00

Lowess 9.09 50.89 73.93 91.87 106.10 6230.00

Splines 8.95 61.34 89.03 105.60 126.10 6480.00

Table 40.2 Simulation results for model 2. 10 000 × Summary of MSE. The true normalization curve is the horizontal
line at 0. But the percentages of up- and down-regulated genes are different: α1 = 3α2, where α1+α2 = α

Min. 1st quartile Median Mean 3rd quartile Max.

α= 0.01 TW-SRM 5.36 58.04 71.01 83.17 102.50 1416.00

Lowess 8.86 67.69 95.80 107.40 131.00 1747.00

Splines 8.91 65.53 94.40 110.40 135.10 1704.00

α= 0.06 TW-SRM 6.66 47.85 68.55 78.49 97.50 1850.40

Lowess 6.45 59.54 87.08 99.00 123.90 1945.10

Splines 6.74 59.23 86.58 98.67 123.30 1813.10

Table 40.3 Simulation results for model 3. 10 000 × Summary of MSE. There are nonlinear and intensity-dependent dye
biases. The expression levels of up- and down-regulated genes are symmetric: α1 = α2, where α1+α2 = α

Min. 1st quartile Median Mean 3rd quartile Max.

α= 0.01 TW-SRM 5.56 46.15 66.72 87.23 93.91 1898.00

Lowess 6.71 51.07 74.23 88.79 107.50 3353.00

Splines 5.90 53.83 76.91 88.64 108.60 1750.00

α= 0.06 TW-SRM 6.64 57.26 85.79 102.80 126.40 2290.00

Lowess 7.39 57.19 85.47 107.70 128.10 2570.00

Splines 9.37 69.26 102.80 122.80 148.50 2230.00

Table 40.4 Simulation results for model 4. 10 000 × Summary of MSE. There are nonlinear and intensity-dependent dye
biases. The percentages of up- and down-regulated genes are different: α1 = 3α2, where α1+α2 = α

Min. 1st quartile Median Mean 3rd quartile Max.

α= 0.01 TW-SRM 5.89 51.26 74.53 85.89 107.20 2810.00

Lowess 9.29 68.30 101.60 118.60 140.00 4088.00

Splines 9.68 67.85 98.82 119.80 141.00 2465.00

α= 0.06 TW-SRM 4.96 54.12 79.92 98.79 122.70 2130.00

Lowess 6.49 71.54 113.90 130.90 169.50 2474.00

Splines 5.77 65.46 107.57 128.40 171.60 1898.00

for simulation model 1, in which the true normaliza-
tion curve is the horizontal line at 0 and the expression
levels of up- and down-regulated genes are symmet-
ric, the TW-SLM normalization tends to have slightly
higher MSEs than the lowess method. The spline method
has higher MSEs than both the TW-SLM and lowess
methods. In Table 40.2, when there is no longer symme-
try in the expression levels of up- and down-regulated

genes, the TW-SLM method has smaller MSEs than
both the lowess and spline methods. In Table 40.3
for simulation model 3, there is nonlinear intensity-
dependent dye bias, but there is symmetry between
the up- and down-regulated genes. The TW-SLM has
comparable but slightly smaller MSEs than the lowess
method. The spline method has higher MSEs than
both the TW-SLM and lowess methods. In Table 40.4
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for simulation model 4, there is nonlinear intensity-
dependent dye bias, and the percentages of up- and
down-regulated genes are different, the TW-SLM has
considerably smaller MSEs. We have also examined bi-

ases and variances. There are only small differences
in variances among the TW-SLM, lowess, and spline
methods. However, the TW-SLM method generally has
smaller biases.

40.6 Theoretical Results

In this section, we provide theoretical results concern-
ing the distribution of β̂ and the rate of convergence
for the normalization of fi . The proofs can be found in
Huang et al. [40.21]. Our results are derived under sub-
sets of the following four conditions. We assume that the
data from different arrays are independent, and impose
conditions on the n individual arrays. Our conditions
depend on n only through the uniformity requirements
across the n arrays, so that all the theorems in this sec-
tion hold in the case of fixed n ≥ 2 as the number of
genes J →∞ as well as the case of (n, J ) → (∞,∞)
with no constraint on the order of n in terms of J .
In contrast, Huang and Zhang [40.20] focused on ap-
plications with large number of arrays. The results in
this section hold for any basis functions bik in (40.5),
e.g. spline, Fourier, or wavelet bases, as long as Qi in
(40.9) are projections from R

J to { f (xi ) : f ∈ Si} with
Qie = e, where e = (1, . . . , 1)′. Furthermore, with mi-
nor modifications in the proof, the results hold when Qi
are replaced by nonnegative definite smoothing matri-
ces Ai with their largest eigenvalues bounded by a fixed
constant, see [40.20, 21].
Condition I: In (40.3), xi , i = 1, . . . , n, are independent
random vectors, and for each i

(
xij , j ≤ J

)
are ex-

changeable random variables. Furthermore, for each
i ≤ n, the space Si in (40.5) depends on design vari-
ables

(
xk, zk, k ≤ n

)
only through the values of xi and

(zk, k ≤ n).
The independence assumption follows from the in-

dependence of different arrays, which is satisfied in
a typical microarray experiment. The exchangeability
condition within individual arrays is reasonable if there
is no prior knowledge about the total intensity of ex-
pression values of the genes under study. It holds when(
xij , j ≤ J

)
are conditionally independent identically

distributed (iid) variables given certain (unobservable
random) parameters, including within-array iid xij ∼ Gi
as a special case. The exchangeability condition also
holds if

(
xij , j ≤ J

)
are sampled without replacement

from a larger collection of variables.
Condition II: The matrix Zn ≡∑n

i=1 zi z′i is of full rank
with maxi≤n z′i Z−1

n zi ≤ κ∗ < 1.

Condition II is satisfied by common designs such
as the reference and direct comparison designs. Since∑n

i=1 Z−1
n zi z′i = Id ,

∑n
i=1 z′i Z−1

n zi = d. In balanced de-
signs or orthogonal designs with replications, Zn ∝ Id , n
is a multiplier of d, and z′i Z−1

n zi = κ∗ = d/n < 1 for all
i ≤ n. In particular, (40.6) describes a balanced design
with d = 1, so that condition II holds as long as n ≥ 2.
Condition III: For the projections Qi in (40.9), K∗

J,n ≡
maxi≤n E [tr(Qi )−1] = O

(
J1/2

)
.

An assumption on the maximum dimensions of the
approximation spaces is usually required in nonparamet-
ric smoothing. Condition III assumes that the ranks of
the projections Qi are uniformly of the order O

(
J1/2

)
to

avoid overfitting, and more important, to avoid colinear-
ity between the approximation spaces for the estimation
of ( fi (xi ), i ≤ n) and the design variables for the esti-
mation of β. Clearly, E [tr(Qi )−1] ≤ Ki for the Ki in
(40.5).
Condition IV: ρ∗J,n ≡ maxi≤n E

∥∥ fi (xi )−Qi fi (xi )
∥∥2

/

(J −1) → 0.
Condition IV demands that the ranges of the projec-

tions Qi be sufficiently large that the approximation
errors for fi (xi ) are uniformly O(1) in an average
sense. Although this is the weakest possible condi-
tion on Qi for the consistent estimation of fi (xi ),
the combination of conditions III and IV does require
careful selection of spaces Si in (40.5) and certain
condition on the tail probability of xij . See the two
examples in Huang et al. [40.21] that illustrate this
point.

40.6.1 Distribution of ̂β

We now describe the distribution of β̂ in (40.9) condi-
tionally on all the covariates and provide an upper bound
for the conditional bias of β̂.

Let Λ̂ be the information operator in (40.12). Define

β̃J,n =−ΠJ,nβ+ Λ̂−1
J,n

[
1

n

n∑

i=1

(IJ −Qi ) fi (xi )z
′
i

]
,

(40.28)
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where ΠJ,n is the projection to
{
b ∈Ω J×d

0 : Λ̂J,nb= 0
}
.

Define

VJ,n = 1

n

n∑

i=1

Vi ⊗ zi z
′
i ,

Vi =
(
IJ −Qi

)
var(εi )

(
IJ −Qi

)
. (40.29)

Here Λ̂−1
J,n , the generalized inverse of Λ̂J,n , is uniquely

defined as a one-to-one mapping from the range
of Λ̂J,n to the space

(
IJ ⊗ Id −ΠJ,n

)
Ω J×d

0 = {
b ∈

Ω J×d
0 :ΠJ,nb = 0

}
. For any J × b matrix b, the matrix

B = Λ̂−1
J,nb can be computed by the following recursion:

B(k+1) ← n(b−ΠJ,nb)Z−1
n +

n∑

i=1

Qi B(k)zi z
′
i Z−1

n

(40.30)

with the initialization B(1) = n(b−ΠJ,n b)Z−1
n and

Zn =∑n
i=1 zi z′i .

Theorem 40.1
Let β̂J,n , Λ̂ and VJ,n be as in (40.9), (40.12) and
(40.29) respectively. Suppose that given {xi , i ≤ n}, εi
are independent normal vectors. Then, conditionally on
{xi , i ≤ n},

β̂−β ∼ N

(
b̃J,n,

1

n
Λ̂−1

J,n VJ,nΛ̂
−1
J,n

)
. (40.31)

In particular, for all b ∈Ω J×d
0 , limk→∞ B(k) = Λ̂−1b

with the B(k) in (40.30), and

σ2
J,n(b) ≡ var

[
tr
(
b′β̂

)∣∣∣
{

xi , i ≤ n
}]

= 1

n2

n∑

i=1

z′i
(
Λ̂−1b

)′
Vi
(
Λ̂−1b

)
zi . (40.32)

Our next theorem provides sufficient conditions
under which the bias of β̂ is of smaller order than its
standard error.

Theorem 40.2
Suppose conditions I to IV hold. If cJ,n/ρ

∗
J,n →∞, then

sup

{
E min

(
1,

tr2
(
b′b̃J,n

)

tr
(
bZ−1

n b′
)
cJ,n

)
: b ∈Ω J×d

0 ,

b �= 0

}
= O(1). (40.33)

In particular, if given {xi , i ≤ n}, εi are independent
normal vectors with var(εi ) ≥ σ2∗ IJ for certain σ∗ > 0,

then

sup
b∈Ω J×d

0 , b�=0

{
sup
x∈R

∣∣∣∣P
(

tr
(
b′
(
β̂−β

))

σJ,n(b)
≤ x

)

−Φ(x)

∣∣∣∣
}
= O(1) , (40.34)

where Φ is the cumulative distribution function for
N(0, 1).

This result states that, under conditions I to IV, ap-
propriate linear combinations of β̂−β, such as contrasts,
have an approximate normal distribution with mean
zero and the approximation is uniform over all linear
combinations. Therefore, this result provides theoretical
justification for inference procedures based on β̂, such
as those described in Sect. 40.3. Without the normality
condition, (40.29) is expected to hold under the Linde-
berg condition as (n, J ) → (∞,∞), even in the case
n = O(J ) [for example n = O(log J)]. We assume the
normality here so that (40.29) holds for fixed n as well
as large n.

40.6.2 Convergence Rates of Estimated
Normalization Curves ̂fi

Normalization is not only important in detecting dif-
ferentially expressed genes, it is also a basic first
step for other high-level analysis, including classifi-
cation and cluster analysis. Thus, it is of interest in
itself to study the behavior of the estimated normal-
ization curves. Here we study the convergence rates
of f̂i .

Since f̂i (xi ) = Qi
(
yi − β̂zi

)
, it follows from (40.3)

that

f̂i (xi ) = Qi [ fi (xi )+ εi ]−Qi
(
β̂−β

)
zi . (40.35)

Therefore, the convergence rates of ‖ f̂i (xi )− fi (xi )‖ are
bounded by the sums of the rates of ‖Qi [ fi (xi )+ εi ]−
fi (xi )‖ for the ideal fits Qi (yi −βzi ) and the rates of
‖Qi

(
β̂−β

)
zi‖.

Theorem 40.3
Suppose conditions I to IV hold and var(εi ) ≤ (σ∗)2 IJ
for certain 0 < σ∗ <∞. Then, for certain εJ,M with
limM→∞ limJ→∞ εJ,M → 0,

max
i≤n

P
{
‖ f̂i (xi )− fi (xi )‖2/J > M

[
ρ∗J,n

+ (σ∗)2 K∗
J,n/J

]}≤ εJ,M .
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In particular, if K∗
J,n = O(1)J1/(2α+1) and ρ∗J,n =

O(1)J2γ/(2α+1) for certain 0 < γ ≤ α, then ‖ f̂i (xi )−
fi (xi )‖2/J = OP

(
J−2γ/(2α+1)

)
, where the OP is uni-

form in i ≤ n.

In the case of var(εi ) = σ2 IJ , maxi≤n E‖Qi (yi −
βzi )− fi (xi )‖2/J ≥ max

(
ρ∗J,n, σ2 K∗

J,n/J
)

is the con-

vergence rate for the ideal fits Qi (yi −βzi ) for
fi (xi ). Theorem 3 asserts that f̂i (xi ) have the
same convergence rates as the ideal fits. Thus,
f̂i (xi ) achieve or nearly achieve the optimal
rate of convergence for normalization under stan-
dard conditions. See the two examples in Huang
et al. [40.21].

40.7 Concluding Remarks

The basic idea of TW-SLM normalization is to estimate
the normalization curves and the relative gene effects
simultaneously. The TW-SLM normalization does not
assume that the normalization is constant as in the global
normalization method, nor does it make the assumptions
that the percentage of differentially expressed genes is
small or that the up- and down-regulated genes are dis-
tributed symmetrically, as are required in the lowess
normalization method [40.11]. This model puts normal-
ization and significant analysis of gene expression in the
framework of a high dimensional semiparametric regres-
sion model. We used a back-fitting algorithm to compute
the semiparametric M-estimators in the TW-SLM. For
identification of differentially expressed genes, we used
an intensity-dependent variance model. This variance
model is a compromise between the constant residual
variance assumption used in the ANOVA method and
the approach in which the variances of all the genes
are treated as being different. We described two non-
parametric methods for variance estimation. The first
method is to smooth the scatter plot of the squared
residuals versus the total intensity. The second one is
to estimate the variance function jointly with the nor-
malization curves and gene effects. For the example we
considered in Sect. 40.6, the proposed method yields
reasonable results when compared with the published
results. Our simulation studies show that the TW-SLM
normalization has better performance in terms of the

mean squared errors than the lowess and spline nor-
malization methods. Thus the proposed TW-SRM for
microarray data is a powerful alternative to the existing
normalization and analysis methods.

The TW-SLM is qualitatively different from the
SRM. For microarray data, the number of genes J is al-
ways much greater than the number of arrays n. This fits
the description of the well-known small-n large-p dif-
ficulty (we use p instead of J to be consistent with the
phrase used in the literature). Furthermore, in the TW-
SLM, both n and J play the dual role of sample size
and number of parameters. That is, for estimating β, J
is the number of parameters, n is the sample size. But
for estimating f , n is the number of (infinite dimen-
sional) parameters, J is the sample size for each fi . On
one hand, sufficiently large n is needed for the inference
of β. But a large n makes normalization more difficult,
because then more nonparametric curves need to be esti-
mated. On the other hand, sufficiently large J is needed
for accurate normalization, but then estimation of β be-
comes more difficult. We are not aware of any other
semiparametric models [40.33] in which both n and J
play such dual roles of sample size and number of pa-
rameters. Indeed, here the difference between the sample
size and the number of parameters is no longer as clear
as in a conventional statistical model. This reflects a ba-
sic feature of microarray data in which self-calibration
in the data is required when making statistical inference.
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Latent Variab41. Latent Variable Models for Longitudinal Data
with Flexible Measurement Schedule

This chapter provides a survey of the development
of latent variable models that are suitable for
analyzing unbalanced longitudinal data. This
chapter begins with an introduction, in which
the marginal modeling approach (without the
use of latent variable) for correlated responses
such as repeatedly measured longitudinal data
is described. The concepts of random effects
and latent variables are introduced at the
beginning of Sect. 41.1. Section 41.1.1 describes
the linear mixed models of Laird and Ware for
continuous longitudinal response; Sect. 41.1.2
discusses generalized linear mixed models (with
latent variables) for categorical response; and
Sect. 41.1.3 covers models with multilevel latent
variables. Section 41.2.1 presents an extended
linear mixed model of Laird and Ware for
multidimensional longitudinal responses of
different types. Section 41.2.2 covers measurement
error models for multiple longitudinal responses.
Section 41.3 describes linear mixed models with
latent class variables—the latent class mixed model
that can be useful for either a single or multiple
longitudinal responses. Section 41.4 studies the
relationships between multiple longitudinal
responses through structural equation models.

41.1 Hierarchical Latent Variable Models
for Longitudinal Data .......................... 738
41.1.1 Linear Mixed Model with

a Single-Level Latent Variable .... 739
41.1.2 Generalized Linear Model

with Latent Variables ................. 740
41.1.3 Model

with Hierarchical Latent Variables 740

41.2 Latent Variable Models
for Multidimensional Longitudinal Data 741
41.2.1 Extended Linear Mixed Model

for Multivariate Longitudinal
Responses ................................ 741

41.2.2 Measurement Error Model .......... 742

41.3 Latent Class Mixed Model
for Longitudinal Data .......................... 743

41.4 Structural Equation Model with
Latent Variables for Longitudinal Data .. 744

41.5 Concluding Remark: A Unified Multilevel
Latent Variable Model .......................... 746

References .................................................. 747

Section 41.5 unifies all the above varieties of latent
variable models under a single multilevel latent
variable model formulation.

Longitudinal data consists of variables that are measured
repeatedly over time. Longitudinal data can be collected
either prospectively or retrospectively. The defining fea-
ture of longitudinal data is that the set of observations on
one subject are likely to be correlated, and this within-
subject correlation must be taken into account in order
to make valid scientific inferences from the data. A fre-
quently encountered problem in longitudinal studies is
data that are missing due to missed visits or dropouts.
As a result subjects often do not have a common set
of visit times or they visit at nonscheduled times, thus
longitudinal data may be highly unbalanced.

Except in the Introduction, the remaining sections
are devoted to the study of the models along the lines
of the Laird and Ware-style mixed model [41.1] and

models with latent variables since they naturally handle
unbalanced longitudinal data and of course these models
are also useful for regularly spaced, balanced, repeatedly
measured responses. Models suitable only for balanced
longitudinal data as well as missing data models are
not discussed in this chapter. All the models discussed
in this chapter have been proved successful in practice.
However, the models covered in this chapter only reflect
the choice of illustration by the author and are by no
means inclusive of all the variants and extensions of
latent variable models.

Before moving onto the next section, let us first
look at the marginal models that do not involve la-
tent variables. Let Yij denote the longitudinal response
for subject i (i = 1, . . . , N) at the j-th time point
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738 Part E Statistical Methods, Modeling and Applications

( j = 1, . . . , ni ). For example, in the study of the
evolution of the CD4+ lymphocyte in human immun-
odeficiency virus (HIV) positive subjects, longitudinal
CD4+ cell counts can be modeled with the follow-
ing general linear model for continuous response
as:

Yij = xT
ijβ+ εij , (41.1)

where xij = (xij1, . . . , xijp)T is a vector of fixed p co-
variates at j-th time point that includes the intercept of
one, the linear term of time in months, the indicator
of AZT (an anti-retrovirus drug) usage, the Karnovsky
score, anemia, etc., β= (β0, β1, . . . , βp−1)T are the co-
efficients for the intercept and the partial slopes, and εij
is an error term that has a zero mean and variance of σ2.
The correlation between εij and εij ′ is ρ jj ′ for j �= j ′. Let
Yi = (Yi1, . . . ,Yini )

T and Xi = (xT
i1, . . . , xT

ini
)T, then

the above model can be written in matrix notation
as

Yi = Xiβ+ εi .

So Yi has mean vector Xiβ and variance ma-
trix σ2Ri , where Ri is the correlation matrix for
εi = (εi1, . . . , εi,ni )

T.
For discrete responses, marginal models that ex-

tend the generalized linear models GLMs can be
applied [41.2]. Marginal models model a link function
of the population-average response, E(Yij ), as a function
of a common set of explanatory variables x. The mean
of the longitudinal response is modeled separately from
the within-subject correlation that is usually assumed to
be a function of the modeled marginal means and pos-
sibly additional parameters ν. The marginal model is

specified as:

g(µij ) = xT
ijβ , (41.2)

where g is the monotone link function, µij = E(Yij ).
For example, g is an identity link for continuous Gaus-
sian response, g can be a logit link for binary response.
An attractive feature of the marginal model is that
within-subject correlation does not have to be modeled
explicitly, rather a class of generalized estimating equa-
tions (GEE) that gives consistent estimates of the β and
their variance is used under some assumed working cor-
relation matrices for within-subject dependence without
specifying a multivariate distribution for Yi [41.3].

The regression coefficients β in marginal models
have population-average interpretation but any het-
erogeneity beyond the recorded covariates cannot be
accounted for in marginal models. In models with latent
variables, that are studied in following sections, hetero-
geneity among subjects in a subset of the regression
coefficients, e.g., the intercept, are taken into account
via subject-specific regression coefficients and/or co-
variates. In latent variable models, the covariate effects
and within-subject association are modeled simultane-
ously. The concept of latent variables is a convenient way
to represent statistical variation in terms of measurement
error, random coefficients and variance components.
Modeling the heterogeneity of a subset of regression
coefficients not only reduces the extent of unexplained
variation beyond the recorded explanatory variables but
may be of interest in its own right. Estimates of the pa-
rameters in the latent variable models studied in this
chapter can be obtained via the likelihood method with
either the EM (expectation-maximization) algorithm or
(adaptive) Gaussian quadrature.

41.1 Hierarchical Latent Variable Models for Longitudinal Data

One may consider longitudinal data as having a two-
level structure, with repeated measurements (level 1)
of a response variable being nested within subjects
(level 2). Traditional fixed-effect analytical methods
(e.g., analysis of variance) are limited in their treat-
ment of the technical difficulties presented by nested
designs, and in the questions they are able to address.
Models that include random regression coefficients are
more suited to the hierarchical data structure generally
found in longitudinal data.

Latent variables are unobservable individual re-
gression coefficients, predictors/covariates or response
variables in regression models. Latent variables here are

thus divided into the following three types, and some-
times a latent variable qualifies for more than one of
the three types. The first type is called random effects,
which model heterogeneity among subjects in a subset
of the regression coefficients that vary from one sub-
ject to the next. A defining feature of random effects is
that the individual regression coefficients are assumed
to be a random sample from a common distribution so
that a few parameters for the distribution characterize
the behavior of the entire random coefficients. The sec-
ond type is called latent covariates; these unobservable
latent covariates have their own fixed regression coeffi-
cients that are called factor loadings. The third type is
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Latent Variable Models for Longitudinal Data 41.1 Hierarchical Latent Variable Models for Longitudinal Data 739

called latent responses, which are further modeled on
other fixed covariates and/or latent covariates.

Softwares for fitting latent variable models are abun-
dant, although they may only handle a limited number of
the models discussed in this chapter. Many researcher-
written computer codes and softwares are also available
for fitting complicated latent variable models. One omni-
pass software for fitting the latent variable models
studied in this chapter is the STATA module generalized
linear latent and mixed models (GLLAMM) developed
over years by Rabe-Hesketh et al. [41.4]. For some mod-
els, it may take quite some computer and real time to fit.
The computing time usually depends on the size of data,
the number of structural levels in the data, and more
critically on the number of latent variables involved.
Software development will not be further discussed in
this chapter.

41.1.1 Linear Mixed Model
with a Single-Level Latent Variable

Since repeated measurements are obtained from each
individual at different times, there may be considerable
variation among individuals in the number and tim-
ing of observations. The resulting unbalanced data are
typically not amenable to analysis using a general mul-
tivariate model such as (41.1) above, mainly due to the
difficulty in specifying the covariance for εi without the
aid of latent variables. Although marginal models like
(41.2) can handle unbalanced longitudinal data they do
not model the heterogeneity across individual subjects
beyond the recorded covariates. The model with random
effects originally proposed by Laird and Ware [41.1]
readily accommodates both the unbalanced nature of
the data and the heterogeneity across subjects.

For continuous responses, their model is specified
as:

Yi = Xiβ+Zibi + εi . (41.3)

Here, Yi = (Yi1, · · · ,Yini )
T, is the ni -vector of lon-

gitudinal readings for subject i. Fixed covariates
including the intercept and possibly deterministic
functions of time (such as a linear term of time)
from subject i are represented by the ni × p matrix
Xi = (xT

i1, · · · , xT
ini

)T, with associated p-vector of co-
efficients β = (β0, β1, . . . , βp−1)T. The j-th row of Xi ,
denoted xT

ij , is thus a p-vector of covariate values meas-
ured at the j-th occasion. Covariates for random effects
are denoted by the ni × q matrix Zi , which is often
a subset of Xi although does not have to be. The q-
vector of individual regression coefficients, the random

effects bi = (bi1, . . . , biq)T, are taken to be independent,
multi-normally distributed with mean 0 or non-zero (see
the example of random intercept only that follows) and
variance–covariance D. The error εi = (εi1, . . . , εini )

T

is an ni -vector that is uncorrelated with bi , independent
normals with mean 0 and covariance matrix Ri , which
is often assumed to be a ni -diagonal matrix of σ2Ini .
Given the random effects, the timings of covariates and
Y are assumed to be non-informative.

Marginally, the Yi are independent normals with
mean Xiβ and covariance matrix Ri +ZiDZT

i . For a sin-
gle time point response Yij , the above model can be
rewritten as:

Yij = xT
ijβ+ zT

ijbi + εi . (41.4)

It can be seen that the covariance between two re-
sponses measured at different times points j and j ′
within a subject is zijDzT

ij ′ = cov(Yij ,Yij ′ ).
The covariates that have random effects in this model

have the means of their effects absorbed into the fixed
effects so that the mean of bi can be conveniently as-
sumed to be zero. For a linear growth model with random
intercept only, the above model becomes

Yij = β0+β1tij +bi0+ εij ,

where tij is the time of j-th repeated measure for subject
i, the random intercept bi0 is assumed to have indepen-
dent normal distribution with mean zero and variance
σ2

b , and the error term εij is assumed to be independent
of bi0 and to be normally distributed with mean zero and
variance σ2. The same model can also be written as:

Yij = b∗0 +β1tij + εij

in which the random intercept b∗0 is assumed to have
a non-zero mean ofβ0 and variance σ2

b . Notice that a ran-
dom effect can either be represented as having a mean
or as being deviations from the mean.

For this random intercept model, the within-subject

correlation coefficient is σb/

√
σ2+σ2

b . It should be
pointed out that, for the linear mixed model (41.4), the
population-average inference can be made readily from
the fixed-effects part, that is, EYX = Xβ, where X is
the population-average covariate values. Although the
number of individual random regression coefficients is
large, the additional parameters that need to be estimated
beyond the fixed regression coefficients are only those
involved in the variance of the individual regression co-
efficients, which are called variance components. The
use of random effects not only allows individualized
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growth trajectories, but also conveniently accommo-
dates within-subject correlation. The model (41.4) can
be fit with the readily available software such as the
SAS proc MIXED, as well as many other commercial
softwares through the (restricted) maximum-likelihood
method.

41.1.2 Generalized Linear Model
with Latent Variables

Harville and Mee [41.5] extended the aforementioned
linear mixed model for continuous response to clustered
ordinal data using a threshold probit model, which also
turned out to be suitable for longitudinal ordinal re-
sponse. Their model was motivated by a study in which
cattle breeders were interested in comparing sire with
respect to the difficulty experienced in the birth of their
offspring. There are five ordinal difficulty levels for the
response variable: no problem, slight difficulty, needed
assistance, considerable force needed and extreme dif-
ficulty. Let Yij be the ordinal response for the j-th birth
by sire i (i = 1, . . . , N; j = 1, . . . , ni ) that take a value
from one of the ordered difficulty categories 1, . . . , M,
where here M = 5. For the threshold probit model, it is
often assumed that there is an unobserved latent vari-
able η relating to the actual observed ordinal response
Y . Here, a response occurs in category m (Yij =m) if the
latent variable ηij exceeds the threshold value θm−1 but
does not exceed the threshold value θm . The ordinal re-
sponse is related to the latent variable via the following
probit model:

P(Yij = m|ηij ) =Φ

(
θm−ηij

σ

)
−Φ

(
θm−1−ηij

σ

)
,

(41.5)

where Φ is the cumulative distribution of a standard
normal and σ is the standard error of the residual εij
from the following linear mixed model for the latent
response η:

ηij = xT
ijβ+ zT

ijbi + εij .

This model is similar to the model (41.4) except Yij is
now replaced by ηij . It can be seen that η serves both as
a latent covariate and a latent response.

The ordinal response can also be specified by
a threshold cumulative probit model [41.6] as:

P(Yij ≤ m|ηij ) =Φ

(
θm −ηij

σ

)
. (41.6)

For binary, nominal or count data, Yij , can be
modeled using the generalized linear mixed model
(GLMM) [41.7], which is a direct generalization of the

linear mixed model (41.4):

g(µij |bi ) = xT
ijβ+ zT

ijbi , (41.7)

where g is the link function of µ. g can be probit or logit
binary Yij ; g can be log for count Yij ; g can be logit and
µij = {P(Yij = m),m ∈ [1, . . . , M]} for nominal Yij . It
should be noted that the marginal means of Yij are no
longer xT

ijβ, but a more complicated function depending
on the form of the link function g and on the mean of
the response itself. Both SAS proc NLMIXED and the
STATA add-on function GLLAMM [41.4] can fit the
nonlinear mixed model with logit and probit links for
binomial data, logit link for polychotomous data, probit
and cumulative probit for ordinal data, and log link for
Poisson data.

41.1.3 Model
with Hierarchical Latent Variables

Consider, the example of the National Youth Survey
data analyzed by Duncan et al. [41.8], where repeated
measures were taken from individuals nested within
households nested within geographical areas. The re-
sulting data structure, therefore, consists of four levels:
repeated observations within a subject (level 1), subjects
(level 2), households (level 3), and geographical areas
(level 4). The response variable of interest is recorded
as a scale of substance use. A question that naturally
arises is whether each level in the data structure has its
own submodel representing the structural relations and
variability occurring at that level.

Since there was no evidence of variation among
the geographical areas, a three-level model without
the fourth level is presented here. Let j = 1, . . . , ni ,
i = 1, . . . , N and k = 1, . . . , K index respectively the
repeated observations within a subject, subjects within
a household, and households. Let tkij denote the j-th time
point when the measurements for subject i in household
k are taken. The level-1 within-individual growth model
can be expressed as:

Ykij = xT
kijβ+ zT

kijηki + εkij , (41.8)

where Ykij is the response for subject i in household k
at the j-th time point, xkij = zkij = (1, tkij )T is a vec-
tor of covariates including the intercept and the time.
The fixed coefficients vector β = (β0, β1)T includes the
intercept and the slope of time for Ykij . The errors
εki = (εki1, . . . , εkini )

T are assumed to be normally dis-
tributed with mean zerp and covariance matrix Ri ,which
is a diagonal matrix with diagonal elements σ2.
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The individual random effects vector ηki =
(ηki0, ηki1)T including the intercept and the slope is mod-
eled in the following level-2 model for individuals within
the same household as:

ηki = bk + ξki , (41.9)

where the entries in the household-level random effects
vector bk = (b0k, b1k)T at level 3are assumed to be bivari-
ate normal distributions with mean zero and covariance
matrix D, and where ξki is the residual vector, which is
independent across different subjects, uncorrelated with
bk, and bivariate normal distributed with mean 0 and
covariance matrix � .

Models (41.8) and (41.9) can be combined into the
following single model:

Ykij = xT
kijβ+ zT

kijbk + zT
kijξki + εki , (41.10)

in which, there are coefficients of fixed effects β, ran-
dom individual effects ξki nested within a household
and random household effects bk. The covariance be-
tween two repeated measures at different time points j
and j ′ for a subject i is zkijDzT

kij ′ + zkij� zT
kij ′ and the

covariance between measurements from two different
subjects i and i ′ within a household is zkijDzT

kij ′ . This
example showed that the multilevel model can be for-
mulated and estimated within the linear mixed model
framework [41.9].

41.2 Latent Variable Models for Multidimensional Longitudinal Data

Longitudinal studies offer us an opportunity to develop
detailed descriptions of the process of growth and de-
velopment or of the course of progression of chronic
diseases. Most longitudinal analyses focus on character-
izing change over time in a single outcome variable and
identifying predictors of growth or decline. Both growth
and degenerative diseases, however, are complex pro-
cesses with multiple markers of change, so that it may
be important to model more than one outcome measure
and to understand their relationship over time.

41.2.1 Extended Linear Mixed Model
for Multivariate Longitudinal
Responses

Lin et al. modeled multiple continuous longitudinal re-
sponses by using a mixed effects model for each of
the longitudinal responses; the correlations among the
different longitudinal responses were modeled through
intercorrelated random effects across the mixed effects
models; and the model naturally allows different mea-
surement schedules for different types of longitudinal
responses even within a same subject [41.10]. The model
was illustrated with the data example from a trial of
chemoprevention of cancer withβ-carotene [41.11]. The
trial was a randomized double-blind placebo-controlled
trial with 264 patients whose primary objective was to
determine whether supplemental β-carotene (50 mg/d)
reduced recurrence of the primary tumors in patients
cured from a recent early-stage head and neck cancer.
The trial concluded that the β-carotene supplementa-
tion had no significant effect on second head and neck
cancers. During the trial, blood samples of the pa-

tients were collected at about 0, 3 months, 12 months
and yearly thereafter until 60 months. Several plasma
nutrient concentrations were determined from the avail-
able blood samples. Analysis was focused on plasma
concentrations of lycopene and lutein +zeaxanthin.

Let i = 1, . . . , N index the i-th subject, k =
1, . . . , K index the k-th type of the longitudinal re-
sponse variables and j = 1, . . . , nki index the j-th time
point when type k-th response is measured in subject i.
For the above example K = 2 with k = 1 and 2 index-
ing lycopene and lutein+zeaxanthin, respectively. Let
xkij denote a pk-vector of fixed effects covariates for the
type k longitudinal response measured at the j-th time
in subject i, which includes the intercept, the baseline
plasma cholesterol concentration, the treatment assign-
ment indicator of β-carotene, site (0 for Connecticut and
1 for Florida), age, sex, smoking status ({0, 0} for non-
smoker, {1, 0} for transient smoker and {0, 1} for steady
smoker), and linear and quadratic terms of time. The vec-
tor of random effects zkij is a qk-subvector of xkij that
includes the intercept and linear and quadratic terms of
time. The model for the multiple longitudinal responses
is specified as:

Ykij = xT
kijβk + zT

kijbki + εkij . (41.11)

In the above specification, xkij and zkij are associated
with fixed regression coefficients βk and random coeffi-
cients bki , respectively. The qk-vector of random effects
bki is assumed to be independent across the i and multi-
normally distributed with mean 0 and covariance Dkk .
The nki -vector of error term εki = (εki1, . . . , εkinki )

T is
uncorrelated with bki , independent normal with mean
0 and variance–covariance matrix Rki . The correlations
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between different types of longitudinal responses within
a same subject are built through the covariance of the
random effects by assuming cov(bki , bk′i ) = Dkk′ for
k �= k′ and therefore cov(Ykij ,Yk′ij ′ )= zkijDkk′ zT

k′ij ′ . The
covariance between the repeated measures of same type
at two different time points j and j ′ is zkijDkkzT

kij ′
Let XKi and ZKi denote the covariate matrices

for fixed and random effects, respectively.The model
(41.11) can be re-expressed exactly as (41.3) if the co-
variates matrices and the variance–covariance matrices
are rearranged in the following way:

Xi =

⎛
⎜⎜⎝

X1i . . . 0
...

. . .
...

0 . . . XKi

⎞
⎟⎟⎠ , Zi =

⎛
⎜⎜⎝

Z1i . . . 0
...

. . .
...

0 . . . ZKi

⎞
⎟⎟⎠ ,

D=

⎛
⎜⎜⎝

D11 . . . D1K
...

. . .
...

DK1 . . . DKK

⎞
⎟⎟⎠ , Ri =

⎛
⎜⎜⎝

R1i . . . 0
...

. . .
...

0 . . . RKi

⎞
⎟⎟⎠ .

Using these expressions, the model (41.11) becomes

Yi = Xiβ+Zibi+ εi ,

where Yi = (YT
1i , . . . ,YT

Ki )
T with Yki = (Yki1, · · · ,

Ykinki )
T being a long vector of all K longitudinal re-

sponse for subject i, εi = (εT
1i , . . . , ε

T
Ki )

T is a long vector
of error terms, β = (βT

1 , . . . ,β
T
K )T is a long vector of

fixed coefficients and bi = (bT
1i , . . . , bT

Ki J )T is a long
vector of random coefficients. This model has an iden-
tical expression and meaning as (41.3).

It is straightforward to see that by using proper link
functions the model (41.11) can be further extended
for mixed continuous and categorical longitudinal re-
sponses.

41.2.2 Measurement Error Model

Multiple outcomes are sometimes needed to jointly char-
acterize an effect of interest properly. Roy considered
the situation where multiple longitudinal outcomes are
assumed to measure an underlying quantity of main
interest from different perspectives [41.12]. Although
separate linear mixed models can be fitted for each
outcome, this approach is limited by the fact that it
fails to borrow strength across the outcome variables.
By exploiting the correlation structure with a multivari-
ate longitudinal model, efficiency and power could be
greatly increased. Since different outcomes are often
measured on different scales and different units, it is of
substantial interest to develop a statistical model to ac-
count for this special feature of the data. Correlation

within each outcome over time and between outcomes
on the same unit must be taken into account.

Roy analyzed the methadone treatment practices
data in which methadone treatment is important in
reducing illicit drug use and preventing HIV transmis-
sion and is effective when certain critical treatment
practices are followed. The sampling unit is the treat-
ment practice unit. The three longitudinal outcomes
measuring the effectiveness of methadone treatment, in-
cluding the maximum dose level [Y1 = log(maximum
dose)], unit-average length of treatment (Y2), and
percentage of clients receiving decreasing doses
[Y3 = log(percentage)], were collected at three follow-
up times. Analysis of this data set is challenging due to
the fact that the outcome of major interest, the effective
treatment practices level, is not observable, although
several surrogates are available. In the following il-
lustration, the same notation as for model (41.11) are
used.

Suppose that the K longitudinal outcomes attempt to
characterize a latent outcome of major interest, ηij , e.g.,
the treatment practices level in unit i at the j-th follow-
up time in the methadone example. One way to view this
problem is that each type of observed outcome (Ykij, k =
1, . . . , K ) measures the latent variable ηij with error. It
is likely that the measurement error for each outcome
from the same unit is correlated over time. A linear
mixed model is assumed to relate Ykij to ηij :

Ykij = βk0+βk1ηij +bki0+ εkij , (41.12)

where the measurement error term εkij is independent
normal with mean zero and variance σ2

k and the type-
specific random intercept bki0 is independent between
different units and assumed to have a normal distribution
with mean zero and variance σ2

kb. Correlation between
the different types of the outcomes in an unit is due
to the shared latent variable ηij . The observed outcome
Ykij then measures the underlying true treatment practice
evolution with error. The factor loadingβk1 and the type-
specific intercept βk0 are used to accommodate the fact
that different types of outcomes have different scales.
Each unit has its random intercept bki0 for the type-k
outcome, which is a random deviation from the type-
specific intercept βk0. For the sake of identifiability, β11
is set to one.

A linear mixed model is assumed to describe the
effects of covariates on the latent variable ηij of the
underlying treatment practice:

ηij = xT
ijα+ zT

ijai + ξij , (41.13)
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where α and ai are defined similarly to β and bi in the
linear model (41.4), ai is a q−vector with normal(0,
D) and the residual ξij is distributed with independent
normal(0, σ2). xij and zij are vectors of fixed and random
covariates at the j-th time point for unit i that are defined
similarly to those in the linear model (41.4) except that
xij does do not contain the intercept.

It is often of substantial interest to estimate the unit-
specific latent variables ηij . The estimates of the latent
effective practices score via the posterior mean E(ηi |Yi)
can be used to identify the units whose treatment prac-
tices effectiveness are well below those of a typical
unit. The model also provides a straightforward way
to estimate and test for global covariate effects since

the parameters α represent the effects of the covariates
on the overall effective treatment practices level in the
methadone data. Estimates of the parameters in (41.12)
and (41.13) can be obtained via the EM algorithm as
described by Roy or using the STATA add-on function
GLLAMM of Rabe-Hesketh et al. [41.4].

Extension of the model to allow mixed discrete and
continuous outcomes is straightforward, e.g. the model
(41.12), can be modified to allow discrete outcomes
through the GLM formulation:

gk(µkij ) = βk0+βk1ηij +bki0 ,

where gk is a link function specific to the type-k outcome
and µkij = E(Ykij ).

41.3 Latent Class Mixed Model for Longitudinal Data

The linear mixed model is a well-known method
for incorporating heterogeneity (for example, subject-
to-subject variation) into a statistical analysis for
continuous responses. However heterogeneity cannot
always be fully captured by the usual assumptions
of normally distributed random effects. Latent class
mixed models offer a way of incorporating additional
heterogeneity which can be used to uncover distinct
subpopulations, to incorporate correlated non-normally
distributed outcomes and to classify individuals into risk
classes. Lin et al. and McCulloch et al. used a latent
class mixed model [41.13, 14] to model the trajectory
of longitudinal prostate specific antigens (PSAs) be-
fore diagnosis of prostate cancer from a retrospective
study of nutritional prevention of cancer (NPC) trials
in which subjects were randomized to either selenium-
supplement groups or the control group [41.15, 16].
Serial PSA levels were determined retrospectively from
frozen blood samples that had been collected from all
patients at successive clinic visits. The PSA data set that
was analyzed consists of 1182 subjects with a highly
variable number of readings (range 120, median 4) per
subject at irregularly spaced intervals.

These latent class mixed models assume that there
are K latent classes, with each class representing
a subpopulation that has its own trajectories of longi-
tudinal responses. Suppose we have N subjects indexed
by i = 1, . . . , N , and K latent classes labeled by
k = 1, . . . , K . We define Cik = 1 if subject i is member
of class k and 0 otherwise. The probability that sub-
ject i belongs to latent class k is described through the
multinomial distribution of the class membership vector
for subject i, Ci = (Ci1, · · · ,CiK )T, modeled via a logit

model with covariate vector vi = (vi1, · · · , vim)T and
associated class-specific coefficient vector φk:

πik = P(Cik = 1) = exp
(
vT

i φk
)

∑K
s=1 exp

(
vT

i φs
) , (41.14)

where πik denotes the probability that subject i belongs
to latent class k and φk is the coefficient vector for class k
with φ1 = 0.

Each subpopulation has its own model for the
longitudinal response with subpopulation differences
entering the mean:

Yi = Xiβ+Zibi +Wi (�Ci )+ εi . (41.15)

Here, Yi , Xi ,Zi , β, bi and εi are defined in the same way
as those in model (41.3). Covariates for class-specific ef-
fects are denoted by the ni × pw matrix Wi , which has
a similar structure to Xi . There may be overlap of the
covariate effects in Xi , Zi and Wi . The class-specific re-
gression parameters are in the pw × K matrix � , where
� = (γ1, · · · , γK ), with γk being a pw-dimensional col-
umn vector containing the parameters specific to class k.
Given Cik = 1, we have �Ci = γk for k = 2, . . . , K and
we take γ1 = 0 to assure identifiability.

The model (41.15) captures common characteristics
of the longitudinal trajectories within a subpopulation
through latent classes while accommodating the vari-
ability among subjects in the same class through random
effects. The use of a mixture of multivariate normal
distributions for the longitudinal response Y provides
flexibility that allows non-normal distributions for ran-
dom effects.

The variables included in the model are as follows.
The covariate vector v used to predict class membership
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Fig. 41.1a,b Longitudinal trajectories of PSA for the four-class
models. PSA values were fitted to the log-transformed data and
then back-transformed to the original scale for plotting. The ob-
served trajectories in the right panel are calculated by first dividing
the time period into six-month intervals. For each subject, for each
interval, the available PSA readings are averaged. The observed PSA
trajectory for class k are calculated as averages weighted by each
individual’s estimated probability of class-k membership: (a) fitted
trajectories for the four-class model; (b) observed trajectories for the
four-class model

in (41.14) contains the treatment assignment indicator
of selenium (Se) supplementation group, age at random-

ization, baseline PSA and Se level at randomization.
The longitudinal biomarker value Y in (41.15) is the
vector of log(PSA+1). The fixed effect covariate vec-
tor X contains the treatment assignment indicator, age
at randomization and Se level at randomization, and lin-
ear and quadratic terms of visit time expressed in years
since entry into the trial. The covariates for the random
effects and class-specific effects, Z and W, also con-
tain an intercept and linear and quadratic terms of years
since entry.

The four-class solution from the above latent class
mixed model identifies fitted PSA trajectory classes that
are labeled as “Low I”,“Low II”, “Medium” and “High”
Fig. 41.1. The majority classes “Low I” and “Low II” are
characterized by a consistently low PSA level through-
out the trial period. The “Medium” class has a higher
PSA level than the two “Low” classes throughout the
trial; the PSA level increases over time for this class.
The minority class “High” has the highest PSA level
at the beginning of the trial, and the predicted level of
PSA increases over time until the fourth year after ran-
domization and then decreases. In comparison the usual
linear mixed model (41.4) would only be able to give
one PSA trajectory that is rather flat.

Extension of the latent class mixed model to simul-
taneously modeling of multiple longitudinal responses
is straightforward.

41.4 Structural Equation Model with Latent Variables
for Longitudinal Data

Structural equation models (SEM) refer to the mod-
els that additionally specify the regression relationships
among latent variables themselves. Models (41.9) and
(41.13) can be regarded as SEMs.

Modeling growth within the SEM framework is
a more recent approach for studying developmental
trends. Because the SEM approach offers more flex-
ibility in testing different research hypotheses about
the developmental trend, many researchers have argued
in favor of its superiority over some other analytic
approaches [41.17, 18]. These models have provided
researchers with an array of tools to interpret longi-
tudinal data, understand developmental processes, and
formulate new research questions.

Frosch et al. studied the relationship between to-
bacco and illicit drug use of cocaine and heroin
among 166 methadone-maintained persons participat-
ing in a smoking-cessation intervention [41.19]. After
completing a two-week screening period, participants

were randomly assigned to one of four conditions:
(a) contingency management (CM; a behavioral treat-
ment in which participants receive increasingly valuable
incentives for providing successive breath samples doc-
umenting smoking abstinence; n = 44); (b) relapse
prevention (RP; a cognitive–behavioral group treatment
providing educational and skills training information
for smoking cessation; n = 42); (c) CM and RP com-
bined (n = 46); and (d) a control condition in which
participants received neither CM nor RP (n = 43). Dur-
ing the 12-week treatment period, participants provided
urine and breath samples for heroin and cocaine tox-
icology and measurement of expired CO three times
weekly (Monday, Wednesday, and Friday). The impact
of use of heroin and cocaine on levels and changes
in cigarette use was assessed with latent growth mod-
els in structural equations framework. The time axis
is divided into two-week periods for the 12 weeks of
treatment. Scales for the use of heroin, cocaine, and
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Fig. 41.2 Final latent-growth model presenting significant predictors of levels and trajectory of change in cigarette use
over time. Intercepts were fixed to unity; slopes were hypothesized to be equal-interval linear trend coefficients. Double-
headed arrows represent correlations; single-headed arrows represent regressions. Higher levels of cocaine use predicted
higher levels of cigarette use; accelerated use of heroin predicted acceleration in use of cigarettes. Circles indicate latent
variables; rectangles indicate measured variables. Parameter estimates are standardized. Fagerstrom = Fagerstrom test
for nicotine dependence (after Frosch et al. [41.19])

cigarette were constructed for each of the two-week pe-
riods, and these scales were used as the longitudinal
response variables.

Let k = 1, 2, 3 index the responses of cigarette,
heroin and cocaine. For k = 2 or 3, an extended lin-
ear mixed model such as (41.11) is specified for heroin
or cocaine response:

Ykij = xT
kijβk + zT

kijηki + εkij ,

where the fixed covariates xkij include the intercept, the
linear term in time in weeks and the treatment dummy
variables, and where zkij is a qk-vector that includes
only the intercept and the linear term in time; the model
has exactly the same definitions as those of (41.11) ex-
cept that the coefficients of the random effects bki in
(41.11) are replaced by ηki here. The model describes

the possible improvement in heroin or cocaine use over
the course of treatment and accounts for the repeated
measures of the same type within the same subject with
the random effects of intercept and slope included in
ηki . The correlation between the responses of the two
different types of heroin and cocaine use is modeled
with the covariance of η2i and η3i . The intercept rep-
resents the individual baseline level of use of cocaine
or heroin. The slope represents the trend of the growth
curve.

With the additional pw,1-vector of fixed covariates
of w1i including the Fagerstrom score and contingency
management measure, the slopes and intercepts of co-
caine use and heroin use are used as the latent predictors
in the following model to ascertain the impact of their
initial levels and their own dynamic changes (slopes) on
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predicting the slope and intercept of cigarette use:

η1i =�2η2i +�3η3i +�1w1i + ξ1i , (41.16)

where �k (k = 2, 3) is a qk × qk (qk = 2 here) diagonal
matrix of factor loadings for ηki with the s-th diagonal
element being λk,s , �1 is a q1 × pw,1 (q1 = pw,1 = 2
here) matrix of regression coefficients associated with
fixed covariates w1i and ξ1i is a q1-vector of residuals.

The model (41.16) can be written as the following
structural equation for the relationships among the latent
variables:

ηi =�ηi+�wi + ξi , (41.17)

where ηi = (ηT
1i , . . . , η

T
Ki )

T, � is a
∑K

k=1 qk ×
∑K

k=1 qk
upper-diagonal matrix of coefficients, wi is a vector
of

∑K
k=1 pw,k covariates, Γ is a

∑K
k=1 qk ×

∑K
k=1 pw,k

matrix of regression coefficients and ξi is a
(∑K

k=1 qk
)
-

vector of residuals. � is upper-diagonal, which implies
that there are no simultaneous effects with latent vari-
able 1 regressed on latent variable 2 and vice versa. The
lower-level latent variables (e.g., the η1i for cigarette
use) come before the higher-level ones (e.g., the η2i
and η3i for heroin and cocaine use) in the η vector,

an the upper-diagonal � matrix ensures that lower-
level latent variables can be regressed on higher ones
but not the reverse since it would not make sense to
regress a higher-level latent variable on a lower-level
one. Some elements of the upper-diagonal matrix �

can be additionally set to zero, which indicates that
a latent variable does not depend on a corresponding
higher-level one.

Using this structural equation model for the
methadone-maintenance data, a significant relationship
during the treatment period between rate of change in
heroin and rate of change in tobacco use was revealed,
with increased heroin use corresponding to increased
tobacco use. Although levels of cocaine use were re-
lated to levels of tobacco use, there was no significant
relationship between the rates of change of the two
substances. Frosch et al.’s findings demonstrate the
utility of latent growth models with the structural equa-
tion approach for analyzing short-term clinical trial
data and strongly suggest that successful smoking ces-
sation in this population requires a concurrent focus
on reducing heroin use. The final model that Frosch
et al. used is represented by a path diagram, as shown
in Fig. 41.2.

41.5 Concluding Remark: A Unified Multilevel Latent Variable Model

In the case of hierarchical data including longitudinal
data, the term level is often used to describe the position
of a unit of observation within a hierarchy of units, typ-
ically reflecting the sampling design. Here level-1 units
are nested in level-2 units, which are nested in level-3
units, a typical example being patients in clinics in re-
gions. In this context, a random effect is said to vary
at a given level, e.g. at the region level, if it varies be-
tween regions but, for a given region, is constant for
all clinics and patients belonging to that region. If a re-
peated measure is taken on the patients and the regions
are ignored, then time points are the level-1 units, pa-
tients are the level-2 units and clinics are the level-3
units. The multilevel models assume that lower-level
units are conditionally independent given the higher-
level latent variables and the explanatory variables. The
latent variables at the same level are usually assumed
to be mutually correlated whereas latent variables at
different levels are independent. The aim of multilevel
modeling is to analyze data simultaneously from differ-
ent levels of the hierarchy. All the models discussed
in this chapter can be regarded as special cases of

a multilevel model with latent variables for longitudinal
data.

The expression for the s-th element of η

(s = 1, . . . ,
∑K

k=1 qk) in an SEM such as (41.16) can
be substituted into the expression for (s−1)-th element,
which can be substituted into the expression for (s−2)-
th element, and so forth. (i. e., recursive substitution).
Then, using similar notational definitions to those doc-
umented by Rabe–Hesketh et al. [41.4], we obtain an
equation of the following form for longitudinal data with
constraints among the parameters:

g(µkij ) = xT
kijβ+

L∑

l=2

ql∑

s=1

z(l),T
kij,s λ

(l)
s η

(l)
ki,s , (41.18)

where l = 1, . . . , L indexes the L levels, there are ql

latent variables at level l, η(l)
ki,s is the s-th latent variable

for subject i in the type-k response at level l, xkij and
z(l)

kij,s are two vectors of explanatory variables associated

with fixed and latent variables and λ
(l)
s is the vector of

factor loadings for the s-th latent variable η
(l)
ki,s in level

l. In the general form of equation (41.18), the latent
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variables η can be continuous or discrete (e.g., latent
classes).

Multilevel modeling techniques offer researchers the
opportunity not only to analyze their data in a more tech-

nically appropriate manner than traditional single-level
methods allow, but also to extend the range of research
questions to a level with more contextual richness and
complexity.
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Genetic Algor42. Genetic Algorithms and Their Applications

The first part of this chapter describes the
foundation of genetic algorithms. It includes
hybrid genetic algorithms, adaptive genetic
algorithms and fuzzy logic controllers. After
a short introduction to genetic algorithms, the
second part describes combinatorial optimization
problems including the knapsack problem, the
minimum spanning tree problem, the set-
covering problem, the bin-packing problem
and the traveling-salesman problem; these are
combinatorial optimization studies problems
which are characterized by a finite number of
feasible solutions. The third part describes network
design problems. Network design and routing are
important issues in the building and expansion of
computer networks. In this part, the shortest-path
problem, maximum-flow problem, minimum-
cost-flow problem, centralized network design
and multistage process-planning problem are
introduced. These problems are typical network
problems and have been studied for a long time.
The fourth section describes scheduling problems.
Many scheduling problems from manufacturing
industries are quite complex in nature and very
difficult to solve by conventional optimization
techniques. In this part the flow-shop sequencing
problem, job-shop scheduling, the resource-
constrained projected scheduling problem and
multiprocessor scheduling are introduced. The
fifth part introduces the reliability design
problem, including simple genetic algorithms
for reliability optimization, reliability design
with redundant units and alternatives, network
reliability design and tree-based network topology
design. The sixth part describes logistic problems
including the linear transportation problem,
the multiobjective transportation problem, the
bicriteria transportation problem with fuzzy
coefficients and supply-chain management
network design. Finally, the last part describes
location and allocation problems including
the location–allocation problem, capacitated
plant-location problem and the obstacle location–
allocation problem.
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42.1 Foundations of Genetic Algorithms
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Fig. 42.1 The general structure of genetic algorithms

Recently, genetic algorithms have received considerable
attention regarding their potential as an optimization
technique for complex problems and have been suc-
cessfully applied in the area of industrial engineering.
The well-known applications include scheduling and se-
quencing, reliability design, vehicle routing location,
transportation and many others.

42.1.1 General Structure
of Genetic Algorithms

Genetic algorithms are stochastic search algorithms
based on the mechanism of natural selection and natural
genetics. Genetic algorithms, in contrast to conventional
search techniques, start with an initial set of random
solutions called the population. Each individual in the
population is called a chromosome, encoding a solu-
tion to the problem at hand. A chromosome is a string
of symbols, usually but not necessarily, a binary bit
string. The chromosomes evolve through successive iter-
ations, called generations. During each generation, the
chromosomes are evaluated, using some measures of
fitness [42.1]. To create the next generation, new chro-

mosomes, called offspring, are formed by either merging
two chromosomes from the current generation using
a crossover operator or modifying a chromosome us-
ing a mutation operator. A new generation is formed by
selecting, according to the fitness values, some of the
parents and offspring, and rejecting others so as to keep
the population size constant.

Fitter chromosomes have higher probabilities of be-
ing selected. After several generations, the algorithms
converge to the best chromosome, which we hope repre-
sents the optimum or suboptimal solution to the problem

Population Crossover

Hillclimbing

Mutation

Evaluation

Fig. 42.2 General structure of hybrid genetic algorithms
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Genetic Algorithms and Their Applications 42.1 Foundations of Genetic Algorithms 751

when decoded. Let P(t) and C(t) be parents and off-
spring in the current generation t; the general structure
of genetic algorithms Fig. 42.1 is described as follows:

procedure: genetic algorithms
begin

t ← 0; // t: generation number
initialize P(t); // P(t): population of individuals
evaluate P(t);
while (not termination condition) do

crossover P(t) to yield C(t) ; // C(t): offspring
mutation P(t) to yield C(t);
evaluate C(t) ;
select P(t+1) from P(t) and C(t) ;
t ← t+1;

end
end

Crossover is the main genetic operator. It operates on
two chromosomes at a time and generates offspring
by combining both chromosomes’ features. A simple
way to achieve crossover would be to choose a random
cut-point and generate the offspring by combining the
segment of one parent to the left of the cut-point with the
segment of the other parent to the right of the cut-point.

Mutation is a background operator, which produces
spontaneous random changes in various chromosomes.
A simple way to achieve mutation would be to alter one
or more genes.

42.1.2 Hybrid Genetic Algorithms

Genetic algorithms (GAs) have proved to be a versatile
and effective approach for solving optimization prob-
lems. Nevertheless, there are many situations in which
the simple GA does not perform particularly well, and
various methods of have been proposed [42.2].

One of the most common forms of hybrid genetic
algorithms is to incorporate local optimization as an
add-on extra to the canonical GA loop of recombination
and selection [42.3, 4]. With the hybrid approach, lo-
cal optimization such as hill-climbing is applied to each
newly generated offspring to move it to a local optimum
before injecting it into the population. Genetic algo-
rithms are used to perform global exploration among
the population while heuristic methods are used to per-
form local exploitation around chromosomes. Because
of the complementary properties of genetic algorithms
and conventional heuristics, the hybrid approach often
outperforms either method operating alone. Some work
has been done to reveal the natural mechanism behind
such a hybrid approach, among which is Lamarckian

evolution. Let P(t) and C(t) be parents and offspring in
the current generation t. The general structure of hybrid
genetic algorithms is described as follows; see Fig. 42.2.

procedure: hybrid genetic algorithms
begin

t ← 0 ; // t: generation number
initialize P(t); // P(t): population of individuals
evaluate P(t);
while (not termination condition) do

crossover P(t) to yield C(t);
// C(t): offspring

mutation P(t) to yield C(t);
locally search C(t);
evaluate C(t);
selection P(t+1) from P(t) and C(t);
t ← t+1 ;

end
end

42.1.3 Adaptive Genetic Algorithms

There are two basic approaches to applying the genetic
algorithms to a given problem: 1) to adapt a problem to
the genetic algorithms, 2) to adapt the genetic algorithms
to a problem.

Genetic algorithms were first created as a kind of
generic and weak method featuring binary encoding
and binary genetic operators. This approach requires
a modification of the original problem into an appropri-
ate from suitable for the genetic algorithms, as shown
in Fig. 42.3.

To overcome such problems, various nonstandard
implementations of the genetic algorithm have been
created for particular problems, which leave the prob-
lem unchanged and adapt the genetic algorithms by
modifying a chromosome representation of a potential
solution and applying appropriate genetic operators, as
shown in Fig. 42.4. This approach has been success-
fully applied in the area of industrial engineering and is
becoming the main approach in recent applications of
genetic algorithms [42.5].

Problem

Adaption

Adapted problem GAs

Fig. 42.3 Adapt a problem to the genetic algorithms
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42.1.4 Fuzzy Logic Controller

Fuzzy logic is much closer in spirit to human thinking
and natural language than the traditional logical sys-
tems. In essence, the fuzzy logic controller provides
an algorithm which can convert a linguistic control
strategy based on expert knowledge into an automatic
control strategy. In particular, this methodology appears
very useful when the processes are too complex for
analysis by conventional techniques or when the avail-
able sources of information are interpreted qualitatively,
inexactly, or with uncertainty [42.3].

The pioneering work to extend the fuzzy logic
technique to adjust the strategy parameters of genetic
algorithms dynamically was carried out by Xu and
Vukovich [42.5]. The main idea is to use a fuzzy logic
controller to compute new strategy parameter values that
will be used by the genetic algorithms. A fuzzy logic
controller is comprised of four principal components:

1. a knowledge base,
2. a fuzzification interface,
3. an inference system,
4. a defuzzification interface.

The experts’ knowledge is stored in the knowledge base
in the form of linguistic control rules. The inference
system is the kernel of the controller, which provides
an approximate reasoning based on the knowledge base.
The generic structure of a fuzzy logic controller is shown
in Fig. 42.5.

42.1.5 Multiobjective Optimization
Problems

During the last two decades, genetic algorithms have
received considerable attention regarding their poten-
tial as a novel approach to multiobjective optimization
problems, known as evolutionary multiobjective opti-
mization or genetic multiobjective optimization.

Multiobjective optimization problem with q objec-
tives and m constraints will be formulated as follows:

max
[
z1 = f1(x), z2 = f2(x), . . . , zq = fq(x)

]
,

(42.1)

s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m . (42.2)

A. The Concept of a Pareto Solution
In most existing methods, Pareto solutions are identified
at each generation and are only used to calculate fitness
values or ranks for each chromosome. No mechanism is

Problem

Adaption

Adapted problem

GAs

Fig. 42.4 Adapt the genetic algorithms to a problem

provided to guarantee that the Pareto solutions gen-
erated during the evolutionary process enter the next
generation. A special pool for preserving the Pareto
solutions is added onto the basic structure of ge-
netic algorithms. At each generation, the set of Pareto
solutions E(t) is updated by deleting all dominated
solutions and adding all newly generated Pareto solu-
tions [42.5]. The overall structure of the approach is
given as follows:

procedure: Pareto genetic algorithms
begin

t ← 0 ; // t: generation number
initialize P(t); // P(t): population of individuals
objective P(t);
create Pareto E(t);
fitness eval(P);
while (not termination condition) do

crossover P(t) to yield C(t);
//P(t): population of individuals

mutation P(t) to yield C(t);
objective C(t);
update Pareto E(P, C);
fitness eval(P, C);
selection P(t+1) from P(t) and C(t);
t ← t+1 ;

end
end

B. Adaptive Weight Approach
Gen and Cheng proposed an adaptive weights approach
which utilizes some useful information from the current
population to readjust weights to obtain a search pressure
towards a positive ideal point [42.6, 7].

For the examined solutions at each generation, we
define two extreme points: the maximum extreme point
z+ and the minimum extreme pint z− in criteria space
as follows:

z+ =
(

zmax
1 , zmax

2 , . . . , zmax
q

)
, (42.3)

z− =
(

zmin
1 , zmin

2 , . . . , zmin
q

)
, (42.4)
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Fig. 42.5 Generic structure of a fuzzy logic controller

where zmin
k and zmax

k are the maximal value and minimal
value for objective k in the current population. Let P
denote the set of the current population. For a given
individual x, the maximal value and minimal value for
each objective are defined as

zmax
k = max{ fk(x)|x ∈ P}, k = 1, 2, . . . , q ,

(42.5)

zmin
k = min x{ fk(x)|x ∈ P}, k = 1, 2, . . . , q .

(42.6)

The hyperparallelogram defined by the two extreme
points is a minimal hyperparallelogram containing all
current solutions. The two extreme points are renewed at
each generation. The maximum extreme point will grad-
ually approximate the positive ideal point. The adaptive
weight for objective k is calculated by

wk = 1

zmax
k − zmin

k
, k = 1, 2, . . . , q . (42.7)

For a given individual x, the weighted-sum objective
function is given by

z(x) =
q∑

k=1

wk
(
zk − zmin

k

)
(42.8)

Z2

Z2
max

Z2
min

Z1
min Z1

max Z1

(Z1
min, Z2

max)
Z+ 

Maximum
extreme point

(Z1
max, Z2

min)
Z – Minimum
extreme point

Minimal rectangle containing
all current solutions

Positive
ideal
point

Adaptive
moving line

Subspace corresponding
to current solutions

Whole criteria
space Z

Fig. 42.6 Adaptive weights and adaptive hyperplane

=
q∑

k=1

zk − zmin
k

zmax
k − zmin

k
(42.9)

=
q∑

k=1

fk(x)− zmin
k

zmax
k − zmin

k
. (42.10)

As the extreme points are renewed at each generation,
the weights are renewed accordingly. Figure 42.6 is a hy-
perplane defined by the following extreme points in the
current solutions

(zmax
1 , zmin

2 , . . . , zmin
k , . . . , zmin

q ) , (42.11)

. . .

(zmin
1 , zmin

2 , . . . , zmax
k , . . . , zmin

q ) , (42.12)

. . .

(zmin
1 , zmin

2 , . . . , zmin
k , . . . , zmax

q ) . (42.13)

It is an adaptive moving line defined by the extreme
points (zmax

1 , zmin
2 ) and (zmin

1 , zmax
2 ), as shown Fig. 42.6.

The rectangle defined by the extreme points (zmax
1 , zmin

2 )
and (zmin

1 , zmax
2 ) is the minimal rectangle containing all

current solutions.

42.2 Combinatorial Optimization Problems

Combinatorial optimization studies problems which are
characterized by a finite number of feasible solutions.
An important and widespread area of application con-
cerns the efficient use of scarce resources to increase
productivity. Typical problems include set covering,

bin packing, knapsack, quadratic assignment, minimum
spanning tree, machine scheduling, sequencing and bal-
ancing, cellular manufacturing design, vehicle routing,
facility location and layout, traveling-salesman problem,
and so on.
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42.2.1 Knapsack Problem

Suppose that we want to fill up a knapsack by selecting
some objects among various objects (generally called
items). There are n different items available and each
item j has a weight ofw j and a profit of p j . The knapsack
can hold a weight of at most W . The problem is to find an
optimal subset of items so as to maximize the total profit
subject to the knapsack’s weight capacity. The profits,
weights and capacity are positive integers [42.8].

Let x j be binary variables given by

x j =
⎧
⎨

⎩
1 if item j is selected ,

0 otherwise .
(42.14)

The knapsack problem can be mathematically formu-
lated as

max
n∑

j=1

p j x j , (42.15)

s.t.
n∑

j=1

w j x j ≤ W , (42.16)

x j = 0 or 1 j = 1, 2, . . . , n . (42.17)

Binary Representation Approach
The binary string is a natural representation for the knap-
sack problem, where one means the inclusion and zero
the exclusion of one of the n items from the knapsack.
For example, a solution for the 10-item problem can be
represented as the following bit string:

x = (x1x2 · · · x10)

(0 1 0 1 0 0 0 0 1 0) ,

meaning that items 2, 4 and 9 are selected for inclusion
in the knapsack.

42.2.2 Minimum Spanning Tree Problem

Consider a connected undirected graph G = (V, E),
where V = {v1, v2, · · ·, vn} is a finite set of vertices rep-
resenting terminals or telecommunication stations etc.,
E = {eij |eij = (vi , v j ), vi , v j ∈ V } is a finite set of edges
representing connections between these terminals or sta-
tions. Each edge has an associated positive real number
denoted by W = {wij |wij = w(vi , v j ), wij > 0, vi , v j ∈
V } representing distance, cost and so on. The vertices
and edges are sometimes referred to as nodes and links
respectively [42.9].

Based on their different backgrounds, many re-
searchers have proposed varieties of spanning tree
problems with some constraints on them, such as the
spanning tree problem with a degree constraint, the
stochastic spanning tree problem, the quadratic spanning
tree problem, the multi-criteria spanning tree problem
and the spanning tree problem with a constraint on
the number of leaves or leaf-constrained spanning tree
problem [42.10, 11].

A spanning tree is a minimal set of edges from E that
connects all the vertices in V and therefore at least one
spanning tree can be found in graph G. The minimum
spanning tree is just one of the spanning trees whose total
weight of all edges is minimal. It can be formulated as

min z(x) =
n−1∑

i=1

n∑

j=2

wij xij , (42.18)

s. t.
n−1∑

i=1

n∑

j=2

xij = n−1 ; (42.19)

∑

i∈S

∑

j∈S
j>1

xij ≤ |S|−1, S ⊆ V\{1}, |S| ≥ 2 ,

(42.20)

xij = 0 or 1 , i = 1, 2, . . . , n−1,

= 2, 3, . . . , n , (42.21)

where

xij =
⎧
⎨

⎩
1, if edge (i, j) is selected in a spanning tree

0, otherwise

(42.22)

and T is a set of the spanning trees of graph G.

A. Tree Encodings
For the minimum spanning tree (MST) problem, the
method of encoding a tree is critical for the genetic al-
gorithm approach because the solution should be a tree.

If we associate an index k with each edge, i. e., E =
{ek} , k = 1, 2, . . . , K , where K is the number of edges
in a graph, a bit string can represent a candidate solution
by indicating which edges are used in a spanning tree,
as illustrated in Fig. 42.7.

B. Genetic Approach
Representation. The chromosome representation for
a spanning tree should contain, implicitly or explic-
itly, the degree on each vertex. Among the several tree
encodings, only the Prüfer number encoding explicitly
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contains the information of vertex degree, i.e. that any
vertex with degree d will appear exactly d−1 times
in the encoding. Thus the Prüfer number encoding is
adopted.

Crossover and Mutation. Prüfer number encoding can
still represent a tree after any crossover or mutation
operations. Simply, the one-point crossover operator is
used, as illustrated in Fig. 42.8. Mutation is performed
as random perturbation within the permissive integer
from 1 to n (n is the number of vertices in graph). An
example is given in Fig. 42.9

42.2.3 Set-Covering Problem

The problem is to cover the rows of an m-row/n-column
zero–one matrix by a subset of columns at minimal cost.
Considering a vector n that x j is 0−1 variable that takes
on the 3 value 1, if item j is selected (with a cost c j > 0).
The set-covering the problem is then formulated as

min z(x) =
n∑

j=1

c j x j , (42.23)

s. t.
n∑

j=1

aij x j ≥ 1 i = 1, 2, . . . ,m , (42.24)

x j ∈ {0, 1}, j = 1, 2, . . . , n . (42.25)

Genetic Approach
Representation. The fitness of an individual f (x) is
calculated simply by

f (x) =
n∑

j=1

c j x j . (42.26)

1

2

7

6

3

5

4

e1

e4

e5 e8 e10

e12

e7

e2 e11

e3 e6 e9

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

0 1 10 1 10 0 1 0 10

Fig. 42.7 A graph with its edge encoding for a spanning
tree

2 3 4 7 1 8 9Parent 1
Cut-point

8 4 6 2 8 9 7Parent 2

2 3 4 7 8 9 7

8 4 6 2 1 8 9

Off-
spring 1

Off-
spring 2

Fig. 42.8 Illustration of the crossover operation

6 2 7 8 3 2 9Parent

Select a position at random

6 2 7 8 2 2 9
Off-
spring

Replace with a digit at random

Fig. 42.9 Illustration of the mutation operation

The initial population can be generated randomly.

Genetic Operators. Beasley and Chu proposed a gener-
alized fitness-based crossover operator called the fusion
operator [42.9].

Let P1 and P2 be the parent strings. Let fP1 and
fP2 be the fitness values of the parent strings P1 and
P2, respectively. Let C be the child string. The fusion
operator works as follows:

Procedure: Fusion Operator.

Step 1. i = 1.
Step 2. If P1[i] = P2[i], then C[i] ← P1[i] = P2[i].
Step 3. If P1[i] �= P2[i], then

(a) C[i] ← P1[i]
with probability p = fP2/( fP1 + fP2 ).

(b) C[i] ← P2[i] with probability 1− p.
Step 4. If i = n, stop; otherwise, set i ← i+1 and go to

step 1.

42.2.4 Bin-Packing Problem

The bin-packing problem consists of placing n ob-
jects into a number of bins (at most n bins). Each
object has a weight (wi > 0) and each bin has a lim-
ited bin capacity (ci > 0). The problem is to find
the best assignment of objects to bins such that the
total weight of the objects in each bin does not ex-
ceed its capacity and the number of bins used is
minimized.
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A mathematical formulation for the bin-packing
problem is given as follows [42.8]:

min z(y) =
n∑

i=1

yi , (42.27)

s. t.
n∑

j=1

w j xij ≤ ci yi , i ∈ N = {1, 2, . . . , n} ,

(42.28)
n∑

i=1

xij = 1 , j ∈ N , (42.29)

yi = 0 or 1, i ∈ N , (42.30)

xij = 0 or 1, i, j ∈ N , (42.31)

where

yi =
⎧
⎨

⎩
1, if bin i is used

0, otherwise ,
(42.32)

xij =
⎧
⎨

⎩
1, if object j is assigned to bin i

0, otherwise .
(42.33)

Genetic Approach
Representation. The most straightforward approach is
to encode the membership of objects in the solution. For
instance, the chromosome 1 4 2 3 5 2 would encode
a solution where the first object is in bin 1, the second
in bin 4, the third in bin 2, the fourth in bin 3, the fifth in
bin 5 and the sixth in bin 2. This representation for the
bin-packing problem is illustrated in Fig. 42.10.

Genetic Operators
Procedure: Crossover [42.12].

Step 1. Select at random two crossing sites, delimiting
the crossing section, in each of the two parents.

Step 2. Inject the contents of the crossing section of the
first parent at the first crossing site of the second
parent.

Step 3. Eliminate all objects now occurring twice from
the bins they were members of in the second
parent, so that the old membership of these ob-
jects gives way to the membership specified by

Object

Bin 1 4 2 3 5 2

1 2 3 4 5 6

Fig. 42.10 Representation of membership of objects

the new injected bins. Consequently, some of the
old groups coming from the second parent are
altered.

Step 4. If necessary, adapt the resulting bins, according
to the hard constraints and the cost function to
optimize.

Step 5. Apply steps 2–4 to the two parents with
their roles permuted to generate the second
child.

42.2.5 Traveling-Salesman Problem

The traveling-salesman problem (TSP) is one of the most
widely studied combinatorial optimization problems. Its
statement is deceptively simple: a salesman seeks the
shortest tour through n cities.

For example, a tour of a nine-city TSP

3−2−5−4−7−1−6−9−8

is simply represented as follows:

[
3−2−5−4−7−1−6−9−8

]
.

This representation is also called a path representation
or order representation. This representation may lead
to illegal tours if the traditional one-point crossover
operator is used, therefore many crossover operators
have been investigated for it. Another method is the
random keys representation. This representation en-
codes a solution with random numbers from (0,1).
These values are used as sort keys to decode the
solution.

For example, a chromosome for a nine-city problem
may be

[
0.23 0.82 0.45 0.74 0.87 0.11 0.56 0.69 0.78

]

Where position i in the list represents city i. The random
number in position i determines the visiting order of
city i in a TSP tour. We sort the random keys in ascending
order to get the following tour:

6−1−3−7−8−4−9−2−5

Genetic Approach
Representation. Permutation representation is per-
haps the most natural representation of a TSP tour,
where cities are listed in the order in which they are
visited [42.13, 14].
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1. Select the substring at random

2. Exchange substring between parents

3. Determine mapping relationship

4. Legalize offspring with mapping relationship

1Parent 1 2 3 4 5 6 7 8 9

5Parent 2 4 6 9 2 1 7 8 3

1Proto-child 1 2 6 9 2 1 7 8 9

5Proto-child 2 4 3 4 5 6 7 8 3

6 9 2 1

3 4 5 5

1
2
9

6
5
4

3

3Offspring 1 5 6 9 2 1 7 8 4

2Offspring 2 9 3 4 5 6 7 8 1

Fig. 42.11 Illustration of the PMX operator

Crossover Operators
Procedure: partial-mapped crossover (PMX) [42.14].

Step 1. Select two positions along the string uniformly
at random.

Step 2. Exchange two substrings between parents to
produce proto-children.

Step 3. Determine the mapping relationship between
two mapping sections.

1 2 6 4 5 3 7 8 9

Select three positions at random

The neighbors from the cities

1 2 3 4 5 6 7 8 9

1 2 3 4 5 8 7 6 9

1 2 8 4 5 3 7 6 9

1 2 8 4 5 6 7 3 9

1 2 6 4 5 8 7 3 9

Fig. 42.12 Illustration of the heuristic mutation operator

Step 4. Legalize offspring with the mapping relation-
ship.

The procedure is illustrated in Fig. 42.11.

Mutation Operators
Procedure: heuristic mutation [42.15, 16].

Step 1. Pick n genes at random.
Step 2. Generate neighbors according to all possible

permutation of the selected genes.
Step 3. Evaluate all neighbors and select the best one as

offspring.
The procedure is illustrated in Fig. 42.12.

42.3 Network Design Problems

Network design and routing are one of important issues
in the building and expansion of computer networks.
Many ideas and methods have been proposed and tested
in the past two decades. Recently, there is an increas-
ing interest in applying genetic algorithms to problems
related to computer network [42.17].

42.3.1 Shortest-Path Problem

An undirected graph G = (V, E) comprises a set of
nodes V = {1, 2, · · · , n} and a set of edges E ∈ V × V
connecting nodes in V . Corresponding to each edge,
there are two nonnegative numbers c1

ij and c2
ij repre-

senting the cost and distance, or other items of interest,
from node i to node j. A path from node i to node j
is a sequence of edges (i, l), (l,m), · · · , (k, j) from E
in which no node appears more than once. A path can

also be equivalently represented as a sequence of nodes
(i, l,m, · · · , k, j). For the example given in Fig. 42.13,
(1, 4), (4, 3), (3, 5), (5, 6) is a path from node 1 to node
6. The node representation is (1, 4, 3, 5, 6).

Let 1 denote the initial node and n denote the end
node of the path. Let xij be an indicator variable defined

2

6

54

1
3

3
7

2
9

6

3 3

3

4 1

Fig. 42.13 Simple undirected graph with six nodes and 10
edges
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as follows:

xij =
⎧
⎨

⎩
1 , if edge (i, j) is included in the path

0 , otherwise .

(42.34)

The bicriteria shortest-path problem can be formulated
as follows:

min z1(x) =
∑

i

∑

j

c1
ij xij , (42.35)

min z2(x) =
∑

i

∑

j

c2
ij xij , (42.36)

s. t.
∑

j

xij ≤ 2 , ∀i ∈ V , (42.37)

∑

j �=k

xij ≥ xik , ∀(i, k) ∈ E, ∀i ∈ V\{1, n} ,

(42.38)
∑

j

x1 j =
∑

j

x jn = 1 , ∀i, j ∈ V , (42.39)

xij = x ji , ∀(i, j) ∈ E , (42.40)

0 ≤ xij ≤ 1 , ∀(i, j) ∈ E . (42.41)

Genetic Approach
Priority-Based Encoding [42.18–20]. The position of
a gene is used to represent a node and the value is used to
represent the priority of the node for constructing a path
among the candidates. The encoding method is denoted
by priority-based encoding. The path corresponding to
a given chromosome is generated by a sequential node-
appending procedure, beginning from the specified node
1 and terminating at the specified node n.

1 105 7

2 4 8

3 6 9

Fig. 42.14 Simple undirected graph with 10 nodes and 16
edges

1
Position:
node ID

Value:
priority

2 3 4 5 6 7 8 9 10

7 3 4 6 2 5 8 10 1 9

Fig. 42.15 Example of priority-based encoding

Consider the undirected graph shown in Fig. 42.14.
Suppose we are going to find a path from node 1
to node 10. An encoding of the instance is given
in Fig. 42.15. At the beginning, we try to find a node
for the position next to node 1. Nodes 2 and 3 are
eligible for the position, which can be easily fixed ac-
cording to the adjacency relation among nodes. The
priorities of them are 3 and 4, respectively. Node 3
has the highest priority and is put into the path. The
possible nodes next to node 3 are nodes 2, 5 and
6. Because node 6 has the largest priority value, it
is put into the path. Then we form the set of nodes
available for the next position and select the one with
the highest priority among them. These steps are re-
peated until we obtain a complete path (1, 3, 6,
7, 8, 10).

For an n-node problem, let Ω be a set containing
integers from 1 up to n, that is, Ω = {1, 2, . . . , n}, let pi
denote the priority for node i, which is a random integer
exclusively from the set Ω. Priorities pi of all nodes
satisfy the following conditions:

pi �= p j , pi , p j ∈Ω, i �= j, i, j = 1, 2, . . . , n
(42.42)

Then the priority-based encoding can be formally de-
fined as

[p1 p2 · · · pn] .

Genetic Operators
Here the position-based crossover operator proposed
by Syswerda is adopted [42.21]. It can be viewed
as a kind of uniform crossover operator for integer
permutation representation together with a pairing pro-
cedure, as shown in Fig. 42.16. Essentially, it takes
some genes from one parent at random and fills
the vacuum position with genes from the other par-
ent using a left-to-right scan. The swap mutation
operator is used here, which simply selects two po-
sitions at random and swaps their contents as shown
in Fig. 42.17.

Parent 1

Child

Parent 2

5 1 2 4 3 8 9 10 7 6

6 1 5 4 2 7 9 10 3 8

6 5 9 2 10 37 1 4 8

Fig. 42.16 Position-based crossover operator

Part
E

4
2
.3



Genetic Algorithms and Their Applications 42.3 Network Design Problems 759

42.3.2 Maximum-Flow Problem

There have been many applications of this problem in
the real world. One of them is to determine the max-
imum flow through a pipeline network. Assume that
oil should be shipped from the refinery (the source)
to a storage facility (the sink) along arcs of the net-
work. Each arc has a capacity which limits the amount
of flow along that arc. Here, we want to determine
the largest possible flow that can be sent from the re-
finery to the storage facility with the restriction that
no arc (pipe) capacity can be exceeded. MXF has
also been applied to some other applications such
as: the problem of selecting sites for an electronic
message-transmission system and dynamic flows in
material-handling systems [42.22–24].

A mathematical formulation for the bin-packing
problem is given by:

max f , (42.43)

s. t.
m∑

j=1

xij −
m∑

k=1

xki =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f, if i = 1

0, if i = 2, 3,

. . . ,m−1

− f, if i = m

,

(42.44)

0 ≤ xij ≤ uij , i, j = 1, 2, . . . ,m , (42.45)

where f is the amount of flow in the network from node 1
to node m and uij is arc capacities.

Genetic Approach
The priority-based encoding method is used to represent
the chromosome. The chromosome here is represented
by m-digit numbers that are generated randomly. Each
number represents the priority of the node.

Crossover. As the first step in the crossover operation,
we generate random numbers γk in the range [0, 1] (k =
1, 2, . . . ,popSize). Next, we select the chromosomes
vk to which the crossover operation will be applied.
If γk < pC then the crossover operation will be applied
to chromosome vk.

Parent 1

Child

5 1 2 4 3 8 9 10 7 6

5 10 2 4 3 8 9 1 7 6

Fig. 42.17 Swap mutation operator

Mutation. Similarly, the first step in the mutation op-
eration is to generate a random γr in the range [0, 1],
(r = 1, 2, . . . ,popSize).

If γr < pM then the chromosome vk (l = (r/m+
1)) is chosen for the mutation operation.

42.3.3 Minimum-Cost-Flow Problem

The minimum-cost-flow problem (MCF) is known as
a useful type of network optimization problem. It con-
sists of finding the minimum-cost flows in the networks.
For this problem, we are given a directed network
G = (X, A) in which each arc connecting node i and j
in the network is associated with a cost cij and a capac-
ity uij . A feasible solution to the MCF problem should
satisfy two constraints. First, the flow through each arc
should satisfy the capacity constraint. Second, the con-
servation of flow in all nodes should also be preserved.
The conservation of flows here means that the flow into
a node must equal the flow out of the node. The com-
mon objective is to determine the feasible network flow
that minimizes the total cost.

A mathematical formulation for the bin-packing
problem is given by:

min z =
m∑

i=1

m∑

j=1

cij xij , (42.46)

s. t.
m∑

j=1

xij −
m∑

k=1

xki = bi , i = 1, . . . ,m (42.47)

xij ≥ 0, i, j = 1, . . . ,m , (42.48)

where xij is the flow through an arc and cij is the unit
shipping cost along the arc. Equation (42.46) is called the
flow-conservation or Kirchhoff equation and indicates
that flow may be neither created nor destroyed in the
network.

Genetic Approach
Representation. The chromosome here is represented
by m-digit numbers generated randomly. Each number
represents the priority of the node respectively.

Crossover. The crossover is done by selecting two
chromosome randomly. We use the partially matched
crossover (PMX) method for the crossover operation.

Mutation. Mutation here is done by selecting a chromo-
some at random. Two bit positions of the chromosome
are exchanged.
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42.3.4 Centralized Network Design

Consider a complete, undirected graph G = (V, E), let
V = {1, 2, · · · , n} be the set of nodes representing ter-
minals. Denote the central site or root node as node 1,
and let E = {(i, j)|i, j ∈ V } be the set of edges rep-
resenting all possible telecommunication wiring. For
a subset of nodes S(⊆ V ), define E(S)= {(i, j)|i, j ∈ S}
as the edges whose endpoints are both in S. Define
the following binary decision variables for all edges
(i, j) ∈ E:

xij =
⎧
⎨

⎩
1 , if edge (i, j) is selected

0 , otherwise .
(42.49)

Let cij be the fixed cost with respect to edge (i, j) in the
solution, and suppose that di represents the demand at
each node i ∈ V , where by convention the demand of
the root node is d1 = 0. Let d(S), S ⊆ V denote the sum
of the demands of nodes of S. The subtree capacity is
denoted with κ. The centralized network design problem
can be formulated as follows [42.10]:

min z =
n−1∑

i=1

n∑

j=2

cij xij , (42.50)

s. t.
n−1∑

i=1

n∑

j=2

xij = 2(n−1) , (42.51)

∑

i∈S

∑

j∈S

xij ≤ 2[|S|−λ(S )] ,

S ⊆ V\{1} , |S| ≥ 2 , (42.52)
∑

i∈U

∑

j∈U

xij ≤ 2(|U|−1) , U ⊂ V ,

|U| ≥ 2 , {1} ∈U , (42.53)

xij = 0 or 1 , i = 1, 2, . . . , n−1,

j = 2, 3, . . . , n . (42.54)

Equality (42.51) is true of all spanning trees: a tree with
n nodes must have n−1 edges. Inequality (42.53) is
a standard inequality for spanning trees: if more than
|U|−1 edges connect the nodes of a subset U , then the
set U must contain a cycle. The parameter λ(S) refers to
the bin-packing number of set S, namely, the number of
bins of size κ needed to pack the nodes of items of size di
for all i ∈ S. These constraints are similar to those for
inequality (42.53), except that they reflect the capacity
constraint: if the set S does not contain the root node,
then the nodes of S must be contained in at least λ(S)
different subtrees of the root.

Up to now, all heuristic algorithms for this problem
are only focused on how to deal with the constraints
to make the problem simpler to solve. In the cutting
plane algorithms or branch-bound algorithm, the net-
work topology of the problem are usually neglected.
As a result, it leads in an exponential explosion of
constraints.

In Fig. 42.18, node ID is the node number based on
the depth-first search (DFS) and the degree at node ID
is the number of connecting nodes.

Genetic Approach
To solve the centralized network design problem by
using a genetic algorithm, a tree-based permutation
encoding method is adopted to encode the candidate
solutions, as illustrated in Fig. 42.18.

42.3.5 Multistage Process Planning

The multistage process planning (MPP) system usu-
ally consists of a series of machining operations, such
as turning, drilling, grinding, finishing, and so on, to
transform a part into its final shape or product. The
whole process can be divided into several stages. At
each stage, there are a set of similar manufacturing
operations. The MPP problem is to find the opti-
mal process planning among all possible alternatives
given certain criteria such as minimum cost, mini-
mum time, maximum quality, or under several of these
criteria.

For an n-stage MPP problem, let sk be some state at
stage k, Dk(sk) be the set of possible states to be chosen
at stage k, k = 1, 2, . . . , n, xk be the decision variable
to determine which state to choose at stage k; obviously
xk ∈ Dk(sk) , k = 1, 2, . . . , n. Then the MPP problem
can be formulated as follows:

min
xk∈Dk (sk )
k=1,2,... ,n

V (x1, x2, · · · , xn) =
n∑

k=1

vk(sk, xk) ,

(42.55)

where vk(sk, xk) represents the criterion to determine xk
under state sk at stage k, usually defined as a real number
such as cost, time, or distance.

Genetic Approach
Representation. The MPP solution can be concisely
encoded in a state permutation format by concatenat-
ing all the set states of stages. This state permutation
encoding has a one-to-one mapping for the MPP prob-
lem. The probability of randomly producing a process
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Node ID

Degree at
node ID

1 2 5 6 3 4 7 8

3 3 1 1 1 3 1 1

Root

Rooted
tree

1

32 4

5 6 7 8

Fig. 42.18 Rooted tree and its tree-based permutation

planning is definitely 1. It is also easy to decode and
evaluate. As to the initial population for an n-stage MPP
problem, each individual is a permutation with n−1 in-
tegers whereas the integers are generated randomly with
the number of all possible states in the corresponding
stage.

Parent
individual

Neighbor
individuals

Mutated gene

2 1 2 3 2 1

2 1 1 3 2 1

2 1 3 3 2 1

2 1 4 3 2 1

Fig. 42.19 Mutation with neighborhood search

Genetic Operation. In Zhou and Gen’s method, only
the mutation operation was adopted because it is easy
to hybrid the neighborhood search technique to produce
more adapted offspring. This hybrid mutation operation
provides a great chance to evolve to the optimal solution.
Figure 42.19 shows an example for this mutation oper-
ation with a neighborhood search technique supposing
that the gene is at stage 3 and the number of possible
states to be chosen is 4.

42.4 Scheduling Problems

Scheduling problems exist almost everywhere in real-
world situations, especially in the industrial engineering
world. Many scheduling problems from manufacturing
industries are quite complex in nature and very difficult
to solve by conventional optimization techniques.

42.4.1 Flow-Shop Sequencing Problem

The flow-shop sequencing problem is generally de-
scribed as follows: there are m machines and n jobs,
each job consists of m operations, and each oper-
ation requires a different machine. n jobs have to be
processed in the same sequence on m machines. The
processing time of job i on machine j is given by
tij (i = 1, . . . , n; j = 1, . . . ,m). The objective is to find
the sequence of jobs minimizing the maximum flow
time, which is called makespan.

Heuristics for General m-Machine Problems
Genetic algorithms have been successfully applied to
solve flow-shop problems. We describe Gen, Tsujimura,
and Kubota’s approach.

Representation. Because the flow-shop problem is es-
sentially a permutation schedule problem [42.25–27],
we can use the permutation of jobs as the representation

scheme of chromosome, which is the natural representa-
tion for a sequencing problem. For example, let the k-th
chromosome be

vk = [3 2 4 1] ,
meaning that the jobs sequence is j3, j2, j4, j1.

Crossover and Mutation. Here, Goldberg’s PMX is
used. Mutation is designed to perform random exchange;
that is, it selects two genes randomly in a chromo-
some and exchanges their positions. An example is given
in Fig. 42.20.

42.4.2 Job-Shop Scheduling

In the job-shop scheduling problem, we are given a set
of jobs and a set of machines. Each machine can handle
at most one job at a time. Each job consists of a chain

Parent

Off-
spring

Select two genes

1 2 3 4 5 6 7 8 9

1 2 7 4 5 6 3 8 9

Fig. 42.20 Swap mutation
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of operations, each of which needs to be processed dur-
ing an uninterrupted time period of a given length on
a given machine. The purpose is to find a schedule, that
is, an allocation of the operations to time intervals on
the machines, which has a minimum duration required
to complete all jobs [42.25].

Adapted Genetic Operators
During the past two decade, various crossover operators
have been proposed for literal permutation encod-
ings, such as partial-mapped crossover (PMX), order
crossover (OX), cycle crossover (CX), etc.

Partial-Mapped Crossover (PMX). PMX is explained in
the previous section.

Order Crossover (OX). Order crossover was proposed by
Davis. OX has the following major steps [42.14]:

Step 1. Select a substring from one parent at random.
Step 2. Produce a proto-child by copying the substring

into the corresponding positions as they are in
the parent.

Step 3. Delete all the symbols from the second parent
that are already in the substring. The resulted
sequence contains the symbols the proto-child
needs.

Step 4. Place the symbols into the unfixed positions of
the proto-child from left to right according to the
order of the sequence to produce an offspring.

Cycle Crossover (CX). Cycle crossover was proposed by
Oliver et al.. CX works as follows [42.25]:

Step 1. Find the cycle which is defined by the corres-
ponding positions of symbols between parents.

Step 2. Copy the symbols in the cycle to a child with the
corresponding positions of one parent.

Step 3. Determine the remaining symbols for the child
by deleting those symbols which are already in
the cycle from the other parent.

Step 4. Fill the child with the remaining symbols.

Mutation. It is relatively easy to make some mutation
operators for the permutation representation. During the
last decade, several mutation operators have been pro-
posed for permutation representation, such as inversion,
insertion, displacement, reciprocal exchange mutation,
and shift mutation [42.9]. Inversion mutation selects
two positions within a chromosome at random and then
inverts the substring between these two positions. Inser-

tion mutation selects a gene at random and inserts it in
a random position.

42.4.3 Resource-Constrained Projected
Scheduling Problem

The problem of scheduling activities under resource
and precedence restrictions with the objective of min-
imizing the project duration is referred to as the
resource-constrained project scheduling problem in the
literature [42.25, 28].

The problem can be stated mathematically as fol-
lows:

min tn , (42.56)

s. t., t j − ti ≥ di , ∀ j ∈ Si , (42.57)
∑

ti∈Aii

rik ≤ bk, k = 1, 2, . . . ,m , (42.58)

ti ≥ 0, i = 1, 2, . . . , n , (42.59)

where ti is the starting time of activity i, di the duration
(processing time) of activity i, Si the set of successors
of activity i, rik the amount of resource k required by
activity i, bk the total availability of resource k, Ati
the set of activities in process at time ti , and m the
number of different resource types. Activities 1 and n
are dummy activities which mark the beginning and end
of the project. The objective is to minimize the total
project duration.

A. Priority-Based Encoding
For this problem, priority-based encoding is used; it is
explained in the previous section.

B. Genetic Operators

Position-Based Crossover. The position-based cross-
over operator is used. This crossover is explained in the
previous section.

Swap Mutation. The swap mutation operator was used
here, which simply selects two positions at random and
swaps their contents, as shown in Fig. 42.21.

Child

Parent 1

5 10 2 4 3 8 9 1 7

5 1 2 4 3 8 9 10 7

6

6

Fig. 42.21 Swap mutation operator
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42.4.4 Multiprocessor Scheduling

The multiprocessor scheduling is to assign n tasks to m
processors in such a way that precedence constraints are
maintained, and to determine the start and finish times
of each task with the objective of minimizing the com-
pletion time. There is a paper which deals with real-time
tasks [42.29]. However, here we introduce an algo-
rithm concerned with general tasks. The mathematical
formulation of the problem is given as

min[max
j

(x j yij )] , (42.60)

s. t.xk − x j ≥ pk , Tj ≺ Tk , (42.61)
n∑

j=1

p j yij ≤ tmax , i = 1, . . . , n , (42.62)

m∑

i=1

yij = 1 , j = 1, . . . ,m , (42.63)

yij = 0 or 1 , i = 1, . . . ,m, j = 1, . . . , n ,

(42.64)

where

yij =
⎧
⎨

⎩
1 , if task Tj is assigned to processor Pi

0 , otherwise ,

(42.65)

and where tmax = maxi (ti ), x j is the completion time of
task Tj , p j is the processing time of task Tj , ti is the
time required to process all tasks assigned to process Pi ,
and ≺ represents a precedence relation; a precedence
relation between tasks, Tj ≺ Tk , means that Tk precedes
Tj .

Genetic Algorithm for MSP
For the chromosome representation scheme and ge-
netic operations, we adopt the concept of the height
function [42.10], which considers precedence relations
among the tasks in the implementation of a genetic
algorithm.

Height Function. To facilitate the generation of the
schedule and the construction of the genetic operators,

we define the height of each task in the task graph as

height(Ti ) =

⎧
⎪⎨

⎪⎩

0 if pre(Ti ) = φ

1+ max
Tj∈pre(Ti )

[height(Tj )] ,
otherwise

(42.66)

height′(Tj ) = rand ∈ {max[height(Ti )]+1,

min[height′(Tk)]−1} over all Ti ∈ pre Tj

and Tk ∈ suc (Tj ) , (42.67)

where pre(Tj ) is the set of predecessors of Tj and suc(Tj )
is the set of successors of Tj .

Representation. The chromosome representation used
here is based on the schedule of the tasks in each pro-
cessor. The representation of the schedule for genetic
algorithms must accommodate the precedence relations
between the computational tasks.

Genetic Operators. The function of the genetic opera-
tors is to create new search nodes based on the current
population of search nodes. New search nodes are typ-
ically constructed by combining or rearranging parts of
the old search nodes.

Operation 1. Operation 1 is performed in the following
steps

Step 1. Generate a random number c from the range
[1,max(height′)].

Step 2. Place the cut-point at each processor in such
a way that the tasks’ height′ before the cut-point
is less than c and more than or equal to c after
the cut-point.

Step 3. Exchange the second partial schedules.

Operation 2. Operation 2 is performed in the following
steps

Step 1. Generate a random number c from the range
[1,max(height′)] .

Step 2. At each processor, pick all tasks whose height′
is c.

Step 3. Replace the position of all tasks randomly.

42.5 Reliability Design Problem

Reliability optimization appeared in the late 1940s and
was first applied to communication and transportation

systems. Much of the early work was confined to the
analysis of certain performance aspects of systems. One
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goal of the reliability engineer is to find the best way
to increase system reliability. The reliability of a system
can be defined as the probability that the system has
operated successfully over a specified interval of time
under stated conditions.

42.5.1 Simple Genetic Algorithm
for Reliability Optimization

The problem is to maximize the system reliability sub-
ject to three nonlinear constraints with parallel redundant
units in subsystems that are subject to A failures, which
occur when the entire subsystem is subjected to the
failure condition. It can be mathematically stated as
follows:

max R(m) =
3∏

i=1

{
1−[1− (1−qi1)mi+1]

−
4∑

u=2

(qiu)mi+1
}
, (42.68)

s. t. G1(m) = (m1+3)2+ (m2)2+ (m3)2 ≤ 51 ,

(42.69)

G2(m) = 20
3∑

i=1

[
mi + exp(−mi )

]≥ 120 , (42.70)

G3(m) = 20
3∑

i=1

[
mi exp(−mi/4)

]≥ 65 , (42.71)

1 ≤ m1 ≤ 4, 1 ≤ m2, m3 ≤ 7 , (42.72)

mi ≥ 0 : integer, i = 1, 2, 3 , (42.73)

Table 42.1 Failure modes and probabilities in each subsys-
tem

Failure modes Failure probability
Subsystem i si = 4, hi = 1 qiu

1 O 0.01

A 0.05

A 0.10

A 0.18

2 O 0.08

A 0.02

A 0.15

A 0.12

3 O 0.04

A 0.05

A 0.20

A 0.10

where m = (m1 m2 m3). The subsystems are subject to
four failure modes (si = 4) with one O failure (hi = 1)
and three A failures, for i = 1, 2, 3. For each subsystem
the failure probability is shown in Table 42.1.

Genetic Approach
Representation. The integer value of each variable
mi is represented as a binary string. The length of
the string depends on the upper bound ui of the re-
dundant units. For instance, when the upper bound ui
equals 4, we need three binary bits to represent mi .
In this example, the upper bounds of the redundant
units in each subsystem are u1 = 4, u2 = 7, u3 = 7,
so each decision variable mi needs three binary bits.
This means that a total of nine bits are required. If
m1 = 2, m2 = 3, and m3 = 3, we have the following
chromosome:

v = [x33 x32 x31 x23 x22 x21 x13 x12 x11]
= [0 1 1 0 1 1 0 1 0 ]

where xij is the symbol for the j-th binary bit of variable
mi .

Crossover. One-cut-point crossover is used here.

Mutation. Mutation is performed on a bit-by-bit basis.

42.5.2 Reliability Design
with Redundant Unit
and Alternatives

Gen, Yokota, Ida and Taguchi further extended their
work to the reliability optimization problem by consid-
ering both redundant units and alternative design [42.19,
30, 31].

The example used here was firstly given by Fyffe
et al.as follows:

max R(m,α) =
14∏

i=1

{
1− [

1− Ri (αi )
]mi

}
, (42.74)

s. t. G1(m,α) =
14∑

i=1

ci (αi )mi ≤ 130 , (42.75)

G2(m,α) =
14∑

i=1

wi (αi )mi ≤ 170 , (42.76)

1 ≤ mi ≤ ui , ∀i , (42.77)

1 ≤ αi ≤ βi , ∀i , (42.78)

mi , αi ≥ 0 : integer ∀i , (42.79)

where αi represents the design alternative available for
the i-th subsystem, mi represents the identical units used

Part
E

4
2
.5



Genetic Algorithms and Their Applications 42.5 Reliability Design Problem 765

in redundancy for the ith subsystem, ui is the upper
bound of the redundant units for the i-th subsystem, and
βi is the upper bound of alternative design for the i-th
subsystem.

Genetic Approach
Representation. The representation can be written as
follows:

vk = [ (αk1 , mk1) (αk2 , mk2) · · · (αk14 , mk14) ] ,
where αki is a design alternative, mki is a redundant unit,
the subscript k is the index of chromosome.

Crossover. The uniform crossover operator given by
Syswerda is used here, which has been shown to be
superior to traditional crossover strategies for combi-
natorial problem. Uniform crossover firstly generates
a random crossover mask and then exchanges rela-
tive genes between parents according to the mask.
A crossover mask is simply a binary string with the
same size of chromosome.

42.5.3 Network Reliability Design

A communication network can be represented by an
undirected graph G = (V, E), in which the nodes V and
edges E represent computer sites and communication
cables, respectively. A graph G is connected if there is at
least one path between ever pair of nodes i and j, which
minimally requires a spanning tree with (n−1) edges.
The following notations are defined to describe the opti-
mal design problem of all-terminal reliable networks: n
is the number of nodes, xij ∈ (0, 1) is the decision vari-
able representing the edge between node i and node j,
x(= {x12, x13, · · · , xn−1,n}) is a topology architecture
for the network design, x∗ is the best solution found
so far, p is the edge reliability for all edges, q is the
edge unreliability for all edges (i. e., p+q = 1), R(x) is
the all-terminal reliability of the network design x, Rmin
is the network reliability requirement, RU (x) is the up-
per bound on the reliability of the candidate network,
cij is the cost of the edge between node i and node j,
cmax is the maximum value of cij , δ has the value of 1
if R(x) < Rmin and is 0 otherwise, E′ is a set of opera-
tional edges (E′ ⊆ E), Ω is all operational states (E′).
The optimal design of network can be represented as
follows [42.10, 32]:

min Z(x) =
n−1∑

i=1

n∑

j=i+1

cij xij , (42.80)

s. t. R(x) ≥ Rmin . (42.81)

Genetic Approach
Representation. A genetic algorithm lends itself to this
problem because each network design x is easily formed
into a binary string which can be used as a chromosome
for genetic algorithms. Each element of the chromosome
represents a possible edge in the network design prob-
lem, so there are n ×(n−1)/2 string components in each
candidate architecture Z.

Crossover. The one-cut-point crossover operation is
used.

Mutation. The bit-flip mutation operation is employed,
performed on a bit-by-bit basis.

42.5.4 Tree-Based Network Topology
Design

Consider a local-area network (LAN) that connects m
users (stations). Also, we assume the n ×n service center
topology matrix X1, which represents the connection
between service centers. An element x1ij is represented
as

x1ij =
⎧
⎨

⎩
1 , if the centers i and j are connected

0 , otherwise .

(42.82)

Assume that the LAN is partitioned into n segments
(service centers or clusters). The users are distributed
over those n service centers. The n ×m clustering matrix
X2 specifies which user belongs to which center. Thus

x2ij =
⎧
⎨

⎩
1 , if user j belongs to center i

0 , otherwise .
(42.83)

A user can only belong to one center; thus,
∀ j = 1, 2, . . . ,m,

∑n
i=1 x2ij = 1. We define an n ×(n+

m) matrix X called the spanning tree matrix ([X1 X2]).
The bicriteria LAN topology design problem can be for-
mulated as the following nonlinear 0–1 programming
model [42.10, 33, 34]:

max R(X) , (42.84)

min
n−1∑

i=1

n∑

j=i+1

w1ij x1ij +
n∑

i=1

m∑

j=1

w2ij x2ij , (42.85)

s. t.
m∑

j=1

x1ij ≤ gi , i = 1, 2, . . . , n , (42.86)
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Parent 1

Parent 2

Offspring

1 1 1 1 0 1

1 1 1 1 0 1

0 1 1 0 1 0

Fig. 42.22 Uniform crossover operator

n∑

i=1

x2ij = 1 , j = 1, 2, . . . ,m , (42.87)

where R(X) is the network reliability, w1ij is the weight
of the link between the centers i and j, w2ij is the weight
of the link between the center i and the user j, gi is the
maximum number that can connect to the center i.

Genetic Approach
Representation. We can easily construct an encoding
as follows:

procedure: Encoding of Prüfer number

Step 1. Let node i be the smallest labeled leaf node in
a labeled tree T .

Step 2. Let j be the first digit in the encoding as the node
j incident to node i is uniquely determined. The
encoding is built by appending digits from left
to right.

Step 3. Remove node i and the link from i to j; thus we
have a tree with k−1 nodes.

Step 4. Repeat the above steps until one link is left. We
produce a Prüfer number or an encoding with
k−2 digits between 1 and k inclusive.

Crossover. Uniform crossover is used. This type of
crossover is accomplished by selecting two parent so-
lutions and randomly taking a component from one
parent to form the corresponding component of the
offspring Fig. 42.22.

Mutation. Swap mutation is used, as explained in the
previous section.

42.6 Logistic Network Problems

The transportation problem is a basic model in the
logistic networks. Many scholars have since refined
and extended the basic transportation model to include
not only the determination of optimum transportation
patterns but also the analysis of production schedul-
ing problems, transshipment problems, and assignment
problems.

42.6.1 Linear Transportation Problem

The linear transportation problem (LTP) involves the
shipment of some homogeneous commodity from vari-
ous origins or sources of supply to a set of destinations,
each demanding specified levels of the commodity.
The usual objective function is to minimize the to-
tal transportation cost or total weighted distance or to
maximize the total profit contribution from the alloca-
tion [42.35].

Given m origins and n destinations, the transporta-
tion problem can be formulated as a linear programming
model:

min z =
m∑

i=1

n∑

j=1

cij xij , (42.88)

s. t.
n∑

j=1

xij ≤ ai , i = 1, 2, . . . ,m , (42.89)

m∑

i=1

xij ≥ b j , j = 1, 2, . . . , n , (42.90)

xij ≥ 0, for all i and j , (42.91)

where xij is the amount of units shipped from origin i
to destination j; cij is the cost of shipping one unit from
source i to destination j; ai is the number of units avail-
able at origin i; and b j is the number of units demanded
at destination j.

Genetic Approach
Representation. Perhaps the matrix is the most natu-
ral representation of a solution for the transportation
problem. The allocation matrix for the transportation
problem can be written as follows:

Xp =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xm1 xm2 · · · xmn

⎞
⎟⎟⎟⎠ (42.92)
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where Xp denotes the p-th chromosome and xij is the
corresponding decision variable.

Crossover. Assume that two matrices X1 = (x1
ij ) and

X2 = (x2
ij ) are selected as parents for the crossover oper-

ation. The crossover is performed in the following three
main steps:

Step 1. Create two temporary matrices D = (dij ) and
R= (rij ) as follows: dij =

[(
x1

ij + x2
ij

)
/2

]
and

rij =
(
x1

ij + x2
ij

)
mod 2.

Step 2. Divide matrix R into two matrices R1 = (
r1

ij

)

and R2 = (
r2

ij

)
such that: R= R1+ R2

Step 3. Then we produce two offspring of X′
1 and X′

2 as
follows: X′

1 = D+ R1 and X′
2 = D+ R2

Mutation. The mutation is performed in following three
main steps:

Step 1. Make a submatrix from the parent matrix. Ran-
domly select {i1, · · · , i p} rows and { j1, · · · , jq}
columns to create a (p∗q) submatrix Y = (yij ),
where {i1, · · · , i p} is a proper subset of
{1, 2, . . . ,m} and 2 ≤ p ≤ m, { j1, · · · , jq} is
a proper subset of {1, 2, . . . , n} and 2 ≤ q ≤ n,
and yij takes the value of the element in the cross-
ing position of selected row i and column j in
the parent matrix.

Step 2. Reallocate commodity for the submatrix. The
available amount of commodity ay

i and the de-
mands by

j for the submatrix are determined as
follows:

ay
i =

∑

j∈{ j1,··· , jq}
yij , i = i1, i2, · · · , i p ,

(42.93)

by
j =

yij∑

i∈{i1,··· ,i p}
, j = j1, j2, · · · , jq .

(42.94)

Step 3. Replace appropriate elements of the parent
matrix by new elements from the reallocated
submatrix Y.

Spanning Tree-Based Approach. Transportation prob-
lems (TP) as a special type of network problem have
a special data structure characterized as a transportation
graph in their solutions. The spanning tree-based GA in-
corporating this data structure of TP was proposed by
Gen and Li. This GA utilized the Prüfer number encod-

ing based on a spanning tree, which is adopted because
it is capable of representing all possible trees. Using
the Prüfer number representation the memory only re-
quires m+n−2 entries for a chromosome in the TP.
Transportation problems have separable sets of nodes
for plants and warehouses. From this point, Gen and
Cheng designed the criterion for feasibility of the chro-
mosome. The proposed spanning tree-based GA can find
the optimal or near-optimal solution for transportation
problems in the solution space [42.10].

42.6.2 Multiobjective Transportation
Problem

In the transportation problem, multiple objectives are
required in practical situations, such as minimizing
transportation cost, minimizing the average shipping
time to priority customers, maximizing production using
a given process, minimizing fuel consumption, and so
on. The traditional multiobjective transportation prob-
lem (mTP) with m plants and n warehouses can be
formulated as

min zq =
m∑

i=1

n∑

j=1

cq
ij xij q = 1, 2, . . . ., Q ,

(42.95)

s. t.
n∑

j=1

xij ≤ ai , i = 1, 2, . . . ,m , (42.96)

m∑

i=1

xij ≥ b j , j = 1, 2, . . . , n , (42.97)

xij ≥ 0 , ∀i, j , (42.98)

where q means the q-th objective function.

Spanning Tree-based GA for Multi-objective TP
The Pareto optimal solutions are usually characterized as
the solutions of the multiobjective programming prob-
lem [42.36, 37].

42.6.3 Bicriteria Transportation Problem
with Fuzzy Coefficients

Consider the following two objectives: minimizing total
transportation cost and minimizing total delivery time.
Let c̃1

ij be the fuzzy data representing the transportation
cost of shipping one unit from plant i to warehouse j,
let c̃2

ij be the fuzzy data representing the delivery time
of shipping one unit of the product from plant i to ware-
house j, ai be the number of units available at plant i,
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and b j be the number of units demanded at warehouse j.
This problem with m plants and n warehouses can be
formulated as [42.10]:

min z̃1 =
m∑

i=1

n∑

j=1

c̃1
ij xij , (42.99)

min z̃2 =
m∑

i=1

n∑

j=1

c̃2
ij xij , (42.100)

s. t.
n∑

j=1

xij ≤ ai , i = 1, 2, . . . ,m , (42.101)

m∑

i=1

xij ≥ b j , j = 1, 2, . . . , n , (42.102)

xij ≥ 0 , ∀i , j , (42.103)

where xij is the unknown quantity to be transported from
plant i to warehouse j.

Genetic Approach
The proposed genetic algorithm approach is based on
spanning tree. In multicriteria optimization, we are inter-
ested in finding Pareto solutions. When the coefficients
of objectives are represented with fuzzy numbers, the
objective values become fuzzy numbers. Since a fuzzy
number represents many possible real numbers, it is not
easy to compare solutions to determine which is the
Pareto solution. Fuzzy ranking techniques can help us
to compare fuzzy numbers. In this approach, Pareto so-
lutions are determined based on the ranked values of
fuzzy objective functions, and genetic algorithms are
used to search for Pareto solutions.

Representation. The spanning-tree encoding, the Prüfer
number, is used to represent the candidate solution. The
criterion for the solution’s feasibility designed in the
proposed spanning-tree-based GA is also employed.

Crossover. For simplicity one-point crossover is used.

Mutation. Inversion mutation and displacement muta-
tion are used.

42.6.4 Supply-Chain Management (SCM)
Network Design

Supply-chain management (SCM) aims to choose the
subset of plants and distribution centers to be opened
and to design the distribution network strategy that can
satisfy all capacities and demand requirements imposed

by customers with minimum cost. We formulate the
problem by using the following mixed integer linear
programming model (MILP) [42.28, 38–41]:

min
∑

i

∑

j

sij xij +
∑

j

∑

k

t jk y jk

+
∑

k

∑

l

ukl zkl +
∑

j

f jw j +
∑

k

gkzk (42.104)

s. t.
∑

j

xij ≤ ai , ∀i , (42.105)

∑

k

y jk ≤ b jw j , ∀ j , (42.106)

∑

j

w j ≤ P , (42.107)

∑

l

zkl ≤ ckzk, ∀k , (42.108)

∑

k

zk ≤ W , (42.109)

∑

k

zkl ≥ dl, ∀l , (42.110)

w j , zk = (0, 1) , ∀ j, k , (42.111)

xij , y jk, zkl ≥ 0, ∀i, j, k, l , (42.112)

where i is the number of suppliers, j is the number
of plants, K is the number of distribution centers, L is
the number of customers, ai is the capacity of supplier
i, bi is the capacity of plant j, ck is the capacity of
distribution center k, dl is the demand of customer l, sij
is the unit cost of production in plant j using material
from supplier i, t jk is the unit cost of transportation from
plant j to the distribution center k, ukl is the unit cost
of transportation from distribution k to customer l, f j is
the fixed cost for operating plant j, gk is the fixed cost
for operating distribution center k, W is an upper limit
on the total number of distribution centers that can be
opened and P is an upper limit on the total number of
plants that can be opened.

Here, xij is the quantity produced at plant j using
raw material from supplier i, y jk is the amount shipped
from plant j to distribution center k and zkl is the amount
shipped from distribution center k to customer l. w j and
zk are defined as

w j =
⎧
⎨

⎩
1, if production takes place at plant j

0, otherwise ,

(42.113)
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zk =
⎧
⎨

⎩
1, if distribution center k is opened

0, otherwise .

(42.114)

Genetic Approach
Crossover. The crossover is done by exchanging the
information of two parents to provide a powerful explo-
ration capability. We employ a one-cut-point crossover

operation, which randomly selects one cut-point and ex-
changes the right parts of the two parents to generate
offspring.

Mutation. Modifying one or more of the gene val-
ues of an existing individual, mutation creates a new
individual to increase the variability of the popu-
lation. We use inversion and displacement mutation
operations.

42.7 Location and Allocation Problems

Location–allocation problems arise in many practical
settings. The classical single location–allocation prob-
lem is to find the single location which minimizes the
summed distance from some number of fixed points,
representing customers with known locations.

42.7.1 Location–Allocation Problem

There are m facilities to be located, and n cus-
tomers with known locations are to be allocated to
the variable facilities. Each customer has the re-
quirement q j , j = 1, 2, . . . , n, and each facility has
the capacity bi , i = 1, 2, . . . ,m. We need to find
the locations of facilities and allocations of cus-
tomers to facilities so that the total summed distance
among the customers and their serving facilities is
minimized Fig. 42.23. This problem is formulated math-
ematically as [42.9]:

min
m∑

i=1

n∑

j=1

√
(xi −u j )2+ (yi −v j )2 zij (42.115)

s. t.
n∑

j=1

q j · zij ≤ bi , i = 1, 2, . . . ,m , (42.116)

m∑

i=1

zij = 1 , j = 1, 2, . . . , n , (42.117)

zij = 0 or 1 , i = 1, 2, . . . ,m, j = 1, 2, . . . , n ,

(42.118)

where

(u j , v j ) = location of customer j, j = 1, 2, . . . , n ,

(42.119)

(x j , y j ) = location of facility i, (42.120)

decision variables i = 1, 2, . . . ,m ,

(42.121)

Facility

Customer

Fig. 42.23 Location–allocation problem

zij = 0−1 decision variable ,

zij =
⎧
⎨

⎩
1, customer j is served by facility i

0, otherwise
.

(42.122)

A. Genetic Approach
Representation. Since location variables are continu-
ous, the float-value chromosome representation is used.
A chromosome is given as follows:

ck = [(
xk

1, yk
1

)(
xk

2, yk
2

) · · · (xk
m, yk

m

)]

where
(
xk

i , yk
i

)
is the location of the i-th facility in the

k-th chromosome, i = 1, 2, . . . ,m.

Crossover. Two mating strategies are used: one is free
mating, which selects two parents at random; another
is dominating mating, which uses the fittest individual
as a fixed parent and randomly selects another parent
from the population pool. These two strategies are used
alternatively in the evolutionary process.

Suppose two parents with the following chromo-
somes are selected to produce a child

ck1 =
[(

xk1
1 , yk1

1

)(
xk1

2 , yk1
2

) · · · (xk1
m , yk1

m

)]
,
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ck2 =
[(

xk2
1 , yk2

1

)(
xk2

2 , yk2
2

) · · · (xk2
m , yk2

m

)]
.

Only one child is allowed to be produced:

c = [(x1, y1)(x2, y2) · · · (xm, ym)] ,
xi = ri · xk1

i + (1−ri ) · xk2
i ,

yi = ri · yk1
i + (1−ri ) · yk2

i . (42.123)

Mutation. Suppose the candidate chromosome to be
mutated is as follows:

ck =
[(

xk
1, yk

1

)(
xk

2, yk
2

) · · · (xk
m, yk

m

)]

Table 42.2 Coordinates of Cooper and Rosing’s example

Order Order
number X Y number X Y

1 5 9 16 53 8

2 5 24 17 1 34

3 5 48 18 33 8

4 13 4 19 3 26

5 12 19 20 17 9

6 13 39 21 53 20

7 28 37 22 24 17

8 21 45 23 40 22

9 25 50 24 22 41

10 31 9 25 7 13

11 39 2 26 5 17

12 39 16 27 39 3

13 45 22 28 50 50

14 41 30 29 16 40

15 49 31 30 22 45

Table 42.3 Comparison results of Cooper and Rosing’s example

ALA HEM
Problem Rosing’s method Percent Percent
n/m optimal objective Best error Best error

15/2 214.281 219.2595 2.32 214.2843 0.0015

15/3 143.197 144.8724 1.17 143.2058 0.0061

15/4 113.568 115.4588 1.69 113.5887 0.0182

15/5 97.289 99.4237 2.19 97.5656 0.2843

15/6 81.264 84.0772 3.46 83.0065 2.14

30/2 447.728 450.3931 0.5952 447.73 0.0004

30/3 307.372 310.3160 0.9578 307.3743 0.0007

30/4 254.148 258.4713 1.7010 254.2246 0.0301

30/5 220.057 226.8971 3.1083 220.4335 0.1711

30/6 – 208.4301 3.4940 201.4031 0.0

then the chromosome of the child produced by subtle
mutation c = [x1, y1, x2, y2, · · · , xm, ym] is as follows:

xi = xk
i + random value in [−ε, ε] ,

yi = yk
i + random value in [−ε, ε] . (42.124)

B. Numerical Example
Cooper and Rosing’s examples are used to test the ef-
fectiveness of this method [42.42]. Cooper carefully
constructed the front half data which contains three
natural groups and Rosing increased the number of cus-
tomers with random points. These examples provide
a good benchmark to test the effectiveness of the pro-
posed method because their global optimal solutions
have already been found.

These examples include 30 customers whose lo-
cation coordinates are shown in Table 42.2. Theirs is
a common location–allocation problem where the re-
quirements of the customers are treated as equal and the
capacities of the facilities are assumed to be unlimited.

Both the alternative location-allocation (ALA)
method and the hybrid evolutionary method (HEM)
were applied to solve these examples. When using the
ALA method, it was run to solve the same problem 40
times from randomly generated initial locations. The
computed results are given in Table 42.3 [42.10]. In
the table, the percent error was calculated by (actual
value−optimal value)/optimal value ×100%.

42.7.2 Capacitated Plant Location Problem

The capacitated plant location problem (cPLP) is re-
ferred to as a fixed-charge problem to determine the
locations of plants with minimal total cost, includ-
ing production, shipping costs, and fixed costs where
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the plants are located. In this case, m sources (or fa-
cility locations) produce a single commodity for n
customers, each with demand of b j ( j = 1, . . . , n) units.
If a particular source i is opened (or facility is built),
it has a fixed cost di ≥ 0 and a production capac-
ity ai ≥ 0 associated with it. There is also a positive
cost cij for shipping a unit from source i to cus-
tomer j. The problem is to determine the locations
of the plants so that capacities are not exceeded and
demands are met, all at a minimal total cost. The
cPLP is a mixed integer program, as shown in the
following [42.10]

min z(x) =
m∑

i=1

n∑

j=1

cij xij +
m∑

i=1

di yi (42.125)

s.t.
m∑

i=1

xij = b j , j = 1, 2, . . . , n , (42.126)

n∑

j=1

xij ≤ ai yi , i = 1, 2, . . . ,m , (42.127)

xij ≥ 0, ∀i, j , (42.128)

yi = 0 or 1, i = 1, 2, . . . ,m . (42.129)

The variables are xij and yi , which represent the amount
shipped from plant i to warehouse j and whether
a plant is open (or located) (yi = 1) or closed (yi = 0),
respectively.

Spanning Tree-Based GA
for Plant Location Problems
The spanning tree-based GA for the capacitated plant
location problem is the same as that of the fixed-charge
transportation problem except there is a different evalu-
ation function in the evolutionary process.

42.7.3 Obstacle Location–Allocation
Problem

There are n customers with known locations and m fa-
cilities to be built to supply some kind of services to all
customers, for example, supplying materials or energy.
There are also p obstacles representing some forbid-
den areas. The formulation of the mathematical model
is based on the following assumptions:

• customer j has service demand q j , j = 1, 2, . . . , n,• facility i has service capacity bi , i = 1, 2, . . . ,m,• each customer should be served by only one facility,

• new facilities should not be built within any obstacle,• connecting paths between facilities and customers
should not be allowed to pass through any of the
obstacles.

The problem is to choose the best locations for facil-
ities so that the sum of distances between customers
and their serving facilities is minimal, as illustrated
in Fig. 42.24. The obstacle location–allocation problem
can be formulated as follows [42.9]:

min f (D, z) =
m∑

i=1

n∑

j=1

t(Di ,C j ) · zij (42.130)

s.t.
n∑

j=1

d j zij ≤ qi , i = 1, 2, · · · ,m , (42.131)

m∑

i=1

zij = 1, j = 1, 2, · · · , n , (42.132)

Di = (xi , yi ) /∈ Qk, i = 1, 2, · · · ,
m, k = 1, 2, · · · , q , (42.133)

(xi , yi ) ∈ RT, i = 1, 2, · · · ,m , (42.134)

xi , y j ∈ R i = 1, 2, · · · ,m (42.135)

zij = 1 or 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n ,

(42.136)

where C j = (u j , v j ) is the location of the j-th customer,
Di = (xi , yi ) is the decision variable, the location of the
j-th distribution center DCi should not fall within any
of the obstacles, t(Di ,C j ) is the shortest connecting path
from the set of possible paths between the distribution
center DCi and the customer C j which avoids all ob-
stacles, RT is the total area considered for the location
and allocation problem and zij is a 0–1 decision vari-
able; zij = 1 indicates that the j-th customer is served
by DCi , zij = 0 otherwise.

Customer

Connecting path

Facility

Obstacle

Fig. 42.24 Obstacle location–allocation problem
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Hybrid Evolutionary Method
Since there are obstacles, the locations of the chro-
mosome produced by initialization, crossover and
mutation procedure may become infeasible. Generally,
there are three kinds of methods to treat infeasible
chromosomes. The first is to discard it, but ac-

cording to the experience of other researchers this
method may lead to very low efficiency. The sec-
ond is to add a penalty to infeasible chromosomes.
The third is to repair the infeasible chromosome
according to the characteristics of the specified
problem.
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Scan Statistics43. Scan Statistics

Section 43.1 introduces the concept of scan
statistics and overviews types used to local-
ize unusual clusters in continuous time or
space, in sequences of trials or on a lattice.
Section 43.2 focuses on scan statistics in one di-
mension. Sections 43.2.2 and 43.2.3 deal with
clusters of events in continuous time. Sec-
tions 43.2.4 and 43.2.5 deal with success clusters
in a sequence of discrete binary (s-f) trials.
Sections 43.2.6 and 43.2.7 deal with the case
where events occur in continuous time, but
where we can only scan a discrete set of posi-
tions. Different approaches are used to review
data when looking for clusters (the retrospec-
tive case in Sects. 43.2.2, 43.2.5, 43.2.6), and
for ongoing surveillance that monitors unusual
clusters (the prospective case in Sects. 43.2.2,
43.2.3, 43.2.7). Section 43.2.7 describes statis-
tics used to scan for clustering on a circle (are
certain times of the day or year more likely
to have accidents?). Section 43.3 describes
statistics used to scan continuous space or
a two-dimensional lattice for unusual clusters.
Sections 43.2 and 43.3 focus on how unusual
the largest number of events within a scanning
window is. Section 43.4.1 deals with scanning
for unusually sparse regions. In some cases the
researcher is more interested in the number
of clusters, rather than the size of the largest
or smallest, and Sect. 43.4.2 describes results
useful for this case. The double-scan statistic
of Sect. 43.4.3 allows the researcher to test for
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unusual simultaneous or lagged clustering of two
different types of events. Section 43.4.4 describes
scan statistics that can be used on data with
a complex structure.

43.1 Overview

During design, monitoring, or analysis work, engineers
and other scientists often need to take into account
unusually large clusters of events in time or space. Me-
chanical engineers design system capacity to provide
reliability to pipeline systems. Telecommunication ex-
perts seek to avoid outage caused by too many mobiles
transmitting within the same area served by a single
base station. Quality control experts monitor for clus-

ters of defectives. Epidemiologists investigate hotspots
of cancer cases, and carry out syndrome surveillance
to monitor for bioterrorism attacks. Computer scien-
tists base an information flow control mechanism on
a large enough number of information packets within
a temporal sliding window. Astronomers scan for muon
clusters. Electrical engineers build in multiple redundan-
cies to improve reliability, and use clusters of successes
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as a criteria for start-up reliability. Molecular biologists
search for clusters of specific types of patterns in protein
or DNA sequences to focus on regions with important
biologic functions. These scientists seek to determine
which clusters are unlikely to occur by chance. The dis-
tributions given by various cluster statistics are tools that
answer this question.

Scan statistics measure an unusually large cluster of
events in time and or space. Given events distributed
over a time period (0, T ), Sw is the largest number of
events in any subinterval of length w. Sw is called the
(temporal) scan statistic, from the viewpoint that one
scans the time period (0, T ) with a window of sizew, and
finds the maximum cluster of points. A simple example
illustrates this.

Example 1: A public health officer reviewing the
records for a nursing home observed 60 deaths over the
five-year period from January 1, 2000 through Decem-
ber 31, 2004. This was about average for such facilities.
However, the officer observed that in the one-year period
between April 1, 2003 to March 31, 2004 there were 23
deaths. Given that the 60 dates of death were indepen-
dent, and occurred at random over the five-year period,
how likely is it that there would be any one year period
with 23 or more deaths? That is, if we scan the T = 5
year period with a w= 1 year period, how likely is it
that the scan statistic Sw ≥ 23? Note that the officer did
not just divide the five-year period up into five calen-
dar years and look at the calendar year with the largest
number of deaths. In fact, the cluster observed did not
occur in a calendar year. The scan statistic takes into ac-
count that the officer looked at a very large number of
overlapping one-year periods. We see below that, even
taking into account these multiple comparisons, the clus-
ter of 23 deaths in a one-year period is fairly unusual.
P(Sw ≥ 23, given N = 60, w/T = 0.2) < 0.03.

There is a large volume of literature and much
current research being done on scan statistics. Three
recent books [43.1–3] summarize and reference many

results. Chapters 9 through 12 of [43.1] deals with
scan statistics in a sequence of trials. There are use-
ful engineering applications to reliability in consecutive
systems, quality control, matching in genetic sequences,
sooner and later waiting time problems and 556 refer-
ences on runs and scans. Recent advances from articles
by researchers are detailed in [43.2] together with ap-
plications. In [43.3], the first six chapters systematically
show many applications with useful simple formulae for
scan statistics, and are aimed at practitioners; the remain-
ing 12 chapters develop the theory and methodology
of scan statistics, and this is followed by a bibliogra-
phy of over 600 references. In this review we draw
heavily on these references, particularly [43.3], and sub-
sequent research to give an overview of scan statistics,
and highlight many results that have proved useful in
many scientific applications. Scan statistics have been
developed and applied for a variety of temporal and
spatial scenarios. Time can be viewed as continuous
or a discrete sequence of trials or time periods. Space
can be viewed as continuous, or as a discrete grid
of points at which events can occur. In two dimen-
sions, results have been derived for square, rectangular,
circular, triangular, and other shapes of scanning win-
dows. The scan statistic Sw is the largest number of
points in any window (for a fixed window size, shape,
and orientation; or for a range of window sizes). The
two-dimensional regions scanned include rectangles,
the surface of a sphere, and more irregularly shaped
geographical areas. In certain applications the events
can only occur naturally at a discrete set of points in
space. In other applications the underlying events can
occur anywhere in space, but the method of observa-
tion limits events to a grid or lattice of points. Scan
distributions have been derived for uniform, Poisson,
and other distributed points in continuous space, and
binomial, hypergeometric, and other distributions on
two-dimensional grids. In the next section we discuss
temporal scenarios.

43.2 Temporal Scenarios

One aspect of the scenario is whether its view is retro-
spective or prospective. A researcher might be reviewing
events over some past time period of length T . The
events might be a call for service, a reported cancer
case, or an unacceptable item from an assembly line.
In the retrospective case, the total number of events in
the review period is a known number, N . The retrospec-
tive scan statistic analysis will typically be conditioned

on N , a fixed known number, and in this case is referred
to as either the retrospective or conditional case.

In other applications, the scientist uses scan statis-
tics prospectively either to design a system’s capacity to
handle clustered demands, or to set up a monitoring sys-
tem that will sound an alarm when an unusual cluster
occurs. System capacity can be designed to give a spe-
cified small probability of overload within some future

Part
E

4
3
.2



Scan Statistics 43.2 Temporal Scenarios 777

period of operations of length T . Scan monitoring sys-
tems can be similarly designed so that (provided the
process is “in control”) there is, for example, only a 1%
chance of a false alarm within a year; this is equivalent
to saying that there is a 99% chance that the waiting time
until a false alarm is greater than a year. Note that the
total number of events, N , in time T is not known at ei-
ther the system design time, or at the time an alarm is
to be sounded. In the prospective case, the distribution
of scan statistics cannot be conditioned on N . However,
we often have information on the expected number of
events in (0, T ). The prospective case is referred to as
either the prospective or the unconditional case.

For each of the retrospective and prospective views,
scan statistic distributions have been developed for con-
tinuous and for several discrete time scenarios. For
example, the starting time of a hospital emergency room
admission might be recorded to the nearest minute, and
whether the patient had a particular syndrome may be
recorded for each admission. For the event “admission of
patient with syndrome,” the scan statistic might be based
on reported admission times, where time is viewed as
a continuum. The continuous scan statistic is the max-
imum number of events in a window of length w that
scans the time period (0, T ). In the continuous scenario,
the times of occurrence of events are reported and for
each time t in the review period, (w≤ t ≤ T ), one knows
the observed number of events Yw(t) and the expected
number of events Ew(t) in the subinterval [t−w, t).

Alternatively, the analyst may only have a sequential
list of patients available, and may only know whether or
not each has the syndrome. In this case, the data is in the
form of a discrete sequence of binary trials, and a dis-
crete case scan statistic will be used. The data is viewed
as a sequence of T trials, where for each trial whether or
not an event has occurred is recorded; the discrete scan
statistic is the maximum number of events in any w con-
secutive trials. For t =w,w+1, . . ., T,Yw(t) and Ew(t)
are the observed and expected number of events within
the w consecutive trials, t−w+1, t−w+2, . . ., t.

In other cases, the reported data may only give hourly
summary counts of patients with the syndrome, and
the researcher may be keeping a moving sum of the
number of such patients in the past six hours. In this
discrete case we might use the ratchet scan statistic.
In the ratchet scenario, time is divided into T disjoint
intervals (hours, days, or weeks) and the reported data
consists of the number of events in each interval. For
t = w,w+1, . . ., T,Yw(t) and Ew(t) are the observed
and expected number of events within the w consecutive
intervals, t−w+1, t−w+2, . . ., t.

Let Sw denote the scan statistic, maxt[Yw(t)]. For
several important models for the above scenarios, exact
formulae, approximations, and bounds are available for
the distribution of Sw and related statistics. The follow-
ing sections detail some of the most useful formula for
the case where Ew(t) = Ew, a constant.

43.2.1 The Continuous Retrospective Case

The completely at random (constant background) model
for this case is where N points (number of events) are
independent uniform random variables over (0, T ).

P(Sw ≥ k|Ew, T ) only depends on k, N = (T/w)Ew,
and the ratio w/T . Choosing the units of measurement
to make T = 1 simplifies the notation. A related scan
statistic is the minimum (k−1)th order gap, Wk , the
length of the smallest subinterval that contains k points.
Wk+1 is also referred to as the smallest k-th-nearest
neighbor distance among the N points. The statistics
are related by

P(Sw ≥ k) = P(Wk ≤w) (43.1)

Now denote the common probability P(k; N, w). WN is
the sample range, and W2 is the smallest gap between
any pair of points.

P(2; N, w)= 1−[1− (N −1)w]N ;
for 0 ≤w≤ 1/(N −1)

= 1 ;
for 1/(N −1)≤w≤ 1 . (43.2)

P(N; N, w)= NwN−1− (N −1)wN .

for 0 ≤w≤ 1 . (43.3)

For a given k and N , the expressions for P(k; N, w) are
piecewise polynomials in w with different polynomials
for different ranges of w. A direct integration approach
can be used to derive the piecewise polynomials for a few
simple cases, but it becomes overly complex in general.
An alternative combinatorial approach is used by [43.4]
to derive the piecewise polynomials for k > N/2, with
one polynomial for w ≤ 0.5, and another polynomial
for w> 0.5. For k > N/2, 0 ≤ w≤ 0.5, the formula is
particularly simple,

P(k; N, w) = [(k− Ew)(1/w)+1]
× P(Yt = k)+2P(Yt > k) ,

= [(
kw−1−N+1

)

× P(Yt = k)
]+2P(Yt ≥ k) , (43.4)
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where Ew is N(w/T ) and P(Yt = k) is the binomial
probability b(k; N, w)

b(k; N, w)=
(

N

k

)
wk(1−w)N−k . (43.5)

For w> 0.5, k > (N +1)/2, there are some additional
terms involving binomials and cumulative binomial
terms. This leaves the case k ≤ N/2 when w ≤ 0.5.
Below we discuss exact results, tabled values, approxi-
mations and bounds that can be used to compute values
for some cases. However, for hypothesis testing, [43.5]
uses (43.4) as an accurate approximation for small to
moderate (< 0.10, and even larger) P(k; N, w) when
k ≤ N/2, w≤ 0.5.

In Example 1, there were 60 dates of death
over a five-year period, and a one-year period with
23 or more deaths. Assuming that the 60 deaths
were randomly distributed over the five-year period,
P(S1 ≥ 23|T = 5) = P(23; 60, 0.2) = 0.029, obtained
by approximating using (43.4).

For certain applications one may seek to evaluate
large values of P(k; N, w), where the Wallenstein–
Neff approximation may not be sufficiently accurate.
In [43.3], Chapt. 8 discusses exact formulae, Chapt. 9
bounds, Chapt. 10 approximations, and Chapt. 2 details
of the application of P(k; N, w) to the continuous condi-
tional (retrospective) case. We now give an overview of
the types of exact results, other more accurate approxi-
mations, and bounds for P(k; N, w).

Exact Results for P(k;N‚w)
A general expression for P(k; N, 1/L) (where L is an in-
teger), in terms of sums of L × L determinants, is derived
in [43.6]; This is generalized in [43.7] for P(k; N, r/L)
in terms of sums of products of several determinants, and
simplified further by [43.8] in terms of sums of products
of two determinants. These general formulae are com-
putationally intense for small w small as they involve
summing determinants of large matrices; however, these
formulae can be used to generate the piecewise polyno-
mials that can be used to compute the probabilities for
any w. A procedure to do this is given and implemented
by [43.9], for N/3 < k, N/2. A systematic approach to
generating the polynomials is described in [43.10], Ta-
ble 3, which lists the piecewise polynomials for N ≤ 20.
The polynomials are then used to generate (in their Ta-
ble 1a), P(k; N, w) for w≤ 0.5, k ≤ N/2, for N ≤ 25,
with w to three decimal places. (Table 1 in [43.10] gives
values for all k, for N ≤ 25, with w to two places.)

A powerful general spacings approach is derived
in [43.11], and is used to find the distribution of Wk , the

minimum of the sum of k−1 adjacent spacings between
times of events. Huffer and Lin also find the maximum
sum of k−1 adjacent spacings, which is related to the
minimum number of events in a scanning window. They
use their method to increase the range of values of N
and k for which polynomials can be computed, with N
as large as 61 for k close to N/2.

Approximations
A variety of approximations for P(k; N, w) have
been developed based on various combinations of
approaches: methods with moments based on spac-
ings, Poisson-type approximations with and without
declumping, averaging bounds, using product limit ap-
proximations ([43.3], Chapt. 10). To emphasize the
connection between higher order spacings and the scan
statistic, we describe approximations based on using
the method of moments applied to k-th order spac-
ings or gaps. If X1 X2. . . X N are the ordered values
of the N points in (0, T ), then X2− X1, X3− X2, . . .

are the first-order spacings; X3− X1, X4 − X2, . . .

are the second-order spacings; and Xk − X1, Xk+1−
X2, . . ., X N − X N−k+1 are the (k−1)-order spacings.
(Instead of spacings they are sometimes referred to as
gaps, or quasi-ranges). Let Zk(w) denote the number of
(k−1)-order spacings that are ≤w.

P(Sw ≥ k) = P(Zk(w) ≥ 1) = 1− P(Zk(w) = 0) .
(43.6)

The distribution of Zk(w) is complex, but it is straight-
forward to compute the expectation of Zk(w), and with
more effort its variance.

E[Zk(w)] = (N − k+1)P(Xk − X1 ≤w)

= (N − k+1)P(Yt ≥ k−1) . (43.7)

Here Yt has the binomial distribution described in (43.5).
In the method of moments we approximate the distribu-
tion of Zk(w) by a simpler distribution with some of
the same moments. For example, choosing the approxi-
mating distribution to be Poissonian, with the same first
moment, gives the approximation

P(Sw ≥ k) ≈ 1− exp[−(N − k+1)P(Yt ≥ k−1)] .
(43.8)

Note that the same Poisson model could be used to find
P(Zk(w) ≥ n), which could be used to approximate the
distribution of the number of k-within-w clusters. Ap-
proximation (43.8) is not very good in general, because
the (N −k+1) overlapping (k−1)st -order spacings are
not independent. If Xk − X1 is very small, this im-
plies that Xk − X2 is even smaller, which makes for
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a greater chance that Xk+1− X2 will also be small.
A local declumping technique is used [43.12] to adjust
for this type of association, and find an approxima-
tion of the form 1− e−µ. Approximations of this form,
but with different µ values, have been used by [43.13]
and others, and [43.14] proves limiting results of this
form which suggest their use as approximations; how-
ever, care must be taken because the limiting results
converge very slowly. Glaz in [43.15, 16] and other pa-
pers develops better approximations and a variety of
bounds.

Moments for Continuous Retrospective Case
To compute the expectation, variance and other moments
of Sw or Wk , one could average over the distribution of
the statistic, where the cumulative distribution function
of Wk is given by P(k; N, w), and of Sw by 1− P ∗
(k+1; g, w). Using this method, [43.6] proves for (N +
1)/2 < k ≤ N that

E(Wk) = [k−2(N − k+1)b]/(N +1) ,

var (Wk) = (N − k+1)
[
(N + k+1)

+2(2k− N −1)b

−4(N +2)(N − k+1)b2]

/(N +1)2(N +2) , (43.9)

where b denotes the binomial term b[N − k+1; 2(N −
k+ 1), .5]. Tables for the expectation and vari-
ance of Wk , for {k = 3, 4, 5; N = k(1)19}, {k = 6; N =
6(1)17}, {k = 7; N = 7(1)20}, {k = 8; N = 8(1)23}, and
{k = 9; N = 9(1)25} are generated in [43.10].

Averaging over exact and simulated values, [43.6]
gives means and variances of Sw for N ≤ 10,
w= .1(.1).9, and [43.17] tabulate means and vari-
ances of Sw for N = 2(1)40, 40(5)70, 85, 100, 125, 150,
200(100)500, 1000; and w= 1/T, T = 3(1)6, 8, 12.

43.2.2 Prospective Continuous Case

In certain applications, the researcher is interested in
the distribution of the scan statistic given that the total
number of events in (0, T ) is a random variable. Events
are viewed as occurring at random times according to
some process. The Poisson process is one completely-
at-random chance model. In this process, the number
of events Yw(t) in any interval [t−w, t) is Poisson-
distributed with mean Ew. P[Yw(t) = k] = p(k; Ew)
for k = 0, 1, 2, ..., where p(k; λ) denotes the Poisson
probability exp(−λ)λk/k!. For the Poisson process,

Ew =wE1 where E1 is sometimes denoted λ; the num-
bers of events in any disjoint (not overlapping) intervals
are independently distributed. There are various other
ways to characterize the Poisson process. For the Poisson
process, the arrival times between points are independent
exponential random variables. Conditional on there be-
ing a total of N points from the Poisson process in [0, T ),
these N points are uniformly distributed over [0, T ).

Given that events occur at random over time, let Tk,w
denote the waiting time until we first observe at least k
events in an interval of length w. Formally, Tk,w equals
X(i+k−1) for the smallest i such that X(i+k−1)− X(i) ≤w.
The three scan statistics Sw, Wk , and Tk,w are related by
P(Sw ≥ k) = P(Wk ≤w) = P(Tk,w ≤ T ). These proba-
bilities only depend on k, E1 (the expected number of
points in a window of length 1), and the ratio w/T .
Denote the common probabilities for the Poisson model
case by P ∗ (k; ET , w/T ), where ET = TE1. In comput-
ing P(Sw ≥ k) or P(Wk ≤w), the formula is sometimes
simplified by choosing the scale of measurement to make
T = 1 and by denoting E1 by λ; when applying the sim-
plified formula or using tabled values, care must be taken
to interpret a λ consistent with the scale of measurement.
To avoid confusion in what follows, we use the notation
P∗(k; ET , w/T ).

Exact and Approximate Formulae
for Cluster Probabilities
In [43.18], asymptotic formulae are derived for
P∗(k; ET , w/T ), but these converge very slowly. The
exact formulae in [43.8] for P∗(k; ET , w/T ) are com-
putationally intensive.

Table 2 in [43.10] gives P∗(k; ET , w/T ) for
k = 3(1)9, and a range of values for ET and w/T .
In Table 2, λ denotes ET . Table 2a in [43.10] gives
P∗(k; 2Ew, 1/2), P∗(k; 3Ew, 1/3), P∗(k; 4Ew, 1/4) for
k = 3(1)9, and a range of values for λ which denote
2Ew, 3Ewand4Ew respectively in that table. Applica-
tion (d) in [43.10, p. 4] illustrates how to use these
values to accurately approximate P∗(k; 2L Ew, 1/2L).

Reference [43.19] derives readily computable
formulae for P∗(k; 2Ew, 1/2) and P∗(k; 3Ew, 1/3)
and uses them to give the following highly accu-
rate approximation for P∗(k; ET , w/T ). Denote 1−
P∗(k; ET , w/T ), by Q∗(k; ET , w/T ); exp(−ψ)ψ j/ j!
by p( j;ψ), and Σi≤k p( j;ψ) by Fp(k;ψ).

Q∗(k; ET , w/T ) ≈ Q∗(k; 2Ew, 1/2)

× [Q∗(k; 3Ew, 1/3)

/Q∗(k; 2Ew, 1/2)](T/w)−2 .
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Q∗(k; 2ψ, 1/2) = [Fp(k−1;ψ)]2− (k−1)

× p(k;ψ)p(k−2;ψ)

− (k−1−ψ)p(k;ψ)

× Fp(k−3;ψ) ,

Q∗(k; 3ψ, 1/3) = (Fp(k−1;ψ))3

− A1+ A2+ A3− A4 , (43.10)

where

A1 = 2p(k;ψ)Fp(k−1;ψ)[(k−1)Fp(k−2;ψ)

−ψFp(k−3;ψ)] ;
A2 = 0.5[p(k;ψ)]2

[
(k−1)(k−2)Fp(k−3;ψ)

−2(k−2)ψFp(k−4;ψ)+ψ2 Fp(k−5;ψ)
]
,

A3 =
k−1∑

r=1

p(2k−r;ψ)[Fp(r−1;ψ)]2 ,

A4 =
k−1∑

r=2

p(2k−r;ψ)p(r;ψ)[(r−1)

× Fp(r−2;ψ)−ψFp(r−3;ψ)] .
Subsequent researchers [43.20] note the remarkable
accuracy of this approximation. Tight bounds for
Q∗(k; ET , w/T ) are derived by [43.21], who proves that
approximation (43.10) falls within the bounds. Our ex-
perience is that it gives great accuracy over the entire
range of the distribution. For example, P∗(4, 10; 0.1)=
0.374, P∗(5; 12, 0.25) = 0.765; P∗(5; 8, 1/6) = 0.896
by both the approximation and the exact tabled values
in [43.10]. One can readily compute Q∗(k; 2Ew, 1/2)
and Q∗(k; 3Ew, 1/3) for any k or Ew, or use tabled val-
ues. An even better approximation can be obtained by
taking

Q∗(k; λT, w/T ) ≈ Q∗(k; λ, 1/3)

× [Q∗(k; 4λ, 1/4)

/Q∗(k; λ, 1/3)](T/w)−3 . (43.11)

One can use values from Table 2a in Neff and Naus
for Q∗(k; λ, 1/3) and Q∗(k; 4λ, 1/4); or alternatively
compute Q∗(k; 4λ, 1/4) using the results of [43.8].
This generalizes naturally to even more accurate ap-
proximations. Recently [43.22] other highly accurate
approximations for Q∗(k; Lλ, 1/L)= QL have been de-
veloped, together with error bounds. Using terms of the
form Q∗(k; λ, 1/r)= Qr , for r = 2, 3, 4, . . .; for exam-
ple, approximation (1.18) from that work uses Q2 and
Q3, and has a relative error < 3.3(L−1)(1−Q2)2, for

L > 4, if the error bound is small relative to 1. Ap-
proximation (1.17) uses Qr for r = 2, 3, 4, 5, and has
a smaller error bound, under certain conditions.

A simpler approximation is derived by [43.23],
which is computable on a calculator, and is reasonably
accurate for small to moderate values of P∗(k; λT, w/T )
that might be used when testing hypotheses for unusual
clusters.

P∗(k; ET , w/T ) ≈ 1− Fp(k−1; Ew)

× exp[−[(k− Ew)/k)]
×λ(T −w)p(k−1; Ew)] .

(43.12)

For larger values of P∗(k; ET , w/T ), (43.12) may not
be accurate. For example, (43.12) gives P∗(5, 12, 25)≈
0.555, as compared to the exact value of 0.765. In certain
applications one seeks the distribution or moments of
distribution of Sw, or the related statistics Wk , or Tk,w. If
formulae for the moments are not available, one could
average over the approximate distribution of the statistic,
but in this case one would want to use an approximation
that is accurate over the range of the distribution.

Example 2: A telecommunications engineer seeks to
develop a system with the capacity to handle the pos-
sibility of multiple calls being dialed simultaneously.
Dialing times start at random according to a Poisson
process, with a 10 s dialing time. During an average 8 h
busy period, 57 600 calls are dialed. The engineer asks
how likely it is that at some point in the 8 h busy pe-
riod there will be 50 or more phone calls being dialed
simultaneously. There are an infinite number of overlap-
ping intervals, each of 10 s duration, in an 8 h period.
The maximum number of calls in any of the infinite
number of overlapping windows is the scan statistic
Sw. Here we are scanning a T = 28 800 s period that
has an expected number of calls E28800 = 57600, with
a scanning window of w= 10 s, and asking how likely
it is that S10 ≥ 50. The answer needs to take into ac-
count the multiple comparisons involved in scanning
the infinite number of overlapping 10 s periods within
an 8 h period, and is given by P∗(50; 57600, 10/28800),
computed by (43.10) or (43.12).

Moments of Scan Statistic Distributions: Continuous
Prospective Case
To compute the expectation, variance and other moments
of Sw, Wk or Tk,w, one could average over the distribu-
tion of the statistic, where the cumulative distribution
functions of Wk or Tk,w are given by P∗(k; ET , w/T ),
and of Sw by 1− P∗(k+1; ET , w/T ). To derive for-
mula or compute the moments, one could use either the
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Scan Statistics 43.2 Temporal Scenarios 781

exact formula or approximation (43.10), which is highly
accurate over the range of the distribution.

Example 3: A window information flow control
scheme is described in [43.24] where a sender of in-
formation packets stops sending when there is evidence
of overload. An open-loop control mechanism avoids
feedback delays by basing the control mechanism on
the maximum number of information packets in a sliding
time window of fixed prespecified length, the scan statis-
tic. Strong approximations are used in [43.24] to derive
asymptotic (for T �w> log T ) results for P(Sw ≥ k).
For w= 20, T = 1 000 000 and a Poisson process with
an average of one observation per unit of time, their
asymptotic approximation gives AVE(Sw) = 42, com-
pared to their simulated value of 44.5. Reference [43.3]
(pp. 33–34) uses approximation (43.10) to com-
pute Q∗(k; 1 000 000, 20/1 000 000) for k = 41(1)52),
which gives all of the distribution needed to com-
pute AVE(Sw) = Σk>1[1− Q∗(k)] ≈ 44.84. This is
because for k < 41, Q∗(k) < Q∗(41) ≈ 6.6E−7; and
for k > 52, Q∗(k) > Q∗(52) ≈ 0.9999.

Various approximations are given by [43.25]
and [43.26] for moments of Tk,w. For the Poisson pro-
cess, [43.26] gives approximations and bounds for the
expectation and variance of Tk,w, and bounds for the
expectation for general point processes with i.i.d. in-
terarrival times between the points. Details are given
for the Poisson, Bernoulli, and compound Poisson pro-
cesses. We now discuss Samuel–Cahn’s results for the
Poisson case. Let δk,w denote the total number of points
observed until the first cluster of k points within an inter-
val of length w occurs. Note that δk,w, Tk,w, Sw, and Wk
are different but interrelated statistics associated with the
scanning process. For a Poisson process with mean λ per
unit time, the expected waiting times between points is
1/λ. She applies Wald’s lemma, to find for the Poisson
case,

E(Tk,w) = E(δk,w)/λ , (43.13)

and derives a series of approximations for E(δk,w). The
simplest of these is

E(δk,w) ≈ k+
{
[Fp(k−2; λw)]2/P(δk,w = k+1)

}
,

(43.14)

where

P(δk,w = k+1) =
k−2∑

i=0

(−1)k−2−i p(i; λw)

+ (−1)k−1 exp(−2λw) , (43.15)

and where p(i; λw) and Fp(k−2; λw) are Poisson terms
defined before (43.10).

43.2.3 Discrete Binary Trials:
The Prospective Case

In start-up tests for a piece of equipment, the equip-
ment might perform successfully on the first test trial,
then fail on the second. Consecutive points in a QC
chart may be in or out of a warning zone. In a stream
of items sampled from an assembly line, some are
defective while some are acceptable. Here the data
is viewed as a sequence of T binary outcome trials.
Each trial t results in a “success” or “failure.” For
t = w,w+1, . . ., T,Yt(w) and Et(w) are the observed
and expected number of “successes” within the w con-
secutive trials, t−w+1, t−w+2, . . ., t.

The scan statistic Sw is the maximum num-
ber of successes within any w contiguous trials
within the T trials. For the special case where
Sw = w, a success-run of length w has occurred
within the T trials. When Sw = k, a quota of k
successes within m consecutive trials has occurred.
Related statistics include Wk , the smallest num-
ber of consecutive trials that contain k ones; Tk,w,
the number of trials until we first observe at least
k ones in an interval of length w; and Vr , the
length of the longest number of consecutive tri-
als that have at most r failures. V0 is the length
of the longest success run. The statistics are re-
lated by P(Sw ≥ k) = P(Wk ≤ w) = P(Tk,w ≤ T ), and
P(Vr ≥ k+r)= P(Sk+r ≥ k). We illustrate these statis-
tics in the following example.

Example 4: The DNA molecule most often consists
of two complementary strands of nucleotides each con-
sisting of a deoxyribose residue, a phosphate group, and
a nucleotide base. The four nucleotide bases are denoted
A, C, G, T, where an A on one strand links with a T
on the other strand, and similarly C with G. Molecular
biologists sometimes compare DNA from two different
sources by taking one strand from each, viewing each
as a linear sequence of the letters A, C, G, T, align-
ing the two sequences by a global criterion, and then
looking for long perfectly or almost perfectly match-
ing “words” (subsequences). For illustration, consider
the following two aligned sequences from two different
plant proteins. If letters in the same position in the two
sequences match, we put an “s” at that position; if not
an “f”
Source 1: A A A C C G G G C A C T A C G G T G A G
A C G T G A
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Source 2: A A T C C C C C G T G C C C T T A G A G
G C G T G G
Match: s s f s s f f f f f f f f s s s f s s s f s s s s f
The longest perfectly matching word is CGTG, cor-
responding to a success run of length 4. For the s/f
sequence, Vo = 4. We note that the longest word with
at most one mismatch is of length eight letters (under-
lined). Here V1 = 8. If we had scanned the sequence of
T = 26 aligned pairs of letters, looking for the largest
number of matches within w= 8 letters, we would find
S8 = 7. If we had looked for the smallest number of con-
secutive letters containing seven matches, we would find
W7 = 8. The waiting time until we first observe seven
matches within eight consecutive letters is T7,8 = 25.

Exact Results
There are a variety of algorithms to compute the distri-
bution of the prospective discrete scan statistic exactly.
Recursion relations and generating functions for the spe-
cial cases of k = w−1 and k = w are given in [43.27].
The Markov chain imbedding approach was applied
in [43.28] and [43.29] to derive an exact formula for
the expected waiting time until a k-in-w quota, and
is refined and unified in [43.30] to be efficient for
computing the distributions of runs and scans. Use-
ful recurrence relations and other formulae are given
in [43.31–33]. Recently, a martingale approach has been
used to find generating functions and moments of scan
statistics [43.34].

Recent studies [43.35] and [43.36] into the computa-
tional complexity of the Markov chain approach to find
exact results for the discrete scan statistic shows that
it is computationally feasible. Many of the results are
motivated by quality control and acceptance sampling
applications [43.27,33,37]. Other recent results are mo-
tivated by the reliability of linear systems, where the
system fails if any k within w consecutive components
fail [43.1, 30, 38–40].

Approximate Results
There are asymptotic results for P(Sw ≥ k) for a variety
of probability models that are called Erdös–Rényi laws,
or Erdös–Rényi–Shepp theorems. DNA and protein
sequence matching has stimulated further generaliza-
tions (see [43.41–44]). A simple random model is the
Bernoulli trials model, where the T trials are indepen-
dent binary trials, with a probability of “success” on
trial t equal to a constant value p. Reference [43.45]
reviews and proves some important general limit law
results (as T tends to infinity), and shows how they
apply in the special case of a Bernoulli process. The

asymptotic results converge quite slowly, and for certain
applications give only rough approximations ([43.3],
pp. 233-235). Various approximations to P(Swk) are
derived using the method of moments, a Poisson approx-
imation using declumping, and other methods [43.46].

For the Bernoulli process, denote P(Sw ≥ k) by
P′(k|w; T ; p) = 1−Q′(k|w; T ; p).

In [43.19], the following highly accurate approxi-
mation is given for Q′(k|w; T ; p). Let b(k;w, p) be the
binomial probability defined in (43.5), and let

Fb(r;w, p) =Σi<rb(i;w, p) ,

Q′(k|w; T ; p) ≈ Q′(k|w; 2w; p)
[
Q′(k|w; 3w; p)

/Q′(k|w; 2w; p)
](T/w)−2

,

Q′(k|w; 2w; p) = [Fb(k−1;w, p)]2
− (k−1)b(k;w, p)

× Fb(k−2;w, p)

+wpb(k;w, p)

× Fb(k−3;w−1, p) ,

Q′(k|w; 3w; p) = (Fb(k−1;w, p))3

− A1+ A2+ A3− A4 , (43.16)

where

A1 = 2b(k;w, p)Fb(k−1;w, p) [(k−1)

× Fb(k−2;w, p)−wpFb(k−3;w−1, p)] ;
A2 = 0.5[b(k;w, p)]2

[
(k−1)(k−2)

× Fb(k−3;w, p)

−2(k−2)wpFb(k−4;w−1, p)

+(w−1)p2 Fb(k−5;w−2, p)
]
;

A3 =
k−1∑

r=1

b(2k−r;w, p)[Fb(r−1;w, p)]2 ;

A4 =
k−1∑

r=2

b(2k−r;w, p)b(r;w, p) [(r−1)

× Fb(r−2;w, p)−wpFb(r−3;w−1, p)] .

The following simpler, and fairly accurate, approxima-
tion is suggested in [43.47].

P′(k|w; T ; p) ≈ 1− [
C(D/C)(T/w)−2] , (43.17)

where

C = 2Σi<kb(i;w, p)−1− (k−1−wp)b(k;w, p) ,

D = 2Σi<kb(i;w, p)−1− (2k−1−2wp)

× b(k;w, p) .
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Example: k = 8, w = 10, p = 0.3, T = 50. Apply-
ing (43.16), Q′(8|10; 20; 0.3)= 0.991032; Q′(8|10; 30;
0.3) = 0.983827; P′(8|10; 50; 0.3)≈ 0.03.

Applying (43.17) gives C = 0.991032; D =
0.9837985; P′(8|10; 50; 0.3) ≈ 0.03. Both of these re-
sults agree with the exact result from the Markov Chain
imbedding approach.

In some applications the researcher is interested in
scanning for unusual clusters of successes or clusters
of failures. One can use the above results to bound
the probability of either type, or can use the Markov
Chain imbedding or another approach to compute the
probability directly [43.39]. In other applications, indi-
vidual trials can result in an integer number of points
and [43.48] derives accurate approximations and tight
bounds for this case.

Moments of Discrete Trial Scan Statistics
An accurate approximation for the expected waiting
time until a k in w cluster in a Bernoulli trials, with
a probability p of success on an individual trial, is given
in [43.19]

E(Tk,w) ≈ 2w+Q′(k|w; 2w; p)

/
{
1−[Q′(k|w; 3w; p)

/Q′(k|w; 2w; p)]1/w} . (43.18)

More complicated formulae for the exact expectation,
and methods to find it, are given in [43.28, 29], and
other approximations in [43.26] for the expectation and
variance of the waiting time for the Bernoulli and more
general processes.

An important generalization is to the case of in-
dependent binary trials with unequal probabilities. For
many results see [43.1]. Reliability engineers have been
studying the reliability of a linearly ordered set of N
independent components with different probabilities of
being defective. In the k-within-consecutive-m-out-of-N
systems, the system fails if there is a quota of k de-
fectives within any m consecutive components in the
system (see [43.40, 49]).

43.2.4 Discrete Binary Trials:
The Retrospective Case

In this discrete scenario, the data is viewed as a sequence
of T binary outcome trials. Each trial t results in a “suc-
cess” or “failure.” Sw is the largest number of successes
in any w consecutive trials. A simple random model is
where there are N successes distributed at random over
the T trials. Denote P(Sw ≥ k) by P(k|w; N, T ).

The exact distribution of P(k|w; N, T ) for the case
k > N/2 is given in [43.31]. This formula can also
be used to approximate small values of P(k|w; N, T )
for k < N/2, and the approximation is given below
in (43.19). Reference [43.50] derives the exact dis-
tribution for all N and k, for m/N = 1/L, L an
integer, and more generally for m = cR, N = cL , where
c, R, and L are integers, and c > 1. These general
formulae are computationally complex, but can be
used to derive simpler formulae for special cases.
These formulae can also be used to approximate other
cases.

Approximations and bounds for P(k|w; N, T ) are
given in [43.3] (pp. 56–58, 212–216) and in [43.1] (pp.
319–323). These can then be used to approximate the
moments of the distributions of Sw and Wk . A simple
approximation is given by

P(k|w; N, T ) = [(k− Ew)(1/w)+1]P(Yt = k)

+2P(Yt > k) , (43.19)

where

Ew = N(w/T ) ;
P(Yt = k) = H(k, N, w, T ) = (

w
k

) (T−w
N−k

)
/
(

T
N

)
.

For the case where w and T are large, the discrete
retrospective scan probability P(k|w; N, T ), can be
approximated by the continuous retrospective scan prob-
ability P(k; N, w/T ).

43.2.5 Ratchet-Scan:
The Retrospective Case

In the ratchet scenario, time is divided into T dis-
joint intervals (hours, days, or weeks) and the reported
data consists of the number of events in each in-
terval. For t = w,w+1, . . ., T,Yt (w) and Et(w) are
the observed and expected number of events within
the w consecutive intervals, t−w+1, t−w+2, . . ., t.
For the constant background retrospective case there
are N events spread at random over the T inter-
vals. (The model is multinomial where each of the N
balls is equally likely to fall in any of the T cells,
independently of the other balls.) Here λ = wN/T .
Approximations and bounds for P(k; λ,w, T ) are
described in [43.3] (pp. 327–328), [43.2] (p. 81–
91), and [43.51]. The simple Bonferroni upper
bound is

P(k; λ,w, T ) < (T −w+1)Σi≥kb(i; N, p) ,
(43.20)
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where N = Tλ/w; p= 1/T . Note also that P(k; λ,w, T )
for the ratchet scan must be less than that for the
continuous scan. Thus, P(k; λ,w, T ) for the retrospec-
tive ratchet scan must be less than the right-hand side
of (43.5)

43.2.6 Ratchet-Scan:
The Prospective Case

In the ratchet scenario, time is divided into T dis-
joint intervals (hours, days, or weeks) and the reported
data consists of the number of events in each inter-
val. For t = w,w+1, . . ., T,Yt (w) and Et(w) are the
observed and expected number of events within the w

consecutive intervals, t−w+1, t−w+2, . . ., t. For the
constant background prospective case the number of
events (counts) in the T intervals are T independently
and identically distributed Poisson random variables,
each with expectation λ/w. For the prospective ratchet
scan constant background case, the approach in [43.5]
gives the following approximation:

P(k; λ,w, T ) ≈ (T −w+1)G(k, λ)− (T −w)

×Σ j=0 p( j, λ)[G(k− j, λ/w)]2 ,

(43.21)

Here p( j, λ) is the Poisson probability defined
in (43.20), and

G(k, λ) =Σ j≥k p( j, λ) .

For the case where the number of events in the T inter-
vals are independently and identically distributed ran-
dom variables, [43.48] derives accurate approximations
and tight bounds for P(k; λ,w, T ).

43.2.7 Events Distributed on the Circle

When studying seasonality effects of disease patterns
over time, one might be interested in unusual clustering
during certain periods of the year. The researcher may
view the time period as a circle, with January following
December. In studying the directions of flights of birds or
insects, the directions may be viewed as points on a cir-
cle. Many of the distributional results described above
for the line have also been derived for scan statistics
on the circle. The circular ratchet scan was introduced
in [43.52] and further developed in [43.51]; accurate ap-
proximations for the continuous scan on the circle and
line are given in [43.19]; and for the discrete scan on the
circle in [43.53].

43.3 Higher Dimensional Scans

Scan statistic have been applied extensively to study
the clustering of diseases over space. In two dimen-
sions, circular, rectangular, elliptical and other shaped
scanning windows are used. Regions scanned can have
arbitrary shapes (typical in epidemiology), or the surface
of a sphere (astronomy or ships at sea), or approximately
rectangular (blood cells on a slide). In three dimensions,
two of which may be spatial and one temporal, cylindri-
cal scanning windows may be used. In the case where
all three dimensions are spatial, a scanning sphere or
cube may be used. Scan distributions have been ap-
proximated or simulated for events from homogeneous
or heterogeneous Poisson processes, uniform, or more
generally distributed points in continuous space, and
for various models for two-dimensional grids. Simula-
tion is the most widely applied approach, but can be
computationally intensive for a large number of points.
Not only must the points be generated, but one must
check all possible positions of the scanning window,
and in variable-size window applications [43.54–57]
each of the window sizes must be checked too. A vari-
ety of algorithms have been developed to simulate scan

probabilities in two dimensions. Efficient Monte Carlo
algorithms for one and two dimensions are developed
in [43.55, 58, 59]; (see [43.3], Chapt. 16). Importance
sampling can be used to reduce the computational ef-
fort of the simulation [43.60]. A web-based program,
SatScan [43.56], is available that scans generally dis-
tributed points over an arbitrarily shaped region with
circular scanning windows (with a variety of diameters).

In two dimensions, the points are randomly dis-
tributed over a two-dimensional region. A circular (or
rectangular or other shaped) window scans the region.
The scan statistic Sw is the largest number of points in
any window of diameterw; the scan statistic Wk general-
izes to the diameter of the smallest scanning window that
contains k points. The distributions of the statistics Sw
and Wk are still related, P(Sw ≥ k)= P(Wk ≤w). How-
ever, in more than one dimension, Wk+1 is not equivalent
to the smallest k-th-nearest neighbor distance among
the N points. Section 43.3.1 discusses the retrospec-
tive case of a fixed number of points in the unit square;
Sect. 43.3.2 discusses the prospective case where the
number of points is Poisson distributed.
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43.3.1 Retrospective Continuous
Two-Dimensional Scan

We first focus on the problem of scanning a rectangular
region with a rectangular window with sides of length u
and v that are oriented parallel to the sides of the square.
There are a fixed number, N , of points distributed over
the rectangular region, The units of measurement are
chosen to make the rectangular region the unit square.
The results for the unit square give the results for an a ×b
scanning window within an S × T rectangular region,
by choosing the units of measurement for the x− and
y−axes to make S = 1 unit on the x-axis, and T = 1 unit
on the y-axis, and by setting u = a/S and v= b/T .

Given N points distributed at random over the unit
square, let Su,v denote the maximum number of points
in any subrectangle with sides of length u and height v
parallel to the sides of the unit square. Let P(k; N, u, v)
denote P(Su,v ≥ k). Bounds for P(k; N, u, v), that con-
verge for small u, v are given in [43.61], and the
approximation for this case is

P(k; N, u, v) ∼= k2

(
N

k

)
(uv)k−1 . (43.22)

An exact formula is available for P(N −1; N; u, v),
(see [43.3], Chapt. 16). The following approximation
by [43.62] is based on large deviation theory

P(k; N, u, v) ∼=
{[

N2w(1−u)(1−v)E3

/(1−w)3(1+ E)
]+C

}

× b(k; N, w) , (43.23)

where

w= uv, E = (k/Nw)−1 ;

b(k; N, w) =
(

N

k

)
wk(1−w)N−k ,

C = [Nv(1−u)E/(1−w)]
+ [

Nu(1−v)E2/(1+ E)(1−w)2]

+[(1+ E)(1−w)/E] .
The approximation is refined further in [43.62],
but (43.23) appears to give good accuracy for small
P(k; N, u, v). Simulation is used to evaluate larger
values of P(k; N, u, v). Order the points by the X coordi-
nates, with X1 < X2 ≤ ...≤ X N . For each i = 1, ..., N−
k+1, check whether (Xk+i−1− Xi ≤ u), and if so,
whether the corresponding Y ’s fall within a distance v.

For the case of a circular scanning window of radius r,
the algorithm looks at pairs of points within a distance
2r, finds the two circles of radius r on which the two
points fall on the circumference, and counts the number
of points in each of the circles.

The above generalizes to higher dimensions. Scan
the r-dimensional unit cube with a rectangular block
with sides of length u1, ..., ur , oriented parallel to the
sides of the unit cube. Let w=∏

ui denote the volume
of the scanning rectangle. Let P(k; N, u1, u2, ..., ur )
denote the probability that at least one scanning rectan-
gular block with sides (u1, u2, ..., ur ) parallel to those
of the unit cube contains at least k points. In corollary
2.3, [43.63] gives the approximation for r = 1, 2, 3

P(k; N, u1, u2, ..., ur ) ∼= {1−[Nw/k(1−w)]}2r−1

× (kr/w)b(k : N, w) ,
(43.24)

where w=∏
ui , and b(k; N, w) is the binomial prob-

ability in (43.23). For the case r = 2, (43.24) does not
reduce exactly to (43.23), but gives similar values for
small probabilities.

43.3.2 Prospective Continuous
Two-Dimensional Scan

Let the number of points in the unit square be a Poisson-
distributed random variable with mean λ. Scan the
unit square with a subrectangle with sides of length u
and v that are parallel to the sides of the square. Let
P∗(k; λ, u, v) denote the probability that at least one
uxv-scanning subrectangle contains at least k points.
Several approximations from [43.64] and [43.65] are
given for P∗(k; λ, u, v), with the best approximation
being (from [43.65]):

P∗(k; λ, u, v) ∼= 1− Fp(k−1; λuv)

exp {− ζ (1− (λuv/k))λv(1−u)

× p(k−1; λuv)} ,
ζ = [1− (λuv/k)]λu(1−v)

× [P∗(k−1; λv, u)

− P∗(k; λv, u)] ;

Fp(k−1; λuv)=
k−1∑

i=0

p(i; λuv) , (43.25)

where P∗(k; λv, u) is the one-dimensional scan statistic.
A simpler but rougher approximation is

P∗(k; λ, u, v) ∼= 1−[1− P∗(k−1; λv, u)]
exp(−ζ ) . (43.26)
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For the case of scanning an S × T rectangular re-
gion with a circular window of radius r, let
rπ0.5/S = u, rπ0.5/T = v, and choose the X- and Y -
scales so that S = 1 and T = 1. Let P∗

c (k; λ, u, v) denote
the probability that the maximum number of points in
the scanning window is at least k, where λuv denotes the
expected number of points in a circle of radius r. The
following approximation is given in [43.64]:

P∗
c
∼= 1− exp[−kλ(1−2u)(1−2v)p(k−1; λuv)] .

(43.27)

The simulations in [43.65, 66] show that for small u, v,
P∗

c
∼= P∗(k; λ, u, v). For small u, v, we approximate the

circular window by a square window of the same area.
Researchers continue to develop more accurate ap-

proximations for the distribution of the two-dimensional
scan statistic for the Poisson process; see [43.67]
and [43.25]. Other researchers seek to generalize the
asymptotic results and some approximations to higher
dimensions or more general scanning regions. The ap-
proach of [43.65] is generalized in [43.66] to give
approximations for more than two dimensions. Recent
research [43.68] derives approximate results with error
bounds for one and higher dimensions for general dis-
tributions, and general bounded scanning sets, and uses
these results to prove various asymptotic results. Poisson
approximation and large deviation theory has been used
in [43.69] to derive very general results for scanning
spatial regions of two and more dimensions.

43.3.3 Clustering on the Lattice

In some applications, events can only occur on a grid of
points; a recent example [43.70] deals with the reliability
of a two-dimensional system. Another example involves
clustering of diseased plants in a field of evenly spaced
plants. In other applications, the method of measurement
limits the observed events to occurring on a rectangu-
lar R by T lattice of points. The researcher scans the grid
looking for unusual clusters. Results have been develop-
ed for several models; The researcher scans the lattice
with a rectangular m1 by m2 sublattice with sides par-
allel to those of the lattice; events are independent and

equally likely to occur at any point of the lattice. This
case is the discrete analog of the continuous prospective
case with an oriented rectangular scanning window, as
discussed in Sect. 43.3.2.

Let Xij for i = 1, .., R; j = 1, ..., T denote a rectan-
gular lattice of independent and identically distributed
Bernoulli random variables, where P(Xij = 1) = p =
1− P(Xij = 0). View the lattice with position (1,1) in
the lower left corner. Let Yr,s(m1,m2) denote the num-
ber of events (ones) in an m1 by m2 subrectangle whose
lower left corner is at (r, s) in the lattice. Denote the
two-dimensional discrete scan statistic S′m1,m2, the max-
imum number of events in the scanning subrectangle
when we scan the R by T lattice with an m1 by m2 rect-
angle of points (with sides oriented with the sides of the
lattice).

Algorithms are given in [43.71] to find the largest
rectangle with all 1’s in the lattice, and [43.71] gener-
alizes the limit law to higher dimensions, and to allow
for some 0’s in the subrectangle. Approximations for
P
(
S′m1,m2 ≥ k

)
are given in [43.72]. For the special

case of a square lattice, R = T , and a square scan-
ning subrectangle m1 =m2 =m, let Bs denote the event
[Y1,s(m,m) < k]. Then,

P
(
S′m,m ≥ k

)∼= 1−q(2m−1)

× [q(2m)

/q(2m−1)](T−2m+1)(T−m+1) ,

(43.28)

where

q(2m−1)= P(B1 B2...Bm) ,

q(2m) = P(B1 B2...Bm+1) .

The terms q(2m−1) and q(2m) can be evaluated using
an algorithm in [43.73].

For m1,m2, R, and T all large, the discrete scan
probability can be approximated by the continuous case
probability in Sect. 43.3.2.

P∗(k; λ, u = m1/R; v= m2/T ) ∼= P
(
S′m,m ≥ k

)
.

(43.29)

43.4 Other Scan Statistics

43.4.1 Unusually Small Scans

Scan statistics have been developed to test for unusu-
ally sparse intervals of time, or regions of space. Given

N points independently drawn from the uniform distri-
bution on [0, 1), let Dw denote the smallest number of
points in an interval of length w; let Vk denote the size
of the largest subinterval of [0, 1) that contains k points.
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The statistics are related:

P(Dw ≤ k) = P(Vk ≥w) . (43.30)

The scan statistic Vk+1 can be viewed as the maximum
of the sum of k consecutive spacings. The interval Vr+1
is called the “maximum r-th-order gap”.

A variety of results have been derived for the related
statistics Dw and Vk. In [43.14] asymptotic results are
derived for the distributions of order statistics of r-th or-
der gaps, for i.i.d. distributed spacings (gaps between
consecutive points) and some more general uniform
mixing stationary processes. For the special case of
a minimum r-scans of n(= N +1) i.i.d. uniform [0, 1)
spacings, they give

lim
n−>∞ P{Vr+1 ≤ [loge n+ (r−1)

× loge loge n+ y]/n} = exp[e−y/(r−1)!] .
(43.31)

The asymptotic convergence of (43.31) is very slow,
and care must be taken in using it as an approximation.
For the case of N uniformly distributed points on the
line, the exact distribution of Dw and Vk are derived
in [43.74]. The formulae are computationally intensive,
but can be applied to derive special cases that can be used
to find highly accurate approximations similar in form
to (43.16). A general approach to finding the distribution
of Vk is described in [43.11].

For a sequence of Bernoulli trials, the distribution of
the minimum scan can be computed using the formula
for the maximum scan. Let D∗

w denote the minimum
number of successes in any w consecutive trials. Then
D∗

w ≥ k if the maximum number of failures in any w

trials is less than or equal to w− k.
The distribution of the minimum scan for the line

and circle is related to a multiple coverage problem.
The multiple coverage problem is as follows: Given N
subarcs each of length w dropped at random on the
circumference of the unit circle, what is the probability
that the arcs completely cover the circumference of the
circle at least m times? To relate the coverage to the scan
problem, let the N points in the scan problem correspond
to the midpoints of the subarcs in the coverage problem.
If the N subarcs do not cover the circle m times, there
must be some point on the circumference not covered
enough. This implies that the subinterval of length w

centered at that point contains fewer than m of the N
midpoints of the N subarcs; in this case, the minimum
number of the N (mid)points in a scanning window of
length w must be less than m.

43.4.2 The Number of Scan Clusters

There are several ways to count clusters depending on
the overlap allowed between two clusters. For example,
suppose we scan (0,1) with a window of widthw= 0.20,
looking for clusters of at least k = 3 points. Assume
that we observe the six points: 0.10, 0.15, 0.28, 0.34,
0.41, 0.62. One approach to counting the number of
3-within-0.20 clusters is to see how many of the 2-
spacings are<w. Here, 0.28−0.10= 0.18 <w, 0.34−
0.15 = 0.19 < w, 0.41−0.28 = 0.13 ≤ w, and 0.62−
0.34 >w. We would count three clusters. Note that two
clusters share some (but not all) points, and this case is
sometimes referred to as a nonoverlapping case. For the
conditional case, expressions are available for the expec-
tation and variance of the number of clusters. See [43.75]
and [43.11] for this method of counting. Results are de-
rived in [43.14] for the distribution of the number of
clusters that do not overlap with a previously counted
cluster A Markovian declumping is used in [43.76]
and [43.77], where an r-spacing<w is counted so long
as the immediately previous r-spacing is not counted.
A compound Poisson approach to counting the number
of clumps is applied in [43.11, 76, 78] and [43.12]. This
is generalized in [43.79] to two and higher dimensions.
See ([43.3], Chapt. 17) for a summary of many of the
results for the continuous scan.

For a sequence of trials, ([43.1], Chapt. 10) de-
scribes in detail the Markov chain approach to finding
the distribution of the waiting time until the k-th dis-
crete scan cluster, for different ways of counting clusters.
In Chapt. 4, [43.1] discusses the discrete counting ap-
proach for the case of runs, and there is a great deal of
literature on the number of overlapping and nonover-
lapping runs; see also [43.80]. In [43.81], a compound
Poisson approximation is used for the multiple cluster
problem, and the motivating example is the clustering
of individual claims exceeding threshold risks.

43.4.3 The Double-Scan Statistic

In [43.82], a scan-type statistic called the double-scan
statistic is defined based on the number of “declumped”
(a type of nonoverlapping) clusters that contain at least
one of each of two types of event. The expectation
and approximate distribution of the number of de-
clumped clusters is derived for this test statistic for two
chance models. Define the event E(i) to have occurred
if there are at least one of each of the two types of
events anywhere within the w consecutive days i, i+
1, ..., i+w−1. The event E(i) indicates the occurrence
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of a two-type w-day cluster. Let Z(i) = 1 if E(i) occurs
and none of E(i−1), E(i−2), ..., E(i−w+1) occur;
Z(i) = 0 otherwise. Let Sw(2) =Σ1<i<N−w+1 Zi .Sw(2)
is the double scan statistic. This method counts the
number of times that an E(i) occurs with no previously
overlapping E(i)’s. When the events are relatively rare
and distributed according to certain chance models, the
number of these declumped clusters is approximately
Poisson-distributed [43.64]. This model fits well when
the two types of events do not occur too frequently.
As the density of the number of events increases, there
comes a point where more events lead to fewer clusters.
In [43.83], the distributions of a family of double-scan
statistics are derived using a different approach to count
clusters. This method treats clusters as recurrent events,
and counts the number of times that an E(i) occurs with
no previously overlapping E(i)’s that were counted in
a cluster.

The double-scan statistic can be generalized, for the
case of two types of events, to clusters where there are
at least r type one and s type two events within a w-day
period. For other applications, the statistics can be gener-
alized to more than two types of events, and the distribu-
tion of the number of declumped clusters can be derived.

43.4.4 Scanning Trees and Upper Level
Scan Statistics

The scanning approach has been extended to a var-
iety of data structures. In two-dimensional geographic

scanning, the SatScan [43.56] simulation approach uses
a range of circular window sizes to detect unusual clus-
ters. When studying patterns of disease, a researcher
may be looking for connected regions (such as counties)
with above-average concentrations of disease. These re-
gions may not all fall within a compact circular, elliptical
or other simple shape. One can still scan for these linked
high-density regions, and [43.84] develops a “higher-
level scan” approach for assessing the unusualness of
clusters that arise.

In other situations, the researcher may not be looking
for clusters of disease in space, but instead for some other
variable such as occupation. One might try to scan a data
set combining occupations that have above-average in-
cidence. However, scanning all possible combinations
involves so many multiple comparisons that the test
statistic adjusted for this would not be powerful, and
the results would be difficult to interpret. In the case
of occupations (and many other variables) the data
can be placed in the form of a tree structure (for ex-
ample, a carpenter, electrician, plumber are all under
building trades). In [43.85] an approach is given to
scanning data in a tree structure, looking for unusual
clusters, and adjusting for the multiple comparisons
made.

In some applications one seeks to scan with a range
of window sizes. Simulation is typically used to test un-
usual clusters [43.54,56]. Asymptotic results [43.62,63,
68,69] and approximations [43.57] are also available for
a variety of models.
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Condition-Ba44. Condition-Based Failure Prediction

Machine reliability is improved if failures are
prevented. Preventive maintenance (PM) can be
performed in order to promote reliability, but
only if failures can be predicted early enough.
Although PM can be approached in different ways,
according to time or condition, whichever one
of these approaches is adopted, the key issue is
whether a failure can be detected early enough
or even predicted. This chapter discusses a way
to predict failure, for use with PM, in which the
state of a DC motor is estimated using the Kalman
filter. The prediction consists of a simulation on
a computer and an experiment performed on
the DC motor. In the simulation, an exponential
attenuator is placed at the output end of the motor
model in order to simulate aging failure. Failure
is ascertained by monitoring a state variables,
the rotation speed of the motor. Failure times
were generated by Monte Carlo simulation and
predicted by the Kalman filter. One-step-ahead
and two-steps-ahead predictions are performed.
The resulting prediction errors are sufficiently
small in both predictions. In the experiment, the
rotating speed of the motor was measured every
5 min for 80 days. The measurements were used
to perform Kalman prediction and to verify the
prediction accuracy. The resulting prediction errors
were acceptable. Decreasing the increment time
between measurements was found to increase
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the accuracy of Kalman prediction uses. Conse-
quently, it is shown that failure can be prevented
(promoting reliability) by performing predictive
maintenance depending on the results of state
estimation using the Kalman filter.

Nomenclature

(·)k = The value of (·) at time kT

(̂·)a/b = The estimate of (·) at time aT based on all in-
formation known about the process up to time bT

A = A matrix
Ac = Coefficient matrix of the state equation for

a continuous system
Ad = Coefficient matrix of the state equation for

a discrete system
AT = Transpose matrix of A
A−1 = Inverse matrix of A
B = Damping coefficient

Bc = Coefficient matrix of the state equation for
a continuous system

Bd = Coefficient matrix of the state equation for
a discrete system

Bk = Coefficient matrix for the input term of a dis-
crete state equation

C = A matrix
Cc = Coefficient matrix of the state equation for

a continuous system
Cd = Coefficient matrix of the state equation for

a discrete system
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Dc = Coefficient matrix of the state equation for
a continuous system

Dd = Coefficient matrix of the state equation for
a discrete system

E = Applied voltage
Er = Estimation error
Hk = Matrix giving the ideal (noiseless) connection

between the measurement and the state vector
ia = Armature winding current
J = Moment of inertia of rotor and load
kb = Back emf constant
Kk = Kalman gain
kT = Motor torque constant
La = Armature winding inductance
L−1 = The inverse Laplace transform
Pk/k−1 = Estimation error covariance matrix
Qk = Covariance matrices for disturbance
R = Armature winding resistance
Rk = Covariance matrices for noise
t = Time variable
T = Motor output torque
T = Increment time for every step in Kalman pre-

diction

Uk = Control input of a discrete state equation at
state k

V = Variation in the estimated rotating speed
Vk = Noise (measurement error vector), assumed to

be a white sequence with known covariance
Wk = Disturbance (system stochastic input vector),

assumed to be a white sequence with known
covariance and zero cross-correlation with Vk
sequence

x, X = Variable of a distribution function
XD0 = Initial states resulting from deterministic input
Xk = System state vector at state k
XS0 = Initial states resulting from stochastic input
Yk = System output vector at state k
Zk = Output measurement vector
θ = Motor angle displacement
θ̇ = Motor rotating speed
µ = Mean value of a distribution function
σ = Standard deviation of a distribution function
Φk = Matrix relating Xk to Xk+1 in the absence

of a forcing function, which is the state transi-
tion matrix if Xk is sampled from a continuous
process

44.1 Overview

High quality and excellent performance of a system are
always goals that engineers strive to achieve. Reliability
engineering encourages system quality and performance
from the beginning to the end of the system’s lifecy-
cle [44.1]. Therefore, reliability can be thought of as
the time-dimensional quality of the system. Reliabil-
ity is affected by every stage of the system’s lifecycle,
including its development, design, production, quality
control, shipping, installation, operation, and mainte-
nance. Consequently, paying attention to each of the
stages promotes reliability. Specifically, in the onsite op-
eration phase, failures are the main causes of worsened
performance and degraded reliability. This is a very im-
portant consideration for any equipment that may cause
severe damage to public safety or financial benefit upon
failure, such as nuclear power plants, passenger vehicles,
or semiconductor production lines. Accordingly, failure
avoidance is the main approach to ensuring reliability.
Effective maintenance is the best way to reduce fail-
ure [44.1]. There are three main types of maintenance:
improvement maintenance (IM), corrective maintenance
(CM), and preventive maintenance (PM) [44.2]. The pur-
pose of IM is to reduce the need for maintenance or
eliminate the need for it entirely . Therefore IM should

be performed at the design phase of a system in order
to emphasize the elimination of failure. There are many
restrictions on a designer, however, such as space, bud-
get, and market requirements. Usually the reliability of
a product is related to its price.

On the other hand, CM is the repair performed
after failure occurs, while PM refers to all of the ac-
tions intended to maintain equipment in good operating
condition and to avoid failure [44.2]. The most com-
mon strategy for maintenance is scheduled maintenance,
where maintenance occurs at set times, at set operational
times, after set amounts of material have been processed,
or by some other prescribed criteria. Nevertheless, there
are at least two drawbacks to this type of maintenance:

1. The criteria on which the scheduled maintenance
is based are statistical averages, such as mean time
to failure (MTTF). This leads to an unavoidable risk
that a system can fail before the criteria are exceeded;
in other words a failure may occur unexpectedly.

2. The real duty cycles for certain parts or modules
may be longer than those averages, but they are still
replaced during a scheduled maintenance, which is
wasteful.
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Condition-Based Failure Prediction 44.1 Overview 793

In contrast, condition monitoring is a more reasonable
type of maintenance than scheduled maintenance. How-
ever, a failure really needs to be detected prior to its
occurrence.

The relationship between error, failure, and fault is
illustrated in Fig. 44.1, and the three terms are defined
as follows [44.3]:

1. An error is a discrepancy between a computed, ob-
served or measured value or condition and the true,
specified or theoretically correct value or condition.

2. Failure is an event where a required function is
terminated (exceeding the acceptable limits).

3. Fault is the state characterized by an inability to
perform a required function, excluding the inability
encountered during preventive maintenance or other
planned actions, or due to lack of external resources.

Based on the above statements, an error is not a failure
and a fault is hence a state resulting from a failure. An er-
ror is sometimes referred to as an incipient failure [44.4].
Therefore, PM action is taken when the system is still at
an error condition – within acceptable deviation and be-
fore failure occurs. Hence, PM is an effective approach
to promoting reliability [44.5]. As mentioned before,
time-based and condition-based maintenance are two
major approaches to PM. Irrespective of the approach
adopted for PM, the key issue is whether a failure can
be detected early or even predicted.

Many methods have been proposed for failure pre-
diction, such as statistical knowledge of the reliability
parameters [44.6, 7], neural network studies [44.8], and
understanding the failure mechanism of damaged prod-
ucts [44.9]. Fault detection based on modeling and
estimation is one of these methods [44.10]. The Kalman
filter is useful not only for state estimation but also for

Target
Value

Time

Performance

Error

Acceptable
deviation

Failure (event)

Fault (state)

Fig. 44.1 Error, failure and fault

state prediction. It has been widely used in different
fields over the past few decades, such as in on-line
failure detection [44.11], real-time prediction of ve-
hicle motion [44.12], and prediction of maneuvering
target trajectories [44.13]. The Kalman filter is a linear,
discrete-time, and finite-dimensional system [44.14].
Its appearance is a copy of the system that is esti-
mated. Inputs to the filter include the control signal
and the difference value between measured and esti-
mated state variables. Actual values of the event acquired
by the monitor sensor are fed into the corresponding
Kalman filter to execute state estimation. By minimiz-
ing mean-square estimation errors, an optimal estimate
can be derived. Using the current state, the Kalman fil-
ter provides a predicted value of the next state for the
corresponding event at every time interval T . As a re-
sult, the output of the filter becomes optimal estimates of
the state variables for the next time step. Each event has
a prescribed failure threshold, and the predicted value is
compared with the prescribed failure threshold in order
to judge whether the monitored event has failed after T
or is still within the established threshold. Once the es-
timated value reaches the threshold, failure is predicted.
Therefore, the current state is a warning state and PM
needs to be performed. If predicted state variables indi-
cate that a device is going to fail, then the failure can be
prevented in time using PM. However, future state vari-
ables need to be accurately predicted a reasonable time
before failure occurrence [44.10, 15].

This chapter is about state estimation and how to pre-
dict the need for PM using a Kalman filter. A DC motor
is the object on which we perform condition-based fail-
ure predictions. The prediction consists of two parts. The
first part is a simulation on a computer, and the second
part is an experiment on the DC motor. In the simulation,
failure times were generated by Monte Carlo simulation
(MCS) and predicted by the Kalman filter. One-step-
ahead and two-steps-ahead predictions were conducted.
The resulting prediction errors are sufficiently small in
both predictions. Even so, the failure prediction was still
simulated on a computer. In the second part of the pre-
diction, a DC motor and a data acquisition system are
used to implement the simulation. The rotation speed of
the motor is chosen as the major state variable to judge
whether the motor is going to fail, by estimating state
using the Kalman filter. The rotation speed of the motor
was measured and recorded every 5 min for 80 d. Instead
of simulated data, the measured data are used to perform
Kalman prediction and to verify the prediction accuracy.

In Sect. 44.2, we study a discrete system model
with deterministic control input, white noise disturbance
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and noisy output measurement. We then formulate an
equation for state estimation of the Kalman filter. De-
terministic inputs are considered in this formulation.
Moreover, equations for N-step-ahead prediction are de-
rived. Section 44.3 presents the transfer function, the
continuous state model, and the discrete state model of
the DC motor that is employed as an example in this
chapter. Section 44.4 presents a simulated system with

prescribed parameters, a Monte Carlo simulation and an
ARMA model used to generate necessary data for a fail-
ure prediction simulation, and the exponential attenuator
used to simulate the aging failure mode. Simulation re-
sults are also given and discussed. Section 44.5 presents
the experimental set-up with related parameters, exper-
imental results and discussion. Section 44.6 concludes
this work.

44.2 Kalman Filtering

This section introduces the Kalman filtering that is used
in this chapter to perform the failure prediction.

44.2.1 System Model

The block diagram of a discrete system is shown
in Fig. 44.2. The state equations [44.14] are:

Xk+1 =�k Xk +BkUk +Wk , (44.1)

Yk = Hk Xk , (44.2)

Zk = Yk +Vk . (44.3)

Substituting (44.2) into (44.3) yields

Zk = Hk Xk +Vk . (44.4)

Let E[X] be the expected value of X; therefore, the
covariance matrices for Wk and Vk are given by:

E
[
WkWT

i

]=
⎧
⎨

⎩
Qk , i = k

0 , i �= k
(44.5)

E
[
VkVT

i

]=
⎧
⎨

⎩
Rk , i = k

0, i �= k
(44.6)

E
[
WkVT

i

]= 0 , for all k and i . (44.7)

It follows that both Qk and Rk are symmetric and
positive definite [44.16].

Uk Bk

Wk

Xk+1+

+

Delay
Xk

Hk
Yk

Vk

Zk
+

+

Σ Σ

Φk

Fig. 44.2 Block diagram of a discrete system

44.2.2 State Estimation

State estimation involves guessing the value of Xk by
using measured data, i. e. Z0, Z1, . . . Zk−1. Accord-
ingly, X̂k/k−1 is called the prior estimate of X, and X̂k/k
is called the posterior estimate of X [44.16]. The prior
estimation error is defined as

ek/k−1 = Xk − X̂k/k−1 . (44.8)

Since Wk and Vk are assumed to be white sequences, the
prior estimation error has a mean of zero. Consequently,
the associated error covariance matrix is written as

Pk/k−1 = E
[
(ek/k−1)(ek/k−1)T] (44.9)

= E
[
(Xk − X̂k/k−1)(Xk − X̂k/k−1)T] .

The estimation problem begins with no prior measure-
ments. Thus, the stochastic portion of the initial estimate
is zero if the stochastic process mean is zero; i. e. X̂0/−1
is only driven by deterministic input X D0. It follows
from (44.8) that

e0/−1 = X0− X̂0/−1 = X0− X D0 = XS0 . (44.10)

Employing (44.9) and (44.10) yields

P0/−1 = E
[
XS0 XT

S0

]
. (44.11)

The Kalman filter is a copy of the original system and
is driven by the estimation error and the determin-
istic input. The block diagram of the filter structure
is shown in Fig. 44.3. The filter is used to improve
the prior estimate to make it the posterior estimate
via the measurement Zk. A linear blending of the
noisy measurement and the prior estimate is written
as [44.16]

X̂k/k = X̂k/k−1+Kk(Zk −Hk X̂k/k−1) , (44.12)

where Kk is the blending factor for this structure. Once
the posterior estimate is determined, the posterior esti-
mation error and associated error covariance matrix can
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be derived as

ek/k = Xk − X̂k/k , (44.13)

Pk/k = E[(ek/k)(ek/k)T ] ,
= E[(Xk − X̂k/k)(Xk − X̂k/k)T ] . (44.14)

The optimal blending factor is written as [44.16]

Kk = Pk/k−1HT
k (Hk Pk/k−1HT

k +Rk)−1 . (44.15)

This specific Kk, namely the one that minimizes the
mean-square estimation error, is called the Kalman
gain.

Substituting (44.15) into (44.12), the posterior error
covariance matrix can be derived as follows:

Pk/k = Pk/k−1− Pk/k−1HT
k

(
Hk Pk/k−1HT

k +Rk
)−1

× Hk Pk/k−1

= Pk/k−1−Kk
(
Hk Pk/k−1HT

k +Rk
)
KT

k

= (I −KkHk)Pk/k−1 . (44.16)

As depicted in Fig. 44.3, the one-step-ahead estimate is
formulated as

X̂k+1/k =�k X̂k/k−1+�k Kk(Zk −Hk X̂k/k−1)

+ BkUk

=�k[X̂k/k−1+Kk(Zk −Hk X̂k/k−1)]
+ BkUk

=�k X̂k/k + BkUk . (44.17)

Consequently, the one-step-ahead estimation error is
derived as

ek+1/k = (�k Xk +BkUk +Wk)− (�k X̂k/k +BkUk)

=�k(Xk − X̂k/k)+Wk

=�kek/k +Wk . (44.18)

In a manner similar to (44.14), the one-step-ahead error
covariance matrix is derived as

Pk+1/k = E
[
(�kek/k +Wk)(�kek/k +Wk)T]

=Φk Pk/kΦ
T
k +Qk . (44.19)

According to the above statements, we can make
several remarks about Kalman estimation:

1. Since Kk is optimal, the posterior estimate X̂k/k is
an optimal estimate.

2. Based on (44.12), (44.15), (44.16), (44.17) and
(44.19), recursive steps for constructing a one-step
estimator are summarized in Fig. 44.4.

3. The recursive loop involves two different kinds of
updating. Equations (44.12) and (44.16) yielding

Uk Bk
+

+

Delay HkΣ

Φk

Φk Kk

+

–

Σ

Zk

^
Xk + 1/k

^
Xk /k – 1 ^

Yk /k – 1

Fig. 44.3 Block diagram of a Kalman filter

X̂k/k and Pk/k from X̂k/k−1 and Pk/k−1 are mea-
surement updates; Equations (44.17) and (44.19)
projecting X̂k/k and Pk/k to X̂k+1/k and Pk+1/k are
time updates.

4. The initial conditions, i. e. X̂0/−1, P0/−1, Φ0, H0,
Q0, and R0 have to be known before we can start the
recursive steps.

44.2.3 Prediction

The estimate resulting from the recursive steps
in Fig. 44.4 is a one-step-ahead prediction. Based on
the posterior estimate (44.12), the state that is N steps
ahead of the measurement Zk can be predicted by us-
ing the ARMA (autoregressive and moving average)
model [44.16]. From (44.17) and (44.19), the equations
for N-step-ahead prediction are derived as

X̂k+N/k =
⎛

⎝
k∏

i=k+N−1

Φi

⎞

⎠ X̂k/k

+
k+N−2∑

m=k

⎡

⎣

⎛

⎝
m+1∏

i=k+N−1

Φi

⎞

⎠ BmUm

⎤

⎦

+ Bk+N−1Uk+N−1 , (44.20)

Pk+N/k =
⎛

⎝
k∏

i=k+N−1

Φi

⎞

⎠ Pk/k

⎛

⎝
k+N−1∏

j=k

ΦT
j

⎞

⎠

+
k+N−2∑

m=k

⎡

⎣

⎛

⎝
m+1∏

i=k+N−1

Φi

⎞

⎠ Qm

×

⎛

⎝
k+N−1∏

j=m+1

ΦT
j

⎞

⎠

⎤

⎦+Qk+N−1 . (44.21)
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One-step estimator

Project estimate and error covariance
one step ahead according to (40.17) and
(40.19), respectively

Compute blending vactor
according to (40.15)

Enter initial estimate and
its error covariance

Compute posterior error
covariance matrix accor-
ding to (40.16)

Update estimate to be the posterior
estimate with measurement Zk

according to (40.12)

Enter measurement Zk

Posterior estimate  
^
Xk /k

N-step prediction according to (40.20) and (40.21)

N-step predictor

Fig. 44.4 One-step estimator and N-step predictor

The N-step predictor is an appendage of the one-step
estimation loop [44.16]. It is also shown in Fig. 44.4.
Since the current predicted value is assumed to

be the initial value for the next prediction, the
more steps the predictor predicts, the larger the
error.

44.3 Armature-Controlled DC Motor

An armature-controlled DC motor is employed in this
section as the physical model on which to perform failure
prediction. The motor circuit representation is shown
in Fig. 44.5.

44.3.1 Transfer Function

Using the properties of a DC motor, the following
equations can be formulated [44.17]:

φ = kfif , (44.22)

T = Z P

2πa
φia

= k1 (kfif) ia

= kT ia (44.23)

ef

i f

Lf

i a R La

B E

kbθ

T J

Fig. 44.5 Circuit representation of DC motor

eb = kb
dθ

dt
, (44.24)

La
d

dt
ia+ Ria+ eb = E , (44.25)

J
..

θ+B
.

θ = T , (44.26)

where k1 = Z P
2πa is called the motor constant, and kT =

k1 (kfif) is the motor torque constant.
Taking the Laplace transform for (44.24), (44.25)

and (44.26) results in

Eb (s)= kbsθ (s) , (44.27)

(Las+ R) Ia (s)= E (s)− Eb (s) , (44.28)

(Js2+ Bs)θ (s)= T (s)= kT Ia (s) . (44.29)

Combining (44.27), (44.28) and (44.29), the transfer
function of a DC motor is derived as

θ (s)

E (s)
= kT

s [(sLa+ R) (sJ + B)+ kTkb]
. (44.30)

Accordingly, the block diagram of a DC motor is as
shown in Fig. 44.6. If La ≈ 0, (44.30) can be rewritten
as

θ (s)

E (s)
= km

s (sτm +1)
, (44.31)
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where km = kT
RB+kTkb

and τm = RJ
RB+kTkb

are called the
motor gain constant and the motor time constant, respec-
tively.

44.3.2 Continuous State Space Model

Define θ,
.

θ, and ia as state variables, so that the state
vector is X = [θ .

θ ia]T.
Since

d

dt
θ = .

θ , (44.32)

substituting (44.23) and (44.32) into (44.26) yields

d

dt

.

θ = 1

J

(
kTia− B

.

θ
)= kT

J
ia− B

J

.

θ . (44.33)

Moreover, substituting (44.24) into (44.25) yields

d

dt
ia = 1

La
(E− Ria− eb)= E

La
− kb

La

.

θ− R

La
ia .

(44.34)

During measurement, the rotation speed
.

θ is the motor
output. According to (44.32), (44.33) and (44.34), the
continuous state equations of the DC motor are

d

dt

⎛
⎜⎝
θ
.

θ

ia

⎞
⎟⎠=

⎛
⎜⎝

0 1 0

0 − B
J

kT
J

0 − kb
La

− R
La

⎞
⎟⎠

⎛
⎜⎝
θ
.

θ

ia

⎞
⎟⎠+

⎛
⎜⎝

0

0
1
La

⎞
⎟⎠ E,

(44.35)

Y =
(

0 1 0
)
⎛
⎜⎝
θ
.

θ

ia

⎞
⎟⎠ . (44.36)

E(s) Σ
+

1
sLa + R

–

kb

kT
Ia T 1

sJ + B
1
s

Eb(s)

sθ (s)

θ (s)

Fig. 44.6 Block diagram of DC motor

44.3.3 Discrete State Space Model

The state equations for a continuous system take the
form of [44.18]:

.

X(t) = Ac X(t)+ BcU(t)

Y (t) = Cc X(t)+DcU(t) (44.37)

Let Φc(t)= L−1[(sI−Ac)−1] be the state transition ma-
trix for (44.37). The discrete state equations sampled
from (44.37) by a sample-and-hold with a time interval
of T seconds are as follows [44.19]:

Xk+1 = AXk +BUk ,

Yk = CXk +DUk ,

where

A =Φc(T ) , (44.38)

B =
⎡

⎣
T∫

0

Φc(τ)dτ

⎤

⎦ Bc , (44.39)

C = Cc , (44.40)

D = Dc . (44.41)

44.4 Simulation System

This section describes a computer simulation of failure
prediction for PM on a DC motor.

44.4.1 Parameters

The parameters used for the DC motor in this simulation
are: follows [44.20]:

E = 10 V,
B = 0.001 N m s,
J = 0.01 kg m2,
KT = 1 N m /A,
Kb = 0.02 V s,
R = 10 Ω,
La = 0.01 H.

Substituting them into (44.35) and (44.36), the con-
tinuous state equations of the motor become

d

dt

⎛
⎜⎝
θ
.

θ

ia

⎞
⎟⎠=

⎛
⎜⎝

0 1 0

0 −0.1 100

0 −2 −1000

⎞
⎟⎠

⎛
⎜⎝
θ
.

θ

ia

⎞
⎟⎠+

⎛
⎜⎝

0

0

100

⎞
⎟⎠ 10 ,

(44.42)

Y =
(

0 1 0
)
⎛
⎜⎝
θ
.

θ

ia

⎞
⎟⎠ . (44.43)

The following parameters are also used to predict failure:

1. The failure threshold of the motor is defined as 5%
less than the normal value, which is set to be the
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initial estimate in the Kalman prediction procedure.
That is, the motor is judged to fail if the rotation
speed drops to 95% of the normal value.

2. Mean time between failure (MTBF) for the motor is
100 000 h [44.21].

3. Sampling interval T is 1 h (this is the increment time
for every step in Kalman prediction).

4. Disturbance Wk has mean 0 and variance
0.01 V [44.22].

5. Measurement error Vk for
.

θ has a zero mean and
a standard deviation of 3.333 rad/s, which is 1% of
the full-scale accuracy [44.23] of the measurement.

6. PM lead-time is set to n × 60 min, where n is the
number of steps ahead in the prediction. Accord-
ingly, the alarm signal is activated (to indicate that
PM should be executed) whenever the Kalman filter
predicts that the motor speed will be lower than the
prescribed threshold n × 60 min later.

44.4.2 Monte Carlo Simulation
and ARMA Model

Assuming that motor failures occur randomly, a Monte
Carlo simulation (MCS) can be used to generate the
failure times of the motor. The relationship between
the failure rate h(t) and the distribution function of the
lifetime f (t) is [44.5]

f (t) = h(t) exp

⎡

⎣−
t∫

0

h(τ)dτ

⎤

⎦ . (44.44)

Failures occur randomly during the useful lifetime, sta-
tistically conforming to a bathtub curve [44.5]. The

+
Delay

Uk Bk

Wk

Σ Hk e–t/τ

Φk

Σ

Vk

+

+
+

Motor system

Kalman filter

ΣΦk Kk

+

+

Σ

+
+

Delay

Φk

Hk e–t/τ

^
Yk /k – 1

^
Xk /k – 1

^
Xk + 1/k

+

Xk + 1 Xk Yk

Zk

Fig. 44.7 Block diagram of the simulation system

failure rate is constant during this period. Let the failure
rate in (44.44) be a constant λ, and so (44.44) becomes

f (t) = λ exp

⎛

⎝−
t∫

0

λdτ

⎞

⎠= λe−λt , (44.45)

which is an exponential distribution function. Let ui ,
i = 1, 2, 3, . . . ,m, represent a set of standard uniformly
distributed random numbers. The corresponding num-
bers ti of the random variable t in (44.45) (in other
words the simulated failure times), are written as [44.5]

ti =−1

λ
ln ui , (44.46)

with exponential distributions.
The measurements needed for the recursive estima-

tion loop of the Kalman filter, as depicted in Fig. 44.4,
are generated by the ARMA model ((44.1) to (44.3)).
Simulations in this section are performed using MAT-
LAB [44.24]. All random numbers and white sequences
with prescribed variances needed are obtained using the
random number generator in MATLAB.

44.4.3 Exponential Attenuator

To account for the aging failure modes and the ex-
ponentially distributed failure times ti , an exponential
attenuator, represented by e−t/τ , is placed at the output
ends of both the motor system and the Kalman filter.
The block diagram of the simulation system is shown
in Fig. 44.7. The symbol τ of the attenuator in Fig. 44.7
denotes the failure time constant of the motor, which
varies with the failure times that are generated by the
MCS.
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44.4.4 Simulation Results

Two categories of simulation are conducted in this
section, namely one-step-ahead prediction and two-
steps-ahead prediction. According to the central limit
theorem (CLT), estimators follow the normal distribu-
tion if the sample size is sufficiently large. A sample
size of 30 is a reasonable number to use [44.25].
The larger the sample size, the smaller the estimated
error, which tends to zero when the sample size ap-
proaches infinity. Hence, each simulation is executed
100 times. Simulation results for a lead-time of 60 min
– one-step-ahead prediction – is shown in Fig. 44.8.
Figure 44.8a shows the results for the 100 simula-
tions of failure times generated by the MCS, the failure
times predicted by the Kalman filter, and the associ-
ated alarm times. Figure 44.8b shows the results from
one of the 100 simulations with properly scaled coor-
dinates. The failure time differences between MCS and
Kalman prediction are shown in Fig. 44.9. The mean
value and the standard deviation of the differences in
the 100 simulations are −34.71 min and 65.90 min, re-
spectively. The negative sign of the mean value indicates
that the failure time predicted by the Kalman filter oc-
curs earlier than the time generated by MCS. According
to the Z formula [44.25], the error in estimating the
mean value of the sample population can be calculated
by

E2
r =

Z2
α/2σ

2

n
.
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Fig. 44.8 Failure times generated by Monte Carlo simulation and predicted by Kalman filter when lead-time = 60 min
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Fig. 44.9 Differences between the failure times given by Monte
Carlo simulation results and Kalman filter predictions when the
lead-time = 60 min

The Z value for a 99% confidence level is 2.575 [44.25].
Solving for Er gives

Er = (2.575)(65.8954)√
100

= 16.97(min) .

According to the above data, we can say with 99%
confidence that the mean value of the time differ-
ence between the MCS and the Kalman prediction is
−34.71±16.97 min, in other words from −17.74 min
to −51.68 min. Taking the time difference into account,
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Fig. 44.10 Failure times generated by Monte Carlo simulation and predicted by Kalman filter when the lead-time = 120 min
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Fig. 44.11 Differences between the failure times given by Monte
Carlo simulation results and Kalman filter predictions when the
lead-time = 120 min

the alarm signal will appear at least 77.74 min prior to
failure occurrence.

The results for the second category of sim-
ulation, – two-steps-ahead prediction, with a PM
lead-time of 120 min – are shown in Figs. 44.10
and 44.11. The mean value of the difference in
failure times from the MCS and the Kalman predic-
tion is −56.34 min, and the 99% confidence interval
for this mean is 20.06 min. The maximum pre-
diction error for this case is 76.40 min, which is

1.48 times greater than the error from the one-step-ahead
prediction.

44.4.5 Notes About the Simulation

1. In order to avoid false alarms, the failure threshold
should not be set too close to the normal value. Oth-
erwise, a decision-making algorithm is needed to
identify that a failure has actually been predicted.

2. The disturbance amplitude should comprise all
possible uncertainties about the motor and the en-
vironment.

3. The proposed method cannot deal with abrupt
changes during a sampling interval. Thus, the sam-
pling interval should not be too long.

4. Since the prediction is made for purposes of PM, the
prediction time should be long enough that PM can
be performed before the failure occurs.

5. In contrast to the deterministic portion, the vari-
ance that is driven by the disturbance of the system
is small. The difference in state variables between
prediction steps fades very rapidly. Thus, using the
N-step predictor ((44.20)), only the prediction for
the first few steps is of significance.

6. The proposed method in this section is exem-
plified by a motor system, which is treated as
a component. The procedure can be executed on
a multicomponent system if state equations can be
constructed for the components as a whole. The
procedure can be performed on either the mul-
ticomponent system or each of the components.
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Condition-Based Failure Prediction 44.5 Armature-Controlled DC Motor Experiment 801

For a complicated or large system, the proposed
method can be only performed on those elements
that are present in minimum cut sets as constructed
by fault tree analysis or a Petri net model for fail-
ure [44.26].

7. Multiple failure modes can be modeled as modules,
such as an attenuator for simulating an aging fail-
ure mode for the electrical motor exemplified in this
paper, and placed at the system model output end
to extend the proposed method. As described previ-

ously, the system model may be single-component
or multicomponent. System failure analysis can
determine whether the failure modules occur in se-
ries, parallel or in other arrangements [44.26]. As
for a multicomponent system with multiple failure
modes, the system can be split into several com-
ponents and the related failure module(s) placed at
the output end of each component in order to per-
form state estimation using the Kalman filter for each
component.

44.5 Armature-Controlled DC Motor Experiment

This section presents a PM failure-prediction experiment
for a DC motor.

44.5.1 Experiment Design

The experiment design, shown in Fig. 44.12, comprises
a DC motor with a driver unit and a data acquisition
system.

DC Motor
The DC motor used in this experiment is made by TECO,
Taiwan. The model number of the motor is GSDT-1/2
hp. Parameters for the DC motor used in this study are
as follows [44.27]:

E = 150 V, B = 0.001 135 N m s, J = 0.0102 kg m2,
KT = 0.153 N m/A, Kb = 1.926 V s, R = 3.84 Ω, La =
0.01 H.

Substituting these into (44.35) and (44.36), the con-
tinuous state equations of the motor become

d

dt

⎛
⎜⎝
θ
.

θ

ia

⎞
⎟⎠=

⎛
⎜⎝

0 1 0

0 −0.111 15

0 −192.6 −384

⎞
⎟⎠

⎛
⎜⎝
θ
.

θ

ia

⎞
⎟⎠+

⎛
⎜⎝

0

0

100

⎞
⎟⎠150 ,

(44.47)

Y =
(

0 1 0
)
⎛
⎜⎝
θ
.

θ

ia

⎞
⎟⎠ . (44.48)

The discrete state equations sampled from (44.47) and
(44.48) with a time interval of T = 1200 s are

⎛
⎜⎝

θk+1

θ̇k+1

ia,k+1

⎞
⎟⎠=

⎛
⎜⎝

1 0.13098 0.0051164

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

θk

θ̇k

ia,k

⎞
⎟⎠

+
⎛
⎜⎝

613.91

0.51164

0.0037955

⎞
⎟⎠ 150 , (44.49)

Yk =
(

0 1 0
)
⎛
⎜⎝

θk

θ̇k

ia,k

⎞
⎟⎠ . (44.50)

The following parameters are also used to estimate state
in this experiment:

1. Sampling interval T = 20 min, which is the incre-
ment time for each of the steps used in Kalman
prediction. In order to compare results for shorter
and longer T ’s, another two estimations with differ-
ent time intervals, T = 5 min and T = 60 min were
tested.

2. Disturbance Wk has a mean of zero and a variance
of 0.1 V [44.22].

a)

b)

Fig. 44.12 Experiment set-up
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a)
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Fig. 44.13 Device and circuit for rotating speed measure-
ment
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Fig. 44.14 Rotating speed measurements, taken every 5 min

3. The measurement error Vk for
.

θ has a mean of
zero and an accuracy of 1% [44.23] of the full-scale
measurement.

4. The rated rotation speed of the DC motor is
3180 rpm [44.27], which is therefore the initial value
of the state variable

.

θ.

Data Acquisition System
The data acquisition system used in this experiment
comprises a photo-interrupter circuit, a personal com-
puter (PC), and a RS-232 transmission interface [44.23].
The rotation speed of the DC motor is measured by the
photo-interrupter coded GP1S02. The shaft of a rotary
disk is connected to the shaft of the DC motor, and the
disk is placed between the light-emitting element and
the light-receiving element of the photo-interrupter so
as to generate pulse-signals while the motor rotates. The
device and the circuit are shown in Fig. 44.13.

Pulse-signals are transmitted to the PC through the
RS-232 interface, and the PC counts the pulses that are
accumulated within 60 seconds in order to derive the
rotation speed in rpm (revolution per minute).

44.5.2 Experimental Results

The results of the experiment are presented and dis-
cussed in this section.

Measured Data
The rotation speed of the motor was measured and
recorded every 5 min day and night for 80 d. Because the
experiment lasted for nearly three months, lots of data
were accumulated. There are 288 measurements per day
and 23 040 data values in total for that period of time.
Figure 44.14 shows the results. The data were fed into
the estimator, as depicted in Fig. 44.14, in order to esti-
mate the one-step-ahead state variables. The measured
data and the resulting estimates for T = 20 min (every
fourth measurement is used) are shown in Fig. 44.15.
The data would be difficult to interpret if all 23 040 of
the data values were shown in one chart. To avoid this
and therefore to present the results more clearly, the unit
used on the time axis of Fig. 44.15 is set to be 24 h (one
point per day).

Error in the Estimate
The error in the estimate (in percent) is defined as

Er% =
ˆ̇θk+1/k − θ̇k+1

θ̇k+1
× 100% . (44.51)

Er represents the difference between the predicted value
and the actual value. Figure 44.16 shows the results ob-
tained from (44.51) using the data in Fig. 44.15. Reading
from Fig. 44.16, the maximum Er% is less than 3%.
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Fig. 44.15 Measured and estimated motor rotating speeds

1

0

–1

–2

–3

0 20 40 60 80

Estimate error percentage (%)

Elapsed time (per 24 h)

Fig. 44.16 Percent errors in estimates

Mean Value and Variance
of the Accuracy of the Estimate
Let

Xi = 1− Er%i i = 1, 2, . . . , 23 040 (44.52)

be the individual accuracy of each estimate, and

µ=

23 040∑
i=1

Xi

23040
, (44.53)

σ2 =

23 040∑
i=1

(Xi −µ)2

23 040
(44.54)

be the mean value and the variance [44.25] of the accu-
racy for the 23 040 samples, respectively. The resulting

Table 44.1 Mean values, standard deviations, and variances
for different T

T min µ(%) σ(%) σ2(%)

5 99.74656 0.402957 0.162374

20 99.74060 0.471612 0.222418

60 99.72771 0.652469 0.425716
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Fig. 44.17 Percent variation in the estimated rotating speed

mean values, variances, and standard deviations (σ) for
the estimated accuracy for T = 5, 20, 60 min, obtained
using (44.52), (44.53), and (44.54), are summarized
in Table 44.1.

Variation in Rotation Speed
The variation in estimated rotation speed for the DC
motor (in percent) is defined using

V% =
ˆ̇θk+1/k −3180

3180
× 100% . (44.55)

V% represents the percentage variation in the estimated
rotation speed from the rated value 3180 rpm; in other
words the abnormality in the motor’s performance. It is
used to judge whether the motor is going to fail or not.
Since the MTBF of the motor is about 100 000 h [44.21],
the rotation speed of the motor in this experiment varied
by less than 2% of the rated value over the experiment
time period. The percentage variation in the estimated
rotation speed of the DC motor is shown in Fig. 44.17.

44.5.3 Notes About the Experiment

1. The mean accuracies of the estimates for T = 5, 20,
and 60 min were all higher than 99.7%, which in-
fers that the one-step-ahead state variable can be
accurately predicted using the proposed method.
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2. A threshold is a value used to judge whether or not an
equipment failure occurs. It is defined as the meas-
urement value that is taken just prior to or at the
time of failure [44.28]. For failure prediction, the
threshold for the motor should be determined by the
user of the motor according to requirements of the
specific situation. Once the estimated value reaches
the threshold, a failure is predicted.

3. The disturbance amplitude should encompass all
possible uncertainties for the motor and the envi-
ronment.

4. Since the prediction is used for the purposes of
PM, the prediction time should be long enough

that PM can be performed before failure oc-
curs.

5. The method proposed in this study is exemplified by
a motor system, which is treated as a component. The
procedure can be performed on a multicomponent
system if state equations can be constructed for the
components as a whole. It is feasible to perform
the procedure on either the multicomponent system
or each of the components. For a complicated or
large system, the proposed method can be performed
on those elements present in minimum cut sets as
constructed by fault tree analysis or the Petri net
model for failure [44.26].

44.6 Conclusions

Knowing when and where a system needs maintenance
and economizing capital investment are two of the ma-
jor issues associated with maintenance. The proposed
scheme optimizes maintenance in the following aspects:

1. Before a system failure occurs, the scheme is able to
indicate where and when the failure is going to be.

2. It makes the health of the system and its historical
record clear at a glance.

3. Scheduled maintenance is performed according to
a statistical average, which still retains an unavoid-
able risk that the system may fail before the criteria
are exceeded, so a failure may occur unexpectedly.
On the other hand, the actual duty cycles for a cer-
tain part or module may be longer than the average,
so it is a waste of investment if they are replaced
during scheduled maintenance. The condition-based
scheme avoids those drawbacks.

Failure prediction simulation and experiment for
PM, performed via state estimation using Kalman filter-
ing, was described in this chapter. In contrast to previous
works, this study uses Kalman filtering instead of param-
eter trends to predict the time of failure and to determine

the PM execution time. The resulting prediction errors
are acceptable for not only one-step-ahead prediction
but also two-steps-ahead prediction. To simulate the ag-
ing failure mode, a state variable – the rotation speed
– is monitored in the simulation. More measured vari-
ables mean that more complicated failure modes can
be simulated. Moreover, the chapter also described an
experiment on a DC motor used for state estimation
via predictive maintenance using the Kalman filter. The
resulting prediction errors for one-step-ahead predic-
tion were acceptable. The shorter the increment time for
Kalman prediction, the higher the prediction accuracy.
Considerations used to determine the PM lead-time and
the increment time required for prediction contradict
each other. How to work out a compromise and end up
with an optimal value is an important issue. By incorpo-
rating fault tree analysis or a Petri net model for failure,
the proposed method can be performed on only those
elements of a complicated or large system that fall into
minimum-cut sets instead of all of the elements of the
system. Therefore, failure can be prevented in enough
time to promote reliability if state estimation using the
Kalman filter is applied to predictive maintenance.
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Statistical Ma45. Statistical Maintenance Modeling
for Complex Systems

The first part of this chapter provides a brief
introduction to statistical maintenance modeling
subject to multiple failure processes. It includes
a description of general probabilistic degradation
processes.

The second part discusses detailed reliability
modeling for degraded systems subject to
competing failure processes without maintenance
actions. A generalized multi-state degraded-
system reliability model with multiple competing
failure processes including degradation processes
and random shocks is presented. The operating
condition of the multi-state system is characterized
by a finite number of states. A methodology to
generate the system states when multi-failure
processes exist is also discussed. The model can be
used not only to determine the reliability of the
degraded systems in the context of multi-state
functions but also to obtain the probabilities of
being in a given state of the system.

The third part describes the inspection–
maintenance issues and reliability modeling for
degraded repairable systems with competing
failure processes. A generalized condition-based
maintenance model for inspected degraded
systems is discussed. An average long-run
maintenance cost rate function is derived based
on an expression for degradation paths and
cumulative shock damage, which are measurable.
An inspection sequence is determined based
on the minimal maintenance cost rate. Upon
inspection, a decision will be made on whether
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to perform preventive maintenance or not. The
optimum preventive maintenance thresholds for
degradation processes and inspection sequences
are also determined based on a modified
Nelder–Mead downhill simplex method.

Finally, the last part is given over to the
conclusions and a discussion of future perspectives
for degraded-system maintenance modeling.

Technology advances mean that most new products
are, on one hand, more reliable, but on the other
hand, very difficult to maintain during the prod-
uct life cycle. Designers have been challenged to
find new, effective approaches to evaluate reliability
in a timely fashion and to maintain such systems
in an optimum way. This chapter presents reliabil-
ity and maintenance models for degraded systems

subject to competing failure processes. The accu-
racy of reliability estimation through a degradation
model cannot be ensured unless the unit-to-unit ini-
tial variation and within-unit degradation-rate variation
are considered. This chapter also discusses a gen-
eralized random-coefficient degradation process and
randomized logistic degradation process to model the
degradation.
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Literature Review
As degradation occurs, system performance changes
from perfect functioning to complete failure; the bi-
nary assumption used to analyze, model and compute
system reliability is relaxed. Using degradation mea-
sures to assess reliability has seen some important
findings in the literature. Tomsky [45.1] investi-
gated two regression models for detecting degradation
reliability. Nelson [45.2] briefly surveyed the applica-
tion of accelerated degradation. Lu [45.3] introduced
a nonlinear mixed-effects model and estimated model
parameters in a two-stage way. Recently, multi-state
reliability has received considerable attention. Lev-
itin [45.4] extended the reliability importance measures
for multi-state systems with different measures of per-
formance. When the multi-state nature of a system
is addressed, a better understanding of the system
reliability behavior is obtained. Our third new de-
velopment is to build a methodology based on the
formulation of degradation in terms of a finite discrete
state.

It is well known that the effectiveness of a system de-
pends on both the quality of its design and manufacturing
process as well as the proper inspection–maintenance ac-
tions to prevent it from failing. Inspection–maintenance
issues are considered in the second part of this
chapter.

Maintenance has evolved from a simple model
that deals with machinery breakdowns, to time-based
preventive maintenance, to today’s condition-based
maintenance. It is of great importance to avoid the
failure of a system during its actual operating; espe-
cially, when such failures are dangerous and costly.
Time-based and condition-based maintenance are the
two major approaches for maintenance. Condition-based
maintenance is often profitable since it can be used
to avoid failure occurrence at the lowest cost and to
improve the availability and reliability of complex sys-
tems. This chapter examines the problem of developing
a mathematical maintenance cost model to determine
both the optimal inspection interval time and preven-
tive maintenance threshold of degraded systems with
competing failure processes subject to a condition-based
maintenance policy.

Pham et al. [45.5] presented a Markov model for
predicting the reliability of k-out-of-n systems in which
components are subject to multi-stage degradation as
well as catastrophic failures. Due to the aging effect,
the failure rate of the component will increase. They
considered the state-dependent transition rates for the
degradation process.

Pham et al. [45.6] derived models for predicting the
availability and mean lifetime of multistage degraded
systems with partial repairs.

In some production systems failures are not possible
to detect but can only be determined by inspection [45.7].
Several authors [45.8–22] have proposed various inspec-
tion policies and models for systems with a degradation
process. Grall et al. [45.8] studied a system subject to
a random deterioration process. They developed a model
based on a stationary process to determine both the pre-
ventive maintenance threshold and inspection dates that
minimized the average long-run cost rate. Chelbi and
Ait-Kadi [45.10] addressed optimal inspection strate-
gies for deteriorating equipment subject to preventive
and corrective maintenance.

Klutke and Yang [45.11] studied the availability of
maintained systems subject to both the effects of the
degradation and random shocks. They considered the
degradation process as a deterministic function of time t
and that shocks occurred according to a Poisson pro-
cess in which the shock magnitudes are independent and
identically distributed (iid) random variables. Pham and
Xie [45.13] developed a generalized surveillance model
consisting of dual, mutually dependent stochastic pro-
cesses for surveillance systems. Their model can be used
to better understand both the inspection process, the re-
pair unit itself, and to provide information that can be
used to assist inspectors in scheduling and prioritizing
their future inspections.

The choice of the inspection schedule and pre-
ventive maintenance threshold(s) obviously has an
important influence on the economic performance of
the maintenance policy. The inspection dates and the
preventive maintenance threshold(s) are two main de-
cision variables. However, in industrial applications
of condition-based maintenance, the preventive main-
tenance threshold is usually decided based upon the
recommendation made by the maintenance people and
the inspection schedule often appears to be set by lit-
tle more than a rule of thumb. Because of the lack of
appropriate modeling support, the preventive mainte-
nance threshold is likely to be set conservatively and the
inspection schedule may be performed more than is per-
haps necessary. The need for a maintenance model with
cost consideration is obvious in this case.

The chapter is organized as follows. The basic con-
cepts and a review of maintenance, as well as a brief
description of probabilistic processes for the model-
ing of degradation and random shocks, is discussed
in Sect. 45.1. A general reliability model for degraded
nonrepairable systems subject to multiple competing
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processes is discussed in Sect. 45.2. The inspection–
maintenance modeling issues and detection policies for
degraded repairable systems considering multiple com-
peting processes are described in Sect. 45.3. Several
numerical examples are given in Sects. 45.2 and 45.3. Fi-
nally in Sect. 45.4, several future research perspectives
and conclusions are briefly discussed.

Acronyms
CM Corrective maintenance
PM Preventive maintenance
rv Random variable

Notation
Cc Cost per CM action
Cp Cost per PM action
Cm Loss per unit idle time
Ci Cost per inspection
Y (t) Degradation process
Y1(t) Degradation process 1
Y2(t) Degradation process 2
D(t) Cumulative shock damage value up to

time t
G1 Critical threshold value for degradation

process 1
G2 Critical threshold value for degradation

process 2
S Critical value for shock damage
L1 PM critical threshold value for degrada-

tion process 1
L2 PM critical threshold value for degrada-

tion process 2
C(t) Cumulative maintenance cost up to

time t

E[C1] Average total maintenance cost during
a cycle

E[W1] Mean cycle length
E[NI] Mean number of inspections during

a cycle
E[ξ] Mean idle time during a cycle
{Ii}i∈N Inspection sequence
{Ui}i∈N Inter-inspection sequence
{Wi}i∈N Renewal times
T Time to failure
Pi+1 Probability that there are a total of (i+

1) inspections in a renewal cycle
Pp Probability that a renewal cycle ends by

a PM action
Pc Probability that a renewal cycle ends by

a CM action
EC(L1, L2, I1) Expected long-run cost rate function
ΩU {M, . . . , 1, 0, F} a system state space

where state M is a perfect (good) state;
state 0 is a degraded failure state; states
M−1. . . l are intermediate degradation
states; state F is the catastrophic failure
state

Ω {M, . . . , 1, 0}, a system degradation
state space without catastrophic failure

Ωi {Mi , . . . , 1i , 0i}, a state space corre-
sponding to the degradation processes
of the i-th state, where 0i is a degraded
failure state due to the i-th degradation
process, and Mi is a good state of the
degradation process i, i = 1, 2

R Ω1 ×Ω2, the Cartesian product of Ω1
and Ω2

Ri i-th equivalence class, i = 0, 1, . . . , M

45.1 General Probabilistic Processes Description

We consider three random processes. The first two are
used to model degradation, while the third is a com-
pound Poisson process used for modeling random
shocks:

1. Y (t) = A+ Bg(t) is called a random-coefficient
degradation path, where A > 0and B > 0 are inde-
pendent random variables and g(t) is an increasing
time-dependent function. The random variable A
measures the initial value of degradation due to
a different manufacturer, the manufacturing quality
control of new items, variable deterioration dur-
ing storage until the item is put into service, and

so forth [45.14]. Therefore, the initial degradation
value A is a random variable. The variable B is the
degradation rate (B > 0) and represents the varia-
tions among the population; g(t) is an increasing
function.

2. Y (t) = W eBt

A+eBt is called a randomized logistic degra-
dation path function where A and B are independent
non-negative random variables, and W is a con-
stant. The random variable A represents the initial
threshold level of degradation and B describes the
rate at which degradation accumulates. It should be
noted that Y (t) = W eBt

A+eBt is an S-shaped curve and de-
scribes the degradation process well. It matches the
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810 Part E Modelling and Simulation Methods

path of the cumulative degradation of many systems
in practice. The S-shaped curve reflects an initial
run-in period of low usage, followed by a period of
steady rate of usage, and finally ending with an in-
creasing rate of use due to the aging of the system.
We establish the relationship between the two ran-
dom variables A and B via some rearrangements as
follows:

W
eBt

A+ eBt
< H ⇒ B <

1

t
ln

u1 A

1−u1
, (45.1)

where u1 = H
W .

3. Let D(t) =∑N(t)
i=0 Xi represent a sequence of ran-

dom shocks in which each shock causes independent
damage Xi to the whole system where the Xi are
iid with a probability distribution function (pdf) of
fX (x), and a cumulative distribution function (cdf)
of FX (x); {N(t), t ≥ 0} is a Poisson process with pa-
rameter λ > 0 that is independent of the sequence
{Xi}; F(k)

X (x) denotes the k-th convolution.
The stochastic process D(t) =∑N(t)

i=0 Xi is called
a compound Poisson process where N(t) is the num-
ber of shocks that have occurred up to time t, Xi is
the damage caused by the i-th shock and D(t) is the
cumulative damage up to time t.

45.2 Nonrepairable Degraded Systems Reliability Modeling

This section addresses reliability models for nonre-
pairable degraded systems. First, we discuss a model
for systems subject to two competing processes. Then,
we present a generalized situation where systems are
subjected to three competing processes.

45.2.1 Degraded Systems Subject
to Two Competing Processes

Model description
The modeling assumptions are as follows:

1. Each system has a state space ΩU = {M, . . . , 1,
0, F}.

2. The system fails either due to degradation (Y (t)> G)
or catastrophic failure

[
D(t) =∑N2(t)

i=1 X i > S
]
.

The system may either go from state i to the next
degraded state i−1 or directly to the catastrophic
failure state F, i = M, . . . , 1.

3. No repair or maintenance is performed on the sys-
tem.

4. Since Y (t) describes the total damage up to time t, it
is natural to assume that it is nondecreasing.

5. The two processes Y (t) and D(t) are independent.
6. At time t = 0, the system is in state M.

We consider a degradable system suited at a random
environment where degradation and random shocks can
contribute to an effect of the life of a system. In this
section, we discuss the case where systems are subject to
two failure processes, called a continuous and increasing
degradation process Y (t), and the a andom shock process
D(t). Whichever process occurs first causes the system
to failure.

Figure 45.1 illustrates the system flow diagram
of the two competing failure processes. In Fig. 45.1,
we use either of the random processes described in
Sect. 45.1 to represent a degradation process where
random shocks are represented by a stationary and inde-
pendent increment process. Then, we discuss a method
to formulate these two processes from a multi-state
standing point. That is, suppose that the operating con-
ditions of the system at any point in time could be
classified into one of a finite number of the states, say
ΩU = {M, . . . , 1, 0, F}. We view the degradation pro-
cess in terms of a finite number of states. For example,
when the value of the degradation process Y (t) falls into
a predefined interval then its corresponding state will be
determined. Let us define as follows:

[0, WM], . . . , (W2, W1] are the intervals associated
with the degradation process where WM < WM−1 <

. . . < W2 < W1. A one-to-one relationship between the
element of Ω = {M, . . . , 1, 0} and its corresponding
interval is set up as follows:

when Y (t) ∈ [0, WM] ⇒ in state M ,

when Y (t) ∈ (
WM, WM−1

]⇒ in state M−1 ,

...

when Y (t) ∈ (
Wi , Wi−1

]⇒ in state i ,

when Y (t) ∈ (
W2, W1

]⇒ in state 1 ,

when Y (t) > W1 ⇒ in state 0 .

Reliability Evaluation
The most general situation is to allow each degradation
process to be described by a number of different discrete
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M M–1 1 0

FD(t)�S

Fig. 45.1 The flow diagram of a system subjected to two
competing failure processes

states. We now define the probability in each state. Let
Pi (t) be the probability that the value of Y (t) will fall
within a predefined interval corresponding to state i with
D(t) ≤ S. From state i, the system will make a direct
transition to state i−1 due to gradual degradation, or to
state F due to a random shock.

The reliability function is defined as:

RM(t) = P (state≥ 1)

=
M∑

i=1

Pi (t)

= P[Y (t) ≤ G, D(t) ≤ S] , (45.2)

where Pi (t) is the probability of being in state i.
Suppose a system fails if the degradation process

crosses some threshold, say G; or the shock damage
process crosses some threshold, say S; T is defined as:

T = inf [t > 0 : Y (t) > G or D(t) > S] (45.3)

The mean time to failure is expressed as:

E[T ] =
∞∫

0

P[T > t]dt

=
∞∫

0

P[Y (t) ≤ G, D(t) ≤ S]dt

=
∞∫

0

P[Y (t) ≤ G]
∞∑

j=0

(λ2t) j e−λ2t

j! F( j )
X (S)dt

or, equivalently, that

E[T ] =
∞∑

j=0

F( j )
X (S)

j!
∞∫

0

P[Y (t) ≤ G](λ2t) j e−λ2t dt .

(45.4)

The specific expression for E[T ] depends on the prob-
ability function P[Y (t) ≤ G]. Sometimes, it is hard to

find a closed-form solution. In this case, one can use
a numerical method to solve the problem in (45.4).

The probability density function of the time to
failure, fT(t) is as follows:

fT(t) =− d

dt
R(t)

=− d

dt
{P [Y (t) ≤ G] P [D(t) ≤ S]}

=− d

dt

⎧
⎨

⎩P[Y (t)≤G]
∞∑

j=0

(λ2t) j e−λ2t

j! F( j )
X (S)

⎫
⎬

⎭

=−
∞∑

j=0

F( j )
X (S)

j!
d

dt

{
P[Y (t)≤G] (λ2t) j e−λ2t

}

Let FG(t) = P[Y (t) ≤ G], then fG(t) = d
dt FG(t).

fT(t) =−
∞∑

j=1

F( j )
X (S)

j!
[

fG(t)(λ2t) j e−λ2t

+ FG(t) jλ2(λ2t) j−1 e−λ2t

−λ2 FG(t)(λ2t) j e−λ2t
]
. (45.5)

Reliability models
Model 1:

{
Y (t) = A+ Bg(t)

D(t) =∑N2(t)
i=0 Xi〈

case 1 : A ∼ normal, B ∼ normal

case 2 : A ∼U[0, a], B ∼ Exp(b)

Model 2:
{

Y (t) = W eBt

A+eBt ,where A∼U[0, a], B∼Exp(b)

D(t) =∑N2(t)
i=0 Xi

.

The two reliability models for the system are depicted
in Fig. 45.1. In the following, we will take model 2 as an
example to illustrate the results in this section. One can
also easily apply it for the model 1.

Assume that the degradation process is de-
scribed by the function Y (t) = W eBt

A+eBt , where the
two random variables A and B are independ-
ent, and A follows a uniform distribution with
parameter interval [0, a] and B follows an expo-
nential distribution with parameter β > 0. In short,
A ∼U[0, a], a > 0 and B ∼ Exp(β), β > 0.
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The probability that the system is in state M is as
follows:

PM(t) = P

[
Y (t) = W

eBt

A+ eBt
≤ WM ,

D(t) =
N2(t)∑

i=0

Xi ≤ S

]

=
[ ∫

∀A

P

(
B<

1

t
ln

u1 A

1−u1
|A = x

)
fA(x)dx

]

× P

[
D(t) =

N2(t)∑

i=0

X i ≤ S

]

=
[

1−1

a

(
1−u1

u1

) β
t
(

t

t−β

)(
a1− β

t −1
)]

× e−λ2t
∞∑

j=0

(λ2t) j

j! F( j )
X (S) . (45.6)

The probability that the system is in state i is calculated
as follows:

Pi(t) = P

⎡

⎣Wi+1 < W
eBt

A+ eBt ≤ Wi ,

D(t) =
N2(t)∑

i=0

X i ≤ S

⎤

⎦

=
⎡

⎣
a∫

0

P

(
1

t
ln

ui−1 A

1−ui−1
< B

≤ 1

t
ln

ui A

1−ui
|A = x

⎞

⎠ fA(x)dx

⎤

⎦

× e−λ2t
∞∑

j=1

(λ2t) j

j! F( j )
X (S)

=
{

1

a

(
t

t−β

)(
a1− β

t

)[(
1−ui

ui

) β
t

−
(

1−ui−1

ui−1

) β
t
]}

× e−λ2t
∞∑

j=0

(λ2t) j

j! F( j )
X (S) , (45.7)

where µi = Wi
W , i = M−1, .., 1.

Similarly, the probability that the system is in state
0 is as follows:

P0(t) =P

⎡

⎣Y (t) = W
eBt

A+ eBt
> G ,

D(t) =
N2(t)∑

i=0

X i ≤ S

⎤

⎦

=
[

1

a

(
1−uM

uM

) β
t
(

t

t−β

)(
a1− β

t

)]
e−λ2t

×
∞∑

j=0

(λ2t) j

j! F( j )
X (S) . (45.8)

The probability for a catastrophic failure state F is given
by:

PF(t)= P

⎡

⎣Y (t) = W
eBt

A+ eBt
≤ G ,

D(t) =
N2(t)∑

i=0

Xi > S

⎤

⎦

=
[

1− 1

a

(
1−u1

u1

) β
t
(

t

t−β

)(
a1− β

t

)]

×

⎡

⎣1− e−λ2t
∞∑

j=0

(λ2t) j

j! F( j )
X (S)

⎤

⎦ . (45.9)

The reliability RM(t) is expressed as:

RM(t) =
M∑

k=1

Pk(t)

=
[

1− 1

a

(
1−uM

uMa

) β
t
(

t

t−β

)(
a1− β

t

)]

×

⎡

⎣e−λ2t
∞∑

j=0

(λ2t) j

j! F( j )
X (S)

⎤

⎦ . (45.10)

A Numerical Example
Assume that the degradation is modeled as the function
Y (t) = W eBt

A+eBt where A ∼U[0, 5] and B ∼ Exp(10).
The critical values for the degradation and the
shock damage are G = 500 and S = 200, respectively.
The random shocks are measured by the function
D(t) =∑N2(t)

i=1 X i, where X i ∼ Exp(0.3) and X is are
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Fig. 45.2 Reliability versus time

iid. Figure 45.2 shows the reliability of the system as
a function of time, where the solid line represents N2(t)
with λ2 = 0.12 and the dotted line represents N2(t) with
λ2 = 0.20.

45.2.2 Systems Subject
to Three Competing Processes

System Description
In some applications, the systems are subjected to a va-
riety of governing failure processes. In this section,
we consider three independent competing failure pro-
cesses in which two of them are degradation processes
(called degradation process 1, which is measured by
the function Y1(t), and degradation process 2, which is
measured by Y2(t)) and the third is a random shock pro-
cess D(t) [45.15]. Whichever process occurs first causes
the system to fail.

Initially, the system is considered to be in its good
state (i. e., M1 and M2). As time progresses, it can either
go to the first degraded state [i. e., (M−1)1 or (M−1)2]
upon degradation or can go to a failed state (state F), if
subject to random shocks. When a system reaches the
first degraded state, it can either stay in that state until
the mission time, or it can go to the second degrada-
tion state [i. e., (M−2)1 or (M−2)2] upon degradation,
or it can go to a failed state (F state) upon random
shocks.

The same process will be continued for all stages
of degradation except the last degradation, either
stage 01 or stage 02. If the system reaches the last
degradation state, it cannot perform its functions sat-
isfactorily and must be treated as a failure (state 0).

M1 (M–1)1 11 01

M2 (M–1)2 12 02

FD(t) >

Degradation 1

Degradation 2

Fig. 45.3 The flow diagram of a system subjected to mul-
tiple failure processes [45.15]

Figure 45.3 shows the system flow diagram of the
multiple competing transition processes. In Fig. 45.3,
the above represents the degradation process 1; the
bottom represents the degradation process 2; F rep-
resents a catastrophic failure state due to random
shocks.

Assumptions.
1. The system consists of (M+2) states where state 0

and state F are both complete failure states. State i
is a degradation state, 1 < i < M.

2. No repair or maintenance is performed on the sys-
tem.

3. We assume that Yi (t), i = 1, 2 is a nonnegative non-
decreasing function at time t, since degradation is an
irreversible accumulation of damage.

4. Yi (t), i = 1, 2 and D(t) are statistically independent.
The independence assumption implies that the state
of one process will have no effect on the state of the
others.

5. At time t = 0, the system is in state M.
6. The system can fail either due to any of the degra-

dation process when Yi (t) > Gi , i = 1, 2 or due to
random shocks (in which case it goes to a catas-
trophic failure state F), i. e. D(t) =∑N(t)

i=1 Xi > S.
7. The critical threshold value Gi depends upon a func-

tion of the states of the degraded systems.

Methodology
In this section, we consider that the degradation paths
are modeled by some continuous probabilistic functions.
Since the operating condition of the systems is charac-
terized by a finite number of states, let us call the system
state space ΩU. First, we need the discrete continuous
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processes. In Step 1 below, we discuss a procedure for
forcing two degradation processes to become discrete
in order to obtain Ω1 and Ω2, which correspond to
degradation process 1 and 2, respectively. After we have
obtained the degradation process spaces Ω1 and Ω2,
we present a methodology for how to establish a re-
lationship between the system state space ΩU and the
degradation and random shock state spaces {Ω1,Ω2, F}
in Step 2.

Step 1: formulate the degradation processes in terms
of discrete state sets. The two-degradation-process
case is considered here. The most general situation
is to allow each degradation process to be described
by a number of different discrete states. The state
space denoted by Ω1 = {M1, . . . , 11, 01} corresponds
to degradation process 1 with M1+1 states. Similarly,
the state space denoted by Ω2 = {M2, . . . , 12, 02} is
associated with degradation process 2, having M2+1
states. M1 and M2 may or may not be the same, and
Mi <∞, i = 1, 2.

We view the degradation process from the perspec-
tive of a finite number of states. For example, when the
value of degradation process 1 Y1(t) falls into a pre-
defined interval, then its corresponding state will be
determined. Let us define as follows:

[0, WM], . . . , (W2, W1] are the intervals on the
degradation 1 curve (Fig. 45.4a) corresponding to
state M1, 01, where WM < WM−1 < · · · < W1 and
[0, AM], . . . , (A2, A1] are intervals associated with the
curve for degradation process 2 (Fig. 45.4b) correspond-
ing to state M2, 02, where AM < AM−1 < . . . < A1.

Mathematically, the relationship between the
degradation process states Ω1 = {M1, . . . , 11, 01},

a) b)

W1

WM–1

WM

…

M1 (M–1)1 01…

A1

AM–1

AM

…

… 02(M–1)2M2

Fig. 45.4a,b The degradation process functions in multi-state terms
for: (a) degradation 1, (b) degradation 2

R = � 1 × � 2
f Hc

Fig. 45.5 A mapping function

Ω2 = {M2, . . . , 12, 02}, and their corresponding degra-
dation intervals are given as follows:

Degradation process 1

0 < Y1(t) ≤ WM, state M1

WM < Y1(t) ≤ WM−1, state (M−1)1

...

W2 < Y1(t) ≤ W1, state 11

G1 = W1 < Y1(t), state 01

Degradation process 2

0 < Y2(t) ≤ AM, state M2

AM < Y2(t) ≤ AM−1, state (M−1)2

...

A2 < Y2(t) ≤ A1, state 12

G2 = A1 < Y2(t), state 02

Step 2: generate the system state space. The sys-
tem state space is defined as ΩU = {M, . . . , 1, 0, F},
and consists of M+2 states. In this step, we discuss
a methodology to develop a function to generate a re-
lationship between the system state space ΩU and the
degradation state spaces {Ω1,Ω2, F}. For example, at
a given time t, suppose that degradation process 1 is
at state i1 ∈Ω1, and degradation process 2 is at state
j2 ∈Ω2; what is the system state? This question is
addressed as follows.

Let us assume that at the current time the sys-
tem is not in a catastrophic failure state. So state F
can be ignored for the time being. Therefore, we can
simply look at ways to define a function that has a re-
lationship between Ω and {Ω1,Ω2} instead of ΩU and
{Ω1,Ω2, F}.

The operation is described by a mapping function f ,
which can be written as

f : R =Ω1 ×Ω2 →Ω = {M, .., 1, 0}
where R = Ω1 ×Ω2 = {(i1, j2)|i1 ∈ Ω1, j2 ∈ Ω2} is
a Cartesian product as the input space domain, as shown
in Fig. 45.5. The matrix Hc given below is an output
space consisting of M+1 elements corresponding to
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each input-space domain through the function f .

01 11 · · · M1

Hc =
02

12
...

M2

⎛
⎜⎜⎜⎜⎜⎝

× 0 · · · 0

0
. . .

...
...

. . .
...

0 · · · · · · M

⎞
⎟⎟⎟⎟⎟⎠

.

The top row of this matrix Hc represents the state from
degradation process 1. The leftmost column represents
the state from degradation process 2. The elements of
Hc represent f (i1, j2) = k where i1 ∈Ω1, j2 ∈Ω2 and
k ∈Ω. Notice that, in the matrix Hc, all the elements
in the first row and first column are zero except that
denoted by × because the system will go to a degraded
failure state (state 0) when either of the degradations
reaches state 0i , i = 1, 2. Besides, some elements in the
matrix Hc are also zeros since we define that, when
degradation 1 is in some low state l1(01 < l1 < M1) and
degradation 2 is also in some low state l2(02 < l2 < M2),
we consider it a degradation failure. It is also observed
that f (M1, M2) = M, because initially the system is in
a brand-new state (perfect state M).

As we mentioned above, the first element in Hc is
marked by ×, which means it does not exist. The reason
is presented as follows. We define the time to failure as

T = inf [t : Y1(t) > G1,Y2(t) > G2 or D(t) > S] .

(45.11)

It should be noted that all three processes are competing
against each other for the life of a system. However, only
one of the three processes (whichever occurs first when
its corresponding critical threshold value is exceeded)
causing the system to fail. Hence, the following events
will not happen:

P [Y1(t) > G1,Y2(t) > G2, D(t) ≤ S] = 0 ,

P [Y1(t) > G1,Y2(t) > G2, D(t) > S] = 0 ,

P [Y1(t) > G1,Y2(t) < G2, D(t) > S] = 0 ,

and

P [Y1(t) < G1,Y2(t) > G2, D(t) > S] = 0 .

Because f (01, 02)= P[Y1(t) > G1,Y2(t) > G2, D(t)≤
S], so the combination of f (01, 02) does not exist.

The function f : R =Ω1 ×Ω2 →Ω = {M, .., 1, 0}
is defined with following requirements:

1. f (01, b) = f (a, 02) = 0, where b ∈ Ω2, a ∈ Ω1
f (M1, M2) = M

f k
i1

j2

Fig. 45.6 A representation of a system state-generating
box

2. f is monotonic and nondecreasing in each argument.

For instance,

f (a1,b2) ≥ f (l1, b2) if a1 ≥ l1 ,

f (a1, b2) ≥ f (a1, l2) if b2 ≥ l2 .

Figure 45.6 demonstrates the system’s state-generating
box. There are two inputs i1 and j2 and an output k.
The inside mapping mechanism is performed by the
function f . At time t, suppose that degradation 1 is
at state i1 and degradation 2 is at state j2; i1 and j2
are inputs. Via matrix Hc, the system state k is then
generated as output.

In the matrix Hc different state-combination inputs
can generate the same results for the system state. To
explain this, we need the following definition of the
equivalence class.

Definition 45.1
The i-th equivalence class, Ri , is defined as follows:

Ri =[(k1, j2) where k1∈Ω1, j2∈Ω2| f (k1, j2) = i] ,

i = 0, 1, . . ., M , (45.12)

Ri represents all possible state combinations that gen-
erate the system state i; R0, . . . , RM are disjointed sets
that partition R into (M+1) equivalence classes, so that

R =
M⋃

i=0

Ri .

45.2.3 Reliability Evaluation

In this section, the probability density functions and the
system mean time to failure are derived based on the
state probabilities given in Sect. 45.2.1. Now, we derive
the probability of being in each state. Initially, the system
is in a brand-new state; i. e., in state M = f (RM). The
probability for state M is given by

Pt(M) = Pt[ f (RM)] . (45.13)

As defined previously, Ri represents all possible state
combinations generating the system state i. The proba-
bility of being in state i is the union of all the elements
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in Ri

Pt(i) = P[ f (Ri )] . (45.14)

The probability for a catastrophic failure state F is given
by

Pt(F ) = P[Y1(t)≤ G1,Y2(t) ≤ G2, D(t) > S] .
(45.15)

The reliability R(t) can be calculated as follows:

R(t) = P(system state ≥ 1)

=
M⋃

i=1

P[ f (Ri )]

=
M∑

i=1

Pt(i) , (45.16)

where Pt(i) is the probability of being in state i.
The mean time to failure is expressed as [45.15]:

E[T ] =
∞∫

0

P(T > t)dt

=
∞∫

0

P[Y1(t) ≤ G1]P[Y2(t) ≤ G2]

×
∞∑

j=0

(λ2t) j e−λ2t

j! F( j )
X (S)

or, equivalently, that

E[T ] =
∞∑

j=0

F( j )
X (S)

j!
∞∫

0

P[Y1(t) ≤ G1]

× P[Y2(t) ≤ G2](λ2t) j e−λ2t dt . (45.17)

The result in (45.17) obviously would depend on the ex-
pression P[Y1(t) ≤ G1]P[Y2(t) ≤ G2]. The probability
density function of time to failure, fT(t) is therefore as
follows:

fT(t) =− d

dt
[P(T > t)]

=− d

dt

{
P[Y1(t ≤ G1)]P[Y2(t)≤ G2]

×
∞∑

j=0

(λ2t) j e−λ2t

j! F( j )
X (S)

}
. (45.18)

45.2.4 Numerical Examples

This example aims to illustrate the results discussed in
the previous sections. Consider a system subjected to
two degradation processes and random shocks.

Assume that degradation process 1 is described by
the function Y1(t) = A+ Bg(t), where the random vari-
ables A and B are independent and both follow normal
distributions, with mean 90 and variance 2.5, and mean
78 and variance 6, respectively. In short, A ∼ N(90, 2.5)
and B ∼ N(78, 6). The degradation function is as-
sumed to be g(t) = t3. Also G1 = 2500, W3 = 1500,
W2 = 2000, and W1 = 2500.

Assume that degradation process 2 is described by
Y2(t) = W eBBt

AA+eBBt , where the random variables AA
and BB are independent and follow uniform distribu-
tions with parameter interval [0,100] and an exponential
distribution with parameter 0.1, respectively. In other
words, AA ∼ U[0, 100] and BB ∼ Exp(0.01). Also
G2 = 5000, A2 = 2600, A1 = 5000, and W = 7000.
Assume that the random shock is represented by
D(t) =∑N(t)

i=0 Xi with critical value S = 200, where
Xi ∼ Exp(0.1) and the Xi are iid.

Assume that the states associated with degrada-
tion process 1 and degradation 2 are, respectively,
Ω1 = {31, 21, 11, 01} and Ω2 = {22, 12, 02}. We define
the system state space as ΩU = {3, 2, 1, 0, F} and the
matrix Hc is given as

01112131

Hc =
02

12

22

⎛
⎜⎝

× 0 0 0

0 0 2 3

0 1 2 3

⎞
⎟⎠ .

Then we obtain

R = {(01, 12), (01, 22), (11, 02), (21, 02), (31, 02),

(11, 12), (21, 12), (31, 12), (11, 22), (21, 22),

(31, 22)}
The equivalence classes can be listed as follows:

R0 = {(01, 12), (01, 22), (11, 02), (21, 02), (31, 02),

(11, 12)} ,
R1 = {(11, 22)} ,
R2 = {(21, 12), (21, 22)} ,
R3 = {(31, 12), (31, 22)} ,

R =
3∑

i=0

Ri .
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Fig. 45.7 Probability plot for state 3 versus time
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Fig. 45.8 Probability plot for state 2 versus time

According to this expression for Hc, the probability of
the system being in state 3 is the sum of the probability
f (31, 22) and of the probability f (31, 12). That sum is
calculated as

Pt(3) = Pt [ f (R3)]

=Φ

(
1500− (90+78t)√

2.5+6t6

)[
1− 1

100
(0.4)

0.01
t

×

(
t

t−0.01

)(
0.011− 0.01

t

)]

× e−λ2t
∞∑

j=0

(
λ2t

j!
)

F( j )
X (200) . (45.19)

Figure 45.7 shows the probability for the system to be in
state 3 as a function of time t, where the solid line rep-
resents the compound Poisson process D(t)=∑N(t)

i=0 Xi
with rateλ= 0.04 and the dotted line represents the com-
pound Poisson process with rate λ= 0.8. In Fig. 45.7 we

observe that, as t progresses to 50, the probability that
the system is in state 3 quickly approaches 0 when the
rate is given as λ= 0.8, and is stable with λ= 0.04.

Because R2 = {(21, 12), (21, 22)}, the probability of
being in state 2 is given by

Pt(2) = Pt[ f (21, 12)]+ Pt[ f (21, 22)]

= (UV ) e−λ2t
∞∑

j=0

(
λ2t

j!
)

F( j )
X (200) , (45.20)

where

U =Φ

(
2000− (90+78t)√

2.5+6t6

)

−Φ

(
1500− (90+78t)√

2.5+6t6

)
,

and

V = 1− 1

100

(
t

t−0.01

)
(0.4)

0.01
t

×

(
t

t−0.01

)
(0.01)1− 0.01

t .

Figure 45.8 shows the probability of being in state 2
as a function of time t, where the solid line represents
the compound Poisson process D(t) =∑N(t)

i=0 Xi with
rate λ= 0.04, and the dotted line represents the com-
pound Poisson process with rate λ= 0.8. In Fig. 45.8,
we observe that, before the time t progresses to 5, the
probability of being in state 2 stays close to zero for both
rates λ= 0.8 and λ= 0.04. It should be noted that the
two curves are almost the same for the different values
of the rate λ= 0.8 and λ= 0.04.

Similarly, the probability of being in state 1 is cal-
culated as:

Pt(1) = Pt[ f (11, 22)]

= E1 E2 e−λ2t
∞∑

j=0

(
λ2t

j!
)

F( j )
X (200) ,

where E1 =Φ

(
2500− (90+78t)√

2.5+6t6

)

−Φ

(
2000− (90+78t)√

2.5+6t6

)
,

E2 = 1− 1

100

(
t

t−0.01

)(
22

13

) 0.01
t

(0.01)1− 0.01
t .

(45.21)
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Fig. 45.9 Probability plot for state 1 versus time

Figure 45.9 shows the probability of being in state 1 ver-
sus time t, where the solid line represents the compound
Poisson process D(t) =∑N(t)

i=0 Xi with rate λ= 0.04,
and the dotted line represents the compound Poisson
process with rate λ= 0.8. In Fig. 45.9, we observe that,
before the time t progresses to 15, the probability of be-
ing in state 1 for both rates λ= 0.8 and λ= 0.04 are
about the same.

We can also easily obtain the probability of being in
state 0 as follows:

Pt(0) = P
[

f (01, 12)+ f (01, 22)+ f (11, 02)

+ f (21, 02)+ f (31, 02)+ f (11, 12)
]

= (X1Y1+ X2Y2+ X3Y3)e−λ2t

×
∞∑

j=0

(
λ2t

j!
)

F( j )
X (200) ,

where X1 = 1−Φ

(
2500− (90+78t)√

2.5+6t6

)
,

X2 =Φ

(
2500− (90+78t)√

25+6t2

)
,

Y1 = 1− 1

100
(0.4)

0.01
t

(
t

t−0.01

)

×
(

0.011− 0.01
t

)
,

Y2 = 1

100
(0.4)

0.01
t

(
t

t−0.01

)

×
(

0.011− 0.01
t

)
,

X3 =Φ

(
2500− (90+78t)√

2.5+6t6

)

−Φ

(
2000− (90+78t)√

2.5+6t6

)
,
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Fig. 45.10 Probability plot for state 0 versus time

Y3 = 1− 1

100

[(
22

13

) 0.01
t + (0.4)

0.01
t

]

×

(
t

t−0.01

)(
0.011− 0.01

t

)
. (45.22)

Figure 45.10 shows the probability that the system is in
state 0 versus the time t, where the solid line represents
the compound Poisson process D(t) =∑N(t)

i=0 Xi with
rate λ= 0.04, and the dotted line represents the com-
pound Poisson process with rate λ= 0.8. In Fig. 45.10,
we observe that the probability of being in state 0 is
close to zero when t > 100 for the rate λ= 0.8.

The probability of being in state F is calculated as:

Pt(F ) = P [Y1(t) ≤ G1,Y2(t) ≤ G2, D(t) > S]

= KL

⎡

⎣1− e−λ2t
∞∑

j=0

(
λ2t

j!
)

F( j )
X (200)

⎤

⎦ ,
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Fig. 45.11 Probability plot for state F versus time
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Fig. 45.12 Reliability versus time

where K =Φ

(
2500− (90+78t)√

2.5+6t6

)
,

L = 1− 1

100
(0.4)

0.01
t

(
t

t−0.01

)(
0.011− 0.01

t

)
.

(45.23)

Figure 45.11 shows the probability of being in state F as
a function of time t, where the solid line represents the
compound Poisson process D(t) =∑N(t)

i=0 Xi with rate
λ= 0.04, and the dotted line represents the compound
Poisson process with rate λ= 0.8.

Finally, the system reliability R(t) is given by

R(t) = P(system state ≥ 1)

=
3∑

i=1

Pt(i)

= X3Y3 e−λ2t
∞∑

j=0

(
λ2t

j!
)

F( j )
X (200) ,

where X3 =Φ

(
2000− (90+78t)√

2.5+6t6

)

×

{
1− 1

100

[
(0.4)

0.01
t +

(
22

13

) 0.01
t
]

×

(
t

t−0.01

)(
0.011− 0.01

t

)}
,

Y3 =
[
Φ

(
2500− (90+78t)√

2.5+6t6

)

−Φ

(
2000− (90+78t)√

2.5+6t6

)]

×

[
1− 1

100

(
t

t−0.01

)

×

(
22

13

) 0.01
t

0.011− 0.01
t

]
. (45.24)

Figure 45.12 shows the system reliability versus time t,
where the solid line represents the compound Poisson
process with rate λ= 0.04, and the dotted line represents
the compound Poisson process with rate λ= 0.8. As for
the rate λ= 0.8 we observe that the system will probably
fail after a time t of 50. It seems that the random shock
process governs the behavior of the reliability function.
Therefore, the dotted line quickly approaches the failure
caused by the shock damage.

45.3 Repairable Degraded Systems Modeling

45.3.1 Inspection–Maintenance Model
Subject to Two Competing Processes

Model description
Assumptions. The system starts in a new condition. The
assumptions are as follows [45.22]:

1. The system is not continuously monitored, its state
can be detected only by inspection, but system failure
is self-announcing without inspection.

2. After a PM or CM action, the system will be restored
back to an as-good-as-new state.

3. A CM action is more costly than a PM, and a PM
costs much more than an inspection. This implies
Cc > Cp > Ci.

4. The two processes Y (t) and D(t) are independent.
5. Repair time is not negligible.

Although continuous monitoring processes are feasible
for some systems, the cost to monitor the process and the
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labor required would, however, not make it realistic in
practice. Therefore, we need to improve the system per-
formance by determining the periodic inspections with
maintenance action that will minimize the average to-
tal system maintenance cost. Since system deterioration
while running leads to system failure, it proves better
to assume that the degradation paths are continuous and
increasing functions.

Inspection–Maintenance Policy. It is proposed
that the system is periodically inspected at times
{I, 2I, · · · , nI, · · · }. We assume that the degradation
({Y (t)}t≥0) and random shock processes ({D(t)}t≥0) are
independent. Let T denote the time to failure, defined as

T = inf [t > 0 : Y (t) > G or D(t) > S] ,

where G is the critical value for {Y (t)}t≥0 and S is the
threshold level for {D(t)}t≥0.

The two threshold values L and G (where G is fixed)
effectively divide the system state into three regions,
as illustrated in Fig. 45.13. They are: the doing-nothing
zone; the PM zone; and the CM zone. The maintenance
action will be performed when either of the following
situations occurs.

1. The current inspection reveals that the system
condition falls into the PM zone, and this state
was not found on previous inspection. At inspec-
tion time i I , the system falls into the PM zone,
which means {Y [(i−1)I ] ≤ L, D[(i−1)I ] ≤ S}∩
{L < Y (i I )≤ G, D(i I )≤ S}. Then PM action is per-
formed and will take a random time R1.

G

L

Y(t)

S
D(t)

CM zone

PM zone

Doing
nothing
zone

W1 W2 W3

I1 … Ii Ii + 1 R1 I1 … Ii T R2 I1 … Ii T R2

Fig. 45.13 The evolution of the system

2. When the system fails at T , a CM action is taken
immediately and takes time R2.

It is assumed that both PM and CM actions are consid-
ered to be perfect. Even though both PM and CM actions
bring the system back to an as-good-as-new state, they
are, physically, not necessarily the same, since a CM has
to performed on a worse system. Hence, CM is likely to
be more complex and expensive. Therefore, it is realis-
tic to assume that the repair time is not negligible. This
chapter considers that the PM action will take a random
amount of time R1 and that a CM action will take a ran-
dom amount of time R2. After a PM or a CM action
is performed, the system is renewed. A new sequence
of the inspection would start again, defined in the same
way.

Maintenance Cost Modeling
In this section, an explicit expression for the average
long-run maintenance cost per unit time is derived. The
objectives of the model are to determine the optimal PM
threshold L and the optimal inspection time I . From the
basics of renewal reward theory, we have

lim
t→∞

C(t)

t
= E[C1]

E[W1] .

We now model the average total maintenance cost
per unit time on a single renewal cycle instead of
limt→∞ C(t)

t ; then we will analyze E[C1] and E[W1].

Expected maintenance cost analysis in a cycle. The
expected total maintenance cost during a cycle E[C1] is
expressed as [45.22]:

E[C1] = Ci E[NI ]+Cp E[R1]Pp+Cc E[R2]Pc .

(45.25)

During a renewal cycle, activities in terms of costs in-
clude: inspection cost, time to repair, and PM or CM
actions. The renewal cycle will end by either a PM or
a CM action. With a probability of Pp, the cycle will end
with a PM action and it will take on average an amount
of time E[R1] to complete a PM action, with a corre-
sponding cost of Cp E[R1]Pp. Similarly, if a cycle ends
with a CM action with probability Pc, it will take on
average an amount of time E[R2] to complete a CM ac-
tion, with a corresponding cost of Cc E[R2]Pc. In the
following, we will perform the analysis of E[C1].

Calculate E[NI]. Let E[NI ] denote the expected number
of inspections during a cycle. E[NI ] can be obtained
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as:

E[NI ] =
∞∑

i=1

(i)P(NI = i) . (45.26)

Obviously
∑∞

i=1 P(NI = i)= 1. There will be a total of
i inspections during a cycle if the first PM trigger falls
within the time interval [(i−1)I, i I], or if the system
condition is in the doing-nothing zone before time i I
and the system fails during the interval [i I, (i+1)I].
In other words, the inspection will stop when the i-th
inspection finds that a PM condition is satisfied while
this situation was not revealed in the previous inspection,
or the system fails during the interval [i I < T ≤ (i+1)I]
while the system is in the doing-nothing zone before i I .

Let P(NI = i) denote the probability that there a total
of i inspections occur in a renewal cycle. Then we have

P(NI = i) = P{Y [(i−1)I] ≤ L, D[(i−1)I ] ≤ S}
× P[L < Y (i I ) ≤ G, D(i I ) ≤ S]
+ P[Y (i I ) ≤ L, D(i I ) ≤ S]
× P[i I < T ≤ (i+1)I ] . (45.27)

Hence,

E[NI ] =
∞∑

i=1

i{P{Y [(i−1)I ] ≤ L, D[(i−1)I ] ≤ S}

× P[L < Y (i I ) ≤ G, D(i I ) ≤ S]
+ P[Y (i I) ≤ L, D(i I) ≤ S]
× P[i I < T ≤ (i+1)I ]} . (45.28)

We now calculate the probabilities P{Y [(i−1)I] ≤
L, D[(i−1)I] ≤ S} and P[L < Y (i I ) ≤ G, D(i I ) ≤ S]
with the following two different expressions for Y (t).
A) Assume Y (t) = A+ Bg(t) where A ∼ N

(
µA, σ

2
A

)
,

B ∼ N
(
µB, σ

2
B

)
, and A and B are independent. Given

g(t) = t. D(t) =∑N(t)
i=0 X i where the X i are iid and

N(t) ∼ Poisson(λ). Then

P{Y [(i−1)I] ≤ L, D[(i−1)I] ≤ S}
= P[A+ B(i−1)I ≤ L]

× P

{
D[(i−1)I] =

N[(i−1)I ]∑

i=0

X i ≤ S

}

=Φ

⎛

⎝ L− (µA+µB(i−1)I)√
σ2

A +σ2
B((i−1)I )2

⎞

⎠ e−λ(i−1)I

×
∞∑

j=0

(λ(i−1)I ) j

j! F( j )
X (S) (45.29)

and

P[L < Y (i I) ≤ G, D(i I) ≤ S]

=
⎡

⎣Φ

⎛

⎝G− (µA+µBi I)√
σ2

A+σ2
B(i I)2

⎞

⎠

−Φ

⎛

⎝ L− (µA+µBi I)√
σ2

A +σ2
B(i I )2

⎞

⎠

⎤

⎦ e−λi I

×
∞∑

j=0

(λi I) j

j! F( j )
X (S) . (45.30)

B) Assume Y (t) = W eBt

A+eBt , where W is a constant,
A ∼U[0, a], a > 0; B ∼ Exp(β), β > 0, A and B are in-
dependent. D(t) =∑N(t)

i=0 X i where the X i are iid and
N(t) ∼ Possion(λ). Then

P{Y [(i−1)I] ≤ L, D[(i−1)I] ≤ S}

=
[

1− 1

a

(
1−u1

u1

) β
Ii−1

(
(i−1)I

(i−1)I −β

)

×

(
a

1− β
(i−1)I1 −1

)]
e−λ(i−1)I

×
∞∑

j=0

[λ(i−1)I] j

j! F( j )
X (S) , (45.31)

where u1 = L/W . Similarly,

P[L < Y (i I ) ≤ G, D(i I ) ≤ S]

=
{

1

a

(
i I

i I −β

)

×
(

a1− β
i I

)[(1−u3

u3

) β
i I −

(
1−u2

u2

) β
i I
]}

e−λi I

×
∞∑

j=0

(λi I ) j

j! F( j )
X (S) , (45.32)

where u2 = G/W, u3 = L/W.

Secondly, we discuss the calculation of P[i I < T ≤
(i+1)I]. The definition of T is T = inf[t > 0 : Y (t) >
G or D(t) > S]. According to the definition, we derive
the expression:

P[i I < T ≤ (i+1)I]
= P{Y (i I ) ≤ L,Y [(i+1)I]> G}

× P{D[(i+1)I] ≤ S}
+ P{Y [(i+1)I] ≤ L}
× P{D(i I ) ≤ S, D[(i+1)I]> S} . (45.33)
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In (45.33), since Y (i I),Y [(i+1)I] are not independ-
ent, we could obtain the joint pdf fY (i I ),Y [(i+1)I ](y1, y2)
in order to compute P{Y (i I)≤ L,Y [(i+1)I]> G}. We
consider two different expressions for Y (t). The details
are as follows:
A) Assume Y (t) = A+ Bg(t) where A > 0 and B > 0
are two independent random variables, and g(t)
is an increasing function of time t. Assume that
A ∼ fA(a), B ∼ fB(b). Let

⎧
⎨

⎩
y1 = a+bg(i I)

y2 = a+bg[(i+1)I]
.

After simultaneously solving the above equations in
terms of y1 and y2, we obtain:

a = y1g[(i+1)I]− y2g(i I )

g[(i+1)I]− g(i I )
= h1(y1, y2) ,

b = y2− y1

g[(i+1)I]− g(i I )
= h2(y1, y2) .

The Jacobian J is given by

J =
∣∣∣∣∣

∂h1
∂y1

∂h1
∂y2

∂h2
∂y1

∂h2
∂y2

∣∣∣∣∣=
∣∣∣∣

1

g(i I)− g[(i+1)I]
∣∣∣∣ .

Then the random vector {Y (i I ),Y [(i+1)I]} has a joint
continuous pdf as follows

fY (i I ),Y [(i+1)I ](y1, y2)

= |J | fA[h1(y1, y2)] fB[h2(y1, y2)] . (45.34)

B) Assume Y (t) = W eAt

B+eAt where A > 0 and B > 0 are
independent. Assume A ∼ fA(a), B ∼ fB(b). Let

⎧
⎨

⎩
y1 = W eaiI

b+eaiI

y2 = W ea(i+1)I

b+ea(i+1)I

.

The solutions for a and b can be easily found from the
above equations in terms of y1and y2 as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a = ln
(

y2(y1−W)
y1(y2−W)

)

I
= h1(y1, y2)

b =− e

ln

(
y2(y1−W )
y1(y2−W )

)
(i+1)I

I (y2−W)
y2

= h2(y1, y2)

.

It can be shown that the random vector {Y (i I ),
Y [(i + 1)I]} has a joint density function given
by

fY (i I ),Y [(i+1)I ](y1, y2)

= |J | f A[h1(y1, y2)] fB[h2(y1, y2)] , (45.35)

where the Jacobian determinant J is given in Ap-
pendix A.

As for the term P{D(i I ) ≤ S, D[(i+1)I]> S} in
(45.30), since D(t) =∑N(t)

i=0 X i is a compound Poisson
process, the compound Poisson process has a sta-
tionary independent increment property. Therefore,
the random variables D(i I ) and D[(i+1)I]− D(i I )
are independent. Using the Jacobian transformation,
the random vector {D(i I ), D[(i+1)I]−D(i I )} is dis-
tributed in the same way as vector {D(i I ), D[(i+
1)I]}. Note that D(i I ) and D(Ii+1) are independent,
therefore,

P{D(i I ) ≤ S, D[(i+1)I]> S}
= P[D(i I ) ≤ S]P{D[(i+1)I]> S} . (45.36)

Calculate Pp. Note that either a PM or CM action will
end a renewal cycle. In other words, these two events
are mutually exclusive at the renewal time point. As
a consequence, Pp+ Pc = 1. The probability Pp can be
obtained as follows:

Pp = P(PM ending a cycle)

=
∞∑

i=1

P{Y [(i−1)I] ≤ L, L < Y (i I ) ≤ G}

× P[D(i I ) ≤ S] . (45.37)

Analysis of expected cycle length. Since the renewal
cycle ends either by a PM action with probability Pp or
a CM action with probability Pc, the mean cycle length
E[W1] is calculated as follows:

E[W1] =
∞∑

i=1

E[(i I + R1)IPM occurs in[(i−1)I,i I ]]

+ E [(T + R2)1CM occurs]

=
{ ∞∑

i=1

i IP{Y [(i−1)I] ≤ L,

D[(i−1)I] ≤ S}P[L < Y (i I ) ≤ G,

D(i I) ≤ S]
}

+ E[R1]Pp+ (E[T ]+ E[R2])Pc , (45.38)

where IPM occurs in[(i−1)I,i I ] and ICM occurs are the indica-
tor functions.

Part
E

4
5
.3



Statistical Maintenance Modeling for Complex Systems 45.3 Repairable Degraded Systems Modeling 823

The mean time to failure, E[T ] is given by [45.22]:

E[T ] =
∞∫

0

P{T > t}dt

=
∞∫

0

P[Y (t) ≤ G, D(t) ≤ S]dt

=
∞∫

0

P[Y (t) ≤ G]
∞∑

j=0

(λ2t) j e−λ2t

j! F( j )
X (S)dt

or, equivalently:

E[T ] =
∞∑

j=0

F( j )
X (S)

j!
∞∫

0

P[Y (t) ≤ G](λ2t) j e−λ2t dt

(45.39)

The expression E[T ] depends on the probability
P[Y (t) ≤ G] and cannot always be easily be obtained
in closed form.

Optimization
of the maintenance cost rate policy
We determine the optimal inspection time I and PM
threshold L such that the long-run average mainte-
nance cost rate EC(L, I) is minimized. Mathematically,
we wish to minimize the following objective func-
tion [45.22]:

EC(L, I)

=
∑∞

i=1 iP1 P2{∑∞
i=1 Ii P1 P2

}+ E[R1]Pp+ E[R2]Pc

+
∑∞

i=1 iVi {P3 P4+ P5 P6}{∑∞
i=1 Ii P1 P2

}+ E[R1]Pp+ E[R2]Pc

+ Cp E[R1]∑∞
i=1 P1 P2{∑∞

i=1 Ii P1 P2
}+ E[R1]Pp+ E[R2]Pc

+ Cc E[R2]
{
1−∑∞

i=1 P1 P2
}

{∑∞
i=1 Ii P1 P2

}+ E[R1]Pp+ E[R2]Pc
,

(45.40)

where Ii−1 = (i −1)I , Ii = i I , Ii+1 = (i +1)I and
Vi = P[Y (i I) ≤ L, D(i I) ≤ S], P1: P[Y (Ii−1) ≤ L,
D(Ii−1) ≤ S], P2: P[L < Y (Ii ) ≤ G, D(Ii ) ≤ S], P3:
P[Y (Ii ) ≤ L,Y (Ii+1) > G], P4: P[D(Ii+1) ≤ S], P5:
P[Y (Ii+1) ≤ L], P6: P[D(Ii ) ≤ S, D(Ii+1) > S]

This complex objective function is a nonlinear op-
timization problem and it is hard to obtain closed-form
optimal solutions for L and I . Nelder and Mead [45.23]

introduced a downhill simplex method that does not re-
quire the calculation of derivatives. A simplex is the most
elementary geometrical scheme that can be formed in n
dimensions and has (n+1) vertices. A brief summary of
the steps of the method is: each iteration generates a new
vertex for the simplex. If the new point is better than at
least one of the existing vertices, it then replaces the
worst vertex. The search direction is generated through
reflection, expansion and contraction operations.

A step-by-step algorithm proposed by Li and
Pham [45.21] based on the Nelder–Mead downhill sim-
plex method is summarized as follows:

• Step 1: choose (n+1) distinct vertices as an initial
set

{
Z(1), · · · , Z(n+1)

}
. Then calculate the function

value f (Z) for i = 1, 2, . . ., (n+1), where f (Z) =
EC(I, L). Put the values f (Z) in an increasing order
where f (Z(1)) = min[EC(I, L)] and f

(
Z(n+1)

)=
max[EC(I, L)]. Set k = 0.• Step 2: compute the best-n centroid X(k) =
1
n

∑n
i=1 Z(i).

• Step 3: use the centroid X(k) in Step 2 to compute
the away-from-worst move direction

∆X(k+1) = X(k)− Z(n+1) .

• Step 4: set λ= 1 and compute f (X(k)+λ∆X(k+1)).
If f (X(k)+λ∆X(k+1)) ≤ f (Z(1)) then go to Step 5.
Otherwise, if f (X(k)+λ∆X(k+1))≥ f (Z(n)) then go
to Step 6. Otherwise, fix λ= 1 and go to Step 8.• Step 5: Set λ= 2 and compute f (X(k)+2∆X(k+1)).
If f (X(k)+2∆X(k+1))≤ f (X(k)+∆X(k+1)) then set
λ= 2. Otherwise, set λ= 1. Then go to Step 8.• Step 6: If f (X(k)+λ∆X(k+1)) ≤ f (Z(n+1)) then set
λ= 1/2. Compute f (X(k)+ 1

2∆X(k+1)). If f (X(k)+
1
2∆X(k+1)) ≤ f (Z(n+1)) then set λ= 1/2 and go to
Step 8. Otherwise, set λ=−1/2 and, if f (X(k)−
1
2∆X(k+1)) ≤ f (Z(n+1)), then set λ=−1/2 and go
to Step 8. Otherwise, go to Step 7.• Step 7: shrink the current solution set toward the
best Z(1) by Z(i) = 1

2 (Z(1)+ Z(i)), i = 2, · · · , n+1.
Compute the new f (Z(2)), · · · , f (Z(n+1)), let k =
k+1, and return to Step 2.• Step 8: Replace the worst Z(n+1) by X(k) +
λ∆X(k+1). If

√
1

n+1

∑n+1
i=1 [ f (Z(i))− f ]2 < 0.5,

where f is an average value, then STOP. Other-
wise, let k = k+1 and return to Step 2. (It should be
noted that the criterion in Step 8 is not unique but
will depend on how soon you would like the algo-
rithm to stop when the function values at the vertices
are close. Here we do this when the difference be-
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tween the maximum and the minimum values of f
is less than 0.5.)

A Numerical Example
Here we present an example to illustrate the results and
the step-by-step application procedure.

Assume that the degradation process is described by
Y (t) = A+ Bg(t), where A and B are independent and
follow a uniform distribution with parameter interval
[0,4] and an exponential distribution with parameter 0.3,
i. e., A ∼U(0, 4) and B ∼ Exp(−0.3t), respectively, and
g(t)=√

t e0.005t .
Assume that the random shock damage is de-

scribed by D(t) =∑N(t)
i=1 Xi , where Xi follows

an exponential distribution, i. e., Xi ∼ Exp(−0.04t)
and N(t) ∼ Poisson(0.1). Also G = 50, S = 100,Ci =
900/inspection,Cc = 5600/CM, Cp = 3000/PM,R1 ∼
Exp(−0.1t), and R2 ∼ Exp(−0.04t). We now determine
both the values of I and L so that the average total
cost per unit time EC(I, L) is minimized. Following are
step-by-step procedure [45.22]:

• Step 1: since there are two decision variables I
and L , we need (n+1) = 3 initial distinct ver-
tices, which are Z(1) = (25, 20), Z(2) = (20, 18), and
Z(3) = (15, 10). Set k = 0. We calculate the value of
f
(
Z(.)

)
corresponding to each vertex and sort them

in increasing order of EC(I, L).• Step 2: calculate the centroid: X(0) = (
Z(1)+ Z(1)

)
/2=

(22.5, 19).• Step 3: generate the search direction: ∆X = X(0)−
Z(2) = (7.5, 9).

Table 45.1 Optimal values I and L

k Z(1) Z(2) Z(3) Search result

0 (25,20) (20,18) (15,10) (37.5, 38)

EC(I, L) = 564.3 EC(I, L) = 631.1 EC(I, L) = 773.6 EC(I, L) = 440.7

1 (37.5,38) (25,20) (20,18) (42.5,40)

EC(I, L) = 440.7 EC(I, L) = 564.3 EC(I, L) = 631.1 EC(I, L) = 481.2

2 (37.5,38) (42.5,40) (25,20) (32.5,29)

EC(I, L) = 440.7 EC(I, L) = 481.2 EC(I, L) = 564.3 EC(I, L) = 482.2

3 (37.5,38) (42.5,40) (32.5,29) (32.5,33.5)

EC(I, L) = 440.7 EC(I, L) = 481.2 EC(I, L) = 482.2 EC(I, L) = 448.9

4 (37.5,38) (32.5,33.5) (42.5,40) (38.75,37.125)

EC(I, L) = 440.7 EC(I, L) = 448.9 EC(I, L) = 481.2 EC(I, L) = 441.0

5 (37.5,38) (38.75,37.125) (32.5,33.5) (35.3125,35.25)

EC(I, L) = 440.7 EC(I, L) = 441.0 EC(I, L) = 448.9 EC(I, L) = 441.1

6 (37.5,38) (38.75,37.125) (35.3125,35.25) Stop

EC(I∗, L∗) = 440.7 EC(I, L) = 441.0 EC(I, L) = 441.4

• Step 4: set λ= 1, which will produce a new min-
imal EC(30, 28) = 501.76 that leads us to try an
expansion with λ= 2, that is (37.5, 38).• Step 5: set λ= 2. Similarly, calculate f (Z), which
leads to EC(37.5, 38) = 440.7. Go to Step 8. This
result turns out to be a better solution, hence (15, 10)
is replaced by (37.5, 38).

The iteration continues and stops at k = 6 (Table 45.1)

since
√

1
3

∑3
i=1

[
EC(Z(i))− EC(I, L)

]2
< 0.5, where

EC(I, L) is the average value.
Table 45.1 illustrates the process of the Nelder–Mead

algorithm. In Table 45.1, Z(.) = (I, L). From Table 45.1,
we observe that a set of the optimal values is

I∗ = 37.5, L∗ = 38

and the corresponding cost value is EC∗(I, L)= 440.7.
Table 45.2 illustrates the various values of L on Pc

for given I = 37.5. From Table 45.2, we observe that the
probability Pc increases as L increases. In other words,
a larger value for L will put the system at high risk of
failure.

Figure 45.14 shows the relationship between L and
Pc for different I values, such as I = 35, I = 37.5,
and I = 40. From Fig. 45.14, we observe that Pc is
an increasing function of L . This means a higher
preventive-maintenance threshold is more likely to result
in a failure.

Figure 45.15 depicts the effect of the first in-
spection time on Pp for various L values such as
L = 33, L = 35, L = 37 and L = 39. Shorter inspec-
tion times will cause more-frequent inspection and, as
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Table 45.2 The effect of L on Pc for I = 37.5

L Pc

33 0.465

35 0.505

37 0.654

39 0.759

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45
33 34 35 36 37 38 39

Pc

L

I = 35
I = 37.5
I = 40

Fig. 45.14 Pc versus L

a result, will increase the probability of a PM. From
Fig. 45.15, we also observe that, for smaller L val-
ues (L = 33 and L = 35), the curve decreases slightly
as I increases; while, for larger values of L such as
L = 37 and L = 39, the curve has a larger decrease as
I increases. We also observe that the curve is more
sensitive to the value of L , especially when L is
large.

In summary, we observe that, on one hand, a lower
value of L will result in frequent PM action and prevents
full usage of the residual life of the systems. Frequent
PM actions might reduce the chance of high deteriora-
tion and failures, but will also be costly. On the other
hand, a higher L value will keep the system working
in a higher-risk condition. Also, frequent inspections
will reduce the probability of failure, while incurring
additional cost.

45.3.2 Inspection–Maintenance Model
for Degraded Systems
with Three Competing Processes

General Inspection–Maintenance Description
This section considers systems with inspection-based
maintenance subject to three failure processes that

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15
25 30 35 40

Pp

L

L = 33
L = 35
L = 37
L = 39

Fig. 45.15 The effect of the inspection sequence on Pp for
given L

are competing for the life of such systems: two of
these are degradation processes called degradation pro-
cess i (measured by Yi (t) for i = 1, 2) and the third
is a random shock process measured by the function
D(t) [45.21].

We assume that the three processes are independ-
ent and whichever process occurs first will cause the
system to fail, where the failure of the system is
defined as when Y1(t) > G1,Y2(t) > G2 or D(t) > S.
The state of the system can only be revealed through
inspection.

Assumptions.
1. System failure is only detected by inspection. In-

spections are assumed to be instantaneous, perfect
and nondestructive. Since the system is not contin-
uously monitored, if the system fails it will remain
failed until the next inspection, which causes a loss
of Cm per unit time. In this case, a maintenance
action is begun instantaneously at the inspection
time.

2. After a maintenance action, either PM or CM, the
system state will start as good as new.

3. A CM action will cost more than a PM ac-
tion. Similarly, a PM action will cost much
more than an inspection itself. This implies that
Cc > Cp > Ci.

4. The three nondecreasing processes Y1(t), Y2(t), and
D(t) are independent.

5. No continuous monitoring is performed on the sys-
tem.

6. The time for a CM or PM action is negligible.

Part
E

4
5
.3



826 Part E Modelling and Simulation Methods

We consider a system subject to three competing pro-
cesses; two of them are continuous, gradual degradation
processes with different characteristics, and the third is
a random shock process. Applications of such systems
can be found in the Space Shuttle computer complex
due to critical mission phases such as boost, reentry
and landing and in electric generator power systems due
to the loss of commercial power systems. More related
applications can be found in [45.13].

Although a continuous monitoring process is feasi-
ble for some systems, the cost of monitoring the process
and the labor required would not make it realistic in
practice. Therefore the criteria we consider here is to im-
prove the system performance by performing periodic
inspections, with a maintenance action if necessary, to
minimize the total system maintenance cost.

Inspection–maintenance policy. The length of the
inspection will be reduced as the system ages. In
other words, the intervals between successive inspec-
tions become shorter as the system ages. A geometric
sequence is applied in this study to develop the
inter-inspection sequence. The inspection time is con-
structed as In =∑n

j=1 α
j−1 I1, where 0 < α ≤ 1 and

I1 is the first inspection time. We define Un = In −
In−1 = αn−1 I1 as the inter-inspection interval and
(Ui )i∈N as a decreasing geometric sequence. Ac-
cording to the state detected at the inspection
In, n = 1, · · · , one of the following actions will hap-
pen [45.21]:

1. If both degradation values are below their
PM thresholds and the shock damage value
is less than its threshold, in other words
[Y1(In) ≤ L1,Y2(In) ≤ L2]∩ [D(In) ≤ S], then the
system is still in a good condition. In this case,
we do nothing but determine the next inspection
at In+1 = In +Un , where Un is the inter-inspection
time between the n-th and the n+1-th inspection
interval.

2. If a degradation process falls into the PM zone
[Li < Yi (In) ≤ Gi , i = 1, 2] and the other two pro-
cesses are less than their corresponding critical
thresholds, then the system calls for a PM action
and it is instantaneously performed accordingly.

3. If any of the process values exceed their
corresponding critical thresholds [Yi (t) > Gi , i =
1, 2, or D(t) > S], then the system calls for a CM
action and it is instantaneously performed. In this
case, the system has failed and a CM is performed
on the system.

We assume that, after a maintenance action, i. e., PM
or CM, the system will be restored to as good as new.
A new sequence of inspection begins, defined in the
same way, and the system maintenance follows the same
decision rules outlined above. Figure 45.16 shows the
evolution of the system, where Y1(t) and Y2(t) represent
the degradation processes 1 and 2, respectively, and D(t)
represents a cumulative shock damage. (Wi )i∈N is a re-
newal sequence. Figure 45.17 shows the maintenance
zone projected onto the Y1(t),Y2(t) planes; Gi and Li
are the CM and PM critical thresholds for Y1(t), and
Y2(t) respectively.

Maintenance cost analysis
The expected total maintenance cost per cycle, E[C1],
is given as:

E[C1] = Ci E[NI ]+Cp Pp+Cc Pc+Cm E[ζ ] ,
(45.41)

where Ci is the cost associated with each inspection,
Cp is the cost associated with a PM action, and Cc is
the CM action cost. Since failure is not self-announcing
and it can occur at any given instant time T within the
inspection time interval [Ii, Ii+1], the system will remain
idle during the interval [T, Ii+1]. The cost coefficient Cm

Y2(t)

G2

L2

Y1(t)

G1

L1

D(t)

S

W1

I1 Ii Ii+1

Wi

I1 Ii Ii+1

Fig. 45.16 The evolution of the system condition
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Y2(t)

G2

L2

L1 G1 Y1(t)

CM zone

PM zone

No actions

CM zone

Fig. 45.17 Maintenance zone projected onto Y1(t),Y2(t)

is defined as the penalty cost per unit time associated
with such an event.

Calculation.
1. Let P(NI = i+1) be the probability that there are

a total of (i+1) inspections in the cycle. The ex-
pected number of inspections during a cycle, E[NI ],
is

E[NI ] =
∞∑

i=0

(i+1)Pi+1 (45.42)

where Pi+1 = P(NI = i+1). Note that

Pi+1 = P(NI = i+1) =
⋃17

j=1
P
(

E(i+1)
j

)
,

where E(i+1)
j ( j = 1, · · · , 17) denotes the renewal

cycle that ends at the j-th possibile time Ii+1. The
details of all E(i+1)

j , where the E(i+1)
j are mutually

disjoined events for j = 1, · · · , 18 are listed in Ap-
pendix B.
There are a total of 18 system state combi-
nations revealed at any given interval (Ii , Ii+1]
where there is only one state event, E(i+1)

18 (Ap-
pendix B) representing that the system is in
a good condition and that no maintenance ac-
tion will be required. Any other remaining state
events will trigger either a PM or a CM action at
time Ii+1.
After some simplifications, we have

Pi+1 = P[Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S]
− P[Y1(Ii+1) ≤ L1,Y2(Ii+1)

≤ L2, D(Ii+1) ≤ S] . (45.43)

Therefore,

E[N1] =
∞∑

i=0

(i+1) {P[Y1(Ii ) ≤ L1,Y2(Ii )

≤ L2, D(Ii ) ≤ S]
−P[Y1(Ii+1) ≤ L1,Y2(Ii+1)

≤ L2, D(Ii+1) ≤ S]} .

2. There will be either a PM or CM action to end a re-
newal cycle. It is obvious that the two events (PM
and CM) are mutually exclusive at the renewal time
point: Pp+ Pc = 1. We now calculate Pp as follows:

Pp = P(the cycle ends due to a PM action)

=
∞∑

i=0

3∑

j=1

P
[

E(i+1)
j

]
.

After some simplifications, we obtain

Pp =
∞∑

i=0

{P[Y1(Ii )≤L1, L1<Y1(Ii+1)≤G1]

× P[Y2(Ii )≤L2,Y2(Ii+1)≤G2]
× P[D(Ii+1)]+ P[Y1(Ii+1) ≤ L1]
× P[Y2(Ii ) ≤ L2, L < Y2(Ii+1) ≤ G2]
× P[D(Ii+1)]} (45.44)

and Pc = 1− Pp. We can obtain the joint
probability density function fY (Ii ),Y (Ii+1)(y1, y2)
of Y (Ii ) and Y (Ii+1) by computing P[Y1(Ii ) ≤
L1,Y1(Ii+1) ≤ G1] and P[Y2(Ii ) ≤ L2,Y2(Ii+1) ≤
G2].

3. Let T denote the time to failure. That is
T = inf[t : Y1(t) > G1,Y2(t) > G2 or D(t) > S]. If
Ii < T ≤ Ii+1, the unit will be idle during the inter-
val [T, Ii+1]. Let E[ζ ] denote the average idle time
between the failure occurrence epoch and its inspec-
tion during the cycle. Then E[ξ] is calculated as
follows:

E[ξ] =
∞∑

i=0

E
[
(Ii+1−T )1Ii<T≤Ii+1

]

=
∞∑

j=0

R j

Ii+1∫

Ii

(Ii+1− t)dFT (t) (45.45)
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where

R j =
{

P[Y1(Ii ) ≤ L1, L1 < Y1(Ii+1) ≤ G1]
× P[Y2(Ii ) ≤ L2, L1 < Y1(Ii+1)]
+ P[Y2(Ii ) ≤ L2]
× P[Y1(Ii ) ≤ L1,Y1(Ii+1) > G1]
+ P[Y1(Ii+1) ≤ L1]
× P[Y2(Ii ) ≤ L2]

}
P[D(Ii ) ≤ S]

F(t) = P[Y1(t) > G1,Y2(t) ≤ G2, D(Ii ) ≤ S]
+ P[Y1(t)≤G1,Y2(t)>G2, D(Ii ) ≤ S]
+ P[Y1(t)≤G1,Y2(t)≤G2, D(Ii ) > S]

and 1Ii<T≤Ii+1 is an indicator function.

Expected cycle length. The expected cycle length
E[W1] is given as follows:

E[W1] = E[E[W1|NI ]]

=
∞∑

i=0

E[W1|NI = i]P(Ni = i)

=
∞∑

i=0

Ii+1 Pi+1 , (45.46)

where Pi+1is given in (45.43).
Therefore, the average long-run maintenance cost

rate function EC(L1, L2, I1) is a function of the inspec-
tion times {I1, · · · , Ii , · · · } and the PM critical threshold
values (L1, L2) through the functions Pp, Pc, E[NI ],
E[ζ ] and E[W1]. The average long-run maintenance cost
rate is, in other words, EC(L1, L2, I1)= E[C1]

E[W1] , and can
be obtained by computing the two functions given in
(45.41) and (45.46).

Optimization of the maintenance cost rate
The geometric inspection sequence {I1, · · · , Ii , · · · },
where In =∑n

j=1 α
j−1 I1, depends on I1 for given α.

In this section, we develop a step-by-step algorithm
based on the Nelder–Mead downhill simplex method
to obtain the optimum decision variables (I1, L1, L2)
such that the long-run average maintenance cost rate
EC(L1, L2, I1) is minimized. Mathematically, the op-
timization problem of the cost rate function can be
formulated as follows [45.21]:

Optimization problem. Find I1, L1 and L2(0 < L1 ≤
G1, 0 < L2 ≤ G2) such that

E
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is minimum, where

R1i = P

[
Y1

( i∑

j=1

α j−1 I1

)
≤ L1,

L1 < Y1

( i+1∑

j=1

α j−1 I1

)
≤ G1

]

× P

[
Y2

( i∑

j=1

α j−1 I1

)
≤ L2,

L1 < Y1

( i+1∑

j=1

α j−1 I1

)]
,

R2i = P

[
Y1

( i∑

j=1

α j−1 I1

)
≤ L1,

G1 < Y1

( i+1∑

j=1

α j−1 I1

)]

× P

[
Y2

( i∑

j=1

α j−1 I1

)
≤ L2

]
,

R3i = P

[
Y1

( i∑

j=1

α j−1 I1

)
≤ L1

]

× P

[
Y2

( i∑

j=1

α j−1 I1

)
≤ L2

]
.

This optimization function is a complex nonlinear func-
tion, the optimum solution of which is difficult to find.
The Nelder–Mead downhill simplex method (discussed
in Sect. 45.3.1) is the most popular direct-search method
for obtaining the optimum solution of an unconstrained
nonlinear function, and does not require the calculation
of derivatives.

Numerical examples
This section illustrates the results in the Sect. 45.3.2.
Assume that degradation process 1 is described as the
function Y1(t) = W eB1t

A1+eB1t , where the random variables
A1 and B1 are independent and follow a uniform distri-
bution with parameter interval [0,40], and exponential
distribution with parameter 1, respectively. In short,
A1 ∼U[0, 40] and B1 ∼ Exp(1).

Similarly, assume that degradation process 2 is
modeled as Y2(t) = A2+ B2g(t) where A2 ∼U[0, 2],
B2 ∼ Exp(0.2) and g(t) = √

t e0.01t . Assume that
the random shock is represented by the func-
tion D(t) =∑N2(t)

i=0 Xi , where Xi ∼ Exp(0.04) and

N(t) ∼ Poisson(0.1). Also G1 = 300, G2 = 70 and
S = 100.

Assume that the cost parameters are as fol-
lows: Cc = 560 units/CM, Cp = 400 units/PM,Ci =
100 units/inspection, Cm = 500 units/unit time and
α= 0.97.

The inspection sequence {I1, · · · , In, · · · } is con-
structed with In =∑n

j=1 α
j−1 I1. We want to determine

the values of I1 and (L1, L2) so that the average long-run
maintenance cost rate per unit time is minimized.

Following are step-by-steps using our proposed al-
gorithm in Sect. 45.3.1:

• Step 1: there are three decision variables, say L1, L2,
and I1, so we need four distinct vertices as an initial
set of values: Z(1) = (270, 56, 76), Z(1) = (280, 60,
72), Z(2) = (290, 52, 66) and Z(3) = (300, 50, 57).
Set k = 0.

We now calculate the function value f (Z) corresponding
to each vertex and put them in increasing order of the
objective value EC(L1, L2, I1) from smallest to highest.

• Step 2: compute the centroid: X(0) = 1
3

(
Z(1)+ Z(2)

+Z(3)
)= (280, 56, 71.3).• Step 3: search for the away-from-worst direction:

∆X = X(0)− Z(4) = (−20, 6, 14.3).• Step 4: set λ= 1, which will generate a new minimal
EC(260, 60, 85.6) = 291.9 that leads to an expan-
sion with λ= 2 that is (240, 60, 99.9).• Step 5: set λ= 2. Similarly, compute f (Z), which
leads to 247.9. Go to Step 8

This result turned out to be a better solution, hence
(300, 50, 57) is replaced by (240, 60, 99.9).

The iteration continues and stops at k = 4
(see Table 45.3) since

√√√√1

4

4∑

i=1

[
EC(Z(i))−EC(L1, L2, I1)

]2=0.449<0.5 ,

where EC(L1, L2, I1) is the average value.
From Table 45.3, we obtain the optimal solu-

tion for (L1, L2, I1) as:
(
L∗1 = 172, L∗2 = 60, I∗1 = 144

)

and the corresponding average long-run mainte-
nance cost rate is EC

(
L∗1, L∗2, I∗1

) = 245.9. Fig-
ure 45.18 depicts the average long-run maintenance
cost-rate curve EC(L1, L2, I1) as a function of
the inspection time interval I1 for L1 = 172 and
L2 = 60.

Table 45.4 presents a sensitivity analysis in terms
of the probability that the cycle will end due to a PM
action, Pp, for various values of (L1, L2) for α = 0.97
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Table 45.3 Nelder–Mead algorithm results

k Z(1) = (L1, L2, I1) Z(2) Z(3) Z(4) Search result

0 (270,56,76) (280,60,72) (290,52,66) (300,50,57) λ= 2
E[C1]
E[W1] = 300.7

E[C1]
E[W1] = 332.2

E[C1]
E[W1] = 360.4

E[C1]
E[W1] = 388.2

E[C1]
E[W1] = 247.9

1 (240,60,99.9) (270,56,76) (280,60,72) (290,52,66) λ= 1
E[C1]
E[W1] = 247.9

E[C1]
E[W1] = 300.7

E[C1]
E[W1] = 332.2

E[C1]
E[W1] = 360.4

E[C1]
E[W1] = 248.0

2 (236,60,99.2) (240,60,99.9) (270,56,76) (280,60,72) λ= 2
E[C1]
E[W1] = 247.9

E[C1]
E[W1] = 248.0

E[C1]
E[W1] = 300.7

E[C1]
E[W1] = 332.2

E[C1]
E[W1] = 246.7

3 (187,56,131) (236,60,99.2) (240,60,99.9) (270,56,76) λ= 1
E[C1]
E[W1] = 246.7

E[C1]
E[W1] = 247.9

E[C1]
E[W1] = 248.0

E[C1]
E[W1] = 300.7

E[C1]
E[W1] = 245.9

4 (172,60,144) (187,56,131) (236,60,99.2) (240,60,99.9) Stop
E[C1]
E[W1] = 245.9

E[C1]
E[W1] = 246.7

E[C1]
E[W1] = 247.9

E[C1]
E[W1] = 248.0

Table 45.4 The effect of (L1, L2) on Pp for a given inspec-
tion sequence

L1 L2 Pp

200 60 0.5910

190 58 0.5928

180 56 0.5936

170 54 0.5948

160 52 0.5950

150 50 0.5968

Table 45.5 The effect of the inspection sequence on Pp for
fixed PM values

I1 Pp

110 0.642

120 0.610

130 0.578

140 0.510

150 0.480

160 0.430

and I1 = 144. From Table 45.4, we observe that the
probability Pp slightly increases as both L1 and L2
decrease. This in fact shows that one would perform
more PMs than CMs when L1 and L2 both become
smaller.

Similarly, Table 45.5 presents the probability that
the cycle will end due to a PM action, Pp, for vari-
ous values of I1 given L1 = 172, L2 = 60 and α= 0.97.
From Table 45.5, we observe that the probability Pp
decreases as I1 increases. In other words, the mainte-
nance cycle will be more likely to end due to corrective
rather than preventive maintenance if one delays in-

258

256

254

252

250

248

246

244
130 135 140 145 150 155

Inspection time

EC

Fig. 45.18 The average maintenance cost EC(L1, L2, I1)
versus I1
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spection. This result can help maintenance managers
or inspectors to allocate resources as well as time
allocations.

Figure 45.19 shows the results for the probability
that the cycle ends due to PM versus the inspec-

tion interval time I1 for given values of the threshold
PM levels (L1, L2). It is interesting to observe from
Fig. 45.19 that the results are about the same for the two
combinations of (L1 = 172, L2 = 60) and (L1 = 200,
L2 = 50).

45.4 Conclusions and Perspectives

In this chapter, we present reliability and maintenance
models for degraded systems with multiple competing
failure processes. For mathematical modeling, it is al-
ways necessary to make some assumptions in order
to make the model applicable in practice. For reliabil-
ity and maintenance modeling, assumptions have often
played an important role in determining the structure
and complexity of the models.

The results of the maintenance models in this chap-
ter can be used to help practitioners and inspectors as
well as marketing managers to allocate resources and
for the promotion strategies for new products. It would
be of interest for future research to implement these re-
sults by collecting data and observing product system
degradations in practice. Other research problems worth
exploring in the future are as follows [45.22].

1. The objective function discussed in this chapter is to
minimize the expected long-run maintenance cost.
In practice, costs associated with inspections, pre-
ventive maintenance, corrective maintenance, and
downtime are sometimes difficult to obtain, even

when used in practice. For some critical systems, the
overriding goal is to ensure that the system should
be available when needed; availability is, therefore,
of primary interest, and cost is secondary.
To achieve a high level of availability for a
specified inspection rate, it is worth to deter-
mine the optimum number of inspections with
respect to imperfect repairs, such as minimal
and opportunistic schemes, that maximizes the
system availability. The time required for im-
perfect repairs and for replacement policies are
random.

2. This chapter assumed that at any time there is un-
limited supply of systems available for replacement.
In reality, this assumption might not be true due to
budget allocation and other constraints. In this case,
a random lead time for delivering the new system
when needed should be considered. It is essential
and practical to analyze the effect of this random
lead time on availability. When incorporating ran-
dom lead time, the expected downtime will increase;
therefore, system availability will decrease.

45.5 Appendix A

Jacobian determinant
Below is a 2 × 2 Jacobian determinant

J =
y1(y2−W )

(
y2

y1(y2−W ) − y2(y1−W )
y2

1(y2−W )

)
[−d(y1, y2)−d1(y1, y2)+d2(y1, y2)]

y2(y1−W )(Ii+1− Ii )
+d3(y1, y2) ,where

d(y1, y2) =

⎡
⎢⎢⎢⎣

(
y1−W

y1(y2−W ) − y2(y1−W )
y1(y2−W )2

)
y1(y2−W )2 Ii+1 e

⎛

⎝
ln

(
y2(y1−W )
y1(y2−W )

)
Ii+1

Ii+1−Ii

⎞

⎠

⎤
⎥⎥⎥⎦

y2
2(y1−W )(Ii+1− Ii )

, y1 �= W, y2 �= W ,
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d1(y1, y2) = e

⎛

⎝
ln
(

y2(y1−W )
y1(y2−W )

)
Ii+1

Ii+1−Ii

⎞

⎠

y2
, y2 �= W,

d2(y1, y2) = e

⎛

⎝
ln

(
y2(y1−W )
y1(y2−W )

)
Ii+1

Ii+1−Ii

⎞

⎠

(y2−W)

y2
2

, y2 �= W ,

d3(y1, y2) = d31(y1, y2)d32(y1, y2)

y3
2(y1−W )2(Ii+1− Ii )2

, y1 �= W ,

d31(y1, y2) =
(

y1−W

y1(y2−W )
− y2(y1−W )

y1(y2−W )2

)
y2

1(y2−W )3, y2 �= W ,

d32(y1, y2) =
(

y2

y1(y2−W )
− y2(y1−W )

y2
1(y2−W )

)
Ii+1 e

⎛

⎝
ln

(
y2(y1−W )
y1(y2−W )

)
Ii+1

Ii+1−Ii

⎞

⎠

, y2 �= W .

45.6 Appendix B

A list of all 18 events:

E(i+1)
1 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
L1 < Y1(Ii+1) ≤ G1, L2 < Y2(Ii+1)

≤ G2, D(Ii+1) ≤ S
]

E(i+1)
2 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
L1 < Y1(Ii+1) ≤ G1,Y2(Ii+1)

≤ L2, D(Ii+1) ≤ S
]

E(i+1)
3 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
Y1(Ii+1) ≤ L1, L2 < Y2(Ii+1)

≤ G2, D(Ii+1) ≤ S
]

E(i+1)
4 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
L1 < Y1(Ii+1) ≤ G1,Y2(Ii+1)

> G2, D(Ii+1) ≤ S
]

E(i+1)
5 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
L1 < Y1(Ii+1) ≤ G1, L2 < Y2(Ii+1)

≤ G2, D(Ii+1) > S
]

E(i+1)
6 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
L1 < Y1(Ii+1) ≤ G1,Y2(Ii+1)

> G2, D(Ii+1) > S
]

E(i+1)
7 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
Y1(Ii+1) > G1, L2

> Y2(Ii+1), D(Ii+1) ≤ S
]

E(i+1)
8 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
Y1(Ii+1) > G1, L2 < Y2(Ii+1)

≤ G2, D(Ii+1) ≤ S
]

E(i+1)
9 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
Y1(Ii+1) > G1, L2

> Y2(Ii+1), D(Ii+1) > S
]

E(i+1)
10 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
Y1(Ii+1) > G1, L2 < Y2(Ii+1)

≤ G2, D(Ii+1) > S
]

E(i+1)
11 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
Y1(Ii+1) > G1,Y2(Ii+1)

> G2, D(Ii+1) ≤ S
]

E(i+1)
12 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
Y1(Ii+1) > G1,Y2(Ii+1)

> G2, D(Ii+1) > S
]

E(i+1)
13 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
L1 < Y1(Ii+1) ≤ G1, L2

> Y2(Ii+1), D(Ii+1) > S
]

E(i+1)
14 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]
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∩ [
L1 > Y1(Ii+1), L2

> Y2(Ii+1), D(Ii+1) ≤ S
]

E(i+1)
15 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
L1 > Y1(Ii+1), L2

> Y2(Ii+1), D(Ii+1) > S
]

E(i+1)
16 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
L1 > Y1(Ii+1), L2 < Y2(Ii+1)

≤ G2, D(Ii+1) > S
]

E(i+1)
17 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
L1 > Y1(Ii+1),Y2(Ii+1)

> G2, D(Ii+1) ≤ S
]

E(i+1)
18 = [

Y1(Ii ) ≤ L1,Y2(Ii ) ≤ L2, D(Ii ) ≤ S
]

∩ [
Y1(Ii+1) ≤ L1,Y2(Ii+1)

≤ L2, D(Ii+1) ≤ S
]
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Statistical Mo46. Statistical Models on Maintenance

This chapter discusses a variety of approaches
to performing maintenance. The first section
describes the importance of preparing for
maintenance correctly, by collecting data on unit
lifetimes and estimating the reliability of the units
statistically using quantities such as their mean
lifetimes, failure rates and failure distributions.

Suppose that the time that the unit has been
operational is known (or even just the calendar
time since it was first used), and its failure
distribution has been estimated statistically. The
second section of the chapter shows that the
time to failure is approximately given by the
reciprocal of the failure rate, and the time before
preventive maintenance is required is simply
given by the pth percentile point of the failure
distribution. Standard replacement policies, such
as age replacement, in which a unit undergoes
maintenance before it reaches a certain age, and
periodic replacement, where the unit undergoes
maintenance periodically, are also presented.

Suppose that the failure of a unit can only
be recorded at discrete times (so the unit
completes a specific number of cycles before
failure). In the third section, the age replacement
and periodic replacement models from the
previous section are converted into discrete
models. Three replacement policies in which
the unit undergoes maintenance after a specific
number of failures, episodes of preventive
maintenance or repairs, are also presented.
The optimum number of units for a parallel
redundant system is derived for when each
unit fails according to a failure distribution
and fails upon some shock with a certain
probability.

Suppose that the unit fails when the total
amount of damage caused by shocks has
exceeded a certain failure level. The fourth
section describes the replacement policy in where
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46.4.2 Inspection with Human Errors .... 844
46.4.3 Phased Array Radar ................... 845
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the unit undergoes maintenance before fail-
ure for a cumulative damage model. The
optimum damage level at which the unit
should be replaced when it undergoes min-
imal repair upon failure is also derived
analytically.

The last part introduces the repair limit policy,
where the unit is replaced instead of being
repaired if the repair time is estimated to be
more than a certain time limit, as well as the
inspection with human error policy, where units
are checked periodically and failed units are
only detected and replaced upon inspection.
Finally, the maintenance of a phased array radar
is analyzed as an example of the practical use of
maintenance models. Two maintenance models
are considered in this case, and policies that
minimize the expected cost rates are obtained
analytically and numerically.
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Although system maintenance is important, perform-
ing it without understanding the operational parameters
of the system first would probably do more harm than
good. Therefore, the first step of maintenance is prepa-
ration: we have to collect data on the components used
in the system, in order to be able to statistically estimate
quantities such as mean lifetimes, failure rates, failure
distributions, and so on. Secondly, designers, engineers
and managers engaged in maintenance work need to
be taught standard maintenance techniques from relia-
bility theory, and how to apply them to real systems.
After any necessary training has been performed, and
data has been collecting about the system, we construct
a maintenance plan, which depends upon the system en-
vironment and the resources (monetary and manpower)
available. After much trial and error, we establish an
maintenance scheme that is optimized for the system in
question. This approach allows us to minimize or even
eliminate any need for hasty maintenance after a severe
system failure.

This chapter summarizes standard maintenance poli-
cies that can be applied (statistically and stochastically)
to practical models. These policies are largely based
upon the author’s work [46.1]. If we monitor the age of
a unit (in either the calendar time, the operating time or
the usage time), it is best to perform maintenance at cer-
tain times. On the other hand, if we monitor the number
of cycles or system uses, or the amount of total damage,
wear or stress incurred by a unit, it is best to perform
maintenance after a certain number of cycles or amount

of wear, respectively. Moreover, it might be necessary
to adopt combinations of these approaches.

In this chapter, we begin (in Sect. 46.1) by estimat-
ing the “mean time to failure” using the reciprocal of
the failure rate. Then we introduce standard replace-
ment policies, such as “age replacement” and “periodic
replacement”. Section 46.2 considers discrete versions
of the general replacement models derived in Sect. 46.1
(in other words, where the maintenance can only be
performed at certain times, which is a more realistic
scenario). It also presents three models where replace-
ment occurs after a certain number of events, including
the number of system failures, the number of times it
has undergone preventive maintenance, or the number
of repairs that have been made to the system. Fur-
ther, we discuss how many units should be allowed
to fail in a parallel redundant system before the sys-
tem is replaced. Section 46.3 introduces maintenance
models based on cumulative damage; in other words,
those where maintenance occurs after a certain amount
of wear, stress, fatigue, corrosion, erosion and garbage.
Finally, Sect. 46.4 presents another two useful mainten-
ance models. In the first, known as the “repair limit
policy”, a failed unit is repaired unless the repair time is
too long, in which case it is replaced. Second, we con-
sider the “inspection model”, with two types of human
error. Finally, we give a practical example – the mainten-
ance of a phased array radar – in which failed elements
are either replaced at planned times or when they exceed
a managerial number.

46.1 Time-Dependent Maintenance

If the failure of a unit during operation would cause se-
rious damage to the whole system, it is important to
know the total amount of time the unit has been in
operation and to determine when to replace units or
perform maintenance before the failure occurs. This is
called age replacement or preventive maintenance (PM).
The optimum age replacement policy (which minimizes
the expected cost) and the optimum PM policy (which
maximizes the availability are derived in Barlow and
Proschan [46.2] and Nakagawa [46.1].

If only the unit’s calendar operational time (the pe-
riod of time since the unit was first used; its “age”) is
known and its failure is not a relatively minor or inex-
pensive event, it is necessary to perform PM or replace
it periodically. This section describes maintenance poli-
cies in which a unit undergoes maintenance according

to its total operating time (the total amount of time that
the unit has been operational) or the age of the unit.

Suppose that X is a random variable that represents
this age or total operating time. We then denote the
failure distribution by F(t) ≡ Pr(X ≤ t) for 0 ≤ t <∞.
Let µ and h(t), respectively, be the finite mean time
to failure of X and the failure rate, so µ≡ ∫∞

0 F(t) dt
and h(t) ≡ f (t)/F(t) where f is the density of F and
F ≡ 1− F. Further, H(t)≡ ∫ t

0 h(u) du is called the cu-
mulative hazard function, and is given by the relation

F(t) = exp

⎡

⎣−
t∫

0

h(u)du

⎤

⎦= e−H(t) . (46.1)

Thus, F(t), F(t), f (t), h(t) and H(t) determine one
another. Throughout this paper, we use these notations.
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46.1.1 Failure Distribution

The most important statistical parameter is to find the
mean time to failure (MTTF) of the unit. This is obtained
comparatively easily by collecting data on the unit life-
time. Given the estimated failure distribution F(t) of
a unit, then the MTTF is given by µ≡ ∫∞

0 F(t)dt.
Next, since the probability that a unit with age T will

fail in an interval (T, t+T ) is [F(t+T )− F(T )]/F(T ),
its MTTF (which is called the mean residual life) is

1

F(T )

∞∫

0

F(t+T )dt = 1

F(T )

∞∫

T

F(t)dt (46.2)

which decreases from µ to 1/h(∞) when F(t) is an IFR
property [46.2]; in other words when h(t) is increasing.
Also, in this case

1

F(T )

∞∫

T

F(t)dt ≤ 1

h(T )
. (46.3)

Thus, 1/h(T ) is used as an upper estimator for the MTTF
of a unit with age T .

When failures occur in a nonhomogeneous Poisson
process, the expected number of failures during (0 , T ] is
given by H(T ) [46.3]. Thus, if Tk corresponds to the time
that the expected number of failures is k (k = 1 , 2 , . . . ),
so H(Tk) = k, we have

Tk∫

Tk−1

h(t)dt =1 or

Tk∫

0

h(t)dt = k

(k =1 , 2 , . . . ) . (46.4)

In particular, when F(t) is IFR,

Tk ≤ 1

h(Tk−1)
+Tk−1 (46.5)

In other words, the time where the expected number
of failures from Tk−1 is 1 is less than 1/h(Tk−1). Note
that the equations hold in (46.3) and (46.5) when F is
exponential.

From the above discussions, it is possible to estimate
that the time to the next failure, if it fails at time t, is
about 1/h(t).

The simplest way to prevent failure is to make sure
that the probability of failure is less than p(0 < p < 1);
in other words to compute a pth percentile point that sat-
isfies F(Tp)= p. Then, a unit will undergo replacement
at time Tp. Of course, we may consider this replacement
to be PM.

Another simple method of replacement is to bal-
ance the cost of replacement after failure against that
of replacement before failure. A cost c1 is incurred
for each failed unit and c2 (< c1) is incurred for each
operational unit. Then, we have c1 F(T ) = c2 F(T ), so
F(T ) = c2/(c1+ c2). We may compute a p[= c2/(c1+
c2)]th percentile point for the failure distribution F(t).

46.1.2 Age Replacement

Suppose that the operating record of a unit and its fail-
ure distribution F(t) are known, and that its failure rate
increases with operating time. In this case, if a unit is re-
placed by a new one, it is called age replacement. The
optimum policy for minimizing the expected cost rate is
discussed. If a unit is preventively maintained and be-
comes as good as new, this is called perfect PM [46.3].
The optimum policy for maximizing the availability is
discussed [46.2].

Suppose that a unit is replaced at failure or at a
planned time T (0 < T ≤∞), whichever occurs first.
Then the expected cost rate is [46.2]

C(T ) = c1 F(T )+ c2 F(T )
∫ T

0 F(t)dt
, (46.6)

where c1 is the cost of replacement at failure and c2 is
the cost of replacement at planned time T , with c2 < c1.
If T =∞, then the policy corresponds to replacement
upon failure, and the expected cost rate is C(∞)= c1/µ.

We find an optimum time T∗ which minimizes C(T )
in (46.6), provided the failure rate h(t) is strictly in-
creasing, with h(∞) ≡ limt→∞ h(t). Evidently, since
limT→0 C(T ) =∞, a positive T∗ (0 < T∗ ≤∞) must
exist. Differentiating C(T ) with respect to T and setting
it equal to zero, we have

h(T )

T∫

0

F(t)dt− F(T ) = c2

c1− c2
. (46.7)

It is easily to see that the left-hand side of (46.7)
strictly increases from 0 to h(∞)µ−1 because h(t)
strictly increases. Thus, if h(∞) > c1/[µ(c1−c2)], then
there is a finite and unique T∗ (0 < T∗ <∞) which
satisfies (46.7), and the expected cost rate is

C(T∗) = (c1− c2)h(T∗) . (46.8)

On the other hand, if h(∞)≤ c1/[µ(c1−c2)] then T∗ =
∞; in other words, the unit should be replaced at failure.

Next, the unit is repaired at failure or undergoes PM
before failure at planned time T (0 < T ≤∞), whichever
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occurs first. Then, the steady-state availability is

A(T ) =
∫ T

0 F(t)dt
∫ T

0 F(t)dt+β1 F(T )+β2 F(T )
, (46.9)

where β1 is the mean time of repair for a failed unit
and β2 is the mean time of PM for an operational unit at
time T withβ1 >β2. Thus, the policy that maximizes the
availability is the same one that minimizes the expected
cost C(T ) in (46.6), except that ci is replaced by βi
(i = 1 , 2).

46.1.3 Periodic Replacement

If a system consists of many kinds of compo-
nents and only its age is only known, it would
be wise to make planned maintenances at periodic
times kT (k = 1 , 2 , . . . ) (0 < T ≤∞). We consider
three periodic replacements in which a failed unit is
replaced, undergoes minimal repair or remains failed.

A new unit begins to operate at time t = 0, and
a failed unit is discovered instantly and replaced by a new
one. Further, a unit is replaced at the periodic time kT ,
whatever its age. Let M(t) be a renewal function of F(t),
so M(t) ≡∑∞

j=1 F( j)(t), where F( j)(t) ( j = 1 , 2 , . . . )
is the j-fold Stieltjes convolution of F(t) with itself
and F(0)(t) = 1 for t ≥ 0. Then, the expected cost rate
is [46.2],

C1(T ) = c1 M(T )+ c2

T
, (46.10)

where c1 is the cost of replacement at each failure.
We seek an optimum time T∗ which minimizes

the expected cost rate C1(T ) in (46.10). Differentiat-
ing C1(T ) with respect to T and setting it equal to zero
implies

Tm(T )−
T∫

0

m(t)dt = c2

c1
, (46.11)

where m(t) is the renewal density of M(t), so m(t) ≡
dM(t)/dt. This equation is a necessary condition for
a finite T∗, and in this case, the expected cost rate is

C1(T∗) = c1m(T∗) . (46.12)

Next, a unit is always replaced at times kT , but it is not
replaced at failure, and hence it remains a failure for the
time interval from its failure to its replacement. Then,
the expected cost rate is [46.1]

C2(T ) = c1
∫ T

0 F(t)dt+ c2

T
, (46.13)

where c1 is the cost for the time elapsed between the
failure and the replacement of the unit per unit of time.

Differentiating C2(T ) with respect to T and setting
it equal to zero,

TF(T )−
T∫

0

F(t)dt = c2

c1
. (46.14)

Thus, if µ > c2/c1 then an optimum and unique T∗
exists which satisfies (46.14), and the expected cost rate
is

C2(T∗) = c1 F(T∗) . (46.15)

Finally, a unit undergoes only minimal repair at fail-
ure; in other words its failure rate remains undisturbed
by minimal repair. Let H(t) be a cumulative hazard
function. Then, the expected cost rate is [46.2]

C3(T ) = c1 H(T )+ c2

T
, (46.16)

where c1 is the cost of minimal repair at failure. Differ-
entiating C3(T ) with respect to T and setting it equal to
zero,

Th(T )−
T∫

0

h(t)dt = c2

c1
. (46.17)

When the failure rate h(t) is strictly increasing, the left-
hand side of (46.17) is also strictly increasing. Thus,
if a solution T∗ exists to (46.17), it is unique and the
expected cost rate is

C3(T∗) = c1h(T∗) . (46.18)

46.2 Number-Dependent Maintenance

Most maintenance models are based on the continuous
time failure distributions shown in Sect. 46.1. How-
ever, the time to failure of a unit might be discrete;
in other words it can be measured by the number of

cycles of some kind (such as the number of rotations)
before failure. Units such as switching devices, rail-
road tracks, ball bearings and airplane tires fall into
this category. We would often choose to do this if
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the unit is used very frequently. In another case, the
exact instant of failure of a unit is not recorded; in-
stead the day or even year in which it occurred is
noted.

This section summarizes maintenance models where
the maintenance depends on the number of cycles com-
pleted by a property of the unit [46.4,5]. First, we convert
the standard replacement models from the previous sec-
tion into discrete time models. Second, we consider
the case where a unit is maintained preventively by
monitoring the number of occurrences of failure, pre-
ventive maintenance or repair. Thirdly, we consider a
parallel redundant system where the system is replaced
preventively if a specified number of units have failed.

46.2.1 Replacement Policies

Often, an operating unit cannot be replaced at the opti-
mum time for some reason, such as a shortage of spare
units, a lack of money or workers, and the inconvenience
of having the system out of operation when the unit is
replaced. Indeed, some units can only be replaced at idle
times: a weekend, month-end or year-end.

This section converts the standard age and periodic
replacement models in Sect. 46.1.2 and Sect. 46.1.3 into
discrete ones. Units are only replaced at times kT where
T (0 < T<∞) has been specified previously. The other
notations we use here are the same ones as those used in
Sect. 46.1.

Age Replacement
Only the total operating time of the unit is measured.
It is assumed that replacement can occur at times kT
(k = 1 , 2 , . . . ): replacement is only allowed in certain
time periods kT . A unit is replaced at time NT or at
failure, whichever occurs first, and failures are detected
immediately when they occur.

From (46.6), the expected cost rate is given by

C(N ) = c1 F(NT )+ c2 F(NT )
∫ NT

0 F(t)dt
(N = 1 , 2 , . . . ) .

(46.19)

We want to find an optimum number N∗ that minimizes
C(N ) when the failure rate h(t) is strictly increasing.
Forming the inequality C(N +1)−C(N ) ≥ 0, we have

F[(N +1)T ]− F(NT )
∫ (N+1)T

NT F(t)dt

NT∫

0

F(t)dt− F(NT ) ≥

c2

c1− c2
(N = 1 , 2 , . . . ) . (46.20)

It is easy to see that the left-hand side of (46.20) strictly
increases to h(∞)µ−1 because h(t) strictly increases.
Thus, if h(∞) > c1/[µ(c1−c2)] then a finite and unique
minimum N∗ (1≤ N∗ <∞) exists that satisfies (46.20).

On the other hand, if h(∞) ≤ c1/[µ(c1− c2)] then
N∗ =∞; in other words the unit should be replaced at
failure.

Table 46.1 shows Tp, T∗ and N∗ values for a given
c1/c2 ratio, where T = 1, F(Tp) = c2/(c1+ c2), and
F(t) = 1− exp(−t/100)2. This indicates that T∗ and
N∗ have similar values for a given c1/c2. Tp is less
than T∗ at small c1/c2, but Tp becomes a good approx-
imation to T∗ for large c1/c2. This shows that if the
replacement cost at time N∗T is lower that that at time
T∗, number-dependent maintenance is more useful that
time-dependent maintenance.

Periodic Replacement
Let’s assume that the unit is replaced at a time NT
and upon each failure, and that failures are detected
immediately. From (46.10), the expected cost rate is

C1(N ) = c1 M(NT )+ c2

NT
(N = 1 , 2 , . . . ) .

(46.21)

Forming the inequality C1(N +1)−C1(N )≥ 0 implies
that

NM[(N +1)T ]−(N +1)M(NT ) ≥ c2

c1

(N =1 , 2 , . . . ) .

Next, let’s suppose that a unit is replaced at time NT ,
but this time, if it fails, the unit is not replaced until the
next scheduled replacement time. Then, from (46.13),
the expected cost rate is

C2(N ) = c1
∫ NT

0 F(t)dt+ c2

NT
(N = 1 , 2 , . . . ) .

(46.22)

Table 46.1 Optimum T∗, N∗ for T = 1 and percentile Tp

when F(t) = 1− exp(−t/100)2

c1/c2 T∗ N∗ Tp

2 110 109 64

4 59 59 47

6 46 45 39

10 34 34 31

20 23 23 22

40 16 16 16

60 13 13 13

100 10 10 10
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Forming the inequality C2(N +1)−C2(N ) ≥ 0 implies
that

NT∫

0

F(t)dt−N

(N+1)T∫

NT

F(t)dt ≥ c2

c1

(N =1 , 2 , . . . ) . (46.23)

Since F(t) decreases to 0, the left-hand side of (46.23)
increases to µ. Thus, if µ > c2/c1, a finite and unique
minimum N∗ (1 ≤ N∗ <∞) exists which satisfies
(46.23).

Finally, a unit is replaced at time NT and undergoes
only minimal repair at failures between replacements.
Then, from (46.16), the expected cost rate is

C3(N ) = c1 H(NT )+ c2

NT
(N = 1 , 2 , . . . ) .

(46.24)

Forming the inequality C3(N +1)−C3(N ) ≥ 0 implies
that

NH[(N+1)T ]− (N +1)H(NT ) ≥ c2

c1

(N =1 , 2 , . . . ) . (46.25)

When the failure rate h(t) strictly increases to∞, the left-
hand side of (46.25) also strictly increases to ∞. In this
case, a finite and unique minimum N∗ (1 ≤ N∗ <∞)
exists which satisfies (46.25).

46.2.2 Number-Dependent Replacement

We now consider three replacement models where a unit
is replaced after a certain number of events (failures,
PMs, repairs).

Number of Failures
Consider the periodic replacement in which a unit is re-
placed at failure N (N = 1 , 2 , . . . ) after its installation,
and undergoes only minimal repair upon failure between
replacements [46.6,7]. The notation used is the same as
in Sect. 46.1.3. Then, the expected cost rate is

C(N ) = (N −1)c1+ c2∑N−1
j=0

∫∞
0 p j (t)dt

(N = 1 , 2 , . . . ) ,

(46.26)

where p j (t) ≡
{[H(t)] j/ j!}e−H(t) ( j = 0 , 1 , 2 , . . . )

represents the probability that j failures occur in an
interval (0 , t].

From the inequality C(N +1)−C(N )≥ 0, we have
∑N−1

j=0

∫∞
0 p j (t)dt

∫∞
0 pN (t)dt

−(N −1) ≥ c2

c1

(N =1 , 2 , . . . ) . (46.27)

When h(t) strictly increases, the left-hand side of (46.27)
also strictly increases, since

∫∞
0 pN (t)dt decreases to

1/h(∞) [46.7]. Thus, if h(∞) > c2/(µc1), a finite and
unique minimum N∗ exists which satisfies (46.27).

Number of PM Events
Assume that the unit undergoes PM at the planned times
kT (k = 1 , 2 , . . . ) and its operational age becomes x
units of time younger at each PM event, where both x
and T (0 ≤ x ≤ T ) are constant and have been specified
previously. Only minimal repair is performed when the
unit fails between replacements. Suppose that the unit
is replaced if it operates for the time interval NT . Then,
the expected cost rate is (from [46.5])

C(N ) =
1

NT

⎡
⎢⎣c1

N−1∑

j=0

T+ j(T−x)∫

j(T−x)

h(t)dt+ (N −1)c2+ c3

⎤
⎥⎦

(N = 1 , 2 , . . . ) ,

where c1 is the cost of the minimal repair, c2 is the cost
of PM, and c3 is the cost of replacement, with c3 > c2.

From the inequality C(N +1)−C(N )≥ 0, we have

N

T+N(T−x)∫

N(T−x)

h(t)dt−
N−1∑

j=0

T+ j(T−x)∫

j(T−x)

h(t)dt ≥ c3− c2

c1

(N = 1 , 2 , . . . ) . (46.28)

When h(t) strictly increases, the left-hand side of (46.28)
also strictly increases in N . Thus, if a finite N∗ which
satisfies (46.28) exists, it is unique and it minimizes
C(N ).

Number of Repairs
Consider a single unit which is repaired upon failure
and then returned to operation. It is assumed that the
unit begins to operate at time 0 and that it has a failure
distribution F1(t) with a finite mean µ1, and after the
( j−1)th repair ( j = 2 , 3 , . . . ), it has a new distribution
Fj (t) with a meanµ j , which is different and independent
from the previous Fj−1(t). The jth repair time has the
distribution G j (t) with a mean β j ( j = 1 , 2 , . . . ).

Part
E

4
6
.2



Statistical Models on Maintenance 46.2 Number-Dependent Maintenance 841

A unit is replaced by a new one upon failure N after
its installation; in other words, after the completion of
the (N−1)th repair, the unit is not repaired – it is simply
replaced with a new unit. Then, the expected cost rate
is, from [46.5]:

C(N ) = (N −1)c1+ c2∑N
j=1 µ j +∑N−1

j=1 β j

(N =1 , 2 , . . . ) , (46.29)

Here c1 is the cost of each repair and c2 is the cost of the
replacement.

From the inequality C(N +1)−C(N )≥ 0, we have
∑N+1

j=1 µ j +∑N
j=1 β j

µN +βN
− N ≥ c2

c1

(N = 1, 2, . . . ) . (46.30)

If µ j+1+β j > µ j+2+β j+1 ( j = 0 , 1 , 2 , . . . ) where
β0 ≡ 0 in other words the mean time of the cycle
from one failure to the next decreases with the num-
ber of failures – then the optimum number N∗ which
satisfies (46.30) is unique.

In particular, suppose that µ j+1 ≡ a j−1µ and β j ≡
β ( j = 1 , 2 , . . . ; 0 < a < 1). Then, if µ/β > (1−a)
(c2/c1), a finite and unique minimum N∗ exists which
minimizes C(N ).

46.2.3 Parallel System

Consider an n-unit parallel redundant system in which
the system is replaced if all units have failed. First, we
are interested in the number of units that is the most
economical [46.8].

Suppose that each unit has an identical failure distri-
bution F(t) with a finite mean µ. Then an n-unit parallel
system has a failure distribution of [F(t)]n , and so the
mean time to system failure is

∫∞
0 [1− F(t)n]dt. Thus,

the expected cost rate is

C(n) = nc1+ c2∫∞
0 [1− F(t)n]dt

(n = 1 , 2 , . . . ) ,

(46.31)

where c1 is the cost of one unit and c2 is the cost of the
replacement.

From the inequality C(n+1)−C(n) ≥ 0, we have
∫∞

0 [1− F(t)n]dt
∫∞

0 [F(t)n − F(t)n+1]dt
−n ≥ c2

c1

(n = 1 , 2 , . . . ) . (46.32)

It is easy to see that the left-hand side of (46.32) strictly
increases to ∞. A finite and unique minimum n∗ exists
which satisfies (46.32) and minimizes C(n).

In particular, when F(t) = 1− e−λt , n∗ is given by
a finite and unique minimum such that

(n+1)
n∑

j=1

1

j
−n ≥ c2

c1
.

Next, consider a parallel redundant system with n units
in which units fail through shock at a mean interval of θ.
It is assumed that the probability that an operating unit
fails at shock j is p j ( j = 1 , 2 , . . . ), depending on the
number of shocks.

The system is replaced preventively before failure
if the total number of failed units is N +1, N +2, . . . ,
n−1, or it is replaced if all units have failed; otherwise
it is left alone. Then, the expected cost rate is [46.8, 9]

C(N ) =
c2+ (c1− c2)

×
∑∞

j=1
∑N

r=0

(n
r

)[p( j)]n−r [P( j−1)]r
θ
∑∞

j=1 j
∑n

m=N+1

(n
m

)[1− P( j)]n−m

×
∑N

r=0

(m
r

)[p( j)]m−r [P( j−1)]r

(N = 0 , 1 , 2 , . . . , n−1) , (46.33)

where c1 is the cost of replacement for a failed system
and c2 is the cost of replacement for a system before
failure with c2 < c1, P( j) ≡∑ j

i=1 p(i) ( j = 1 , 2 , . . . )
and P(0) ≡ 0.

If n and p j are given, we can determine an opti-
mum number N∗ that minimizes the expected cost rate
C(N ) in (46.33) by comparing N = 0 , 1 , 2 , . . . , n−
1. If p j is a geometric distribution, so p j = pq j−1

( j = 1 , 2 , . . . ; q ≡ 1− p, 0 < p < 1), then

C(N ) =
c2+ (c1− c2)

∑N
r=0

(n
r

)
(−1)r pn−r

×
∑r

i=0(−1)i
[
1/(1−qn−i)

]

θ
∑N

r=0

(n
r

)
(−1)r

×
∑N−r

i=0

(n−r
i

) [
1/

(
1−qn−i

)]

(N = 0 , 1 , 2 , . . . , n−1) . (46.34)

In particular, when n = 2,

C(0) =
[
c1 p2+ c2

(
1− p2−q2

)]
/θ , (46.35)
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C(1) =c1

θ

1−q2

1+2q
. (46.36)

Thus, if c2/c1 < q/(1+2q), then the system is replaced

when one unit fails, and if c2/c1 ≥ q/(1+2q) then it
is replaced when two units have failed. Since q/(1+
2q) < 1/3, if c1 ≤ 3c2 then the system is replaced when
two units have failed.

46.3 Amount-Dependent Maintenance

Some units are maintained preventively by monitoring
their amount of wear, stress, fatigue, corrosion, erosion
and garbage. A typical model in this case is the “cumu-
lative damage model” or the “shock model”, in which
a unit fails when the cumulative amount of damage from
shocks has exceeded a particular failure level [46.10].

This section discusses the replacement policy for
a cumulative damage model where a unit is replaced
before failure at damage Z, or upon failure, whichever
occurs first. Then we consider the replacement policy for
the scenario where a unit undergoes minimal repair upon
failure. Optimum damage levels Z∗ which minimize
the expected cost rates are analytically derived for both
replacement policies. The methods and results in this
section can be applied to actual units by cmonitoring
their deterioration, and using this to decide which form
of maintenance is appropriate. If the amount of total
damage is proportional to the total operating time and
the number of uses, these correspond to the time- and
number-dependent maintenance models, respectively.

46.3.1 Replacement Policies

Consider a unit that should operate for an infinite time
span. It is assumed that shocks occur at time intervals
of Xi and that each shock causes an amount of damage
Wi to the unit. The total damage to the unit is additive.
A unit fails when the total damage has exceeded a failure
level K . Unit failure shoudl be avoided during actual
operation if it is costly or dangerous. In such situations,
it would be wise to replacement the unit or perform
preventive maintenance before failure, since it would be
less expensive.

It would be better to adopt the damage level as the
trigger for replacement if we know the total damage at
any time. We replace a unit before failure when the total
damage has exceeded a threshold level Z (0 ≤ Z ≤ K ).
That is, we can investigate the total damage immediately
after each shock occurs. If the total damage exceeds Z
and is less than K , we replace the unit before it fails.
If the total damage has exceeded K , it has failed and is
replaced; otherwise we leave it alone.

We denote that F(t) ≡ Pr(Xi ≤ t) and G(x) ≡
Pr(Wi ≤ x) (i = 1 , 2 , . . . ), where θ ≡ E(Xi ) <∞ and
β ≡ E(Wi ) <∞. Therefore, the expected cost rate is
(from [46.11]):

C(Z) = c2

θ[1+M(Z)] +
(c1− c2)

θ[1+M(Z)]

×
{

1−G(K )+
Z∫

0

[1−G(K − x)] dM(x)
}
,

(46.37)

where c1 is the cost of replacement at failure level K , c2
is the cost of replacement at threshold level Z with c2 <

c1, and M(x)≡∑∞
j=1 G( j)(x) represents the number of

shocks expected before the total damage exceeds x. It is
evident that

C(0) = {c1[1−G(K )]+ c2G(K )}/θ ,
C(∞) = c1

θ[1+M(K )] .

We find an optimum threshold level Z∗ which minimizes
the expected cost rate C(Z). Differentiating C(Z) with
respect to Z and setting it equal to zero,

K∫

K−Z

[1+M(K − x)]dG(x) = c2

c1− c2
. (46.38)

The left-hand side of (46.38) strictly increases from 0 to
M(K ). Thus, if M(K ) > c2/(c1− c2) then a finite and
unique Z∗ (0 < Z∗ < K ) exists which satisfies (46.38),
and the expected cost rate is

C(Z∗) = (c1− c2)[1−G(K − Z∗)]/θ . (46.39)

On the other hand, if M(K )≤ c2/(c1−c2) then Z∗ = K ,
so the unit should be replaced after failure.

Also, if the unit is replaced upon failure, at damage
Z, at time T or upon shock number N (whichever occurs
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first), the expected cost rate is

C(Z, T, N ) =
(

c2+ (c1− c2)
N−1∑

j=0

F( j+1)(T )

×

Z∫

0

[1−G(K− x)]dG( j)(x)

+ (c3− c2)
N−1∑

j=0

[
F( j)(T )− F( j+1)(T )

]
G( j)(Z)

+ (c4− c2)F(N )(T )G(N )(Z)

)

×

( N−1∑

j=0

G( j)(Z)

T∫

0

[
F( j)(t)− F( j+1)(t)

]
dt

)−1

,

where c3 is the cost of replacement at time T and c4 is
the cost of replacement at shock N .

46.3.2 Replacement with Minimal Repair

Suppose that a unit fails with probability p(z) upon
each shock (z is the total damage), where p(0) ≡ 0
and p(∞) = 1 [46.12], and that the unit undergoes only
minimal repair upon failure. Further, a unit is replaced
upon damage Z, at time T or upon shock number N
(whichever occurs first). Therefore, the expected cost
rate is (from [46.13]):

C(Z, T, N ) =
c1
∑N−1

j=1 F( j)(T )
∫ Z

0 p(z)dG( j)(z)

+c2
∑N

j=1 F( j)(T )
[
G( j−1)(Z)−G( j)(Z)

]

+c3
∑N−1

j=0

[
F( j )(T )− F( j+1)(T )

]
G( j )(Z)

+c4 F(N )(T )G(N )(Z)
∑N−1

j=0 G( j)(Z)
∫ T

0

[
F( j)(t)− F( j+1)(t)

]
dt

,

(46.40)

where c1 is the cost of minimal repair upon failure, c2 is
the cost of replacement upon damage Z, c3 is the cost of

replacement at time T , and c4 is the cost of replacement
upon shock N .

The expected cost rate when a unit is only replaced
at damage Z is

C(Z) ≡ lim
T→∞
N→∞

C(T, N, Z)

=c1
∫ Z

0 p(x)dM(x)+ c2

θ[1+M(Z)] . (46.41)

Differentiating C(Z) with respect to Z and setting it
equal to zero, we have

Z∫

0

[1+M(x)]dp(x) = c2

c1
(46.42)

which strictly increases in Z when p(x) strictly in-
creases. Thus, if a solution satisfying (46.42) exists then
it is unique.

In particular, when p(x) = 1− e−sx for s > 0,
∞∫

0

[1+M(x)]dp(x) = 1

1−G∗(s)
,

where G∗(s) is the Laplace–Stieltjes transform of G(x).
Therefore, if 1/[1−G∗(s)]> c2/c1, then a finite and
unique Z∗ exists which satisfies (46.42), and the ex-
pected cost rate is c1 p(Z∗). On the other hand, if
1/[1−G∗(s)] ≤ c2/c1 then Z∗ =∞ and C(∞)= c1/θ.

Similarly,

C(T ) ≡ lim
N→∞
Z→∞

C(T, N, Z)

= c1
∑∞

j=1 F( j)(T )
∫∞

0 p(z)dG( j)(z)+ c3

T
,

(46.43)

C(N ) ≡ lim
T→∞
Z→∞

C(T, N, Z)

= c1
∑N−1

j=1

∫∞
0 p(z)dG( j)(z)+ c4

θN
. (46.44)

We can discuss the optimum T∗ and N∗, which minimize
the expected cost rates C(T ) and C(N ), respectively.

46.4 Other Maintenance Models

We now introduce two maintenance models that are
interesting statistically. One is the repair limit pol-
icy and the other is inspection with human errors.

Further, we give an example of the practical appli-
cation of a maintenance policy, for a phased array
radar.
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46.4.1 Repair Limit Policy

In the previous sections, we have dealt with replacement
and PM policies in which a unit undergoes maintenances
at time T or upon failure (whichever occurs first). One
alternative, considered here, is to repair a failed unit if
the repair time is short but to replace it if the repair time
is long. That is, if the estimated repair time of a failed
unit is greater than a specified time T , which is called
the repair limit time, then it is replaced.

It is assumed that the repair time has a general
distribution G(t) with a finite mean β. Let c1 be the re-
placement cost of the failed unit and cr(t) be the expected
repair cost during (0, t] when the failed unit undergoes
repair. Suppose that when the unit fails, its repair time is
estimated. If the repair time is estimated to be less than
T , it is repaired; otherwise it is replaced. The expected
cost rate is, from [46.14],

C(T ) = c1G(T )+∫ T
0 cr (t)dG(t)

µ+∫ T
0 t dG(t)

. (46.45)

Evidently

C(0) = c1/µ ,

C(∞) =
∫∞

0 cr (t) dG(t)

µ+β
.

In particular, when cr (t) = ct, the expected cost rate is

C(T ) = c1G(T )+ c
∫ T

0 t dG(t)

µ+∫ T
0 t dG(t)

. (46.46)

Differentiating C(T ) with respect to T and setting it
equal to zero, we have

µc

c1
= µ+∫ T

0 G(t)dt

T
(46.47)

whose right-hand side strictly decreases from ∞ to 0.
Thus, a finite and unique optimum repair limit time T∗
exists which satisfies (46.47).

46.4.2 Inspection with Human Errors

Suppose that an operating unit is checked at times kT
(k = 1 , 2 , . . . ) for 0 < T <∞, and that failed units
are detected only through inspection and are then re-
placed. Now, two types of human error can occur
when the standby unit is checked at periodic times kT
(k = 1 , 2 , . . . ) [46.15]:

1. Type I human error: The operational unit is judged
to have failed.

2. Type II human error: The failed unit is judged to be
operational.

It is assumed that the probabilities of type I and type II
errors occurring are, respectively, p1 and p2, where 0≤
p1+ p2 < 1. In this case, the number of inspections
needed to detect and replace a failed unit is

∞∑

j=0

j p2
j−1(1− p2) = 1

1− p2
.

Consider one cycle from time t = 0 to the time when
a failed unit is detected by perfect inspection or a good
unit is replaced in a type I error, whichever occurs first.
Let c1 be the cost of each inspection and c2 be the cost of
the lost operational time elapsed between a failure and
its detection per unit of time. Then, the total expected
cost of one cycle is

C(T ) =
∞∑

j=0

(1− p1) j

⎧
⎪⎨

⎪⎩

( j+1)T∫

jT

[
c1

(
j+ 1

1− p2

)

+c2

(
jT + T

1− p2
− t

)]
dF(t)

+ p1c1( j+1)F(( j+1)T )

⎫
⎪⎬

⎪⎭

= (c1+ c2T )

{
1

1− p2

∞∑

j=0

(1− p1) j

[
F( jT )− F(( j+1)T )

]

+
∞∑

j=0

(1− p1) j F[( j+1)T ]
}

− c2

∞∑

j=0

(1− p1) j

( j+1)T∫

jT

F(t)dt . (46.48)

When p1 = p2 = 0 (the inspection is perfect), the ex-
pected cost is

C(T ) = (c1+ c2T )
∞∑

j=0

F( jT )− c2µ (46.49)

which agrees with that of the standard inspection pol-
icy [46.1].

In particular, when F(t) = 1− e−λt , the expected
cost can be rewritten as

C(T ) =(c1+ c2T )

(
1− e−λT

)
/(1− p2)+ e−λT

1− (1− p1)e−λT

− c2

λ

1− e−λT

1− (1− p1)e−λT
. (46.50)
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Differentiating C(T ) with respect to T and setting it
equal to zero,

eλT −1

λ
[1− p2(1− p1)e−λT ]− (1− p1− p2)T

= c1

c2
(1− p1− p2) . (46.51)

It is evident that the left-hand side of (46.51) strictly
increases from 0 to ∞. Therefore, a finite and unique
T∗ exists which satisfies (46.51).

46.4.3 Phased Array Radar

Finally, we consider an example scenario of the main-
tenance of a phased array radar (PAR) [46.16]. A PAR
consists of a large number of small and homogeneous
elements, and it steer the electromagnetic wave used for
detection by shifting the signal phases of waves that are
radiated from these individual elements [46.17].

Keithely [46.18] showed that the maintenance model
applied to a PAR with 1024 elements had a strong in-
fluence on its availability. Heresh [46.19] discussed the
following three maintenance models for a PAR in which
all failed elements were detected immediately, calcu-
lated the average time to failures of the equipment, and
derived its availability:

1. Immediate maintenance: Failed elements are de-
tected, localized and replaced immediately.

2. Cyclic maintenance: Failed elements are detected,
localized and replaced periodically.

3. Delayed maintenance: Failed elements are detected
and localized periodically, and replaced when they
have exceeded a prespecified managerial number.

In real world scenarios, immediate maintenance is rarely
adopted because frequent maintenance degrades the
availability of the system. Cyclic or delayed mainten-
ance are the most common approaches.

In this section, we investigate the periodic detection
of failed elements of the PAR. The PAR consists of N0
elements, and failures are detected at periodic times kT
(k = 1 , 2 , . . . ) for a given T (0 < T<∞). If the number
of failed elements has exceeded a failure number n (0 <

n ≤ N0), the PAR cannot maintain the required level of
radar performance, resulting in operational errors such
as target oversight

Cyclic Maintenance
We consider the following cyclic maintenance of the
PAR:

1. The PAR consists of N0 elements which have an
identical constant failure rate λ0. The number of
failed elements during (0 , t] has a binomial distri-
bution with a mean N0[1− exp(−λ0t)]. Since N0 is
large and λ0 is very small, it can be assumed that
failures occur approximately according to a Pois-
son process with a mean λ≡ N0λ0. That is, the
probability that j failures occur during (0 , t] is

p j (t) ≡ (λt) j

j! e−λt ( j = 0 , 1 , 2 , . . . ) .

2. When the number of failed elements has exceeded
a failure number n, the PAR cannot maintain the
required level of radar performance.

3. Failed elements are checked at periodic times kT
(k = 1, 2, . . . ), and the checking time is negligible.

4. Failed elements are replaced by new ones at time
KT (K = 1, 2, . . . ) or at the time when they exceed
n, whichever occurs first.

We now introduce some costs. Cost c1 is the replacement
cost of one failed element; c2 is the cost of the opera-
tional loss during replacement, and c3 is the cost of the
degradation of radar performance per unit time. Then,
the expected cost to replace the failed element is [46.16]

n−1∑

j=0

( jc1+ c2)p j (KT )+
K∑

k=1

n−1∑

j=0

p j [(k−1)T ]

×
∞∑

i=n− j

⎧
⎪⎨

⎪⎩
[(i+ j)c1+ c2]pi (T )

+c3

kT∫

(k−1)T

(kT − t)dpi [t− (k−1)T ]

⎫
⎪⎬

⎪⎭

= c2+ c1λT
K−1∑

k=0

n−1∑

j=0

p j (kT )+ c3

λ

K−1∑

k=0

n−1∑

j=0

p j (kT )

×
∞∑

i=n− j

(i+ j−n)pi (T )

and the mean time to replace the element is
n−1∑

j=0

(KT )p j (KT )+
K∑

k=1

n−1∑

j=0

p j [(k−1)T ]

×
∞∑

i=n− j

(kT )pk(T )

= T
K−1∑

k=0

n−1∑

j=0

p j (kT ) .
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Thus, the expected cost is

C1(K ) = c1λ

+ c2

T
∑K−1

k=0
∑n−1

j=0 p j (kT )

+ (c3/λ)

T
∑K−1

k=0
∑n−1

j=0 p j (kT )

×
K−1∑

k=0

n−1∑

j=0

p j (kT )
∞∑

i=n− j

(i+ j−n)pi (T ) ,

(K = 1 , 2 , . . . ) . (46.52)

We seek an optimum number K∗ which minimizes
(46.52). From the inequality C1(K +1)−C1(K ) ≥ 0,
we have

K−1∑

k=0

n−1∑

m=0

pm(kT )
n−1∑

j=0

p j (KT )
∞∑

i=n− j

(i+ j−n)pi (T )

−
K−1∑

k=0

n−1∑

j=0

p j (kT )
∞∑

i=n− j

(i+ j−n)pi (T ) ≥ λc2

c3
,

(K = 1 , 2 , . . . ) . (46.53)

Denoting the left-hand side of (46.53) by Q1(K ), it is
clear that Q1(K ) increases to Q1(∞) in K . Thus, if
Q1(∞) > λc2/c3 then a finite and unique minimum K∗
exists which satisfies (46.53).

Delayed Maintenance
We now consider a delayed maintenance model for the
PAR, which is similar to the model before, but:

4. Failed elements are replaced by new ones only when
they have exceeded a managerial number N (N ≤ n).

Other assumptions are the same as the ones used for
cyclic maintenance.

The expected cost to replace the element is [46.16]

∞∑

k=1

N−1∑

j=0

p j [(k−1)T ]
n− j+1∑

i=N− j

[(i+ j)c1+ c2]pi (T )

+
∞∑

k=1

N−1∑

j=0

p j [(k−1)T ]
∞∑

i=n− j

⎧
⎪⎨

⎪⎩
[(i+ j)c1+ c2]

×pi (T )+ c3

kT∫

(k−1)T

(kT − t)dpi [t− (k−1)T ]

⎫
⎪⎬

⎪⎭

= c2+ c1λT
∞∑

k=0

N−1∑

j=0

p j (kT )+ c3

λ

∞∑

k=0

N−1∑

j=0

p j (kT )

×
∞∑

i=n− j

(i+ j−n)pi (T )

and the mean time to replacement is

∞∑

k=1

N−1∑

j=0

p j [(k−1)T ]
n− j+1∑

i=N− j

(kT )pi (T )

+
∞∑

k=1

N−1∑

j=0

p j [(k−1)T ]
∞∑

i=n− j

(kT )pi (T )

= T
∞∑

k=0

N−1∑

j=0

p j (kT ) .

Thus, the expected cost rate is

C2(N ) =
c1λ+ c2

T
∑∞

k=0
∑N−1

j=0 p j (kT )

+ (c3/λ)

T
∑∞

k=0
∑N−1

j=0 p j (kT )

×
∞∑

k=0

N−1∑

j=0

p j (kT )
∞∑

i=n− j

(i+ j−n)pi (T )

(N = 1 , 2 , . . . , n) . (46.54)

We seek an optimum number N∗ which minimizes
(46.54). From the inequality C2(N +1)−C2(N ) ≥ 0,
we have

∞∑

k=0

N−1∑

j=0

p j (kT )
∞∑

i=1

i[pn+i−N (T )− pn+i− j (T )] ≥

λc2

c3
(N = 1 , 2 , . . . , n) . (46.55)

Denoting the left-hand side of (46.55) by Q2(N ), it is
clear that Q2(N ) increases to Q2(∞) in N . Therefore,
if Q2(∞) > λc2/c3 then a finite and unique minimum
N∗ exists which satisfies (46.55).

We now show a numerical example for when
c1 = 0, because it does not affect K∗ and N∗. Ta-
ble 46.2 gives the optimum numbers K∗ and N∗ and
the expected costs C1(K∗) and C2(N∗) for T = 24,
48, 72, . . . , 168 h and λ0 = 1, 2, 3, . . . , 10 × 10−4 h,
when N0 = 1000, n = 100 and c2 = c3 = 1. Table 46.2
indicates that both K∗ and N∗ decrease when T
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Table 46.2 Optimum replacement number K∗, failed element number N∗, and the expected costs C1(K∗) and C2(N∗)

λ0 T K∗ K∗T C1(K∗) N∗ C2(N∗) C1(K∗)/C2(N∗)

24 31 744 1.38 × 10−3 93 1.07 × 10−3 1.29

48 15 720 1.41 × 10−3 89 1.10 × 10−3 1.28

72 10 720 1.42 × 10−3 86 1.13 × 10−3 1.26

1 × 10−4 96 7 672 1.49 × 10−3 83 1.16 × 10−3 1.28

120 6 720 1.42 × 10−3 80 1.18 × 10−3 1.20

144 5 720 1.42 × 10−3 77 1.21 × 10−3 1.17

168 4 672 1.49 × 10−3 74 1.24 × 10−3 1.20

2 × 10−4 16 384 2.75 × 10−3 90 2.19 × 10−3 1.26

3 × 10−4 11 264 4.19 × 10−3 87 3.34 × 10−3 1.25

4 × 10−4 8 192 5.41 × 10−3 85 4.54 × 10−3 1.19

5 × 10−4 6 144 6.98 × 10−3 82 5.77 × 10−3 1.21

6 × 10−4 24 5 120 8.36 × 10−3 80 7.03 × 10−3 1.19

7 × 10−4 5 120 1.04 × 10−2 77 8.34 × 10−3 1.25

8 × 10−4 4 96 1.06 × 10−2 75 9.69 × 10−3 1.09

9 × 10−4 3 72 1.39 × 10−2 73 1.10 × 10−2 1.26

10 × 10−4 3 72 1.39 × 10−2 71 1.26 × 10−2 1.10

and λ0 increase. It is interesting that the value of
K∗T are approximately 720 h when λ0 = 1 × 10−4. In
this example, C1(K∗) is always greater than C2(N∗)
and C1(K∗)/C2(N∗) ≈ 1.2. Therefore, in this case it
is clear that delayed maintenance is more efficient
than cyclic maintenance from an economic point of
view.

Up to now, we have only discussed the best policies
for minimizing costs, without considering another im-
portant factor: the availability of the system. To finish
this chapter, we now obtain the availabilities for these
two maintenance models. Let T0 be the time required for
checks at times kT (k = 1 , 2 , . . . ) and T1 be the time
required for each replacement that occurs at time kT
when the number of failed elements exceeds a failure
number n or a managerial number N . Then, in a simi-
lar way to the way that the expected costs were derived,
we can obtain the availabilities. For cyclic maintenance,

the availability is given by

A1(K ) =
T
∑K−1

k=0
∑n−1

j=0 p j (kT )− (1/λ)

×
∑K−1

k=0
∑n−1

j=0 p j (kT )
∑∞

i=n− j (i+ j−n)pi (T )

T1+ (T +T0)
∑K−1

k=0
∑n−1

j=0 p j (kT )
,

(K = 1 , 2 , . . . ) (46.56)

and for delayed maintenance it is given by

A2(N ) =
T
∑∞

k=0
∑N−1

j=0 p j (kT )− (1/λ)
∑∞

k=0
∑N−1

j=0 p j (kT )
∑∞

i=n− j (i+ j−n)pi (T )

T1+ (T +T0)
∑∞

k=0
∑N−1

j=0 p j (kT )

(N = 1 , 2 , . . . , n) . (46.57)
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Part F contains eight chapters and focuses on appli-
cations in engineering statistics. The first chapter in
this part, Chapt. 47, introduces the essential mathe-
matical techniques and financial economic concepts
that are used to assess the risks of and deal with as-
set pricing, and the maximum-entropy approach for
calculating an approximate risk-neutral distribution.
Chapter 48 concentrates on demand-forecasting prob-
lems and their applications in industry. It also reviews
various common forecasting methods and discusses
models that are used to obtain the optimal stock
level for spare parts based on some industrial ap-
plications. Chapter 49 introduces various approaches
including arithmetic and geometric processes to model
sequential data with and without trends as alterna-
tive ways to model maintenance problems better. The
chapter also introduces repair–replacement models
for a deteriorating system based on an arithmetico-
geometric process. Chapter 50 focuses on Six Sigma
and highlights several methodologies and techniques
for product development and service design as well
as the core methodologies of Six Sigma. The chap-
ter also includes a real case study on printed circuit
boards to illustrate the application of Six Sigma.

Chapter 51 discusses multivariate modeling with
copulas and its applications in engineering. The
chapter describes the concept and classes of cop-
ulas, such as elliptical and Archimedean copulas,
and statistical inferences of copula-based connec-
tions to multivariate distributions given by the data.
Chapter 52 focuses on the application of queuing the-
ory to communication systems. The chapter details
theoretical and practical aspects of analyzing the
traffic-flow control and load-balancing problems
in order to reduce congestion and improve load
balancing in modern communication systems.
Chapter 53 describes the basic principles of
support-vector machines for constructing classifica-
tion and the development of nonlinear regression
prediction models for data modeling using support-
vector machine algorithms. Finally, Chapt. 54
focuses on the presentation of various spares-
optimization models and the importance of
optimal system design. The chapter describes
the detailed formulation of cost-effective mod-
els for repairable and nonrepairable systems
and the solution techniques and algorithms
used for obtaining optimal design solutions.
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Risks and Ass47. Risks and Assets Pricing

This chapter introduces the basic elements of
risk and financial assets pricing. Asset pricing is
considered in two essential situations, complete
and incomplete markets, and the definition
and use of a number of essential financial
instruments is described. Specifically, stocks
(as underlying processes), bonds and derivative
products (and in particular call and put European
and American options) are considered. The intent
of the chapter is neither to cover all the many
techniques and approaches that are used in asset
pricing, nor to provide a complete introduction to
financial asset pricing and financial engineering.
Rather, the intent of the chapter is to outline
through applications and problems the essential
mathematical techniques and financial economic
concepts used to assess the value of risky assets.
An extensive set of references is also included
to direct the motivated reader to further and
extensive research in this broad and evolving
domain of economic and financial engineering
and mathematics that deals with asset pricing.
The first part of the chapter (The Introduction
and Sect. 47.1) deals with a definition of risk
and outlines the basic terminology used in asset
pricing. Further, some essential elements of the
Arrow–Debreu framework that underlies the
fundamental economic approach to asset pricing
are introduced. A second part (Sect. 47.2), develops
the concepts of risk-neutral pricing, no arbitrage
and complete markets. A number of examples
are used to demonstrate how we can determine
a probability measure to which risk-neutral
pricing can be applied to value assets when
markets are complete. In this section, a distinction
between complete and incomplete markets is also
introduced. Sections 47.3, 47.4 and 47.5 provide
an introduction to and examples of basic financial
approaches and instruments. First, Sect. 47.3,
outlines the basic elements of the consumption
capital asset-pricing model (with the CAPM stated
as a special case). Section 47.4 introduces the
basic elements of net present value and bonds,
calculating the yield curve as well as the term

structure of interest rates and provides a brief
discussion of default and rated bonds. Section 47.5
is a traditional approach to pricing of options
using the risk-neutral approach (for complete
markets). European and American options are
considered and priced by using a number of
examples. The Black–Scholes model is introduced
and solved, and extensions to option pricing
with stochastic volatility, underlying stock prices
with jumps as well as options on bonds are
introduced and solved for specific examples.
The last section of the chapter focuses on
incomplete markets and an outline of techniques
that are used in pricing assets when markets
are incomplete. In particular, the following
problems are considered: the pricing of rated
bonds (whether they are default-prone or
not), engineered risk-neutral pricing (based
on data regarding options or other derivatives)
and finally we also introduce the maximum-
entropy approach for calculating an approximate
risk-neutral distribution.
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47.1.1 Key Terms................................. 853
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47.2 Rational Expectations, Risk-Neutral
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Risk results from the direct and indirect adverse conse-
quences of outcomes and events that were not accounted
for or that we were ill prepared for, and concerns their
effects on individuals, firms, financial markets or soci-
ety at large. It can result from many reasons, internally,
externally and strategically induced or resulting from
risk externality – namely, when all costs or benefits are
not incorporated by the market in the price of the as-
set, the product or the service received. A definition
of risk involves several factors including: (i) conse-
quences, (ii) their probabilities and their distribution,
(iii) individual preferences, (iv) collective preferences
and (v) sharing, contracts or risk-transfer mechanisms.
These are relevant to a broad number of fields as well,
each providing a different approach to the measurement,
the valuation and the management of risk which is moti-
vated by psychological needs and the need to deal with
problems that result from uncertainty and the adverse
consequences they may induce [47.1, 2]. In this chapter
we are primarily concerned with risk and pricing and
specifically financial assets pricing.

The definition of risk, risk measurement, risk pric-
ing and risk management are intimately related, one
feeding the other to determine the proper levels of
risks that an individual seeks to sustain and the mar-
ket’s intended price [47.3–6]. Financial asset pricing has
sought primarily to determine approaches and mecha-
nisms for market pricing of these risks while financial
risk management and engineering are concerned with
the management of financial risks, seeking on the one
hand to price private risks and on the other respond-
ing to the managerial finance considerations that these
risks entail. Financial risk management, for example,
deals extensively with hedging problems in order to re-
duce the risk of a particular portfolio through a trade
or a series of trades, or contractual agreements reached
to share and induce an efficient risk allocation by the
parties involved [47.1, 7–12]. To do so, a broad set of

financial instruments were developed, including bonds
of various denominations, options of various types etc.,
in some cases broadly traded, thereby allowing a mar-
ket mechanism to price these risks. For example, by
a judicious use of options, contracts, swaps, insurance
and investment portfolios etc. risks can be brought
to bearable economic costs and shared by the par-
ties involved in market transactions. These tools are
not costless however, and require a careful balancing
of the numerous factors that affect risk, the costs of
applying these tools and a specification of tolerable
risk. For example, options require that a premium be
paid to limit the size of losses just as the insured are
required to pay a premium to buy an insurance con-
tract to protect them in case of unforeseen accidents,
theft, diseases, unemployment, fire, etc. For this rea-
son, private tools such as portfolio investment strategies,
value at risk ([47.13–18] based on a quantile risk mea-
surement providing an estimate of risk exposure) are
used to manage individual risks. Financial engineer-
ing in particular has devoted a substantial attention
to reconciling the management of individually priced
risks and market-priced risks such that risks can be
managed more efficiently. These concerns also reflect
the basic approach of finance and the use of financial
instruments, currently available through brokers, mu-
tual funds, financial institutions, commodity and stock
derivatives etc., which are motivated by three essential
reasons [47.19–25]:

• To price the multiplicity of claims, accounting for
risks and dealing with the adverse effects of uncer-
tainty or risk (that can be completely unpredictable,
partly or wholly predictable)• To explain and account for investors’ behavior. To
counteract the effects of regulation and taxes by firms
and individual investors (who use a wide variety
of financial instruments to bypass regulations and

Part
F

4
7



Risks and Assets Pricing 47.1 Risk and Asset Pricing 853

increase the amount of money investors can make
while reducing the risk they sustain).• To provide a rational framework for individuals’ and
firms’ decision-making and to suit investors needs in
terms of the risks they are willing to assume and pay
for.

Financial instruments deal with uncertainty and the man-
agement of the risks they imply in many different ways.
Some instruments merely transfer risk from one pe-
riod to another and in this sense they reckon with the
time phasing of events. One of the more important as-
pects of such instruments is to supply immediacy – i. e.
the ability not to wait for a payment. Other instru-
ments provide spatial diversification (in other words
the distribution of risks across independent investments,
classes or geography) and liquidity. By liquidity, we
mean the cost to convert instantly an asset into cash at
its fair price. This liquidity is affected both by the ex-
istence of a market (in other words, buyers and sellers)
as well as the cost of transactions associated with the
conversion of the asset into cash. As a result, essen-
tial financial risks include: (a) market-industry specific
risks and (b) term structure – currency–liquidity risks.
Throughout these problems financial engineering pro-
vides a comprehensive set of approaches, techniques
and tools that seek to bridge the gap between the-
ory and practice, between individual preferences and

market pricing and seeks to provide numerical and
computer-aided techniques that respond to the needs of
individual investors and financial institutions. Further, it
recognizes the centrality of money in decision-making
processes: making money, not losing it and protecting
investors from adverse consequences. To do so, asset
pricing (valuation), forecasting, speculating and risk re-
duction through fundamental analysis, trading (hedging)
are essential activities of traders, bankers and investors
alike. Financial engineering, for example, deals exten-
sively with the construction of portfolios, consisting
of assets of broadly defined risk–return characteris-
tics, derivatives assets etc. with risk profiles desired
by individual investors [47.20, 26–38]. For these rea-
sons, risk and financial engineering are applied not only
to financial decision-making. Applications to engineer-
ing project valuation, management science, engineering
risk economics and so on, are a clear indication of the
maturity and the usefulness of financial asset pricing,
financial engineering and financial risk management.
The purpose of this chapter is to outline and explain
the salient factors of these continually renewed and
expanding fields of research and applications of as-
set pricing. At the same time we shall seek to bridge
the gap between theory and practice while maintain-
ing a mathematical level accessible to typical finance,
risk, management and engineering students familiar with
basic notions in probability and stochastic processes.

47.1 Risk and Asset Pricing

Asset pricing, broadly, seeks to reduce assets to the
identification of state prices, a notion that Arrow has
coined, and from which any security has an implied
value as the weighted sum of its cash flows, state by
state, time by time, with weights given by the associ-
ated state prices [47.19, 38, 39]. Such state prices may
therefore be viewed as the marginal rates of substitu-
tion among state-time consumption opportunities, for
an unconstrained investor, with respect to a numeraire
good [47.23]. We shall focus first on complete markets,
where state prices that make it possible to uniquely value
assets do exist. Issues and topics relating to incomplete
markets, stochastic volatility etc., are discussed as well.
However, this is far too important and far too broad a field
to be treated in this chapter’s space. We begin by out-
lining some key terms commonly used in the language
of asset pricing. A more explicit and detailed outline of
such terms can be found in Duffie [47.22, 23], Karatzas

and Shreve [47.40, 41]. We shall also outline the basic
ideas of the Arrow–Debreu framework which underlies
asset pricing.

47.1.1 Key Terms

In most financial models of asset pricing we use a set of
statesΩ, with associated probabilities to characterize the
model underlying uncertainty. Such a set may be finite
or infinite. A set of events is then expressed by I, also
called a tribe and by some a σ-algebra. I is a collection
of subsets of Ω that can be assigned a probability P(A)
denoting the probability of a specific event A. In an inter-
temporal framework defined by the dates 0, 1, . . . ,T+1,
there is at each date a tribe It ⊂ I, corresponding to the
events based on the information available at that time t.
Any event in It is known at time t to be true or false. The
convention It ⊂ Is, t ≤ s is used at all times, meaning
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that events are never forgotten and therefore information
accessed over time provides ever expanding knowledge.
For simplicity, we let events in I0 have probability 0 or 1,
meaning that there is no information at time t=0. A filtra-
tion is defined by Φ = {I0, I1, I2, . . . , IT }, sometimes
called an information structure, representing how infor-
mation is revealed over time. For any random variable Y ,
we thus use at time t, Et(Y ) = E(Y

∣∣It), to denote the
conditional expectation of Y given It . For notational
simplicity, we also let Y = Z for any two random vari-
ables Y and Z, if the probability that Y �= Z is zero
(for a review of essential elements in probability see for
example, [47.42–48]).

An adapted process, defined by a sequence
X = {X0, X1, X2, . . . , XT } such that, for each t, Xt
is a random variable with respect to (Ω, It) means,
informally, that Xt is observable at time t. An impor-
tant characteristic of such processes in asset pricing is
that an adapted process X is a martingale if, for any
times t and s > t, we have Et(Xs) = Xt . For example,
if the conditional expectation of an asset price equals
the currently observed price, then the adapted price pro-
cess is a martingale. For this reason, important facets
of financial asset pricing revolve around the notion of
martingales. Another term of importance we use with re-
spect to stochastic price processes is non-anticipating.
This means that, for any time t < s the function (price) is
statistically independent of the future uncertainty, or the
current price is independent of the future Wiener pro-
cess W(s)−W(t). These mathematical properties are
extremely useful in proving basic results in the theoret-
ical analysis of financial markets. However, in practice,
underlying processes might not be martingales and fur-
ther be anticipative processes. Of course, this will also
imply a temporal dependence and our theoretical and
financial constructs may be violated.

A security is a claim to an adapted (and non-
anticipating) dividend process, say D, with Dt denoting
the dividend paid by the security at time t. Each security
has an adapted security-price process S, so that St is the
price of the security, ex dividend, at time t. That is, at
each time t, the security pays its dividend Dt and is then
available for trade at price St . This convention implies
that D0 plays no role in determining ex-dividend prices.
The cum-dividend security price at time t is St +Dt .
A trading strategy is an adapted process n in R

N . Here,
nt represents the portfolio held after trading at time t.
The dividend process Dn generated by a trading strategy
n is thus defined by Dn

t = nt−1(St−1+Dt)−nt St with
n−1 taken to be zero by convention. Consider a portfolio
that invests wealth in the security and in a bond Bt−1;

and say that at time t−1, the portfolio wealth state is
given by:

Xn,m
t−1 = nt−1St−1+mt−1 Bt−1 .

We then state that a strategy is said to be self-financing
if:

Xn,m
t − Xn,m

t−1 = nt−1 (St − St−1)

+mt−1 (Bt − Bt−1) .

For example, a bonds-only strategy is defined by
nt−1 = 0, while buy-and-hold (long) strategies (that do
not depend on time) imply that nt−1 = n > 0. A short
position is defined when nt−1 < 0. Finally, a strategy
consisting of maintaining a constant proportion of our
wealth in bonds and stock means that: nt St/Xn,m

t = α

while mt Bt/Xn,m
t = 1−α.

The important notion of arbitrage in asset pricing is
used to define a trading strategy that costs nothing to
form, never generates losses, and, with positive proba-
bility, will produce strictly positive gains at some time.
The notion of efficient markets in particular presumes
that, for efficient markets to exist, there must not be
arbitrage trading strategies. The search for profits by
traders and investors is therefore motivated explicitly by
the search for arbitrage opportunities. This is of course
a rational investment approach, for in the presence of
an arbitrage, any rational investor who prefers to in-
crease his dividends would undertake such arbitrage
without limit, so markets could not be in equilibrium
(in a sense that we shall see later on). As a result, the
notion of no arbitrage, and the associated concepts of
martingales, risk-neutral pricing and complete markets
are fundamental key terms that must be understood to
appreciate the scope and the spirit of asset pricing, finan-
cial engineering and financial risk management. Further,
we shall also distinguish clearly between individual and
collective (market) valuation. In the former, the agent-
investor is assumed to optimize an expected utility of
consumption, subject to an endowment constraint, while
in the latter case, that investor will be fully aware of
the market valuation of risk, based on an equilibrium
in state prices in order to tailor an appropriate and fit-
ting strategy to his preferences. An essential objective
of dynamic asset pricing, which deals with the inter-
temporal and risk effects of asset pricing is to link the
collective (multi-agent) equilibrium valuation (pricing)
of assets to macroeconomic variables, hopefully, ob-
servable. This latter field of study requires an extensive
familiarity with economic theory, finance and stochastic
calculus.
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47.1.2 The Arrow–Debreu Framework

The Arrow–Debreu framework underlies the approach
to asset pricing. It is therefore useful to present it, even
if briefly (see also [47.19,22,49,50]). Assume that there
are N securities, S1 . . . SN , each of which can be held
long or short in a portfolio consisting of these securities.
Let ni > 0 be the number of securities Si currently priced
at pi . Thus, the vectorial product n · p, n · p=∑N

i=1 ni pi
denotes the value (price) of the portfolio held. To each
security i, there are associated potential cash flows Dij ,
j = 1, 2, . . . , M where M is the number of all possi-
ble states of the market at the end of the trading period.
For example, if over one period, the market can as-
sume only two states (say high and low) then the market
is binomial and M = 2. If it assumes three potential
states, then M = 3 and the market is trinomial etc. For
the portfolio as a whole, we thus have the cash flow
matrix:

nD. j =
N∑

i=1

ni Dij ,

D = (Dij ), i = 1, . . . , n; j = 1, . . . , M .

Where D. j denotes the vector of cash flows for all se-
curities held if state j occurs, while the j-th row of
the matrix D represents all possible cash flows associ-
ated with holding one unit of the j-th security, including
dividend payment and market profit/losses (in dollars).
If ni > 0, the investor is long and the investor collects
ni Dij at the end of the period. If ni < 0, the investor
is short and the investor has a liability at the end of
the period (taken by borrowing securities and selling
them at the market price). Further, we assume that the
transaction costs, commissions, taxes, etc. are neglected.
The cash flow of the portfolio at the j-th state is thus,
nD. j , ∀ j ∈ [1, . . . M] as stated above. The cash flow thus
defined allows us a formal definition of arbitrage.

Definition (Arbitrage)
An arbitrage portfolio is a portfolio n such that

1. Either nP = 0, nD. j ≥ 0, ∀ j ∈ [1, . . . M] and
nD. j > 0 for some j ∈ [1, . . . M] ,

2. or nP ≤ 0 and nD. j ≥ 0 ∀ j ∈ [1, . . . M].

That is, an arbitrage portfolio is a position that either
has zero initial cost or has no downside regardless of
the market outcome, and thus offers the possibility to
make money without investment and finally can realize
an immediate profit that has no downside.

Inversely, there is no arbitrage if an arbitrage port-
folio cannot be constructed. The implication of no
arbitrage has a direct implication on asset pricing and
to the definition of risk-neutral probabilities which
are used to define a price linearly in terms of the
markets’ cash flows. This is summarized by the fol-
lowing Theorem 47.1 whose proof can be found in
Duffie [47.23]:

Theorem 47.1 (The fundamental theorem of asset
pricing with no arbitrage)
If there exist a vector of positive numbers (also called
asset prices) π j ( j = 1 . . . M) such that:

Pi =
M∑

j=1

Dijπ j , j = 1 . . . M

or in vector notation P ≡ Dπ

Then there exist no arbitrage portfolios. And conversely,
if there are no arbitrage portfolios, there exists a vector
π with positive entries satisfying P ≡ Dπ [47.23, 50].

In this framework, risk-neutral probabilities or equiva-
lently, risk-adjusted probabilities, are defined by

π̂ j = π j

M∑
j=1

πk

, j = 1, . . . M, π̂ j ≥ 0 ,

M∑

j=1

π̂ j = 1 .

Using these probabilities we can write, based on Theo-
rem 47.1, that an asset price is equal to the discounted
value of future cash-flow payments, at a risk-less dis-
count rate Rf, or:

Pi = 1

1+ Rf

M∑

j=1

Dij π̂ j .

To see that this is the case, suppose that there ex-
ists an investment opportunity (a pure, risk-free zero
bond or a money market deposit) which guaran-
tees (for sure) $ 1 at the end of the period. The
payoff of a bond is thus 1 ≤ j ≤ M, (1, 1, . . .1)
(for all states R in R

M ) and, according to Theo-
rem 47.1, PBOND =∑M

j=1 π j = 1/(1+ Rf). Thus, 1+
Rf = 1/

∑M
j=1 π j , and Rf is called the bond (in

this case risk-free) yield. This can be written as
Pi = 1

1+Rf

∑M
j=1 Dij π̂ j as stated above, which is the

expected value under the risk-adjusted (risk-neutral)
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probabilities, which we denote by ERN{·} (not to be con-
fused with the historical distribution of prices). Namely,
ERN{·} denotes the expectation associated with the op-
erator associated with probabilities π̂ j , 1 ≤ j ≤ M. The
implications of no arbitrage are summarized by the
following Theorem 47.2.

Theorem 47.2 (The fundamental theorem of risk-
neutral pricing)
Assume that the market admits no arbitrage portfolios
and that there exists a risk-less lending/borrowing at
rate Rf. Then, there exists a probability measure (risk
neutral) defined on the set of feasible market outcomes,
{1, 2, . . .M}, such that the value of any security is equal
to the expected value of its future cash flows discounted
at the risk-less lending rate.

To calculate these risk-neutral probabilities, we use
a portfolio replication which is defined as follows. Given
a security S, and a set of securities S1, . . . Sk, we say
that the portfolio (n1, n2, . . . nN ) replicates S if the
security and the portfolio have identical cash flows.
Further, given two identical cash flows, their price is,
necessarily the same, as otherwise there would be an
opportunity for arbitrage. This is also called the law
of the single price. On the basis of the current analy-
sis, we turn at last to a formal definition of complete
markets.

Definition (Complete markets)
A securities market with M states is said to be complete
if, for any vector cash-flow (D.1 . . . D.M), there exists
a portfolio of traded securities (n1, n2, . . . nN ) which
has cash flow D j in state j ∈ [1, . . . M]. Thus market
completeness implies that:

nD ≡ D, or
∑

ni Dij = D j ,

j ∈ [1, . . . M] has a solution n ∈ R
N

for any D ∈ R
M .

This is equivalent to the condition: rank D ≡ M.

The implication of this definition is that, if a portfolio
can be replicated uniquely (the rank condition D ≡ M,
providing a unique solution to the linear pricing equa-
tions) then there is one price and complete markets can
exist. Inversely, the uniqueness of asset prices deter-
mines a complete market. This is summarized by the
proposition below.

Proposition
Suppose that the market is complete. Then there is
a unique set of state prices (π1 . . . πM) and hence
a unique set of risk-neutral probabilities (π̂1 . . . π̂M).
Conversely, if there is a unique set of state prices, then
the market is complete, with risk-neutral probabilities
(π̂1 . . . π̂M).

We shall find that the generality of these results is main-
tained in inter-temporal (dynamic) asset pricing. We
consider first some simple examples to demonstrate the
pricing implications of the Arrow–Debreu framework.

Example 47.1: Assume a binomial model for a se-
curity that assumes two possible future outcomes
D = {D1, D2}, M = 2. Consider as well two securities
with current price Pi , i = 1, 2 (for example, a portfolio
consisting of a stock and and a bond and a call option on
the security with P1 known and P2 to be priced), each of
these is generating a cash flow (Di1, Di2), i = 1, 2. We
have no arbitrage if there are risk-neutral probabilities
such that, for each security we have

Pi = 1

1+ Rf

(
π̂1 Di1+ π̂2 Di2

)
, i = 1, 2 .

Graphically, we have

Since π̂1+ π̂2 = 1, both the risk-neutral probabilities
are given by solving the system of equations in two
unknowns for a unique solution (and therefore markets
are complete):

P1 = 1

1+ R

[
π̂1 D11+ (1− π̂1)D12

] ;

P2 = 1

1+ R

[
π̂1 D21+ (1− π̂1)D22

]
,

where π̂1 and P2 are to be calculated by a solution of
these two equations, as:

π̂1 = (1+ R)P1−D12

D11−D12
,

P2 = P1

D11−D12
(D21−D22)

+ 1

1+ R

(
D11 D22−D12 D21

D11−D12

)
.

Equivalently, the matrix D has to be of full rank 2.
However, if both assets assume three potential states,
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leading to a trinomial model, then of course M = 3,
while rank (D) = 2 and therefore the market is not
complete since the number of solutions to this sys-
tem of equations is infinite. If we add a third asset
whose price is based on the same events we obtain
a 3 × 3 matrix with rank 3 whose solution is again
unique and therefore the market is complete again. In
other words, adding another asset has made it possible
to obtain the risk-neutral probabilities, needed for as-

set pricing and complete the market. Similar examples
can be used to price simple models of forward futures
contracts as well as prove some fundamental equali-
ties in options’ finance (put–call parity for example,
which we will see subsequently). The Arrow–Debreu
framework underlies the basic approach of modern fi-
nancial economics for asset pricing and therefore it is
important to appreciate its basic assumptions as stated
here.

47.2 Rational Expectations, Risk-Neutral Pricing and Asset Pricing

Rational (risk neutral) expectations, risk-neutral pric-
ing, complete and incomplete markets, as shown in
the Arrow–Debreu framework, underlie the valuation
of risk and the use of financial engineering for as-
set pricing. Rational expectations imply that current
prices reflect future uncertainties and their price, and
also mean that current prices are based on the unbi-
ased, minimum-variance mean estimate of future prices.
This property provides the means to value assets and
securities, although in this approach, bubbles are not
possible, since they seem to imply a persistent error
or bias in forecasting. Rational-expectation pricing will
not allow investors to earn above-average returns with-
out taking above-average risks. In such circumstances,
arbitrageurs, those smart investors who seek to identify
returns that have no risk and yet provide a return, will
not be able to profit without assuming risks.

The concept of rational expectation is due to
Muth [47.51], however, who formulated it as a decision-
making hypothesis in which agents are informed,
constructing a model of the economic environment and
using all the relevant and appropriate information at
a time a decision is made (see also [47.52], p. 23):

I would like to suggest that expectations, since they
are informed predictions of future events, are es-
sentially the same as the predictions of the relevant
economic theory . . . We call such expectations “ra-
tional” . . . This hypothesis can be rephrased a little
more precisely as follow: that expectations . . . (or
more generally, the subjective probability distribu-
tion of outcomes) tend to be distributed, for the same
information set, about the prediction of the theory
(the objective probability of outcomes).

In other words, if investors are “smart” and base their
decisions on informed and calculated predictions, then,
prices equal their discounted expectations. In other
words, it implies that investors’ subjective beliefs are
the same as those of the real world – they are neither

pessimistic nor optimistic. When this is the case and
a rational expectations equilibrium holds, we say that
markets are complete or efficient. Samuelson pointed
out this notion in 1965 as the martingale property lead-
ing Fama, Lucas and Harrison and Kreps [47.53–56] to
characterize such properties as market efficiency.

Lucas used a concept of rational expectations similar
to Muth to confirm Milton Friedman’s 1968 hypothesis
of the long-run neutrality of monetary policy. Specifi-
cally, Lucas [47.54] and Sargent [47.57] have shown that
economic agents alter both their expectations and their
decisions to neutralize the effects of monetary policy.

Martingale and the concept of market efficiency
are intimately connected, as shown in the Arrow–
Debreu framework and pointed out by Harrison and
Pliska [47.39] in their seminal paper. If prices follow
a martingale, then only the information available today
is relevant to make a prediction on future prices. In other
words, the present price has all the relevant information
embedding investors’ expectations. This means that in
practice (the weak form of efficiency) past prices should
be of no help in predicting present prices or equivalently
prices have no memory. Similarly, if prices follow a mar-
tingale and are unpredictable, markets are efficient. In
this case, arbitrage is not possible and there is always
a party to take on a risk irrespective of how high it is.
Hence, risk can be perfectly diversified away and made
to disappear. In such a world without risk, all assets be-
have as if they are risk-free and therefore prices can
be discounted at a risk-free rate. This property, justifies
our use of risk-neutral pricing (RNP). It breaks down
however if any of the previous hypotheses (martingale,
rationality, no arbitrage, absence of transaction costs
etc.) are invalid. In such a case, prices can no longer be
unique and markets are said to be incomplete.

There is a confrontation between economists how-
ever, some of whom believe that markets are efficient
and some who do not. Obviously, market efficiency fails

Part
F

4
7
.2



858 Part F Applications in Engineering Statistics

to account for market anomalies such as bubbles and
bursts, firms’ performance and their relationship to size
etc. As a result, behavioral finance has sought to provide
an alternative dogma (based on psychology) to explain
the behavior of financial markets. Whether these dogmas
will converge back together as classical and Keynesian
economics have, remains yet to be seen. In summary,
however, some believe that the current price imbeds all
future information, and some presume that past prices
and behavior can be used to predict future prices. If
the test is to make money, then the verdict is far from
reached. Richard Roll, a financial economist and money
manager argues:

I have personally tried to invest money, my clients
and my own, in every single anomaly and predictive
result that academics have dreamed up. And I have
yet to make a nickel on these supposed market inef-
ficiencies. An inefficiency ought to be an exploitable
opportunity. If there is nothing that investors can ex-
ploit in a systematic way, time in and time out, then
it is very hard to say that information is not being
properly incorporated into stock prices. Real money
investment strategies do not produce the results that
academic papers say they should . . . . . . but there
are some exceptions including long term perform-
ers that have over the years systematically beat the
market (Burton Malkiel, The Wall Street Journal,
December, 28, 2000).

Information and power can also be sources of in-
completeness. There are many situations when this is
the case. Information asymmetries, insider trading and
advantages of various sorts can provide an edge to in-
dividual investors and thereby violate the basic tenets
of market efficiency. Further, the interaction of markets
can lead to instabilities due to very rapid and positive
feedback or to expectations that are becoming trader-
and market-dependent. Such situations lead to a growth
of volatility, instabilities and perhaps, in some special
cases, to chaos. Nonetheless, whether it is fully right or
wrong, it seems to work sometimes. Thus, it should be
used carefully for making money. Of course, it is used for
simple models for pricing options and derivatives in gen-
eral. Throughout these approaches we shall use a known
risk-free rate. In contrast, economic equilibrium theory
based on the clearing of markets by equating supply to
demand for all financial assets provides an equilibrium
where interest rates are endogenous. It assumes however,
that beliefs are homogenous, markets are frictionless
(with no transaction costs, no taxes, no restriction on
short sales and divisible assets) as well as competitive
markets (in other words, investors are price takers) and

finally it also assumes no arbitrage. Thus, general equi-
librium is more elaborate than rational expectations (and
arbitrage-free pricing) and provides more explicit results
regarding market reactions and prices than the traditional
finance-only approach [47.54].

47.2.1 Risk-Neutral Pricing
and Complete Markets

In complete markets, we use risk-neutral probabilities
which allow, conveniently, linear pricing measures. If
there are such probabilities, and it is so in complete
markets, then the current price ought to be determined
by its future values. Since these probabilities are en-
dogenous, based on an exchange between investors and
speculators, it is the market that determines prices and
not uncertainty. Uncertainty arises then only from an in-
dividual assessment of potential future events based on
private information, on the one hand, or based on in-
vestors and speculators not aware of publicly available
common information, on the other. In such situations
the complete-markets mechanism (based on risk-neutral
pricing) for determining asset prices is no longer viable.

Our ability to construct a unique set of risk-neutral
probabilities depends on a number of assumptions which
are of critical importance in finance and must be main-
tained theoretically and practically. These include: no
arbitrage opportunities; no dominant trading strategies;
and the law of the single price. No arbitrage occurs
when it is not possible for an agent to make money for
sure without having to invest any in the first place. The
single-price hypothesis was elaborated by Modigliani
and Miller in 1958, stating that two prospective future
cash flows with identical risks must be priced equally. In
other words, if we can replicate an asset price by a (syn-
thetic) portfolio whose value can be ascertained, then
if there is no arbitrage, the price of the asset and the
synthetic portfolio are necessarily the same. This also
implies market completeness, requiring that there be:
no transaction costs; no taxes; infinitely divisible assets;
that gents can borrow or lend at the same rates; no in-
formation asymmetry regarding future state prices; an
impossibility to short sell; and finally, rational investors.
Any violation or restrictions that will violate market
completeness will open an opportunity for arbitrage.
Although in practice, at least one of these assumptions
is often violated, in theory and for many fundamental
and useful results in finance theory, the assumption of
no arbitrage is maintained. When this is not the case,
and the assumption of market completeness is violated,
it is no longer possible to obtain a unique set of risk-
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neutral probabilities, but there may be several sets of
such risk-neutral probabilities. To price an asset in such
circumstances, statistical and numerical techniques are
applied to select the martingale that best fits the observed
behavior of financial markets and at the same time is con-
sistent with basic economic and financial considerations.
There are a number of approaches that we might follow
in such circumstances, some of which will be used in the
sequel. When markets are complete, replication of assets
by a synthetic portfolio is a powerful tool to determine
asset prices. Such as, pricing forward contracts, put–call
parity, future prices and other derivatives that use repli-
cating portfolios. For example, say that a stock spot price
is S and let Rf be the period’s risk-less lending rate. Next
consider a forward contract consisting of an agreement
to buy the stock at the end of the period at a set price F. If
no dividends are paid and there is no arbitrage, then the
contract profit (price) is Q = S− F/(1+ Rf) = 0 (since
the contract is costless and no money exchanges hands
initially). As a result, the forward price is F = S(1+ Rf).
Similarly, for put–call parity we consider a stock and
derived call and put contracts with the same strike
price and time. The former gives the right to buy the
stock at the strike price and the latter the right to
sell at time T and price K . If their prices at maturity
are cT =max(ST −K, 0) and pT =max(K − ST , 0), re-
spectively, then the current put price can be replicated
by a portfolio consisting of the call, a risk-less bond
with price K at maturity T – the option’s exercise price
as well as the underlying stock. This will be considered
later but it suffices for the moment to state that the put
(and thereby its synthetic portfolio) price at time t = 0
is given by p = c− S+K e−RfT . Other cases will be
considered subsequently. Below, we consider the impli-
cations and the mechanics of risk-neutral pricing using
a number of stochastic price models.

47.2.2 Risk-Neutral Pricing
in Continuous Time

The purpose of this section is to consider the mechanics
of risk-neutral pricing in complete markets in a continu-
ous time model. For simplicity, we restrict our attention
to an underlying log-normal asset-price process, mean-
ing that the rates of returns of the asset are normal with
known mean and known variance. We set S(t) as the
asset price at time t with normally distributed rates of re-
turns dS(t)/S(t). This can be written as an Ito stochastic
differential equation as follows:

dS

S
= αdt+σ dW, S(0) = S0 or

S(t) = S(0)e

(
α− σ2

2

)
t+σW(t)

, W(t) =
t∫

0

dW(t) ,

where the rates of returns are normally distributed
with mean and variance, both linear functions of time,
given by αt and σ2t respectively. Further, W(t) denotes
a Brownian motion, which is defined as normal (Wiener)
prices with mean zero and variance t. Formally, we
first note that with this probability measure, there is
no risk-neutral pricing since:

S(0) �= e−Rft E [S(t)]

= e−Rft e

(
α− σ2

2

)
t
S(0)E

(
eσW(t)

)

= e(α−Rf)t S(0) .

This is the case since for normal distributions
E
(
exp[σW(t)]) = exp

[
(σ2t/2)

]
. However, if we de-

fine a numeraire W∗(t) = W(t)+ α−Rf
σ

t with respect to
which the risk-neutral process will be defined, then we
can write the price as

S(t) = S(0)e

(
Rf− σ2

2

)
t+σ

[
W(t)+ α−Rf

σ
t
]

= S(0)e

(
Rf− σ2

2

)
t+σW∗(t)

,

which, of course, corresponds to an underlying price
process (where α= Rf) and therefore,

dS

S
= Rf dt+σ dW∗(t), S(0) = S0 ,

and:

S(0) = e−Rft E∗ [S(t)] = e(Rf−Rf)t S(0) = S(0) ,

where E∗ is an expectation taken with respect to the (nu-
meraire) process W∗(t). Thus, the current price equals
an expectation of the future price, just as the risk-neutral
valuation framework indicated. It is important to remem-
ber however that the proof of such a result is based on
our ability to replicate such a process by a risk-free pro-
cess (and thereby value it by the risk-free rate, something
that will be done later on). If such a numeraire can be
defined, then of course, even an option can be valued,
under the risk-neutral process, by a linear expectation.
For example, for a European call option whose exercise
price is K at time T , its price is necessarily:

C(0) = e−RfT E∗ (max [S(T )−K, 0]) .

In fact, under the risk-neutral framework, any asset
price equals is risk-free rate discounted expectation
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under the risk-neutral distribution. For this reason,
much effort is expanded, theoretically and practically,
on determining the appropriate risk-neutral distribution
(the martingale) that can be used to determine asset
prices. In particular, it is worthwhile reconsidering the
example treated by letting λ= α−Rf

σ
define the mar-

ket risk. In this case, the measure we have adopted
above is equal to the original process plus the price
of risk cumulated over time, or: W∗(t) = W(t)+λt
and therefore: (α− Rf)dt+σW(t) = σW∗(t). Hence,
dS = S[αdt+σ dW(t)] = Sσ dW∗(t). Clearly, under the
transformed measure W∗(t), the stock process is a mar-
tingale but the remaining question is, can we treat this
measure as a Wiener process The important theorem
of Giranov allows such a claim under specific condi-
tions, which we summarize below. Explicitly, say that
Novikov’s condition is satisfied, that is:

E

⎛

⎝exp

⎛

⎝1

2

T∫

0

∣∣∣∣
α− Rf

σ

∣∣∣∣dt

⎞

⎠

⎞

⎠<+∞ .

Let the new measure be defined by the Radon–Nykodim
derivative,

dP∗

dP
= Z, EZ = 1, where

Z � exp

⎡

⎣−
T∫

0

λdW(s)− 1

2

T∫

0

(λ)2 dW(s)

⎤

⎦ ,

EZ = 1 ,

where P∗ is the probability equivalent of the original
measure. Note that: P∗(A) = ∫

A Z(W )P(dW ), ∀A ∈ I.
The Girsanov theorem then states that under these
(Novikov) conditions and given the measure defined
by the Radon–Nykodim derivative, the process W∗(t)
is a Wiener process under the measure P∗. This theo-
rem is of course extremely important in asset pricing
as it allows the determination of martingales to which
risk-neutral pricing can be applied.

47.2.3 Trading in a Risk-Neutral World

Under a risk-neutral process, there is no trading strat-
egy that can make money. To verify this hypothesis,
we consider an investor’s decision to sell an asset he
owns (whose current price is S0) as soon as it reaches an
optimal (profit-rendering) price S∗ > S0. Let this profit
be:

π0 = E∗ e−Rfτ S∗ − S0 with

τ = Inf
{
t > 0, S(t) ≥ S∗; S(0) = S0

}
,

where τ is the stopping (sell) time, defined by the first
time that the optimal target sell price is reached. We
shall prove that, under the risk-neutral framework, there
is an equivalence between selling now or at a future
date. Explicitly, we will show that π0 = 0. Again, let the
risk-neutral price process be:

dS

S
= Rf dt+σ dW∗(t)

and consider the equivalent return process y = ln S. By
an application of Ito’s calculus, we have

dy =
(

Rf− σ2

2

)
dt+σ dW∗(t), y(0) = ln(S0)

and

τ = Inf
{
t > 0, y(t) ≥ ln(S∗); y(0) = ln(S0)

}
.

As a result, E∗
S

(
e−Rfτ

)= E∗
y

(
e−Rfτ

)
, which is the

Laplace transform of the sell stopping time when the
underlying process has a mean rate and volatility given
by µ= Rf−σ2/2 and σ respectively, [47.56, 58–60]:

g∗Rf
(S∗, ln S0)

= exp

[
ln S0− ln S∗

σ2

(
−µ+

√
µ2+2Rfµσ2

)]
,

σ > 0,−∞< ln S0 ≤ ln S∗ <∞ .

The expected profit arising from such a transaction is
thus

π0 = S∗E∗ (e−Rfτ
)
− S0

= S∗g∗Rf
(ln S∗, ln S0)− S0 .

Namely, such a strategy will, in a risk-neutral world,
yield a positive return if π0 > 0. Elementary manipula-
tions show that this is equivalent to:

π0 > 0 If
σ2

2
> (Rf−1) µ or

σ2

2
> (1− Rf)

(
σ2

2
− Rf

)
if Rf >

σ2

2
.

As a result,

π0 =
⎧
⎨

⎩
> 0 If Rf >

σ2

2

< 0 If Rf <
σ2

2 .

The decision to sell now or wait is thus reduced to the
simple condition stated above. An optimal selling price
in these conditions can be found by optimizing the return
of such a sell strategy, which is found by noting that
either it is optimal to have a selling price as large as
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possible (and thus never sell) or select the smallest price,
implying selling now at the current (any) price. If the
risk-free rate is small compared to the volatility, then it
is optimal to wait, and vice versa, a small volatility will
induce the holder of the stock to sell. In other words, for
an optimal sell price:

dπ0

dS∗
=

⎧
⎨

⎩
> 0 Rf < σ2/2

< 0 Rf > σ2/2 .

Combining this result with the profit condition of the
trade, we note that

⎧
⎨

⎩

dπ0
dS∗ > 0, π0 < 0 If Rf < σ2/2 ,

dπ0
dS∗ < 0, π0 > 0 If Rf > σ2/2 .

An therefore the only solution that can justify these con-
ditions is: π0 = 0, implying that whether one keeps the
asset or sell is irrelevant, for under risk-neutral pricing,
the profit realized from trading of maintaining the stock
is equivalent. Say that Rf < σ2/2 then a wait-to-sell
transaction induces an expected trade loss and therefore
it is best to obtain the current price. When Rf > σ2/2,
the expected profit from the trade is positive but it is
optimal to select the lowest selling price, which is of
course the current price and then again, the profit trans-
action, π0 = 0, will be null, as our contention states.
For a risk-sensitive investor (trader or speculator), how-
ever, whose utility for money is u(.), a decision to sell
will be defined in terms of his preference, given by the
utility function. Buy–sell strategies differ therefore be-
cause investors have preferences (utilities) that are not
the same.

Example 47.2 (Buying and selling on a trinomial ran-
dom walk): Consider the risk-neutral log-normal risk
process:

dS/S = Rf dt+σ dW, S(0) = S0

and apply Ito’s lemma to the transformation y = ln(S)
to obtain the rate of return process:

dy =
(

Rf− 1

2
σ2

)
dt+σ dW, y(0) = y0 .

Given this normal (logarithmic) price process, consider
the trinomial random-walk approximation:

Yt+1 =

⎧
⎪⎪⎨

⎪⎪⎩

Yt + f1 w. p. p

Yt + f2 w. p. 1− p−q

Yt + f3 w. p. q

Where p, q and 1− p−q are the probabilities that re-
turns increase (or decrease) by, f1, f3, f2 respectively.
The first two moments of this process are given by

E (Yt+1−Yt)= f2+ p ( f1− f2)+q ( f3− f2)

≈
(

Rf− 1

2
σ2

)
,

E (Yt+1−Yt)
2 = f 2

2 + p
(

f 2
1 − f 2

2

)
+q

(
f 2
3 − f 2

2

)

≈ σ2 .

Thus, an appropriate selection of the parameters p, q,
f1, f2 and f3 will provide an approximation to the risk-
neutral pricing process. However, note that we have
two known parameters (the mean and the variance of
the process) while there are five parameters to choose.
This corresponds to many potential discrete-time pro-
cesses that can be considered as approximations to the
continuous one. For this reason, a discretization of a risk-
neutral process can often lead to incomplete processes
(where risk-neutrality cannot be applied). In most cases,
therefore, the underlying process has to be carefully ap-
plied [47.48]. For an asymmetric trinomial random walk
we may set for simplicity f1 = 1, f2 = 0 and f3 =−1,
in which case

P (∆Yi =+1)= p, P (∆Yi =−1)= q, and

P (∆Yi = 0)= r = 1− p−q.

It is well known (for example see Cox and Miller [47.42],
p. 75) that the probability of reaching one of the two
boundaries in this case is given by,

P (Yt =−a)=
⎧
⎨

⎩

1−(1/λ)b

1−(1/λ)a+b λ �= 1

b/(a+b) λ= 1
,

P (Yt = b)=
⎧
⎨

⎩

(1/λ)b−(1/λ)a+b

1−(1/λ)a+b λ �= 1

a/(a+b) λ= 1
,

where λ= q/p. Further, the expected first time to reach
one of these two boundaries is

E
(
T−a,b

)

=

⎧
⎪⎨

⎪⎩

(
1

1−r

)(
λ+1
λ−1

)(
a
(
λb−1

)+b(λ−a−1)
λb−λ−a

)
λ= q/p

ab
1−r λ= 1 .

Thus, if we own an asset whose current value is null
and if it is sold either when the loss incurred is −a or
at b when a profit is realized, then the probability of
making money is P

(
ST (−a,b) = b

)
while the probability
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of losing it is P
(
ST (−a,b) =−a

)
, as calculated above.

The expected amount of time the trade will be active
is of course E

(
T−a,b

)
. The trader profit or loss is thus

a random variable given by

π̃ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−a w. p.

⎧
⎨

⎩

1−(1/λ)b

1−(1/λ)a+b λ �= 1

b/ (a+b) λ= 1

b w. p.

⎧
⎨

⎩

(1/λ)b−(1/λ)a+b

1−(1/λ)a+b λ �= 1

a/ (a+b) λ= 1 .

While its average return is (since the process can be
considered a renewal process as well)

π̄(−a, b)

= bP
(
ST (−a,b) = b

)−aP
(
ST (−a,b) =−a

)

E
(
T−a,b

) .

In particular, when λ= 1, the price process is a martin-
gale and the long-run average profit will be null with
a variance 2ab since:

E(π̃) = (−ab+ba)

a+b
= 0 , var(π̃) = 2ab .

This also means that we cannot make money on the aver-
age with a worthless asset if the underlying price process
is a (martingale) random walk (whether it is a binomial
or a trinomial walk). In this circumstance, there is no
free gift, an asset we receive that is worth nothing is in-
deed worth nothing. A risk-averse investor, will thus be
better off getting rid of this asset and not sustaining the
risk of losing money. For a binomial random walk, with
λ �= 1 and r = 0 we have ([47.42], p. 31):

P
(
ST (−a,b) = b

)= λa −1

λa+b−1
;

P
(
ST (−a,b) =−a

)= λa+b−λa

λa+b−1
.

And therefore

E
(
T−a,b

)=
(
λ+1

λ−1

)(
a
(
λb−1

)+b
(
λ−a −1

)

λb−λ−a

)
.

The long-run average profit is thus

π̄(−a, b)

=
[
b (λa −1)−a

(
λa+b−λa

)]
(λ−1)

(
λb−λ−a

)
[
b
(
λ−a−1

)+a
(
λb−1

)]
(λ+1)

(
λa+b−1

) .

An optimization of the average profit over the parameters
(a, b) when the underlying process is a historical process
provides then an approach for selling and buying for
a risk-prone trader. For a risk-neutral process (λ= 1),
the expected profit will be null for all values a and b.

We can extend this example by considering a trader
who owns now an asset worth i0 dollars that he intends
to sell at a later date, either at a preventive loss or at
a given profit level. Technically, the sell strategy consists
of selling at a price b > i0 for a profit of κ = b− i0 or at
a price of a < i0 for a loss of ν = i0−a < 0 – whichever
comes first. The problems we might be concerned with
are:

1. What are the optimal parameters (a, b) for an indi-
vidual investor if the investor uses a risk-adjusted
discount rate and at a risk-free discount rate if the
underlying process is a risk-neutral process?

2. What is the risk premium of such a strategy?
3. For an averages profit criterion, what are the optimal

parameters (a, b) of the trading strategy?

As stated above, the rationality of such strategies are
implicit in individual investors’ risk aversion, seeking to
make a profit by selling at a higher price, and inversely
selling at a preventive loss in case prices fall too much,
generating potentially a substantial losses.

47.3 Consumption Capital Asset Price Model
and Stochastic Discount Factor

Financial asset pricing is essentially based on defining
an approach accounting for the time and risk prefer-
ences of future payoffs. To do so, we have sought to
determine a discounting mechanism that would, appro-
priately, reflect the current value of uncertain payoffs to
be realized at some future time. The risk-neutral asset
pricing framework has provided a linear estimation rule

based on the risk-free rate. Another approach considers
an investor optimizing the expected utility of consump-
tion and investment. This is also coined the consumption
capital asset pricing model (CCAPM), also called the
stochastic discount factor (SDF) approach [47.20]. This
development will be presented through the application
of Euler’s equation in the calculus of variations applied
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to a consumption problem resulting in a pricing formula
defined by:

pt = E(M̃t+1 x̃t+1), M̃t+1 = 1

1+ R̃t+1
,

where pt is the current asset price at time t that we
seek to value, x̃t is the next-period asset returns, a ran-
dom variable and M̃t is a stochastic discount factor (also
called a kernel). We shall show first through a sim-
ple two-period model how a pricing formula is derived.
Subsequently, we consider a general multi-period prob-
lem. It is noteworthy that in this framework the current
price equals the current discounted expectation of (only)
future returns.

47.3.1 A Simple Two-Period Model

The rationality of the SDF approach can be explained
simply by using the following example (subsequently
generalized). Say that an investor owns at a certain
time t, a certain amount of money st , part of which
is invested to buy a quantity of stock y at a price pt ,
while the residual is consumed. The utility of consump-
tion is assumed to be u(ct ) where ct = st − ypt . A period
hence, at time t+1, the asset price is a random variable
x̃t+1, at which time it is sold and consumed. Thus, the
next-period consumption is equal to the period’s cur-
rent income plus the return from the investment, namely
ct+1 = st+1+ yx̃t+1. Let the discount factor be β, ex-
pressing the subjective discount rate of the consumer.
Over two periods, the investor’s problem consists then
of maximizing the two periods’ expected utilities of
consumption, given by

U(ct , ct+1) = u(ct)+βEtu(ct+1) or

U(ct , ct+1) = u(st − ypt)+βEtu(st+1+ yx̃t+1) .

The optimal quantity to invest (i. e. the number of shares
to buy), found by maximizing the expected utility with
respect to y, leads to:

∂U

∂y
=−ptu

′(st − pt y)

+βEt
[
x̃t+1u′(st+1+ x̃t+1 y)

]

=−ptu
′(ct)+βEt

[
x̃t+1u′(ct+1)

]= 0

which yields for an optimum portfolio price:

pt = Et

(
β

u′(ct+1)

u′(ct)
x̃t+1

)
.

If we set M̃t+1 = β
u′(ct+1)

u′(ct )
, we obtain the pricing kernel

(stochastic discount factor) used above to price the as-
set. This kernel expresses, as seen in our condition for

optimality, the inter-temporal substitution of current and
future marginal utilities of consumption. If we choose
to write this term as a discount rate, then:

R̃t+1 =
(

1−β
u′(ct+1)

u′(ct)

)/
β

u′(ct+1)

u′(ct)
.

This equation is particularly robust, and has many
well-known results in finance expressed as special
cases [47.20]. For example, if the utility function is
of the logarithmic type, u(c) = ln(c) then, u′(c) = 1/c
and M̃t+1 = βct/(ct+1), or R̃t+1 = β[(1/β)ct+1−ct]/ct
and further, pt/ct = βEt

(
x̃t+1/ct+1

)
. In other words, if

we write πt = pt/ct ; π̃t+1 = x̃t+1/ct+1, then we have:
πt = βEt

(
π̃t+1

)
. Further, if the asset is a risk-less bond,

worth 1 dollar at its exercise time a period hence, then
B0 = E(M̃1 B1) or B0 = E(M̃1). Since B0 = 1/(1+ Rf),
we obtain of course: E(M̃1) = 1/(1+ Rf), providing
thereby a relationship between the expected value of
the kernel and the risk-free discount rate. An additional
and particularly interesting case consists of using the lin-
ear CAPM model for pricing risky assets. In this case,
let the kernel be

Mt+1 = at +bt RM,t+1 ,

where RM,t is the rate of return of the market portfolio
(a market index for example). For a given stock, whose
rate of return is 1+ Rt+1 = pt+1/pt , we have as stated
earlier:

1 = E
[
Mt+1(1+ Rt+1)

]
, hence

E(1+ Rt+1) = 1

E(Mt+1)
− cov (Mt+1, 1+ Rt+1)

E(Mt+1)
.

Inserting the linear model for the kernel we have

E(1+ Rt+1)

= (1+ Rf,t )
[
1− cov (Mt+1, 1+ Rt+1)

]

= (1+ Rf,t+1)
[
1− cov

(
a+bRM,t+1, 1+ Rt+1

)]

which is reduced to

E(Rt+1− Rf,t+1)

= cov
(
RM,t+1− Rf,t+1, Rt+1− Rf,t+1

)

var
(
RM,t+1− Rf,t+1

)

× Et
(
RM,t+1− Rf,t+1

)
.

This can be written in the CAPM standard formulation
(see also [47.61–63]):

E(Rt+1− R f,t+1) = βEt
(
RM,t+1− R f,t+1

)
.

Part
F

4
7
.3



864 Part F Applications in Engineering Statistics

where the beta parameter is:

β = cov
(
RM,t+1− R f,t+1, Rt+1− R f,t+1

)

var
(
RM,t+1− R f,t+1

) .

Of course when the returns are normally distributed such
calculations are straightforward and can be generalized
further. Stein [47.64] has shown that, if market returns
are some function f (y), y = RM,t+1− R f,t+1 and, if the
derivative f ′(.) exists, then

cov [x, f (y)] = E
[

f ′(y)
]

cov(x, y) .

And as a result, the beta parameter is

β = cov
[

f (RM+1− R f,t+1), Rt+1− R f,t+1
]

var
(
RM+1− R f,t+1

)

= E
[

f ′(RM+1− R f,t+1)
]

var
(
RM+1− R f,t+1

)

× cov
[

f ′(RM+1− R f,t+1), Rt+1− R f,t+1
]
.

For example, in a stochastic inflation world, Roll [47.65]
extends the CAPM of Sharpe by setting:

E(RP ) = Rf E(P )+βE (RM P− Rf P) ,

where P is a stochastic purchasing power with

β = cov (RP, RM P)

var (RM P)
.

The hypothesis that the kernel is linear may be limit-
ing however. Recent studies have suggested that we use
a quadratic measurement of risk with a kernel given by:

Mt+1 = at +bt RM,t+1+ ct R2
M,t+1 .

In this case, the skewness of the distribution enters as
well in determining the value of the asset. There is on-
going empirical research on this and related topics.

47.3.2 Euler’s Equation and the SDF

The CCAPM model, in its inter-temporal framework can
be formulated as a problem in the calculus of variations
and the SDF determined by applying the Euler condition
for optimal consumption utility [47.1]. Explicitly, let an
investor maximize the expected utility of consumption
over a horizon [0, T ]:

Vt = max
T−1∑

j=0

β ju(ct+ j )+βT G(ST ) ,

where u(ct+ j ) is the utility of consumption ct+ j at time
t+ j, T is the final time and G(ST ) expresses the termi-
nal utility of the wealth state at time T . The investor’s

discount rate isβ. At time t, the investor’s wealth is given
by St = St−1−qtct + Rt , where consumption is priced
qt , while returns from investments are Rt . As a result:

ct+ j = Rt+ j −∆St+ j

qt+ j
, ∆St+ j = St+ j − St+ j−1 .

The investor’s utility is therefore:

Vt = max
T−1∑

j=0

β ju

(
Rt+ j −∆St+ j

qt+ j

)
+βT G(ST ) .

Application of Euler’s equation (the calculus of varia-
tions) yields:

∂Vt

∂St+ j
−∆

(
∂Vt

∂∆St+ j

)
= 0 .

Since ∂Vt/∂St+ j = 0, ∆
(
∂Vt/∂∆St+ j

)= 0 and there-
fore we have the following equilibrium results:

∂Vt

∂∆St+ j
= β j

qt+ j

∂u
(
ct+ j

)

∂∆St+ j
= A constant .

For two consecutive instants of time ( j = 0, j = 1):

∂Vt

∂∆St
= ∂Vt

∂∆St+1
and therefore

1

qt

∂u (ct)

∂∆St
= β

qt+1

∂u (ct+1)

∂∆St+1
and

∂u (ct)

∂∆St
= βE

(
qt

qt+1

∂u (ct+1)

∂∆St+1

)
.

In other words, the marginal utility of wealth (savings)
equals the discounted inflation-adjusted marginal utili-
ties of consumption. In particular, if wealth is invested
in a portfolio of assets such that:

∆St = (Nt − Nt−1)pt = pt∆Nt and
∂Vt

∂∆St+1
= pt

∂u (ct+1)

∂∆Nt+1
then

∂u (ct)

∂∆Nt
pt−1 = E

[
β

qt

qt+1

(
∂u (ct+1)

∂∆Nt+1
pt

)]
,

which is reduced to the previous condition in two peri-
ods, or

pt−1 = E

(
β

qt

qt+1

u′ (ct+1)

u′ (ct)
pt

)
;

u′ (ct+1)= ∂u (ct+1)

∂∆Nt+1
.
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We can write this expression in terms of the stochastic
factor Mt , expressing again the consumption impatience

pt−1 = E (Mt pt) ; Mt = β
qt

qt+1

u′ (ct+1)

u′ (ct)
.

Again, if we set 1+ Rt = pt/pt−1, this equation can also
be written as follows:

1 = E

(
Mt

pt

pt−1

)
, hence

1 = E {Mt(1+ Rt) |Φt } ,
which is the standard form of the SDF equation while
Φt is a filtration at time t. Here too, we see that to
price a default-free zero-coupon bond paying one dollar

for sure at time 1, then applying the known risk-free
discount rate Rf, we have

1

1+ Rf
= (1)E (Mt) . And therefore ,

E (Mt)= 1

1+ Rf
and finally

pt−1 = 1

1+ Rf
E∗

t (pt) ,

where E∗
t assumes the role of a modified (subjective)

probability distribution. When the utility function is as-
sumed known, some simplifications can be reached. For
example, for u(.) = ln(.), u′

(
ct
)= 1/ct and therefore

vt = E
{
β(qt/qt+1)vt+1

}
, vt = pt−1/ct .

47.4 Bonds and Fixed-Income Pricing

The financial valuation of assets, real or financial, deals
with streams of cash such as dividends, coupon pay-
ments, investment in engineering projects etc. which
occur in a random manner or not, paid in at deterministic
or random times. In some cases, there may be a default in
such payments due to delays, lost and partially recuper-
ated payments etc. For example, investing in a portfolio
might result in future returns and dividends that are at
best defined in terms of random cash flows. Tradition-
ally, a number of techniques were applied to value such
cash streams, spanning a broad set of subjective tech-
niques such as: payback, internal rate of return (IRR),
cost–benefit analysis (CBA), net present value (NPV)
etc. Bonds pricing is often used to value these cash flows.
Here we shall see how bonds, whether risk-free, rated
or default-prone, are used to value these cash flows. The
simplest bond is the zero-coupon risk-free bond paying 1
dollar a year from now. An investor can have an individ-
ual valuation of such a payment, say BIND = 1(1+r)−1,
in which case r represents the discount factor that the
investor is willing to associate to such a payment. Buy-
ing such a bond is an investment in a risk-free payment
which cannot earn anything else but the risk-free rate
(otherwise there would be arbitrage). Say that the mar-
ket price for such a bond is currently quoted at $ 0.90.
In this case, the discount rate that the market associates
to this bond would be:

BIND = 0.90 = 100

(1+ Rf)
or

Rf = 1.0

0.90
−1 = 0.1111 ,

where Rf is used to denote the fact that this is a risk-free
rate (since the bond payment has no risk). These rates are
usually specified by US government bonds when they
are assumed to be risk-less (a currency trader might not
think this is the case, however). The price of this bond
is usually specified by a function Bf(t, T ), which is the
price at time t for a bond paying 1 dollar for sure at time T
when the going risk-free rate Rf(t, T ) expresses the time
structure of interest rates. For a stream of payments, say
a project defined by a set of payments and returns in the
future, corporate firms may use a discount rate r for the
time value of money. In this case, the present value of
such a project at the initial time t = 0, NPV(0), is written
as follows:

NPV(0) =−
n∑

i=0

Ii

(1+r)i
+

N∑

i=0

Ci

(1+r)i
,

where Ii denotes the investment (or costs sustained at
time i, while Ci is a certain (risk-free) cash flow gener-
ated by the project. If NPV(0) = 0 then the solution
of this equation yields the IRR, the corporate entity
uses to rank and value investment projects. There are
many problems with this valuation however that open
an opportunity for arbitrage by investment funds. For
example, the investments and return (or the Is and Cs)
may be random, potentially involving defaults, payments
delays and so on. Further, the discount rate used might
not reflect the cost of borrowing of the firm and its
risk rating (potentially given by rating firms such as
Moody’s, Fitch, Standard and Poor, and their like). In
addition, the discount rate does not reflect the time at
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which these payments occur (the term structure). As
a result, such a valuation (pricing) is quite naïve and ar-
bitrage on these firms can be used to provide the same
cash flows at a lower price, thereby cashing in the differ-
ence. If payments are known for sure, a market-sensitive
valuation would use the term structure risk-free discount
rate Rf(0, i) for the payment i-periods hence, the value
of such a cash stream would be:

NPVf(0) =−
n∑

i=0

Ii

[1+ Rf(0, i)]i

+
n∑

i=0

Ci

[1+ Rf(0, i)]i .

While at any time t, it is given by:

NPVf(t) =−
n∑

i=t

Ii

[1+ Rf(t, i)]i−t

+
n∑

i=t

Ci

[1+ Rf(t, i)]i−t
.

This latter expression can of course be written in terms
of zero-coupon risk-free bonds as follows:

NPVf(t) =−
n∑

i=t

Ii Bf(t, i)+
n∑

i=t

Ci Bf(t, i) .

If all pure bonds are priced by the market then of course
the NPV is determined by the market. In practice how-
ever, pure bond prices are available for only a given
subset of times and therefore the NPV has to be priced
in some other manner. Subsequently, we shall see that
this leads to an important technical problem in financial
engineering – one of calculating the yield of the bond
(or any portfolio).

Next, say that payments are made by a firm rated k,
in which case, the project NPV can be written as follows:

NPVk(0) =−
n∑

i=0

Ii

[1+ Rf(0, i)]i

+
N∑

i=0

Ĉi

[1+ Rk(0, i)]i , Ĉi = E
(
C̃i

)
,

where Rk(0, i) is the discount rate applied for expected
receipts Ĉi , i periods hence for a firm whose risk notation
is k (for example, AAA, BB, B+, C etc.). Note that in the
above expression, we have maintained the payments Ii
deterministic and therefore they ought to be discounted
at the risk-free rate in effect at time t = 0 for time i (if

this is not the case, then of course, it will be necessary
to select the appropriate discount rate as well). Note
that Rk(0, i) expresses the k-rated firm’s term structure
used for discounting its future returns which includes
the risk premium ∆k(0, i) in the firm’s cash flows, or
Rk(0, i) = Rf(0, i)+∆k(0, i). For example, say that the
firm is currently rated k. The implication of such a rating
is that an obligation of the firm to pay in i periods 1 dollar
is currently priced by the market at Bk(0, i). As a result,
the set of future prospective investment returns of the
firm can be priced by:

NPVk(0, n) =−
n∑

i=0

Ii Bf(0, i)+
n∑

i=0

Ĉi Bk(0, i) ,

and at time t,

NPVk(t, n) =−
n∑

i=t

Ii Bf(t, i)+
n∑

i=t

Ĉi Bk(t, i) .

This NPV includes of course the discount rate that the
market applies to the firm’s obligations. For fixed and
secured payments the firm is obliged to use the risk-
free rate, or equivalently it equals a risk-free coupon
bond paying one dollar i-periods hence and denoted
by Bf(0, i). When we use the same discount rate for
certain payments and uncertain (valued at expectation)
costs and returns, the traditional approach may overes-
timate (or underestimate) the net present value of the
investment. For example, a firm which is highly rated
may be tempted to borrow more money because it is
cheaper than say another firm perceived as risky. By
the same token, investment in some projects (ports,
highways etc.) may be less expensive when they are
performed by a government, that can tax its citizen to
repay a loan taken to build such a project, than say,
a firm who would invest to self-build the project. Of
course, it is for these reasons that private investors in
national projects require some government assurance
and insurance to reduce the risk (and thereby the risk
premium) which they have to pay for building such
projects.

The approach outlined above can be generalized fur-
ther and applied to value all kinds of assets; we consider
some examples. Again let NPVk(t) be the net present
value of an investment project at time t when the firm is
rated k. Such a firm may however switch to being rated j
with probability pk j a period of time (year) later. These
probabilities define a Markov chain P = [pk j ], usually
specified by rating firms (Moody’s, Standard and Poor,
Fitch etc.). As a result, over two consecutive periods, we
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have

NPVk(t) =−It +Ct + Bk(t, t+1)

×
m∑

 =1

pk NPV (t+1)

and at the final time n, the NPV is given as a function
of the rating (risk) state the firm will be in and specified
by NPV (n). Further, note that due to the potential (or
non-)transition of the firm’s rating, the price of the bond
may be altered over time as well. Explicitly, the price
Bk(t, T ) of a coupon paying bond ck,t at time t and lk
dollars at maturity when it is rated k equals the expected
present value of the bond in the next period, discounted
at a rate associated with its rating in the next period. This
is given by the following recurrence equation

Bk(t, T ) = ck,t +
m∑

j=1

pk j

1+ R jt
B j (t+1, T ) ;

Bk(T, T ) = 1k, k = 1, 2, 3, . . .m .

However, note that for the NPV valuation, we used
a zero-coupon bond paying one dollar in the next period,
and therefore,

Bk(t, t+1) =
m∑

j=1

pk j

1+ R jt
B j (t+1, t+1)

=
m∑

j=1

pk j

1+ R jt
1 j .

For example, if the bond pays one dollar in all circum-
stances, except if it is rated m, in which case it pays
nothing, then

Bk(t, t+1) =
m−1∑

j=1

pk j

1+ R jt
1 =

m−1∑

j=1

pk j

1+ R jt
.

Now assume that at some future time t we have the
option to stop the bond payments at a price of say −Qt .
In other words, the actual net present value at time t with
an option to stop at this time would be:

NPV(o)
k (t) = max [−Qt,NPVk(t)] ,

NPV(o)
k (T ) = NPVk(T )

and Qt is the cost associated with implementing the
option (for example, the cost to the firm of discontinuing
a service, etc.). Note that at the final time, the option is
worthless if the project has been terminated. A stopping
time (at which the option is exercised) occurs thus at

time τ when −Qt ≥ NPVk(τ). A number of situations
may arise then. For example, for a firm that is down-
rated, the cost of borrowing would increase and it might
lead it to decide to exercise the option because of its cost
in capital. And vice versa, a firm that is up-rated and is
trapped in a costly investment might decide to either stop
it or refinance it to reduce its cost or have the current
cash flow of the project to be more in concordance with
its improved rating. The price of such a real option
can be valued by noting that, if it is exercised at time
t+1, when the firm is rated j, resulting in a savings of
−Qt+1−NPV j (t+1), with (NPV j < 0), this saving is
worth today

NPV(1)
k (t) = Bk(t, t+1)

m∑

 =1

pk 

× max
(−Qt+1−NPV j (t+1), 0

)

NPV(1)
k (τ) =−Qτ −NPV j (τ) , τ ≤ T .

These equations are of course meaningful only when
the discount rate associated to a given rating is spec-
ified. If this is the case, then of course, our equations
are simple to calculate. A potential for arbitrage may
thus occur when these discount rates are not appropri-
ately specified. Later on, we shall be concerned with the
determination of these rates based on the construction
of a bonds portfolio of various ratings. Examples that
demonstrate how calculations are performed will also
be used.

Finally, it is worth noting that, when a stream of
payments are random, given by C̃i , and subjectively
valued by an investor whose utility of money u(.) is
known, then we can calculate the certainty equivalent
CEi of the uncertain payment, in which case: u

(
CEi

)=
Eu

(
C̃i

)
and CEi = u−1

[
Eu

(
C̃i

)]
. The NPV can then be

calculated by applying the risk-free rate:

NPVf(0) =−
n∑

i=0

Ii

[1+ Rf(0, i)]i

+
n∑

i=0

u−1
[
Eu

(
C̃i

)]

[1+ Rf(0, i)]i .

Unfortunately, this valuation is also subjective for it is
based on a utility function which might not be available.
Alternatively, a market valuation, can be used when the
price of risk is known, or we establish some mechanism
for appropriately accounting for the risk implied in an
uncertain cash flow. This is done by calculating the yield
of a bond. There are numerous techniques, inspired both
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theoretically and numerically, that are applied to calcu-
late the yield. Such a problem is the topic of commercial
and theoretical research. Nonetheless we shall consider
a number of approaches to calculating the yield because
of its importance in financial engineering.

47.4.1 Calculating the Yield of a Bond

The yield of a bond is the discount rate yT applied to
holding the bond for T periods. This yield is often dif-
ficult to calculate because data pertaining to the term
structure of zero-coupon bonds is simply not available,
or available only for certain periods. For example, say
that we have a bond at time whose exercise price oc-
curs at time t, or B(0, t) = B(t). To each time t, we
associate the rate y(t) and therefore the bond price is
B(t)= exp

[−y(t)t
]
. The function y(t) is called the yield

curve. Of course, if zero-coupon bonds are price for time
t = 1, we then have y(1)= Rf, which is the current spot
rate. However, if there are no zero-coupon bonds for
t = 6, the yield for such a bond can only be inferred by
some numerical or estimation technique. In other words,
unless a zero-coupon bond exists for every maturity for
which the discount factor is desired, some estimation
technique will be needed to produce a discount fac-
tor for any off-maturity time. Since zero-coupon bonds
are available for only some and other maturities, a lack
of liquidity may prevent the determination of the true
bond yield [47.66] (see also [47.67–69]. The yield en-
gineering problem consists then in determining some
technique and appropriate sources of information to es-
timate the yield for all maturities (also called the yield
curve). Approaches to this problems are of course varied.
Nelson and Siegel [47.70] for example suggest the fol-
lowing four-parameter equation, which can be estimated
numerically by fitting to the appropriate data

y(t) = a0+ (a1+a2)

(
1− exp (−a3t)

a3

)

−a2 exp (−a3t) ;
y(t) is the spot rate while a0, a1, a2, a3 are the model’s
parameters (for related studies and alternative mod-
els see [47.66, 71–79], www.episolutions.com) suggest
however a zero curve solution, which uses a combination
of liquid securities, both zero-coupon and coupon-
bearing bonds for which prices are readily available,
and consisting of an application of bootstrapping tech-
niques to calculate the yield curve. Explicitly, the Wets
approach is based on an approximation, and in this
sense it shares properties with purely spline methods.
It is based upon a Taylor series approximation of the

discount function in integral form. Some prevalent meth-
ods for computing (extracting) the zeros, curve-fitting
procedures, and equating the yield curve to observed
data in central banks include, among others: in Canada
the use of the Svensson procedure and David Bolder
(Bank of Canada), in Finland the Nelson–Siegel proce-
dure, in France the Nelson–Siegel, Svensson procedures,
while in Japan and the USA, the banks use smoothing
splines etc. (see [47.71–73, 80]). A critical apprecia-
tion of the zero-curve approach is provided by [47.81]
and [47.80] (essentially based on the structural form of
the polynomial used in the episolutions approach). Other
approaches span numerical techniques, smoothing tech-
niques, [47.82], (such as least-squares approaches as we
shall see later on when introducing rated bonds), kernel
smoothing (SDF) techniques etc. [47.83–86]. For ex-
ample, consider the price B(t, T − t) of a bond at time t
whose maturity is at time T . The next-period price of the
bond is in fact unknown (depending on numerous fac-
tors including random interest rates). Applying the SDF
approach, we can state that

B(t, T − t) = Et
[
Mt+1 B(t+1, T − t−1)

]
,

where Mt+1 is the pricing kernel. Rearrange this term
as follows

1 = Et

(
Mt+1

B(t+1, T − t−1)

B(t, T − t)

)
, where

B(t+1, T − t−1)

B(t, T − t)
= 1+ yt+1,T

with yt+1,T denoting the yield of the bond whose matu-
rity is at time T , at time t+1. As a result,

1 = Et
[
Mt+1

(
1+ yt+1,T

)]
,

Et
[
Mt+1

]= 1

1+ Rt,f
.

To calculate the yield some model is needed for both the
kernel and of course the yield distributions. Since these
variables are both random and dependent an appropri-
ate model has to be constructed on the basis of which
an empirical econometric verification can be reached.
Alternatively, if information regarding the marginal dis-
tributions of the kernel and the returns is available, then
we may also construct copulas to represent the sta-
tistical covariation effects of both the kernel and the
returns. These are problems that require further research
however.
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47.4.2 Bonds and Risk-Neutral Pricing
in Continuous Time

In many situations, we use stochastic models of interest
rates to value bonds. Below we shall consider some ex-
amples and provide as well some general results for the
valuation of such bonds. In practice however, it is ex-
tremely difficult to ensure that such models do indeed
predict very well the evolution of interest rates and there-
fore there is a broad range of techniques for calculating
the yields of various bonds – of both risk denomination
and term structures. In continuous time, let r(t) be the
known spot interest rate. A risk-free bond paying one
dollar at T with a compounded interest rate r(t) is then
given by:

B(0, t)= exp

⎡

⎣
t∫

0

r(u)du

⎤

⎦ , B(T, T ) = 1 .

The interest rate process may be deterministic or
stochastic as stated above. Since bonds depend inti-
mately on the interest rate process, it is not surprising
that much effort is devoted to constructing models that
can replicate and predict reliably the evolution of in-
terest rates, as one process values the other. There are
many interest rate models however, each expressing an
economic rationale for the evolution of interest rates.
Generally, and mostly for convenience, an interest rates
process {r(t), t ≥ 0} is represented by an Ito stochastic
differential equation:

dr = µ(r, t)dt+σ(r, t)dw ,

where µ and σ are the drift and the diffusion function
of the process which may or may not be stationary.
Various authors consider alternative models in their
analysis [47.1, 87, 88]. The Vasicek model in partic-
ular provides a straightforward rationality for interest
rates movements (also called the Ornstein–Uhlenbeck
process). In other words, it states that the rate of
change in interest rates fluctuates around a long-
run rate α. This fluctuation is subjected to random
and normal perturbations of mean zero and variance
σ∆t, or

dr = β(α−r)dt+σ dw .

Without much difficulty, it can be shown (see
also [47.48]) that this equation has a solution expressed
in terms of the current interest rates and the model’s

parameters given by

r(τ)= α+[r(t)−α]e−β(τ−t)

+σ

τ∫

t

e−β[τ−y] dw(y) .

The value of a bond with variable interest rates is thus:

B(t, τ)= E exp

⎡

⎣
τ∫

t

r(u)du

⎤

⎦

= E exp

⎧
⎨

⎩

τ∫

t

α+[r(t)−α]e−β(u−t)

+ σ

u∫

t

e−β[u−y] dw(y)du

⎫
⎬

⎭ ;

B(T, T ) = 1

with dw(y) denoting the risk source (a normally dis-
tributed random variable of zero mean and variance dy).
Interest rates are therefore also normal with a mean and
variance (volatility) evolution we can easily compute. In
particular note that:

ln B(t, τ)= ln

⎧
⎨

⎩

τ∫

t

α+[r(t)−α]e−β(u−t) du

⎫
⎬

⎭

+ ln E exp

⎡

⎣
τ∫

t

σ

u∫

t

e−β[u−y] dw(y)du

⎤

⎦

which can be written as a linear function in the current
interest rate, or

ln B(t, τ)= A(t, τ)r(t)+D(t, τ) .

This is a general property called the affine property
which, is found in some general Markov processes X
in a state space D ⊂ R d . Namely, it states that the bond
return is linear in the process X, or R(x) = a0+a1 X.
Explicitly, we have the characteristic function:

E
{

eiu X(t)|X(s)
}

= exp[(ϕt− s, u)+ψ(t− s, u)X(s)] .
The logarithm is of course a linear function with
a0 = ϕ(t− s, u) and a1 = ψ(t− s, u) deterministic
coefficients. Duffie et al. [47.89] show that for a time-
homogeneous affine process X with a state space of the
form R n+ ×R d−n , provided the coefficients ϕ(·) and ψ(·)
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of the characteristic function are differentiable and their
derivatives are continuous at 0. The affine process X
must a be a jump-diffusion process in that

dXt = µ(Xt)dt+σ(Xt)dWt + dJt

for standard Brownian motion W in R d and a pure jump
process J , with J affine dependent on X. A related
property is of course

Et

(
e
∫ s

t −R[x(u)]du+wX(s)
)
= eα(s−t)+β(s−t)X(t) ,

where α(·), β(·) satisfy a generalized Ricatti ordinary
differential equation (with real boundary conditions).
To see this property (in a specific case) consider the
following example. Let interest rates be given by the
following stochastic differential equation

dr = β(α−r)dt+σ
√

r dw .

Application of Ito’s differential rule to B(t, r) =
exp

[− ∫ T
t r(u)du

]
yields

E d ln B(t, r)

dt

=−r− (T − t)β(α−r)+ 1

2
(T − t)2σ2r ,

which is clearly a linear function of the current interest
rate. Elementary mathematical treatment will also show
that the mean and the variance of the interest rates are
given by

E{r(t) | r0} = c(t)

(
4βα

σ2 + ξ

)
;

var {r(t) | r0} = c(t)2
(

8βα

σ2 +4ξ

)
, where

c(t) = σ2

4β

(
1− e−βt) ,

ξ = 4r0β

σ2[exp(βt)−1] .
In this case, interest rates are not normal. Nonetheless
the Laplace transform can be calculated and applied to
price the bond as we have shown it above.

When interest rate models include stochastic volatil-
ity, the valuation of bonds is incomplete. Therefore,
it is necessary to turn to appropriate mechanisms that
can help us to price bonds. For example, denote by
V = σ2(r, t), a stochastic volatility model consisting of
two stochastic differential equations, with two sources
of risk (W1, W2), which may be correlated or not. An
example would be

dr = µ(r, t)dt+√
V (r, t)dW1 ;

dV = ν(V, r, t)dt+γ (V, r)dW2 ,

where the variance V appears in both equations. Due to
market incompleteness, there may be an infinite num-
ber of prices. A special case provided by Hull and
White [47.90] is reproduced below. Note that the inter-
est rate model is the square-root model we saw earlier.
However, since the variance is subject to stochastic vari-
ations as well, it is modeled separately as a stochastic
differential equation which is mean–variance reverting.

dr

r
= µdt+√V dW1 ;

dV = α(β−V )dt+γrVλ dW2 .

In this case, when stock prices increase, volatility in-
creases, while when volatility increases, interest rates
(or the underlying asset we are modeling) increases also.
These problems will be considered subsequently when
we treat incomplete markets.

47.4.3 Term Structure and Interest Rates

If r(t, T ) is the interest rate applied at t for a payment at
time T , then at t+1, the relevant rate for this period T
would be r(t+1, T ). If these interest rates are not equal,
there may be an opportunity for refinancing [47.91]. As
a result, the evolution of interest rates for different ma-
turity dates is important. Further, since bonds may have
various maturities, the interest rates applied to value
these bonds require necessarily that we assess the in-
terest rates term structure. Below, we shall see how the
term structure is implicit in bonds valuation. Say that an
interest rate model for maturity at T is:

dr(t, T ) = µ(r, T )dt+σ(r, T )dW .

A bond price with the same maturity is therefore a func-
tion of such interest rates, leading to:

dB(t, T )

B(t, T )
= α(r, t, T )dt+β(r, t, T )dW .

The parameters α(.) and β(.) are easily found by applica-
tion of Ito’s lemmas to B(t, T )= exp

[−r(t, T )(T − t)
]
,

dB(t, T )

=
[
∂B

∂t
+ ∂B

∂r
µ(r, T )+ 1

2

∂2 B

∂r2
σ2(r, T )

]
dt

+ ∂B

∂r
σ(r, T )dw .
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Equating these two bond price equations, we have:

α(r, t, T )B

=
[
∂B

∂t
+ ∂B

∂r
µ(r, T )+ 1

2

∂2 B

∂r2
σ2(r, T )

]
;

β(r, t, T )B = ∂B

∂r
σ(r, T ) .

Now assume that the risk premium is proportional to
their returns standard deviation and let the price of risk
be a known function of r and time t:

α(r, t, T ) = r+λ(r, t)
1

B

∂B

∂r
.

Inserted into the bond equation derived above, this leads
to

rB+λ(r, t)
∂B

∂r

=
[
∂B

∂t
+ ∂B

∂r
µ(r, T )+ 1

2

∂2 B

∂r2
σ2(r, T )

]

and finally to the partial differential equation:

0 = ∂B

∂t
+ ∂B

∂r
[µ(r, T )−λ(r, t)]

+ 1

2

∂2 B

∂r2 σ2(r, T )−rB; B(r, T, T ) = 1 .

The solution of this equation, although cumbersome,
can be determined. For example, if we set the con-
stants

[
µ(r, T )−λ(r, t)

]= θ; σ2(r, T ) = ρ2, then the
following solution can be verified:

B(r, t, T )

= exp

[
−r(T − t)− 1

2
θ(T − t)2+ 1

6
ρ2(T − t)3

]
.

In general these equations are difficult to solve ana-
lytically or numerically and require therefore a certain
amount of mathematical and numerical ability. Alterna-
tively, if we set

[µ(r, T )−λ(r, t)] = k(θ−r); σ2(r, T ) = ρ2r .

Then we can show that the solution for the bond value
is of the affine structure form and therefore given by

ln B(r, t, T ) = A(T − t)+rD(T − t) .

A solution for the function A(.) and D(.) can then be
found by substitution.

47.4.4 Default Bonds

There are various models for default-prone bond, falling
into one of two categories: structural models and
reduced-form models [47.74, 92, 93]. Structural mod-
els of default specify a particular value process and
assume that default occurs when the value falls be-
low some explicit threshold (for example, default may
occur when the debt-to-equity ratio crosses a given
threshold). In this sense, default is a stopping time
defined by the evolution of a representative stochas-
tic process. These models determine both equity and
debt prices in a self-consistent manner via arbitrage,
or contingent-claims pricing. These models assume of-
ten that debt-holders get back a fraction of the face
value of the debt, sometimes called the recovery ra-
tio at default. Such an assumption is observed largely
in practice with bondholders recovering 20–80% of
their investment. This recovery ratio is known a pri-
ori, however, in their models. Structural models have
a number of additional drawbacks. For example, they
cannot incorporate credit-rating changes that occur fre-
quently for default prone (risky) corporate debts. Many
corporate bonds undergo credit downgrades by credit-
rating agencies before they actually default, and bond
prices react to these changes either in anticipation or
when they occur. Thus, any valuation model should
take into account the uncertainty associated with credit-
rating changes as well as the uncertainty surrounding
default.

Reduced-form models instead, specify the default
process explicitly, interpreting it as an exogenously mo-
tivated jump process, usually given as a function of
the firm value. This class of models has been inves-
tigated for example by Jarrow and Turnbull [47.92],
Jarrow, Lando and Turnbull [47.93, 94], Duffie and
Singleton [47.78], and others. Although these mod-
els are useful when fitting default to observed credit
spreads, neglecting the underlying value process of
the firm renders it less useful when it is necessary
to determine credit-spread variations. There are nu-
merous publications regarding default-prone bonds and
therefore we only consider some classical and simple
examples.

Example 47.3 (structural models): Longstaff–Schwartz
[47.95] assume a risk-free interest rate two-factor model
with interest rates given by a Vacicek [47.96] model. Let
Vt and rt be the time-t values of the firm’s assets and
the risk-free interest rate, respectively. The dynamics of
these two factors is written in terms of the following
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equations

dV/V = (r− δ)dt+σ1 dZ1 ;
dr = (α−βr)dt+σ2 dZ2 ,

where δ, σ1, α, β and σ2 are constants, and Z1 and Z2,
two standard Brownian motion processes with constant
correlation coefficient ρ.

In their model, default occurs when the value of
the firm declines to a pre-specified boundary (with the
par value of the bond – the face amount due on the
maturity date – taken as the boundary). As a result, the
default boundary is specified exogenously. In the event
of default, bondholders recover a constant fraction of the
par value of the bond. In the Longstaff–Schwartz model,
a risky coupon bond is valued as a simple portfolio of
a risky zero-coupon bond whose value for a $ 1 face
value is given by

P(Vt |F, rt, T )

= D(rt, T ) [1− (1−w)Q(Vt |F, rt, T ) ] ,

where D(.) denotes the value of a default-free discount
bond given by the Vacicek [47.96] model, Q(.) rep-
resents the forward default probability while w is the
recovery rate.

Example 47.4 (reduced-form models): Failure of struc-
tural models to adequately price risky bonds found in the
marketplace led to another approach based on reduced-
form models of default risk. These make no attempt
to define default as an endogenous event (arising from

a low level of firm value or cash flow), but rather specify
default as an exogenous event and thus do not ex-
plicitly incorporate any relationship between leverage
and firm value into the model. These models, such as
those of Duffie and Singleton [47.78], Jarrow and Turn-
bull [47.92], and Jarrow, Lando and Turnbull [47.93],
are based on parameters that can be estimated with read-
ily available data, such as default rates or bond spreads.
The model of Jarrow, Lando, and Turnbull ([47.93], for
example) assumes that the value of a default-free zero-
coupon bond is known at time t. This bond will mature
at time T and pay one dollar on maturity. p(t, T ) is the
value of this bond. If vi (t, T ) denotes the value of a de-
faultable zero-coupon bond of a firm that currently has
credit rating i (for example, AAA) at time t, will mature
at time T , and has a promised payoff of $ 1 at maturity,
then Jarrow, Lando, and Turnbull show that:

vi (t, T ) = p(t, T )[φ+ (1−φ)qi (t, T )] ,

where φ is the recovery ratio, the fraction of the face
value ($ 1) that is recovered at time T after default, and
qi (t, T ) denotes the probability of a default occurring af-
ter T given that the debt has credit rating i as of time t.
To arrive at the valuation formula, Jarrow, Lando, and
Turnbull [47.93] assume that default is independent of
the level of interest rates. However, this assumption is not
critical. The independence assumption can be relaxed so
that the model of Jarrow et al. extended so that the de-
fault relaxes the independence assumption and extends
the model of Jarrow et al. so that the default probability
can depend on the level of interest rates.

47.5 Options

Options are instruments that give the buyer of the op-
tion (the long side) the right to exercise, for a price,
called the premium, the delivery of a commodity, a stock,
a foreign currency etc. at a given price, called the strike
price, at (within) a given time period, also called the
exercise date. Such an option is called a European
(American) call for the buyer. The seller of such an
option (the short side), has by contrast the obligation to
sell the option at the stated strike and exercise date.
A put option (the long side) provides the option to
sell, while for the short seller there is an obligation
to buy. There are many types of options however and
considerable research on the pricing of options (for ex-
ample, see [47.24, 32, 97–106]. We shall consider in
particular call and put options. Options are traded on

many trading floors and mostly, they are defined in
a standard manner. Nevertheless, there are also over-
the-counter options, which are not traded in specific
markets but are used in some contracts to fit specific
needs. For example, there are Bermudan and Asian op-
tions. The former option provides the right to exercise
the option at several specific dates during the option
lifetime, while the latter defines the exercise price of the
option as an average of the value attained over a cer-
tain time interval. Of course, each option, defined in
a different way, will lead to alternative valuation for-
mulas. There can be options on real assets, which are
not traded but used to define a contract between two
parties (real options). The valuation of options has at-
tracted a huge amount of interest and for this reason it
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will also be a substantial issue we shall deal within this
chapter.

47.5.1 Options Valuation and Martingales

When the underlying price process is a martingale and
risk-neutral pricing of financial assets applies, then the
price of a cash flow S̃n realized at time n is

S0 = 1

(1+ Rf)
n E∗ (S̃n

)
.

Hence the forward price is:

V0 (1+ Rf)
n = E∗ (S̃n |Φ0

)
,

where Φ0 is a filtration, representing the initial infor-
mation on the basis of which the expectation is taken
(under the risk-neutral distribution where expectation is
denoted by E∗ (∗)). If K is the exercise price of a call
option for exercise at some time T , then, the price Ct
of such an option (as well as a broad variety of other
options) under risk-neutral pricing is

Ct = 1

(1+ Rf)
T−t

E∗ [max
(
K − S̃T , 0

) |Φt
]
.

A simple example often used is the binomial option
model. For simplicity, assume, a stock whose current
price is 1 $ and consider two asset state prices one period
hence (H, L), H > 1, L < 1. Under risk-neutral pric-
ing, then of course 1 = 1

1+Rf

[
pH+ (1− p)L

]
, where p

is a risk-neutral probability. To determine this proba-
bility we construct a replicating portfolio for the call
option whose state prices are (CH ,CL ) = (H−K, 0),
H > K , L < K . Let this portfolio consist of the stock
and a risk-less zero-coupon bond paying one dollar one
period hence and be given initially by P = a+b. One
period hence, the portfolio state prices are necessar-
ily (PH , PL ) = [

aH+b(1+ Rf), aL+b(1+ Rf)
]
. It is

a replicating portfolio if (PH , PL ) = (CH ,CL ). A solu-
tion of these replicating asset prices yields both a∗ and b∗
– the replicating portfolio composition. Since two assets
with identical cash flows have the same price, the portfo-
lio price and the call option ought, in complete markets,
have the same price and therefore C = P∗ = a∗ +b∗,
which provides the desired solution. Since the call op-
tion under risk-neutral pricing equals the discounted (at
the risk-free rate) value of the call option at its exercise,
or:

C = 1

1+ Rf
[pCH + (1− p)CL ]

= 1

1+ Rf
[p (H−K) , (1− p) (0)]

we can solve this equation and obtain the risk-neutral
probability

p = (1+ Rf) (1)− L

H− L
;

q = 1− p = H− (1+ Rf)(1)

H− L
.

This analysis can be repeated for several periods. Ex-
plicitly, for an option whose exercise is at time n we
obtain by induction

C = 1

(1+ Rf)n

×

⎡

⎣
n∑

j=0

(
n

j

)
p j (1− p)n− j (H j Ln− j x−K )+

⎤

⎦ ,

x = 1.

We can write this expression in still another form

Cn = 1

(1+r)n
E∗ [(xn −K )+

]
, where

P
(

xn = H j Ln− j x
)
=

(
n

j

)
p j (1− p)n− j .

47.5.2 The Black–Scholes Option Formula

In continuous time and continuous state, the pricing of
Black–Scholes options are obtained in a similar manner,
albeit using stochastic calculus. The traditional approach
is based on the replication of the option value by the con-
struction of a portfolio consisting of the underlying asset
(the security) and a risk-free bond. Let S(t) be a security-
stock price at time t, distributed as a log-normal process
and let V be the value of an asset derived from this
stock, which we can write by the following function
V = f (S, t), assumed to be differentiable with respect
to time and the security-stock S(t). For simplicity, let the
security price be given by a log-normal process:

dS

S
= αdt+σ dW, S(0) = S0 ,

where
{
W(t), t ≥ 0

}
, W(0) = 0 is a standard Brownian

motion. Let P be a replicating portfolio consisting of
bonds and investment in the given stock, P = B+aS
or B = P−aS, in which case the price of a risk-less
bond and the price of a portfolio P−aS is necessar-
ily the same. A perfect hedge is thus constructed by
setting: dB = dP−a dS where dB = Rf B dt. Now, let
V = C = f (S, t) be the option price. Setting the repli-
cating portfolio, we have P = C and dP = dC, which
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is used to obtain a partial differential equation of the
option price with appropriate boundary conditions and
constraints, providing thereby the solution to the Black–
Scholes option price. Each of these steps is translated
into mathematical manipulations. First, note that:

dB = d f −a dS = Rf B dt .

By an application of Ito’s differential rule we obtain the
option price:

dC = d f

=
(
∂ f

∂t
+αS

∂ f

∂S
+ σ2S2

2

∂2 f

∂S2

)
dt

+
(
σS

∂ f

∂S

)
dW

and therefore,
(
∂ f

∂t
+αS

∂ f

∂S
+ σ2S2

2

∂2 f

∂S2

)
dt

+
(
σS

∂ f

∂S

)
dW −a dS = Rf( f −aS)dt .

Thereby,
[
∂ f

∂t
+αS

∂ f

∂S
+ σ2S2

2

∂2 f

∂S2

−aS (α− Rf)− Rf f

]
dt

+σS

(
−a+ ∂ f

∂S

)
dW = 0 ,

or

a = ∂ f

∂S
;
(
∂ f

∂t
+ RfS

∂ f

∂S
+ σ2S2

2

∂2 f

∂S2
− Rf f

)
= 0

and finally

− ∂ f

∂t
= RfS

∂ f

∂S
+ σ2S2

2

∂2 f

∂S2 − Rf f ; f (0, t) = 0 ,

∀t ∈ [0, T ] , f (S, T ) = max [0, S(T )−K ] .

The boundary conditions are specified by the fact that
the option cannot be exercised until the exercise time
(unlike an American option, as we shall see below) and
therefore it is worthless until that time. At the exercise
date T however, it equals f (S, T ) = max[0, S(T )−K ].
The solution was shown by Black and Scholes to be

W = f (S, t) = SΦ(d1)−K e−RftΦ(d2) ,

where

Φ(y) = (2π)−1/2

y∫

−∞
e−u2/2 du ;

d1 =
(

log(S/K )+ (T − t)(Rf+σ2/2)

σ
√

T − t

)
;

d2 = d1−σ
√

T − t .

This result is remarkably robust and holds under very
broad price processes. Further, it can be estimated by
simulation very simply. There are many computer pro-
grams that compute these option prices as well as their
sensitivities. The price of a put option is calculated in
a similar manner (see also [47.107, 108]).

47.5.3 Put–Call Parity

The put–call parity relationship establishes a relation-
ship between the price of a put and that of a call. It can
be derived by a simple arbitrage argument between two
equivalent portfolios, yielding the same payoff regard-
less of the stock price. Their value must therefore be the
same. To do so, construct the following two portfolios
at time t:

Time t Time T

ST < K

(1) c+K e−Rf(T−t)
∣∣∣K

(2) p+ St

∣∣∣K = (K − ST )+ ST

Time t Time T

ST > K

(1) c+K e−Rf(T−t)
∣∣∣(ST −K )+K = ST

(2) p+ St

∣∣∣ST

We see that at time T , the two portfolios yield the
same payoff max(ST , X) which implies the same price
at time t. Thus

c+K e−Rf(T−t) = p+ St .

If this is not the case then there would be some arbitrage
opportunity. In this sense, computing European options
prices is simplified, since knowing one leads necessarily
to knowing the other.

When we consider dividend-paying options, the put–
call parity relationships are slightly altered. Let D denote
the present value of the dividend payments during the
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lifetime of the option (occurring at the time of its ex-
dividend date), then:

c > S−D−K e−Rf(T−t) ,

p > D+K e−Rf(T−t)− S .

Similarly, for put–call parity in a dividend-paying op-
tion, we have the following bounds

S−D−K < C− P< S−K e−Rf(T−t) .

Put–call parity can be applied similarly between secu-
rities denominated in different currencies. For example,
let α be the euro/dollar exchange rate (discounted at
the dollar risk-free rate) and let Rf,E be the euro-area
discount rate. Then, by put–call parity, we have

c+ K

1+ Rf,E
= p+α ,

which can be used as a regression equation to deter-
mine the actual exchange rate based on options data on
currencies exchange.

47.5.4 American Options – A Put Option

American options, unlike European options, may be ex-
ercised prior to the expiration date. The price of such
options is formulated in terms of stochastic dynamic
programming arguments. As long as the option is alive
we may either exercise it or maintain it, continuing to
hold it. In a continuation region, the value of the option
is larger than the value of its exercise and therefore, it is
optimal to wait. In the exercise region, it is optimal to
exercise the option and cash in the profits. If the time to
the option’s expiration date is t, then the exercise of the
option provides a profit K − S(t). In this latter case, the
exercise time is a stopping time, and the problem is ter-
minated. Another way to express such a statement using
dynamic programming arguments is:

f (S, t)

= max
[

K − S(t), e−Rf dt E f (S+ dS, t+ dt)
]
,

where f (S, t) is the option price at time t when the un-
derlying stock price is S and one of the two alternatives
holds at equality. At the contracted strike time of the
option, we have necessarily, f (S, 0) = K − S(0). The
solution of the option’s exercise time is difficult how-
ever and has generated a large number of studies seeking
to solve the problem analytically or numerically. Noting
that the solution is of barrier type, meaning that there

is some barrier X∗(t) that separates the exercise and
continuation regions, we have

⎧
⎪⎪⎨

⎪⎪⎩

If K − S(t) ≥ X∗(t) exercise region:
stopping time

K − S(t) < X∗(t) continuation region .

The solution of the American put problem consists then
of selecting the optimal exercise barrier [47.109, 110].
A number of studies have attempted to do so, includ-
ing [47.111] as well as many other authors. Although
the analytical solutions of American put options are hard
to reach, there are some problems that have been solved
analytically. For most practical problems, numerical and
simulation techniques are used.

Explicitly, assume that an American put option de-
rived from a security is exercised at time τ < T where
T is the option exercise period while the option ex-
ercise price is K . Let the underlying stock price be
a risk-neutral process:

dS(t)

S(t)
= Rf dt+σ dW(t), S(0) = S0 .

Under risk-neutral pricing, the value of the option equals
the discounted value (at the risk-free rate) at the optimal
exercise time τ∗ < T , namely:

J(S, T ) = max
τ≤T

ES e−Rfτ [K − S(τ), 0] .

Thus,

J(S, t)

=

⎧
⎪⎪⎨

⎪⎪⎩

K − S(t) exercise region: stopping time

e−Rf dt E J(S+ dS, t+ dt)

continuation region .

In the continuation region we have explicitly:

J(S, t) = e−Rf dt E J(S+ dS, t+ dt)

≈ (1− Rf dt)

× E

[
J(S, t)+∂J

∂t
dt+∂J

∂S
dS+1

2

∂2 J

∂S2 (dS)2
]

which is reduced to the following partial differential
equation

−∂J

∂t
=−Rf J(S, t)+ ∂J

∂S
RfS+ 1

2

∂2 J

∂S2 σ
2S2 ,

while in the exercise region:

J(S, t) = K − S(t) .
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For a perpetual option, note that the option price is not
a function of time but of price only and therefore ∂J

∂t = 0
and the option price is given by an ordinary differential
equation of second order

0 =−Rf J(S)+ dJ

dS
RfS+ 1

2

d2 J

dS2 σ
2S2 .

Assume that an interior solution exists, with an ex-
ercise at price S∗, S(t) ≤ S∗, S∗ ≤ K . These specify
the two boundary conditions required to solve our
equation. In the exercise region J(S∗) = K − S∗, while
for optimal exercise price dJ(S)

dS

∣∣S=S∗ = −1. Let the
solution be of the type J(S) = qS−λ. This reduces
the differential equation to an equation we solve for
λ : σ2 λ(λ+1)

2 −λRf− Rf = 0 and λ∗ = 2Rf/σ
2. At the

exercise boundary S∗ however: J(S∗) = qS∗−λ∗ = K −
S∗; dJ(S∗)/dS∗ = −λ∗qS∗−λ∗−1 = −1. These two
equations are solved for q and S∗[0, 1] leading to:
S∗ = λ∗K/(1+λ∗) and q = (λ∗)λ

∗
K1+λ∗/(1+λ∗)1+λ∗

and the option price is thus:

J(S) =
(
(λ∗)λ∗ K1+λ∗

(1+λ∗)1+λ∗

)
S−λ∗ ,

λ∗ = 2Rf

σ2 , S∗ = λ∗

1+λ∗
K .

Thus the solution of the perpetual American put is
explicitly given by:

⎧
⎨

⎩
Sell if S ≤ S∗

Hold if S > S∗ .

When the option time is finite, say T , this problem is
much more difficult to solve however. Further, for an
American call, it is easily demonstrated that it equals in
fact the price of the European call.

In discrete time, a similar approach may be applied
if risk-neutral pricing can be applied. For example, con-
sider again the binomial option model considered earlier.
The stock can assume at time n the following prices:
Hi Ln−i x−K , i = 0, 1, 2, . . . n+1, where p is the prob-
ability of the price increasing (and 1− p, the probability
that it decreases) and x is the initial price (at time t = 0).
The price of a put option with an option maturity at
time n is then: Pn(i) = max(K −Hi Ln−i x, 0). Suppose
that at time t the put is exercised, then the profit is Pt(i).
Alternatively, say that the option is not sold at t. In this
case, by risk-neutral pricing, the price of the option is

P∗
t+1(i) = 1

1+ Rf

[
pPt+1(i+1)+ (1− p)Pt+1(i)

]
.

Thus, by the recurrence (Bellman) equation for this
problem, we have:

Pt(i) = max
[

K −Hi Ln−i x, P∗
t+1(i)

]

with boundary condition

Pn(i) = max
(

K −Hi Ln−i x, 0
)
,

and a solution can be found by numerical techniques.

47.5.5 Departures
from the Black–Scholes Equation

Any departure from the basic assumptions underly-
ing the Black–Scholes model will necessarily alter the
Black–Scholes (BS) solution. For example, if volatil-
ity is stochastic, if interest rates are stochastic, if stock
prices are not log-normal, etc. the solution will not be
necessarily a BS solution. For many cases however, it is
possible to construct replicating portfolios and thereby
remain within the assumptions that markets are com-
plete. Below we shall consider a number of such cases to
demonstrate how we might proceed in different manners.
These approaches however, are based on a valuation
based on risk-neutral pricing (for example, Hull [47.32],
Jarrow and Rudd [47.112]).

The BS option price depends, of course, on the as-
sumptions made regarding the underlying price process.
Further, it depends essentially on the stock volatility,
which cannot be observed directly. For this reason, the
relationships between the option price and volatility
have been taken to reflect one or the other. In other
words, given the options price and other observables
(interest rates, strike price, etc.), the implied volatil-
ity is that volatility that solves the BS price equation:
Ĉ = W

(
.
∣∣σimp

)
, where Ĉ is the current option price

and C = W
(
.
∣∣σ

)
is the theoretical option price with

an implied volatility σ = σimp. Importantly, when the
volatility is constant then σimp does not change as a func-
tion of T and K and it equals the true historical volatility.
However, in practice when we calculate this implied
volatility as a function of (T, K ), we observe that there
are some variations and therefore the BS model cannot
be considered as the true market option price. Further,
when the underlying price changes, the implied volatil-
ity can be a function of time as well and as a result, the
implied volatility is a function σimp(t). When we con-
sider the options price variations as a function of the
strike K , we observe a volatility skew which is the well-
known volatility smile. Skewness is smaller however for
at-the-money options (in which case, the BS model is
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a good predictor of option price). The valuation of op-
tions in these circumstances is more difficult and there
are, commensurably, numerous studies and extensions
that calculate option prices. For example, [47.113, 114]
consider transaction costs, [47.90, 115–117] consider
option prices with stochastic volatility. Nelson and Ra-
maswamy [47.118] use discretized approximations and,
even in physics, option pricing is considered as an appli-
cation [47.119]. We consider below some well-known
cases.

Option Valuation and Stochastic Volatility
When the underlying process has a stochastic volatility
the replication of an option price by a portfolio requires
special attention. We may proceed then by finding an
additional asset to use (for example, another option
with different maturity and strike price). Consider the
following stochastic volatility process as an example

dp/p = αdt+√V dw, p(0) = p0

dV/V = µdt+ ξ dz, V (0) = v0 ;
E(dwdz) = ρdt ,

where (w, z) are two Brownian motions with correla-
tion ρ. A call option would in this case be a function of
both p and V , as we saw earlier for the BS option model,
or C(t, p, V ). Application of Ito’s lemma yields

dC =
[
∂C

∂t
+ ∂C

∂p
αp+ ∂C

∂V
µV + 1

2

∂2C

∂p2 (σp)2

+ 1

2

∂2C

∂V 2 (ξV )2+ ∂2C

∂p∂V
(µV +ρξσpV )

]
dt

+ ∂C

∂p
(σpdW)+ ∂C

∂V
(ξV dZ) .

The first term in the brackets is the deterministic com-
ponent while the remaining ones are stochastic terms
that ought to be nullified by an appropriate portfolio
(i. e. hedged) if we are to apply a risk-neutral frame-
work. Since there are two sources of risk, we require
two assets in addition to the underlying asset price.
For this reason, we construct a replication portfolio
by: X = n1 p+n2C2+ B, B = (X−n1 p−n2C2), where
n1, n2 are the number of stock shares and another option
with different maturity. In this case, proceeding as we
have for the BS model, we have dC1 = dX and therefore

dC1−n1 dp−n2 dC2 = rB dt

= r(C1−n1 p−n2C2)dt or

(dC1−rC1 dt)−n1 (dp−r pdt)

−n2 (dC2−rC2 dt)= 0

which provides the equations needed to determine
a hedging portfolio given by

dΦ1 = (dC1−rC1 dt) , hence Φ1 = e−rtC1 ;
dΦ2 = (dp−r pdt) , hence Φ2 = e−rt p ,

dΦ3 = (dC2−rC2 dt) , hence Φ2 = e−rtC2 ;
dΦ1 = n1 dΦ2+n2 dΦ3 .

As a result,

d
(

e−rtC1
)= n1 d

(
e−rt p

)+n2 d
(

e−rtC2
)
.

Further,
dC1

C1
= µ1 dt+σ1 dW1, with λ1 = (µ1−r)

σ1
,

hence
dC1

C1
−r dt = σ1 (λ1 dt+ dW1)= σ1 dW̃1

while (λ1 dt+ dW1)= dW̃1, is the risk-neutral measure.
If we apply a CAPM risk valuation, we have then:

1

dt
E

(
dC1

C1
−r

)
= σ1λ1

= [(
Rp−r

)
βcp+(RV −r) βcV

]
,

where Rp is the stock mean return, βcp = p
C1

∂C1
∂p βp is

the stock beta, RV is the volatility drift while βcV =
V
C1

∂C1
∂V βV is the beta due to volatility. We therefore obtain

the following equations:
1

dt
E

(
dC1

C1

)

= r+
[
(α−r)

p

C1

∂C1

∂p
βp+ (µ−r) βV

V

C1

∂C1

∂V

]
;

Rp = α; RV = µ, λV = (µ−r) VβV ,

where λV is the risk premium associated with the volatil-
ity. Thus,

1

dt
E

(
dC1

C1

)
= r+

[
(α−r)

p

C1

∂C1

∂p
+ λV

C1

∂C1

∂V

]

which we equate to the option we are to value. Since,
1

dt
E

(
dC

C

)
= r+

[
(α−r)

p

C

∂C

∂p
+ λV

C

∂C

∂V

]

and obtain at last:
1

dt
E

(
dC

C

)

= 1

dt
E

[
∂C

C∂t
dt+ ∂C

C∂p
dp+ ∂C

C∂V
dV

+ 1

2

∂2C

C∂p2 (dp)2+ 1

2

∂2C

C∂V 2 (dV )2

+ ∂2C

C∂p∂V
(dpdV )

]
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which leads to a partial differential equation we might
be able to solve numerically. Or:

E

[
∂C

∂t
dt+ ∂C

∂p
dp+ ∂C

∂V
dV + 1

2

∂2C

∂p2 (dp)2

+1

2

∂2C

∂V 2 (dV )2+ ∂2C

∂p∂V
(dpdV )

]

= rC+
[
(α−r) p

∂C

∂p
+λV

∂C

∂V

]

and explicitly,
[
∂C

∂t
+ ∂C

∂p
r p+ ∂C

∂V
(µV −λV )+ 1

2

∂2C

∂p2
Vp2

+1

2

∂2C

∂V 2 V 2ξ2+ ∂2C

∂p∂V
pV 3/2ξρ−rC

]
= 0 ,

where λV = (µ−r)VβV , as stated earlier. Of course the
boundary constraints are then C(T, p)=max(p−K, 0).
The analytical treatment of such problems is clearly
unlikely however (see also [47.120].

Options and Jump Processes [47.121]
The valuation of an option with a jump price process also
involves two sources of risk, the diffusion and the jump.
Merton considered such a problem for the following
price process:

dp

p
= αdt+σ dw+K dQ ,

where dQ is an adapted Poisson process with parameter
q∆t. In other words, Q(t+∆t)−Q(t) has a Poisson
distribution function with mean q∆t or for infinitesimal
time intervals

dQ =
⎧
⎨

⎩
1 w. p. q dt

0 w. p. (1−q)dt .

Let F = F(p, t) be the option price. When a jump
occurs, the new option price is F[p(1+K )]. As a result,

dF = {F[p(1+K )]− F} dQ

when no jump occurs, we have

dF = ∂F

∂t
dt+ ∂F

∂p
dp+ 1

2

∂2 F

∂p2 (dp)2

and explicitly, letting τ = T − t be the remaining time
to the exercise date, we have

dF =
(
−∂F

∂τ
+αp

∂F

∂p
+ 1

2
p2σ2 ∂

2 F

∂p2

)
dt

+ pσ
∂F

∂p
dw .

Combining these two equations, we obtain

dF = a dt+bdw+ cdQ ,

a =
(
−∂F

∂τ
+αp

∂F

∂p
+ 1

2
p2σ2 ∂

2 F

∂p2

)
;

b = pσ
∂F

∂p
; c = F[p(1+K )]− F

with

E(dF ) = (a+qc)dt since E(dQ) = q dt .

To eliminate the stochastic elements (and thereby the
risks implied) in this equation, we shall construct a port-
folio consisting of the option and a stock. To eliminate
the Wiener risk, i.e. the effect of “dw”, we let the port-
folio Z consist of a future contract whose price is p, for
which a proportion v of stock options is sold (which will
be calculated such that this risk disappears). In this case,
the value of the portfolio is

dZ = pαdt+ pσ dw+ pK dQ

− (va dt+vbdw+vcdQ) .

If we set v = pσ/b and insert in the equation above
(as done by Black–Scholes), then we will eliminate the
Wiener risk since:

dZ = p(α−σa/b)dt+ (pσ −vb)dw

+ p(K −σc/b)dQ

or

dZ = p(α−σa/b)dt+ p(K −σc/b)dQ .

In this case, if there is no jump, the evolution of the
portfolio follows the differential equation

dZ = p(α−σa/b)dt if there is no jump .

However, if there is a jump, then the portfolio evolution
is

dZ = p(α−σa/b)dt+ p(K −σc/b) .

Since the jump probability equals q dt, we obviously
have

E(dZ)

dt
= p(α−σa/b)+ pq(K −σc/b) .

There remains a risk in the portfolio due to the jump. To
eliminate it we can construct another portfolio using an
option F′ (with exercise price E′) and a future contract
such that the terms in dQ are eliminated as well. Then,
constructing a combination of the first (Z) portfolio and
the second portfolio (Z ′), both sources of uncertainty
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will be reduced. Applying the arbitrage argument (stat-
ing that there cannot be a return to a risk-less portfolio
which is greater than the risk-less rate of return r) we
obtain the proper proportions of the risk-less portfolio.

Alternatively, finance theory [and in particular, ap-
plication of the capital asset pricing model (CAPM)]
state that any risky portfolio has a rate of return in a small
time interval dt which is equal the risk-less rate r plus
a return premium for the risk assumed, which is pro-
portional to its effect. Thus, using the CAPM we can
write

E
dZ

Z dt
= r+λ

p(K −σc/b)

Z
,

where λ is assumed to be a constant and expresses the
market price for the risk associated with a jump. This
equation can be analyzed further, leading to the fol-
lowing partial differential equation which remains to be
solved (once the boundary conditions are specified):

− ∂F

∂τ
+
(

(λ−q)

{
pK

∂F

∂p
− F[p(1+K )− F]

})

+ 1

2

∂2 F

∂p2 p2σ2−rF = 0

with boundary condition

F(T ) = max [0, p(T )− E] .

Of course, for an American option, it is necessary to
specify the right to exercise the option prior to its final
exercise date, or

F(t) = max
[
F∗(t), p(t)− E

]
,

where F∗(t) is the value of the option which is not exer-
cised at time t and given by the solution of the equation
above. The solution of this equation is of course much
more difficult than the Black–Scholes partial differen-
tial equation. Additional papers and extensions include
for example, [47.122–124] as well as [47.125, 126].

Call Options on Bonds
Options on bonds are popular products traded in many
financial markets. To value these options requires both
an interest rate model and a term-structure bond price
process. The latter is needed to construct the evolution
over time of the underlying bond (say a T bond), which
confers the right to exercise it at time S < T , in other
words, the bond value at time S, whose value is given
by an S-bond. To do so, we proceed in two steps: first
we evaluate the term structure for a T and an S bond
and then proceed to determine the value of a T bond at

time S, which is used to replace the spot price at time S
in the plain option model of Black–Scholes.

First we construct a hedging portfolio consisting of
the two maturities S and T bonds (S < T ). This portfolio
will provide a synthetic rate, equated to the spot interest
rate so that no arbitrage is possible. We denote by k(t)
this synthetic rate. For example, let the interest process

dr = µ(r, t)dt+σ(r, t)dW

and construct a portfolio of these two bonds, whose value
is V , with:

dV

V
= nS

dB(t, S)

B(t, S)
+nT

dB(t, T )

B(t, T )
.

The T and S bond values are however, given by:

dB(t, T )

B(t, T )
= αT (r, t)dt+βT (r, t)dW ,

where as seen earlier in the previous section, the term
structure is

αT (r, t)

= 1

B(t, T )

[
∂B

∂t
+ ∂B

∂r
µ(r, T )+ 1

2

∂2 B

∂r2 σ2(r, T )

]
;

βT (r, t) = 1

B(t, T )

∂B

∂r
σ(r, T ) .

Similarly, for an S-Bond,

dB(t, S)

B(t, S)
= αS(r, t)dt+βS(r, t)dW

with

αS(r, t)

= 1

B(t, S)

[
∂B

∂t
+ ∂B

∂r
µ(r, S)+ 1

2

∂2 B

∂r2
σ2(r, S)

]
;

βS (r, t) = 1

B(t, S)

∂B

∂r
σ(r, S) .

Replacing the terms for the mean rate of growth in the
bond value and its diffusion, we have

dV

V
= (nSαS+nTαT )dt+ (nSβS +nTβT )dW .

For a risk-less portfolio we require that the portfolio
volatility be null. Further, since initially the portfolio
was worth only one dollar, we obtain two equations in
two unknowns (the portfolio composition), which we
can solve⎧

⎨

⎩
nSβS+nTβT = 0

nS+nT = 1
⇒

⎧
⎨

⎩
nS = βT

βT−βS

nT =− βS
βT−βS

.
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The risk-less portfolio thus has a rate of growth which
we call the synthetic rate, or

dV

V
=

(
βTαS−βSαT

βT −βS

)
dt = k(t)dt .

This rate is equated to the spot rate as stated above,
providing thereby the following equality:

(
k(t) = βTαS−βSαT

βT −βS

)
⇒ k(t) = r(t) or

r(t)−αS

βS
= r(t)−αT

βT
= λ(t)

with λ(t) the price of risk per unit volatility. Each bond
with maturity T and S has at its exercise time a one
dollar denomination, the value of each of these (S and
T ) bonds is given by

0 = ∂BT

∂t
+ ∂BT

∂r
[µ(r, T )−λβT ]

+ 1

2

∂2 B

∂r2
β2

T −rBT ;
B(r, T ) = 1 ,

0 = ∂BS

∂t
+ ∂BS

∂r
[µ(r, S)−λβS]

+ 1

2

∂2 B

∂r2 β2
S−rBS ;

B(r, S) = 1 .

Given a solution to these two equations, we define the
option value of a call on a T bond with S < T and strike
price K , to be:

X = max [B(S, T )−K, 0]

where B(S, T ) is the price of the T bond at time S.
B(S, T ) is of course found by solving for the term struc-
ture and then equating B(r, S, T )= B(S, T ). To simplify
matters, say that the solution (valued at time t) for the
T bond is given by F(t, r, T ), then at time S, this value is
F(S, r, T ), to which we equate B(S, T ). In other words,

X = max [F(S, r, T )−K, 0] .

Now, if the option price is P(.), then as we have seen in
the plain vanilla model in the previous chapter, the value
of the bond is found by solving for P in the following
partial differential equation

0 = ∂P

∂t
+µ(r, t)

∂P

∂r
+σ2 1

2

∂2 P

∂r2
−rP ;

P(S, r)= max [F(S, r, T )−K, 0] .

Although this might be a difficult problem to solve nu-
merically, there are mathematical tools that allow the
finding of such solution. A special case of interest con-
sists of using the term structure model in the problem
above, also called the affine term structure (ATS) model,
which was indicated earlier in the previous section. In
this case, we have:

F(t, r, T ) = eA(t,T )−rD(t,T ) ,

where A(.) and D(.) are calculated by the term structure
model while the option valuation model becomes

0 = ∂P

∂t
+µ(r, t)

∂P

∂r
+σ2 1

2

∂2 P

∂r2
−rP ;

P(S, r)= max
[

eA(S,T )−rD(S,T )−K, 0
]
.

Again, these problems are mostly solved by numerical
or simulation techniques.

47.6 Incomplete Markets and Implied Risk-Neutral Distributions

Markets are incomplete when we cannot generate any
random cash flow by an appropriate portfolio strategy.
The market is then deemed not rich enough. Techni-
cally, this may mean that the number of assets that
make up a portfolio is smaller than the number of risk
sources plus one. In the Arrow–Debreu framework seen
earlier, this corresponds to rank condition D ≡ M, pro-
viding a unique solution to the linear pricing equation.
If markets are not complete or close to it, financial
markets cannot uniquely value assets and there may
be opportunities for arbitrage. In such circumstances,
financial markets may be perceived as too risky, per-
haps chaotic and therefore profits may be too volatile,

the risk premium would then be too high and invest-
ment horizons smaller, thereby reducing investments.
Finally, contingent claims may have an infinite number
of prices (or equivalently an infinite number of martin-
gale measures). As a result, valuation becomes, forcibly,
utility based or based on some other mechanism, which
is subjective rather than based on the market mechanism.
Ross [47.104] has pointed out that

it is a truism that markets are not complete in the
obvious sense that there exist contingencies that have
no clearly associated market prices, but, it is not
always immediately clear how meaningful this is
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for either pricing or efficiency. Some contingencies
may have no markets but may be so trivial as to
be insurable in the sense that their associated events
are small and independent of the rest of the economy,
others, may be replicable while not directly traded

Thus, even if markets are incomplete, we may be able to
determine some mechanism which will still allow an ap-
proach to asset pricing. Of course, this will require the
exact sense of the market incompleteness and determine
a procedure to complete it. Earlier, we pointed out some
sources of incompleteness, but these are not the only
ones. It may arise because of lack of liquidity (leading to
market-makers bid/ask spreads for which trading micro-
models are constructed); it may be due to excessive
friction defined in terms of taxes, indivisibility of assets,
varying rates for lending and borrowing (such as no short
sales and various portfolio constraints); it could be due
to transaction costs and to information asymmetries (in-
sider trading, leading to mis-pricing) indicating that one
dimension along which markets are clearly incomplete
is that of time. Most traded derivatives markets – futures
and options – extend only a few years at most in time
and, even when they are formally quoted further out,
there is generally little or no liquidity in the far contracts.
Yet, it is becoming increasingly common in the world of
derivatives to be faced with long-run commitments while
liquid markets only provide trading opportunities over
shorter run horizons. These are by no means the only
situations that lead to incomplete markets. Choice – too
much or too little of it – may also induce incomplete-
ness. Rationality implies selecting the best alternative
but, when there are too many or the search cost is too
high, often investors seek “satisficing solutions” (in the
sense of Herbert A. Simon). Barry Schwartz in an arti-
cle in Scientific American (April 2004) points out, for
example, that too much choice may induce an ill feel-
ing and therefore to suboptimal decisions. In addition,
regrets [47.17, 36, 37, 127–134], search and other costs
can also affect investors’ rationality (in the sense of fi-
nance’s fundamental theory). The Financial Times has
pointed out that some investment funds seek to capi-
talize on human frailties to make money. For example:
are financial managers human? Are they always ratio-
nal, mimicking Star Trek’s Mr. Spock? Are they devoid
of emotions and irrationality? Psychological decision-
making processes integrated in economic rationales have
raised serious concerns regarding the rationality axioms
of decision-making (DM) processes. There are of course,
many challenges to reckon with in understanding hu-
man behavior. Some of these include: thought processes

based on decision making-approaches focusing on the
one hand on the big pictures versus compartmental-
ization; the effects of under- versus overconfidence on
decision making; the application of heuristics of vari-
ous sorts applied in trading and DM processes. These
heuristics are usually based on simple rules. In general,
the violation of the assumptions made regarding the def-
inition of rational decision makers and decision makers’
psychology are very important issues to reckon with
when asset prices in incomplete markets are to be defined
(some related references include [47.87, 133, 135–143]
and [47.144]).

Networks of hedge funds, communicating with each
other and often coordinated explicitly and implicitly
into speculative activities can lead to market inefficien-
cies, thus contradicting a basic hypothesis in finance
which assumes that agents are price-takers. In net-
works, information exchange provides a potential for
information asymmetries or at least delays in infor-
mation [47.145, 146]. In this sense, the existence of
networks in their broadest and weakest form may
also be a symptom of market breakdown. Analysis of
competition in the presence of moral hazard and ad-
verse selection emphasizes the substantial differences
between trading of contracts and of contingent com-
modities. The profit associated with the sale of one unit
of a (contingent) good depends then only on its price.
Further, the profitability of the sale of one contract may
also depend on the identity of the buyer. Identity mat-
ters either because the buyer has bought other contracts
(the exclusivity problem) or because profitability of the
sales depends on the buyer’s characteristics, which is
also known as the screening problem. Do these issues
relate to financial intermediation? Probably yes. Thus
financial markets theory has to give a key role to infor-
mational and power asymmetries to better understand
prices and how they differ from the social values of
commodities.

In the presence of proportional transaction costs, no
perfect replication strategy is in general available. It is
necessary then to define other pricing criteria. Some
explicit solutions to the multivariate super-replication
problem under proportional transaction costs using
a utility maximization problem have been suggested,
however. The implication of these and related studies
are that super-replication prices are highly expensive
and are not acceptable for practical purposes.

Quantitative modeling provides also important
sources of incompleteness and at the same time seeks
to represent such incompleteness. Research in model-
ing uncertainty and studies that seek to characterize
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mathematically randomness, which can be also sources
of incompleteness. We use a number of quantitative
approaches including: Brownian motion; long-run mem-
ory models and chaos-related approaches ([47.147];
heavy (fat) tails (stable) distributions that, unlike the
normal distribution, have very large or infinite variance.
These approaches underpin some confusion regarding
the definition of uncertainty and how it can be structured
in a theory of economics and finance. “G-D does not play
dice” (Einstein), “Probabilities do not exist” (Bruno de
Finetti) etc. are statements that may put some doubt on
the commonly used random-walk hypothesis which un-
derlies martingales finance and markets’ efficiency (for
additional discussion see [47.148, 149]). These topics
are both important and provide open-ended avenues for
further and empirical research. In particular, issues of
long-run memory and chaos (inducing both very large
variances and skewness) are important sources of incom-
pleteness that have been studied intensively [47.150–
157]. To deal formally with these issues, Mandelbrot
and co-workers have introduced both a methodology
based on fractal stochastic processes and application
of Hurst’s 1951 R/S (a range to starndard deviation
statistic) methodology (for example, see [47.158–168]).
Applications to finance include [47.169–178]). A the-
oretical extension based on the range process and R/S
analysis based on the inverse range process can be found
in [47.179, 180] as well as [47.181–183] and [47.184].
Finally, continuous stochastic processes to which risk-
neutral pricing can be applied may become incomplete
when they are discretized for numerical analysis pur-
poses. Below we shall consider a number of pricing
problems in incomplete markets to highlight some of
the approaches to asset pricing.

47.6.1 Risk and the Valuation
of a Rated Bond

Bonds are not always risk-free. Corporations emitting
bonds may default, governments can also default in the
payment of their debts, etc. For this reason, rating agen-
cies sell their services and rate firms to assure buyers of
the risks they assume when buying the bond. For this
reason, the pricing of rated bonds is an important as-
pect of asset pricing. Below we shall show how such
bonds may be valued (see also the earlier bond section).
Consider first a non-default coupon-bearing rated bond
with a payment of one dollar at maturity T . Further, de-
fine the bond m-ratings matrix by a Markov chain [pij ]
where 0 ≤ pij ≤ 1,

∑m
j=1 pij = 1 denotes the probabil-

ity that a bond rated i in a given year will be rated j

the following one. Discount factors are a function of the
rating states, thus a bond rated i has a spot yield Rit ,
Rit ≤ R jt for i < j at time t. As a result, a bond rated i
at time t and paying a coupon cit at this time has, as we
saw earlier, a value given by

Bi (t, T ) = cit +
m∑

j=1

pij

1+ R jt
B j (t+1, T ) ;

Bi,T =  i , i = 1, 2, 3, . . .m ,

where  i is the nominal value of a bond rated i at ma-
turity. Usually,  i = 1, i = 1, 2, . . .m−1, and  m = 0
where m is the default state, and there is no recovery in
case of default. In vector notation, we have

Bt = ct + Ft Bt+1; BT = L ,

where the matrix Ft has entries [pij/(1+ R jt)] and L
is a diagonal matrix of entries  i , i = 1, 2, . . . ,m. For
a zero-coupon bond, we have Bt =∏T

k=t Fk. By the
same token, rated bonds discounts qit = 1/(1+ Rit) are
found by solving the matrix equation

⎛
⎜⎜⎜⎜⎝

q1t

q2t

. . .

. . .

qmt

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

p11 B1,t+1 p12 B2,t+1 . . . . . . p1m Bm,t+1

p21 B1,t+1 p22 B2,t+1 p2m Bm,t+1

. . .

. . .

pm1 B1,t+1 pm2 B2,t+1 pmm Bm,t+1

⎞
⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎝

B1,t − c1t

B2,t − c2t

. . .

. . .

Bm,t −Cmt

⎞
⎟⎟⎟⎟⎠

,

where at maturity T , Bi(T, T )=  i . Thus, in matrix nota-
tion, we have: q̄t = Γ −1

t+1(Bt −ct). Note that, one period
prior to maturity, we have: q̄T−1 = Γ −1

T (BT−1− cT−1),
where ΓT is a matrix with entries pij B j (T, T ) = pij j .

In order to price the rated bond, consider a portfolio
of rated bonds consisting of Ni , i = 1, 2, 3 . . . ,m bonds
rated i, each providing  i dollars at maturity. Let the
portfolio value at maturity be equal one dollar. Namely,

m∑

i=1

Ni i = 1 .

One period (year) prior to maturity, such a portfolio
would be worth

∑m
i=1 Ni Bi (T −1, T ) dollars. By the

same token, if we denote by Rf,T−1 the risk-free discount
rate for one year, then assuming no arbitrage, one period
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prior to maturity, we have:

m∑

i=1

Ni Bi (T −1, T ) = 1

1+ Rf,T−1
;

Bi (T −1, T ) = cit +
m∑

j=1

q jt pij B j (T, T ) ;

Bi (T, T ) =  i , i = 1, 2 . . . ,m

with q jt = 1/(1+ R j,t) and R j,t is the one-period dis-
count rate applied to a j rated bond. Assuming no
arbitrage, such a system of equations will hold for any
of the bonds periods and therefore, we can write the
following no-arbitrage condition

m∑

i=1

Ni Bi (T − k, T ) = 1
(
1+ Rf,T−k

)k

k = 0, 12, 3, . . . , T ,

where Rf,T−k , k = 1, 2, 3, . . . , is the risk-free rate term
structure which provides a system of T +1 equations
spanning the bond life. In matrix notation this is given
by

NBT−k = 1
(
1+ Rf,T−k

)k
,

k = 0, 1, 2, . . . , T ; N = (N1, N2, . . . , Nm);
BT−k = (B1,T−k, B2,T−k, . . . , Bm,T−k) .

As a result, assuming that the bond maturity is larger
than the number of ratings (T ≥ m+1), the hedging
portfolio of rated bonds is found by a solution of the
system of linear equations above, leading to the unique
solution:

N∗ = I
−1Ω ,

where I is the matrix transpose of [Bi,T− j+1] and Ω

is a column vector with entries
[
1/(1+ Rf,T−s)s

]
, s =

0, 1, 2 . . .m−1. Explicitly, we have:
⎛
⎜⎜⎜⎜⎝

N1

N2

. . .

. . .

Nm

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

B1,T B2,T B3,T . . . Bm,T

B1,T−1 B2,T−1 B3,T−1 . . . Bm,T−1

. . . . . .

. . . . . .

B1,T−m B2,T−m B3,T−m . . . Bm,T−m

⎞
⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎝

1

1/(1+ Rf,T−1)1

. . .

. . .

1/(1+ Rf,T−m )m

⎞
⎟⎟⎟⎟⎠

.

Thus, a condition for no arbitrage is given by the system
of nonlinear equations

I
−1ΩBT−k = 1

(
1+ Rf,T−k

)k

k = m,m+1, . . . , T .

For example, for a zero-coupon rated bond and station-
ary short discounts, we have Bt−k = (F)k and therefore,
the no-arbitrage condition becomes:

I
−1ΩFk = 1

(
1+ Rf,T−k

)k
k = m,m+1, . . . , T

where F has entries q j pij . This system of equations
therefore provides T +1−m equations applied to de-
termining the bond ratings short (one-period) discount
rates q j . Our system of equations may be over- or under-
identified for determining the ratings discount rates
under our no-arbitrage condition, however. Of course,
if T +1−m = m, we have exactly m additional equa-
tions we can use to solving the discount rates uniquely
(albeit, these are nonlinear equations and can only be
solved numerically).

Otherwise, the rated bond market is incomplete and
we must proceed to some approach that can, neverthe-
less, provide an estimate of the discount rates. We use for
convenience a sum of squared deviations from the rated
bond arbitrage condition, in which case we minimize the
following expression:

min
0≤q1,q2,...qm−1,qm≤1

T∑

k=m

(
I
−1ΩBT−k − 1

(
1+ Rf,T−k

)k

)2

.

Further additional constraints, reflecting expected and
economic rationales of the ratings discounts q j , might
be added, such as:

0 ≤ q j ≤ 1 and

0 ≤ qm ≤ qm−1 ≤ qm−2 ≤ qm−3, . . .≤ q2 ≤ q1 ≤ 1 .

These are typically nonlinear optimization problems
however. A simple two-rating example highlights some
of the complexities in determining both the hedging port-
folio and the ratings discounts provided the risk-free
term structure is given. When the bond can default, we
have to proceed as shown below.
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47.6.2 Valuation
of Default-Prone Rated Bonds

Let the first time n, a bond rated initially i, is rated j and
let the probability of such an event be fij (n). This prob-
ability equals the probability of not having gone through
a j-th rating in prior transitions and be rated j at time n.
For transition in one period, this is equal the transition
bond rating matrix (S&P or Moody’s matrix, as stated
earlier), while for a transition in two periods it equals the
probability of transition in two periods conditional on
not having reached rating j in the first period. In other
words, we have:

fij (1) = pij (1) = pij; fij (2) = pij (2)− fij (1)p jj

and generally, by recursion,

fij (n) = pij (n)−
n−1∑

k=1

fij (k)p jj (n− k) .

The probability of a bond defaulting (and not defaulting)
prior to time n is thus,

Fkm(n−1) =
n−1∑

j=1

fkm( j ) ;

F̄km(n−1) = 1− Fkm(n−1) .

At present, denote by Φi (n) the probability that the bond
is rated i at time n. In vector notation we write Φ̄(n).
Thus given the rating matrix [P], we have:

Φ̄(n) = [P]′Φ̄(n−1) ,

n = 1, 2, 3, . . . and q̄(0) given ,

where [P]′ is the matrix transpose. Thus, at n, Φ̄(n) =
[P ′ ]nΦ̄(0). The present value of a coupon payment at
time n (given that there was no default at this time)
is therefore discounted at the yield R j,n , q j,n = 1/(1+
R j,n) if the bond is rated j. In other words, its present
value is

m−1∑

j=1

c j,nqn
j,nΦ j,n; Φ j,n =

m−1∑

i=1

Φi,0 p(n)
ij ,

where p(n)
ij is the ij-th entry of the transposed power

matrix [P ′ ]n and Φi,0 is the probability that initially the
bond is rated i.

When a coupon-bearing default bond rated i at time s
defaults at time s+1, T − (s+1) periods before maturity

with probability fim(s+1− s), we have a value:

Vs,i =
(
ci,T−s +qi m,T−(s+1)

)
w. p. fim(1) .

If such an event occurs at time s+2, with probability
fim(s+2− s) = fim(2), we have:

Vs,i =
(

ci,T−s +
m−1∑

k=1

qkck,T−(s+1)Φk,(s+1)−s

+q2
i  m,T−(s+2)

)
w. p. fim(2) ,

where Φk,1 =∑m−1
i=1 Φi,0 p(1)

ik and Φi,0 is a vector whose
entries are all zero except at i (since at s we conditioned
the bond value to a rating i). By the same token three
periods hence and prior to maturity, we have

Vs,i =
(

ci,T−s +
m−1∑

k=1

qkck,T−(s+1)Φi,0 p(1)
ik

+
m−1∑

k=1

q2
k ck,T−(s+2)Φi,0 p(2)

ik

+q3
i  m,T−(s+3)

)
w. p. fim(3) .

And generally, for any period prior to maturity,

Vs,i =
(

ci,T−s +
τ−1∑

θ=1

m−1∑

k=1

qθ
k ck,T−(s+θ)Φi,0 p(θ)

ik

+qτ
i  m,T−(s+τ)

)
w. p. fim(τ) .

In expectation, if the bond defaults prior to its maturity,
its expected price at time s,

EBi,D(s, T ) = ci,T−s +
T−s∑

τ=1

(
qτ

i  m,T−(s+τ)

+
τ−1∑

θ=1

m−1∑

k=1

qθ
k ck,T−(s+θ)Φi,0 p(θ)

ik

)

× fim(τ) ,

where  m,T− j is a portion of the bond nominal value that
the bondholder recuperates when the bond defaults and
which is assumed to be a function of the time remaining
for the bond to be redeemed. And therefore, the price of
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such a bond is:

Bi,ND(s, T ) =
(

ci,T−s +
m−1∑

k=1

qT−s
k  kΦi,0 p(T−s)

ik

+
T−s−1∑

θ=1

m−1∑

k=1

qθ
k ck,T−(s+θ)Φi,0 p(θ)

ik

)

×

[
1−

T−s∑

u=1

fim(u)

]

where  i denotes the bond nominal value at redemption
when it is rated i. Combining these sums, we obtain the
price of a default-prone bond rated i at time s

Bi (s, T ) = ci,T−s+
(

ci,T−s+
m−1∑

k=1

qT−s
k  kΦi,0 p(T−s)

ik

+
T−s−1∑

θ=1

m−1∑

k=1

qθ
k ck,T−(s+θ)Φi,0 p(θ)

ik

)

×

[
1−

T−s∑

u=1

fim(u)

]

+
T−s∑

τ=1

(
qτ

i  m,T−(s+τ)

+
τ−1∑

θ=1

m−1∑

k=1

qθ
k ck,T−(s+θ)Φi,0 p(θ)

ik

)
fim(τ) .

Finally, for a zero-coupon bond, this is reduced to

Bi (s, T ) = ci,T−s +
(

m−1∑

k=1

qT−s
k  kΦi,0 p(T−s)

ik

)

×

[
1−

T−s∑

u=1

fim(u)

]

+
T−s∑

τ=1

(
qτ

i  m,T−(s+τ)
)

fim(τ) .

To determine the price (discounts rates) for a default-
prone rated bond we can proceed as before by construct-
ing a hedging portfolio consisting of N1, N2, . . . , Nm−1
shares of bonds rated i = 1, 2, . . . ,m−1. Again, let
Rf,T−u be the risk-free rate when there are u periods left
to maturity. Then, assuming no arbitrage and given the
term structure risk-free rate, we have:

m−1∑

i=1

Ni Bi (s, T ) = 1
(
1+ Rf,T−s

)s , s = 0, 1, 2, . . .

with Bi (s, T ) defined above. Note that the portfolio
consists of only m−1 rated bonds and therefore, we
have in fact 2m−1 variables to be determined based
on the risk-free term structure. Assuming that our sys-
tem is over- (or under-)determined, we are reduced
to solving the following minimum squared deviations
problem:

min
0≤q1≤q2≤....≤qm−1≤1;

N1,N2,N3.... ,Nm−1

T∑

s=0

[
m−1∑

k=1

Nk Bk (s, T )

− 1
(
1+ Rf,T−s

)s

]2

subject to:

Bi (s, T ) = ci,T−s +
(

ci,T−s +
m−1∑

k=1

qT−s
k  kΦi,0 p(T−s)

ik

+
T−s−1∑

θ=1

m−1∑

k=1

qθ
k ck,T−(s+θ)Φi,0 p(θ)

ik

)

×

[
1−

T−s∑

u=1

fim(u)

]
+

T−s∑

τ=1

(
qτ

i  m,T−(s+τ)

+
τ−1∑

θ=1

m−1∑

k=1

qθ
k ck,T−(s+θ)Φi,0 p(θ)

ik

)
fim(τ) .

This is of course a nonlinear optimization problem
which can be solved analytically with respect to the
hedged portfolio, and use the remaining equations to
calculate the ratings discount rates. A solution can
be found numerically. Such an analysis is a straight-
forward exercise however. Below we consider some
examples.

Example 47.5 (a two-rated default bond): Consider
a two-rated zero-coupon bond and define the transition
matrix

P =
(

p 1− p

0 1

)
with Pn =

(
pn 1− pn

0 1

)
.

The probability of being in one of the two states after n
periods is (pn, 1− pn). Further,

f12(1) = 1− p ;
f12(2) = p(2)

2 − (1) f12(1) = 1− p2− (1− p)

= p(1− p) .
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Thus, for a non-coupon-paying bond, we have:

Bi (s, T ) = ci,T−s +qT−s 

[
1−

T−s∑

u=1

f12(u)

]

+
T−s∑

τ=1

(
qτ m,T−(s+τ)

)
f12(τ) .

In particular,

B1(T, T ) =  ,

B1(T −1, T ) = q [1− f12(1)]+q m,0 f12(1) ,

B1(T −2, T ) = q2 [1− f12(1)− f12(2)]

+q m,1 f12(τ)+q2 m,0 f12(2) ,

B1(T −3, T ) = q3 [1− f12(1)− f12(2)− f12(3)]

+ (
q m,2

)
f12(1)+q2 m,1 f12(2)

+q3 m,0 f12(3) .

If we have a two-year bond, then the condition for no
arbitrage is

NB1(T, T ) = N = 1 and N = 1/ ,

NB1(T −1, T ) = 1

1+ Rf,T−1
⇒ 1+ R1,T−1

= 1+ Rf,T−1

1− (
1− m,0/ 

)
f12(1)

.

If we have a two-year bond, then the least quadratic
deviation cost rating can be applied. Namely,

min
0≤q≤1

Q = [
(1/ )B (T −1, T )− (

q f,T−1
)]2

+ [
(1/ )B (T −2, T )− (

q f,T−2
)]2

.

Subject to:

B1(T −1, T ) = q [1− f12(1)]+q m,0 f12(1),

B1(T −2, T ) = q2 [1− f12(1)− f12(2)]

+q m,1 f12(τ)+q2 m,0 f12(2) .

Leading to a cubic equation in q that we can solve by
the usual methods. Rewriting the quadratic deviation in
terms of the discount rate yields:

min
0≤q≤1

(
q
{
1− f12(1)

[
1− ( m,0/ )

]}− (
q f,T−1

))2

+{
q2 [1− f12(1)− (1− m,0/ ) f12(2)

]

+q( m,1/ ) f12(1)− (
q f,T−2

) }2
.

Set

a = {
1− f12(1)

[
1− ( m,0/ )

]} ;
b = [

1− f12(1)− (1− m,0/ ) f12(2)
] ;

c = ( m,1/ ) f12(1) .

Then an optimal q is found by solving the equation

2q3b2+3q2bc+q
(

a2−2bq f,T−2+ c2
)

− (
aq f,T−1+ cq f,T−2

)= 0 .

Assume the following parameters,

Rf,T−1 = 0.07; Rf,T−1 = 0.08, p = 0.8,

 = 1,  m,0 = 0.6,  m,1 = 0.4 .

In this case, f12(1) = 1− p = 0.2 and f12(2) = p(1−
p) = 0.16. For a one-period bond, we have

1+ R1,T−1 = 1+0.07

1− (0.084)
= 1.168

and therefore we have a 16.8% discount, R1,T−1 =
0.168. For a two-period bond, we have instead (us-
ing the minimization technique): a = 0.92, b = 0.736,
c = 0.084 and therefore,

q3+0.171 129 q2−0.470 28 q−0.865 33 = 0 .

Whose solution provides q and therefore 1+ R1,T−1.

47.6.3 “Engineered” Risk-Neutral
Distributions
and Risk-Neutral Pricing

When a market is complete, an asset price can be defined
as follows:

St = e−Rf(T−t) E∗
t (ST |Ωt ) ,

where Ωt is a filtration, meaning that the expectation is
calculated on the basis of all the information available
up to time t and the probability distribution with re-
spect to which the expectation is taken is a risk-neutral
distribution. That is:

E∗
t (ST |Ωt )=

∫
ST dFT |t , T > t

where FT |t is the asset risk-neutral distribution at time T
based on the data available at time t. If the underly-
ing price process is given by a stochastic process, then
E∗

t

(
ST |Ωt

)
is the optimal forecast (filter) estimate of the

asset price using the distribution FT |t . In such circum-
stances, and if such a distribution exists, then derived
assets such as call and put options are also priced by

Ct = e−Rf(T−t) E∗
t (CT |Ωt)=

∫

K

CT dFT |t (ST ) ,

CT = max(ST −K, 0), T > t ,
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Pt = e−Rf(T−t) E∗
t (PT |Ωt )=

K∫

0

PT dFT |t (ST ) ,

PT = max(K − ST , 0), T > t .

Of course, if the distribution happens to be normal
then the assets prices equal the discounted best mean
forecast of the future asset price. When this is not
the case and markets are incomplete, asset pricing
in practice seeks to determine the risk-neutral distri-
bution that allows application of risk-neutral pricing
whether markets are in fact complete or incomplete
(for an empirical study see [47.185, 186], for exam-
ple). There are numerous sources of information, and
approaches used to engineer such a distribution. For ex-
ample, let there be m derived assets x j

t and let there be
some data points up to time t regarding these assets.
In this case, for each time t, the optimal least-square
estimate of the risk-neutral distribution is found by min-
imizing the least squares below by a selection of the
appropriate parameters defining the underlying price
process:

t∑

i=0

⎧
⎨

⎩

m∑

j=1

[
x j

i − e−Rf(T−i) E∗
i

(
x j

T |Ωi

)]2

+
[

Si − e−Rf(T−i) E∗
i (ST |Ωi )

]¨2
⎫
⎬

⎭ .

Here x j
i is an actual observation of asset j

taken at time i. If prices are available over
several specific time periods (for example, an op-
tion for three months, six months and a year),
then summing over available time periods we will
have:

t∑

i=0

⎧
⎨

⎩

L∑

 =1

m∑

j=1

[
x j

i − e−Rf(T −i) E∗
i

(
x j

T 
| Ωi

)]2

+
∑

k=i+1

[
Si − e−Rf(k−i) E∗

i (Sk | Ωi)
]¨2

⎫
⎬

⎭ .

Of course, other techniques can be taken in this spirit,
providing thereby the optimal distribution forecast es-
timate. This is a problem that is over-parameterized
however and therefore some assumptions are often
made to reduce the number of parameters that de-
fine the presumed risk-neutral distribution. Examples
and applications are numerous. Some authors assume

a general multi-parameter distribution (such as the
Burr distribution) for the risk-neutral distribution and
calculate the parameters. Others seek the distribution
outright while others assume an underlying process and
calculate the best fit parameters. Both discrete-time
and continuous-time models are used. Other mod-
els assume a broader framework such as a stochastic
process with or without stochastic volatility with pa-
rameters to be estimated based on data availability.
Below we shall consider a number of such cases (see
also [47.187, 188].

Example 47.6 (mean variance replication hedging):
This example consists of constructing a hedging port-
folio in an incomplete (stochastic volatility) market by
equating as much as possible cash flows resulting from
a hedging portfolio and option prices. We shall do so
while respecting the basic rules of rational expectations
and risk-neutral pricing. This implies that at all times
the price of the portfolio and the option price are the
same. Let W(t) be the portfolio price and C(t) be the
option price. At time t = 0, we evidently have as well
W(0) = C(0), similarly at some future date.

W(0) ⇐ W̃(1)

⇓ 0
C(0) C̃(1)

However, under risk-neutral pricing we have:

C(0) = 1

1+ Rf
EC̃(1); W(0) = 1

1+ Rf
EW̃(1)

and C(0) = W(0) and EW̃2(1) = ẼC2(1) .

These provide three equations only. Since a hedging
portfolio can involve a far greater number of parameters,
it might be necessary to select an objective to minimize.
A number of possibilities are available.

Rubinstein [47.189], as well as Jackwerth and Rubin-
stein [47.190] for example, suggested a simple quadratic
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optimization problem by minimizing the quadratic dif-
ference of the probabilities associated to the binomial
tree. Alternatively, a quadratic objective that leads to
the minimization of a hedging portfolio and the option
ex-post values of some option contract with risk-neutral
pricing leads to:

min Φ
p1,...pn

= E
(
W̃(1)− C̃(1)

)2
. Subject to:

W(0) = C(0) or

1

1+ Rf

[
EW̃(1)

]= 1

1+ Rf

[
EC̃(1)

]
and

EW̃2(1) = ẼC2(1)

Of course the minimizing objective can be simplified
further to:

min Φ
p1,...pn

= EC̃2(1)− EW̃(1)C̃(1) or

min Φ
p1,...pn

=
n∑

i=1

pi

(
C2

1i −W1iC1i

)
,

where W1i , C1i are the hedging portfolio and option
outcomes associated with each of the events i, which
occur with probability pi , i = 1, 2, . . . n.

Example 47.7: Define by Sj , j = 1, 2, . . . n the n states
a stock can assume at the time an option can be exercised.
We set, S0 < S1 < S2 < . . . < Sn and define the buying
and selling prices of the stock by Sa, Sb, respectively.
By the same token, define the corresponding observed
call option prices Ca, Cb. Let p be the probability of
a price increase. Of course, if the ex-post price is Sn , this
will correspond to the stock increasing each time pe-
riod with probability Pn = (n, n)� pn(1− p)n−n = pn .

By the same token, the probability of the stock having
a price Sj corresponding to the stock increasing j times
and decreasing n− j times is given by the binomial
probability

Pj =
(

n

j

)
p j (1− p)n− j .

As a result, we have under risk-neutral pricing:

S = 1

1+ Rf

n∑

j=0

Pj S j

= 1

1+ Rf

n∑

j=0

Sj

(
n

j

)
p j (1− p)n− j ;

Sa ≤ S ≤ Sb

while the call option price is

C =
n∑

j=0

C j

= 1

(1+ Rf)n

n∑

j=0

(
n

j

)
p j (1− p)n− j

× max(Sj −K, 0)

with an appropriate constraint on the call option value
Ca ≤ C ≤ Cb. Note that S, C as well as p are the only
unknown values so far. While the buy and sell values for
stock and options, the strike time n and its price K as well
as the discount rate and future prices Sj are given. Our
problem at present is to select an objective which will
make it possible to obtain risk-neutral probabilities. We
can do so by minimizing the quadratic distance between
a portfolio of a unit of stock and a bond B. At n, the
portfolio is equal aSj + (1+ Rf)n B if the price is Sj . Of
course, initially, the portfolio equals:

S = 1

(1+ Rf)n

⎡

⎣a
n∑

j=0

Pj S j + (1+ Rf)
n B

⎤

⎦ .

As a result, the least-squared replicating portfolio is
given by:

Φ =
n∑

j=1

Pj
[
aSj + (1+ Rf)

n B−max(Sj −K, 0)
]2
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which leads to the following optimization problem

min
1≥p≥0,C,S

Φ =
n∑

j=1

(
n

j

)
p j (1− p)n− j

×
[
aSj + (1+ Rf)

n B−max(Sj −K, 0)
]2

.

Subject to:

S = 1

(1+ Rf)n

n∑

j=0

(
n

j

)
p j (1− p)n− j S j ;

Sa ≤ S ≤ Sb,

C = 1

(1+ Rf)n

n∑

j=0

(
n

j

)
p j (1− p)n− j

× max(Sj −K, 0); Ca ≤ C ≤ Cb ,

aS+ B = C .

The numerical solution of this problem is straightfor-
ward.

Example 47.8 (fitting continuous risk-neutral distri-
butions): The simplest such model of course consists of
using an underlying binomial stock process and using
options data (call and put) to estimate the stock pro-
cess parameters and risk-neutral distribution. Assume
that we assume a theoretical mixture price model given
by:

dS

S
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α j dt+σ j dW j π j

j = 1, 2, . . . ,m

π j ≥ 0
m∑

j=1
π j

, S(0) = S0 .

The solution of this model in terms of a risk-neutral
numeraire is, (as we saw earlier):

S(t) = S(0)
m∑

j=1

π j e

(
Rf−

σ2
j

2

)
t+σ j W∗

t (t)

,

W∗
t (t) = W j (t)+ α j − Rf

σ j
t .

Let there be call and put options prices given by:

Ct = e−Rf(T−t) E∗
t (CT |Ωt ) ,

CT = max(ST −K, 0), T > t ,

Pt = e−Rf(T−t) E∗
t (PT |Ωt ) ,

PT = max(K − ST , 0), T > t .

A simple least-squares optimization problem that seeks
to calculate the underlying process parameters is then:

min
α j ,σ j ,π j

t∑

i=0

{[
Ci − e−Rf(T−i) E∗

i (CT |Ωi )
]2

+
[

Pi − e−Rf(T−i) E∗
i (PT |Ωi )

]2
}

,

where

Ct = e−Rf(T−t) Et

⎧
⎪⎨

⎪⎩
max

⎡
⎢⎣S(0)

×
m∑

j=1

π j e

(
Rf−

σ2
j

2

)
t+σ j W∗(t)

−K, 0

⎤
⎥⎦ |Ωt

⎫
⎪⎬

⎪⎭
,

Pt = e−Rf(T−t) Et

⎧
⎪⎨

⎪⎩
max

⎡
⎢⎣K − S(0)

×
m∑

j=1

π j e

(
Rf−

σ2
j

2

)
t+σ j W∗(t)

, 0

⎤
⎥⎦ |Ωt

⎫
⎪⎬

⎪⎭
.

Of course such problems can be solved by MATLAB
or by nonlinear optimization routines. Further refine-
ments can be developed by noting that the stock price
must also meet the risk-neutral condition at each time
prior to time t. A simple case is obtained when we
consider the mixture of two such log-normal models.
Such an assumption will imply of course that prices are
skewed. Explicitly, assume a mixture of the log-normal
distributions

f (ST )=
⎧
⎨

⎩
L(α1, β1) w.p. θ

L(α2, β2) w.p. 1− θ
;

f̂ (ST )∼ θL(α1, β1)+ (1− θ)L(α2, β2) .

For such a process we can use the normal mixtures as
follows:

P(R̃ ≤ R) = θN

(
log R−µ1

σ1

)

+ (1− θ)N

(
log R−µ2

σ2

)
.

Elementary but tedious analysis of the moments can
provide an estimate of the variance, the distribution
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skewness and its kurtosis, or

var = θ1σ
2
1 + θ2σ

2
2 + θ1θ2 (µ1−µ2)

2 ,

Skewness = θ1θ2 (µ1−µ2)

(var)3/2

×
[
3
(
σ2

1 −σ2
2

)
+ (θ2− θ1) (µ1−µ2)

2
]
,

Kurtosis = 3
(
θ1σ

4
1 + θ2σ

4
2

)

(var)2

+ 6θ2θ1 (µ1−µ2)
2 (θ2σ

1
1 + θ1σ

2
2

)

(var)2

+ θ2θ1 (µ1−µ2)
4 (θ3

1 + θ3
2

)

(var)2
.

These moments of the mixture process indicate the
behavior of the underlying risk-neutral distribution,
highlighting the market intention as it is reflected in
these moments (skew to the right or to the left of the un-
certainty regarding future asset prices). To estimate the
mixture process parameters we may then fit the data to
say, call and put data, freely available on the appropriate
market. Let:

Ĉi,T = European Call option price at i = 1, . . .m ;
P̂i,T = European Put option price at i = 1, 2, . . .m

with

Ĉ(S, Ki , T ) = e−RfT

∞∫

Ki

(ST −Ki ) f̂ (ST )dST ,

P̂(S, Ki , T ) = e−RfT

Ki∫

0

(Ki − ST ) f̂ (ST )dST .

Table 47.1 Comparison of the log-normal and bi-log-
normal model

Fit (sum of squares)

Date Number of
observa-
tions

Log-
normal

Bi-log-
normal

09/06/2002 24 0.121 0.121

10/06/2002 24 0.060 0.060

17/06/2002 26 0.022 0.011

15/06/2002 23 0.070 0.004

10/07/2002 19 0.038 0.008

12/08/2002 16 0.022 0.005

Average 21.7 0.056 0.038

The resulting (data fit) optimization problem is then

min
α1,β1;α2,β2;θ

[
m∑

i=1

(
Ĉi,T −Ci,T

)2

+
m∑

j=1

(
P̂j,T − Pj,T

)2

⎤

⎦ .

Subject to the call and put theoretical price estimates. In
other words, introducing the time-dependent prices for
the call and put options, we have

min
α1,β1;α2,β2;θ

T∑

t=0

[
m∑

i=1

(
Ĉi,t −Ci,t

)2

+
m∑

j=1

(
P̂j,t − Pj,t

)2

⎤

⎦ . Subject to:

Cit = e−Rf(T−t)

∞∫

Ki

(ST −Ki ) f̂t(ST )dST and

P̂it = e−Rf(T−t)

Ki∫

0

(Ki − ST ) f̂t(ST )dST ,

where f̂t(ST ) is given by the underlying multi-parameter
mixture log-normal process. Stein and Hecht (Bank of
Israel, Monetary Devision) use instead the following
objective, which they have found more stable using data
of the Israeli shekel and the American dollar.

min
α1,β1;α2,β2;θ

T∑

t=0

⎡

⎣
m∑

i=1

(
1− Ĉi,t

Ci,t

)2

+
m∑

j=1

(
1− P̂i,t

Pi,t

)2
⎤

⎦

Using Israeli and US currency data and comparing a log-
normal and a bi-log-normal model they show that the
bi-log-normal model provides a better fit, as shown
in Table 47.1.

For each of these periods, they calculated as well
the parameters of the underlying exchange rate process.
As a result, they were able to estimate the probability
of currency devaluation and that of appreciation of the
shekel versus the dollar. Clearly, the result in Table 47.1
point out to a better fit when the bi-lognormal model is
used.

Some authors simplify the computation of implied pa-
rameters by considering a multi-parameter distribution.
In other words, this approach assumes outright that
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the risk-neutral distribution can be approximated by
a known distribution. For simplicity, assume first a two-
parameter (c, ζ ) Weibull distribution given by:

f (τ) = c

ζ

(
τ

ζ

)c−1

e−(τ/ζ)c
, τ ≥ 0, ζ, c > 0 ;

F(τ) = 1− e−(τ/ζ)c
,

E(τ) = ζΓ

(
1

c
+1

)
,

var(τ) = ζ2
[
Γ

(
2

c
+1

)
−Γ 2

(
1

c
+1

)]
.

For the call option, calculations are easily applied and
we have after some elementary manipulations:

Ĉit = e−Rf(T−t)

∞∫

Ki

(ST −Ki ) f̂t(ST )dST

= e−Rf(T−t)c

∞∫

Ki

(
ST

ζ

)c

e−(ST /ζ)c
dST

− e−Rf(T−t) Ki e−(Ki/ζ)c
.

If we set:(
ST

ζ

)c

= u, c

(
1

ζ

)(
ST

ζ

)c−1

dST = du then ,

Ĉit = e−Rf(T−t)c

∞∫

(
Ki
ζ

)c

u e−u dST

− e−Rf(T−t) Ki e−(Ki/ζ)c
.

For the put option, we have similarly:

P̂it = e−Rf(T−t)

Ki∫

0

(Ki − ST ) f̂t(ST )dST

= e−Rf(T−t)Ki

(
1− e−(Ki/ζ)c

)

− e−Rf(T−t)ζ

(
Ki
ζ

)c

∫

0

u
1
c e−u du .

Note that:
ui∫

0

u
1
c e−u du = γ

(
1+ 1

c
, ui

)
and

(
Ki
ζ

)c

∫

0

u
1
c e−u du = γ

[
1+ 1

c
,

(
Ki

ζ

)c]

and therefore

P̂it = e−Rf(T−t)Ki

(
1− e−(Ki/ζ)c

)

− e−Rf(T−t)ζγ

[
1+ 1

c
,

(
Ki

ζ

)c]
.

The underlying price is then

Ŝt = e−Rf(T−t)ERND,W (ST ) and

Ŝt = e−Rf(T−t)ζΓ

(
1

c
+1

)
.

We can use other distributions as well. For example,
several authors like to use the Burr distribution because
it includes as special cases numerous and well-known
distributions. In his case, we have

F (ST , T )= 1− 1
(
1+ Sc

T

)q , ST ≥ 0, c, q > 1 ;

f (ST , T )= qcSc−1
T(

1+ Sc
T

)q+1

or using the following notation

f (ST )= ανSα−1
T(

Sα
T + δ

)δ+1
,

E
(
Sm

T

)= 1

α
δ(m+α)/αB

(
1+ m

α
, δ− m

α

)
,

which can be used to fit an available data set to the distri-
bution and optimize to obtain parameter estimates. The
problem with this technique, however, is that it is mostly
appropriate for an estimation of a specific risk-neutral
distribution for a specific instant of time rather than to the
evolution of the risk-neutral distribution over a stochas-
tic process. Similar considerations are applied when we
use the Burr distribution. In this case, for a Burr III
distribution we have

FBR (ST , T )=
(

1− 1

1+ (ST/β)
c

)α

,

ST ≥ 0, c > 0, α > 0, β > 0

while the probability distribution is

f (ST , T )= cαScα−1
T

(
Sc

T +βc
)− cαSc(α−1)

T(
Sc

T +βc
)1+α

.

Then by simply minimizing the sum of squared dif-
ferences between a model premia conditional upon
the parameters of the distribution and the observed
option premia, an estimate of the approximate risk-
neutral distribution can be obtained (for references
see [47.191, 192]).
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An alternative approach consists of recovering the
risk-neutral distribution associated with an asset based
on the information available on its derived products. For
example, under risk-neutral pricing, for a vanilla call
option with exercise price K and exercise date T , we
have by definition:

C(K, T ) = e−RfT
∫

K

(S−K ) f (S)dt ,

where f (S) is the underlying asset risk-neutral density
function of the price at its exercise time. Note that:

∂C(K, T )

∂K
=−e−RfT

∫

K

f (S)dt

=−e−RfT [1− F(K )] ,

∂2C(K, T )

∂K2
= e−RfT f (S) ,

f (S) = eRfT ∂2C(K, T )

∂K2 ,

where f (S), the RND is explicitly stated above as the
second partial derivative of the call option. Of course, al-
though such a relationship may be of theoretical value,
it has little use if there is no data that can be used to
calculate the underlying risk-neutral distribution. Other
approaches and techniques might therefore be needed.
This is a broad and difficult area of research which we
can consider here only briefly. One approach that may
be used is based on the constrained maximization of en-
tropy to determine candidate risk-neutral distributions.
This is considered next.

47.6.4 The Maximum-Entropy Approach

When some characteristics, data or other information re-
garding the risk-neutral distribution are available, it is
possible to define its underlying distribution by selecting
that distribution which assumes the least, that is the dis-
tribution with the greatest variability, given the available
information. One approach that allows the definition of
such distributions is defined by the maximum-entropy
principle.

Entropy is based essentially on a notion of random-
ness. Its origins are in statistical physics. Boltzmann
observed that entropy relates to missing information
inasmuch as it pertains to the number of alternatives
which remain possible to a physical system after all
the macroscopically observable information concerning
it has been recorded. In this sense, information can be
interpreted as that which changes a system’s state of ran-
domness (or equivalently, as that quantity which reduces

entropy). For example, for a word, which has k letters as-
suming zeros and ones, and one two, define a sequence
of k letters, (a0, a1, a2, . . . , ak),

ai =
⎧
⎨

⎩
1

0

for all i �= j, a j �= ai = 2 and one j. The total num-
ber of configurations (or strings of k+1 letters) that
can be created is N where, N = 2k(k+1). The loga-
rithm to the base 2 of this number of configurations
is the information I , or I = log2 N and in our case,
I = k+ log2(k+1). The larger this number I , the larger
the number of possible configurations and therefore the
larger the randomness of the word. As a further example,
assume an alphabet of G symbols and consider messages
consisting of N symbols. Say that the frequency of oc-
currence of a letter is fi , i. e., in N symbols the letter G
occurs on average Ni = fi N times. There may then be
W different possible messages, where

W = N !
N∏

i=1
Ni !

.

The uncertainty of an N-symbol message is simply the
ability to discern which message is about to be received.
Thus,

W = eHN and

H = lim
N→∞

1

N
log(W ) =

∑
pi log (1/pi) ,

which is also known as Shannon’s entropy. If the number
of configurations (i. e. W ) is reduced, then the infor-
mation increases. To see how the mathematical and
statistical properties of entropy may be used in defin-
ing the risk-neutral distribution, we shall outline below
a number of problems.

Discrimination and divergence
Consider for example two probability distributions given
by [F, G], one a theoretical risk-neutral distribution and
another empirical expressing observed prices for ex-
ample. We want to construct a measure that makes it
possible to discriminate between these distributions. An
attempt may be reached by using the following function
we call the discrimination information [47.193]:

I(F, G) =
∫

F(x) log
F(x)

G(x)
dx .
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In this case, I(F, G) is a measure of distance between
the distributions F and G. The larger the measure, the
more we can discriminate between these distributions.
For example, if G(.) is a uniform distribution, then we
have Shannon’s measure of information. In this sense, it
also provides a measure of departure from the random
distribution. Selecting a distribution which has a max-
imum entropy (given a set of assumptions which are
made explicit) is thus equivalent to the principle of in-
sufficient reason proposed by Laplace. Thus, selecting
a distribution with the largest entropy will imply a most
conservative (risk wise) distribution. By the same token,
we have

I(G, F ) =
∫

G(x) log
G(x)

F(x)
dx

and the divergence between these two distributions is
defined by

J(F, G) = I(F, G)+ I(G, F )

=
∫

[F(x)−G(x)] log
F(x)

G(x)
dx ,

which provides a symmetric measure of distributions’
distance since J(F, G) = J(G, F ).

For a discrete-time distribution (p, q), discrimina-
tion and divergence are given by

I(p, q) =
n∑

i=1

pi log
pi

qi
;

I(q, p) =
n∑

i=1

qi log
qi

pi
,

n∑

i=1

pi = 1 ,

n∑

i=1

qi = 1, pi ≥ 0, qi ≥ 0 ,

J(p, q) =
n∑

i=1

pi log
pi

qi
+

n∑

i=1

qi log
qi

pi

=
n∑

i=1

(pi −qi ) log
pi

qi
.

For example, say that qi , i = 1, 2, 3, . . . n is a known
empirical distribution and say that pi , i = 1, 2, 3, . . . n
is a theoretical distribution given by the geometric dis-
tribution: pi = (n, i)� pi (1− p)n−i , whose parameter p
we seek to estimate by minimizing the divergence, then

the problem is:

min
0≤p≤1

J(p, q)

=
n∑

i=1

[(
n

i

)
pi (1− p)n−i −qi

]

× log

(
n

i

)
pi (1− p)n−i

qi
,

which can be minimized with respect to the param-
eter p. This approach can be generalized further to
a multi-variable setting. For a bi-variate state discrete
distribution, we have similarly:

I(p, q) =
m∑

j=1

n∑

i=1

pij log

(
pij

qij

)
;

J(p, q) =
m∑

j=1

n∑

i=1

(pij −qij ) log

(
pij

qij

)
.

On other hand for, for continuous distributions, we also
have

I(F, G) =
∫ ∫

F(x, y) log
F(x, y)

G(x, y)
dx dy

as well as the divergence:

J(F, G)

=
∫ ∫

[F(x, y)−G(x, y)] log
F(x, y)

G(x, y)
dx dy .

This distribution may then be used to provide
divergence–distance measures between empirically ob-
served and theoretical distributions.

When the underlying process is time-varying, we
have for each time period:

I(p, q) =
T∑

t=1

n∑

i=1

pit log

(
pit

qit

)
and

J(p, q) =
T∑

t=1

n∑

i=1

(pit −qit) log

(
pit

qit

)

where, obviously,
n∑

i=1

pit = 1;
n∑

i=1

qit = 1; pit ≥ 0, qit ≥ 0 .

Moments condition as well as other constraints may
also be imposed, providing a least-divergent risk-neutral
pricing approximation to the empirical (incomplete)
distribution considered.
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Example 47.9: Assume that a non-negative random se-
curity price {θ} has a known mean given by θ̂, the
maximum-entropy distribution for a continuous state
distribution is given by solution of the following op-
timization problem:

max H =−
∞∫

0

f (θ) log [ f (θ)] dθ Subject to:

∞∫

0

f (θ)dθ = 1,

θ̂ =
∞∫

0

θ f (θ)dθ .

The solution of this problem, based on the calculus of
variations, yields an exponential distribution. In other
words,

f (θ) = 1

θ̂
e−θ/θ̂ , θ ≥ 0 .

When the variance of a distribution is specified as well, it
can be shown that the resulting distribution is the normal
distribution with specified mean and specified variance.
This approach can be applied equally when the proba-
bility distribution is discrete, bounded, and multivariate
with specified marginal distributions etc. In particular,
it is interesting to point out that the maximum entropy
of a multivariate distribution with specified mean and
known variance–covariance matrix also turns out to be
multivariate normal, implying that the normal is the most
random distribution that has a specified mean and a spec-
ified variance. Evidently, if we also specify leptokurtic
parameters, the distribution will not be normal. Potential
applications are numerous, for example, let S and V be
a stock price and its volatility, each of which is assumed
to have observable prices and volatility. If we apply the
conditions for a risk-neutral price, we then have:

S(t) = e−Rf(T−t) ERNS(T )

=
∞∫

0

∫

0

e−Rf(T−t)S(T ) f (S, V, T )dV dS ,

where f (S, V, T ) is the probability distribution of the
stock price with volatility V at time T . Adding data re-
garding the observed volatility at various times, prices of
call and puts derived from this security, a theoretical op-
timization problem can be constructed that will indicate
potential candidate distributions as implied risk-neutral
distributions.

Example 47.10: consider the following random volatility
process:

xαt+1 = xαt + zt; zt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

+3 (0.5)(1−q)

+1 (0.5)q

−1 (0.5)q

−3 (0.5)(1−q) .

A three-stage standard binomial process with probability
π leads to

xαt+1 = xαt + zt ;

zt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

+3 0.5(1−q)↔ π3

+1 0.5q ↔ 3π2(1−π)

−1 0.5q ↔ 3π(1−π)2

−3 0.5(1−q)↔ (1−π)3 .

As a result, we can calculate the probability π by min-
imizing the divergence J , which is given by by an
appropriate choice of π

J =
[
π3− (0.5)(1−q)

]
log

(
π3

0.5(1−q)

)

+
[
3π2(1−π)− (0.5)q

]
log

(
3π2(1−π)

0.5q

)

+
[
3π(1−π)2− (0.5)q

]
log

(
3π(1−π)2

0.5q

)

+
[
(1−π)3−0.5(1−q)

]
log

(
(1−π)3

0.5(1−q)

)
.

Example 47.11: the problem based on forward and option
prices be given by:

max
f (.)

∞∫

0

f (S) ln

(
1

f (S)

)
dS Subject to:

∞∫

0

f (S)dS = 1; F(0, T ) =
∞∫

0

S f (S)dS and

Ci (S, K, T ) = e−RfT

∞∫

0

ci (x) f (x)dx,

i = 1, 2, . . .m ,
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where Ci is the price of the option at time t with payoff
at T given by ci (x). The solution of this problem is

f (S) = 1

µ
exp

[
λ0S+

m∑

i=1

λi ci (S)

]
with

µ=
∞∫

0

exp

[
λ0S+

m∑

i=1

λi ci (S)

]
dS

which can be used as a candidate risk-neutral distribution
where the parameters are to be determined based on the
available data.

Example 47.12 (a maximum-entropy price pro-
cess): Consider a bivariate probability distribution (or
a stochastic price process) h(x, t), x ∈ [0,∞), t ∈ [a, b]
the maximum-entropy criterion can be written as
an optimization problem, maximizing the entropy as
follows:

max H =−
∞∫

0

b∫

a

h(x, t) log [h(x, t)]dt dx ,

subject to partial information regarding the distribu-
tion h(x, t), x ∈ [0,∞), t ∈ [a, b]. Say that, at the final
time b, the price of a stock is for sure Xb, while ini-
tially it is given by Xa. Further, let the average price
over the relevant time interval be known and be given
by X̄(a,b), this may be translated into the following
constraints:

h(Xa, a) = 1, h(Xb, b) = 1 and

1

b−a

b∫

a

∞∫

0

xh(x, t)dx dt = X̄(a,b)

which are to be accounted for in the entropy opti-
mization problem. Of course, we can add additional
constraints when more information is available. Thus,
the maximum-entropy approach can be used as an al-
ternative rationality for the construction of risk-neutral
distributions when the burden of explicit hypotheses for-
mulation or the justification of the model at hand is too
heavy. Theoretical justifications as well as applications
to finance may be found in Avellaneda et al. [47.194]
(see also [47.195–197]). Below we consider a sim-
ple example to highlight some of the practical issues
we may have to address when dealing with such
problems.

Example 47.13 (engineered bond pricing): consider
a Vasicek model of interest rates, fluctuating around
a long-run rate α. This fluctuation is subjected to ran-
dom and normal perturbations of mean zero and variance
σ dt, or.

dr = β(α−r)dt+σ dw

whose solution at time t when the interest rate is r(t) is,
as seen earlier:

r(u; t)= α+ e−β(u−t) [r(t)−α]

+σ

u∫

t

e−β(u−τ) dw(τ) .

In this theoretical model we might consider the pa-
rameters set Λ≡ (α, β, σ) as determining a number of
martingales (or bond prices) that obey the model above,
namely bond prices at time t = 0 can theoretically equal
the following:

Bth(0, T ;α, β, σ) = E

⎛

⎝e

T∫

0
r(u;α,β,σ)du

⎞

⎠ .

In this simple case, interest rates have a normal distri-
bution with a mean and variance (volatility) evolution
stated above and therefore

∫ T
0 r(u,α, β, σ)du also has

a normal probability distribution with mean and variance
give by

m[r(0), T ] = αT +
(

1− e−βT
) r(0)−α

β
,

v(r(0), T ) = v(T )

= σ2

2β3

(
4e−βT − e−2βT +2βT −3

)
.

Note that in these equations the variance is independent
of the interest rate while the mean is a linear function of
the interest, which we write as:

m[r(0), T ] = α

(
T −

(
1− e−βT

)

β

)

+r(0)

(
1− e−βT

)

β
.

This property is called an affine structure as we saw ear-
lier and is of course computationally desirable for it will
allow a simpler calculation of the desired martingale. As
a result, the theoretical zero-coupon bond price paying
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one dollar T periods hence can be written as:

Bth(0, T ;α, β, σ) = E

⎛

⎝e

T∫

0
r(u,α,β,σ)du

⎞

⎠

= e−m(r(0),T )+v(T )/2

= eA(T )−r0 D(T ) ,

A(T ) =−α

(
T −

(
1− e−βT

)

β

)

+ σ2

4β3

(
4e−βT − e−2βT

+2βT −3
)
,

D(T ) =
(
1− e−βT

)

β
.

Assume now that continuous series affine bond values
are observed and given by Bobs(0, T ) which we write
for convenience as Bobs(0, T )= e−RT T . Without loss of
generality we can consider the yield error term given by

∆T = RT − [A(T )−r0 D(T )]

and thus select the parameters (i. e. the martingale) that
is closest in some sense to the observed values. For
example, a least-squares solution of n observed bond
values yields the following optimization problem:

min
α,β,σ

n∑

i=1

(∆i)
2

Alternatively, we can also minimize the divergence
between the theoretical and the observed series. For
a continuous-time function Bobs(0, T ) = e−RT T , we
have

min
α,β,σ

J(Υ )

=
Υ∫

0

[Bth(0, u)− Bobs(0, u)] ln

(
Bth(0, u)

Bobs(0, u)

)
du .

In this case, it is easy to show that, given the continuous-
time observed bond function

[
Bobs(0, u), 0 ≤ u ≤ Υ

]
,

the optimal parameters satisfy the following three equal-
ities

Υ∫

0

(
∂ ln Bth(0, u)

∂θ
[Bobs(0, u)− Bth(0, u)]

)

=
Υ∫

0

∂Bth(0, u)

∂θ
ln

(
Bth(0, u)

Bobs(0, u)

)
du ,

where θ = α, β, σ . These problems can be solved nu-
merically of course.

When the model has time-varying parameters, the
problem we faced above turns out to have an infinity of
unknown parameters and therefore the yield-curve esti-
mation problem we considered above might be grossly
under-specified. Explicitly, let the interest mode be de-
fined by:

dr(t)= β[α(t)−r(t)]dt+σ dw

The theoretical bond value still has an affine structure
and therefore we can write

Bth(t, T ;α(t), β, σ) = E

⎛

⎝e

T∫

0
r(u,α,β,σ)du

⎞

⎠

= eA(t,T )−r(t)D(t,T ) .

The integral interest rate process is still normal with
mean and variance leading to

D(t, T ) = 1

β

(
1− e−β(T−t)

)
,

A(t, T ) =
T∫

t

[
1

2
σ2 D2(s, T )−βα(s)D(s, T )

]
ds

or

dA(t, T )

dt
= α(t)

(
1− e−β(T−t)

)

− σ2

2β2

(
1−e−β(T−t)

)2
, A(T, T ) = 0

in which α(t), β, and σ are unspecified. If we equate
this equation to the available bond data we will obvi-
ously have far more unknown variables than data points
and therefore the yield-curve estimate will depend again
on the optimization technique we use to generate the
best fit functions α∗(t), β∗, and σ∗. Such problems can
be formulated as standard problems in the calculus of
variations. For example, if we consider the observed
bond prices Bobs(t, T ), t ≤ T<∞, for a specific time T
and minimize the squared error, the following problem
results

min
α(u)

J(α, A) =
t∫

0

[
e

A(u,T )−r(u)
[

1
β

(
1−e−β(T−u))

]

− Bobs(u, T )

]2

du,
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dA(u, T )

du
= α(u)

(
1− e−β(T−u)

)

− σ2

2β2

(
1− e−β(T−u)

)2
,

A(T, T ) = 0

which can be solved by the usual techniques in optimal
control. Note that this problem can be written as the
linear quadratic optimization problem where we have
purposely given greater weight to data observed close to
time t, and given less importance to data that are farther
away from the current time t, or:

min
α(u)

=
t∫

0

eνu [A(u, T )− c(u, T )]2 du ,

dA(u, T )

du
= α(u)a(u, T )−b(u, T ) , A(T, T ) = 0 ,

c(u, t) = yobs(u, T )+r(u)

[
1

β

(
1−e−β(T−u)

)]
,

a(u, t) =
(

1− e−β(T−u)
)
;

b(u, t) = σ2

2β2

(
1− e−β(T−u)

)2
.

The solution of this problem is a standard optimal control
problem which may be either a boundary solution (called
bang–bang, bringing the control parameter α(u) to an
upper or lower constraint value) or that can be singular
(in which case its calculation is found by tests based
on a higher-order derivative). Using the deterministic
dynamic programming framework, we have an optimal
solution given by:

−∂J

∂u
= min

α(u)

{
eυu [A(u, T )− c(u, T )]2

+ ∂J

∂A
[α(u)a(u, T )−b(u, T )]

}

On a singular strip, ∂J
∂A = 0 where a(u, t) �= 0 and thus,

in order to calculate α(u), we can proceed by a change of
variables and transforming the original control problem
into a linear quadratic control problem that can be solved
by the standard optimal control methods. Explicitly, set:

y(u) = eνu/2 [A(u, T )− c(u, T )] ,

dw(u)

du
= α(u) and

z(u) = y(u)− eνu/2a(u, T )w(u) .

Thus, the problem objective is reduced to

min
α(u)

=
t∫

0

[
z(u)+ eνu/2a(u, T )w(u)

]2
du

while the constraint is

dA(u, T )

du
= α(u)a(u, T )−b(u, T ) ,

z(u)+ eνu/2a(u, T )w(u)

= eνu/2 [A(u, T )− c(u, T )] ;
dw(u)

du
= α(u) .

After some elementary manipulations, we have

ż(u) = υ

2
z(u)− eνu/2ȧ(u, T )w(u)

− eνu/2
[
b(u, T )− eνu/2ċ(u, T )

]
.

This defines a linear quadratic cost-control problem

min
w(u)

=
t∫

0

[
z(u)+ eνu/2a(u, T )w(u)

]2
du .

Subject to:

dz(u)

du
= υ

2
z(u)− eνu/2ȧ(u, T )w(u)

− eνu/2
[
b(u, T )− eνu/2ċ(u, T )

]
.

Inserting the original problem parameters we have:

min
w(u)

t∫

0

[
z(u)+ eνu/2

{
1− e−β(T−u)

}

×w(u)

]2

du. Subject to:

dz(u)

du
= ż(u) = υ

2
z(u)+β e−β(T−u−νu/2β)w(u)

− eνu/2
[
σ2

2β2

(
1− e−β(T−u)

)2

− eνu/2ċ(u, T )

]
,

dc(u)

du
= ċ(u, t) = ẏobs(u, T )

+ ṙ(u)

[
1

β

(
1− e−β(T−u)

)]

−r(u)e−β(T−u) ,
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which is a control problem linear in the state and in
the control with a quadratic objective. As a result, the
solution for the control w(u) is of the linear feedback
form

w(u) = Q(u)+ S(u)z(u) or

α(u) = Q̇(u)+ S(u)ż(u)+ Ṡ(u)z(u) .

Finally, when bond data are available over multiple pe-
riods dates T , the optimal control problem we have
considered above can be extended by solving

min
α(u)

NT∑

j=1

t∫

0

eνu [
A(u, Tj )− c(u, Tj )

]2 du

dA(u, Tj )

du
= α(u)a(u, Tj )−b(u, Tj ) ,

A(Tj , Tj ) = 0

and in continuous time:

min
α(u)

∞∫

0

t∫

0

eνu [A(u, T )− c(u, T )]2 dT du ,

∂A(u, T )

∂u
= α(u)a(u, T )−b(u, T ) ,

A(T, T ) = 0 .

The solution of these problems are then essentially
numerical problems, however.

References

47.1 C. S. Tapiero: Risk and Financial Management:
Mathematical and Computationl Concepts (Wiley,
London, March 2005)

47.2 C. S. Tapiero: Risk management. In: Encyclope-
dia on Actuarial and Risk Management, ed. by
E. J. Teugels, B. Sundt (Wiley, New York, London
2004)

47.3 P. Artzner, F. Delbaen, J. M. Eberand, D. Heath:
Thinking coherently, RISK 10, 68–71 (1997)

47.4 P. Artzner: Application of coherent measures to
capital requirements in insurance, North Am. Ac-
tuar. J. 3(2), 11–25 (1999)

47.5 P. Artzner, F. Delbaen, J. M. Eber, D. Heath: Co-
herent risk measure, Math. Finance 9, 203–228
(1999)

47.6 H. Raiffa, R. Schlaiffer: Applied Statistical Decision
Theory (Division of Research, Graduate School of
Business, Harvard University, Boston 1961)

47.7 C. Alexander: Risk Management and Analysis,
Vol. 1, 2 (Wiley, New York 1998)

47.8 F. Basi, P. Embrechts, M. Kafetzaki: Risk man-
agement and quantile estimation. In: Practical
Guide to Heavy Tails, ed. by R. Adler, R. Feldman,
M. Taqqu (Birkhauser, Boston 1998) pp. 111–130

47.9 S. Beckers: A survey of risk measurement theory
and practice. In: Handbook of Risk Management
and Analysis, ed. by C. Alexander (Wiley, New York
1996)

47.10 P. P. Boyle: Options and the Management of Fi-
nancial Risk (Society of Actuaries, New York 1992)

47.11 Neil A. Doherty: Integrated Risk Management:
Techniques and Strategies for Managing Corporate
Risk (McGraw–Hill, New York 2000)

47.12 J. E. Ingersoll, Jr.: Theory of Financial Decision Mak-
ing (Rowman and Littlefield, New Jersey 1987)

47.13 P. Jorion: Value at Risk: The New Benchmark
for Controlling Market Risk (McGraw–Hill, Chicago
1997)

47.14 P. Embrechts, C. Klupperberg, T. Mikosch: Mod-
elling Extremal Events in Insurance and Finance
(Springer, Berlin Heidelberg New York 1997)

47.15 C. Gourieroux, J. P. Laurent, O. Scaillet: Sensitivity
analysis of values at risk, J. Empirical Finance 7,
225–245 (2000)

47.16 S. Basak, A. Shapiro: Value-at-risk-based risk
management: Optimal policies and asset prices,
Rev. Financial Stud. 14, 371–405 (2001)

47.17 D. E. Bell: Risk, return and utility, Manage. Sci. 41,
23–30 (1995)

47.18 Eugene F. Fama: The cross-section of expected
stock returns, J. Finance 47, 427–465 (1992)

47.19 K. J. Arrow: Aspects of the theory of risk bearing,
YRJO Jahnsson Lectures (1963), also in 1971 Essays
in the Theory of Risk Bearing, Markham Publ. Co.,
Chicago, Ill

47.20 J. Y. Campbell: Asset pricing at the Millennium,
J. Finance LV, 4, 1515–1567 (2000)

47.21 J. C. Cox, S. A. Ross: A survey of some new results
in financial option pricing theory, J. Finance 31,
383–402 (1978)

47.22 D. Duffie: Security Markets: Stochastic Models (Aca-
demic, New York 1988)

47.23 D. Duffie: Dynamic Asset Pricing Survey (Working
Paper, Stanford University 2002)

47.24 R. C. Merton: Continuous Time Finance (M. A. Black-
well, Cambridge 1990)

47.25 R. A. Jarrow: Finance Theory (Prentice Hall, Engle-
wood Cliffs, N.J. 1988)

47.26 J. M. Bismut: Growth and intertemporal allocation
of risks, J. Econ. Theory 10, 239–257 (1975)

Part
F

4
7



Risks and Assets Pricing References 899

47.27 J. M. Bismut: An introductory approach to duality
in optimal stochastic control, SIAM Rev. 20, 62–78
(1978)

47.28 W. A. Brock, M. J. P. Magill: Dynamics under uncer-
tainty, Econometrica 47, 843–868 (1979)

47.29 J. B. Caouette, E. I. Altman, P. Narayanan: Manag-
ing Credit Risk: The Next Great Financial Challenge
(Wiley, New York 1998)

47.30 D. Cossin, H. Pirotte: Advanced Credit Risk Analysis:
Financial Approaches and Mathematical Models to
Assess, Price and Manage Credit Risk (Wiley, New
York 2001)

47.31 J. Cox, M. Rubinstein: Options Markets (Prentice
Hall, Englewood Cliffs, N. J. 1985)

47.32 J. C. Hull: Options, Futures and Other Derivatives,
4th edn. (Prentice Hall, Englewood Cliffs, N. J. 2000)

47.33 A. G. Malliaris, W. A. Brock: Stochastic methods in
Economics and Finance (North Holland, Amsterdam
1982)

47.34 Harry M. Markowitz: Portfolio Selection; Efficient
Diversification of Investments (Wiley, New York
1959)

47.35 Y. A. Bergman: Time preference and capital asset
pricing models, J. Financial Econ. 14, 145–159 (1985)

47.36 R. S. Dembo: Scenario optimization, Algorithmics
Inc. Research Paper 89(01) (1989)

47.37 R. S. Dembo: Scenario immunization. In: Financial
Optimization, ed. by S. A. Zenios (Cambridge Univ.
Press, London 1993)

47.38 D. Kreps: A representation theorem for preference
for flexibility, Econometrica 47, 565–577 (1979)

47.39 J. M. Harrison, S. R. Pliska: Martingales and
stochastic integrals with theory of continuous
trading, Stoch. Proc. Appl. 11, 261–271 (1981)

47.40 I. Karatzas, S. E. Shreve: Methods of mathematical
finance (Springer, New York 1998)

47.41 I. Karatzas, S. Shreve: Methods of mathematical
finance, Stochastic Modelling and Applied Proba-
bility, 159-196 (1999)

47.42 D. R. Cox, H. D. Miller: The Theory of Stochastic Pro-
cesses (Wiley, New York 1965)

47.43 H. U. Gerber: An Introduction to Mathematical Risk
Theory (University of Penn., Philadelphia 1979)
Monograph No. 8, Huebner Foundation

47.44 S. M. Ross: Applied Probability Models with Opti-
mization Applications (Holden-Day, San Fransisco
1970)

47.45 S. M. Ross: Stochastic Processes (Wiley, New York
1982)

47.46 S. M. Ross: Introduction to Stochastic Dynamic Pro-
gramming (Academic, New York 1983)

47.47 C. S. Tapiero: Applied Stochastic Models and Control
in Management (North Holland, New York 1988)

47.48 C. S. Tapiero: Applied Stochastic Control for Finance
and Insurance (Kluwer, Dordrecht 1998)

47.49 K. J. Arrow: Le role des valeurs boursieres pour la
repartition la meilleur des risques, Econometric,
Colloquia International due CNRS 40, 41–47 (1953),

in English in The role of securities in the opti-
mal allocation of risk bearing, Review of Economic
Studies, 31, 91-96, 1963

47.50 D. Duffie: Dynamic Asset Pricing Theory (Princeton
University Press, Princeton, New Jersey 1992)

47.51 J. Muth: Rational expectations and the theory of
price movements, Econometrica 29, 315–335 (1961)

47.52 M. Magill, M. Quinzii: Theory of Incomplete Markets,
Vol. 1 (MIT Press, Boston 1996)

47.53 E. F. Fama: Efficient capital markets: A review of
theory and empirical work, J. Finance 25, 383–417
(1970)

47.54 R. E. Lucas: Asset prices in an exchange economy,
Econometrica 46, 1429–1445 (1978)

47.55 J. M. Harrison, D. M. Kreps: Martingales and ar-
bitrage in multiperiod security markets, J. Econ.
Theory (1979)

47.56 R. M. Capocelli, L. M. Ricciardi: On the inverse of
the first passage time probability problem, J. Appl.
Probab. 9, 270–287 (1972)

47.57 T. J. Sargent: Macroeconomic Theory (Academic,
New York 1979)

47.58 A. Bensoussan, J. L. Lions: Controle Impulsionnel
et Inequations Quasi-Variationnelles (Dunod, Paris
1979)

47.59 A. Bensoussan, C. S. Tapiero: Impulsive control in
management: Prospects and applications, J. Op-
tim. Theory Appl. 37, 419–442 (1982)

47.60 D. A. Darling, A. J. F. Siegert: The first passage time
for a continuous Markov process, Ann. Math. Stat.
24, 624–639 (1953)

47.61 W. F. Sharpe: Capital asset prices: A theory of mar-
ket equilibrium under risk, J. Finance 19, 425–442
(1964)

47.62 E. F. Fama, M. H. Miller: The Theory of Finance (Holt
Rinehart and Winston, New York 1972)

47.63 E. F. Fama: The CAPM is wanted, dead or alive,
J. Finance 51, 1947 (Dec 1996)

47.64 C. Stein: Estimation of the mean of a multivari-
ate normal distributions, Proc. Prague Symposium,
Asymptotic Statistics (September 1973)

47.65 R. Roll: Asset, money and commodity price infla-
tion under uncertainty, J. Money Credit Banking 5,
903–923 (1973)

47.66 R. J. B. Wets, S. Bianchi, L. Yang: Serious Zero-
Curve, (2002) www.episolutions.com

47.67 K. C. Chan, G. A. Karolyi, F. A. Longstaff, A. B. San-
ders: An empirical comparison of alternative
models of the short term interest rate, J. Finance
47, 1209–1227 (1992)

47.68 J. D. Duffie, R. Kan: A yield-factor model of interest
rates, Math. Finance 6, 379–406 (1996)

47.69 D. C. Heath, R. A. Jarrow, A. Morton: Bond pric-
ing and the term structure of interest rates:
A new methodology for contingent claim valuation,
Econometrica 60, 77–105 (1992)

47.70 C. R. Nelson, A. F. Siegel: Parsimonious modeling of
the yield curve, J. Bus. 60, 473–489 (1987)

Part
F

4
7



900 Part F Applications in Engineering Statistics

47.71 D. Filipovic: A note on the Nelson–Siegel family,
Math. Finance 9, 349–359 (1999)

47.72 D. Filipovic: Exponential-ploynomial families and
the term structure of interest rates, Bernoulli 6,
1–27 (2000)

47.73 D. Filipovic: Consistency problems for Heath–
Jarrow–Morton interest rate models. In: Lecture
Notes in Mathematics, Vol. 1760, ed. by J.-M. Morel,
F. Takens, B. Teissier (Springer, Berlin Heidelberg
New York 2001)

47.74 R. C. Merton: On the pricing of corporate debt: The
risk structure of interest rates, J. Finance 29, 449–
470 (1974)

47.75 G. R. Duffee: The relation between treasury yields
and corporate bond yield spreads, J. Finance 53,
2225–2241 (1998)

47.76 G. R. Duffee: Estimating the price of default risk,
Rev. Financial Stud. 12, 197–226 (1999)

47.77 D. Duffie, K. Singleton: An econometric model of
the term structure of interest rate wap yield, J. Fi-
nance 52, 1287–1321 (1997)

47.78 D. Duffie, K. Singleton: Modeling term structures
of defaultable bonds, Review Financial Stud. 12,
687–720 (1999)

47.79 E. Elton, M. J. Gruber, D. Agrawal, C. Mann: Ex-
plaining the rate spread on corporate bonds,
J. Finance 56, 247–278 (2001)

47.80 K. O. Kortanek, V. G. Medvedev: Building and Using
Dynamic Interest Rate Models (Wiley Finance. John
Wiley & Sons Ltd., London 2001)

47.81 K. O. Kortanek: Comparing the Kortanek &
Medvedev GP approach with the recent wets
approach for extracting the zeros (April 26,
2003)

47.82 F. Delbaen, S. Lorimier: Estimation of the yield
curve and forward rate curve starting from a finite
number of observations, Insurance: Math. Econ. 11,
249–258 (1992)

47.83 K. J. Adams, D. R. Van Deventer: Fitting yield curves
and forward rate curves with maximum smooth-
ness, J. Fixed Income, 52-62 (1994)

47.84 M. Buono, R. B. Gregoru-Allen, U. Yaari: The ef-
ficacy of term structure estimation techniques:
A Monte Carlo study, J. Fixed Income 1, 52–59 (1992)

47.85 O. A. Vasicek, H. G. Fong: Term structure modeling
using exponential splines, J. Finance 37, 339–356
(1977)

47.86 G. S. Shea: Term structure estimation with expo-
nential splines, J. Finance 40, 339–356 (1988)

47.87 M. Friedman, L. J. Savage: The utility analysis of
choices involving risk, J. Polit. Econ. 56 (August
1948)

47.88 M. J. Brennan, E. S. Schwartz: A continuous time
approach to the pricing of corporate bonds,
J. Banking Finance 3, 133–155 (1979)

47.89 J. D. Duffie, D. Fillipovic, W. Schachermayer: Affine
processes and applications in finance, Ann. Appl.
Probab. 13, 19–49 (2003)

47.90 J. Hull, A. White: The pricing of options on assets
with stochastic volatilitie, J. Finance 42, 281–300
(1987)

47.91 J. C. Cox, J. E. Ingersoll, S. A. Ross: A theory of the
term structure of interest rates, Econometrica 53,
385–407 (1985)

47.92 R. Jarrow, S. Turnbull: Pricing derivatives on finan-
cial securities subject to credit risk, J. Finance 50,
53–86 (1995)

47.93 R. A. Jarrow, D. Lando, S. Turnbull: A Markov model
for the term structure of credit spreads, Rev. Fi-
nancial Stud. 10, 481–523 (1997)

47.94 D. Lando: Some elements of rating-based credit
risk modeling. In: Advanced Fixed-Income Valua-
tion Tools, ed. by N. Jegadeesh, B. Tuckman (Wiley,
New York 2000)

47.95 F. Longstaff, E. Schwartz: A simple approach to
valuing risky fixed and floating rate debt, J. Fi-
nance 50, 789–819 (1995)

47.96 O. A. Vasicek: An equilibrium characterization of
the term structure, J. Financial Econ. 5, 177–188
(1977)

47.97 F. Black, M. Scholes: The pricing of options and
corporate liabilities, J. Polit. Econ. 81, 637–659
(1973)

47.98 M. J. Brennan: The pricing of contingent claims in
discrete time models, The J. Finance 1, 53–63 (1979)

47.99 J. C. Cox, M. Rubenstein: Options Markets (Prentice
Hall, Englewood Cliffs, N. J. 1985)

47.100 J. C. Cox, J.E. Ingersoll jr., S. A. Ross: The rela-
tion between forward prices and futures prices,
J. Financial Econ. 9, 321–346 (1981)

47.101 J. C. Cox, S. A. Ross, M. Rubenstein: Option pricing
approach, J. Financial Econ. 7, 229–263 (1979)

47.102 R. C. Merton: Theory of rational option pricing, Bell
J. Econ. Manage. Sci. 4, 141–183 (1973)

47.103 S. Pliska: A stochastic calculus model of continu-
ous trading: Optimal portfolios, Math. Oper. Res.
11, 371–382 (1986)

47.104 S. A. Ross: Options and efficiency, Quarterly J. Econ.
90 (1976)

47.105 A. Ross: The arbitrage theory of capital asset pric-
ing, J. Econ. Theory 13, 341–360 (1976)

47.106 C. W. Smith: Option pricing: A review, J. Financial
Econ. 3, 3–51 (1976)

47.107 M. Avellenada: Course Notes (Courant Institue of
Mathematics, New York University, New York 2001)

47.108 J. C. Cox, S. A. Ross: The valuation of options for
alternative stochastic processes, J. Financial Econ.,
145-166 (1976)

47.109 A. Bensoussan: Stochastic Control by Functional
Analysis Method (North Holland, Amsterdam 1982)

47.110 A. Bensoussan, M. Hazewinkel (Ed.): On the theory
of option pricing, ACTA Applicandae Mathematica
2(2), 139–158 (1984)

47.111 P. Carr, R. Jarrow, R. Myneni: Alternative charac-
terizations of American Put options, Math. Finance
2, 87–106 (1992)

Part
F

4
7



Risks and Assets Pricing References 901

47.112 R. Jarrow, A. Rudd: Approximate option valuation
for arbitrary stochastic processes, J. Financial Econ.
10, 347–369 (1982)

47.113 A. Bensoussan, H. Julien: Option pricing, in a mar-
ket with friction. In: Stochastic Analysis and
Applications (1998)

47.114 A. Bensoussan, H. Julien: On the pricing of contin-
gent claims with friction, Math. Finance 10, 89–108
(2000)

47.115 S. D. Jacka: Optimal stopping and the American Put,
J. Math. Finance 1, 1–14 (1991)

47.116 J. Wiggins: Option values under stochastic volatil-
ity: Theory and empirical estimates, J. Financial
Econ. 5, 351–372 (1987)

47.117 J. P. Fouque, G. Papanicolaou, K. R. Sircar: Stochas-
tic Volatility (Cambridge Univ. Press, Cambridge
2000)

47.118 K. Ramaswamy, D. Nelson: Simple binomial pro-
cesses as diffusion approximations in financial
models, Rev. Financial Stud. 3(3), 393–430 (1990)

47.119 J. P. Bouchaud, M. Potters: Théorie des Risques Fi-
nanciers (Aléa-Saclay/Eyrolles, Paris 1997)

47.120 B. Dupire: Pricing with a smile, RISK (January 1994)
47.121 R. Merton: Option pricing when underlying stock

returns are discontinuous, J. Financial Econ. 3, 125–
144 (1976)

47.122 C. Ball, W. Torous: On jumps in common stock prices
and their impact on call option price, J. Finance 40,
155–173 (1985)

47.123 H. Cho, K. Lee: An extension of the three jump
process models for contingent claim valuation,
J. Derivatives 3, 102–108 (1995)

47.124 V. Naik, M. Lee: General equilibrium pricing of op-
tions on the market portfolio with discontinuous
returns, Rev. Financial Stud. 3, 493–521 (1990)

47.125 K. Amin: Jump diffusion option valuation in dis-
crete time, J. Finance 48, 1833–1863 (1993)

47.126 K. I. Amin, V. K. Ng: Option valuation with system-
atic stochastic volatility, J. Finance 48, 881–909
(1993)

47.127 D. E. Bell: Regret in decision making under uncer-
tainty, Oper. Res. 30, 961–981 (1982)

47.128 D. E. Bell: Disappointment in decision making un-
der uncertainty, Oper. Res. 33, 1–27 (1985)

47.129 P. C. Fishburn: Nonlinear Preference and Utility
Theory (Johns Hopkins, Baltimore 1988)

47.130 F. Gul: A theory of disappointment aversion,
Econometrica 59, 667–686 (1991)

47.131 G. Loomes, R. Sugden: Regret theory: An alternative
to rational choice under uncertainty, Econ. J. 92,
805–824 (1982)

47.132 G. Loomes, R. Sugden: Some implications of a more
general form of regret theory, J. Econ. Theory 41,
270–287 (1987)

47.133 M. J. Machina: Choice under uncertainty: Problems
solved and unsolved, J. Econ. Perspect. 1, 121–154
(1987)

47.134 R. Sugden: An axiomatic foundation of regret the-
ory, J. Econ. Theory 60, 150–180 (1993)

47.135 K. J. Arrow: Risk perception in psychology and in
economics, Econ. Inquiry 20(1), 1–9 (January 1982)

47.136 M. Allais: Le comportement de l’homme rationnel
devant le risque: Critique des postulats et axiomes
de l’ecole americaine, Econometrica 21, 503–546
(1953)

47.137 M. Allais: The foundations of a positive theory of
choice involving risk and a criticism of the pos-
tulates and axioms of the American school. In:
Expected Utility Hypothesis and the Allais Para-
dox, ed. by M. Allais, O. Hagen (Reidel, Dordrecht
1979)

47.138 D. Ellsberg: Risk, ambuguity and the Savage ax-
ioms, Q. J. Econ. 75(4), 643–669 (November 1961)

47.139 M. Friedman, L. J. Savage: The expected utility hy-
pothesis and the measurability of utility, J. Polit.
Econ. 60(6), 463–486 (December 1952)

47.140 M. Rabin: Psychology and economics, J. Econ. Lit.
36, 11–46 (1998)

47.141 M. J. Machina: Expected utility analysis without the
independence axiom, Econometrica 50(2), 277–323
(March 1982)

47.142 D. Kahnemann, A. Tversky: Prospect theory: An
analysis of decision under risk, Econometrica 47(2),
263–292 (March 1979)

47.143 J. Hirschleifer: Where are we in the theory of in-
formation, Am. Econ. Rev. 63, 31–39 (1970)

47.144 J. Hirschleifer, J. G. Riley: The analysis of un-
certainty and information: An expository survey,
J. Econ. Lit. 17, 1375–1421 (1979)

47.145 G. Akerlof: The market for lemons: Quality uncer-
tainty and the market mechanism, Quarter. J. Econ.
84, 488–500 (1970)

47.146 B. Holmstrom: Moral hazard and observability, Bell
J. Econ. 10(1), 74–91 (1979)

47.147 E. E. Peter: Chaos and Order in Capital Markets
(Wiley, New York 1995)

47.148 R. E. Kalman: Randomness reexamined, Modeling
Identif. Control 15(3), 141–151 (1994)

47.149 M. Born: Nobel lecture. In: Les Prix Nobel (Nobel
Foundation, Stockholm 1954)

47.150 J. Beran: Statistics for Long-Memory Processes
(Chapman Hall, London 1994)

47.151 S. C. Blank: ‘Chaos’ in futures markets? A nonlinear
dynamical analysis, J. Futures Markets 11, 711–728
(1991)

47.152 W. A. Brock, D. A. Hsieh, D. LeBaron: Nonlinear
Dynamics, Chaos and Instability: Statistical The-
ory and Economic Evidence (MIT Press, Cambridge,
Mass 1991)

47.153 W. A. Brock, P. J. de Lima: Nonlinear time se-
ries, complexity theory and finance. In: Statistical
Methods in Finance, Handbook of Statistics, Vol. 14,
ed. by G. Maddala, C. Rao (North Holland, Amster-
dam 1996)

Part
F

4
7



902 Part F Applications in Engineering Statistics

47.154 D. A. Hsieh: Chaos and nonlinear dynamics appli-
cation to financial markets, J. Finance 46, 1839–77
(1991)

47.155 B. LeBaron: Chaos and nonlinear forecastability in
economics and finance, Phil. Trans. R. Soc. London
A 348, 397–404 (1994)

47.156 J. A. Scheinkman, B. LeBaron: Nonlinear dynamics
and stock returns, J. Bus. 62, 311–337 (1989)

47.157 J. A. Scheinkman: Nonlinear dynamics in eco-
nomics and finance, Phil. Trans. R. Soc. London
346, 235–250 (1994)

47.158 J. P. Imhoff: On the range of Brownian motion and
its inverse process, Ann. Prob. 13(3), 1011–1017 (1985)

47.159 B. Mandelbrot: Statistical methodology for non-
periodic cycles: From the covariance to R/S analysis,
Ann. Econ. Social Measure 1, 259–290 (1972)

47.160 B. Mandelbrot, J. Van Ness: Fractional Brownian
motion, fractional noises and applications, SIAM
Rev. 10, 422–437 (1968)

47.161 B. Mandelbrot, M. Taqqu: Robust R/S analysis of
long run serial correlation, Bull. Int. Stat. Inst.
48(Book 2), 59–104 (1979)

47.162 M. T. Green, B. Fielitz: Long term dependence in
common stock returns, J. Financial Econ. 4, 339–
349 (1977)

47.163 D. R. Cox: Long range dependence, nonlinearity
and time irreversibilit, J. Time Series Anal. 12(4),
329–335 (1991)

47.164 M. Frank, T. Stengos: Chaotic dynamics in economic
time serie, J. Econ. Surveys 2, 103–133 (1988)

47.165 M. T. Green, B. Fielitz: Long term dependence and
least squares regression in investment analysis,
Manage. Sci. 26(10), 1031–1038 (October 1980)

47.166 H. E. Hurst: Long-term storage capacity of reser-
voirs, Trans. Am. Soc. Civil Eng., 770-808 (1951)

47.167 J. P. Imhoff: A construction of the Brownian motion
path from BES (3) pieces, Stoch. Processes Appl. 43,
345–353 (1992)

47.168 M. S. Taqqu: A bibliographical guide to self sim-
ilar processes and long range dependence. In:
Dependence in Probability and Statistics, ed. by
E. Eberlein, M. S. Taqqu (Birkhuser, Boston 1986)
pp. 137–165

47.169 B. Mandelbrot: When can price be arbitraged ef-
ficiently? A limit to the the validity of the random
walk and Martingale models, Rev. Econ. Stat. 53,
225–236 (1971)

47.170 A. W. Lo: Long term memory in stock market prices,
Econometrica 59, 1279–1313 (5, September 1992)

47.171 Andrew W. Lo: Fat tails, long memory and the stock
market since 1960’s, Econ. Notes 26, 213–245 (1997)

47.172 T. H. Otway: Records of the Florentine proveditori
degli cambiatori: An example of an antipersistent
time series in economics, Chaos Solitons Fractals 5,
103–107 (1995)

47.173 G. Booth, F. Kaen, P. Koveos: R/S analysis of foreign
exchange rates under two international monetary
regimes, J. Monetary Econ 10, 4076415 (1982)

47.174 F. Diebold, G. Rudebusch: Long memory and per-
sistence in aggregate output, J. Monetary Econ. 24,
189–209 (1989)

47.175 F. Diebold, G. Rudebusch: On the power of the
Dickey-Fuller test against fractional alternative,
Econ. Lett. 35, 155–160 (1991)

47.176 H. G. Fung, W. C. Lo: Memory in interest rate fu-
tures, J. Futures Markets 13, 865–873 (1993)

47.177 Y. W. Cheung: Long memory in foreign exchange
rate, J. Bus. Econ. Stat. 11, 93–101 (1993)

47.178 H. G. Fung, W. C. Lo, John E. Peterson: Examining
the dependency in intra-day stock index futures,
J. Futures Markets 14, 405–419 (1994)

47.179 P. Vallois: On the range process of a Bernoulli
random walk. In: Proceedings of the Sixth Inter-
national Symposium on Applied Stochastic Models
and Data Analysis, Vol. 2, ed. by J. Janssen,
C. H. Skiadas (World Scientific, Singapore 1995)
pp. 1020–1031

47.180 P. Vallois: The range of a simple random walk on
Z, Adv. Appl. Prob. 28, 1014–1033 (1996)

47.181 P. Vallois, C. S. Tapiero: The range process in
random walks: Theoretical results and applica-
tions. In: Adv. Comput. Econ., ed. by H. Ammans,
B. Rustem, A. Whinston (Kluwer Publications, Dor-
drecht 1996)

47.182 P. Vallois, C. S. Tapiero: Run length statistics and
the Hurst exponent in random and birth-death
random walk, Chaos Solutions Fractals 7(9), 1333–
1341 (September 1996)

47.183 P. Vallois, C. S. Tapiero: The inter-event range pro-
cess in birth death random walks, Appl. Stoch.
Models Bus. Ind. 17(3), 231–306 (2001)

47.184 C. S. Tapiero, P. Vallois: Range reliability in random
walks, Math. Methods Oper. Res. 45, 325–345 (1997)

47.185 Y. Ait-Sahalia, A. Lo: Nonparametric estimation of
state price densities implicit in finncial asset prices,
NBER, Working Paper No. 5351 (1995)

47.186 B. Bahra: Implied risk neutral probability density
functions from prices, Bank of England, Working
Paper No. 66 (1997)

47.187 A. M. Malz: Estimating the probability distribution
of the future exchange rate from option prices,
J. Derivatives 5, 18–36 (1997)

47.188 R. R. Bliss, N. Panigirtzoglou: Option implied
risk aversion estimates, Federal Reserve Bank of
Chicago, Working Paper No. 15 (2001)

47.189 M. Rubinstein: Implied binomial trees, J. Finance
69, 771–818 (July 1994)

47.190 J. C. Jackwerth, M. Rubinstein: Recovering proba-
bility distributions from contemporaneous security
prices, J. Finance 51, 1611–1631 (1996)

47.191 R. N. Rodriguez: A guide to the Burr type XII distri-
butions, Biometrika 64, 129–34 (1977)

47.192 P. R. Tadikamalla: A look at the Burr and related
distributions, Int. Stat. Rev. 48, 337–44 (1980)

47.193 S. Kullback: Information Theory (Dover, New York
1959)

Part
F

4
7



Risks and Assets Pricing References 903

47.194 M. Avellenada, C. Friedan, R. Holmes, D. Samperi:
Calibraing Volatility Surfaces via Relative Entropy
Minimization (Courant Institute of Mathematics,
New York 2002)

47.195 P. W. Buchen, M. Kelly: The maximum entropy
distribution of an asset inferred from option

prices, J. Financial Quant. Anal. 31, 143–159
(1996)

47.196 L. Gulko: The entropy theory of bond option pric-
ing, Yale University Working paper (1995)

47.197 L. Gulko: The entropy theory of stock option pricing,
Yale University Working paper (1996)

Part
F

4
7



905

Statistical Ma48. Statistical Management and Modeling
for Demand of Spare Parts

In recent years increased emphasis has been placed
on improving decision making in business and
government. A key aspect of decision making is be-
ing able to predict the circumstances surrounding
individual decision situations. Examining the di-
versity of requirements in planning and decision-
making situations, it is clearly stated that no single
forecasting methods or narrow set of methods can
meet the needs of all decision-making situations.
Moreover, these methods are strongly dependent
on factors such as data quantity, pattern and ac-
curacy, that reflect their inherent capabilities and
adaptability, such as intuitive appeal, simplicity,
ease of application and, not least, cost.

Section 48.1 deals with the placement of the
demand-forecasting problem as one of biggest
challenge in the repair and overhaul industry;
after this brief introduction Sect. 48.2 summarizes
the most important categories of forecasting
methods; Sects. 48.3–48.4 approach the forecast
of spare parts firstly as a theoretical construct,
although some industrial applications and results
are added from field training, as in many other
parts of this chapter.

Section 48.5 undertakes the question of
optimal stock level for spare parts, with particular
regard to low-turnaround-index (LTI) parts
conceived and designed for the satisfaction of
a specific customer request, by the application of
classical Poisson methods of minimal availability
and minimum cost; similar considerations are
drawn and compared in Sect. 48.6, which deals
with models based on the binomial distribution.
An innovative extension of binomial models based
on the total cost function is discussed in Sect. 48.7.
Finally Sect. 48.8 adds the Weibull failure-rate
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function to the analysis of the LTI spare-parts stock
level in a maintenance system with declared wear
conditions.

48.1 The Forecast Problem for Spare Parts

Demand forecasting is one of the most crucial issues for
inventory management. Forecasts, which form the ba-
sis for the planning of inventory levels, are probably the
biggest challenge in the repair and overhaul industry.

An example can be seen in the airline industry, where
a common problem is the need to forecast short-term
demand with the highest possible degree of accuracy.
The high cost of modern aircraft and the expense of re-
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pairable spares, such as aircraft engines and avionics,
contribute significantly to the considerable total invest-
ment of many airline operators. These parts, although
required with low demand, are critical to operation
and their unavailability can lead to excessive downtime
costs.

This problem is absolutely relevant in case of in-
termittent demand. Demand for an item is classified as
intermittent when it is irregular and sporadic. This type
of demand, typical for a large number of spare parts,
is very difficult to predict. This complicates efficient
management and control of the inventory system, which
requires an acceptable balance between inventory costs
on one hand and stock-outs on the other. Inventory man-
agement models require accurate forecasts in order to
achieve this balance.

We can explicitly consider both the pattern and size
of demand as it occurs in order to classify demand
patterns into four categories [48.1], as follows:

• intermittent demand, which appears to be random,
with many time periods having no demand,• erratic demand, which is (highly) variable, the er-
ratic nature relating to the size of demand rather than
the demand per unit time period,• slow moving (smooth) demand, which also occurs at
random, with many time periods having no demand.
Demand, when it occurs, is for single or very few
units,• lumpy demand, which likewise seems random, with
many time periods having no demand. Moreover
demand, when it occurs, is (highly) variable. The
lumpy concept corresponds to an extremely irreg-
ular demand, with great differences between each
period’s requirements and with a large number of
periods with zero requirements.

Traditionally the characteristics of intermittent demand
are derived from two parameters: the average inter-
demand interval (ADI) and the coefficient of variation
(CV). ADI measures the average number of time
periods between two successive demands and CV rep-
resents the standard deviation of requirements divided
by the average requirement over a number of time
periods:

CV =

√
n∑

i=1
(εri−εa)2

n

εa
, (48.1)

where n is the number of periods, and εri and εa are the
actual and average demand for spare parts in period i,

respectively. The four resulting demand categories are
represented graphically in Fig. 48.1.

The categorization scheme suggests different ways
of treating the resulting categories according to the
following characteristics:

• The condition ADI ≤ x; CV2 ≤ y tests for stock-
keeping units (SKUs), which are not very inter-
mittent and erratic (i. e. faster moving parts, or
parts whose demand pattern does not raise any
significant forecasting or inventory control difficul-
ties);• The condition ADI > x; CV2 ≤ y tests for low-
demand patterns with constant, or more generally not
highly variable, demand sizes (i. e. not very erratic);• The condition ADI > x; CV2 > y tests for items with
lumpy demand. Lumpy demand may be defined as
a demand with large differences between each peri-
od’s requirements and with a large number of periods
having zero requests;• Finally, the condition ADI ≤ x; CV2 > y tests for
items with erratic (irregular) demand with rather
frequent demand occurrences (i. e. not very inter-
mittent).

In all cases, x denotes the cutoff value (ADI = 1.32)
for ADI, which measures the average number of time
periods between two successive demands, and y denotes
the corresponding cutoff value (CV2 = 0.49) for CV2,
which is equal to the square of the standard deviation
of the requirements divided by the average requirement
over a number of time periods.

Forecasting systems generally depend on the cate-
gory of part used. Therefore it is important to have two
factors in order to indicate deviation from expected val-

ADI

CV2 0.49 (cut-off value)

1.32
(cut-off

value)

“Lumpy” demand
(great differences
among each period´s
requirements, lot of
periods with no
request)

Erratic but not very
intermittent (i.e. low
demand patterns
with constant, or more
generally, no highly
variable demand sizes)

Intermittent but not
very erratic (irregular
demand items
with rather frequent
demand occurences)

“Smooth” demand
(i.e. faster moving parts
or parts whose demand
pattern does not raise
any significant fore-
casting or inventory
control difficulties)

Fig. 48.1 Categorization of demand pattern
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Table 48.1 A summary of selected forecasting methods

No. Method Abbreviation Description

1 Additive Winter AW Assumes that seasonal effects are of constant size

2 Multiplicative Winter MW Assumes that seasonal effects are proportional in size to the local
de-seasonalized mean level

3 Seasonal regression
model

SRM Used in time series for modelling data with seasonal effects

4 Component service
life (replacement)

MTBR Estimates of the service-life characteristics of the part
(MTBR = mean time between replacement), derived from historical data

5 Croston Croston Forecasting in case of low and intermittent demand

6 Single-exponential
smoothing

SES Forecasting in case of low and intermittent demand

7 Exponential weighted
moving average

EWMA,
Holt

An effective forecasting tool for time series data that exhibits a linear trend

8 Trend-adjusted
exponential smoothing

TAES Forecasting time series data that have a linear trend

9 Weighted moving averages WMA A simple variation on the moving average technique that allows for
such a weighing to be assigned to the data being averaged

10 Double-exponential
smoothing

DES Forecasting time series data that have a linear trend

11 Adaptive-response-rate
single-exponential
smoothing

ARRSES Has an advantage over SES in that it allows the value of α to be modified
in a controlled manner as changes in the pattern of data occur

12 Poisson model POISSON Models based on the Poisson distribution with the definition of
a customer’s service level

13 Binomial models BM Methods based on the binomial distribution

ues of demand with respect to both demand size and
inter-demand interval. The performance of a forecasting
method should vary with the level and type of lumpi-
ness. A classification of research on intermittent demand
forecasting can be arranged according to Willemain as
follows:

1. extension of standard methods [48.2,3] and variants
of the Poisson model [48.4–10];

2. reliability theory and expert systems [48.11];
3. single exponential smoothing, Winter mod-

els [48.12–14],
4. Croston’s variant of exponential smoothing [48.14–

17];
5. bootstrap methods [48.18–21];
6. moving average and variants [48.22, 23];
7. models based on the binomial distribution [48.24–

27].

The principle forecasting methods are briefly summa-
rized in Table 48.1.

48.1.1 Exponential Smoothing

Exponential smoothing (ES) methods are widely used
time-series methods when reasonably good forecasts

are needed over the short term, using historical data
to obtain a smoothed value for the series. This smoothed
value is then extrapolated to become the forecast for
the future value of the series. ES methods apply an
unequal set of weights that decrease exponentially
with time to past data; that is, the more recent the
data value, the greater its weighting. In particular,
the general form used in computing a forecast by
the method of single-exponential smoothing (SES) is
given by (48.2), where Ft represents the smoothed
estimate, Xt the actual value at time t and α the
smoothing constant, which has a value between 0
and 1. SES is best suited to data that exhibits a flat
trend.

Ft+1 = αXt + (1−α)Ft . (48.2)

When a trend exists, the forecasting technique
must consider the trend as well as the series av-
erage; ignoring the trend will cause the forecast to
underestimate or to overestimate actual demand, de-
pending on whether there is an increasing or decreasing
trend. In fact double-exponential smoothing (DES),
which is useful when the historic data series are not
stationary, applies SES twice and has the general
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form:

F′′
t+1 = αFt+1+ (1−α)Ft . (48.3)

48.1.2 Croston’s Method

A little-known alternative to single-exponential smooth-
ing is Croston’s method, which forecasts separately the
non-zero demand size and the inter-arrival time between
successive demands using SES, with forecasts being up-
dated only after demand occurrences. Let Ft and Yt be
the forecasts of the (t+1)th demand size and the inter-
arrival time respectively, based on data up to demand t,
and let Qt be the inter-arrival time between two succes-
sive non-zero demand. Then Croston’s method gives:

Ft = (1−α)Ft−1+αYt , (48.4)

Yt = (1−α)Yt−1+αQt . (48.5)

The predicted demand at time t is the ratio between Ft
and Yt

Pt = Ft/Yt . (48.6)

The SES and Croston methods are most frequently
used for low and intermittent demand forecasting; in
particular Croston’s method can be useful with inter-
mittent, erratic and slow-moving demand and its use
is significantly superior to ES under intermittent de-
mand conditions, according to the categorization scheme
of Fig. 48.1. The straight Holt method, exponentially
weighted moving average (EWMA), is also only ap-
plicable when there are low levels of lumpiness. The
widespread use of the SES and mean time between
replacement (MTBR) methods for parts with high
variation (lumpy demand) are questionable as they con-
sistently lead to poor forecasting performance, which
remains poor as the demand variability increases. The
only method that fits lumpy demand quite well is the
weighted moving average (WMA) method and its su-
periority to ES methods has been proved: its use could
provide tangible benefits to maintenance service organi-
zations forecasting intermittent demand. By WMA we
mean a moving average method in which, to compute
the average of the most recent n data points, the more re-
cent observations are typically given more weight than
older observations.

48.1.3 Holt–Winter Models

Methods based on Winter’s models [additive Winter
(AW), multiplicative Winter (MW)] consider the sea-
sonal factor and provide the biggest forecasting error

when there is high variation (lumpy demand). While
computing Holt–Winter filtering of a given time series,
unknown parameters are determined by minimizing the
squared prediction error; α, β and γ are the parame-
ters of the Holt–Winter filter for the level, trend and
seasonal components, respectively; if β is set to 0, the
function will perform exponential smoothing, while if
the γ parameter is set to 0, a non-seasonal model is
fitted.

The additive Holt–Winter prediction function (for
time series with period length p) is

Ȳ [t+h] = a[t]+h ·b[t]+ s [t+1+ (h−1) |p|]
(48.7)

where a[t], b[t] and s[t] are given by

a[t] = α(Ȳ [t]−s[t− p])+ (1−α)(a[t−1]b[t−1]) ,
(48.8)

b[t] = β(a[t]−a[t−1])+ (1−β)b[t−1] , (48.9)

s[t] = γ (Ȳ [t]−a[t])+ (1−γ )s[t− p] . (48.10)

The multiplicative Holt–Winter prediction function (for
time series with period length p) is

Ȳ [t+h] = (a[t]+hb[t])s[t+1+ (h−1)|p|] ,
(48.11)

where a[t], b[t] and s[t] are given by

a[t] = α

(
Ȳ [t]

s[t− p]

)
+ (1−α)(a[t−1]+b[t−1]) ,

(48.12)

b[t] = β(a[t]−a[t−1])+ (1−β)b[t−1] , (48.13)

s[t] = γ

(
Ȳ [t]
a[t]

)
+ (1−γ )s[t− p] . (48.14)

The function tries to find the optimal values of α

and/or β and/or γ by minimizing the squared one-step
prediction error, if they are omitted. For seasonal models
starting values for a, b and s are detected by performing
a simple decomposition in the trend and seasonal compo-
nents using moving averages on the first period (a simple
linear regression on the trend component is used for the
starting level and trend). For level/trend models (no sea-
sonal component) starting values for a and b are X[2] and
X[2]− X[1], respectively. For level-only models (ordi-
nary exponential smoothing), the starting value for a is
X[1].
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In our opinion, although many different classifica-
tion schemes could be used, the most significant
classification divides the major approaches to fore-
casting into three main categories, as summarized
in Table 48.2 [48.28]: judgmental, quantitative and
technological. Each category includes several types of
methods, many individual techniques and variations.
Judgmental methods are most commonly used in busi-
ness and government organizations. Such forecasts are
most often made as individual judgments or by commit-
tee agreements. Nevertheless quantitative methods are
better than judgmental ones in determining spare-part
inventory levels and we suggest judgmental methods
only in extremis.

The second category – quantitative methods – is the
type on which the majority of the forecasting litera-
ture has focused. There are three subcategories of these
methods. Time-series methods seek to identify historical
patterns (using a time reference) and then forecast using
a time-based extrapolation of those patterns. Explana-
tory methods seek to identify the relationships that led
to observed outcomes in the past and then forecast by
applying those relationships to the future. Monitoring
methods, which are not yet in widespread use, seek to
identify changes in patterns and relationships; they are
used primarily to indicate when extrapolation of past
patterns or relationship is not appropriate.

The third category – technological methods – ad-
dress long-term issues of a technological, societal,
economic or political nature. The four subcategories
here are extrapolative (using historical patterns and rela-
tionships as a basis for forecasts), analogy-based (using
historical and other analogies to make forecasts), expert-
based and normative-based (using objectives, goals and
desired outcomes as a basis for forecasting, thereby
influencing future events).

48.2.1 Characterizing Forecasting Methods

In describing forecasting methods there are seven im-
portant factors, which reflect their inherent capabilities
and adaptability.

1. Time horizon – two aspects of the time horizon
relate to individual forecasting methods. First is
the span of time in the future for which differ-
ent forecasting methods are best suited. Generally
speaking, qualitative methods of forecasting are
used more for longer-term forecasts, whereas quan-
titative methods are used more for intermediate-
and shorter-term situations. The second impor-
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tant aspect of the time horizon is the number of
periods for which a forecast is desired. Some tech-
niques are appropriate for forecasting only one
or two periods in advance; others can be used
for several periods. There are also approaches
for combining forecasting horizons of different
lengths.

2. Pattern of the data – underlying the majority of fore-
casting methods is an assumption about the type of
pattern(s) found in the data to be forecast: for ex-
ample, some data series may contain seasonal as
well as trend patterns; others may consist simply of
an average value with random fluctuations and still
others might be cyclical. Because different forecast-
ing methods vary in their ability to predict different
types of patterns, it is important to match the pre-
sumed pattern(s) in the data with the appropriate
technique.

3. Cost – generally three direct elements of costs are in-
volved in the application of a forecasting procedure:
development, data preparation and operation. The

variation in cost obviously affects the attractiveness
of different methods for different situations.

4. Accuracy – closely related to the level of detail re-
quired in a forecast is the desired accuracy. For some
decision situations, plus or minus±10% may be suf-
ficient, whilst in others a small variation of 2% could
spell disaster.

5. Intuitive appeal, simplicity, ease application – a gen-
eral principle in the application of scientific methods
to management is that only methods that are deeply
understood are used by decision makers over time.
This is particularly true in the area of forecasting.

6. Number of data points required from past history –
some methods produce good results without consis-
tent data from the past, because they are less affected
by estimation errors in their input parameters.

7. Availability of computer software – it is seldom
possible to apply a given quantitative forecasting
method unless an appropriate computer program ex-
ists. Such software must be user-friendly and well
conceived.

48.3 The Applicability of Forecasting Methods to Spare-Parts Demands

Companies have to select in advance an appropriate
forecasting method matching their cyclical demand
for parts. Particular attention has to be paid to
the demand for service-part inventories, which is

Table 48.3 Summary of the better forecasting methods

Categorization of the demand

Forecasting methods Intermittent Erratic Slow moving Lumpy

Additive Winter (AW) • •
Multiplicative Winter (MW) • •
Seasonal regression model (SRM) • •
Component service life (replacement) • •
Croston • • •
Single-exponential smoothing (SES) • •
Double-exponential smoothing (DES) • •
Exponentially weighted moving average (EWMA) • •
Trend-adjusted exponential smoothing • •
Weighted moving averages • • • •
Adaptive-response-rate single-exponential smoothing • •
Poisson models • •
Binomial models • • • •

generally irregular and difficult to predict. A sum-
mary of the better forecasting methods, related to
the categorization scheme in Fig. 48.1, is presented
in Table 48.3.
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48.4 Prediction of Aircraft Spare Parts: A Case Study

The technical divisions of airlines are based on total
hours flown and on the fleet size. With this data, the
purchasing department tries to determine the quantity
of stock necessary for a particular operating period. Al-
ternatively, when new types of aircrafts are introduced,
the airframe and engine manufacturers normally pro-
vide a recommended spares provisioning list, which is
based on the projected annual flying hours, and includes
forecast usage information for new aircraft. Original
equipment manufacturers also provide overhaul man-
uals for aircraft components that support the assessment
of required parts based on reliability information, i. e.,
on the specified components’ operational and life limits.
Consequently the forecast of spare parts is practically
based on past usage patterns and personal experience.

Before any consideration about lumpiness and air-
craft spare-parts forecast a discussion on the selection
of the main variables used as the clock for spare-parts

ADI

CV2
0.49 1.69

3.32
3.12
2.92
2.72
2.52
2.32
2.12
1.92
1.72
1.52
1.32

0.69 0.89 1.09 1.29 1.49

“Lumpy” area
CV2 > 0.49
ADI > 1.32

w (1.61; 3.17)

z (0.77; 1.34)
y (0.89; 1.55)

x (1.29; 2.19)

a (1.60; 1.63)

Fig. 48.2 CV2 and ADI on monthly period for give repre-
sentative lumpy items

Demand

Time (mon)
1 58

20

15

10

5

0
4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Fig. 48.3 Demand pattern for item z

life evaluation is absolutely necessary. According to
Campbell’s study on maintenance records of the United
State Air Force the demand for spare parts appears to
be strongly related to flying hours; but this sometimes
does not appear to be the best indicator, e.g., to fore-
cast demand for landing gear, what matters is not how
long the aircraft is in the air, but how often it lands, or
radar components that work only when the aircraft is
on the ground. In conclusion often flying hours are the
best clock, but a demonstration of its effectiveness is
necessary for each item.

In this study different forecasting methods have been
considered; briefly:

1. Additive/Multiplicative Winter (AW/MW) For each
forecast the optimal combination of level, trend and
seasonal parameters is realized. Available values for
each variable (level and trend) are 0.2 and 0.01; the
seasonal length used is 12 periods.

2. Seasonal regression model (SRM). A multiplica-
tive model with trend and seasonal components. The
seasonal length is 12 periods.

3. Single-exponential smoothing (SES). The statisti-
cal software applied (Minitab 14.0©) supports the
research of the optimal weight of the smoothing con-
stant. The result is then the best forecast with this
method.

4. Double-exponential smoothing (DES). Dynamic es-
timates are calculated for two components: level and
trend; the software supports their optimization. In
this case the best forecast with DES is also guaran-
teed.

5. Moving average (on the generic i-period) [MA(i)].
Moving averages (MAs) are calculated with different
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Table 48.4 Comparison among some methods

Item z MW AW SES DES MA(3) MA(4) MA(5) MA(8) SRM EWMA
(3)

EWMA
(4)

EWMA
(5)

EWMA
(8)

MAD 4.04 3.71 4.54 5.74 5.16 4.80 4.97 4.43 3.53 3.92 3.88 4.06 4.01

MAD/A 0.58 0.53 0.65 0.82 0.74 0.68 0.71 0.63 0.50 0.56 0.55 0.58 0.57
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Fig. 48.4 MAD for item z

time horizons (i-period). The notation is MA(i). This
analysis employs every period length from 2 to 12.

6. Exponentially weighted moving average
[EWMA(i)]. In this case a weight optimization of
smoothing coefficient for an MA series has also been
realized. EWMA(i) is calculated for i = 3, 4, 5 and
8 periods.

Despite their importance in the literature [48.29–
31], we do not evaluate and compare methods based
on the Poisson approach because they are revealed as
inadequate for the prediction of intermittent demand.

The case study deals with more than 3000 differ-
ent items, with different levels of lumpiness: the Airbus
fleet belonging to the Italian national-flag airline. For
each component records relate to the daily demand
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Fig. 48.5 MAD/A for item z

level grouped in monthly interval of item usage, from
1998–2003. In terms of lumpiness these avionic spare
parts are classified into five different classes of behav-
ior; for each class a representative item, named a, x, y,
z, w for confidentiality, is indicated.

Figure 48.3 presents an exemplifying demand
of item z. The five lumpiness levels are reported
in Fig. 48.2.

The mean absolute deviation (MAD) of the forecast
error is adopted as a performance index

MAD =

n∑
i=1

|εri − εfi |
n

, (48.15)

where εfi is the forecasted demand for period i. Some
authors propose the mean absolute percentage error
(MAPE) for this comparison, but under lumpy condi-
tions many item demands are zero, and as a consequence
MAPE is not defined. For this reason some authors pro-
pose a similar index, called MAD/A, also defined when
the demand for items is zero:

MAD/A= MAD

AVERAGE
, (48.16)

where AVERAGE is the average value of the historical
demand for the item. The tracking signal (TS), as defined
by Brown [48.32], is used to check if forecasts are in
control or not.

TSt =
∣∣∣∣
CUSUMt

EMADt

∣∣∣∣ , (48.17)

where CUSUMt = (εrt − εft) + CUSUMt−1 and
EMADt = α |εrt − εft |+ (1−α)EMADt−1.

Limit values of TS and the optimal α value
(0.25) are derived from the approach of Alstrom
and Madsen [48.33]. For the items analyzed fore-
casts are in control from the third year (i. e.,
their tracking signals respect the limits). The dif-
ferent forecasting methods are compared for all
items and in particular for the proposed five compo-
nents.

Table 48.4 and Figs. 48.4 and 48.5 show, re-
spectively, some brief and full results of MAD and
MAD/A for item z. Table 48.5 presents, for each rep-
resentative item, the list of forecasting methods ordered
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Table 48.5 Ranking based on performance evaluation (MAD)

Weight z y x a w Method Total score Average score

20 SRM EWMA(3) SRM EWMA(4) SRM SRM 93 18.6

19 AW SRM AW EWMA(3) EWMA(5) EWMA4 89 17.8

18 EWMA(4) SES MW EWMA(5) EWMA(4) EWMA3 86 17.2

17 EWMA(3) EWMA(4) EWMA(5) EWMA(8) EWMA(3) EWMA5 84 16.8

16 EWMA(8) EWMA(5) EWMA(4) SES SES EWMA8 76 15.2

15 MW EWMA(8) SES MW AW MW 60 15

14 EWMA(5) AW EWMA(8) SRM EWMA(8) SES 75 15

13 MA(12) MA(10) EWMA(3) MA(7) MA(5) AW 74 14.8

12 MA(8) MW MA(10) MA(8) MA(4) MA12 51 10.2

11 MA(7) MA(11) MA(11) MA(11) MA(12) MA11 49 9.8

10 SES MA(12) MA(9) MA(4) MA(9) MA9 47 9.4

8 MA(11) MA(6) MA(8) MA(12) MA(11) MA7 44 8.8

7 MA(10) MA(8) MA(7) AW MA(7) MA8 43 8.6

6 MA(6) MA(7) MA(5) MA(10) MA(8) MA4 35 7

5 MA(4) MA(5) MA(6) MA(6) MA(6) MA5 32 6.4

4 MA(5) MA(4) MA(4) MA(5) MA(3) MA6 29 5.8

3 MA(3) MA(3) MA(3) MA(3) DES MA3 16 3.2

2 DES DES MA(2) DES MA(2) DES 10 2

1 MA(2) MA(2) DES MA(2) MA2 7 1.4
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Fig. 48.6 MAD/A data and curves

by decreasing MAD, thus assigning a relative weight
related to the ranking position: a simple elaboration of
these weights permits a full comparison in terms of to-
tal and average scores (MW is not defined for item w,
due to its characteristics).

By means of MAD/A it is possible to compare dif-
ferent forecasting methods for different items and their
behavior in face of different lumpiness conditions; SRM,
EWMA(i) and Winter are the best forecasting methods.
This result is not related to the lumpiness level, at least
for lumpiness represented by ADI < 3.3 and CV2 < 1.8,
which is the typical range for aircraft components. Some
interesting observations can be drawn:

• Figure 48.6 clearly attests that item lumpiness is
a dominant parameter, whilst the choice of the
forecasting method is of secondary relevance; all
methods for a slightly lumpy item (e.g. items y and z)
generally perform better than the best method for
a highly lumpy component (e.g. items x and w).
However lumpiness is an independent variable and
is not controllable;• the average value of MAD/A, calculated for all fore-
casts generated by all methods, is 1.02. The aim
of this study is to compare the different forecasting
methods, but we can conclude that demand forecast-
ing for lumpy items is very difficult and the results
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are not very accurate. Moreover, lumpy demand is
often equal to zero or one: all predictions lower than
one must be rounded up to one. This phenomenon
introduces another source of error;• for a single component, the average fluctuation (in
terms of MAD/A) of the ratio maximum/minimum,
among different techniques, is about 1.55 (usually
between 1.40 and 1.70); for a single forecast-
ing method, the average fluctuation (in terms of
MAD/A) of the ratio maximum/minimum, among
different components, is about 2.17 (usually between
1.57 and 2.18). Thus, the demonstrating again the
relevance of lumpiness.• analyzing the effectiveness of a single model, re-
search demonstrates (Tables 48.3 and 48.4) that
the seasonal regression model (SRM), the exponen-
tially weighted moving average [EWMA(i)] and the
Winter model are the best forecasting methods. It
is important to remember that the analyzed items

are effectively representative of a population of air-
craft spare parts. This result is not related to the
lumpiness level, at least for lumpiness represented
by ADI < 3.3 and CV2 < 1.8 (the typical range for
aircraft components).

In conclusion, intermittent demand for, usually highly
priced, service parts is a very critical issue, especially
for the prediction of lumpy demand, as is typical for
avionic spare parts. In the literature forecasting for
lumpy demand has not been investigated deeply, apart
from Ghobbar’s interesting research, and conflicting
results are sometimes recovered. The introduction of
the economic question is the final development: it is
absolutely necessary to check the impact of stocking
costs and out-of-stock components on the forecast-
ing methods; an aircraft operator can incur costs of
more than $30 000 per hour if a plane is on the
ground.

48.5 Poisson Models

For builders of high-technology products, such as au-
tomatic packaging machines, the supply of spare parts
creates a strategic advantage with respect to their com-
petitors, with particular regards to low-turnaround-index
(LTI) parts conceived and designed for the satisfaction
of a specific customer request. The strategic problem to
solve is to determine the minimum number of spare
parts required to avoid downtimes of the customer’s
plants for a specific period, called the covering period,
which coincides with the time between two consecutive
consignments.

The procedure actually used by a great number of
manufacturers, called recommended parts, consists of
the creation, at the design stage, of different groups

Optimal level Storage level

No-producion costs

Storage
costs

Total costs

Fig. 48.7 Economic approach

of replaceable parts with different covering times for
every functional machine group. This methodology is
very qualitative and depends strongly on the opin-
ion of the designer; moreover, it does not consider
information feedback from customers, and usually over-
estimates the number of spare parts with respect to the
real demands of customers. Even though this avoids
plant downtimes, which are absolutely forbidden due
to the high costs of production loss, it normally cre-
ates excessive and expensive stocks, with undesirably
high risks of damage and obsolescence. For LTI items
the usual economic batch or safety stock methods
are not suitable to forecast the amount of spare parts
required. For such a situation a lot of different ap-
proaches have been developed in recent years, usually
based on the Poisson distribution; of these, conditioning
of the stock level to minimal availability or to min-
imum total cost (Fig. 48.7) are considered the most
interesting.

Every study reported in the literature [48.34, 35]
assumes that an item’s failure time (for spare-parts
demand) is exponentially distributed and, as a conse-
quence, the failure rate λ(t) is independent of time; this
simplifying hypothesis is due to the difficulties in esti-
mating real values of mean time before failure (MTBF).
Finally it is important to underline that the quantity of
spare parts and its temporal distribution also represent
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From
market

From
stock

Fig. 48.8 MTTR structure

strategic information during negotiations with customers
for the purchase of plants and the quantification of
related costs.

48.5.1 Stock Level Conditioned
to Minimal Availability

This method firstly needs to calculate the asymptotic
availability A by the known formula:

A = MTBF

MTBF+MTTR
. (48.18)

The mean time to repair (MTTR) term is derived
from different factors, as shown in Fig. 48.8.

Its value depends strongly on the spare part being on
consignment, i. e. on hand, or not, and can be calculated
by the formula

MTTR= T1+
TS∫

0

(TS−Tx) f (Tx)dTx = MTTR(N) ,

(48.19)

where T1 is the amount of time due to factors except sup-
ply time (for instance, disassembling), TS is the supply
lead time for unavailable components, N is the number
of spare parts available in stock at time zero, Tx is the
time interval between the instant when the consumption
of the part reaches the value N (empty stock situation)
and the consignment of the spare part, and f (t) is the
failure density distribution.

It is worth noting that, for increasing N , we get de-
creasing MTTR, increasing availability A and the falling
downtime costs. Secondly the method affords the quan-
titative definition of the storage cost, which requires the
definition of the average number of parts stored during
the time of supply TS. If the warehouse contains N parts
at time zero, the probability PN of N failures in TS can

be described by the Poisson formula

PN = (λTS)N · e(−λTS)

N ! . (48.20)

In the same way it is possible to calculate the probability
of one, two, or N failures.

Let R indicate the cost of each spare part, and s be
the stocking cost index per year; the annual stock costs
C can be evaluated by the formula C = Rs[NP0+ (N −
1)P1+ (N −2)P2+ . . .PN−1], which can be used in an
iterative manner to find the optimum level N that leads
to a minimum for the cost C, while allowing the mini-
mum level of availability Amin(N ) to guarantee on-time
technical requests to be satisfied (for example, safety
questions or productivity level)

⎧
⎪⎪⎨

⎪⎪⎩

min
{
C = Rs

[
NP0+ (N −1)P1

+(N −2)P2+· · ·+ PN−1
]}

subject to A(N) = MTBF
MTBF+MTTR(N) ≥ Amin .

(48.21)

48.5.2 Stock Level Conditioned
to Minimum Total Cost

The aim of this method is to determinate the total
amount N of replaceable parts that minimizes the total
cost function Ctot defined by

Ctot(N ) = C1+C2 . (48.22)

The warehousing cost term C1 can be estimated as
in (48.21), while for the cost C2 it is necessary to quan-
tify the probability of stock-out situations. During the
time TS production losses could occur if the number of
failures exceeds the number N of parts supplied at the
consignment time, assumed to be zero. The cumulative
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Fig. 48.9 Graphical abacus

probability, calculated by the Poisson distribution, is

P = PN+1+ PN+2+ PN+3+ . . . . (48.23)

Let d indicate the annual part consumption of a cus-
tomer and CM the cost corresponding to a loss of

production; the term due to stock-out is

C2 = CMdP . (48.24)

For a rapid choice it is possible to employ a user-
friendly abacus (Fig. 48.9).

48.6 Models Based on the Binomial Distribution

Industrial applications show that methodologies based
on the Poisson formula usually overestimate the actual
replacement consumption. To overcome this problem we
present a new quantitative procedure that, in contrast to
the Poisson methods, does not assume that requests for
parts are linear over time.

The innovative approach calculates the requirement
for components, for a given covering period T , by the
addition of two addenda x1 and x2: the first is related
to the wear damage of the replaceable component and
can be deduced from the MTBF value, while the second

refers to the randomness of breakdowns and covers the
possibility of failures in advance of the average situation.
The optimal number of replacements is N = x1+ x2.

Let n be the number of different employments of
a component in several machines owned by the customer
and let T be the covering period; x1 can be expressed by:

x1 = int

(
T

MTBF

)
n . (48.25)

This average term assumes interesting values only in the
presence of high consumption of the component, in par-
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Table 48.6 Example of N evaluation for a specific item
(code 0X931: pin for fork gear levers)

Input

MTBF (h) 3945

Positions (n) 26

Confidence level 97%

Supplying time (h) 2300

Output

Failure ratio λ 2.53 × 10−4

X1 0

Tresidual (h) 2300

P (Tresidual) 0.442

X2 See table

N = X1 + X2 16

ticular in the rare situations when a LTI part has a lot
of applications, indicated by n. Anyway this term x1
represents scant information; we have to consider the
second term, which corresponds to the number of parts
needed to obtain the required value of the customer ser-
vice level (LS) in the residual time Tresidual, defined as
the residue of the ratio between T and MTBF. The cus-
tomer service level is the probability that the customer
finds the parts during the remaining period, and can
be fixed separately according to strategic and economic
assessments.

The value of x2 is obtained as follows

Tresidual = T − int

(
T

MTBF

)
MTBF , (48.26)

Table 48.6 (cont.)

X2 (items) LS (X1 + X2) (items) X2 (items) LS (X1 + X2) (items)

0 0.000 0 14 0.883 14

1 0.000 1 15 0.943 15

2 0.000 2 16 0.976 16

3 0.000 3 17 0.991 17

4 0.002 4 18 0.997 18

5 0.007 5 19 0.999 19

6 0.022 6 20 1.000 20

7 0.055 7 21 1.000 21

8 0.118 8 22 1.000 22

9 0.218 9 23 1.000 23

10 0.351 10 24 1.000 24

11 0.505 11 25 1.000 25

12 0.658 12 26 1.000 26

13 0.787 13

p = Q(Tresidual) = 1− e
−
(

Tresidual
MTBF

)

, (48.27)

where p represents the failure probability during
Tresidual. Using p and the binomial distribution it is
easy to calculate the probability that a component (with
n applications) requires fewer than x2 replacements in
Tresidual:

P [x ≤ x2; n; Q(Tresidual)]=
x2∑

i=0

(
n

i

)
(1− p)n−i pi .

(48.28)

As a consequence it is possible to quantify the con-
fidence level for no stock-outs to compare with the
customer satisfaction as

LS(x2) = 1− P [x ≤ x2; n; Q(Tresidual)] . (48.29)

The main innovative result is that the procedure, in
contrast to other methods, does not consider the total
requests for spare parts to be linear with time; it tries
to set the best moment for supply in order to maximize
the customer service level without increasing the av-
erage number of spare parts. In fact the new method
respects the average consumption through the term x1
and increases the levels of customer service by planning
requirements for spare parts in the residual time through
the term x2.

48.6.1 An Industrial Application

This procedure is successfully running on PC systems
in an Italian company that is a leader in manufacturing
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Fig. 48.10 Forecast and applications for the pin
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Fig. 48.11 Simulated stock-out periods (months) and real
utilization of dispatched replacements

of packaging machines. The supply of spare parts cre-
ates a strategic advantage over competitors, because the
automatic packaging machines usually present a long
life cycle and contain a lot of functional groups, of-
ten conceived and designed ad hoc. The economic
impact of replacement activity is not negligible: it
usually amounts to 15% of global business volume.
A good forecast of spares parts can surely simplify
manufacturer production planning. Before its indus-
trial real-time application the innovative procedure was
tested to forecast the consumption of 190 different spare
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Fig. 48.12 Real use compared to supply time T
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Fig. 48.14 MTBF correction effect on stock-out

parts indicated by several customers over a 33-month
period.

The experimental results of these procedure were
evaluated by two performance indexes:

1. percentage of spare parts without stock-out periods,
2. effective utilization of replacements by the customer.

As a first test the new procedure was applied with
the restrictive hypothesis of a covering period of one
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month: using an LS value of 99.8% the method per-
formed well for 166 replaceable parts and there was
very good correlation between predicted and actual cus-
tomer consumption. This is shown in the comparison
in Table 48.6 between actual consumption and the Pois-
son linear forecast (LS = 90%) for a pin for fork gear
levers with 26 applications in the customer’s machine
park.

88% of the components investigated did not suf-
fer from stock-out in any month; 3% presented less
than three months of under-evaluation and 9% had
more than three months in stock-out. On the other hand
the utilization index showed that 87% of the compo-
nents had normal, good or optimal customer use: in
other words they did not remain in the spare-parts
warehouse for more than 15 days before installa-
tion (Fig. 48.11).

Moreover, parts with bad forecasts were investigated
to understand the reasons, with very encouraging results;
errors were usually caused by preventive maintenance
operations, machine revisions, changes of suppliers or
changes in the application of the component not pointed
out by the customer. The effect of the extension of the
covering period was analyzed by testing the new method
with different values of T . For increasing T we obtain an
increasing stock of spare parts but the number of stock
breakages strongly decreases: in fact for T = 1 month

the method performed well for 88% of the parts in-
vestigated, and this percentage increased to 90% for
T = 3 months, 95% for T = 6 months and to 98% for
T = 1 year. Therefore it was possible to study the opti-
mum extension of the covering period, that for the 190
components investigated was found to be equal to three
periods (Fig. 48.12).

Some simulations with different values of MTBF
show the influence of its approximate evaluation: values
of MTBF overestimated by 10% and 20% reduce the
performance of the method respectively by 6% and 9% in
terms of the percentage of spare parts without stock-out
periods (Fig. 48.13).

In spite of this important conclusion, it is impor-
tant to remember that MTBF values have to be updated,
starting from the initial value of MTBFinitial, by feed-
back information from the customers; the most suitable
control parameter is the component quantity Y employed
by the customer during the covering period T and the
relation (48.30) that gave the best results, as shown in
Figs. 48.14 and 48.15:

MTBFupdated=MTBFinitial (MTBFinitial)+nT
Y (nT )

MTBFinitial+nT
,

(48.30)

where MTBFupdated is the weighted average of
MTBFinitial, and nT

Y (weights in round brackets).

48.7 Extension of the Binomial Model Based on the Total Cost Function

The proposed model required the assumption of a spe-
cific spare-part LS defined as the probability of finding
the part in case of breakdown. Some simulations with
different values of LS show that it is important to as-
sume LS≤ 80% and to reserve LS≥ 90% for particular
situations, e.g. customers placed in a distant country or
without skilled workers. It is possible to determine the
number N of replaceable parts needed and therefore the
LS value capable of minimizing a total cost function de-
fined by the sum of costs due to storage and production
losses.

48.7.1 Service-Level Optimization:
Minimum Total Cost Method

The aim of this paragraph is to determine the require-
ment N of replaceable parts capable of minimizing
a total cost function defined by the sum of production
losses costs C1 and storage costs C2. During the time
TS production losses could occur if the number of fail-

ures exceeds the number N of supplied parts that are
available after the consignment at time zero. The cor-
responding cumulative probability can be calculated by
formula:

P = P(N +1)+P(N +2)+P(N +3)+. . .

= 1−LS(x2) = 1−LS(N − x1) ,
(48.31)

LS(N − x1) = P[X ≤ N − x1, n, Q(Tresidual)] .
(48.32)

If d and CM represent, respectively, the customer annual
part consumption and the cost for a production lack, the
total cost C1 due to stock-out is

C1 = CMdP . (48.33)

The storage cost C2 requires the definition of the
average number of parts stored during the supplying
time TS. Two different situations are possible related to
the spare-part MTBF and TS:
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Table 48.7 LS % and minimum cost related to Tsd and Rt/(Cmd)− no. of employments n = 5

LS % (n = 5) Tsd

Rt/(Cmd ) 5 4 2 1 0.8 0.2 0.02 0.02

9 0.7 1.8 13.5 37 44.9 81.9 98 99.8

3 6.5 13.1 13.5 37 44.9 81.9 98 99.8

1.5 26.4 40.6 46.8 37 44.9 81.9 98 99.8

0.9 60.5 40.6 46.8 78 44.9 81.9 98 99.8

0.3 89.9 74.3 79.6 78 83.9 81.9 98 99.8

0.1 100 94.9 95.7 95 97.4 81.9 98 99.8

0.03 100 100 99.6 100 97.4 98.6 98 99.8

0.003 100 100 100 100 99.8 99.9 100 99.8

0.0003 100 100 100 100 100 100 100 100

Case a. MTBF < TS; in this case N = x1+ x2 = x2
because x1 = 0.

If the warehouse contains N parts at time zero, the
probability PN of N failures in TS can be calculated
using (48.21). Let R indicates the cost of each spare
part, and t the annual stocking cost index; the global
annual storage cost C can be evaluated by

C = Rt
N∑

k=0

[(
N

k

)
(1− p)N−k pk

]
(N − k) . (48.34)

Case b. MTBF ≥ TS
In this case the definition of the average number of

parts stored during the supply time TS has to take in
account both contributions, in terms of average stock
S(x1) and S(x2), of x1 and x2. LS is connected to x2,
and the minimum real value of N is therefore x1. We
can get the contributions in (48.36) by the previously
defined values of x1 and x2. The annual stock cost C can
be evaluated by

C = Rt [S(x1)+ S(x2)] , (48.35)

Table 48.8 LS % and minimum cost related to Tsd and Rt/(Cmd)− no. of employments n = 15

LS % (n = 5) Tsd

Rt/(Cmd ) 5 4 2 1 0.8 0.2 0.02 0.02

9 4.7 10.2 13.5 37 45.0 81.9 98 99.8

3 34.8 28.2 42.5 75 45.0 81.9 98 99.8

1.5 57.3 52 71.4 75 81.9 81.9 98 99.8

0.9 76.9 73.8 71.4 75 81.9 81.9 98 99.8

0.3 89.8 88.5 89.3 93 96 98.4 98 99.8

0.1 96.4 95.9 96.9 99 99.4 98.4 98 99.8

0.03 99 98.8 99.3 100 99.4 99.9 98 99.8

0.003 100 100 100 100 99.9 99.9 100 100

0.0003 100 100 100 100 100 100 100 100

which can be used in an iterative process to find the opti-
mum level N according to the minimization of previous
cost C.

S(x1) = 1

2

(
x1MTBF

TS

)
;

S(x2) = x2MTBF

TS

+

N−x1∑
k=0

(
N − x1

k

)
(1− p)N−x1−k pk

TS

× (N − x1− k) (TS−MTBF) . (48.36)

48.7.2 Simulation and Results

A simulation model has been designed in order to find
the optimum value of LS for different values of the
parameters. Input data are the MTBF, number of em-
ployments n, time for supply TS, cost of each spare
part R, annual stocking cost index t, downtime cost per
hour Cm, MTTR, total hours per year of uptimes plus

Part
F

4
8
.7



922 Part F Applications in Engineering Statistics

100(%)

80(%)

60(%)

40(%)

20(%)

0(%)
MTBFMTBF(C)

No-sufficient

Total use

Optimum use

Good use

Normal use

No-use

Fig. 48.15 MTBF correction effect on items’ utilization

downtimes H , and the customer annual part consump-
tion d. Assuming for instance MTBF = 10 000 h and
n = 5, the optimum value of LS versus the two variables
(Rt)/(Cmd) and TSd is reported in Tables 48.7 and 48.8
(for n = 5 and n = 15, respectively). It is worth stating
that LS must be close to 100% when Cm � R, while in
the opposite case the optimum LS is a function of TSd,
and always tends upwards for decreasing n.

Figure 48.16 shows how to employ the abacus.
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Fig. 48.16 Graphical solution for this methodology

Table 48.9 Optimization of Ts for fixed number of spare
parts N

Component N = x1 + x2 Ts(d) LS(%)

Support grid 3 400 99

Clamp 4 90 98

Special gasket 5 90 95

48.7.3 An Industrial Application

This case study is related to an important producer of
steam boiler systems that actually manufacturing com-
ponents for internal use and for replacement ordered by
customers according to a fixed economic order quantity
(EOQ). The application deals with the optimization of
the supply time in order to reduce the total management
costs of spare parts at the assigned EOQ [48.36]; that is,
the aim is to define the time between consignments ca-
pable of reducing total costs for the same value of EOQ.
Three components (a support grid, the clamp and a spe-
cial gasket) are considered, with a downtime calculated
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as

Downtime = MTTR × dn . (48.37)

In particular the support grid has n = 5 em-
ployments, H = 1760 total hours per year, d = 0.5
annual part consumption [unit/year] on the whole,
MTTR = 10 h, MTBF = 8800 h downtime cost per
hour Cm = 1000 €/h and, as a consequence, CM =
CmMTTR = 10 000 € cost for a production stock-out.
This component was supplied in fixed EOQ with N = 3
elements, at a cost per unit of R = 100 €/unit (R�Cm);
the relative risk of damage and obsolescence suggests

t = 0.1 for the annual stocking cost index. Entering the
abacus with these values for N , CM and Rt (Fig. 48.15)
we obtain as a result the optimal time for supply
TS = 400 d; by means of (48.31) and (48.32) with
N = x1+ x2 = 0+3 (x1 = 0 because MTBF < TS) we
determine LS ≈ 99%; this very high level is due to the
low values of t and the rate R/Cm.

The results following the use of the graphical abacus
are shown in Table 48.9 for the whole set of components.

The results are summarized in Fig. 48.17 and com-
pared with the output of an existent minimum-cost
method based on the Poisson distribution.

48.8 Weibull Extension

This innovative methodology can be extended to the
whole lifetime by implementing the Weibull failure-
rate function to the stock level of LTI spare parts level
in maintenance systems with declared wear conditions.
The Weibull distribution is one of the most commonly
used lifetime distributions and is flexible in modeling
failure-time data, as the corresponding failure-rate func-
tion can vary or be assumed to be constant. The literature

Down time (h)

Support grid Clamp Special gasket Others

1400

1200

1000

800

600

400

200

0

Fig. 48.17 Downtimes for grid, clamp, gasket and all others
components (cumulative)

offers a lot of papers dealing with models for bath-
tub-shaped failure rates. For example Hjorth [48.37]
proposed a three-parameter distribution; Mudholkar and
Srivastava [48.38] introduced an exponential Weibull
distribution; Chen [48.39] spoke about a two-parameter
lifetime distribution with a bath-tub shape or an in-
creasing failure-rate function; Xie [48.40] wrote a very
interesting paper about a model that can be seen as
a generalization of the Weibull distribution and tries to
improve the procedure for estimation of the parameters.

Estimation of the well-known parameters η (scale)
and β (shape) in a Weibull distribution can be performed
graphically but this is not accurate unless there is a large
sample size, which is not always the case for LTI spare
parts; anyway we focus our attention to the final zone
in the traditional bath-tub wear model, and our aim is
to understand whether the hypothesis of constant fail-
ure rate in our previous works increases the spare-parts
costs, in comparison with more sophisticated distribu-
tions. For this reason we developed our model using
the traditional Weibull distribution, but this could be
extended to any of the models mentioned above.

48.8.1 The Extension
of the Modified Model
Using the Weibull Distribution

Using historical data it is possible to determine the cu-
mulative percentage of component failures related to
their lifetime. The graphical approach of Fig. 48.18 per-
mits the definition of the Weibull distribution parameters
η (scale parameter) and β (shape parameter). This is pos-
sible by Plait transformation (Weibull transformation);
starting from the failure rate calculated as in (48.38),
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Fig. 48.18 Graphical estimation of the β value

the reliability in (48.39), the cumulative distribution
functions in (48.40), and the definition of a normalized
parameter x using (48.41), find a linear correlation be-
tween the parameter x and the cumulative distribution
function (48.42), represented in Fig. 48.18

λ(t) = d

dt

(
t

η

)β

= β

η

(
t

η

)β−1

= β

ηβ
tβ−1 ,

(48.38)

R(t) = e
−
(

t
η

)
β
, (48.39)

F(t) = 1− R(t) = e

(
− t

η

)β
, (48.40)

x =− t

η
, (48.41)

β ln(x) = ln

[
ln

(
1

1− F(x)

)]
. (48.42)

The optimal replacement number of LTI spare
parts is also given by relation (48.25), whilst the re-
lations (48.27) and (48.28) are modified by the Weibull
parameters η and β:

p = Q (Tresidual)= 1− e
−
(

t
η

)β
, (48.43)

P [x ≤ x2; n; Q (Tresidual)] =
x2∑

i=0

(
n

i

)
(1− p)n−i pi .

(48.44)

It is possible to quantify the no-stock-out confidence
level to compare with customer satisfaction as LS(x2)=
1− P[x ≤ x2; n; Q(Tresidual)]. As previously stated LS
must be close to 100% when Cm � R, while in the
opposite case the optimum LS is a function of TSd; in
this case, for fixed MTBF, the optimum LS increases
with the number of employments n.
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Fig. 48.19 Difference between optimal numbers of replacements calculated by (48.29) or (48.44) with respect to the
average life of the component MTBF and β values
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Fig. 48.20 Number of spare parts saved

48.8.2 Simulation and Results

This extended model is compared with previously pro-
posed models for different values of the parameters
involved. The relation between the parameters MTBF,
TS and β appears very interesting. In fact the first

two parameters are fundamental to finding the quan-
tity x2, see (48.29) and (48.44), while β indicates
the gap from the hypothesis of constant failure rate.
The surface of Fig. 48.19 (with TS equal to 500 h and
a customer service level of 95%) relates the differ-
ence between optimal replacement numbers calculated
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Fig. 48.22 Share of saving with respect to hypothesis of constant failure rate for different parameter values

by (48.29) or (48.44) respectively for given MTBF and
β values. For a fixed value of MTBF the saving in-
creases with greater values of β, because the use of
the Weibull distribution takes into account that failures
are grouped in a specific time region where part break-
downs occur with high probability. The MTBF value of
500 h is very important because it defines Tresidual equal
to zero and so x2 equals zero for any approach. Val-
ues of MTBF lower than 500 h mean that the optimal
replacement number is influenced by the quantity x1,

while values grater than 500 h are just defined by the
use of quantity x2 (x1 being equal to zero). Considering
a MTBF range starting from the TS value for a specific
value of β; the saving of spare parts needed decreases
with greater values of MTBF, as shown in Fig. 48.23
where two different values of the parameter TS (500
and 1000 h) are compared. Figure 48.19, as Fig. 48.20,
relates the difference between the optimal replacement
number calculated by (48.29) and (48.44) for TS equal
to 1500 h.
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Fig. 48.24 Number of spare parts for component B (number of employments n = 20, and β = 1.5)

Obviously a low frequency of consignments creates
a greater requirement for spare parts. Also in this case it
is important to notice that methods behave as one when
the MTBF is equal to TS.

48.8.3 Case Study:
An Industrial Application

This industrial application deals with an iron metallurgy
plant, a European leader in the manufacture of merchant
bars. We are interested in production machines charac-
terized by electric iron steel furnaces, rolled sections and
the final steps of finishing mills: straightening, cutting
to length and packaging.

The extended method was applied with very interest-
ing results, with an average saving of more than 20% in
spare parts management. To focus the aim of this study
we consider two different components (conic couples),
called A and B, that have similar values of MTBF and
number of employments n (about 20) but very different
values of the parameter β: β = 4 for part A and β = 1.5
for part B. The graph in Fig. 48.23 compares the number
of spare parts for part A forecasted by methods based on
the hypothesis of a time-independent failure rate λ(t) or
based on the Weibull distribution.

Two different LS values are investigated. It is clear
that the use of the Weibull extension reduces the stocks
of parts by creating a time delay in the consignments.
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The impact will not be significant for values of the
β parameter close to one, as stated in Fig. 48.24 for
part B, where forecasts are very similar for the methods
investigated.

The subject of this study is the evaluation of the
spare-parts stock level in maintenance systems in the
presence of LTI parts. This paragraph deepens under-
standing of the fundamental features of a new approach
that, in contrast to existing methods, does not consider
total spares request to be linear and presents a lower
sensitivity to MTBF errors. The proposed model as-
sumes a specific spare-part service level LS defined as
the probability of finding the part in case of breakdown:

the best values for LS are suggested in Sect. 48.7.1.
The aim of the study is to understand whether the hy-
pothesis of a constant failure rate leads to increasing
costs or not, compared to more sophisticated distri-
butions. Model extension by the use of the traditional
Weibull distribution shows interesting savings in spare
parts for values of the β parameter greater than 3
and in the presence of longer times between consign-
ments. The Weibull distribution appears to be a very
interesting failure-rate function, but the literature re-
ports some other valid functions; the extended model
can easily be extended to any suggested failure-rate
function.
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Arithmetic an49. Arithmetic and Geometric Processes

Section 49.1 introduces two special monotone
processes. A stochastic process is an AP (or a GP) if
there exists some real number (or some positive
real number) such that after some additions (or
multiplications) it becomes a renewal process (RP).
Either is a stochastically monotonic process and
can be used to model a point process, i. e. point
events occurring in a haphazard way in time or
space, especially with a trend. For example, the
events may be failures arising from a deteriorating
machine, and such a series of failures is distributed
haphazardly along a time continuum.

Sections. 49.2–49.5 discuss estimation
procedures for a number K of independent,
homogeneous APs (or GPs). More specifically;
in Sect. 49.2, Laplace’s statistics are recommended
for testing whether a process has a trend or K
processes have a common trend, and a graphical
technique is suggested for testing whether K
processes come from a common AP (or GP) as
well as having a common trend; in Sect. 49.3,
three parameters – the common difference (or
ratio), the intercept and the variance of errors
– are estimated using simple linear regression
techniques; in Sect. 49.4, a statistic is introduced
for testing whether K processes come from
a common AP (or GP); in Sect. 49.5, the mean and
variance of the first average random variable of
the AP (or GP) are estimated based on the results
derived in Sect. 49.3.

Section 49.6 mentions some simulation studies
performed to evaluate various nonparametric
estimators and to compare the estimates, obtained
from various estimators, of the parameters. Some
suggestions for selecting the best estimators under
three non-overlapping ranges of the common
difference (or ratio) values are made based on the
results of the simulation studies.

In Sect. 49.7, ten real data sets are treated
as examples to illustrate the fitting of AP,
GP, homogeneous Poisson process (HPP) and
nonhomogeneous Poisson process (NHPP) models.

In Sect. 49.8, new repair–replacement models
are proposed for a deteriorating system, in which

the successive operating times of the system form
an arithmetico-geometric process (AGP) and are
stochastically decreasing, while the successive
repair times after failure also constitute an AGP
but are stochastically increasing. Two kinds of
replacement policy are considered, one based on
the working age (a continuous decision variable)
of the system and the other determined by the
number of failures (a discrete decision variable)
of the system. These policies are considered
together with the performance measures, namely
loss (or its negation, profit), cost, and downtime
(or its complement, availability). Applying the
well-known results of renewal reward processes,
expressions are derived for the long-run expected
performance measure per unit total time, and for
the long-run expected performance measure per
unit operation time, under the two kinds of policy
proposed.

In Sect. 49.9, some conclusions of the
applicability of an AP and/or a GP based on partial
findings of four real case studies are drawn.

Section 49.10 gives five concluding remarks.
Finally, the derivations of some key results are
outlined in the Appendix, followed by the results
of both the APs and GPs summarized in Table 49.6
for easy reference.

Most of the content of this chapter is based
on the author’s own original works that appeared
in Leung et al. [49.1–13], while some is extracted
from Lam et al. [49.14–16].

In this chapter, the procedures are, for the most
part, discussed in reliability terminology. Of course,
the methods are valid in any area of application
(see Examples 1, 5, 6 and 9 in Sect. 49.7), in which
case they should be interpreted accordingly.
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In the statistical analysis of a series of events, a common
method is to model the series using a point process. To
start with, it is essential to test whether the data of suc-
cessive inter-event times, denoted by Xi (i = 1, 2, . . . ),
demonstrate a trend. If there is no trend, we may
model the data using a stationary point process (i. e.
a counting process that has stationary, but not neces-
sarily independent, increments), or using a sequence of
independent and identically distributed (i.i.d.) random
variables X ≡ Xi for all i. For the latter, we may model
the corresponding counts of events in time using a re-
newal process (RP). In particular, if X is exponentially
distributed with a rate parameter λ, we may use a homo-
geneous Poisson process (HPP) with a constant rate λ

to model the data. The HPP is one of the most common
stochastic processes for modeling counts of events in
time or area/volume. This process is a standard for ran-
domness, as the assumptions involved state that events
must occur independently and any two non-overlapping
intervals of the same size have the same probability
of capturing one of the events of interest. However, in
practice the data of successive inter-event times usually
exhibit a trend. We may model them using a nonstation-
ary model, or using a nonhomogeneous Poisson process
(NHPP) in which the rate at time t is a function of t. The
NHPP is a popular approach used to model data with
a trend. For more details of these methods, see Cox and
Lewis [49.17], and Ascher and Feingold [49.18].

Most research on the maintenance of a repairable
system has made either the perfect or minimal re-

pair assumption. Perfect repair means that, after repair,
a failed system is as good as new, i. e. a system’s suc-
cessive operating times constitute an RP, see Barlow
and Proschan [49.19]. For a perfect repair model, if
the time needed to repair a system is considered neg-
ligible, results of RPs can be applied to resolve the
system’s maintenance problems, see Ross [49.20]; if
repair time has to be taken into account and the cor-
responding consecutive repair times constitute another
RP, results of alternating RPs can be applied instead, see
Birolini [49.21]. However, in practice, this is not always
the case. Minimal repair means that a failed system will
function, after repair, with the same rate of failure and
the same effective age as at the epoch of the last fail-
ure. For a minimal repair model, where repair time is
assumed negligible, an NHPP in which the rate of oc-
currence of failures (ROCOF) is monotone can provide
at least a good first-order model for a deteriorating sys-
tem, see Ascher and Feingold [49.18]. That is, failures
constitute an NHPP with a suitable parametric form for
ROCOF. If the repair time has to be taken into account,
the NHPP approach cannot be used.

The popularity of the power-law process (PLP) is
based on two features: firstly, it can model deteriorating
or improving systems; secondly, point estimators for the
parameters have simple closed-form expressions and hy-
potheses tests can be undertaken using existing tables.
The PLP denoted and given by r(t) = λβtβ−1 for t ≥ 0
and λ, β > 0 is the most important ROCOF parametric
form in an NHPP model. If β > 1, the ROCOF increases
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with time, as often happens with aging machinery. This
is one of the two main conditions for a preventive re-
placement being worth carried out (the other condition is
that the average cost cp of a replacement is much greater
than that cr of a minimal repair). But if 0 < β < 1, the
ROCOF decreases with time; hence, the PLP can model
reliability growth as well. The HPP, which has constant
ROCOF, is a special case of the PLP with β = 1. Rigdon
and Basu [49.22] gave a detailed discussion of the PLP.

Another two-parameter ROCOF form, widely
quoted in the literature, that can also model de-
terioration and reliability growth is the log-linear
process (LLP), in which the ROCOF at time t is
modeled as s(t) = eα0+α1t for t ≥ 0 and −∞ < α0,
α1 <∞, with α1 > 0 under deterioration. This pro-
cess is less often used, possibly because it is
seldom found to be applicable or mathematically less
tractable.

Barlow and Hunter [49.23] first introduced the idea
of minimal repair and proposed a system which is re-
placed with a regular period T and undergoes minimal
repairs upon failures between the periodic replacements.
Muth [49.24] then proposed a replacement model in
which minimal repairs upon system failures are per-
formed up to age T and the system is replaced at the first
failure after T . Later, Park [49.25] proposed a modifica-
tion of the model in which a system undergoes minimal
repairs for the first (N−1) failures and is replaced at the
N th failure. Nakagawa and Kowada [49.26] put the first
and third types of policy together and constructed a re-
placement model in which a system is regularly replaced
with a period T or at the N th failure after its installa-
tion, whichever occurs first. The system undergoes only
minimal repair upon failures between the periodic re-
placements. In Leung and Cheng [49.3], Nakagawa and
Kowada’s replacement model was employed, and the
optimal replacement policy based on minimizing the
long-run expected cost per month for each type of engine
was determined.

The perfect repair model may be reasonable for
a system with one simple unit only, and the minimal
repair model seems plausible for systems consisting of
many components, each having its own failure mode. In
many practical instances, repair activities may not result
in such extreme situations but in complicated interme-
diate ones. Brown and Proschan [49.27] considered the
model of imperfect repair which, with probability p, is
a perfect repair or, with probability 1− p, is a mini-
mal repair. Kijima [49.28, 29] studied a more general

repair model which includes the imperfect repair model
as a special case. For a review of imperfect maintenance
models, see Pham and Wang [49.30], and Wang and
Pham [49.31].

An arithmetic process (AP) or a geometric process
(GP), which is a nonstationary model, can be used as an
alternative to the NHPP in analyzing data of inter-event
times that exhibit a trend. This appears to be a useful
model for failure or repair data arising from a single
system or a collection of independent, homogeneous
systems. Consider the maintenance problems of a re-
pairable system and bear in mind that most repairable
systems, like engines and gearboxes, are deteriorative.
Two basic characteristics of a deteriorating system are
that, because of wear through operation or metal fatigue
under stress, the system’s successive operating times de-
crease and so the system’s life is finite; and that, because
it is more difficult and hence takes more time to rectify
accumulated wear, the corresponding consecutive re-
pair times increase until finally the system is beyond
repair. Based on this understanding, an AP approach
proposed by Leung [49.5] or a GP approach proposed
by Lam [49.14] is considered more relevant, realistic
and direct for the modeling of maintenance problems in
a deteriorating system. Although all discussions in this
chapter are in terms of deteriorating systems, they are
also valid for improving systems (see Examples 2, 4 and
10 in Sect. 49.7).

The following main symbols in the text are adopted.
For a fixed k = 1, . . . , K ,

• An,k (or Gn,k) denotes either the operating time af-
ter the (n−1)th repair for n = 1, 2, . . . , Nk with
X0 = 0, or the repair time after the nth failure for
n = 1, 2, . . . , Nk;• d denotes either a common difference da of a de-
creasing arithmetic process such that da ∈

(
0,

µA1,k

n−1

]

or a common difference db of an increasing arith-
metic process such that db < 0;• r denotes either a common ratio ra of a decreasing
geometric process such that ra > 1 or a common
ratio rb of an increasing geometric process such that
0 < rb < 1;• µAn,k (or µGn,k ) is the mean of An,k (or Gn,k) for
n = 1, 2, . . . , Nk;• σ2

An,k
(or σ2

Gn,k
) is the variance of An,k (or Gn,k) for

n = 1, 2, . . . , Nk;• εA,n,k (or εG,n,k) is an error term with mean 0 and
constant variance denoted by σ2

A,ε (or σ2
G,ε).
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49.1 Two Special Monotone Processes

The work in this section is substantially based on
Leung [49.4, 11].

49.1.1 Arithmetic Processes

Suppose that K independent, homogeneous APs are
available. A definition of the kth AP for k = 1, . . . , K
is given below.

Definition 49.1
Given a sequence of random variables A1,k, A2,k, . . . , if
for some real number d, {An,k + (n−1)d, n = 1, 2, . . . }
forms an RP, then {An,k, n = 1, 2, . . . } is an AP for
k = 1, . . . , K . The constant d is called the common
difference of the AP.

Three specializations of an AP are given below.
If d ∈ (

0,
µA1
n−1

]
, where n = 2, 3, . . . and k =

1, . . . , K ; and µA1,k is the mean of the first random
variable A1,k , then the AP is called a decreasing AP. If
d < 0, then the AP is called an increasing AP. If d = 0,
then the AP reduces to an RP.

The upper bound of d in the first specialization can be
obtained as follows: by Definition 49.1, the expression

for the general term of an AP is given by An,k
d= A1,k −

(n−1)d. Taking expectations of both sides of this ex-
pression, and remembering that An,k is a nonnegative
random variable and hence E(An,k) ≡ µAn ,k ≥ 0 for
n = 1, 2, . . . ; we obtain, after transposition, the upper
bound of d given by

µA1,k

n−1 for n = 2, 3, . . . . Clearly,
the positive integer n is limited for a decreasing AP.
Moreover, if the value of d is close to its upper bound,
we will obtain a short sequence of nonnegative random
variables. However, such a subtractive process is likely
to be useful in a deteriorating system (e.g. an engine
or a gearbox), which fails rarely (e.g. two/three times)
over its usual span of life (e.g. five years). This im-
plicitly means that the system wears out, between two
successive failures, to such an extraordinary extent that
the corresponding system’s successive operating time
decreases dramatically.

Given an AP {An,k, n = 1, 2, . . . } for k = 1, . . . , K ,

we have An,k
d= A1,k − (n−1)d by Definition 49.1.

Therefore, the means and variances of An,k can respec-

tively be written as

µAn ,k ≡ E(An,k) = E(A1,k)− (n−1)d

≡ µA1,k − (n−1)d (49.1)

and

σ2
An ,k ≡ V(An,k) = V[A1,k − (n−1)d] = V (A1,k)

≡ σ2
A1,k . (49.2)

Consider K independent, homogeneous APs {An,k, n =
1, . . . , Nk and k = 1, . . . , K} together. Without loss of
generality, we assume N1 ≥ N2 ≥ . . .≥ NK . Denote

Ān ≡

K∗∑
k=1

An,k

K∗ ,

µ Ā1
≡

K∑
k=1

µA1,k

K
=

K∗∑
k=1

µA1,k

K∗ , and

σ2
Ā1
≡

K∑
k=1

σ2
A1,k

K
=

K∗∑
k=1

σ2
A1,k

K∗ ,

where

K∗ = K for n = 1, . . . , NK or,

= K −1 for n = NK +1, . . . , NK−1 or,

= K −2 for n = NK−1+1, . . . , NK−2 or,
...

= 1 for n = N2+1, . . . , N1 .

To clarify the definition of Ān , let us consider K = 3,
N1 = 5, N2 = 3, N3 = 2. Then we have

Ā1 = A1,1+ A1,2+ A1,3

3
,

Ā2 = A2,1+ A2,2+ A2,3

3
,

Ā3 = A3,1+ A3,2

2
,

Ā4 = A4,1 and Ā5 = A5,1 .
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Therefore, using (49.1) and (49.2), the means and
variances of Ān can respectively be written as

µ Ān
≡ E( Ān) =

K∗∑
k=1

E(An,k)

K∗

=

K∗∑
k=1

E[A1,k − (n−1)d)]
K∗

≡

K∗∑
k=1

µA1,k −K∗(n−1)d

K∗ = µ Ā1
− (n−1)d

(49.3)

and

σ2
Ān
≡ V( Ān) =

K∗∑
k=1

V (An,k)

(K∗)2

=

K∗∑
k=1

V [A1,k − (n−1)d]
(K∗)2

≡

K∗∑
k=1

σ2
A1,k

(K∗)2 =
σ2

Ā1

K∗ . (49.4)

49.1.2 Geometric Processes

Suppose that K independent, homogeneous GPs are
available. A definition of the kth GP for k = 1, . . . , K
is given below.

Definition 49.2
Given a sequence of random variables G1,k, G2,k, . . . ,
if for some r > 0, {r(n−1)Gn,k, n = 1, 2, . . . } forms an
RP, then {Gn,k, n = 1, 2, . . . } is a GP for k = 1, . . . , K .
The constant r is called the common ratio of the GP.

Three specializations of a GP are given below.
If r > 1, then the GP is called a decreasing GP. If

0 < r < 1, then the GP is called an increasing GP. If
r = 1, then the GP reduces to an RP.

Given a GP {Gn,k, n = 1, 2, . . . } for k = 1, . . . , K ;

we have Gn,k
d= G1,k

r(n−1) from Definition 49.2. Therefore,
the means and variances of Gn,k can be written as

µGn ,k ≡ E(Gn,k) = E(G1,k)

r(n−1) ≡ µG1,k

r(n−1) (49.5)

and

σ2
Gn ,k ≡ V(Gn,k) = V

(
G1,k

r(n−1)

)
= V(G1,k)

r2(n−1)

≡ σ2
G1,k

r2(n−1)
. (49.6)

Consider K independent, homogeneous GPs
{Gn,k, n = 1, . . . , Nk and k = 1, . . . , K} together.
Without loss of generality, we assume N1 ≥ N2 ≥ . . .≥
NK . Denote

Ḡn ≡

K∗∑
k=1

Gn,k

K∗ ,

µḠ1
≡

K∑
k=1

µG1,k

K
=

K∗∑
k=1

µG1,k

K∗ , and

σ2
Ḡ1
≡

K∑
k=1

σ2
G1,k

K
=

K∗∑
k=1

σ2
G1,k

K∗ ,

where K∗ has previously been defined and Ḡn has
a similar meaning to Ān .

Therefore, using (49.5) and (49.6), the means and
variances of Ḡn can respectively be written as

µḠn
≡ E(Ḡn) =

K∗∑
k=1

E(Gn,k)

K∗ =

K∗∑
k=1

E
[

G1,k

r(n−1)

]

K∗

≡

K∗∑
k=1

µG1,k

r(n−1)

K∗ = µḠ1

r(n−1)
(49.7)

and

σ2
Ḡn

≡ V(Ḡn) = V

⎛
⎜⎜⎜⎝

K∗∑
k=1

Gn,k

K∗

⎞
⎟⎟⎟⎠=

K∗∑
k=1

V (Gn,k)

(K∗)2 ,

as Gn,ks are independent

=

K∗∑
k=1

V
[

G1,k

r(n−1)

]

(K∗)2
≡

K∗∑
k=1

σ2
G1,k

r2(n−1)

(K∗)2
=

σ2
Ḡ1

r2(n−1) K∗ .

(49.8)

According to the three specializations of an AP (or
a GP), for a deteriorating system, it is reasonable to as-
sume that the successive operating times of the system
form a decreasing AP (or GP), whereas the correspond-
ing consecutive repair times constitute an increasing AP
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(or GP). However, the replacement times for the system

are usually stochastically the same no matter how old

the used system is; hence, these will form an RP. This

is the motivation behind the introduction of the AP (or

GP) approach.

Thus, d, µ Ā1
and σ2

Ā1
(or r, µḠ1

and σ2
Ḡ1

) are the

most important parameters in K APs (or GPs) because

the means and variances of the Āns (or Ḡns) are com-

pletely determined by these three parameters. In view of

this fact, in this chapter the procedure is defined for ap-

plying the AP (or GP) approach in a reliability context

and the functions of estimators are derived for the three

fundamental parameters. Now, there are three questions.

The first is, given a set of data of successive inter-event

times of a point process, how do we test whether this is

consistent with an AP (or a GP)? The second question

is, if the data do come from a common AP (or GP), how

can we estimate the parameters d, µ Ā1
and σ2

Ā1
(or r,

µḠ1
and σ2

Ḡ1
)? The third question is, after fitting an AP

(or a GP) model to the data set, how good is the fit?

In this chapter, the statistical inference for K inde-

pendent, homogeneous APs (or GPs) is investigated and

the first two questions are answered using well-known

statistical methods. In Sect. 49.3, the parameters d, αA

and σ2
A,ε (or r, αG and σ2

G,ε) are estimated using simple

linear regression techniques. In Sect. 49.5, first µ Ā1
and

σ2
Ā1

(or µḠ1
and σ2

Ḡ1
) are estimated based on the results

derived in Sect. 49.3, and then µ Ān
and σ2

Ān
(or µḠn

and σ2
Ḡn

) are correspondingly estimated using (49.3)

and (49.4) [or (49.7) and (49.8)], respectively.

49.2 Testing for Trends

Much of the work in this section is based on Leung
[49.4, 11].

49.2.1 Laplace Test

Suppose now that K independent, homogeneous
series are available with periods of observation
T1, T2, . . . , TK . The numbers of events in the differ-
ent series are denoted by N1, N2, . . . , NK and the times
of occurrence of events by Yn,1,Yn,2, . . . ,Yn,K . Given
the data {An,k (or Gn,k), n = 1, 2, . . . and k = 1 . . . , K}
of successive inter-event times of a point process, first
of all we need to test whether the An,ks are identically
distributed by checking for the existence of a trend. To
do this, many techniques discussed in Ascher and Fein-
gold [49.18] can be used. Laplace’s trend test is used for
ease of manipulation and interpretation.

Null hypothesis H0: An,ks (or Gn,k) are identically
distributed.

Alternative hypothesis H1: An,ks (or Gn,k) are not
identically distributed, i. e. there is a trend.

Laplace’s test statistic for a time-truncated data set
(i. e. when the data are time truncated, the time of the
conclusion of observation is fixed and the number of

events is random) is given by

Lk =

Nk∑
n=1

Yn,k − Nk Tk
2

√
Nk T 2

k
12

for k = 1, . . . , K , (49.9)

where Y1,k, . . . ,YNk,k , with Yn,k =∑n
i=1 Ai,k (or Yn,k =∑n

i=1 Gi,k) are the event times for a process observed in
(0, Tk], and Tk is the pre-specified time of observation.

Laplace’s test statistic for an event-truncated data set
(i. e. when the data are event-truncated, the number of
events is fixed before observation begins and the time of
the conclusion of the observation is random) is given by

Lk =

Nk−1∑
n=1

Yn,k − (Nk−1)YNk ,k

2

√
(Nk−1)Y2

Nk ,k

12

for k = 1, . . . , K ,

(49.10)

where Yn,k =∑n
i=1 Ai,k (or Yn,k =∑n

i=1 Gi,k) is the
time of the nth failure for n = 1, 2, . . . , Nk, and Nk is
the pre-specified number of events.
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Lk is approximately distributed as the standard
normal for Nk ≥ 3, time-truncated data, or Nk ≥ 4,
event-truncated data, at the 5% level of significance, see
Ascher and Feingold [49.18]. If |Lk|> 1.96, then H0 is
rejected at the 5% level of significance, i. e. the event data
set {A1, A2, . . . , ANk } (or {G1, G2, . . . , G Nk }) exhibits
a trend.

Rigdon and Basu [49.22], on p. 259, reach the con-
clusion that

using any model for event times, one clearly indi-
cates the time that data collection started and the
time that it ceased. This is necessary so that the
appropriate analysis, that is, an analysis based on
event-truncated or time-truncated data, can be ap-
plied and maximum information can be obtained
from the data. For time-truncated data, the time
between the last event and the termination of the
test contains some information that should not be
wasted.

Suppose, however, that a pooled test is required. It
would often be best to take the null hypothesis to be
that the series individually follow stationary point pro-
cesses which possibly differ for different series. We can
then make a combined test for trend in the data and this
can be done using (49.11) or (49.12), which are given
below.

Laplace’s test pooled statistic for a time-truncated
data set is given by

L =

K∑
k=1

Nk∑
n=1

Yn,k − 1
2

K∑
k=1

NkTk

√
K∑

k=1
Nk T 2

k

12

(49.11)

and Laplace’s test pooled statistic for an event-truncated
data set is given by

L =

K∑
k=1

Nk−1∑
n=1

Yn,k − 1
2

K∑
k=1

(Nk −1)YNk,k

√
K∑

k=1
(Nk−1)Y2

Nk ,k

12

, (49.12)

which under the null hypothesis has zero mean, unity
variance and very nearly a normal distribution.

Note that the series can be tested individually for
trend using (49.9) or (49.10); however, it is worth making
a combined trend test in the data using (49.11) or (49.12).
Cox and Lewis [49.17], on p. 50, note that there are other
ways the separate trend tests could be combined, for

example by forming

L =

K∑
k=1

Lk

√
12

or L =
K∑

k=1

L2
k

the former would be tested as a standardized normal
variable, the latter as chi-squared with (K −1) de-
grees of freedom. These tests take no account of the
very different numbers of observations in the different
series.

49.2.2 Graphical Techniques

Another possible approach is to use simple linear regres-
sion techniques.

Arithmetic Processes
To start with, let

WA,n,k = An,k + (n−1)d . (49.13)

From Definition 49.1, WA,n,ks are i.i.d. and can be
written as

WA,n,k = αA+ εA,n,k , (49.14)

where

E(WA,n,k) = αA (49.15)

and εA,n,ks are also i.i.d. (not necessarily normally dis-
tributed if our objective is estimation only, e.g. see
Gujarati [49.32], p. 281) with

E(εA,n,k) = E(εA,n) = 0, irrespective of k (49.16)

and

V(εA,n,k) = V(εA,n) ≡ σ2
A,εn

, (49.17)

irrespective of k and σ2
A,εn

= σ2
A,ε, equal variance irre-

spective of n.
Combining (49.13) and (49.14) yields

An,k =−d(n−1)+αA+ εA,n,k

for n = 1, . . . , Nk and k = 1, . . . , K ,

(49.18)

which is a simple linear regression equation.
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Geometric processes
To start with, let

WG,n,k = r(n−1)Gn,k (49.19)

or

ln WG,n,k = (n−1) ln r+ ln Gn,k . (49.20)

From Definition 49.2, WG,n,ks are i.i.d. and can be
written as

ln WG,n,k = αG+ εG,n,k (49.21)

or

WG,n,k = eαG+εG,n,k , (49.22)

where

E(ln WG,n,k) = αG (49.23)

and εG,n,ks are also i.i.d. (not necessarily normally dis-
tributed if our objective is estimation only, e.g. see
Gujarati [49.32], p. 281) with

E(εG,n,k) = E(εG,n) = 0, irrespective of k (49.24)

and

V(εG,n,k) = V(εG,n) ≡ σ2
G,εn

, (49.25)

irrespective of k and σ2
G,εn

= σ2
G,ε, equal variance irre-

spective of n.
Combining (49.20) and (49.21) yields

ln Gn,k =− ln r(n−1)+αG+ εG,n,k

for n = 1, . . . , Nk and k = 1, . . . , K ,

(49.26)

which is a simple linear regression equation.
According to (49.18) [or (49.26)], we can plot

An,k (or ln Gn,k) against (n−1) for n = 1, . . . , Nk
and k = 1, . . . , K to see whether there is a linear re-
lationship between them. Clearly, this is also useful
for testing whether the observations {An,k (or Gn,k),
n = 1, . . . , Nk and k = 1, . . . , K} come from a com-
mon AP (or GP) as well as whether they share a common
trend.

49.3 Estimating the Parameters

The work in this section is substantially based on Le-
ung [49.4, 11].

49.3.1 Estimate Parameters d, αA and σ2
A‚ε

of K APs (or r, αG and σ2
G‚ε of K GPs)

We can estimate the parameters d, αA and σ2
A,ε using

the simple linear regression method. The least-squares
point estimates d̂, α̂A and σ̂2

A,ε of the parameters d, αA

and σ2
A,ε are calculated respectively using the following

formulae:

d̂ =

(
K∑

k=1
N2

k−N

)(
K∑

k=1

Nk∑
n=1

An,k

)

2N −
K∑

k=1

Nk∑
n=1

(n−1)An,k

K∑
k=1

(Nk−1)Nk(2Nk−1)
6 −

(
K∑

k=1
N2

k−N

)2

4N

,

(49.27)

α̂A =

K∑
k=1

Nk∑
n=1

An,k

N
+

d̂

(
K∑

k=1
N2

k − N

)

2N
(49.28)

and

σ̂2
A,ε =

K∑
k=1

Nk∑
n=1

A2
n,k −

(
K∑

k=1

Nk∑
n=1

An,k

)2

N

N −2

+
d̂

(
K∑

k=1

Nk∑
n=1

(n−1)An,k

)

N −2

−

d̂

⎛
⎜⎜⎝

(
K∑

k=1
N2

k−N

)(
K∑

k=1

Nk∑
n=1

An,k

)

2N

⎞
⎟⎟⎠

N −2
, (49.29)

where

N =
K∑

k=1

Nk . (49.30)

The derivations of (49.27) to (49.29) are given in the
Appendix.

The least-squares point estimates r̂, α̂G and σ̂2
G,ε of

the parameters r, αG and σ2
G,ε can be obtained simply
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by replacing d̂ with ln r̂ and An,k with ln Gn,k on the
right-hand side of (49.27) to (49.29).

49.3.2 Estimating the Parameters
of a Single AP (or GP)

When K = 1, (49.30) becomes N = N1. Note that

1. for a single AP or GP, we simply use N to represent
the number of successive events, and

2. the equations given below are consistent with those
derived in Leung [49.8] and Lam [49.15].

Then (49.27) to (49.29) become

d̂ =
6(N −1)

N∑
n=1

An −12
N∑

n=1
(n−1)An

(N −1)N(N +1)
, (49.27.1)

α̂A =
2(2N −1)

N∑
n=1

An −6
N∑

n=1
(n−1)An

N(N +1)
(49.28.1)

and

σ̂2
A,ε =

N∑
n=1

A2
n − 1

N

(
N∑

n=1
An

)2

N −2

−
d̂

[
(N−1)

2

N∑
n=1

An −
N∑

n=1
(n−1)An

]

N −2
.

(49.29.1)

For a single GP, d̂, α̂A, σ̂2
A,ε and An are replaced by ln r̂,

α̂G, σ̂2
G,ε and ln Gn in (49.27.1) to (49.29.1).

49.4 Distinguishing a Renewal Process from an AP (or a GP)
Much of the work in this section is based on Leung [49.4,
11]. We test whether the data comes from an RP or AP.

Null hypothesis H0: d = 0
Alternative hypothesis H1: d �= 0

The t-test statistic is denoted and given by

tA =
−d̂

√√√√√ K∑
k=1

(Nk−1)Nk(2Nk−1)
6 −

(
K∑

k=1
N2

k−N

)2

4N

σ̂A,ε

,

(49.31)

where tA is distributed as a Student’s t with (N −2)
degrees of freedom. If |tA| is larger than the critical
value tN−2,0.025, then H0 is rejected at the 5% level

of significance, i. e. the data set {An,k , n = 1, . . . , Nk
and k = 1, . . . , K} comes from a common AP. The
derivation of (49.31) is given in the Appendix.

To test whether the data comes from an RP or a GP,
H0 becomes ln r = 0 or its equivalence r = 1 and H1
becomes ln r �= 0 or its equivalence r �= 1, and the t-test
statistic is obtained simply by replacing tA, d̂ and σ̂2

A,ε

with tG, ln r̂ and σ̂2
G,ε in (49.31).

One point worth noting is that, for testing purposes,
each εA,n,k (or εG,n,k) is essentially normally distributed,
e.g. see Gujarati [49.32], p. 282. It is difficult to eval-
uate the normality assumption for a sample of only 20
observations, and formal test procedures are presented
in Ramsey and Ramsey [49.33].

49.5 Estimating the Means and Variances

The work in this section is substantially based on Le-
ung [49.4, 11].

49.5.1 Estimating µĀ1
and σ2

Ā1
of Āns

First, the mean and variance of Ā1 are estimated using
the relevant estimators with the formulae given below.

First we denote

W̄A,n ≡

K∗∑
k=1

WA,n,k

K∗ and µ Ā1
≡

K∗∑
k=1

µA1,k

K∗ .

From Definition 49.1, WA,n,ks are i.i.d., we have

E(W̄A,n) ≡

K∗∑
k=1

E(WA,n,k)

K∗ =

K∗∑
k=1

µA1,k

K∗ ≡ µ Ā1

and

V(W̄A,n) ≡

K∗∑
k=1

V(WA,n,k)

(K∗)2 =

K∗∑
k=1

σ2
A1,k

(K∗)2 ≡
σ2

Ā1

K∗ .
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From (49.14), (49.15), (49.16) and (49.17), we obtain

E(W̄A,n) ≡

K∗∑
k=1

E(WA,n,k)

K∗ = K∗αA

K∗ = αA

and

V(W̄A,n) ≡

K∗∑
k=1

V(WA,n,k)

(K∗)2 =

K∗∑
k=1

V(αA + εA,n,k)

(K∗)2

=

K∗∑
k=1

V(εA,n,k)

(K∗)2
=

K∗∑
k=1

σ2
A,ε

(K∗)2

= K∗σ2
A,ε

(K∗)2
= σ2

A,ε

K∗ .

Therefore, the first estimators for µ Ā1
and σ2

Ā1
are

denoted and given by

µ̂ Ā1,1
= α̂A (49.32)

and

σ̂2
Ā1,1

= σ̂2
A,ε . (49.33)

Alternatively, since WA,n,ks are i.i.d. with mean
µWA,n,k = µA1,k and variance σ2

WA,n,k
= σ2

A1,k
, it is plau-

sible to estimate µ Ā1
and σ2

Ā1
by the sample mean and

sample variance of ŴA,n,ks, where ŴA,n,k = An,k+ (n−
1)d̂. Hence, the second estimators for µ Ā1

and σ2
Ā1

are
denoted and given by

µ̂ Ā1,2
=

K∑
k=1

Nk∑
n=1

ŴA,n,k

N
=

K∑
k=1

Nk∑
n=1

[An,k + (n−1)d̂]
N

=

K∑
k=1

Nk∑
n=1

An,k

N
+

d̂

(
K∑

k=1
N2

k − N

)

2N
(49.34)

and

σ̂2
Ā1,2

=

K∑
k=1

Nk∑
n=1

[
An,k + (n−1)d̂

]2

N −1

−

{
K∑

k=1

Nk∑
n=1

[An,k + (n−1)d̂]
}2

N(N −1)
. (49.35)

Notice that the second estimator µ̂ Ā1,2
given by (49.34)

is the same as the first estimator µ̂ Ā1,1
given by (49.32)

or (49.28).
It is also plausible to obtain the third estimator for

µ Ā1
provided Nk ∼= N0 for k = 1, . . . , K as follows.

Let SN =
K∑

k=1

Nk∑
n=1

An,k =
K∑

k=1

Nk∑
n=1

[A1,k − (n−1)d].
Then

E(SN ) =
K∑

k=1

NkE(A1,k)−
d

(
K∑

k=1
N2

k − N

)

2

=
K∑

k=1

NkµA1,k −
d

(
K∑

k=1
N2

k − N

)

2
.

If Nk ∼= N0 for k = 1, . . . , K ; then

E(SN ) ∼= N0

K∑

k=1

µA1,k −
dK

(
N2

0 − N0
)

2

= KN0µ Ā1
− dKN0 (N0−1)

2
.

After transposition, we have

µ Ā1
∼= E(SN )

KN0
+ d (N0−1)

2
.

Hence, the third estimator for µ Ā1
, provided Nk ∼= N0,

for k = 1, . . . , K , is denoted and given by

µ̂ Ā1,3
∼= SN

KN0
+ d̂ (N0−1)

2

=

K∑
k=1

N0∑
n=1

An,k

KN0
+ d̂ (N0−1)

2
. (49.36)

In fact, we can deduce (49.36) directly from (49.28) by
putting Nk ∼= N0 and N ∼= KN0. In other words, the third
estimator for µ Ā1

is indeed the first estimator but calcu-
lated approximately using (49.36). As a whole, only one
estimator for µ Ā1

, namely µ̂ Ā1,1
has been derived so far.

It is furthermore plausible to obtain the second (fourth)
and third (fifth) estimators for µ Ā1

, provided Nk ∼= N0
for k = 1, . . . , K , as follows.

In view of the fact that E(W̄A,n)=µ Ā1
, we can write

W̄A,n = µ Ā1
(1+ δA,n) . (49.37)

1. We have

E

(
W̄A,n

µ Ā1

)
= 1+E(δA,n)

Part
F

4
9
.5



Arithmetic and Geometric Processes 49.5 Estimating the Means and Variances 941

and so it follows that

E(δA,n) = 0 . (49.38)

2. We obtain

V

(
W̄A,n

µ Ā1

)
= V(1+ δA,n) ,

V(W̄A,n)

µ2
Ā1

= V(δA,n)

and so it follows that

V(δA,n) =
σ2

Ā1

K∗µ2
Ā1

. (49.39)

3. Taking the logarithm of W̄A,n ≡
∑K∗

k=1 WA,n,k
K∗ , using

equation (49.14) and the fact that εA,n,k ≡ εA,n , ir-
respective of k, and taking the logarithm for (49.37),
we obtain

ln W̄A,n = ln

[
αA

(
1+ εA,n

αA

)]
= lnαA

+ ln

(
1+ εA,n

αA

)
(49.40)

and

ln W̄A,n = lnµ Ā1
+ ln(1+ δA,n) . (49.41)

Taking the expectations of (49.40) and (49.41),
equating them, and expanding the logarithm series,
we have

lnαA+E

(
εA,n

αA
− ε2

A,n

2α2
A

+ ε3
A,n

3α3
A

−· · ·
)

= lnµ Ā1
+E

(
δA,n −

δ2
A,n

2
+ δ3

A,n

3
−· · ·

)
,

lnαA+ 1

αA
E(εA,n)− 1

2α2
A

E(ε2
A,n)

∼= lnµ Ā1
+E(δA,n)− 1

2
E(δ2

A,n) ,

lnαA− 1

2α2
A

V(εA,n)

= lnµ Ā1
− 1

2
V(δA,n) by (49.16) and (49.38)

lnαA−
σ2

A,ε

2α2
A

= lnµ Ā1
−

σ2
Ā1

2K∗µ2
Ā1

by (49.17) and (49.39);

4. µ Ā1
must satisfy the equation

ln

(
µ Ā1

αA

)
− 1

2

⎛

⎝
σ2

Ā1

K∗µ2
Ā1

− σ2
A,ε

α2
A

⎞

⎠= 0 .

5. We can estimate µ Ā1
, provided Nk ∼= N0 for k =

1, . . . , K , i. e., K = K∗, by µ̂ Ā1,2
, which satisfies

the equation

ln

(
µ Ā1

α̂A

)
− 1

2

⎛

⎝
σ̂2

Ā1,1

Kµ2
Ā1

− σ̂2
A,ε

α̂2
A

⎞

⎠= 0 (49.42)

or by µ̂ Ā1,3
, which satisfies the equation

ln

(
µ Ā1

α̂A

)
− 1

2

⎛

⎝
σ̂2

Ā1,2

Kµ2
Ā1

− σ̂2
A,ε

α̂2
A

⎞

⎠= 0 ,

(49.43)

where α̂A, σ̂
2
A,ε, σ̂

2
Ā1,1

and σ̂2
Ā1,2

are given
by (49.28), (49.29), (49.33) and (49.35), respec-
tively.

Clearly, if d = 0, the parameters µ Ā1
and σ2

Ā1
can be

estimated using the sample mean and sample variance,
which are given by

µ̂A1,4 =

N∑
n=1

An

N
and σ̂2

A1,3 =

N∑
n=1

(An − µ̂A1,4)2

N −1
.

(49.44)

Secondly, we use (49.3) and (49.4), and let
N1 ≥ N2 ≥ . . .≥ NK , the means and variances of Ān
for n = 2, 3, . . . , Nk and k = 1, . . . , K are estimated
using the following formulae:

µ̂ Ān
= µ̂ Ā1

− (n−1)d̂ and

σ̂2
Ān
=

σ̂2
Ā1

K∗ for n = 2, 3, . . . , N1 . (49.45)

49.5.2 Estimating µḠ1
and σ2

Ḡ1
of Ḡns

First, the mean and variance of Ḡ1 are estimated using
the relevant estimators with the formulae given below.

First we denote

W̄G,n ≡

K∗∑
k=1

WG,n,k

K∗ .
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942 Part F Applications in Engineering Statistics

From Definition 49.2, WG,n,ks are i.i.d., we have

E(W̄G,n) ≡

K∗∑
k=1

E(WG,n,k)

K∗ =

K∗∑
k=1

µG1,k

K∗ ≡ µḠ1

and

V(W̄G,n) ≡

K∗∑
k=1

V(WG,n,k)

(K∗)2 =

K∗∑
k=1

σ2
G1,k

(K∗)2 ≡
σ2

Ḡ1

K∗ .

From (49.22), (49.24) and (49.25), we obtain

E(W̄G,n) ≡

K∗∑
k=1

E(WG,n,k)

K∗ =

K∗∑
k=1

E(eαG+εG,n,k )

K∗

=
eαG

K∗∑
k=1

E(eεG,n,k )

K∗

=
eαG

K∗∑
k=1

E

(
1+ εG,n,k + ε2

G,n,k
2! + · · ·

)

K∗

∼=
eαG

K∗∑
k=1

[
1+E(εG,n,k)+ 1

2 E(ε2
G,n,k)

]

K∗

=
eαG

K∗∑
k=1

[
1+ 1

2 V(εG,n,k)
]

K∗

= eαG

(
1+ σ2

G,ε

2

)
.

From (49.22) and (49.25), we obtain

V(W̄G,n) ≡

K∗∑
k=1

V(WG,n,k)

(K∗)2 =

K∗∑
k=1

V
(
eαG+εG,n,k

)

(K∗)2

=
e2αG

K∗∑
k=1

V (eεG,n,k )

(K∗)2

=
e2αG

K∗∑
k=1

V

(
1+ εG,n,k + ε2

G,n,k
2! + · · ·

)

(K∗)2

∼=
e2αG

K∗∑
k=1

V(1+ εG,n,k)

(K∗)2

=
e2αG

K∗∑
k=1

V(εG,n,k)

(K∗)2 = e2αGσ2
G,ε

K∗ .

Therefore, the first estimators for µḠ1
and σ2

Ḡ1
are

denoted and given by

µ̂Ḡ1,1
= eα̂G

(
1+ σ̂2

G,ε

2

)
(49.46)

and

σ̂2
Ḡ1,1

= e2α̂G σ̂2
G,ε . (49.47)

Alternatively, since WG,n,ks are i.i.d. with mean
µWG,n,k = µG1,k and variance σ2

WG,n,k
= σ2

G1,k
, it is

plausible for us to estimate µḠ1
and σ2

Ḡ1
by the

sample mean and sample variance of ŴG,n,ks, where
ŴG,n,k = r̂(n−1)Gn,k. Hence, the second estimators for
µḠ1

and σ2
Ḡ1

are denoted and given by

µ̂Ḡ1,2
=

K∑
k=1

Nk∑
n=1

ŴG,n,k

N
=

K∑
k=1

Nk∑
n=1

(r̂(n−1)Gn,k)

N
(49.48)

and

σ̂2
Ḡ1,2

=

K∑
k=1

Nk∑
n=1

(r̂(n−1)Gn,k)2−

[
K∑

k=1

Nk∑
n=1

(r̂(n−1)Gn,k)

]2

N

N −1
.

(49.49)

It is also plausible for us to obtain the third estimator for
µḠ1

provided Nk ∼= N0 for k = 1, . . . , K .

Let

SN =
K∑

k=1

Nk∑

n=1

Gn,k =
K∑

k=1

Nk∑

n=1

(
G1,k

r(n−1)

)

=
K∑

k=1

G1,k

Nk∑

n=1

1

r(n−1)

= 1

1−r−1

K∑

k=1

(
1−r−Nk

)
G1,k .

Then

E(SN ) = 1

1−r−1

K∑

k=1

(
1−r−Nk

)
µG1,k .

If Nk ∼= N0 for k = 1, . . . , K , then

E(SN ) ∼=
KµḠ1

(
1−r−N0

)

1−r−1 .
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After transposition, we have

µḠ1
∼= E(SN )

(
1−r−1

)

K (1−r−N0 )
.

Hence, the third estimator for µḠ1
, provided Nk ∼= N0,

for k = 1, . . . , K , is denoted and given by

µ̂Ḡ1,3
∼= SN

(
1− r̂−1

)

K (1− r̂−N0 )
=

(
1− r̂−1

) K∑
k=1

N0∑
n=1

Gn,k

K (1− r̂−N0 )
.

(49.50)

It is furthermore plausible for us to obtain the fourth
and fifth estimators for µḠ1

provided Nk ∼= N0 for k =
1, . . . , K , as follows:

Since E(W̄G,n) = µḠ1
, we can write

W̄G,n = µḠ1
(1+ δG,n) . (49.51)

1. We have

E

(
W̄G,n

µḠ1

)
= 1+E(δG,n)

and so it follows that

E(δG,n) = 0 . (49.52)

2. We obtain

V

(
W̄G,n

µḠ1

)
= V(1+ δG,n) ,

V(W̄G,n)

µ2
Ḡ1

= V(δG,n)

and so it follows that

V(δG,n) =
σ2

Ḡ1

K∗µ2
Ḡ1

. (49.53)

3. Taking the logarithm of W̄G,n ≡
∑K∗

k=1 WG,n,k
K∗ , us-

ing (49.21) and the fact that εG,n,k ≡ εG,n ,
irrespective of k, and taking the logarithm of (49.51),
we obtain

ln W̄G,n = αG+ εG,n (49.54)

and

ln W̄G,n = lnµḠ1
+ ln(1+ δG,n) (49.55)

Taking the expectations of (49.54) and (49.55),
equating them, and expanding the logarithm series, we
have

αG+E(εG,n) = lnµḠ1

+E

(
δG,n −

δ2
G,n

2
+ δ3

G,n

3
−· · ·

)
,

αG ∼= lnµḠ1
+E(δG,n)− 1

2
E(δ2

G,n)

= lnµḠ1
− 1

2
V(δG,n)

= lnµḠ1
−

σ2
Ḡ1

2K∗µ2
Ḡ1

by (49.53) .

4. µḠ1
must satisfy the equation

2K∗(lnµḠ1
−αG)µ2

Ḡ1
−σ2

Ḡ1
= 0 .

5. We can estimate µḠ1
, provided Nk ∼= N0 for k =

1, . . . , K , i. e., K = K∗, by µ̂Ḡ1,4
which satisfies

the equation

2K (lnµḠ1
− α̂G)µ2

Ḡ1
− σ̂2

Ḡ1,1
= 0 (49.56)

or by µ̂Ḡ1,5
which satisfies the equation

2K (lnµḠ1
− α̂G)µ2

Ḡ1
− σ̂2

Ḡ1,2
= 0 , (49.57)

where α̂G, σ̂
2
G,ε, σ̂

2
Ḡ1,1

and σ̂2
Ḡ1,2

are given by

(49.28), (49.29) (where d̂, An,k are replaced by ln r̂
and ln Gn,k), (49.47) and (49.49), respectively.

Clearly, if ln r = 0 or r = 1, the parameters µḠ1
and

σ2
Ḡ1

can be estimated using the sample mean and sample
variance, which are given by

µ̂G1,6 =

N∑
n=1

Gn

N
and σ̂2

G1,3=

N∑
n=1

(Gn − µ̂G1,6)2

N −1
.

(49.58)

Secondly, we use (49.7) and (49.8), and let N1 ≥
N2 ≥ . . .≥ NK , the means and variances of Ḡn for n =
2, 3, . . . , Nk and k = 1, . . . , K are estimated using the
following formulae:

µ̂Ḡn
= µ̂Ḡ1

r̂(n−1) and σ̂2
Ḡn

=
σ̂2

Ḡ1

r̂2(n−1)K∗
for n = 2, 3, . . . , N1 . (49.59)
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49.5.3 Estimating the Means and Variances
of a Single AP or GP

When K = 1, (49.30) becomes N = N1. Note again that

1. for a single AP or GP, we simply use N to represent
the number of successive events, and

2. the results listed in the next two subsections are
consistent with those derived in Leung [49.8] and
Lam [49.15].

A Single AP
First, the mean and variance of A1 are estimated using
the relevant estimators with the formulae given below.

The first estimators for µA1 and σ2
A1

are denoted and
given by

µ̂A1,1 = α̂A (49.32.1)

and

σ̂2
A1,1 = σ̂2

A,ε , (49.33.1)

where α̂A and σ̂2
A,ε are given by (49.28.1) and (49.29.1).

The second estimator for σ2
A1

is denoted and given
by

σ̂2
A1,2 =

N∑
n=1

[An + (n−1)d̂]2−

{
N∑

n=1
[An+(n−1)d̂]

}2

N

N −1
,

(49.35.1)

where d̂ is given by (49.27.1).
The second µ̂A1,2 and third µ̂A1,3 estimators forµA1 ,

respectively, satisfy the equations

ln

(
µA1

α̂A

)
− 1

2

(
σ̂2

A1,1

µ2
A1

− σ̂2
A,ε

α̂2
A

)
= 0 (49.42.1)

and

ln

(
µA1

α̂A

)
− 1

2

(
σ̂2

A1,2

µ2
A1

− σ̂2
A,ε

α̂2
A

)
= 0 , (49.43.1)

where α̂A, σ̂
2
A,ε, σ̂

2
A1,1

and σ̂2
A1,2

are given by (49.28.1),
(49.29.1), (49.33.1) and (49.35.1), respectively.

Clearly, if d = 0, the parameters µA1 and σ2
A1

can be
estimated using (49.44).

Secondly, using (49.3) and (49.4), the means and
variances of An for n = 2, 3, . . . , N are estimated using
the following formulae:

µ̂An = µ̂A1 − (n−1)d̂ and σ̂2
An
= σ̂2

A1

for n = 2, 3, . . . , N . (49.45.1)

A Single GP
First, the mean and variance of G1 are estimated using
the relevant estimators with formulae given below.

The first estimators for µG1 and σ2
G1

are denoted and
given by

µ̂G1,1 = eα̂G

(
1+ σ̂2

G,ε

2

)
(49.46.1)

and

σ̂2
G1,1 = e2α̂G σ̂2

G,ε , (49.47.1)

where α̂G and σ̂2
G,ε are given by (49.28.1) and (49.29.1)

with d̂ and An replaced by ln r̂ and ln Gn .
The second estimators for µG1 and σ2

G1
are denoted

and given by

µ̂G1,2 =

N∑
n=1

r̂(n−1)Gn

N
(49.48.1)

and

σ̂2
G1,2 =

N∑
n=1

(
r̂(n−1)Gn

)2−

(
N∑

n=1
r̂(n−1)Gn

)2

N

N −1
,

(49.49.1)

where r̂ is given by (49.27.1) with An replaced by ln Gn .
The third estimator for µG1 is denoted and given by

µ̂G1,3 =
(
1− r̂−1

) N∑
n=1

Gn

1− r̂−N
. (49.50.1)

The fourth µ̂G1,4 and fifth µ̂G1,5 estimators for µG1

respectively satisfy the equations

2(lnµG1 − α̂G)µ2
G1
− σ̂2

G1,1 = 0 (49.56.1)

and

2(lnµG1 − α̂G)µ2
G1
− σ̂2

G1,2 = 0 , (49.57.1)
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where σ̂2
G1,1

and σ̂2
G1,2

are given by (49.47.1)
and (49.49.1).

Clearly, if r = 1, the parameters µG1 and σ2
G1

can be
estimated using (49.58).

Secondly, using (49.7) and (49.8), the means and
variances of An for n = 2, 3, . . . , N are estimated using

the following formulae:

µ̂Gn =
µ̂G1

r̂(n−1) and σ̂2
Gn

= σ̂2
G1

r̂2(n−1)

for n = 2, 3, . . . , N . (49.59.1)

49.6 Comparison of Estimators Using Simulation

Much of the work in this section is based on Le-
ung [49.7], and Leung and Lai [49.13].

49.6.1 A Single AP or GP

Some simulation studies were performed to evaluate
various estimators given in Sect. 49.5.3 and to com-
pare the different estimates of µA1 and σ2

A1
(or µG1

and σ2
G1

).
For each realization {An, n = 1, . . . , 20}, the esti-

mates µ̂A1,i , i = 1, 2, 3, 4 are ranked using three criteria.
First, if our objective is to estimate the value of
µA1 , we can compute the deviation φ of µ̂A1,i from
µA1 , i. e. φ = ∣∣µ̂A1,i −µA1

∣∣. Secondly, if our objec-
tive is to fit Ans values only, we can calculate the
mean square error (MSE) between the fitted values
Ân,i = µ̂A1,i − (n−1)d̂s and observations Ans, i. e.
MSE =∑N

n=1

(
Ân,i − An

)2
/N . Thirdly, if our objec-

tive is to estimate µA1 as well as fitting values of
Ans, then we can use Φ = φ+√MSE. Moreover, the
estimates σ̂2

A1,1
and σ̂2

A1,2
can be compared by their

standard deviations (s.d.) from σ2
A1

. The recommended
estimators based on the simulation studies are sum-

Table 49.1 Recommended estimators for µA1 and σ2
A1

d φ MSE Φ s. d.

µA1 An µA1 & An σ2
A1

= 0 µ̂A1,4 µ̂A1,2 or µ̂A1,4 µ̂A1,3 or µ̂A1,4 σ̂2
A1,3

< 0 µ̂A1,1 or µ̂A1,2 µ̂A1,2 µ̂A1,2 σ̂2
A1,2

∈
(

0,
µA1
n−1

]
µ̂A1,2 µ̂A1,2 µ̂A1,2 σ̂2

A1,2

Table 49.2 Recommended estimators for µG1 and σ2
G1

r φ MSE Φ s. d.

µG1 Gn µG1&Gn σ2
G1

= 1 µ̂G1,6 µ̂G1,3 or µ̂G1,6 µ̂G1,6 σ̂2
G1,3

∈ (0, 1) µ̂G1,5 µ̂G1,3 µ̂G1,3 σ̂2
G1,2

> 1 µ̂G1,3 µ̂G1,3 µ̂G1,3 σ̂2
G1,2

marized in Table 49.1 (for more details, see Leung
et al. [49.7]).

Similarly, for each realization {Gn, n = 1, . . . , 101},
the estimates µ̂G1,i , i = 1, 2, 3, 4, 5, 6 are ranked us-
ing the aforementioned three criteria, and the estimates
σ̂2

G1,1
and σ̂2

G1,2
can be compared by their s.d. from σ2

G1
.

The recommended estimators based on the simulation
studies are summarized in Table 49.2 (for more details,
see Lam [49.15]).

49.6.2 K Independent, Homogeneous APs
or GPs

Some simulation studies were also performed to evaluate
various estimators given in Sect. 49.5.1 (or Sect. 49.5.2)
and to compare the different estimates of µ Ā1

and σ2
Ā1

(or µḠ1
and σ2

Ḡ1
).

For each realization {An,k, n = 1, . . . , 20 and
k = 1, . . . , 10} (or {Gn,k, n = 1, . . . , 101 and k =
1, . . . , 10}), the estimates µ̂ Ā1,i

, i = 1, 2, 3, 4 (or
µ̂Ḡ1,i

, i = 1, 2, 3, 4, 5, 6) are ranked using the first
criterion, namely the deviation φ of µ̂θ,i from µθ ,
i. e. φ = ∣∣µ̂θ,i −µθ

∣∣, and the estimates σ̂2
θ,1 and σ̂2

θ,2
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Table 49.3 Recommended estimators for µ Ā1
and σ2

Ā1
, and µḠ1

and σ2
Ḡ1

d φ s. d. r φ s. d.

µĀ1
σ2

Ā1
µḠ1

σ2
Ḡ1

= 0 µ̂A1,4 σ̂2
A1,3

r = 1 µ̂G1,6 σ̂2
G1,3

< 0 µ̂ Ā1,1
σ̂2

Ā1,1
or σ̂2

Ā1,2
∈ (0, 1) µ̂Ḡ1,2

σ̂2
Ḡ1,2

∈
(

0,
µ

Ā1
n−1

]
µ̂ Ā1,1

σ̂2
Ā1,1

or σ̂2
Ā1,2

> 1 µ̂Ḡ1,2
or µ̂Ḡ1,3

σ̂2
Ḡ1,2

can be compared by their s.d. from σ2
θ , where

θ = either Ā1 or Ḡ1. The recommended estimators
based on the simulation studies are summarized in Ta-
ble 49.3 (for more details, see Leung and Lai [49.13]).

49.6.3 Comparison Between Averages
of Estimates and Pooled Estimates

Having obtained the estimates d̂, µ̂A1 and σ̂2
A1

(or r̂,
µ̂G1 and σ̂2

G1
) using the relevant estimators suggested

in Table 49.1 (or Table 49.2), of the parameters d,
µA1 and σ2

A1
(or r, µG1 and σ2

G1
) of a single system,

we can compute the averages of the respective esti-
mates for a collection of homogeneous systems and
then use these averages to estimate µ̂An and σ̂2

An
(or

µ̂Gn and σ̂2
Gn

). Leung and Lai [49.13] drew the conclu-
sion that, in any cases, the pooled estimates obtained
using the pooled estimators for APs or GPs suggested
in Table 49.3 are better than the respective averages of
estimates.

49.7 Real Data Analysis

Lam et al. [49.16] presented ten examples, each analyz-
ing a real data set using four models:

1. the GP model with a nonparametric method,
2. the HPP model,
3. the NHPP model with PLP and
4. the NHPP model with LLP.

Example 1 examines 190 data of the intervals
in days between successive coal-mining disasters in
Great Britain, which have been used by a number
of researchers to illustrate various techniques that can
be applied to point processes; see, for example, Cox
and Lewis [49.17], pp. 42–43. The data set can be
found in Hand et al. [49.34], p. 155 or Andrews and
Herzberz [49.35], pp. 51–56, in which the data are
recorded in more detail.

Examples 2–4 study 29, 30 and 27 data of the inter-
vals in operating hours between successive failures of
air-conditioning equipment in aircrafts 3, 6 and 7. The
13 data sets tabulate on p. 6 of Cox and Lewis [49.17],
and the data sets being examined are the largest three.

Example 5 investigates 257 failure times of a com-
puter in unspecified units. The data are given in Cox and
Lewis ([49.17], p. 11).

Example 6 examines 245 arrival times of patients at
an intensive care unit in a hospital. The data are given in
Cox and Lewis ([49.17], p. 14 and pp. 254–255).

Examples 7 and 8 study 71 and 56 data of the ar-
rival times to unscheduled overhauls for the no. 3 and
no. 4 main propulsion diesel engines for two submarines.
The two data sets tabulate on pp. 75–76 of Ascher and
Feingold [49.18].

Example 9 investigates the times that 41 successive
vehicles traveling northwards along the M1 motorway
in England passed a fixed point near junction 13 in Bed-
fordshire on Saturday 23 March 1985. The data are given
in Hand et al. ([49.34], p. 3).

Example 10 examines 136 failure times [in cen-
tral processing unit (CPU) seconds, measured in
terms of execution time] of a real-time command-and-
control software system. The data are given in Hand
et al. ([49.34], p. 10–11).

Lam et al. [49.16] concluded that, on average, the
GP model is the best model for fitting these ten real
data sets among the four models based on the MSE
criterion (as defined in Sect. 49.5.1). This is the reason
why the GP model can be applied to the maintenance
problems.

Furthermore, Lam and Chan [49.36] applied the GP
model to fit the three real data sets in Examples 1, 7
and 8 using a parametric method with one of the log-
normal, exponential, gamma and Weibull distributions.
The numerical results also conclude that all three data
sets can be well fitted by the GP model based on the
MSE criterion.
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The author is currently investigating the following:

1. The ten data sets are analyzed using the AP model
with a nonparametric method and the numerical
results are compared with those in Lam et al. [49.16].

2. The data sets in Examples 2–4 (or even the 13 data
sets) and the data sets in Examples 7 and 8 are re-

spectively pooled together to estimate the parameters
using the methods suggested in Sects. 49.2–49.5
for AP and GP, and the methods used in Leung
and Cheng [49.3] for HPP and NHPP. The numer-
ical results are also compared with those in Lam
et al. [49.16] plus those obtained using the AP
model.

49.8 Optimal Replacement Policies Determined
Using Arithmetico-Geometric Processes

The work in this section is substantially based on
Leung [49.5].

49.8.1 Arithmetico-Geometric Processes

A definition of an AGP is given below.

Definition 49.3
Given a sequence of random variables H1, H2, . . . , if
for some real number d and some r > 0, {[Hn + (n−
1)d]r(n−1), n = 1, 2, . . . } forms an RP, then {Hn, n =
1, 2, . . . } is an AGP. The two parameters d and r are
called the common difference and the common ratio of
the AGP respectively.

Three specializations of an AGP are given below.
If r > 1 and d ∈ (

0,
µH1

(n−1)r(n−1)

]
, where n = 2, 3, . . .

and µH1 is the mean of the first random variable H1,
then the AGP is called a decreasing AGP. If d < 0 and
0 < r < 1, then the AGP is called an increasing AGP. If
d = 0 and r = 1, then the AGP reduces to an RP.

Two immediate remarks concerning the characteris-
tics of an AGP are as follows:

1. An AGP is the name given to a series in which the
general term is the product of the general term of an
AP and of a GP; we take this term to be, in general,

Hn = H1

r(n−1)
− (n−1)d .

2. It is evident that, if we put r = 1 but d �= 0, or d = 0
but r �= 1 into the above expression, the process ob-
tained becomes an AP, or a GP. Hence, an AGP
extends and generalizes an AP or a GP.

Therefore, for a deteriorating system, it is reason-
able to assume that the successive operating times of the
system form a decreasing AGP, whereas the correspond-
ing consecutive repair times constitute an increasing

AGP. However, the replacement times for the system
are usually stochastically the same no matter how old
the used system is; hence, they will form an RP. This
is the motivation behind the introduction of the AGP
approach.

49.8.2 Model

Before deriving new repair–replacement models, the
following assumptions are stated.

1. At the beginning, a new system is used.
2. Whenever the system fails, it can be repaired. Let Xn

be the survival time after the (n−1)th repair, then
a sequence {Xn, n = 1, 2, . . . } forms a decreasing
AGP with parameters da > 0 and ra > 1 such that
µX1/(n−1)r(n−1)

a ≥ da, where E(X1) ≡ µX1 > 0.
3. Let Yn be the repair time after the nth failure, then

a sequence {Yn, n = 1, 2, . . . } forms an increasing
AGP with parameters db < 0 and 0 < rb < 1, and
E(Y1)≡µY1 ≥ 0. µY1 = 0 means that the repair time
is negligible.

4. A sequence {Xn, n = 1, 2, . . . } and a sequence
{Yn, n = 1, 2, . . . } are independent.

5. An average operating cost rate is co, an average re-
pair cost rate is cf, and an average revenue rate of
a working system is w.

6. The system may be replaced at some time by a new
and identical one. An average replacement cost rate
under policy T or N is cRT or cRN , respectively,
and an average replacement downtime under policy
T or N is uRT or uRN , respectively. Two kinds of
replacement policy are considered in this model.
a) A replacement policy T is a policy in which

we replace the system whenever the working
age of the system reaches T , a continuous deci-
sion variable, see Barlow and Proschan [49.19].
The working age T of a system at time t is the
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cumulative survival time by time t, i. e.

T =
⎧
⎨

⎩
t−Vn,Un +Vn ≤ t<Un+1+Vn

Un+1,Un+1+Vn ≤ t<Un+1+Vn+1 ,

(49.60)

where Un =∑n
i=1 Xi , Vn =∑n

i=1 Yi and U0 =
0, V0 = 0.

b) A replacement policy N is a policy in which we
replace the system at the time of N th failure since
the last replacement, a discrete decision variable,
see Nakagawa [49.37].

Under replacement policy T or N , the problem is
to determine an optimal replacement policy T∗ or N∗,
respectively, such that the long-run expected loss per
unit total time or per unit operation time is minimized.

49.8.3 The Long-Run Expected Loss Rate

Let Tn be the time between the (n−1)th replacement and
the nth replacement with T0 = 0, then {Tn, n = 1, 2, . . . }
forms an RP. Applying known results from renewal the-
ory (see e.g. Ross [49.20], pp. 51–54), the long-run
expected loss per unit time is obtained by

l(T ) or l(N ) = E(loss incurred in a cycle)

E(length of a cycle)
,

(49.61)

where the loss is defined as the total cost minus total
revenue, and a cycle is the time between two consecutive
replacements.

Under the replacement policy T , denote the length
of a cycle by W , then

W = T +Vn and

Un < T ≤Un+1 for n = 0, 1, . . . . (49.62)

From Definition 49.3 and Assumption 3, it follows
that E(Yn) = µY1

r(n−1)
b

− (n−1)db. Then

E(W ) = E

⎛

⎝T +
n∑

j=1

Y j

⎞

⎠

= E

⎡

⎣T +
∞∑

j=1

Y j I(n ≥ j )

⎤

⎦ ,

where I is the indicator random variable defined as

I(n ≥ j ) =
⎧
⎨

⎩
1 if n ≥ j

0 if n < j
.

Since n ≥ j ⇔U j ≤ T , we have

E(W ) = E

⎡

⎣T +
∞∑

j=1

Y j I(U j ≤ T )

⎤

⎦

= E(T )+
∞∑

j=1

E(Y j )E[I(U j ≤ T )]

as Y j and U j are independent

= T +
∞∑

j=1

[
µY1

r( j−1)
b

− ( j−1)db

]

× [1 × Pr(U j ≤ T )+0 × Pr(U j > T )]

= T +
∞∑

j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
Fj (T ) ,

where Fj is the cumulative distribution function of U j .
Thus, from (49.61) the long-run expected loss per

unit total time l(T ) under policy T is given by

l(T ) = (co−w)T + cRT uRT

T +
∞∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
Fj (T )+uRT

+
cf

{
∞∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
Fj (T )

}

T +
∞∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
Fj (T )+uRT

(49.63)

and also from (49.61) the long-run expected loss per unit
total time l(N) under policy N is given by

l(N )=
⎧
⎨

⎩(co−w)
N∑

j=1

[
µX1

r( j−1)
a

− ( j−1)da

]

+cf

N−1∑

j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
+ cRN uRN

⎫
⎬

⎭

/⎧
⎨

⎩

N∑

j=1

[
µX1

r( j−1)
a

− ( j−1)da

]

+
N−1∑

j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
+uRN

⎫
⎬

⎭ .

(49.64)
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Further, from (49.61) the long-run expected loss per
unit operation time lop(T ) under policy T or lop(N) under
policy N is respectively given by

lop(T ) = (co−w)T + cRT uRT

T

+
cf

{
∞∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
Fj (T )

}

T
(49.65)

or

lop(N ) =
(co−w)

N∑
j=1

[
µX1

r( j−1)
a

− ( j−1)da

]

N∑
j=1

[
µX1

r( j−1)
a

− ( j−1)da

]

+
cf

N−1∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
+ cRN uRN

N∑
j=1

[
µX1

r( j−1)
a

− ( j−1)da

] .

(49.66)

To simplify the optimization tasks, first operating
cost is excluded (co = 0) because this belongs to the
account of production (rather than maintenance) costs;
secondly, without loss of generality, w can be set equal
to HK$ 1 because money can be measured in an arbi-
trary scale (cf, CRT , and CRN are on the same scale of
Hong Kong dollars). Hence, putting co = 0 and w= 1
into (49.63) to (49.66) and then adding unity to the right-
hand side of (49.63) to (49.66), we obtain the simplified
versions of l(T ) and l(N), and lop(T ) and lop(N) namely

l1(T ) =
(cf+1)

{
∞∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
Fj (T )

}

T +
∞∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
Fj (T )+uRT

+ (cRT +1)uRT

T +
∞∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
Fj (T )+uRT

(49.67)

and

l1(N ) =
{

(cf+1)
N−1∑

j=1

[
µY1

r( j−1)
b

− ( j−1)db

]

+ (cRN +1)uRN

}

/⎧
⎨

⎩

N∑

j=1

[
µX1

r( j−1)
a

− ( j−1)da

]

+
N−1∑

j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
+uRN

⎫
⎬

⎭ ,

(49.68)

lop1(T ) =
cf

{
∞∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
Fj (T )

}

T

+ cRT uRT

T
(49.69)

and

lop1(N )=
cf

N−1∑
j=1

[
µY1

r( j−1)
b

− ( j−1)db

]
+ cRN uRN

N∑
j=1

[
µX1

r( j−1)
a

− ( j−1)da

] ,

(49.70)

respectively.
Finally, the optimal replacement policy, denoted in

general by T∗ or N∗, can be determined by minimiz-
ing l(T ), lop(T ), l(N) or lop(N) [or alternatively l1(T ),
lop1(T ), l1(N) or lop1(N)], respectively. Furthermore, the
minimization procedure can be achieved using analytical
or numerical methods.

In practice, we prefer to adopt the optimal policy N∗
rather than use the optimal policy T∗, because of the
much simpler form of l(N ), lop(N ), l1(N ), and lop1(N ).
Moreover, under some mild conditions, Lam [49.38] has
proved that the optimal policy N∗ is better than any pol-
icy T ; in particular, it is better than the optimal policy T∗.

Note that the replacement policy that minimizes l
or lop also maximizes p or pop because the long-run
expected profit p or pop per unit total time or per unit
operation time is equal to the negation of the long-run
expected loss l or lop per unit total time or per unit
operation time, respectively. The expressions for l and
lg include the performance measure of cost or downtime
as a special case.

The expressions for c and cop, the long-run expected
cost per unit total time and per unit operation time, are
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obtained by substituting w= 0 or w= co = 0 into the
expressions for l and lop, respectively.

The expressions for u and uop, the long-run ex-
pected downtime per unit total time and per unit

operation time, are obtained by substituting w= co = 0,
cf = cRT = cRN = 1 into the expressions for l and
lop respectively. Also, availability = (1−u) × 100% or
availability = (1−uop) × 100%.

49.9 Some Conclusions on the Applicability of an AP and/or a GP

As concluded in the last paragraph before Sect. 49.1
AP and/or a GP approach is considered to be rele-
vant, realistic and direct to the modeling of deteriorating
system maintenance problems. If a decreasing GP (or
an increasing AP) does not fit the system’s succes-
sive operating times (or repair times), a decreasing
AP (or an increasing GP) may be attempted instead.
Equation (49.64) with db = 0, ra = 1 then becomes

lA,G(N ) =
{

(co−w)

{
N

2

[
2µX1 − (N −1)da

]}

+ cfµY1

N−1∑

j=1

1

r( j−1)
b

+ cRN uRN

}

/{
N

2

[
2µX1 − (N −1)da

]

+ µY1

N−1∑

j=1

1

r( j−1)
b

+uRN

}
(49.71)

which is one of the four replacement models using an
AP or a GP or both. This means that there are altogether
four options to resolve a replacement problem when
using model (49.64).

Table 49.4 Estimated values of common difference and ratio, and means for the 6LXB engine

Survival times µ̂X1 (y) µ̂X2 (y) µ̂X3 (y) µ̂X4 (y)

AP with d̂a = 1.6 y 3.4 1.8 0.2 –

GP with r̂a = 4.533 3.79 0.8361 0.1844 0.0407

Repair times µ̂Y1 (d) µ̂Y2 (d) µ̂Y3 (d) µ̂Y4 (d)

AP with d̂b =−12.17 d 8.86 21.03 33.20 –

GP with r̂b = 0.524 9.881 18.86 35.99 68.68

Table 49.5 Estimated values of common difference and ratio, and means for the Benz gearbox

Survival times µ̂X1 (y) µ̂X2 (y) µ̂X3 (y) µ̂X4 (y)

AP with d̂a = 0.97 y 3.05 2.08 1.11 0.14

GP with r̂a = 2.004 1.969 0.9825 0.4903 0.2447

Repair times µ̂Y1 (d) µ̂Y2 (d) µ̂Y3 (d) µ̂Y4 (d)

AP with d̂b = 34.07 d 85.46 51.39 17.32 –

GP with r̂b = 2.096 37.25 17.77 8.479 4.045

The reliability findings for the 6LXB type of engine
analyzed using GPs (Leung and Lee [49.1]) and APs
(Leung and Kwok [49.6]) are summarized in Table 49.4.

The reliability findings for the Benz type of gearbox
analyzed using GPs (Leung and Fong [49.2]) and APs
(Leung and Lai [49.10]) are summarized in Table 49.5.

In Table 49.5, the parameter d̂b or r̂b is larger than
zero or unity for the Benz gearbox. d̂b > 0 or r̂b > 1 indi-
cates that the repair times of the gearboxes decrease and
will tend towards zero. The reasons for this phenomenon
are:

1. The Kowloon Motor Bus (KMB) Company Limited
spends a lot of time on the following when a gearbox
first fails (see Leemis [49.39], p. 148)
a) Diagnosis time: time used for fault finding, in-

cluding adjustment of test equipment, carrying
out checks, interpretation of information gained,
verification of the conclusions drawn and decid-
ing corrective action.

b) Logistic time: time used in waiting for spare
parts, test gears, additional tools and manpower
to be transported to the system.

c) Administrative time: time used in the allocation
of repair tasks, manpower changeover due to
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demarcation arrangements, official breaks, dis-
putes, etc.

2. KMB gains repair experience from the first failure,
which is used to improve their time management, so
repair time decreases.

3. When a gearbox is taken out of a bus, there is no
follow-up tracing of the gearbox and hence we are
unable to find exact consecutive repair times.

The optimal replacement policy based on minimum
cost is to replace the engine or gearbox after the second
or third failure using the AP or GP approach. Notice
that theoretically it is replaced after the ninth failure of

the engine or gearbox using the GP approach; this is
possible since a decreasing GP converges to zero (but
a decreasing AP produces negative values, which are
nonexistent in a reliability context).

Based on the four real case studies, we observe
that both approaches are applicable in solving relia-
bility problems. As to which one is more appropriate
to a given set of reliability data, some criteria have to
be established. Once we have criteria comparing the re-
sults using the AP and GP approaches, we can separately
compare the findings obtained in Leung and Lee [49.1]
with those in Leung and Kwok [49.6], and Leung and
Fong [49.2] with Leung and Lai [49.10].

49.10 Concluding Remarks

There follow five notes concerning the application of the
models given in the previous sections.

The first note concerns the third question: after fitting
an AP (or a GP) model to the data set, how good is the
fit?

Estimation of parameters is properly only a pre-
cursor to further analysis. The techniques outlined in
Sects. 49.2– 49.5 may be extended to provide a basis for

Table 49.6 Summary of useful results of both AP and GP processes

APs GPs

equation given by equation given by

d̂ (49.27) or (49.27.1) ln r̂ (49.27) or (49.27.1) with An,k replaced by ln Gn,k

α̂A (49.28) or (49.28.1) α̂G (49.28) or (49.28.1) with An,k replaced by ln Gn,k

σ̂A,ε (49.29) or (49.29.1) σ̂G,ε (49.29) or (49.29.1) with An,k replaced by ln Gn,k

tA (49.31) tG (49.31) with An,k replaced by ln Gn,k

For d �= 0 For r �= 1

µ̂ Ā1,1
(49.32) or (49.32.1) µ̂Ḡ1,1

(49.46) or (49.46.1)

– µ̂Ḡ1,2
(49.48) or (49.48.1)

– µ̂Ḡ1,3
(49.50) or (49.50.1)

µ̂ Ā1,2
(49.42) or (49.42.1) µ̂Ḡ1,4

(49.56) or (49.56.1)

µ̂ Ā1,3
(49.43) or (49.43.1) µ̂Ḡ1,5

(49.57) or (49.57.1)

σ̂2
Ā1,1

(49.33) or (49.33.1) σ̂2
Ḡ1,1

(49.47) or (49.47.1)

σ̂2
Ā1,2

(49.35) or (49.35.1) σ̂2
Ḡ1,2

(49.48) or (49.48.1)

For d = 0 For r = 1

µ̂A1,4, σ̂
2
A1,3

(49.44) µ̂G1,6, σ̂
2
G1,3

(49.58)

µ̂ Ān
, σ̂2

Ān
(49.45) or (49.45.1) µ̂Ḡn

, σ̂2
Ḡn

(49.59) or (49.59.1)

Replacement model Replacement model

lA(T ) (49.72) lG(T ) (49.74)

lA(N) (49.73) lG(N) (49.75)

confidence bounds, tests for comparing different sets of
event counts, and so on. Lam et al. [49.16] obtained the
asymptotic distributions of the nonparametric estima-
tors of r, µG1 and σ2

G1
. By a parametric approach, Lam

and Chan [49.36] also obtained the estimators of r, µG1

and σ2
G1

and their asymptotic distributions.
Scarf [49.40], on p. 498, has recommended that, if

the assumptions of a simple AP or GP model are not
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valid, and in practice this is usually so, then there are
two possible routes:

1. extend the model with extra parameters, here d and
r, making greater demands on the available data;

2. use the simple model to obtain a crude approxima-
tion to the optimum policy.

The second note relates to route 1. The author is
focusing his efforts on developing a procedure of statis-
tical inference for an AGP, since fitting a model to failure
and/or repair data is preliminary to the utilization of an
optimization model, from which an optimal maintenance
policy based on minimizing loss, cost or downtime may
be found. Naturally, the development of such a proce-
dure involves much more mathematics than that for a GP
by Lam [49.15] or for an AP by Leung [49.8]. Once the
procedure is warranted, two parallel case studies using
an AGP approach for the same set of real maintenance
data of engines and gearboxes will be carried out and
then findings will be compared with those obtained in
Leung et al. [49.1, 4, 5, 10]; these case studies will be
presented in two future papers.

The third note relates to route 2. Estimation of
parameters is also a precursor to practical use of an
optimization model. Two AP models used in resolving
replacement problems are obtained by putting rb = 1
in (49.63) and ra = rb = 1 in (49.64), namely the long-
run expected loss per unit total time under policy T ,
which is given by

lA(T ) = (co−w)T + cRT uRT

T +
∞∑
j=1

[µY1 − ( j−1)db]Fj (T )+uRT

+
cf

{
∞∑
j=1

[µY1 − ( j−1)db]Fj (T )

}

T +
∞∑
j=1

[µY1 − ( j−1)db]Fj (T )+uRT

(49.72)

and the long-run expected loss per unit total time lA(N)
under policy N , which is given by

lA(N ) =
{

(co−w)

{
N

2

[
2µX1 − (N −1)da

]}

+cf

{
N −1

2

[
2µY1 − (N −2)db

]}

+ cRN uRN

}

/{
N

2

[
2µX1 − (N −1)da

]

+N −1

2

[
2µY1 − (N −2)db

]+uRN

}
.

(49.73)

Correspondingly, two GP models obtained by
Lam [49.14] by putting db = 0 in (49.63) and da = db = 0
in (49.64) are given by

lG(T ) =
(co−w)T + cfµY1

∞∑
j=1

Fj (T )

r( j−1)
b

+ cRT uRT

T +µY1

∞∑
j=1

Fj (T )

r( j−1)
b

+uRT

(49.74)

and

lG(N ) =
(co−w)µX1

N∑
j=1

1
r( j−1)

a

µX1

N∑
j=1

1
r( j−1)

a
+µY1

N−1∑
j=1

1
r( j−1)

b

+uRN

+
cfµY1

N−1∑
j=1

1
r( j−1)

b

+ cRN uRN

µX1

N∑
j=1

1
r( j−1)

a
+µY1

N−1∑
j=1

1
r( j−1)

b

+uRN

,

(49.75)

where Fj is the cumulative distribution function of∑ j
i=1 Xi ; µX1 is the mean operating time after installa-

tion; µY1 is the mean repair time after the first failure; da
(or ra) and db (or rb) are the common differences (or ra-
tios) corresponding to the failure and repair processes of
a system, respectively; co is the average operating cost
rate; c f is the average repair cost rate; cRT (or cRN ) is
the average replacement cost rate under policy T (or N);
uRT (or uRN ) is the average replacement downtime un-
der policy T (or N); and w is the average revenue rate
of a working system.

Notice that model (49.72) (or (49.74)) only depends
on the AP (or GP) through the parameters db (or rb)
and µY1 , and model (49.73) (or (49.75)) only on db
(or rb) and µY1 plus da (or ra) and µX1 . When K > 1,
µX1 and µY1 are replaced by µX̄1

and µȲ1
. In prac-

tice, model (49.73) or (49.75) is adopted because of its
much simpler form. Moreover, under some mild condi-
tions, Lam [49.38] has proved that the optimal policy
N∗ is better than the optimal policy T∗. Note that, un-
der the same conditions, Zhang [49.41] has showed that
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Arithmetic and Geometric Processes 49.A Appendix 953

the optimal bivariate replacement policy (T, N )∗ is bet-
ter than N∗, which in turn is better than T∗ (see also
Leung [49.12]).

The fourth note is that an AP, GP or AGP approach
has not incorporated the dependency of data on main-
tenance actions. If a GP model is appropriate, then the
dependency of data upon maintenance actions should
be modeled, i. e. the common ratios ra and rb of two
distinct GPs are two functions of some preventive main-
tenance (PM) policy, where the subscripts ‘a’ and ‘b’
correspond to the failure and repair processes of a sys-
tem respectively. Leung [49.9] established one type of
the relationships between the common ratios ra and rb
and a nonperiodic PM policy.

The fifth note is that a GP model has been widely
used in maintenance problems of one-component sys-

tems, and two-component series, parallel and standby
systems; see Lam [49.42], Lam and Zhang [49.43, 44],
and Zhang [49.45] for details. Lam et al. [49.46] proved
that the monotone process model for the multi-state
system is equivalent to a GP model for a two-state
one-component system by showing that two systems
will have the same long-run expected loss per unit
total time and the same optimal policy N∗. Further-
more, Lam [49.15], Lam and Chan [49.36], and Lam
et al. [49.16] also applied the GP to the analysis of data
from a series of events. Lam [49.47] gave a brief review
and more references for the GP. For more properties and
applications of GP, see Lam et al. [49.16, 48, 49] and
Zhang et al. [49.50–53]. Finally, the author considers
that almost all variants of GP formulation are also valid
for AP or AGP.

49.A Appendix

To determine the line of best fit to the N paired-
observations, we minimize the sum of squared errors
(Sεε) given by

Sεε =
K∑

k=1

Nk∑

n=1

(yn,k − ŷ)2

=
K∑

k=1

Nk∑

n=1

(yn,k − β̂0− β̂1xn,k)2 . (49.A1)

Denote

N =
K∑

k=1

Nk , (49.30)

x̄ =

K∑
k=1

Nk∑
n=1

xn,k

N
and ȳ =

K∑
k=1

Nk∑
n=1

yn,k

N
,

(49.A2)

Sxx =
K∑

k=1

Nk∑

n=1

x2
n,k − Nx̄2 ,

Syy =
K∑

k=1

Nk∑

n=1

y2
n,k − N ȳ2 and

Sxy =
K∑

k=1

Nk∑

n=1

xn,k yn,k − Nx̄ ȳ . (49.A3)

Differentiating (49.A1) with respect to β̂0 and β̂1, setting
them equal to zero and solving the associated equations

simultaneously, we obtain

β̂0 =

K∑
k=1

Nk∑
n=1

yn,k − β̂1

K∑
k=1

Nk∑
n=1

xn,k

N
= ȳ− β̂1 x̄

(49.A4)

and

β̂1 =

K∑
k=1

Nk∑
n=1

xn,k yn,k − ȳ
K∑

k=1

Nk∑
n=1

xn,k

K∑
k=1

Nk∑
n=1

x2
n,k − x̄

K∑
k=1

Nk∑
n=1

xn,k

= Sxy

Sxx
.

(49.A5)

Substituting (49.A4) and (49.A5) into (49.A1), and
after some manipulation, we obtain

Sεε = Syy − β̂1Sxy . (49.A6)

It can be shown that

σ̂2
ε =

Sεε
N −2

, (49.A7)

usually called the mean squared error (MSE), provides
a good estimator for σ2

ε , and that

t = β̂1−β1,0

σ̂ε/
√

Sxx
, (49.A8)

a Student’s t distribution with (N −2) degrees of free-
dom. This statistic is used to test a hypothesis that β1
equals some particular numerical value, say β1,0.
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Now, putting y = An,k or ln Gn,k , xn,k = n−1, β0 =
αA or αG, β1 =−d or − ln r, β1,0 = 0, σ̂2

ε = σ̂2
A,ε or

σ̂2
G,ε, t = tA or tG, and using (49.A2) through (49.A8),

we obtain (49.27) to (49.29) and (49.31) accordingly.
The final forms require the following

x̄ =

K∑
k=1

Nk∑
n=1

(n−1)

N
=

K∑
k=1

Nk(Nk −1)

2N

=

K∑
k=1

N2
k − N

2N

and

Sxx =
K∑

k=1

Nk∑

n=1

(n−1)2− Nx̄2

=
K∑

k=1

(Nk −1)Nk(2Nk −1)

6
− Nx̄2 .

Note that there are three and two estimators for µ Ā1

and σ2
Ā1

, respectively, when d �= 0, but five and two

estimators for µḠ1
and σ2

Ḡ1
, respectively, when r �= 1.
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Six Sigma50. Six Sigma

The first part of this chapter describes what
Six Sigma is, why we need Six Sigma, and how
to implement Six Sigma in practice. A typical
business structure for Six Sigma implementation
is introduced, and potential failure modes of Six
Sigma are also discussed. The second part describes
the core methodology of Six Sigma, which consists
of five phases, i. e., define, measure, analyze,
improve, and control (DMAIC). Specific operational
steps in each phase are described in sequence.
Key tools to support the DMAIC process including
both statistical tools and management tools are
also presented. The third part highlights a specific
Six Sigma technique for product development
and service design, design for Six Sigma (DFSS),
which is different from DMAIC. DFSS also has five
phases: define, measure, analyze, design and
verify (DMADV), spread over product development.
Each phase is described and the corresponding key
tools to support each phase are presented.

In the forth part, a real case study on printed
circuit board (PCB) improvement is used to
demonstrate the application of Six Sigma. The
company and process background is provided. The
DMAIC approach is specifically followed and key
supporting tools are illustrated accordingly. At the
end, the financial benefit of this case is realized
through the reduction of cost of poor quality (COPQ).
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Finally, last part is given over to a discussion of
future prospects and conclusions.

Since the early 1990s, Six Sigma swept the business
world, driving an unprecedented emphasis on greater
manufacturing and service quality. Six Sigma is one of
the few quality initiatives that actually originated from
industrial practice. Six Sigma was originally devised
as a measure of quality that strives for near perfec-
tion. It has developed into a disciplined, data-driven,
customer-focused approach to reduce defects and bring
about substantial financial growth. Although most Six
Sigma efforts were focused on manufacturing opera-
tions in the early years, the Six Sigma approach has now
been more widely used in non-manufacturing indus-
trial sectors such as finance, insurance, health care, and
telecommunications. Users include American Express,

American International Group (AIG), Bank of America,
Citibank, J.P. Morgan, Chase, Merrill Lynch, Vanguard,
etc. These companies have actually seen larger business
impacts and cost savings than those in manufacturing.

50.0.1 What is Six Sigma?

Motorola first introduced the Six Sigma program in the
late 1980s with the aim of increasing profitability by
reducing defects. General Electric (GE) followed the
approach at their manufacturing sites and later at their
financial service divisions. After that, Six Sigma was
thought to be applicable to all processes and transactions
within GE. Six Sigma has now evolved from a quality
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Table 50.1 Final yield for different sigma levels in multistage processes

Average sigma level 1 2 3 4 5 6

Final yield for 10 stages 0.0% 2.5% 50.1% 94.0% 99.8% 100.0%

Final yield for 100 stages 0.0% 0.0% 0.1% 53.6% 97.7% 100.0%

Final yield for 1000 stages 0.0% 0.0% 0.0% 0.2% 79.2% 99.7%

improvement program to an overall business strategy
executive system and business-results-oriented program,
which seems more total than total quality management
(TQM). We will describe the basic definition of Six
Sigma in this section and will elaborate its systematic
methodology and business structure in later sections.

Six Sigma is both a business improvement strategy
and a methodology to measure process performance. It
is used to increase profits by eliminating defects, waste,
and variability and to find the causes of mistakes in
products, processes and services to increase yields. In
Six Sigma, focus on the customer is the top priority.
Performance standards are based on actual customer in-
put, so that process effectiveness can be measured and
customer satisfaction can be predicted.

In terms of business process improvement, variation
reduction is the key since variation signals fluctuation
in the process output and is often a major source of
poor quality. Variation is present in all processes and
every aspect of work. Unintended variation reduces pro-
cess performance and decreases customer satisfaction.
Because of the existence of variation, producing high-
quality products and services in the modern industrial
environment is a tough task.

Therefore, Six Sigma aims particularly at reducing
variation. The word sigma or the symbol “σ” is used
in statistical notation to represent the standard devi-
ation in a population. The standard deviation is also
used as a general measure of variation in any kind of
product or process. With six standard deviations be-
tween the process mean and the customer’s specification
limit, we arrive at 3.4 defects per million opportunities
(DPMO); that is, a 99.9997 percent yield. Before the Six
Sigma technique was introduced, a three-sigma level of
variation was regarded as being fairly good quality per-
formance. Three sigma may be acceptable for a product
or process having only a single or a few stages. It is not
good enough for many products that are the result of
hundreds of thousands of stages, such as automobiles
and computers.

For example, if a production process is made up of
ten stages where the yield of each stage is as high as
90%, the probability of producing a satisfactory product
in the first run would be 0.910 = 35%. This indicates that

about 65% of the products are defective. If a production
process is made up of 100 stages, the probability of
producing a satisfactory product under the three-sigma
program could be as low as 0.1%, as shown in Table 50.1.
The Six Sigma regime, however, allows only 3.4 defects
for every million opportunities, which ensures a quality
product even if the process involves a large number of
stages (Table 50.1). Part of the reason for using such
a strict requirement in quality management is actually
to accommodate the common multistage processes in
modern industrial practice.

50.0.2 Why Six Sigma?

The successful implementation of Six Sigma can result
in benefits in the areas of cost reduction, increased profit,
increased market share and enhanced business compet-
itiveness, mainly by the reduction of the cost of poor
quality (COPQ).

COPQ usually includes appraisal costs, internal fail-
ure costs, and external failure costs. Appraisal and
inspection costs are often incurred, for example, in
checking finished goods before they leave the factory,
inspecting purchased equipment/supplies, proofreading
financial and legal documents, reviewing charges prior
to billing, etc. Internal failure costs are those for re-
pairing, replacing, or discarding work in progress or
completed work before the delivery of the product to the
customer. External failure costs are those that directly
affect the customer and are the most expensive to cor-
rect, including tangible remedial costs and the intangible
costs associated with losing dissatisfied customers.

COPQ cannot be underestimated. In manufacturing
industries, COPQ sometimes reaches 15% of total sales
(source: Six Sigma Academy). In service industries, the
situation is even more serious. COPQ may account for
as much as 50% of total costs.

However, these COPQ could be saved with the
use of Six Sigma. General Electric has estimated sav-
ings of 2 billion US dollars during the first five years
of Six Sigma implementation, and Allied Signal has
estimated savings of 1.1 billion US dollars in two
years. Indeed, thousands of companies around the world
have enjoyed the breakthrough benefits of Six Sigma.
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For example, Legend Computers in China reported in
2002 savings of $20 million dollars during the first
year of implementation. In the same year, the Interna-
tional Bank of Asia in Hong Kong reported savings of
1.4% of total costs during the first year of Six Sigma
implementation.

50.0.3 Six Sigma Implementation

Six Sigma implementation is usually a top-down ap-
proach, i. e., from the strong commitment of top
management. As most Six Sigma projects span sev-
eral departments, organizational barriers could not be
removed without leadership commitment to Six Sigma.
Strong commitment, leadership and strategic involve-
ment have proven to be key factors for Six Sigma’s
success. Secondly, as Six Sigma requires a long-term
mentality, it needs to be positioned first as a strategic
initiative and then be linked to operational goal. It is
important to tie the Six Sigma implementation to corpo-
rate goals, such as increased profits through lower costs
and higher loyalty, for example. Also, effective internal
communication is another key issue for the success of
Six Sigma implementation.

In the following, a typical business structure for Six
Sigma implementation is introduced. Several potential
failure modes and practical considerations of Six Sigma
implementation are also discussed.

Training and Belt Structure
The deployment of Six Sigma in a company usually
starts with education. Without the necessary train-
ing, people are not able to bring about Six Sigma
breakthrough improvements. Six Sigma establishes
well-defined and structural roles and responsibilities
for a project team, and team members are given for-
mal training according to their roles to help the team
work effectively. A Six Sigma team is usually or-
ganized in a belt structure (as in martial arts) as
follows.

At the top of the belt structure is the Six Sigma
executive. The Six Sigma executive could be a coun-
cil that consists of top managers who have the vision
and make strategic decisions for a company. They are
responsible for establishing the roles and structures
of Six Sigma projects. They also need to make de-
cisions on project selection and resources allocations.
A progress review is conducted periodically to monitor
projects.

Champions are the senior managers who supervise
Six Sigma projects. They report directly to the Six Sigma

executive and represent the team to the executive. They
also need to seek resources and to learn the focus of
the business from the Executive. In addition, champions
meet black belts and green belts periodically to review
the progress and coach the team.

Master black belts work with the champions to
ensure that Six Sigma objectives and targets are set.
Meanwhile, they are the statistical problem-solving
experts in a company. Their responsibilities include de-
termining plans, providing technical expertise, training
and coaching black and green belts.

Black belts, as on-site Six Sigma experts, usu-
ally possess the technical background needed to help
green belts and the other team members to understand
the project and apply appropriate statistical techniques.
Their roles are to provide formal training to local per-
sonnel in new strategies and tools, provide one-on-one
support to local personnel, pass on new strategies and
tools in the form of training, workshops, case studies,
local symposia, etc., and find application opportunities
for breakthrough strategies and tools, both internal and
external (i. e., to the suppliers and customers).

Green belts, on the other hand, execute Six Sigma in
their specific area as a part of their overall job. They may
assist black belts in completing sections of their projects
and apply their learning to their daily performance of
their jobs.

According to the Six Sigma Academy, black belts
are able to save companies approximately US$230 000
per project and can complete four to six projects per
year. The American Society for Quality (ASQ) has been
certifying Six Sigma black belts (SSBB) internation-
ally in recent years. Up to the middle of 2002 there
were around 200 ASQ-certified black belts in the US
and only 11 ASQ-certified black belts outside the US.
Among them, there was only one in the greater China
area (Table 50.2).

Six Sigma Failures (Sick Sigma)
Although Six Sigma is a powerful approach, it can lead
to failure when some critical issues are neglected. How-

Table 50.2 Number of Six Sigma black belts certified by
the American Society for Quality (ASQ) internationally
(ASQ record up to April, 2002)

Indonesia 1 United Kingdom 1

India 5 Hong Kong 1

Japan 1 Mainland China 0

Australia 1 Taiwan 0

Brazil 1 Singapore 0
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ever, as more companies have implemented Six Sigma
since the 1990s, the factors that have led to failure have
been identified and summarized. According to Snee and
Hoerl [50.1], project selection and management support
are usually the two main sources of failure.

The failure modes in project selection usually in-
clude projects not tied to financial results, poorly defined
project scopes, metrics, and goals, projects lasting more
than six months, the wrong people assigned to projects,
project teams that are too large, and infrequent team
meetings. On the other hand, the failure modes in man-
agement support may include black belts with little
time to work on projects, poor or infrequent manage-
ment reviews, poor support from finance, information
technology (IT), human resource (HR), etc., and poor
communication of initiatives and progress [50.1].

Especially, for a Six Sigma program to sustain with-
out failure, recognition and reward systems are the key.
If recognition and reward systems are lacking or re-
main unchanged, the program cannot last. Necessary
practices include establishing and using selection and
promotion criteria and developing corresponding perfor-
mance management and reward systems. GE’s approach,

which links 40% of management bonus to Six Sigma,
may be too aggressive, but a company must adequately
compensate those high-performing members.

Note that the use of statistical methods is not on
the list of major failure modes. With recent advances in
information technology, computing and sensing tech-
nology, the use of advanced statistical methods has
become handy via commercial software packages (such
as MINITAB, JMP, etc.). Therefore, the use of sta-
tistical tools is no longer a bottleneck in Six Sigma
implementation.

Moreover, various industry types and company na-
tures are also not an excuse for Six Sigma failure. Six
Sigma has been successfully applied to many processes
outside of manufacturing, regardless of the company
size or nature of the industry. In particular, transactional
processes, such as software coding, billing, customer
support, etc., often contain variation or excessive cycle
time and can be optimized by applying Six Sigma. For
example, HR managers may apply it to reduce the cycle
time for hiring employees, and regional sales may ap-
ply it to improve forecast reliability, pricing strategies
or variations.

50.1 The DMAIC Methodology

50.1.1 Introduction

The development of Six Sigma is evolutionary, not
revolutionary, and it integrates many useful quality man-
agement tools. Thus, it is not surprising to find overlaps
between the Six Sigma, TQM, lean, and ISO approaches.
The core methodology of Six Sigma is driven by close
understanding of customers’ needs and the disciplined
use of facts, data and statistical analysis, which consists
of five phases, i. e., define, measure, analyze, improve,
and control (DMAIC).

In the define phase, the specific problem is identi-
fied, and the project goals and deliverables are defined.
In the measure phase, the critical-to-quality (CTQ) char-
acteristics are identified and the measurement system is
reviewed. The nature and properties of the data col-
lection have to be understood thoroughly to ensure the
quality of the data. In the analyze phase, both quan-
titative (i. e., statistical) methods and qualitative (i. e.,
management) tools are used to isolate the key infor-
mation that is important to explaining defects. In the
improve phase, the key factors that cause the prob-
lem should be discovered. In the control phase, the key

factors and processes are controlled and monitored con-
tinuously to ensure that the improvement is sustainable
and the problem will not occur again. A detailed case
study on the implementation of the DMAIC methodol-
ogy in printed circuit board manufacturing can be found
in Tong et al. [50.2]. The paper “Six Sigma approach
to reducing fall hazards among cargo handlers work-
ing on top of cargo containers: a case study” by Ng
et al. [50.3, 4] is another case study using DMAIC that
focuses on a non-manufacturing case.

50.1.2 The DMAIC Process

More specifically, we implement the DMAIC method-
ology in detailed steps in sequence to shift our focus
from the output performance (i. e., y) to the root causes
(i. e., the x). Based on these steps, we transfer a practi-
cal problem into a statistical problem (e.g., mapping x
and y), find out a statistical solution for that [e.g., solv-
ing y = f (x)] and then transform the statistical solution
into a practical solution. Each step is described in the fol-
lowing, and the corresponding key tools will be further
explained in a later section.
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Phase 1: Define (D)
This phase defines the Six Sigma project, which in-
cludes a problem statement, the objectives of the
project, the expected benefits, the team structure and
the project time line. At the end of this phase, we
should have a clear operational definition of the project
metrics for the final evaluation. In this phase, the
main tasks are to identify who the customer is, select
the project area, define the goal, scope and resources
of the project, form a Six Sigma project team, de-
fine the team members’ responsibilities, and estimate
the profit and cost for this project to ensure the
value of the project. Key tools in this phase include
the project charter; business process mapping; suppli-
ers, inputs, process, outputs and customer (SIPOC);
etc.

Phase 2: Measure (M)
By taking steps in the measure phase, we have a clear
understanding of the performance of the current pro-
cess and, only after knowing where we are now, can
we determine where we should be in the future. Three
implementation steps in this phase are to select the
critical-to-quality (CTQ) measures, determine deliver-
ables, and quantify the measurability of y.

Select the Critical to Quality (CTQ) Measures. In this
step, we will identify the external CTQ from the cus-
tomer’s point of view (i. e., the big Y ) that will be
improved, and then link that with the internal CTQ (i. e.,
the small y), which is a quantitative measure in the com-
pany and will be the focus of the project. Key tools
in this step include customer needs mapping (CNM),
quality function deployment (QFD), failure modes and
effects analysis (FMEA), etc.

Deliverables. We will establish a performance standard
and develop a data collection plan for the internal CTQ y
in this step. If the measure of y from the previous step is
attributal, what is the definition of a defect? If the data are
continuous, what are the lower and upper specifications
for defectiveness? Key tools used in this step include
process mapping and yield calculation.

Quantify Measurability. We validate the measurement
system on y to ensure the measurement results are
accurate for the following analysis. We may need
to improve the measurement system before continu-
ing. Key tools include measurement system analysis
(MSA), gage repeatability and reproducibility (R&R)
study.

Phase 3: Analyze (A)
After we identify the y in the process, we need to de-
termine the x (root causes), which may impact on the
performance of the y. In the analyze phase, we use var-
ious management and statistical tools to discover the x
for future improvements. Three implementation steps in
this phase are to establish the baseline, determine the
improvement plan, and identify the sources of variation.

Establish the Baseline. We will establish the process
capability for the current process to understand where
we are now. We need to collect the current process data,
use graphical tools to analyze the data, and calculate
the process capability indices, the defect per million op-
portunities (DPMO), and the sigma level (Z). Key tools
include: histograms, process capability indices (PCI),
etc.

Determine Improvement Plan. We quantify the goals
for the improvement to make the aim of the project clear,
and we may determine if the goal is significantly differ-
ent from today’s performance (i. e., the baseline) through
hypothesis testing. Key tools include benchmarking, hy-
pothesis testing, t-test, analysis of variations (ANOVA),
etc.

Identify Variation Sources. We list all the potential
factors (x) that may influence the performance of y. Re-
gression analysis may be conducted, where applicable,
to identify potential x. Key tools include brainstorming,
cause-and-effect diagram, regression analysis, etc.

Phase 4: Improve (I)
As the root causes for variation are obtained, it becomes
possible for us to fix these root causes. In the improve
phase, the way that we can achieve a better process needs
to be found, where the design of experiments (DOE) is
a key technique to help us quantify the relation between
the ys and xs, and to improve the process by finding the
optimal setting of xs for each y. In this phase, we follow
three implementation steps: screen potential sources of
variation, discover variable relationships, and formulate
the implementation plan.

Screen Potential Sources of Variation. We determine
the few vital xs from the many trivial xs in this step.
DOE is a key tool for factor screening. Both full facto-
rial and fractional factorial experiments can be used.
If necessary, historical data can be used with care,
and a similar model or simulation may be used as
well.
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Discover Variable Relationships. We develop the trans-
fer function [y = f (x)] linking the y to the vital xs.
Based on this, we then determine and confirm the opti-
mal settings for the vital few xs. DOE is a key tool for
characterization and optimization as well. Various DOE
techniques, such as the response surface method (RSM),
robust design and the Taguchi method, can be applied in
this step. Other than that, simulation or surveys can also
be used to find the relationship.

Formulate Implementation Plan. In this step, if a new
process or process steps have been put in place, show
the new process map. For the new process, indicate the
new in-process measurements and associated specifica-
tions. If there is not a new process, indicate any new
measurements put in place. We list how the changes to
the xs will be implemented and how much flexibility is
available in the settings of each x. Key tools in this step
include tolerance design, main effects plots, interaction
plots.

Phase 5: Control (C)
After determining how to fix the process, we want the
improvement for the process to be sustainable. The con-
trol phase is set up to ensure sustainable improvement
and to deploy measurement tools to confirm that the pro-
cess is in control. It is also critical to realize the financial
benefits and develop a transfer plan in this phase. Three
implementation steps include validating the implemen-
tation plan, controlling the inputs and monitoring the
outputs, and finally sustaining the change.

Validate the Implementation Plan. To determine how
well the xs can be controlled, we will validate the mea-
surement system on the xs, and we may need to improve
measurement system before continuing. We will also re-
port new sigma levels and new DPMO levels at this step.
Key tools include gage R&R, ANOVA, etc.

Control Inputs and Monitor Outputs. We determine
how each vital xs can be controlled (e.g., attribute
control chart, variable control chart, mistake-proofing,
etc.) and set up a monitoring plan for the y and xs in
this step. Key tools include statistical process control
(SPC), attribute control charts, variable control charts,
Poka–Yoke (mistake-proofing), etc.

Sustain the Change. The objective of this step is to
ensure that changes last after the improvement strategy
has been implemented. Process control plans need to be
developed and implemented for each x. We will also

verify the financial gains that can be achieved and if
this project is translatable to any other regions, lines,
sites, processes, etc. Key tools in the final step include
out-of-control plans, mistake-proofing, audit strategy,
etc.

50.1.3 Key Tools
to Support the DMAIC Process

This section presents the key tools to support the DMAIC
process. Only a few key tools can be covered in this
section and each method is outlined briefly with the basic
ideas and mechanisms. The books and papers cited in
this section give more details.

Business Process Mapping (SIPOC Diagrams)
Purpose. SIPOC stands for suppliers, inputs, process,
outputs and customer. SIPOC diagrams are graphical
tools to identify all relevant elements of a business pro-
cess and map the process flow before the project begins.
They are usually used in the define phase.

Definitions.
Supplier: Whoever produces, provides, or furnishes

the products or services for the input of
the process, either an internal or an external
supplier.

Inputs: Material, resources and data required to ex-
ecute the process.

Process: A collection of activities that take one or
more kinds of input and creates output that
is of value to the customer.

Outputs: The tangible products or services that result
from the process.

Customer: Whoever receives the outputs of the process,
either an internal customer or an external
customer.

How to do it.

Step 1. Clear statement of CTQ and the process.
Step 2. Clear statement of start/end point.
Step 3. Identify major customers, suppliers, outputs,

and inputs.
Step 4. Identify the five to seven major process steps

using brainstorming and storyboarding.
Step 5. Decide what step to map in detail.
Step 6. Complete detailed map.

Quality Function Deployment (QFD)
QFD is a systematic approach to prioritize and translate
customer requirements (i. e., external CTQ) into appro-
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priate company requirements (i. e., internal CTQ) at each
stage from product development to operations to sales
and marketing to distribution. This method is usually
used in the measure phase. It is also useful in design for
Six Sigma (DFSS) and will be introduced in more detail
in the DFSS section.

Failure Modes and Effects Analysis (FMEA)
Purpose. FMEA is a tool to reduce the risk of failures.
It is also a tool to identify and prioritize CTQ at the
measure phase.

Definitions.
Severity: the assessment of how severe a failure

mode is. The severity usually scales from
1–10. Scale 1 means a minor failure mode
that may not be noticed, and 10 means
a very serious failure that may affect safe
operations.

Occurrence: The likelihood that a specific cause will
result in the failure mode, which scales
from 1–10 with 10 being the highest
likelihood.

Detection: The assessment of the ability to identify
the failure mode. A 1–10 scale is often
used with 10 being the lowest detectabil-
ity.

RPN: The risk priority number (RPN) is the
output of a FMEA. RPN = Severity ×
Occurrence × Detection.

How to do it [50.4].

Step 1: Identify the products, services, or processes.
Step 2: Identify the potential failure that would arise in

the target process.
Step 3: Identify the causes of the effects and their like-

lihood of occurrence.
Step 4: Identify the current controls for detecting each

failure mode and the ability of the organization
to detect each failure mode.

Step 5: Calculate the RPN by multiplying the values of
severity, potential causes, and detection.

Step 6: Identify the action for reducing or eliminating
the RPN for each failure mode.

Measurement System Analysis (MSA)
Purpose. A statistical evaluation of the measurement
system must be undertaken to ensure effective analysis
of any subsequent data generated for a given pro-
cess/product characteristic. MSA is usually used in the

measure and control phases to validate the measurement
system for the y and xs.

Definitions.

Gage R&R: is a tool to study the variation in the
measurement arising from the mea-
surement device and the people taking
the measurement.

Repeatability: The variability that reflects the basic,
inherent precision of the gage itself.

Reproducibility: The variability due to different opera-
tors using the gage (or different time,
different environments) [50.5].

How to do it.

Step 1: Collect the data. Generally two to three op-
erators, 10 units to measure, and each unit is
measured 2–3 times by each operator.

Step 2: Perform the calculations to obtain %R&R [50.5].
Step 3: Analyze the results. A rule of thumb is that:

• %R&R < 10%: measurement system is acceptable.• %R&R between 10–30%: measurement system may
be acceptable. We will make decisions based on
the classification of the characteristics, hard appli-
cations, customer inputs, and the sigma level of the
process.• %R&R > 30%: measurement system is not accept-
able. We should improve the measurement system
by finding problems and removing root causes.

Process Capability Analysis
Purpose. Process capability analysis is a statistical
technique to quantify process variability, analyze this
variability relative to customer requirements or specifi-
cations, and assist in reducing the variability [50.5]. It is
used in the analyze phase.

Definitions.

Cp: Process/product capability index, is the relation-
ship of the process/product variation to the upper
and lower specification limits. It is related to the
potential process capability and not a measure of
how centered the data are.

Cpk: It compares process variability with the specifi-
cation’s width and location. It takes into account
that the sample mean may be shifted from the
target. Since both the mean shift and the vari-
ability of the characteristics are considered, Cpk
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is better related to the capability of the current
process.

How to do it. The detailed calculation and analysis is
given by Montgomery [50.5].

Cause–Effect Diagram (Fishbone Diagram)
Purpose. This is a graphical brainstorming tool to
explore the potential causes (i. e., xs) that result in a sig-
nificant effect on y. It is usually used in the analyze
phase.

How to do it.

Step 1: Define clearly the effect or analyzed symptom
(y) for which the possible causes (xs) must be
identified.

Step 2: Place the effect or symptom (y) being explained
on the right of a sheet of paper.

Step 3: Use brainstorming or a rational step-by-step
approach to identify the possible causes.

Step 4: Each of the major areas of possible causes
should be connected with the central spine by
a line.

Step 5: Add possible causes (xs) for each main area.
Step 6: Check for completeness.

Design of Experiments (DOE)
Purpose. DOE is a major tool in the improve phase. It
is used for screening the few, vital xs, characterizing
the relationship between y and xs, and optimizing the
setting of the vital xs.

Definitions.

Factor: An independent variable (i. e.,
xs) whose state can be varied.

Level of a factor: The state of the factor.
Full factorial
experiments: Discover the factor effects and

relationship between y and xs by
running all the combinations of
factor levels.

Fractional factorial
experiments: An economical approach to dis-

covering the factor effects and
to screening the vital few xs by
running only part of the combi-
nations of factor levels.

Response surface
methodology (RSM): A DOE technique that is useful

for modeling and optimization
in which a response of interest y
is influenced by several factors
xs and the objective is to opti-
mize this response. This method
will be discussed more in the
DFSS section.

How to do it [50.6, 7].

Step 1: State the problem.
Step 2: Choose the response variable (y).
Step 3: Choose the factors (xs) and their levels and

ranges.
Step 4: Determine the experimental plan (i. e., the de-

sign matrix).

1. To screen the xs to obtain the few, vital xs, we often
use factorial experiments. In such cases, if the num-
ber of runs is moderate and we have enough time
and resources, we may conduct a full factorial ex-
periment; if the number of runs is large or time and
resources are limited, we may consider a fractional
factorial experiment.

2. To obtain the optimal response, we may conduct
RSM, which is usually conducted after variable
screening.

Step 5: Run the experiments under the prescribed con-
ditions and collect the response data.

Step 6: Analyze the data collected using main effect
plots, interaction plots, ANOVA, etc.

Step 7: Conclude the experiment and make recommen-
dations. A confirmation run or a follow-up DOE
is usually needed.

Statistical Process Control (SPC)

Purpose. SPC is a major tool in the control phase. It is
used to control and monitor the stability and capability
of the few, vital xs for CTQ.

How to do it. This method will be discussed in more
detail in the DFSS section. For a general introduction
to SPC, see Montgomery [50.5]. For recent advances in
SPC, the reader may refer to http://qlab.ielm.ust.hk and
references therein.
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50.2 Design for Six Sigma

The success of Six Sigma’s DMAIC methodology has
generated enormous interest in the business world.
One of the basic ideas is to measure existing defec-
tive processes quantitatively and then to improve them.
Compared with this defect-correction methodology, de-
sign for Six Sigma (DFSS) is a proactive methodology,
which focuses on the new product/service develop-
ment to prevent quality defects from appearing instead
of solving problems when they happen in existing
processes.

DFSS is a disciplined and statistical approach to
product and service design that ensures that new de-
signs can meet customer requirements at launch. The
objective of DFSS is to eliminate and reduce the design
vulnerabilities in both the conceptual and operational
phases by employing scientific tools and statistical
methods.

Unlike the DMAIC methodology, the phases of
DFSS are not universally defined. There are many
methodologies, such as Woodford’s identify, design, op-
timize, validate (IDOV), El-haik’s identify, characterize,
optimize, verify (ICOV), Tennant’s define, customer
concept, design, and implement (DCCDI), and so on.
All these approaches share common themes, objec-
tives, and tools. In this section, we refer to above
methodologies, especially General Electric’s DFSS ap-
proach called define, measure, analyze, design and
verify (DMADV):
Define the project goals and customer requirements.
Measure and determine customer needs and specifica-
tions.
Analyze the options of conceptual solutions to meet
customer needs.
Design the product/service to meet customer needs.
Verify the design performance and ability to meet cus-
tomer needs.

50.2.1 Why DFSS?

Proactive versus Retroactive
During the product/service design process, conceiv-
ing, evaluating and selecting good design solutions are
difficult tasks with enormous consequences. Usually or-
ganizations operate in two modes: proactive, that is,
conceiving feasible and healthy conceptual solutions the
first time; and retroactive, that is, an after-the-fact prac-
tice that drives design in a design–test–fix–retest cycle
and creates what is broadly known as the fire-fighting
mode of design. If a company follows this practice, it

suffers from high development costs, longer times to
market, lower quality levels, and marginal competitive
edge [50.8].

Compared to retroactive approaches such as
DMAIC, which apply performance improvement in the
later stages of the product/service life cycle, DFSS shifts
the attention to improving performance in the front-
end design stages. That is, the focus is on problem
prevention instead of problem solving. This action is
motivated by the fact that the design decisions made
during the early stages of the product/service life cy-
cle have the largest impact on both total cost and
quality of the system. It is often claimed that up to
80% of the total cost is committed in the concept
development stage. Also, at least 80% of the design
quality is committed in the early design stages. Ac-
cording to a study of the design community [50.8],
at the early design stage, the impact (influence) of
design activity is much higher than a later stage,
while the correction cost in the early stage is much
lower.

Experience Dependency versus Scientific
and Systematic Methodology
Currently, most design methods are empirical in na-
ture, while the work of the design community is often
based on experience. This experience-based tradition
often leads to unnecessary variation and is difficult for
project manager to control. As a result, vulnerabilities
are introduced into the new design that makes it im-
possible for the product/service to achieve Six Sigma
performance. This is another motivation for devising
DFSS as a scientific and systematic design method to
address such needs.

50.2.2 Design for Six Sigma:
The DMADV Process

Generally speaking, DFSS has five phases spread over
product development. They are called: define, measure,
analyze, design and verify (DMADV).

Phase 1: Define (D)
The process of product/service design begins when there
is a need (internal or external), which can be a problem
to be solved or a new invention. In this phase, design ob-
jectives, scope and available resources should be simply
and clearly defined in the design project charter as the
key deliverables.
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Phase 2: Measure (M)
In particular, the voice of customer (VOC) is the criti-
cal input in customer-oriented design. Based on VOC,
the internal CTQ measures (critical to quality or critical
to satisfaction, i. e., the y), such as cost, performance,
reliability, aesthetics and serviceability, need to be iden-
tified quantitatively and to be prioritized according to
their importance to customers. This kind of information
can help to define the function requirements in a later
phase.

Phase 3: Analyze (A)
In this phase, the CTQs will be decomposed into mea-
surable and solution-free functional requirements (FRs).
Then, a number of conceptual-level design alternatives
should be produced by the design team for the FRs,
considering cost, physical properties, the difficulties
to operate/manufacture and maintenance, etc. Through
summarizing the design requirements and conceptual-
level design alternatives, an overall set that contains
high-potential and feasible solutions can be produced
to help the design team to decide on the best solu-
tion considering the original design charter including
the performance, the constraint of cost and available
resources.

Phase 4: Design (D)
Once the design team fixes the selection of the con-
ceptual solutions, they need to decompose the FRs into
design parameters (DPs). At the same time, they need
to consider the potential risk to achieve CTQs when
they create detailed designs to the level of design pa-
rameters. Then, optimization tools will be used to get
optimal values for the design parameters. In DFSS, op-
timization can be reached statistically, and by using
statistical tools, the transfer functions can be generated
to mathematically represent the relationships between
the input and output of a product or a service pro-
cess. Then, the design team can rely on the transfer
function to optimize the design solutions so that the
product/service can achieve a target performance and
be insensitive to uncontrollable factors (noise factors),
such as the environment and production case-to-case
variation.

Phase 5: Verify (V)
In this phase, the design team makes a model formed
by the simulation of a service process or a physi-
cal prototype that is the first working version of the
product. Based on these few prototypes, the design
team evaluates and tests the whole design to predict

if the future product’s performance can meet the design
charter and how to improve the solution when failure
occurs.

50.2.3 Key Tools
to Support the DMADV Process

Below is a summary of the key tools used to support the
DMADV process.

Voice of Customer (VOC)
Purpose. Define customer needs/requirements for the
new product/service design or existing product/service
redesign.

Input. Market segment defined – who the customers are
and their environment.

Output. Detailed customer requirements.

How to do it [50.9].

Step 1: Define market segments – to understand who
the customers are and where to go to gather
their needs.

Step 2: Identify objective for interviews of customer –
to learn what of their needs are new, unique, and
difficult (NUD).

Step 3: Select customer groups within the target market
segments.

Step 4: Decide on the customer visit team – divide into
three roles: leader, subordinate interviewer that
helps adding balance and diversity in the dis-
cussion, and statement writer that writes down
the VOC needs statement.

1. Create an interview guide based on objectives – to
get customers’ responses that are rich in description
of needs.

2. Listen, probe, and observe customers by asking
stimulating questions and open-ended statements to
gather the VOC. Image data can be gathered by ac-
tual observation of customers’ responses to existing
products or services.

Kawakita Jiro (KJ) Method [50.10]

Purpose. Structure and rank the customer requirements.

Input. The detailed VOC.

Output. Organized customer requirements.
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How to do it [50.11].

Step 1: Write down customer descriptions as statements
of customer requirements on a POST-IT note
and put them on the wall.

Step 2: Group the similar customer requirements to-
gether.

Step 3: Review the customer requirements statements
and throw out redundant ones.

Step 4: Write a summary to express the general idea
for each group. For those that do not relate to
anything else, label it as independent.

Step 5: Vote for the most important groups and rank the
top three groups and assign some relationships.
If a group supports another group in a posi-
tive manner, we add an arrow pointing from
the supporting group to the supported group. If
the relationship is contradictory, we add a line
pointing between the two groups with blocks on
the end.

Step 6: Look at each detailed customer requirement and
highlight the new, unique, or difficult ones.

Step 7: Ask customers to rank (on a scale of 1–10) the
strength of importance for each requirement.

The result of these ranked and structured customer
requirements will flow into the QFD process.

Quality Function Deployment (QFD):
the houses of quality [50.12]
QFD is a methodology that establishes bridges between
qualitative, high-level customer needs/requirements and
the quantitative engineering terms that are critical to
fulfilling these high-level needs. By following QFD,
relationships can be explored among customer require-
ments, CTQ measures, function requirements (FRs),
design parameters (DPs) and process variables (PVs).
And the priorities of each CTQ, FR, DP and PV can be
quantitatively calculated.

Generally, the QFD methodology is deployed
through a four-phase sequence.

Phase 1 – critical-to-satisfaction planning (HOQ1)
Phase 2 – functional requirements planning (HOQ2)
Phase 3 – design parameters planning (HOQ3)
Phase 4 – process variable planning (HOQ4)
In this chapter, HOQ1 will be introduced in detail as

an example.

Input. Structured and ranked new, unique and difficult
(NUD) VOC from the KJ diagram.

Key Output. The priorities of each CTQ.

How to do it [50.8].

Step 1: Convert NUD VOC (“WHATs”) into a list of
CTQs (“HOWs”) in terms of the engineering
perspective to support customer requirements
along the roof of the house. There may be
more then one CTQ to achieve each customer
requirement.

Step 2: Quantify the relationship between each
customer requirement to each CTQ on
a 1−3−9 scale (9 = strong fulfillment, 3 =
moderate fulfillment, 1 = weak fulfillment, or
0 = no relationship). These values help to iden-
tify which CTQs are critical and which are
not.

Step 3: Identify the correlation between each pair of
CTQ to address the cooperative and conflicting
relationships among CTQs to develop the design
to be as cooperative as possible.

Step 4: Conduct a competitive assessment with a main
competitor. The comparison with the key com-
petitor on each customer requirement is on
a 1–5 scale, with five being high.

Step 5: Prioritize customer requirements. These prior-
ities include importance to customer from the
KJ method, improvement factor, and absolute
weight. Customer requirements with low com-
pletive assessments and high importance are
candidates for improvement, which will be as-
signed improvement factors on a 1–5 scale, with
five being the most essential target to improve.
The absolute weight can then be calculated by
multiplying the customer importance and the
improvement factor.

Step 6: Priority CTQs. The CTQs are prioritized by de-
termining absolute weight and relative weight.
The absolute weight is calculated by the
sum of the products of the relationship be-
tween customer requirements and CTQs and
the importance to the customer. The rela-
tive weight is the sum of the products of
the relationship between customer requirements
and CTQs and customer requirement absolute
weights. The relative and absolute weights are
evaluated to prioritize and select CTQs for
improvement.

Furthermore, the design team can apply the same
method for identifying the relationship among CTQs,
functional requirements, design parameters and process
variables.
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The Pugh Concept Evaluation
and Selection Process [50.13]
The Pugh concept evaluation is a solution-iterative selec-
tion process. The method alternates between generation
and selection activities. The generation activity can be
enriched by the TRIZ (theory of inventive problem
solving, [50.14]) methodology to generate conceptual
solutions for each functional requirement. The selection
activity can use a scoring matrix called the Pugh matrix
or the criteria-based matrix to evaluate the concepts.

Input. Functional requirements and conceptual solu-
tions to achieve corresponding FRs.

Output. The conceptual solutions, which are selected
and ready to go forward into the design phase.

How to do it [50.15].

Step 1: Define concept selection criteria from a clear
and complete set of requirements.

Step 2: Define a best-in-class benchmarked datum
concept.

Step 3: Provide candidate concepts to evaluate against
the datum.

Step 4: Evaluate each concept against the datum using
(+)s, (−)s, and (S)s to rank the fulfillment of
the concept selection criteria.

(+) means the concept is better than the benchmarked
datum concept;
(−) means the concept is worse than the benchmarked
datum concept;
(S) means the concept is the same with the benchmarked
datum concept.
Step 5: Refine criteria as necessary during the first

cycle of evaluation.
Step 6: Analyze the results from the first cycle of

evaluation: the sum of (+)s, (−)s, and (S)s.
Step 7: Identify weakness in concepts that can be

turned into (+)s.
Step 8: Create hybrid super-concepts by integrating

the strengths of similar concepts to remove
(−)s and (S)s.

Step 9: Select a new datum based on the scoring that
suggests a superior concept after the first cycle
of evaluation.

Step 10: Add any new concepts that have been devel-
oped.

Step 11: Repeat the evaluation process through the sec-
ond cycle.

Step 12: The superior concept is selected and ready to

go forward into the development or design
phase.

Design Failure Modes
and Effects Analysis [50.16]
DFMEA is applied to define qualitatively and rank quan-
titatively the failure modes and effects for new products
and service processes across all the phases of DMADV.
In particular, the design team can use DFMEA in a de-
sign concept for potential failure modes so it can address
them early in the design. Usually DFMEA is con-
ducted on the superior concept, which is chosen from
all the candidate concepts in the Pugh concept-selection
process.

Input. Superior concept architectures, functional re-
quirements, the physical form, etc.

Output. Causes of failure and corrective action.

How to do it [50.8].

Step 1: Develop a block diagram of the design ele-
ment or function being analyzed (at system,
subsystem, subassembly, or component level).

Step 2: Determine the ways in which each design ele-
ment or function can fail (failure modes).

Step 3: Determine the effects of the failure on the cus-
tomer(s) for each failure mode associated with
the element or function.

Step 4: Identify potential causes of each failure mode.
Step 5: List the current design controls for each cause

or failure mode.
Step 6: Assign severity, occurrence, and detection rat-

ings to each cause.
Step 7: Calculate risk priority numbers (RPN) for each

cause.
Step 8: Apply tools and best practices to reduce the sen-

sitivity to root causes of failure or eliminate root
causes of failure and recalculate RPNs.

Step 9: Document causes of failure and corrective ac-
tion results qualitatively and quantitatively.

Response Surface methods [50.6, 17]
Purpose. Optimize the system performance in the design
phase by constructing a statistical model and response
surface map that represents the relationship between the
response and the critical design parameters. If the design
parameters are quantitative and there are only a few
of them, RSM is an effective tool for modeling and
optimization.
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Input. Critical design parameters.

Output. Surface map and equations that determine the
level of the factors.

How to do it [50.18].

Step 1: Choose a CTQ response to be studied by exper-
imentation.

Step 2: Determine the critical parameter to be modified
with the experiments. Focus on the significant
factors that affect the response.

Step 3: Select the measurement system used to analyze
the parameters.

Step 4: Create the transfer function from the experimen-
tal data. The transfer function is a mathematical
description of the behavior of the system that
can be used to create surface plots and optimize
the system’s performance.

Step 5: Plot the response surface maps to observe the
system behavior.

Step 6: Final output: a surface map and an equation that
is used to determine the level of the factors.
Sensitivity of the factors can also be analyzed.

Inferential Statistics
Inferential statistics are often employed in the verifica-
tion phase.

Purpose. Identify and control variation in the critical
responses.

Input. The new product/service’s performance data.

Output. The decision on which factors have an effect on
the design’s response.

Hypotheses and risk: There are null hypothesis and
alternate hypothesis. Once we
have data, we can determine
whether we should accept or
reject the null hypothesis, by cal-
culating a test statistic.

The t-test: Used to compare two samples, or
one sample with a standard. The
null hypothesis is that the means
are equal and the difference be-
tween the two population means
is zero.

Analysis of
variance (ANOVA): We use ANOVA when there are

more than two samples to com-
pare. ANOVA is used to test
whether the means of many sam-
ples differ.

H. Statistical Process Control [50.5]
Purpose. Monitor the critical response of the new prod-
uct/service in the verify phase to assess stability and
predictability and detect important changes.

Input. The new product/service’s performance data.

Output. Assessment of the new product/service’s sta-
bility, predictability, sigma level and capability for
commercialization readiness.

Main considerations. Sample size considerations –
sample size should be large enough to provide good
sensitivity in detecting out-of-control conditions

Sampling frequency – sampling should be frequent
enough to ensure opportunities for process control and
improvement.

Concepts. A production/service process that is operating
with only chance causes (common causes) of variation
present is said to be in statistical control. A process is
out of control if there exists assignable causes (special
causes) that are not part of the chance cause pattern such
as improperly adjusted or controlled machines, operator
errors, or defective raw material [50.5]. An SPC chart
is used to distinguish these two types of causes by up-
per and lower control limits (UCL and LCL). As long as
all the sample points plot within the control limits, the
process is assumed to be in statistical control. If a chart-
ing point is out of the control limits, this implies that
there is evidence that the process is out of control. We
then should investigate the assignable causes and take
corrective actions.

We can use SPC charts to determine if a new
product/service’s CTQ measure is in control. If it is,
the product/service may move to the mass-production
phase.

How to do it [50.5].

Step 1: Select the environment in which the data will be
collected.

Step 2: Select the responses and parameters that will be
monitored.

Step 3: Select the measurement systems used to acquire
the data.

Step 4: Run the system in the prescribed environment
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and acquire the data.
Step 5: Plot the data using the appropriate type of SPC

chart.

Step 6: Assess the plots for stability and predictability.
Step 7: Calculate the estimates of sigma level and pro-

cess capability.

50.3 Six Sigma Case Study

In this section, a case study on printed circuit board
(PCB) improvement by the author is used to demon-
strate the application of Six Sigma, which is digested
from Tong et al. [50.2] where a more detailed report of
this case may be found. This study was conducted in ref-
erence to the DMAIC approach, and the objective is to
improve the sigma level for a series of products called
PSSD in the screening process.

50.3.1 Process Background

This case study was conducted in an electronic com-
pany, which is located in an industrial park in southern
China. The company manufactures multilayer PCBs by
using the surface-mount technology (SMT), which is
a technique for placing surface-mount devices (SMDs)
on the surface of a PCB. SMDs are micro-miniature
leaded or leadless electronic components that are sol-
dered directly to the pads on the surface of the PCB.
The major manufacturing processes in the company
are solder screen, component placement, and solder
reflow. As any defect in any of the solder joints can
lead to the failure of the circuit, the screening pro-
cess is regarded as the most critical process in PCB
manufacturing.

The screening process is a manufacturing process
that transfers solder paste onto the solder pad of a PCB.
The application method for solder paste is printing, and
the printing technique used is off-contact printing, in
which there is a snap-off distance between a stencil
and a PCB. The type of screening machine used to
manufacture PSSD products is semiautomatic. During
a printing process, two PCBs are placed side-by-side on
the holder of a screening machine. The solder paste
is then placed onto a stencil manually before print-
ing. The front/back blade makes a line contact with the
stencil and a close contact with the given amount of
solder paste. The solder paste is then rolled in front
of the front/back blade. In this way, solder paste is
pressed against the stencil and transferred onto the sol-
der pad through the stencil openings. More detailed
operation of a screening process is described in Tong
et al. [50.2].

50.3.2 Define Phase

In this case, we specifically focus on the improvement
of the sigma level of the PCB screening process. In
the screening process, the solder paste volume (height)
transferred onto the PCB is the most important factor
that needs to be controlled carefully. This is because too
little solder paste can cause open circuits and too much
solder paste can cause bridging between solder pads in
the subsequent processes. As a result, the solder paste
height on the solder pads is identified as a critical-to-
quality (CTQ) characteristic (i. e., the y) that needs to
be controlled in a very precise way by the company.
According to that, a project team is formed and a project
charter is constructed.

50.3.3 Measure Phase

To control the screening process, the project team in
the company has asked operators to measure the sol-
der paste height for the PSSD product on five different
points on a PCB. The solder paste height on the five
points is measured by using the Cyberoptics Cybersen-
try system every four hours. The gage repeatability and
reproducibility (R&R) of the measurement system was
verified before the study on the solder paste height is con-
ducted. The gage R&R results ensured that the data from
the current measurement system are accurate enough for
the following analysis.

50.3.4 Analyze Phase

Currently, six semiautomatic screening machines are
used to manufacture the PSSD product. Therefore, the
data on solder paste height of these six machines was
collected from the company, and the process capabil-
ity analysis was conducted for these screening machines
in order to analyze the current printing performance.
According to the analytical results, the process capabil-
ity in machine number 12 was not satisfactory because
the capability index Cp was only 1.021, which was
smaller than 1.33 (the four-sigma level). Moreover, an-
other capability index Cpk was 0.387. This showed that
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the screening process was off-center. Based on the pro-
cess capability study, we concluded that there exist both
a high variance and a mean shift in the solder paste pro-
cess. Therefore, we list all the potential factors (xs) that
may cause this through brainstorming and constructing
a cause and effect diagram.

50.3.5 Improve Phase

In the analysis of the current printing performance, the
result showed that the screening process capability of
machine number 12 was not satisfactory. After brain-
storming with the mechanical engineers in the company,
the designed experiments were decided to conduct on
machine number 12 in order to determine the optimal
settings of all the input factors (xs) in the screening pro-
cess. In this phase, DOE was used as a core statistical
tool for the sigma level improvement.

In the initial experiments, several possible factors
that might have influence the printing performance
were taken into account. These experiments were used
to screen out new factors that have influence on the
printing performance. These significant factors would
then be included together with the already-known
significant factors (solder paste viscosity, speed of
squeegee, and pressure of squeegee) in the further ex-
periments. The aim of the further experiments was to
determine the standard settings of all the significant

factors (i. e., the few, vital xs). By using these op-
timal settings in the screening process, the printing
performance could be improved. As a result, the sigma
level can also be enhanced significantly. The detailed
DOE setting, analysis, and result can be found in Tong
et al. [50.2].

50.3.6 Control Phase

To sustain the improvement of the sigma level in the
screening process, control plans for all the important xs
were proposed to the company. For example, both the
CTQ y and the vital xs should be monitored by SPC
charts over time, so that the solder paste height varia-
tion and the sigma level can be controlled and sustained
continuously. Also, the financial benefits through the
reduction of COPQ were calculated.

The comparison of the printing performance before
and after the project was reported in Tong et al. [50.2].
After using the optimal settings, the sigma level of the
screening process can be improved from 1.162 to 5.924.
This shows that a nearly six-sigma performance can be
achieved. According to Harry and Schroeder [50.19], the
level of defects per million opportunities (DPMO) would
reduce to near 3.4 and the COPQ would be less than one
percent of the sales. As a result, after the Six Sigma
practice, the COPQ of the process for this company has
been significantly reduced.

50.4 Conclusion

As Six Sigma is evolving over time, the advantages
and benefits of other business-excellence approaches
can still be learned and utilized in future Six Sigma
programs. According to Hahn [50.20], combining other
tools or methodologies and the Six Sigma methodol-
ogy may be a future trend. For example, combining lean
tools with the Six Sigma methodology has become pop-
ular during the last few years. And there are expected to
be more combinations in the future.

Recently, Six Sigma efforts have been pushed to
both the external suppliers and external customers along
a supply chain, which has resulted in even larger overall
business impacts and cost savings. I have also observed
an increasing trend outside the US, where more and
more companies in Asia and Europe, including small-
to-medium-sized enterprizes, have implemented various
stages of Six Sigma deployment and discovered its far-
reaching benefits.
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Multivariate M51. Multivariate Modeling with Copulas
and Engineering Applications

This chapter reviews multivariate modeling with
copulas and provides novel applications in
engineering. A copula separates the dependence
structure of a multivariate distribution from its
marginal distributions. Properties and statistical
inferences of copula-based multivariate models
are discussed in detail. Applications in engineering
are illustrated via examples of bivariate process
control and degradation analysis, using existing
data in the literature. A software package has
been developed to promote the development and
application of copula-based methods.

Section 51.1 introduces the concept of copulas
and its connection to multivariate distributions.
The most important result about copulas is Sklar’s
theorem, which shows that any continuous multi-
variate distribution has a canonical representation
by a unique copula and all its marginal distri-
butions. A general algorithm to simulate random
vectors from a copula is also presented.

Section 51.2 introduces two commonly
used classes of copulas: elliptical copulas and
Archimedean copulas. Simulation algorithms are
also presented.

Section 51.3 presents the maximum-likelihood
inference of copula-based multivariate distribu-
tions given the data. Three likelihood approaches
are introduced. The exact maximum-likelihood
approach estimates the marginal and copula para-
meters simultaneously by maximizing the exact
parametric likelihood. The inference functions for
margins approach is a two-step approach, which
estimates the marginal parameters separately for
each margin in a first step, and then estimates
the copula parameters given the the marginal
parameters.

The canonical maximum-likelihood approach
is for copula parameters only, using uniform
pseudo-observations obtained from transforming
all the margins by their empirical distribution
functions.

Section 51.4 presents two novel engineering
applications. The first example is a bivariate
process-control problem, where the marginal
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normality seems appropriate but joint normality
is suspicious. A Clayton copula provides a better
fit to the data than a normal copula. Through
simulation, the upper control limit of Hotelling’s T 2

chart based on normality is shown to be misleading
when the true copula is a Clayton copula. The
second example is a degradation analysis,
where all the margins are skewed and heavy-
tailed. A multivariate gamma distribution with
normal copula fits the data much better than
a multivariate normal distribution.

Section 51.5 concludes and points to references
about other aspects of copula-based multivariate
modeling that are not discussed in this chapter.

An open-source software package for the
R project has been developed to promote
copula-related methodology development and
applications. An introduction to the package and
illustrations are provided in the Appendix.
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Multivariate methods are needed wherever indepen-
dence cannot be assumed among the variables under
investigation. Multivariate data are encountered in real
life much more often than univariate data. This is
especially true nowadays with the rapid growth of data-
acquisition technology. For example, a quality-control
engineer may have simultaneous surveillance of several
related quality characteristics or process variables; a re-
liability analyst may measure the amount of degradation
for a certain product repeatedly over time. Because of
the dependence among the multiple quality character-
istics and repeated measurements, univariate methods
are invalid or inefficient. Multivariate methods that can
account for the multivariate dependence are needed.

Classic multivariate statistical methods are based on
the multivariate normal distribution. Under multivariate
normality, an elegant set of multivariate techniques, such
as principle-component analysis and factor analysis, has
become standard tools and been successful in a variety of
application fields. These methods have become so pop-
ular that they are often applied without a careful check
about whether multivariate normality can reasonably be
assumed.

In many applications, the multivariate normal as-
sumption may be inappropriate or too strong to be
made. Non-normality can occur in different ways. First,
the marginal distribution of some variables may not
be normal. For instance, in the degradation analysis
in Sect. 51.5, the error rates of magnetic-optic disks at
all time points are skewed and heavy-tailed, and hence
cannot be adequately modeled by normal distributions.
Second, even if all the marginal distributions are normal,
jointly these variables may not be multivariate normal.
For instance, in the bivariate process-control problem
in Sect. 51.5, marginal normality seems appropriate but
joint normality is suspicious. In both examples, mul-
tivariate distributions that are more flexible than the
multivariate normal distribution are needed.

Non-normal multivariate distributions constructed
from copulas have proved very useful in recent years

in many applications. A copula is a multivariate distri-
bution function whose marginals are all uniform over
the unit interval. It is well known that any continu-
ous random variable can be transformed to a uniform
random variable over the unit interval by its prob-
ability integral transformation. Therefore, a copula
can be used to couple different margins together and
construct new multivariate distributions. This method
separates a multivariate distribution into two compo-
nents, all the marginals and a copula, providing a very
flexible framework in multivariate modeling. Compre-
hensive book references on this subject are Nelsen [51.1]
and Joe [51.2]. For widely accessible introductions,
see, for example, Genest and MacKay [51.3] and
Fisher [51.4].

Copula-based models have gained much attention in
various fields. Actuaries have used copulas when mod-
eling dependent mortality and losses [51.5–7]. Financial
and risk analysts have used copulas in asset allocation,
credit scoring, default risk modeling, derivative pricing,
and risk management [51.8–10]. Biostatisticians have
used copulas when modeling correlated event times and
competing risks [51.11,12]. The aim of this chapter is to
provide a review of multivariate modeling with copulas
and to show that it can be extensively used in engineering
applications.

The chapter is organized as follows. Section 51.1
presents the formal definition of copulas and the
construction of multivariate distribution with copulas.
Section 51.2 presents details about two commonly used
classes of copulas: elliptical copulas and Archimedean
copulas. Section 51.3 presents likelihood-based statisti-
cal inferences for copula-based multivariate modeling.
Section 51.4 presents two engineering applications:
multivariate process control and degradation anal-
ysis. Section 51.5 concludes and suggests future
research directions. An open-source software package
copula [51.13] for the R project [51.14] has been
developed by the author. A brief introduction to the
package and illustrations are presented in the Appendix.

51.1 Copulas and Multivariate Distributions

51.1.1 Copulas

Consider a random vector (U1, . . . ,Up)�, where each
margin Ui , i = 1, . . . , p, is a uniform random variable
over the unit interval. Suppose the joint cumula-
tive distribution function (CDF) of (U1, . . . ,Up)�

is

C(u1, . . . , u p)=Pr(U1≤u1, . . . ,Up≤u p) . (51.1)

Then, the function C is called a p-dimensional cop-
ula. As Embrechts et al. [51.9] noted, this definition of
a copula masks some of the problems when construct-
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ing copulas using other techniques, by not explicitly
specifying what properties a function must have to
be a multivariate distribution function; for a more
rigorous definition, see for example Nelsen [51.1].
However, this definition is operational and very in-
tuitive. For example, one immediately obtains with
this definition that, for any p-dimensional copula C,
p ≥ 3, each k ≤ p margin of C is a k-dimensional
copula and that independence leads to a product cop-
ula

Πp(u1, . . . , up) =
p∏

i=1

ui . (51.2)

Every continuous multivariate distribution function
defines a copula. Consider a continuous random vec-
tor (X1, . . . , Xp)� with joint CDF F(x1, . . . , xp).
Let Fi , i = 1, . . . , p, be the marginal CDF of Xi .
Then, Ui = Fi (Xi ) is a uniform random variable
over the unit interval. One can define a copula C
as

C(u1, . . ., up)=F
{
F−1

1 (u1), . . ., F−1
p (up)

}
. (51.3)

The elliptical copulas in Sect. 51.2.1 are con-
structed this way. Another important class of copu-
las, Archimedean copulas, is constructed differently
(Sect. 51.2.2).

A copula (51.1) can be used to construct multivariate
distributions with arbitrary margins. Suppose that it is
desired that the i-th margin Xi has marginal CDF Gi .
A multivariate distribution function G can be defined
via a copula C as

G(x1, . . . , xp) = C{G1(x1), . . . , Gp(xp)} . (51.4)

This multivariate distribution will have the desired
marginal distributions.

Clearly, there is a close connection between copulas
and multivariate distributions. It is natural to investigate
the converse of (51.4). That is, for a given multivariate
distribution function G, does there always exist a cop-
ula C such that (51.4) holds? If so, is this C unique?
These problems are solved rigorously by Sklar’s [51.15]
theorem in the next section.

51.1.2 Copulas to Multivariate Distributions

Sklar’s theorem is the most important result about copu-
las. The bivariate version of the theorem was established
by Sklar [51.15] almost half a century ago in the
probability metrics literature. The proof in the general
p-dimensional case is more involved and can be found

in Sklar [51.16]. A formal statement of the theorem is
as follows [51.1].

Theorem 51.1
Let F be a p-dimensional distribution function with
margins F1, . . . , Fp. Then there exists a p-dimensional
copula C such that, for all x in the domain of F,

F(x1, . . . , xp) = C{F1(x1), . . . , Fp(xp)} . (51.5)

If F1, . . . , Fp are all continuous, the C is unique; other-
wise, C is uniquely determined on RanF1 × · · ·× RanFp,
where RanH is the range of H . Conversely, if C is
a p-dimensional copula and F1, . . . , Fp are distribu-
tion functions, then the function F defined by (51.5)
is a p-dimensional distribution function with marginal
distributions F1, . . . , Fp.

Sklar’s theorem ensures that a continuous multivari-
ate distribution can be separated into two components,
univariate margins and multivariate dependence, where
the dependence structure is represented by a copula.
The dependence structure of a multivariate distribution
can be analyzed separately from its margins. It is suffi-
cient to study the dependence structure of a multivariate
distribution by focusing on its copula.

The probability density function (PDF) of the CDF F
in (51.5) can be found from the PDF of C and
F1, . . . , Fp. The PDF c of the copula C in (51.1) is

c(u1, . . . , up) = ∂ pC(u1, . . . , up)

∂u1 . . . ∂up
. (51.6)

When the density c is known, the density f of the multi-
variate distribution F in (51.5) is

f (x1, . . . , xp)

= c
{

F1(x1), . . . , Fp(xp)
} p∏

i=1

fi (xi ) , (51.7)

where fi is the density function of the distribution Fi .
Expression (51.7) is called the canonical representa-
tion of a multivariate PDF. It will be used to construct
likelihood for observed data.

51.1.3 Concordance Measures

The copula of two random variables completely deter-
mines any dependence measures that are scale-invariant,
that is, measures that remain unchanged under mono-
tonically increasing transformations of the random
variables. The construction of the multivariate distribu-
tion (51.5) implies that the copula function C is invariant
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under monotonically increasing transformations of its
margins. Therefore, scale-invariant dependence mea-
sures can be expressed in terms of the copulas of the
random variables.

Concordance measures of dependence are based on
a form of dependence known as concordance. The most
widely used concordance measures are Kendall’s tau and
Spearman’s rho. Both of them can be defined by intro-
ducing a concordance function between two continuous
random vectors (X1, X2) and (X ′

1, X ′
2) with possibly

different joint distributions G and H , but with common
margins F1 and F2. This concordance function Q is
defined as

Q = Pr
{
(X1− X ′

1)(X2− X ′
2) > 0

}

−Pr
{
(X1− X ′

1)(X2− X ′
2) < 0

}
, (51.8)

which is the difference between the probability of con-
cordance and dis-concordance of (X1, X2) and (X ′

1, X ′
2).

It can be shown that

Q = Q(CG,CH )

= 4

1∫

0

1∫

0

CG(u, v)dCH (u, v)−1 , (51.9)

where CG and CH are the copulas of G and H , respec-
tively.

For a bivariate random vector (X1, X2) with cop-
ula C, Kendall’s tau is defined as Q(C,C ), interpreted
as the difference between the probability of concordance
and dis-concordance of two independent and identically
distributed observations. Therefore, we have

τ = 4

1∫

0

1∫

0

C(u1, u2)dC(u1, u2)−1 , (51.10)

where the range of τ can be shown to be [−1, 1]. Spear-
man’s rho, on the other hand, is defined as 3Q(C,Π ),
where Π is the product copula obtained under indepen-
dence. That is,

ρ = 12

1∫

0

1∫

0

u1u2 dC(u1, u2)−3 . (51.11)

The constant 3 scales this measure into the range of
[−1, 1] (see for example Nelson [51.1] p.129). Spear-
man’s rho is proportional to the difference between
the probability of concordance and dis-concordance
of two vectors: both have the same margins, but one
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Fig. 51.1a,b Perspective plots of the Fréchet–Hoeffding
bounds. (a) lower bound; (b) upper bound

has copula C while the other has the product cop-
ula Π. It is straightforward to show that Spearman’s
rho equals Pearson’s product-moment correlation coef-
ficient for the probability-integral-transformed variables
U1 = F1(X) and U2 = F2(Y ):

ρ = 12E(U1U2)−3 = E(U1U2)−1/4

1/12

= E(U1U2)− E(U1)E(U2)√
Var(U1)Var(U2)

. (51.12)

There are other dependence measures based on cop-
ulas. For example, tail dependence is a very important
measure when studying the dependence between ex-
treme events. Details can be found in Joe [51.2].
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51.1.4 Fréchet–Hoeffding Bounds

Important bounds are defined for copulas and mul-
tivariate distributions. These bounds are called the
Fréchet–Hoeffding bounds, named after the pioneer-
ing work of Fréchet and Hoeffding, who independently
published their work on this in 1935 and 1940, respec-
tively [51.17]. Define the functions Mp and Wp on [0, 1]p

as follows:

Mp(u1, . . . , up) = min(u1, . . . , up),

Wp(u1, . . . , up) = max(u1+· · ·+up−n+1, 0) .

Then for every copula C,

Wp(u1, . . . , up) ≤ C(u1, . . . , up)

≤ Mp(u1, . . . , up) . (51.13)

These bounds are general bounds, regardless of whether
the margins are continuous or not. The function Mp is al-
ways a p-dimensional copula for p≥ 2. The function Wp
fails to be a copula for p ≥ 2, but it is the best possible
lower bound since, for any u = (u1, . . . , up) ∈ [0, 1]p,
there exists a copula C (which depends on u) such
that C(u) = Wp(u). In the bivariate case, these bounds
correspond to perfect negative dependence and perfect
positive dependence, respectively. Within a given fam-
ily of copulas, they may or may not be attained (see for
example [51.1] Table 4.1). Figure 51.1 shows the per-
spective plots of the Fréchet–Hoeffding bounds copulas
and the product copula.

Intuitively, perfect dependence should lead to ex-
tremes of concordance measures. It can be shown that,
for continuous random vector (X1, X2) with copula C,
τ =−1 (or ρ =−1) is equivalent to C = W2 and τ = 1

(or ρ = 1) is equivalent to C = M2; see Embrechts
et al. [51.18] for a proof.

51.1.5 Simulation

Random-number generation from a copula is very
important in statistical practice. Consider the p-
dimensional copula in (51.1). Let Ck(u1, . . . , uk) =
C(u1, . . . , uk, 1, . . . , 1) for k = 2, . . . , p−1. The con-
ditional CDF of Uk given U1 = u1, . . . ,Uk−1 = uk−1
is

Ck(uk|u1, . . . , uk−1)

=
∂k−1Ck(u1, . . . , uk)

∂u1 . . . ∂uk−1

∂k−1Ck−1(u1, . . . , uk−1)

∂u1 . . . ∂uk−1

. (51.14)

Algorithm (51.1) is a general algorithm to generate
a realization (u1, . . . , up) from C via a sequence of con-
ditioning. When the expression for Ck(·|u1, . . . , uk−1)
is available, a root-finding routine is generally needed in
generating uk using the inverse CDF method. With re-
alizations from C, one can easily generate realizations
from the multivariate distribution (51.4) by applying the
inverse CDF method at each margin.

Algorithm 51.1
Generating a random vector from a copula

1. Generate u1 from a uniform over [0, 1].
2. For k = 2, . . . , p, generate uk from Ck(·|u1, . . . ,

uk−1).

51.2 Some Commonly Used Copulas

We introduce two commonly used copula classes in this
section: elliptical copulas and Archimedean copulas.
A third class of copulas, extreme-value copulas, is very
useful in multivariate extreme-value theory but is omit-
ted here to limit the scope of this chapter; more details
about extreme-value copulas can be found in Joe [51.2].

51.2.1 Elliptical Copulas

Elliptical copulas are copulas of elliptical distributions.
A multivariate elliptical distribution of random vec-
tor (X1, . . . , Xp) centered at zero has density of the
form φ(t) = ψ(t�Σt), where t ∈ Rp and Σ is a p × p

dispersion matrix, which can be parameterized such that
Σij = Cov(Xi , X j ) [51.19]. Let Rij and τij be Pearson’s
linear correlation coefficient and Kendall’s tau between
Xi and X j , respectively. For an elliptical distribution,
they are connected through

τij = 2

π
arcsin(Rij ) . (51.15)

This relationship makes elliptical copulas very attractive
in applications since the similarity between Kendall’s tau
matrix and the correlation matrix can offer a wide range
of dependence structures. Tractable properties similar
to those of multivariate normal distributions are another
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Fig. 51.2 Contours of bivariate distributions with the same marginals but different copulas. Both marginal distributions
are standard normal

attractive feature of elliptical copulas. The most pop-
ular elliptical distributions are multivariate normal and
multivariate t, providing two popular copulas: normal
copulas and t copulas.

The normal copula has been widely used in financial
applications for its tractable calculus [51.8,20]. Consider
the joint CDF ΦΣ of a multivariate normal distribution
with correlation matrix Σ. Let Φ be the CDF of a stan-
dard normal variable. A normal copula with dispersion
matrix Σ is defined as

C(u1, . . . , up;Σ)

=ΦΣ

[
Φ−1(u1), . . . , Φ−1(up)

]
. (51.16)

The functions Φ, Φ−1 and ΦΣ are available in any rea-
sonably good statistical softwares, which makes their
application widely accessible.

The t copula can be constructed similarly [51.21].
Consider the joint CDF TΣ,ν of the standardized multi-
variate Student’s t distribution with correlation matrix Σ

and ν degrees of freedom. Let Ftν be the CDF of the
univariate t distribution with ν degrees of freedom.
A t copula with dispersion matrix Σ and degrees-of-
freedom parameter ν is defined as

C(u1, . . . , up;Σ, ν)

= TΣ,ν

[
F−1

tν (u1), . . . , F−1
tν (up)

]
. (51.17)

These copulas can be used to construct multi-
variate distributions using (51.5). Note that a normal
copula with normal margins is the same as a multi-
variate normal distribution. However, a t copula with
t margins is not necessarily a multivariate t distri-
bution. A multivariate t distribution must have the
same degrees of freedom at all the margins. In con-
trast, a t copula with t margins can have different
degrees of freedom at different margins. It offers a lot
more flexibility in modeling multivariate heavy-tailed
data.
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Fig. 51.3 1000 random points from bivariate distributions with the same marginals but different copulas. Both marginal
distributions are standard normal

Figure 51.2 shows the density contours of bivari-
ate distributions with the same margins but different
copulas. These distributions all have standard normal
as both margins, and their values of Kendall’s tau are
all 0.5. The three plots in the first row of Fig. 51.2
are for a normal copula, t copula with five degrees
of freedom, and t copula with one degree of free-
dom (or Cauchy copula). These densities are computed
with (51.7). Note that a normal copula can be viewed
as a t copula with infinite degrees of freedom. Fig-
ure 51.2 illustrates that the dependence in the tails
gets stronger as the number of degrees of freedom
decreases.

Simulation from normal copulas and t copulas are
straightforward if random-number generators for mul-
tivariate normal and t distributions are available. In R,
the package mvtnorm [51.22] provides CDF, PDF and
random-number generation for multivariate normal and
multivariate t distributions. These facilities are used in
the implementation of the package copula [51.13].

Figure 51.3 shows 1000 points from the corresponding
bivariate distributions in Fig. 51.2.

51.2.2 Archimedean Copulas

Archimedean copulas are constructed via a completely
different route without referring to distribution functions
or random variables. A key component in this way of
construction is a complete monotonic function. A func-
tion g(t) is completely monotonic on an interval J if it is
continuous there and has derivatives of all orders which
alternate in sign, that is,

(−1)k d

dtk
ϕ(t) ≥ 0, k = 1, 2, · · · , (51.18)

for all t in the interior of J . Let ϕ be a continuous
strictly decreasing function form [0, 1] to [0,∞] such
that ϕ(0) =∞ and ϕ(1) = 0, and let ϕ−1 be the inverse
of ϕ. A function defined by

C(u1, . . . , up) = ϕ−1[ϕ(u1)+· · ·+ϕ(up)
]

(51.19)
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Table 51.1 Some one-parameter (α) Archimedean copulas

Family Generator ϕ(t) Frailty distribution Laplace transformation of frailty L(s) = ϕ−1(s)

Clayton t−α−1 Gamma (1+ s)−1/α

Frank ln eαt−1
eα−1 Log series α−1 ln [1+ es(eα−1)]

Gumbel (− ln t)α Positive stable exp(−s1/α)

is a p-dimensional copula for all p ≥ 2 if and only
if ϕ−1 is completely monotonic over [0,∞); (see for
example [51.1]). The copula C in (51.19) is called an
Archimedean copula. The name Archimedean for these
copulas comes from a property of the unit cube and
copula C which is an analog of the Archimedean ax-
iom for positive real numbers (see [51.1] p. 98 for more
details). The function ϕ is called the generator of the
copula. A generator uniquely (up to a scalar multiple)
determines an Archimedean copula.

In the bivariate case, an Archimedean copula may
be obtained with weaker conditions on the generator ϕ
and its pseudo-inverse ϕ[−1]:

C(u1, u2) = max
{
ϕ[−1] [ϕ(u1)+ϕ(u2)] , 0

}
,

(51.20)

where the generator ϕ is a function with two continuous
derivatives such that ϕ(1) = 0, ϕ′(u) < 0, and ϕ′′(u) > 0
for all u ∈ [0, 1], and ϕ[−1] is the pseudo-inverse of ϕ

defined as

ϕ[−1](v) =
⎧
⎨

⎩
ϕ−1(v) 0 ≤ v ≤ ϕ(0) ,

0 ϕ(0) ≤ v ≤∞ .

The generator ϕ is called a strict generator if ϕ(0) =∞,
in which case ϕ[−1] = ϕ. Genest and McKay [51.3] give
proofs for some basic properties of bivariate copulas.

The generator ϕ plays an important role in the prop-
erties of an Archimedean copulas. It can be shown that
Kendall’s tau for an Archimedean copula with generator
ϕ is

τ = 4

1∫

0

1∫

0

ϕ(v)

ϕ′(v)
dv+1 . (51.21)

This relationship can be used to construct estimating
equations that equate the sample Kendall’s tau to the
theoretical value from the assumed parametric copula
family.

Due to the exchangeable structure in (51.19), the
associations among all the variables are exchangeable
too. As a consequence, an Archimedean copula can-
not accommodate negative association unless p = 2.

For Archimedean copulas with positive associations,
there is a mixture representation due to Marshall and
Olkin [51.23]. Suppose that, conditional on a positive la-
tent random variable called the frailty, γ , the distribution
of Ui is Fi (Ui |γ ) =Uγ

i , i = 1, . . . , p, and U1, . . . ,Up
are independent. Then the copula C of U1, . . . ,Up is

C(u1, . . . , up) = E

( p∏

i=1

uγ
i

)
, (51.22)

where the expectation is taken with respect to the distri-
bution of γ , Fγ . Recall that the Laplace transform of γ
is

L(s) = Eγ (e−sγ ) =
∞∫

0

e−sx dFγ (x) .

The Laplace transform has a well-defined inverse L−1.
Marshall and Olkin [51.23] show that the copula in
(51.22) is

C(u1, . . . , up) =L
[
L−1(u1)+· · ·+L−1(up)

]
.

(51.23)

This result suggests that an Archimedean copula can be
constructed using the inverse of a Laplace transform as
the generator.

Table 51.1 summarizes three commonly used one-
parameter Archimedean copulas. A comprehensive list
of one-parameter bivariate Archimedean copulas and
their properties can be found in Table 4.1 of Nel-
son [51.1]. The three copulas in Table 51.1 all have
inverse transforms of some positive random variables
as their generators. The Clayton copula was introduced
by Clayton [51.24] when modeling correlated survival
times with a gamma frailty. The Frank copula first ap-
peared in Frank [51.25]. It can be shown that the inverse
of its generator is the Laplace transform of a log se-
ries random variables defined on positive integers. The
Gumbel copula can be traced back to Gumbel [51.26].
Hougaard [51.27] uses a positive stable random variable
to derive the multivariate distribution based on a Gumbel
copula.
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Density contours of bivariate distributions con-
structed from these three Archimedean copulas are
presented in the second row of Fig. 51.2. Both mar-
gins of these distributions are still standard normals.
The parameters of these copulas are chosen such that
the value of Kendall’s tau is 0.5. The density of an
Archimedean copula can be found by differentiating
the copula as in (51.6). When the dimension p is high,
the differentiation procedure can be tedious. Symbolic
calculus softwares can be used for this purpose. The
package copula uses the simple symbolic derivative
facility in R combined with some programming to con-
struct PDF expressions for copulas given the generator
function and its inverse function. From Fig. 51.2, one
observes that the Frank copula has symmetric depen-
dence. The dependence of the distribution based on
the Clayton copula is stronger in the lower-left region
than in the upper-right region. In contrast, the depen-
dence of the distribution based on the Gumbel copula is
stronger in the upper-right region than in the lower-left
region.

Simulation from a general Archimedean can be
done using the general Algorithm (51.1) in Sect. 51.2.
When the inverse of the generator is known to be
the Laplace transform of some positive random vari-

able, an algorithm based on (51.23) is summarized in
Algorithm (51.2) [51.6]. This algorithm is very easy
to implement, given that a random-number generator
of the frailty is available. Gamma-variable generator
is available in most softwares. Algorithms for gener-
ating positive stable and log series variables can be
found in Chambers et al. [51.28] and Kemp [51.29],
respectively. For the bivariate case, the general al-
gorithm (51.1) can be simplified, avoiding numerical
root-finding. These algorithms have been implemented
in the package copula [51.13]. The lower panel of
Fig. 51.3 shows 1000 random points generated from the
corresponding bivariate distributions with Archimedean
copulas in Fig. 51.2.

Algorithm 51.2
tbp Generating a random vector from an Archimedean
copula with a known frailty distribution

1. Generate a latent variable γ whose Laplace transfor-
mation L is the inverse generator function ϕ−1.

2. Generate independent uniform observations v1, . . . ,

vp, i = 1, . . . , p.
3. Output ui =L(−γ−1 log vi ), i = 1, . . . , p.

51.3 Statistical Inference

This section presents the maximum-likelihood (ML) es-
timation for multivariate distributions constructed from
copulas. Other methods, such as moment methods and
nonparametric methods, are less developed for copula-
based models and hence omitted.

Suppose that we observe a random sample of size n
from a multivariate distribution (51.5):

(Xi1, . . . , Xi p)�, i = 1, . . . , n .

The parameter of interest is θ = (β�, α�)�, where β is
the marginal parameter vector for the marginal distribu-
tions Fi , i = 1, . . . , p, andα is the association parameter
vector for the copula C. Regression models for the
marginal variables can be incorporated easily by assum-
ing that the residuals follow a multivariate distribution
(51.5).

51.3.1 Exact Maximum Likelihood

The exact log-likelihood l(θ) of the parameter vector θ
can be expressed from (51.7):

l(θ) =
n∑

i=1

log c
[
F1(Xi1;β), . . . , Fp(Xi p;β);α]

+
n∑

i=1

p∑

j=1

log fi (Xij;β) . (51.24)

The ML estimator of θ is

θ̂ML = arg max
θ∈Θ l(θ) ,

where Θ is the parameter space.
Under the usual regularity conditions for the asymp-

totic ML theory, the ML estimator θ̂ML is consistent and
asymptotically efficient, with limiting distribution

√
n(θ̂ML− θ0) → N

[
0, I−1(θ0)

]
,

where θ0 is the true parameter value and I is the Fisher
information matrix. The asymptotic variance matrix
I−1(θ0) can be estimated consistently by an empiri-
cal variance matrix of the influence functions evaluated
at θ̂ML.
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To carry out the ML estimation, one feeds the log-
likelihood function l(θ) to an optimization routine. The
asymptotic variance matrix can be obtained from the in-
verse of an estimated Fisher information matrix, which is
the negative Hessian matrix of l(θ). In R, one constructs
the likelihood function using copula densities supplied
in the copula package, and uses optim to maximize
it.

The maximization of l(θ) in (51.24) may be a difficult
task, especially when the dimension is high and/or the
number of parameters is large. The separation of the
margins and copula in (51.24) suggests that one may
estimate the marginal parameters and association param-
eters in two steps, leading to the method in the next
subsection.

51.3.2 Inference Functions for Margins (IFM)

The IFM estimation method was proposed by Joe and
Xu [51.30]. This method estimates the marginal param-
eters β in a first step by

β̂ = arg max
β

n∑

i=1

p∑

j=1

log fi (Xij;β) , (51.25)

and then estimates the association parameters α given β̂

by

α̂= arg max
α

n∑

i=1

log c

×
[

F1(Xi1; β̂), . . . , Fp(Xi p; β̂);α
]
. (51.26)

When each marginal distribution Fi has its own
parameters βi so that β = (β�1 , . . . , β�p )�, the first
step consists of an ML estimation for each margin
j = 1, . . . , p:

β̂ j = arg max
β j

n∑

i=1

log f (Xij;β j ) . (51.27)

In this case, each maximization task has a very small
number of parameters, greatly reducing the computa-
tional difficulty. This approach is called the two-stage
parametric ML method by Shih and Louis [51.31] in
a censored data setting.

The IFM estimator from (51.25) and (51.26), θ̂ IFM,
is in general different from the ML estimate θ̂ML. The
limiting distribution of θ̂ IFM is

√
n(θ̂ IFM− θ0) → N

[
0, G−1(θ0)

]
,

where G is the Godambe information matrix [51.32].
This matrix has a sandwich form like the usual robust es-
timation with estimating functions. Detailed expressions
can be found in Joe [51.2].

Compared to the ML estimator, the IFM estimator
has advantages in numerical computations and is asymp-
totically efficient. Even in finite samples, it is highly
efficient relative to the exact ML estimator [51.2]. The
IFM estimate can be used as a starting value in an exact
ML estimation.

51.3.3 Canonical Maximum Likelihood (CML)

When the association is of explicit interest, the parameter
α can be estimated with the CML method without spec-
ifying the marginal distribution. This approach uses the
empirical CDF of each marginal distribution to trans-
form the observations (Xi1, . . . , Xi p)� into pseudo-
observations with uniform margins (Ui1, . . . ,Ui p)� and
then estimates α as

α̂CML=arg max
α

n∑

i=1

log c(Ui1, . . . ,Ui p;α) . (51.28)

The CML estimator α̂CML is consistent, asymptotically
normal, and fully efficient at independence [51.31,33].

51.4 Engineering Applications

Two engineering applications of copulas are considered
in this section: multivariate process control and degra-
dation analysis. An important third application is the
modeling of multivariate failure times, which may be
censored. We focus on complete-data applications in this
chapter. In the example of multivariate process control,
marginal normality seems appropriate but joint normal-
ity is suspicious. In the example of degradation analysis,

the margins are right-skewed and have long tails. We
use a gamma distribution for each margin and a normal
copula for the association.

51.4.1 Multivariate Process Control

In quality management, multiple process character-
istics necessitate a multivariate method for process
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Fig. 51.4 Bivariate process characteristics and parametric fits. Left: scatter plot of the data; center: contours of bivariate
normal fit; right: contours of bivariate fit with normal margins and Clayton copula

control. There are three major control charts used in
practice: Hotelling’s T 2, multivariate cumulative sum
(MCUSUM), and multivariate exponentially weighted
moving average (MEWMA); see Lowry and Mont-
gomery [51.34] for a review. The most popular
multivariate control chart is the T 2 chart, which has
a long history since Hotelling [51.35]. Mason and
Young [51.36] give details on how to use it in indus-
trial applications. This method assumes that the multiple
characteristics under surveillance are jointly normally
distributed. The control limit of the chart is based on the
sampling distribution of the statistic T 2, which can be
shown to have an F distribution. When the multivariate
normal assumption does not hold, due to either univari-
ate or multivariate non-normality, the T 2 control chart
based on multivariate normality can be inaccurate and
misleading.

Copula-based multivariate distributions open a new
avenue for the statistical methods of multivariate process
control. The parametric form of the multivariate distribu-
tion can be determined from a large amount of historical
in-control data. Given a sample of observations when
the process is in-control, one can estimate the param-
eters and propose a statistic that measures the deviation
from the target. The exact distribution of this statistic
is generally unknown, and the control limit needs to
be obtained from bootstrap; see for example Liu and
Tang [51.37].

As an illustration, consider the example of bivariate
process control in Lu and Rudy [51.38]. The data consists
of 30 pairs of bivariate measurements from an exhaust
manifold used on a Chrysler 5.21 engine in a given
model year. They were collected from a machine ca-

pability study performed on the machine builder’s floor.
The sample correlation coefficient is 0.44. The left panel
of Fig. 51.4 shows the scatter plot of the 30 observations.
The assumption of normality for each margin seems fine
from the normal Q–Q plots (not shown). However, the
joint distribution may not be a bivariate normal. The scat-
ter plot suggests that the association may be stronger in
the lower end than in the higher end of the data. This
nonsymmetric association cannot be captured by a sym-
metric copula, such as those elliptical copula and Frank
copula in Fig. 51.2. A better fit of the data may be ob-
tained from a Clayton copula, which allows the bivariate
dependence to be stronger in the left tail than in the right
tail. The center panel of Fig. 51.4 shows the contours of
the ML bivariate normal fit. The right panel of Fig. 51.4
shows the contours of the ML bivariate fit with normal
margins and the Clayton copula. The maximized log-
likelihood of the two models are 307.64 and 309.87,
respectively. A formal test of the difference, which is
beyond the scope of this chapter, can be done by compar-
ing non-nested models without knowing the true model
based on Kullback–Leibler information [51.39].

The T 2 control chart of Lu and Rudy [51.38] is
a phase II chart for single observations to detect any
departure of the underlying process from the standard
values. Suppose that we observe a random sample of
p-dimensional multivariate observations with sample
size m. Let X̄m and Sm be the sample mean vector
and sample covariance matrix, respectively. For a fu-
ture p-dimensional multivariate observation X, the T 2

is defined as

T 2 = (X− X̄m)�S−1
m (X− X̄) . (51.29)
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Table 51.2 Comparison of T 2 percentiles when the true copula is normal and when the true copula is Clayton with various
Kendall’s τ . The percentiles under Clayton copulas are obtained from 100 000 simulations

Percentiles Normal Clayton copula

copula τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

90% 5.357 5.373 5.416 5.590 5.868

95% 7.150 7.253 7.468 8.061 9.396

99% 11.672 12.220 13.080 15.764 23.526

99.73% 15.754 16.821 18.611 24.173 41.123

Under joint normality, it can be shown that the exact
distribution of

m2−m p

p(m+1)(m−1)
T 2

is F with degrees of freedom p and m− p. The exact
upper control limit (UCL) for T 2 with level α is then

UCLα = p(m+1)(m−1)

m2−m p
F1−α;p,m−p , (51.30)

where F1−α;p,m−p is the 100(1−α) percentile of an
F distribution with p and m− p degrees of freedom. In
this example, m = 30, p = 2. The exact upper control
limit for T 2 with level α is then

UCLα = 2(30+1)(30−1)/[302−2(30)]F1−α;2,28

= 2.14F1−α;2,28 .

With α= 0.9973, the control limit UCL = 15.75.
When the true copula is a Clayton copula but is mis-

specified as a normal copula, the control limit in (51.30)
can be inaccurate and hence misleading. By compar-
ing the contours of a normal copula model with those
of a Clayton copula model in Fig. 51.2, one can con-
jecture that, if the true copula is a Clayton copula, then
Pr(T 2 > UCLα) will be greater than its nominal level α,
because the bivariate density with the Clayton copula is
more concentrated on the lower-left part of the plot than
the bivariate normal density. In other words, in order to
maintain the control level α, one needs to increase the
UCL of the T 2 chart. This difference obviously depends
on the sample size m and the association parameter of
the true Clayton copula. For a given sample size m and
a Kendall’s τ value, which determines the association
strength of a Clayton copula, the control limit of T 2

can be obtained by simulation. Table 51.2 compares the
90%, 95%, 99%, and 99.73% percentiles of T 2 when the
true copula is normal and when the true copula is Clay-
ton. The percentiles under Clayton copulas are obtained
from 100 000 simulations. The true Clayton copulas are
parameterized to give Kendall’s τ values 0.2, 0.4, 0.6,

and 0.8. From Table 51.2, one observes that the simu-
lated percentiles of T 2 are greater than those based on the
F distribution under the normal assumption. The control
region based on the normal assumption is smaller than
expected, which will result in investigating the process
more often than necessary when the process is actually
in control. The difference increases with the strength of
the association.

This example illustrates that a non-normal joint dis-
tribution may have an important influence on the control
limit of the widely used T 2 chart, even when both the
margins are normals. The T 2 statistic still measures the
deviance from the target, but its distribution is unknown
under the non-normal model. A comprehensive inves-
tigation of multivariate process control using copula is
a future research direction.

51.4.2 Degradation Analysis

Performance degradation data has repeated measures
over time for each test unit (see for example Meeker and
Escobar [51.40] Chap. 13). These repeated measures
on the same unit are correlated. There is a voluminous
statistical literature on the analysis of repeated mea-

1.5

1.0

0.5

43210

Error rate

Hours/500

Fig. 51.5 Error rates (×105) of 16 magneto-optic data-
storage disks measured every 500 h
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Table 51.3 IFM fit for all the margins using normal and gamma distributions, both parameterized by mean and standard
deviation. Presented results are log-likelihood (Loglik), estimated mean, and estimated standard deviation (StdDev) for
each margin under each model

Time in units Normal margins Gamma margins

of 500 h Loglik Mean StdDev Loglik Mean StdDev

0 −0.484 0.565 0.062 2.568 0.565 0.054

1 −0.526 0.617 0.063 2.538 0.617 0.054

2 −2.271 0.709 0.070 −0.125 0.709 0.064

3 −4.441 0.870 0.080 −3.269 0.870 0.078

4 −6.996 1.012 0.094 −5.205 1.012 0.087

surements (see, for example, Davis [51.41]. Analysis
of such data has been implemented in popular sta-
tistical softwares, for example, PROC MIXED of the
SAS system [51.42] and the nlme package [51.43]
for R and Splus. Continuous response variables are
generally assumed to be normally distributed and a mul-
tivariate normal distribution is used in likelihood-based
approaches. The following example shows that a mul-
tivariate gamma distribution with normal copula can
provide a much better fit to the data than a multivariate
normal distribution.

Degradation data on block error rates of 16 magneto-
optic data storage disks are collected every 500 h for
2000 h at 80 ◦C and 85% relative humidity [51.44]. Fig-
ure 51.5 shows these error rates at all five time points.
A degradation analysis often needs to fit a curve for the
degradation trend in order to allow predictions at unob-
served time points. Before choosing a curve to fit, we
first carry out exploratory data analysis using the two-
step IFM method to look into parametric modeling for
each margin and copula separately.

Separate parametric fits for each margin is the first
step of the IFM approach in Sect. 51.4. Two parametric
models for each margin are used: normal and gamma.
To make the parameters comparable across models, the
gamma distribution is parameterized by its mean µ and
standard deviation σ , giving a density function of

f (x;µ, σ) = 1

Γ (α)βα
xα−1e−

x
β , (51.31)

where α = µ2/σ2 and β = σ2/µ. Table 51.3 summa-
rizes the separate parametric fits for each margins using
normal and gamma distributions. For all the margins, the
gamma distribution fit yields higher log-likelihood than
the normal distribution fit. The estimated mean from
both models are the same for the first three digits af-
ter the decimal point. The estimated standard deviation
is noticeably lower in the gamma model, especially at
earlier time points where the data are more skewed and

heavier-tailed. These estimates are consistent with the
descriptive statistics of each time point, suggesting that
the mean error rate is increasing over time, and their
standard errors is increasing with the mean level.

Given the parametric fit for each margins, we can
explore copula fitting in the second step of IFM.
Due to the small number of observations, we choose
single-parameter normal copulas with three dispersion
structures: AR(1), exchangeable, and Toeplitz. In partic-
ular, with p= 5, the dispersion matrices with parameter
ρ under these structures are, respectively,

⎛
⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ2 ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 ρ ρ ρ ρ

ρ 1 ρ ρ ρ

ρ ρ 1 ρ ρ

ρ ρ ρ 1 ρ

ρ ρ ρ ρ 1

⎞
⎟⎟⎟⎟⎟⎠

, and

⎛
⎜⎜⎜⎜⎜⎝

1 ρ

ρ 1 ρ

ρ 1 ρ

ρ 1 ρ

ρ 1

⎞
⎟⎟⎟⎟⎟⎠

. (51.32)

Table 51.4 summarizes the log-likelihood and the esti-
mated association parameter ρ for the given estimated
margins in Table 51.3. Note that the log-likelihood val-
ues are not comparable across models with different
margins because the data being used in the estimation
are different. They are comparable when the modeled
margins are the same. For both normal margins and
gamma margins, the AR(1) structure gives the high-
est log-likelihood value. The estimated parameter is
about 0.9, indicating high dependence among repeated
measurements.

Table 51.4 also presents the normal copulas estima-
tion using the CML method. No parametric distribution
is assumed for each margin. The empirical distribution
is used to transform the observations of each margin
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Table 51.4 IFM and CML fit for single-parameter normal copulas with dispersion structures: AR(1), exchangeable, and
Toeplitz

Dispersion IFM fit CML fit

structure Normal margins Gamma margins Empirical margins

Loglik ρ̂ Loglik ρ̂ Loglik ρ̂

AR(1) 39.954 0.917 66.350 0.892 10.380 0.964

Exchangeable 38.618 0.868 62.627 0.791 9.791 0.942

Toeplitz 23.335 0.544 39.975 0.540 5.957 0.568

into uniform variables in [0, 1], which are then used in
(51.28). The CML fit also shows that the AR(1) structure
gives the highest log-likelihood and that the within-disk
dependence is high. Based on these exploratory analy-
sis, the AR(1) structure is used for the dispersion matrix
of normal copula in an exact ML analysis.

We now present the exact ML estimation of a degra-
dation model. For the sake of simplicity, we use a linear
function of time to model the mean µ(t) and a linear
function of µ(t) to model the logarithm of the standard
deviation σ(t). That is,

µ(t) = φ0+φ1t, (51.33)

log σ(t) = ψ0+ψ1[µ(t)−1.0] , (51.34)

where φ0, φ1, ψ0, and ψ1 are parameters, and the func-
tion of log σ(t) is centered at 1.0 for easier prediction
of the variance at higher error rates. Two paramet-
ric models are considered for the repeated error rates:
(1) multivariate normal and (2) multivariate gamma via
a normal copula. Note that the two models both use
the normal copula. The marginal distributions of the
two models at time t are both parameterized by mean
µ(t) and standard deviation σ(t) for comparison pur-
pose. A similar parameterization was used in Lambert
and Vandenhende [51.45] and Frees and Wang [51.7].

Table 51.5 summarizes the maximum-likelihood es-
timate of the parameters and their standard errors for
both models. These estimates for both marginal param-
eters and the copula parameter are virtually the same or

Table 51.5 Maximum-likelihood results for the disk error-rate data. Parameter estimates, standard errors and log-
likelihood are provided for both the multivariate normal model and the multivariate gamma model with a normal
copula. The second entry of each cell is the corresponding standard error

Model Marginal parameters Copula Loglik

Mean StdDev. parameter

φ0 φ1 ψ0 ψ1 ρ

Normal 0.564 0.099 −0.849 1.439 0.899 34.719

0.057 0.019 0.262 0.557 0.034

Gamma 0.564 0.101 −0.986 1.383 0.900 48.863

0.051 0.015 0.185 0.442 0.033

1.0

0.8

0.6

0.4

0.2

0.0

43210

Density

Error rate

Fig. 51.6 Predictive density of disk error rate at 2500 h. The
dark line is from the gamma model; the gray line is from
the normal model

very close to each other. However, the standard errors of
these estimates are noticeably smaller in the multivariate
gamma model. The maximized log-likelihood from the
gamma model is much higher than that from the normal
model. Given that both models have the same number of
parameters, the multivariate gamma distribution fits the
data much better.

The difference between the two models can also be
illustrated by their predictive density of the error rate at
2500 h. Figure 51.6 presents the densities of the error
rate at 2500 h using the estimated mean µ(2500) and
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σ(2500) obtained with φ̂0, φ̂1, ψ̂0, and ψ̂1. The normal
model gives mean 1.058 and standard deviation 0.465,
while the gamma model gives mean 1.070 and standard

deviation 0.411. Although the mean values are close,
the gamma model gives a small standard deviation and
captures the skewness and long tail of the data.

51.5 Conclusion

This chapter reviews multivariate modeling with copulas
and provides novel applications in engineering. Multi-
variate distribution construction using copulas and their
statistical inferences are discussed in detail. Engineer-
ing applications are illustrated via examples of bivariate
process control and degradation analysis, using existing
data in the literature. Copulas offer a flexible modeling
strategy that separates the dependence structure from
the marginal distributions. Multivariate distributions via
copula apply to a much wider range of multivariate
scenarios than the traditionally assumed multivariate
normal distribution. A publicly available R package has
been developed to promote the research on copulas and
their applications.

Some important topics about copulas are not dis-
cussed in this chapter. The survival function is of great
concern in failure-time data analysis. Similarly to (51.5),
a multivariate survival function can be constructed via
a copula with

S(x1, . . . , xp) = C[S1(x1), . . . , Sp(xp)] ,

where S is the joint survival function and Si(t)= 1−F(t)
is the i-th marginal survival function, i = 1, . . . , p. In
this setting C is called a survival copula. Censoring
presents an extra difficulty for multivariate failure-time
data analysis. Georges et al. [51.46] gives an excellent
review on multivariate survival modeling with copulas.
This chapter has focused on parametric copula mod-
els. Standard inferences of the maximum-likelihood
method can be applied under the usual regularity con-
ditions. However, which copula to choose and how
well it fits the data are important practical problems.
Diagnostic tools, particularly graphical tools, can be
very useful. There are not many works in this direc-
tion; some recent ones are Wang and Wells [51.11] and
Fermanian [51.47].

Copulas have had a long history in the probability
literature [51.17]. Recent development and application
in insurance, finance and biomedical research have been
successful. With this chapter, it is hoped to encourage en-
gineering researchers and practitioners to stimulate more
advancement on copulas and seek more applications.

51.A Appendix

51.A.1 The R Package Copula

Overview
Software implementation is very important in promot-
ing the development and application of copula-based
approaches. Unfortunately, there are few software
packages available for copula-based modeling. One
exception is the finmetrics module [51.48] of
Splus [51.49]. For an array of commonly used cop-
ulas, the finmetrics module provides functions to
evaluate their CDF and PDF, generate random numbers
from them, and fit them for given data. However, these
functionalities are limited because only bivariate copulas
are implemented. Furthermore, the software is commer-
cial. It is desirable to have an open-source platform for
the development of copula methods and applications.

R is a free software environment for statistical com-
puting and graphics [51.14]. It runs on all platforms,
including Unix/Linux, Windows, and MacOS. Cutting-

edge statistical developments are easily incorporated
into R by the mechanism of contributed packages with
quality assurance [51.50]. It provides excellent graph-
ics and interfaces easily with lower-level compiled code
such as C/C++ or FORTRAN. An active developer–user
interaction is available through the R-help mailing list.
Therefore, it is a natural choice to write an R package
for copulas.

The package copula [51.13] is designed using the
object-oriented feature of the S language [51.51]. It
is publicly available at the Comprehensive R Archive
Network [CRAN,http://www.r-project.org].
S4 classes are created for elliptical copulas and
Archimedean copulas with arbitrary dimension; the
extreme-value copula class is still to be implemented
at the time of writing. For each copula family, methods
of density, distribution, and random-number generator
are implemented. For visualization, methods of contour
and perspective plots are provided for bivariate copulas.
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More facilities, such as extreme-value copulas, as-
sociation measures and tail dependence measures, will
be included in future releases of the package.

Illustration
The package copula depends on the contributed pack-
ages mvtnorm, scatterplot3d, and sn, taking
advantages of the existing facilities in these packages
that are relevant. The package needs to be loaded before
using:
> library(copula)
The package is well documented following the require-
ment of the R project [51.50]. A list of help topics can
be obtained from:
> library(help = copula)

We illustrate the features of the package from the
following aspects by examples.

Constructing copula objects. An object of class
normalCopula can be created by
> mycop1 <- ellipCopula(family =
"normal", param = c(0.707, 0.5,
0.2), dim = 3, dispstr = "un").
The created object mycop1 is of class normal
Copula, which inherits ellipCopula and copula.
It has dimension three, with an unstructured dis-
persion matrix

⎛
⎜⎝

1.000 0.707 0.500

0.707 1.000 0.200

0.500 0.200 1.000

⎞
⎟⎠ .

An object of class tCopula can be created similarly,
with an extra argument for the degrees of freedom, df:
> mycop2 <- ellipCopula(family =
"t", param = c(0.9, 0.5, 0.2),
df = 5, dim = 3, dispstr = "un")

Examples of objects of Archimedean copulas can be
created by:
> mycop3 <- archmCopula(family =
"clayton", param = 2, dim = 3)
> mycop4 <- archmCopula(family =
"frank", param = 5.736, dim = 3)
> mycop5 <- archmCopula(family =
"gumbel", param = 2, dim = 3)

Constructing Multivariate Distribution via Copulas.
An object of multivariate distributions via copulas can
be constructed by specifying the copula and its marginal
distributions. For example:
> mymvd1 <- mvdc(copula =
normalCopula(0.5, dim = 2),

margins = c("norm", "gamma"),
paramMargins = list(list(mean = 0,
sd = 2), list(shape = 2, rate = 2)))
The created object mymvd1 is of class mvdc. It is a bi-
variate distribution constructed via a normal copula. One
of the marginal distributions is normal with mean 0 and
standard deviation 2. The other marginal distribution is
gamma with shape 2 and rate 2.

Density, Distribution, and Simulation. The density and
distribution of an object of copula class are obtained
through the generic method functions dcopula and
pcopula. These functions for an object of the mvdc
class are obtained through the method functions dmvdc
and pmvdc. The density method dmvdc for an mvdc
object can be used to construct the likelihood for a given
dataset.

For Archimedean copulas, obtaining the density
function by differentiating the copula can be tedious.
The copula package provides expressions for the PDF
from symbolic calculations. The following code returns
the CDF and PDF expressions of a Clayton copula with
parameter α:
> mycop3@exprdist$cdf
(1 + (u1ˆ(-alpha) - 1 + u2ˆ(-alpha) -
1 + u3ˆ(-alpha) - 1))ˆ(-1/alpha)

> mycop3@exprdist$pdf
(1 + (u1ˆ(-alpha) - 1 + u2ˆ(-alpha) -
1 + u3ˆ(-alpha) - 1))ˆ((((-1/alpha)
- 1) - 1) - 1) * ((((-1/alpha) - 1)
- 1) * (u3ˆ((-alpha) - 1) * (-alpha)))
* (((-1/alpha) - 1) * (u2ˆ((-alpha)
- 1) * (-alpha))) * ((-1/alpha)
* (u1ˆ((-alpha) - 1) * (-alpha)))
These can be exported into other programming lan-
guages with little or minor modification.

The methods rcopula and rmvdc generate ran-
dom numbers from a copula or mvdc object.
The following code generates five observations from
mymvd1 and evaluates the density and distribution at
these points:
> n <- 5
> x <- rmvdc(mymvd1, n)
> x

[,1] [,2]
[1,] -2.7465647 0.6404319
[2,] -1.2674922 0.2707347
[3,] -1.8268522 0.4869647
[4,] 0.2742349 1.1763891
[5,] 2.5947601 1.6410892
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> cbind(dmvdc(mymvd1, x), pmvdc
(mymvd1, x))

[,1] [,2]
[1,] 0.06250414 0.06282100
[2,] 0.14514281 0.06221677
[3,] 0.13501126 0.09548434
[4,] 0.10241486 0.45210057
[5,] 0.03698266 0.78582431

Bivariate Contour and Perspective Plot.
The contour and persp methods are implemented

for the copula and mvdc classes. The following
code examples draw the contours and perspective plot
of the CDF for a bivariate t copula with correlation
ρ = 0.707:
> contour(tCopula(0.707), pcopula)
> persp(tCopula(0.707), pcopula)

To draw these plots for an mvdc object, the ranges
of the margins need to be specified:
> persp(mymvd1, dmvdc, xlim =
c(-4, 4), ylim = c(0, 3))
> contour(mymvd1, dmvdc, xlim =
c(-4, 4), ylim = c(0, 3))
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Queuing Theo52. Queuing Theory Applications to Communication
Systems: Control of Traffic Flows and Load Balancing

With the tremendous increase in traffic on modern
communication systems, such as the World Wide
Web, it has made it imperative that users of these
systems have some understanding not only of how
they are fabricated but also how packets, which
traverse the links, are scheduled to their hosts in an
efficient and reliable manner. In this chapter, we
investigate the role that modern queueing theory
plays in achieving this aim. We also provide up-
to-date and in-depth knowledge of how queueing
techniques have been applied to areas such as
prioritizing traffic flows, load balancing and
congestion control on the modern internet system.

The Introduction gives a synopsis of the key
topics of application covered in this chapter,
i. e. congestion control using finite buffer
queueing models, load balancing and how
reliable transmission is achieved using various
transmission control protocols.

In Sect. 52.1, we provide a brief review of the
key concepts of queueing theory, including a dis-
cussion of the performance metrics, scheduling
algorithms and traffic variables underlying sim-
ple queues. A discussion of the continuous-time
Markov chain is also presented, linking it with the
lack of memory property of the exponential random
variable and with simple Markovian queues.

A class of queues, known as multiple-priority
dual queues (MPDQ), is introduced and analyzed
in Sect. 52.2. This type of queues consists of
a dual queue and incorporates differentiated
classes of customers in order to improve their
quality of service. Firstly, MPDQs are simulated
under different scenarios and their performance
compared using a variety of performance metrics.
Secondly, a full analysis of MPDQs is then given
using continuous-time Markov chain. Finally, we
show how the expected waiting times of different
classes of customers are derived for a MPDQ.

Section 52.3 describes current approaches
to assigning tasks to a distributed system.
It highlights the limitations of many task-
assignment policies, especially when task sizes

have a heavy-tailed distribution. For these so
called heavy-tailed workloads, several size-based
load distribution policies are shown to perform
much better than classical policies. Amongst these,
the policies based on prioritizing traffic flows are
shown to perform best of all.

Section 52.4 gives a detailed account of how
the balance between maximizing throughput and
congestion control is achieved in modern com-
munication networks. This is mainly accomplished
through the use of transmission control proto-
cols and selective dropping of packets. It will be
demonstrated that queueing theory is extensively
applied in this area to model the phenomena of
reliable transmission and congestion control.

The final section concludes with a brief
discussion of further work in this area, an area
which is growing at a rapid rate both in complexity
and level of sophistication.

52.0.1 Congestion Control Using
Finite-Buffer Queueing Models .. 992

52.0.2 Task Assignment Policy
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Queues, wherever they arise, are unfortunately an in-
trinsic part of human existence. We queue for items that
are essential in our daily life as well as in situations that
some would regard as an annoyance, although they are
necessary, such as having to wait at a traffic intersection.
On another level, modern communication systems, such
as the internet, are under continuous strain in a world
where it is not only demand for information that is in-
creasing, but its speed of delivery. Given that some of
this information has to be delivered over vast distances,
is of varying sizes and is in competition for bandwidth
with other traffic in the network, it has become essen-
tial in modern communication that traffic congestion be
controlled, losses minimized and inefficient operations
eradicated.

It has long been recognized that the problem of
long delays suffered in many of our daily activities
might be solved if one could model queues in all their
manifestations. As a result, queueing theory was de-
veloped in the early part of the last century using
tools and techniques from the well-established fields
of probability and statistics to provide a systematic and
general approach to understanding queueing phenom-
ena. The earliest queueing applications are to problems
of telephone congestion (pioneered by researchers such
as Erlang [52.1] and Palm [52.2]). Subsequently, the
subject was further developed and enriched with signifi-
cant breakthroughs by researchers such as F. Pollaczek,
A. Y. Khinchine, D. G. Kendall, D. R. Cox, J. R. Jack-
son, F. P. Kelly and many others. Queueing theory has
been used to model many physical systems that in-
volve delays, and currently, an important application
is in modeling computer systems and communication
networks.

This chapter considers the application of queueing
theory to two critical issues of concern in modern com-
munication systems, namely the problems of traffic flow
control and load balancing, especially as they pertain
to modern internet traffic. We begin in Sect. 52.1 with
a brief review of basic queueing theory and then proceed
to discuss the key topics of this paper in Sects. 52.2–52.4.
The next three subsections provide a brief synopsis of
these topics.

52.0.1 Congestion Control Using
Finite-Buffer Queueing Models

Various scheduling algorithms have been introduced
with the aim of improving quality of service (QoS)
to customers. A wide variety of scheduling methods
that aim to reduce congestion in communication sys-
tems have been studied. Many differentiate customers
through marking and dropping processes (e.g. [52.3,4]).
Others use time-marking and derivatives of this to
allocate a degree of fairness in service, such as self-
clocked fair queueing (SCFQ) and credit-based fair
queueing (CBFQ) (e.g. [52.5, 6]). A dual -queue length
threshold (DQLT) [52.7] was used to divide real-time
and non-real-time traffic to separate queues. Weighted
round-robin (WRR) was looked at in [52.8].

In [52.9], a dual-queue (DQ) scheme was proposed
to give better QoS to most customers at the expense of
a few, rather than give poor QoS fairly to all customers.
The dual-queue control scheme has two queues with fi-
nite space: namely the primary queue, which feeds into
the service center, and the secondary queue, which acts
as a waiting room when the primary queue is full (refer to
Fig. 52.1). Upon arrival, a customer finding the primary

Traffic
arrive

Secondary queue

Service
centre

Lost

N

N

Y

Y

Primary queueNq < c1

Nq < c2

Fig. 52.1 The dual queue; Nq is the queue size, c1 (c2) is
the primary (secondary) queue’s buffer size
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queue full waits in the secondary queue, if there is room.
When a space becomes vacant in the primary queue, the
customer at the front of the secondary queue joins the
end of the primary queue. Hayes et al. [52.9] analyzed
the delay characteristics of the dual queue against stan-
dard schemes such as first-come first-served (FCFS) and
a modified deficit round-robin (DRR) technique [52.10],
and demonstrated distinct advantages using the dual-
queueing scheme. This work was extended to a wireless
local area network [52.11] where minor modifications
were made to the DQ and it was shown to outperform
standard round-robin scheduling.

The multiple-priority dual queues (MPDQ), intro-
duced in [52.12], builds upon this DQ scheme. The
MPDQ introduces different classes into this scheme with
the aim of providing better service to high-class cus-
tomers without completely penalizing low-class ones.
This is possible, not only because of the priority placed
on customers’ services, but also due to the MPDQ’s
partitioned queue structure. The MPDQ is especially
relevant in the internet engineering task force (IETF)
integrated services processes or differentiated services
architecture. The MPDQ scheduling discipline provides
a simple and effective mechanism for scheduling in these
types of architecture.

52.0.2 Task Assignment Policy
for Load Balancing

The usage of a cluster of commodity computers has
become more prevalent in recent times. Such clusters
are popular due to their scalable and cost-effective na-
ture – often providing more computing resources at
a significantly lower cost than traditional mainframes
or supercomputers. They also provide other benefits,

Tasks

FCFS
Host 1

FCFS
Host 2

FCFS
Host 3

FCFS
Host 4

Dispatcher

Fig. 52.2 Distributed server model

such as redundancy and increased reliability. The appli-
cations of such systems include supercomputing clusters
and web-page serving for high-profile and high-volume
websites, among other applications.

Figure 52.2 illustrates a common cluster configura-
tion. Tasks, or jobs arrive at a central dispatcher, and are
dispatched to hosts according to a task assignment pol-
icy. When a task arrives at the dispatcher, it is placed in
a queue, waiting to be serviced in FCFS order.

The decision regarding which task assignment policy
to utilize can significantly affect the perceived perfor-
mance and server throughput. A poorly chosen policy
could assign tasks to already overloaded servers, while
leaving other servers idle, thus drastically reducing the
performance of the distributed system. One major aim of
a task assignment policy is to distribute tasks such that
all available system resources are utilized and the load
on the system is balanced. However, the ideal choice of
task assignment policy is still an open question in many
contexts.

The cluster configuration depicted in Fig. 52.2 is well
suited to analysis via queuing theory. Equipped with
some basic knowledge about our system of interest, such
as the arrival and service distributions, we can easily
obtain the expected performance metrics of the system.
With these metrics, we can evaluate the performance of
different task assignment policies, and make an informed
judgment regarding which policy is best to employ.

52.0.3 Modeling TCP Traffic

The transmission control protocol (TCP) is a protocol
that is widely used on the internet to provide reliable end-
to-end connections. Reliability is achieved by verifying
that each packet that enters the network is received cor-
rectly at the other end through the use of a return packet
called an acknowledgment (ACK). It also provides con-
gestion control, which attempts to prevent congestion
collapse. Congestion collapse would occur if the amount
of traffic entering the network greatly exceeded the ca-
pacity of the network. Congestion controls allows the
amount of traffic entering the network to be controlled
at the source.

The TCP congestion control mechanism uses a slid-
ing window called a congestion window to control the
rate at which packets are transmitted into the network.
A congestion window has a size W measured in packets
(actually its size is in bytes but it is simpler to think in
terms of packets). This window is a segment of a larger
buffer which starts at slot x and finishes at slot x+W .
For example, a window of size W = 3 packets in a buffer
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87654321
x = 3

W = 3

87654321
x = 4

W = 3

Fig. 52.3 Congestion window

of size eight slots could span slots either 1–3, 2–4, 3–5
and so on. Any packet within this window can be trans-
mitted immediately into the network. When a packet

is acknowledged by the receiving end, the window can
slide across one place, allowing the next packet within
the segment to be transmitted. For example if the win-
dow spans slot 3–5 then the window can slide to 4–6
and the packet can be transmitted in slot 6 when an ACK
for packet 3 arrives (Fig. 52.3). This window size lim-
its the maximum number of packets that can be in the
network at any point in time.

The window size W changes over time as ac-
knowledgements are received or lost. Queueing theory
provides the ideal tool for analyzing the flow of pack-
ets within a network with TCP control, measuring its
throughput and losses as packets are sent through a com-
munication network.

52.1 Brief Review of Queueing Theory

The primary objective of queueing theory is to provide
a systematic method of formulating, analyzing and pre-
dicting the behavior of queues. For example, customers
waiting to be served at a store’s checkout counter, cars
waiting at an intersection controlled by traffic signals,
telephone calls waiting to be answered and client request
for an internet connection are a few of the countless phe-
nomena that can be analyzed using standard queueing
theory. The amount of literature devoted to queues and
related problems is large and continues to grow at an ex-
ponential rate, especially since the advent of the World
Wide Web. Published in 1961, the classic text on queue-
ing theory, Saaty [52.13], has a list of over 900 papers
in its bibliography. Since then, there have been many
good texts on a broad range of queueing models, among
which the following is a very short list of titles cited
for their excellent coverage of key concepts and rele-
vant examples: Asmussen [52.14], Allen [52.15], Gross
and Harris [52.16], Jaiswal [52.17], Kelly [52.18] and
Kleinrock [52.19, 20].

The basic queue is portrayed in Fig. 52.4. Customers
arrive to the service facility from the environment and
queue for service if there is someone ahead being ser-
viced. After a length of time waiting, the customer is

Customers Queue

Service
facility Departing

customers

Fig. 52.4 The basic queue

finally served, after which he departs from the queue.
In this chapter, customers arrive as single units and not
in batches or in bulks. Also, in the context of commu-
nication systems, the term packets will often be used
interchangeably with customers. Each packet will be as-
sumed to have a fixed uniform size; although in many
systems packet sizes do vary, this does not affect the
overall results unduly.

The representation in Fig. 52.4 leaves out much of
the internal working of the service facility, neither does
it describes how customers arrive into the system. Math-
ematically, the process can be described more precisely
in the following way. Customers arrive from an input
source requiring service. The n-th customer Cn arrives
at time Tn, n = 1, 2, . . . ,where 0 < T1 < T2 < . . . . The
inter-arrival times τn = Tn+1−Tn, n = 1, 2, . . . are usu-
ally assumed to form a renewal process, i. e. they are
independent and identically distributed random vari-
ables. Customer Cn requires a service time of duration sn
and these service times for different customers are also
independent and identically distributed random vari-
ables. In addition, the processes (τn)n≥1 and (sn)n≥1
are also assumed to be statistically independent of each
other.

52.1.1 Queue Characteristics

The characteristics that determine a basic queues are

• A: arrival pattern of customers;• B: service pattern of customers;• C: the number of servers;
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• D: system capacity or buffer size;• E: service discipline.

The representation of a queue using the notation
(A/B/C/D) with D often omitted is due to David
Kendall and is known as Kendall’s notation.

Arrival Pattern
This is the distribution of the renewal sequence (τn)n≥1.

Some common distributions are

Exponential M:

f (t) = λe−λt , t ≥ 0 , λ > 0 .

Deterministic D

Erlangian with k stages

Ek : fk(t) = λ(λt)k−1 e−λt

(k−1)! , t ≥ 0 , k = 1, 2, . . . .

If the exact distribution is unspecified, A = G I for gen-
eral and independent. Note that the symbol M in the
case of the exponential distribution stands for Markov
due to the fact that certain stochastic processes in queues,
where either the inter-arrival distribution or service dis-
tribution are exponentially distributed, have the Markov
property (cf. Sect. 52.1.4). Markovian queues are analyt-
ically more tractable than other general types of queues.
We note also that arrivals to a queue could occur in bulks
with the size of each bulk fixed or distributed as a ran-
dom variable. Bulk and related queues are extensively
covered in the book by Chaudhry and Templeton [52.21].

Service Pattern
This is the distribution of the sequence (sn)n≥1. In the in-
ternet system, the distribution is also called the task size
distribution since it refers to the distribution of the sizes
of files that are requested by random arrivals of requests
to the internet. The most common distributions are the
same ones given for the arrival pattern. However, for
many communication systems such as the World Wide
Web, so called heavy-tailed distributions are more ap-
propriate for file sizes than the exponential distribution
(cf. Sect. 52.2). Similar to the arrival pattern, service
could also be implemented in bulk, i. e. instead of cus-
tomers being served as single units, they are served in
bulks of fixed or arbitrary sizes.

System Capacity
Traditional queueing theory assumes there is no limit on
the number of customers allowed into the service facility.
Obviously this is an approximation of what occurs in re-
ality where there is a limit to the number allowed into any

system. In communication networks for example, buffer
sizes associated with links between service nodes are fi-
nite and packets arriving to a saturated link are dropped.
This dropping of packets is very commonly employed
in modern active queue management (cf. Sect. 52.4).

Number of Servers
The service facility is manned by one, or often by more
than one, server who provide service to customers. In
communication networks where there are no visible
servers, the servers are replaced by the notion of band-
width, which refers to the portion of a transmission link
(in megabytes/second, MBps) that a class of packets is
allocated. The larger the bandwidth allocated, the faster
these packets will traverse the link.

Service Disciplines
Customers are selected for service by a variety of
rules called service disciplines or scheduling algorithms.
The most common service discipline is first-come first-
served (FCFS) where the customer who arrives first is
served first. However, many other types of scheduling
algorithms are used in modern communication such as
last-in first-out (LIFO), SIRO (service in random order)
and prioritized service. A priority queue discipline is one
where the servers specify certain rules for serving cus-
tomers according to their classes [52.17]. This is usually
implemented with preemption and non-preemption.

Preemption: A preemptive priority scheme is where
a customer of a higher class interrupts and ejects
a lower-classed customer from service. Three types
of preemptive schemes are available: preemptive–
resume, preemptive repeat–identical and preemptive
repeat–different. The preemptive–resume scheme al-
lows preempted customers to continue service from
their initial point of interruption. The other two named
schemes require customers to start again after preemp-
tion. The repeat–identical scheme allows the customer to
begin again with the full amount of service time required,
whereas the repeat–different scheme gives a random ser-
vice time which does not take into account the time lost.
Customers of the same class are served on a FCFS basis.

Non-preemption: The non-preemptive scheme is
where a customer of a higher class must wait for a lower-
classed customer to complete service if the latter was
found to be in service upon the arrival of the higher-class
customer.

One of the key objectives of this chapter is to high-
light how different service disciplines have been used
in communication systems and to compare their per-
formance. We remark that the most mathematically
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tractable system is the system (M/M/c/K ) with FCFS
scheduling. Queueing systems with either A = M and
B = G I or A = G I and B = M can be analyzed by the
method of embedded Markov chains [52.22]. For more
general systems, analytical results are often difficult or
impossible to obtain. Such systems are conveniently
solved using simulation techniques.

52.1.2 Performance Metrics
and Traffic Variables

Most queueing models of communication systems as-
sume that the prevailing conditions and constraints on
the underlying processes are such that an equilibrium
steady state is reached and one is dealing with a sta-
tionary situation. The analyses can then dispense with
the time factor t. This situation will occur if the under-
lying process is ergodic, i. e. aperiodic, recurrent and
non-null [52.19], and the system has been in operation
for a long time.

The following is a glossary of some performance
and traffic variables associated with the simple queue:

• λ : mean arrival rate of customers to the queue. This
is usually assumed to be a constant, although it
is generally a function of time t when the arrival
process is nonstationary.• µ :mean service rate of customers. This has the same
qualification as for λ.• ρ : traffic intensity. Defined by ρ = λ

pµ for a single
class of customer arriving to a queue manned by p
servers.• Lq : the number of customers in the queue in the
equilibrium state.• Ls : the number of customers in the system in the
equilibrium state, i. e. which also includes the cus-
tomers being served.• Wq : waiting time of each customer in the queue in
the equilibrium state.• Ws : waiting time of each customer in the system in
the equilibrium state. In communication systems, Ws
is also referred to as the flow time. Note that E(Ws)=
E(Wq)+ E(X), where X is the service time of each
customer and E(·) is the expected value operator.• S : slowdown, defined by S = Wq/X. The expected
slowdown, E(S) = E(Wq)E(X−1) is an important
metric in communication systems and measures the
expected waiting time of each packet relative to its
service requirement. This provides a fairer assess-
ment of the delay suffered by a packet in a queueing
system than the waiting time.

The following very useful results, known as Little’s for-
mulae, were established as a folk theorem for many years
until they were shown to be valid by Little [52.23]:

E(Lq) = λE(Wq) ,

E(Ls) = λE(Ws) . (52.1)

For queues with finite capacity, λ in (52.1) is replaced by
the effective arrival rate λeff = λ× [1−Pr(queue full)].
52.1.3 The Poisson Process

and the Exponential Distribution

Consider the arrival point process (Tn)n≥1 and let N(t)
be defined as follows:

N(t)= #{n : Tn ∈ [0, t)}
i. e. the number of arrivals that occur in the time interval
[0, t).

Definition 52.1
The point process N(t) is a stationary Poisson process
with rate λ > 0 if it has the following properties:

a) for any sequence of time points 0 = t0 < t1 < t2 . . .
< tn, the process increments N(t1)− N(t0), N(t2)
−N(t1), . . . , N(tn)−N(t0) are independent random
variables;

b) for s ≥ 0 and t ≥ 0, the random variable N(t+ s)
− N(t) has the Poisson distribution

P(N(t+ s)− N(t)= j ) = (λs) j e−λs

j! .

There is a close relationship between the exponential
random variable and the Poisson process. Suppose the
renewal sequence (τn)n≥1 has an exponential distribution
with rate λ, i. e.

f (t) = λe−λt , t ≥ 0 .

It can easily be shown that Tk has an Erlang distribution
with k stages, i. e.

fk(t) = λ(λt)k−1 e−λt

(k−1)! , t ≥ 0 .

Therefore,

Pr(Tk ≤ t) = 1−
k−1∑

j=0

e−λt(λt) j

j! (52.2)
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and, on using the obvious identity

Pr(Tk ≤ t) = Pr(N(t)≥ k) (52.3)

we obtain

Pr(N(t) = k) = Pr[N(t) ≥ k]−Pr[N(t) ≥ k+1]
= Pr(Tk ≤ k)−Pr(Tk+1 ≤ t)

= (λt)k e−λt

k!
after applying (52.2). Therefore a renewal sequence with
an exponential distribution is a Poisson process. The
converse also holds by applying (52.3) and assuming
N(t) is a Poisson process.

The Lack of Memory Property
of the Exponential Random Variable
Amongst continuous random variables, the exponential
random variable has the distinction of possessing the
lack of memory property (for discrete random variables,
the geometric random variable has that property). This
property makes analysis of Markovian queues tractable.

The lack of memory property for X states that for
any t > 0 and s > 0,

Pr(X > t+ s|X > t)= P(X > s) . (52.4)

The exponential random variable clearly satisfies (52.4).
Therefore, if the time X between consecutive occur-
rences of a Poisson process has already exceeded t, the
chance that it will exceed s+ t does not depend on t.
Thus the Poisson process forgets how long it has been
waiting. From (52.4), we also have the following identity

Pr(T > t+∆t|T > t) = e−λ∆t

= 1−λ∆t+o(∆t) , (52.5)

which implies

Pr(T ≤ t+∆t|T > t) = 1− e−λ∆t

= λ∆t+o(∆t) , (52.6)

where ∆t � t. Note that (52.5) is the probability of no
events within the time interval (t , t+∆t) given that the
time from the last event to the next exceeded t, and (52.6)
is the probability of an event within the time interval
(t , t+∆t) given that the time from the last event to the
next exceeded t. Therefore, the probability of at least
two events within (t , t+∆t) is

1−[1−λ∆t+o(∆t)]− [λ∆t+o(∆t)] = o(∆t) ,
(52.7)

i. e. in a small interval (t , t+∆t), the Poisson process
can increase by at most one occurrence with a non-
negligible probability.

52.1.4 Continuous-Time Markov Chain
(CTMC)

The theory of Markov process is fundamental in queue-
ing theory and in other branches of applied probability.
A comprehensive and authoritative account of the the-
ory can be found in [52.24]. For our purpose, only some
rudimentary knowledge of the theory is required and the
results here will be presented without proofs.

Definition 52.2
A stochastic process Xt, t ≥ 0, taking values in a discrete
set S, which we may take as the set of non-negative
integers, is a standard CTMC if, for any n = 0, 1, . . .
and t0 < t1 < t2 < . . . < tn < t and values i0, i1, . . . , in
and j ∈ S, the following identity holds:

Pr(X t = j|Xtn = in , Xtn−1 = in−1 , . . . , Xt1

= i1 , Xt0 = i0) = Pr(Xt = j|Xtn = in) .
(52.8)

A CTMC is said to be stationary if, for all
(i, j ) ∈ S × S, the one-step transition probability
Pr(Xt+h = j|Xh = i) is independent of h and we denote
this probability by pij (t). One-step transition probabili-
ties for stationary CTMC satisfy:

1. pij (t) ≥ 0 for all (i, j ) ∈ S × S and t ≥ 0.
2.

∑
j∈S pij (t) = 1 for all i ∈ S and t ≥ 0.

3.

lim
t→0+ pij (t) =

⎧
⎨

⎩
1 if i = j

0 if i �= j
.

4. (Chapman–Kolmogorov equation)

pij (t+ s) =
∑

k∈S

pik(t)pk j (s) .

Theorem 52.1
Let Xt, t ≥ 0, be a stationary CTMC with transition
probability functions pij (t) , (i, j ) ∈ S × S. Then the fol-
lowing (right) derivatives at t = 0 exist:

lim
t→0+

[pii (t)−1]
t

=−qi

and lim
t→0+

pij (t)

t
= qij (i �= j ) .
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The parameters qij and qi are the infinitesimal rates
of the CTMC. We note that 0 ≤ qi ≤∞. State i is an
absorbing state if qi = 0, and it is an instantaneous state
if qi =∞. However, qij , j �= i is always finite.

Definition 52.3
The matrix A= (aij ) where

aij =
⎧
⎨

⎩
−qi if i = j

qij if i �= j
(52.9)

is called the infinitesimal generator matrix A of the
CTMC Xt .

Definition 52.4
A CTMC process is conservative if

∑

j �=i

qij = qi <∞ for all i ∈ S . (52.10)

The sample path of a conservative CTMC can be de-
scribed fairly succinctly. If the process is in state i, it
remains there for a random time Ti which is exponen-
tially distributed with cumulative distribution

Pr(Ti ≤ t) = 1− e−qi t . (52.11)

This is because, by the Markov property (52.8), the
probability that the process next jumps to another state
depends only on the last recorded state and not on how
long it has been in that state. Hence, this lack of mem-
ory implies that Ti is an exponential random variable.
Furthermore, given that the process is in state i, it next
jumps to state j �= i with probability

Pij = qij

qi
. (52.12)

Therefore, by considering all situations that could occur,
it follows that when i �= j

pij (t) =
∑

k �=i

qik

qi

t∫

0

qi e−qi s pk j (t− s)ds (52.13)

and when i = j

pii (t) = e−qi t +
∑

k �=i

qik

qi

t∫

0

qi e−qi s pk j (t− s)ds .

(52.14)

Theorem 52.2
A conservative CTMC satisfies the following system of
differential equations called the forward equations:

p′ij (t) =
∑

k �= j

pik(t)qk j − pij (t)q j , (i, j ) ∈ S × S .

(52.15)

If we define the matrix P(t) = [pij (t)], (52.15) may
be concisely expressed as

P′(t) = P(t)A . (52.16)

Let the state distribution of a CTMC Xt be denoted by
π(t) = [πi (t)], where πi (t) = Pr[X(t) = i], i ∈ S. Since

π(t) = π(0)P(t)

we obtain from (52.16) the equation

π ′(t) = π(t)A (52.17)

by pre-multiplying both sides of (52.16) with π(0).
If the CTMC is ergodic, i. e. aperiodic, recurrent and

non-null [52.19], the limit

lim
t→∞π(t) = π̄

exists and the rate of convergence is exponentially
fast [52.24]; π̄ is known as the steady-state or equi-
librium distribution of the CTMC. Using (52.17), the
steady-state distribution is obtained by solving the
following system of equations called the balance equa-
tions:

π̄A= 0 . (52.18)

Birth–Death Processes
A birth–death process is a stationary conservative
CTMC with state space S, the set of non-negative in-
tegers, for which the infinitesimal rates are given by

qn,n+1 = λn ,

qn,n−1 = µn ,

qn = λn +µn ,

and qij = 0 , |i− j| ≥ 2 .

A birth and death process can only move to adjacent
states, with rates depending only on the state it has
moved from (refer to Fig. 52.5). This CTMC is used
to model queues where the renewal sequences (τn)n≥1
and (sn)n≥1 are exponential random variables. More
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Fig. 52.5 Rate diagram of a birth–death process

specifically, the queueing processes Ns(t) and Nq(t) are
birth–death CTMC since they can increase or decrease
by 1 with an arrival to or departure from the queueing
system, respectively.

From (52.17), the forward equations of the birth–
death process take the form

π ′0(t) = µ1π1(t)−λ0π0(t) ,

π ′j (t) = λj−1πj−1(t)− (µj+λj)πj(t)

+µj+1πj+1(t) , j ≥ 1 . (52.19)

The solution of (52.19) can be obtained through some
ingenious arguments (see e.g. Chap. 4 in [52.13]) but
it is much simpler to solve the corresponding balance
equations (52.18) for the steady-state distribution π̄ =
(π0 , π1 , . . . , π j , . . . ), which are:

λ0π0 = µ1π1 ,

(µ j +λ j )π j = λ j−1π j−1+µ j+1π j+1 , j ≥ 1 .

(52.20)

If

∞∑

j=0

λ jλ j−1 . . . λ0

µ jµ j−1 . . . µ1
<∞

then (52.20) admits the solution

π j = λ jλ j−1 . . . λ0

µ jµ j−1 . . . µ1
π0 , (52.21)

where

π0 =
⎛

⎝1+
∞∑

j=0

λ jλ j−1 . . . λ0

µ jµ j−1 . . . µ1

⎞

⎠
−1

. (52.22)

In the next section, we apply the birth–death process to
a very simple queueing model. This is done mainly to
illustrate the calculations using the equations displayed
in this section as well as to prepare the reader for an

analogous but more involved analysis when we come to
discuss the MPDQ.

Finite-Buffer Markov Queue (M/M/c/K)
This is a very old queueing model with application to
telephony and is also commonly used to model other
communication systems. Here, it is assumed that the fa-
cility can accommodate K customers, including the ones
in service, and that once the service facility is full, new
arrivals are not allowed in, i. e. they are lost. Arrivals to
the system are generated according to a Poisson process
with rate λ and service time is exponentially distributed
with rate µ. There are c servers (or lines) where c ≤ K .
From the description of the model, it follows that

λ j =
⎧
⎨

⎩
λ for 0 ≤ j < K

0 for j ≥ K
(52.23)

and

µ j =
⎧
⎨

⎩
jµ for 0 ≤ j < c

cµ for c ≤ j ≤ K .
(52.24)

Therefore, (52.21) and (52.22) give

π j =
⎧
⎨

⎩
π0

(ρc) j

j! for 0 ≤ j < c

π0
ρ j cc

c! for c ≤ j ≤ K ,
(52.25)

where ρ= λ
cµ . Furthermore, applying (52.22), we obtain

π0 =

⎧
⎪⎨

⎪⎩

(∑c−1
j=0

(cρ) j

j! + (cρ)c(1−ρK−c+1)
c!(1−ρ)

)−1
if ρ �= c

(∑c−1
j=0

(cρ) j

j! + (cρ)c(K−c+1)
c!

)−1
if ρ = c .

(52.26)

Note that πK is the probability that a customer will be
lost (or a packet dropped). The steady-state distribution
can be used to obtain performance metrics such as:

E(Ls) =
K∑

j=1

jπ j

and E(Lq) =
K∑

j=c+1

(c− j )π j

whence E(Ws) and E(Wq) are easily derived using the
Little formulae (52.1) with λeff replacing λ.
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52.2 Multiple-Priority Dual Queue (MPDQ)
The dual queue with finite buffer is illustrated in
Fig. 52.1. We let c1 be the capacity of the pri-
mary queue and c2 be the capacity of the secondary
queue. We assume arrivals belong to k differentiated
classes of customers. All arrivals follow an indepen-
dent Poisson process with rate λi and service times
are independently exponentially distributed with rate
µi for i = 1, 2, . . . , k. Unlike the standard dual-queue
analysis, we will be incorporating class-based service
disciplines within the dual-queue model. This means
that the favored (high) class of customers will jump to
the head of the line before any other class of customers
within the same queue. Therefore a lower-class customer
in the primary queue cannot be ejected to the secondary
queue even in the presence of higher-classed customers
within the secondary queue. This differs from a sin-
gle queue in that all high-class customers in the system
are moved to the head of the queue, whereas in a dual
queue, all the high-class customers within each queue
are moved to the head of the line. A full primary queue
blocks any entry from the secondary queue, hence there
is an opportunity for lower-class customers to leave the
system first, even in the presence of higher-class ones.

In the next section, we compare performances be-
tween single (SQ) and dual-queueing models based
mainly on waiting-time analysis through simulations
using the preemptive and non-preemptive service dis-
ciplines (preMPDQ and npMPDQ, respectively). We
then give an overview of the analytical solutions when
there are only two classes of customers in a subsequent
section.

52.2.1 Simulating the MPDQ

The four scheduling disciplines used here in both the
single- and dual-queue simulations are FCFS, LIFO,
lowest class first (LCF) and highest class first (HCF).
LCF and HCF are the two priority disciplines used in the
MPDQ. In HCF (and the description is similar for LCF
as the two disciplines are symmetrical), a higher-class
customer jumps to the head of the queue, behind any al-
ready present customers of the same or higher class, and,
in turn, is in front of any lower-class customer. As we will
see from the simulation results, having both queues un-
der the HCF regime in a dual queue is an effective form
of traffic congestion control. The partitioning of a sin-
gle queue and restricting entry into the primary queue,
when it is full, allows lower-class customers to leave the
system, even in the presence of other higher-class cus-

tomers in the system. This is perceived as fairness to
lower-class customers, as they can exit the system in the
presence of higher-class customers but could be deemed
as unfair to the latter. However, this can only occur when
the primary queue is full, so higher-class customers are
not disadvantaged all the time.

All simulations on the MPDQ were conducted using
the Arena simulation software package [52.25], a flex-
ible windows-based program suitable for a vast array
of statistical analysis with dedicated queueing subrou-
tines. In constructing the Arena model, two algorithms
(for the preemptive and non-preemptive cases) were de-
signed for the MPDQ. The single-queue schemes were
also designed so that various regimes could be com-
pared. Although our simulations dealt only with two
classes of customers, which we label class 1 and class 2,
all algorithms are simple to extend to multiple classes
(k ≥ 3) of customers. In communication systems, class 1
would refer to high-priority traffics such as web and
voice traffic, and class 2 would refer to low-priority traf-
fics such as file transfer protocol (FTP) and hypertext
transfer protocol (HTTP).

Results of Simulation Experiments
All customers are considered to be of uniform length.
For all models the first-class customer is considered the
most infrequent arrival and longest in service. The ra-
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LCF  WS

LIFO  WS

Fig. 52.6 Cumulative distribution functions (CDF) of wait-
ing times for different scheduling disciplines
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tionale is that first-class traffic will in many cases be the
more demanding on system resources and can be seen
as either the most or least valuable, depending upon
the type of queueing discipline. Examples of high-class
high-demand traffic include video-conference links,
streaming audio or streaming video. As more classes
are introduced, the performance differences between
them may not be as apparent as when there are fewer
classes.

The first analysis was to determine whether the
HCF regime was superior to the LIFO, FCFS and LCF
scheduling disciplines. Our first series of simulations in-
volved the preemptive MPDQ model, the simplest of the
two service regimes to simulate. We found that, as traffic
intensity increased, the waiting time in the system was
markedly lower under a HCF regime for class 1 cus-
tomers. An example of this is seen in Fig. 52.6, for the
parameters λ1 = 1, λ2 = 2, µ1 = 1, µ2 = 2, c1 = c2 = 4,
the HCF has a lower probability of waiting in the sys-
tem for class 1 customers in comparison to the other
disciplines.

Loss probabilities were also examined. We found
marginal differences between the regimes with respect
to each class, and little difference in class-based loss.
With no appreciable increase in loss by prioritizing
traffic, and significant advantages in waiting time, the
HCF discipline was chosen as the superior scheduling
regime. Further simulations with non-preemptive mod-

CDF
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0.80

1.00

0.00 5.00 10.00 15.00 20.00 25.00

Non-Pre Class 1  WS

Non-Pre Class 2  WS

Pre Class 1  WS

Pre Class 2  WS

Fig. 52.7 Cumulative distribution functions (CDF) of wait-
ing times for preemptive and non-preemptive service
disciplines

els continue to confirm that HCF outperformed other
scheduling regimes.

The next objective was to explore the differences
between the non-preemptive and preemptive service
disciplines. The results here provide a framework for
communication providers in determining how service
disciplines contribute to loss and delay, and how mod-
eling, through simulation, can assist in reducing traffic
congestion. We expect class 2 customers to be disad-
vantaged (in terms of expected waiting time) under the
preemptive regime over class 1 (frequent ejection means
longer waits) with the reverse situation under the non-
preemptive regime. The results certainly show this to be
true and Fig. 52.7 clearly demonstrates this.

What improvement does the npMPDQ offer over
the non-preemptive single queue (SQ)? We compare the
two by considering the non-preemptive dual queue with
c1 = c2 = 10 and the SQ with capacity c1+c2 = 20 with
a view to measuring its performance under different traf-
fic intensities, achieved through varying the mean arrival
rate of class 2 customers. The graphs in Fig. 52.8 are
based on a fixed class 1 mean arrival rate, and fixed
mean service rates, being λ1 = 0.2, and µ1 = µ2 = 1
respectively. We have varied the values of λ2 from 0.25
to 20. This gives us scope to consider the performance
of the system when the traffic intensity is low (ρ = 0.45)
to when it is well beyond saturation.

From Fig. 52.8, we see that, in periods of low traf-
fic intensity (λ2 < 1), there is very little difference
in the ratio of class 1 to class 2 customers in the
npMPDQ and SQ models. However, for high traffic in-

Ratio Class 1 to Class 2 in the queue

Class 2 mean arrival rate
0.0

0.0

1.0

2.0

3.0

5.0 10.0 20.015.0

p >1 Q1MPDQ
Q2MPDQ
SQ

Fig. 52.8 Ratio of class 1 to class 2 customers
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P (Loss)

Class 2 mean arrival rate
0.0

0.00

5.0 10.0 20.015.0

0.20

0.40

0.60

0.80

1.00

npMPDQ C1
npMPDQ C2
preMPDQ C1
preMPDQ C2
npSQ C1
npSQ C2

Fig. 52.9 Probability of loss

tensity (λ2 > 1) and for both primary and secondary
queues, the graphs of the MPDQ models peak and
then decline much faster than the SQ model. Note
also that, as traffic intensity increases, the distributions
of the two classes in both queues appear to stabi-
lize.

Finally we look at the probability of a loss. In
Fig. 52.9, we note that class 1 non-preemptive MPDQ
customers do best using this measure compared to all
the others. The loss probability tapers off significantly
for class 1 customers compared to both the SQ and
preMPDQ. This does come at the expense of class 2
customers. However, the loss probability for class 2 is
still superior to that of the class 1 SQ.

52.2.2 Solving the MPDQ Analytically

In this section, we give a brief summary of the work that
has been undertaken in solving the MPDQ for its sta-
tionary distribution, and the derivation of the expected
waiting times for both classes of customers ([52.12]
and [52.26] respectively). We will assume the HCF dis-
cipline with class 1 customers designated as the high
class. Furthermore, we will only consider the preMPDQ
case here, the corresponding results for the npMPDQ
case can be obtained from [52.27].

The State Space of the MPDQ
and its Infinitesimal Generator
In order to solve the balance equations, which describe
the movements by customers between and within the

dual queues, it is necessary to define the state space S
of the system and the infinitesimal generator matrix A
containing the transition rates between states.

State space. The space S can be partitioned into two dis-
joint sets, S = S1∪ S2, corresponding to the case when
the secondary queue is empty and when it is not empty,
respectively. Here,

S1 = {(i, j ) : 0 ≤ i+ j ≤ c1} ,
where i is the number of customers of class 1, and j is
the number of customers of class 2. Similarly,

S2 = {(i, i ′, j ′) : 0 ≤ i ′ + j ′ ≤ c2, i = 0, 1, . . . , c1} ,
where i ′ is the number of customers of class 1 and j ′ is
the number customers of class 2 in the secondary queue.
Note that the number of class 2 customers in the primary
queue is simply c1− i in this case.

The states of the system can be labeled using S1
and S2 above according to the following lexicographical
scheme:

i = {(i, 0) , (i, 1) , . . . , (i, c1− i)}
i0 = {(i, 0, 1) (i, 0, 2) , . . . , (i, 0, c2)}

and for j = 1, 2, . . . , c2

i j = {(i, j, 0) , (i, j, 1) , . . . , (i, j, c2− j)}
i = 0, 1, 2, . . . , c1.

The steady-state distribution vectorπ is thereby con-
structed so that its components are ordered using the
above labeling scheme:

π t =
(
π t

0, π
t
0,0, . . . , π

t
0,c2

, π t
1, π

t
1,0, . . . ,

π t
1,c2

, . . . , π t
c1
, π t

c1,0, . . . , π
t
c1,c2

)
.

Note that the dimension of π equals 1
2 (c1+1)(c2

2+
3c2+c1+2). The components of the above steady-state
distribution can be described as follows: πi is the proba-
bility vector that is defined when there are no customers
present in the secondary queue, whereas πi j is the prob-
ability vector that is defined when there are customers
present in the secondary queue (so the primary queue
is full). Any probability that is a component of the first
type of vector has general form πi, j and any probability
that is a component of the second type of vector has gen-
eral form πi,i ′, j ′ . For every tuple listed above, there is
an additional label s representing the class of customer
in service in case the MPDQ is non-preemptive. Thus,
the dimension of the steady-state distribution vector is
increased to (c1+1)(c2

2+3c2+ c1+2)+1.
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The infinitesimal generator matrix A. Since the
Markov process describing the MPDQ is an ergodic
CTMC, the steady-state distribution π t exists and is
obtained by solving the system of balance equations

π t A= 0 , (52.27)

where 0 is the zero vector and A is the infinitesimal
generator matrix of the process. From the description
of the dual-queueing system, A can be partitioned into
submatrices whose detailed structure will be described
in detail below. The general structure of A is given by

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ0 Π0 0 . . . . . . 0

Ω1 Λ1 Π1
. . .

...

0
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 0
...

. . . Ωc1−1 Λc1−1 Πc1−1

0 . . . 0 Ωc1 Λc1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Λ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0 M0,λ2 M0,λ1 0 0

O0,µ2 D0,0 Q0,λ1 0

0 0 D0,1 R0,1,λ1
.
.
.

. . .
. . .

. . . 0
. . .

. . . R0,c2−1,λ1

0 · · · 0 D0,c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Π0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N0,λ1 0 · · · 0

0 0

S0,µ2 U0,1
. . .

...

0 0
. . .

. . .

...
. . .

. . .
. . .

0 · · · 0 U0,c2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and for i = 1, 2, . . . , c1

Λi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Di Mi,λ2 Mi,λ1 0 · · · 0

0 Di,0 Qi,λ1 0

Si,µ1 Ui,1 Di,1 Ri,1,λ1

. . .
.
.
.

0 0 Ui,2 Di,1

. . .
. . .

.

.

.
. . . Ui,2

. . .
. . . 0

. . .
. . .

. . . Ri,c2−1,λ1

0 · · · 0 Ui,c2 Di,c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ωi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pi,µ1 0 · · · 0

Yi,µ1 Ti,µ1

0 0
...

...
. . .

...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Πi =

⎛
⎜⎜⎜⎜⎜⎝

Ni,λ1 0 · · · 0

0 0
...

...
. . .

...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

Each submatrix represents all state transitions generated
by the arrival/departure patterns of the MPDQ and in-
corporates the rate parameters λi and µi, i = 1, 2. We
remark that not every submatrix is a square matrix and
hence invertible. For example,

Di, j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (µ1 +λ) λ2 0 · · · 0

0 − (µ1+λ)
. . .

0
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . . λ2 0

. . . − (µ1 +λ) λ2

0 · · · 0 −µ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a square matrix of dimension (c2− j+1) representing
transitions between states in i j, i = 1, 2, . . . , c1, j =
1, 2, . . . , c2 while

Ni,λ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0
. . . 0

0
. . .

. . .
...

...
. . .

. . . 0
... 0 λ1

0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a matrix of dimension (c1− i+1) × (c1− i) repre-
senting the transition from (i, j ) to (i+1, j ) where
i = 0, 1, . . . , c1−1, j = 0, 1, . . . , c1− i−1. Detailed
of the other submatrices can be obtained from [52.12].

Technically speaking, any linear numerical proce-
dure could be used to solve (52.27). However, this would
ignore the structure of the system and the fine detail of
the submatrices outlined above, especially the fact that
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not all the submatrices are square matrices and that A
is not in a workable block-tridiagonal form. This could
render standard numerical procedures difficult or even
impossible to apply; so, in [52.12], an algorithm which
takes into account the structure of the system is proposed
and shown to be very fast and easy to implement.

52.2.3 The Waiting-Time Distribution

The derivation of the waiting-time distribution, espe-
cially for class 2 customers, is based on the matrix
analytic method pioneered by Neuts [52.28]. Our method
generalizes the method proposed in [52.29] for the non-
preemptive SQ. Matrix analytic methods exploit the
special structures of the transition matrices or infinites-
imal generators of some Markov processes occurring
in queueing models and an important feature of these
methods, which add to their utility, is that they are com-
putational in character. In the subsequent analysis, we
distinguish between two cases: when the primary queue
is not full and when it is.

The Primary Queue is not Full
Class 1 customers: in this case, a tagged class 1 cus-
tomer C1 who joins the queue is concerned only with
the number of class 1 customers ahead of him. If C1 sees
no class 1 customers ahead of him, then he goes to the
head of the line and ejects the class 2 customer, if any,
who is being served. If C1 sees n, 0 < n < c1 class 1
customers ahead of him, then he has to wait until these
customers have completed their services. Therefore, his
waiting time is the sum of n exponential (µ1) random
variables. Let

ΠQ1 =
∑

0≤i+ j<c1

πi, j

i. e. the probability that queue 1 is not full, then the
conditional density of the waiting time of C1 given that
queue 1 is not full is

W (1)
1 (t) = 1

ΠQ1

⎡

⎣

⎛

⎝
c1−1∑

j=0

π0, j

⎞

⎠ δ(t)

+
c1−2∑

j=0

c1−1− j∑

i=1

πi, j fi,µ1 (t)

⎤

⎦ ,

where δ(t) is the Dirac delta function and

fn,µ1 (t) = µn
1

(n−1)! t
n−1 e−µ1t ,

i. e. the Erlang distribution with n phases and param-
eter µ1.

Class 2 customers: the derivation of the waiting
time of an arbitrary class 2 customer C2 entering the
secondary queue is quite complex as it is affected by
subsequent arrivals of both class 1 and class 2 customers.
Suppose C2 joins the queue and finds at least one cus-
tomer in front of him, he will be pushed back in the
queue by subsequent class 1 arrivals. Also, any subse-
quent class 2 arrivals will reduce the available spaces in
the buffer, thus improving his chances of moving to the
front of the line. The waiting time of C2 will depend
on the absorption time into a particular set A1 [de-
fined by (52.28)] experienced by the stochastic process
Z(t), t ≥ 0, where

Z(t) = [l11(t), L21(t), F1(t)]
where l11(t) is the number of class 1 customers in the
primary queue, L21(t) is the number of class 2 customers
in front and including C2 in the primary queue, and
F1(t) is the amount of free space in the primary queue.
Due to the assumptions underlying the MPDQ, Z(t) is
a continuous-time Markov chain taking values in the set

R1 =
{
(l11, L21, F1) ∈N 3

0 : 0 ≤ l11 ≤ c1 ,

0 ≤ L21 ≤ c1 ,

0 ≤ F2 ≤ c1
}
.

Define the set of states A1 ⊂R1 by

A1 = {(0, 1, F1) : 0 ≤ F1 ≤ c1−1} . (52.28)

Let T1(l11, L21, F1) denote the first-passage time for
the process Z(t) into A1 starting initially in state
(l11, L21, F1) where L21 ≥ 1, i. e.

T1(l11, L21, F1) = min{t ≥ 0 : Z(t) ∈A1|Z(0)

= (l11, L21, F1)} .
Note that this is precisely the time it will take for C2 to be
served. Denote the Laplace transform of T1(l11, L21, F1)
by Ŵl11,L21,F1 (s), i. e.

Ŵl11,L21,F1 (s) = E(e−sT1(l11,L21,F1)) , (52.29)

where Re(s) > 0. Using the Poisson arrivals see time
averages (PASTA) property [52.30], which posits that
a Poisson arrival would observe the steady-state distri-
bution at any random time point, the Laplace transform
of the time to absorption of Z(t) given that C2 can join
the primary queue is therefore

Ŵ (2)
1 (s)= 1

ΠQ1

⎡

⎣
∑

0≤i+ j<c1

πi, j Ŵi, j+1,c1−i− j−1(s)

⎤

⎦ .

(52.30)
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Inversion of (52.30) will in principle gives us the dis-
tribution of the waiting time of a class 2 customer.
However, for most practical purposes, it suffice to com-
pute its k-th moment, k = 1, 2, . . . . A recursive and
computationally efficient algorithm using matrix ana-
lytic methods is introduced in [52.26], which achieved
this purpose.

The Primary Queue is Full
Class 1 customers: here, C1 joining the secondary queue
either sees no class 1 customers or at least one class 1
customer in the primary queue. In the first case, he has to
wait for the services of all class 1 customers ahead of him
in the secondary queue and that of the class 2 customer at
the head of the queue to finish. In the second case, he has
to wait until all class 1 customers in front of him in the
combined queue have been served. Thus the conditional
density of his waiting time given that the primary queue
is full is

W (1)
2 (t) = 1

ΠQ2

⎡

⎣
∑

0≤i ′+ j ′<c2

π0,i ′, j ′ f1,µ2 % fi ′,µ1 (t)

+
c1∑

i=1

∑

0≤i ′+ j ′<c2

πi,i ′, j ′ fi+i ′,µ1 (t)

⎤

⎦

(52.31)

where % refers to the convolution operator and

ΠQ2 =
c1∑

i=0

∑

0≤i ′+ j ′<c2

πi,i ′, j ′

is the probability that the primary queue is full.
Class 2 customers: similar to the first case, the wait-

ing time of an arbitrary class 2 customer C2 is equal to
the absorption time of a stochastic process into a targeted
set. Define

Y (t) = [l11(t), l12(t), L22(t), F2(t)] ,
where l11(t) is the number of class 1 customers in the
primary queue, l12(t) is the number of class 1 customers

in the secondary queue, L22(t) is the number of class 2
customers in front and including C2 in the dual queue,
and F2(t) is the amount of free space in the secondary
queue. The time for Y (t) to first enter the targeted set A2
[defined by (52.32)] is equal to the waiting time of C2.
Note that Y (t) is a continuous-time Markov chain which
takes values in the set

R2 = {(l11, l12, L22, F2) ∈N 4
0 : 0 ≤ l11 ≤ c1 ,

0 ≤ l12 ≤ c2 ,

0 ≤ L22 ≤ c1+ c2 ,

0 ≤ F2(t) ≤ c2} .
The waiting time of C2 is the first-passage time
T2(l11, l12, L22, F2) for the process Y to enter into
A2 ⊂R2 defined by

A2 = {(0, l12, 1, F2) : 0 ≤ l12 < c2, 0 ≤ F2 ≤ c2}
(52.32)

starting initially in state (l11, l12, L22, F2), where L22 ≥
1. Denote the Laplace transform of T2(l11, l12, L22, F2)
by Ŵl11,l12,L22,F2 (s).By the PASTA property, the Laplace
transform of the time to absorption of Y into A2 given
that a class 2 customer enters the secondary queue is

Ŵ (2)
2 (s) = 1

ΠQ2

⎡

⎣
c1∑

i=0

∑

0≤i ′+ j ′<c2

πi,i ′, j ′

× Ŵi,i ′, j ′+c1−i+1,c2−i ′− j ′−1(s)

⎤

⎦ . (52.33)

Again, inverting (52.33) will technically gives us the
distribution of the waiting time of a class 2 customer.
However, as in previous case, a more viable alternative
is to provide a recursive algorithm (which we have done
in [52.26]) which will allow us to compute all the k-th,
k = 1, 2, . . . moments of the waiting time for class 2
customers in the secondary queue.

52.3 Distributed Systems and Load Balancing

Many recent studies have shown that distributed com-
puting environments exhibit a wide range of task sizes,
often spanning many orders of magnitude. These so-
called heavy-tailed workloads have been found to exist
in a number of computing environments. Crovella
et al. [52.31, 32] found that a number of file-size dis-
tributions measured on the World Wide Web (WWW)

exhibit heavy tails, including file requests by users, files
transmitted via the network and files stored on servers.
Further examples of observed heavy-tailed workload in-
clude the size of files stored in Unix file systems [52.33]
and the Unix process central processing unit (CPU)
requirements measured at UC Berkley [52.34]. More
recently, traffic measurements of the 1998 World
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Cup [52.35] and the 1998 Winter Olympics [52.36] have
exhibited some heavy-tailed characteristics. There are
significant questions raised by these findings with re-
gards to task assignment policies, as much of the existing
work in the area was formulated under an assumption of
an exponentially distributed workload.

Heavy-tailed distributions have very high variance,
where 1% of tasks can take 50% of the computing re-
sources. These distributions are characterized by the
property

Pr(X > x) ∼ x−α ,

where 0 ≤ α ≤ 2. Any set of tasks that is said to follow
a heavy-tailed distribution is described as having the
following properties [52.37, 38]:

1. Decreasing failure rate. That is, the longer a task has
run, the longer it is expected to continue running.

2. Infinite variance, and if α ≤ 1, infinite mean.
3. A very small fraction (less than 1%) of the very

largest jobs make up a large fraction (half) of the
workload. This is commonly referred to as the heavy-
tailed property. It is this property that makes the load
very difficult to balance effectively.

For the purpose of analysis, we assume that the task
sizes show some maximum (but large) value. This is
a reasonable assumption in many cases, such as a web
server, which would have some largest file. A bounded
Pareto distribution is therefore used, which has a lower
and upper limit on the task size distribution. The proba-
bility density function for the bounded Pareto B(k, p, α)
is:

f (x) = αkα

1− (k/p)α
x−α−1, k ≤ x ≤ p , (52.34)

where α represents the task size variation, k is the small-
est possible task, and p is the largest possible task. By
varying the value of α we can observe distributions that
exhibit moderate variability (α ≈ 2) to high variability
(α≈ 1). Typical measured values of the α parameter are
0.9–1.3 [52.31, 32, 37], with an empirically measured
mean of α≈ 1.1. The next table provides some α values
associated with the heavy-tailed distributions of some
files.

52.3.1 Classical Load-Distribution Policies

The problem of optimal task assignment in a distributed
system has been a well-researched area for many years.
Most of the so-called classical approaches were created
under the assumption that service times are exponen-
tially distributed. Many of these policies are still widely

used, due to their simplistic nature and ease of imple-
mentation.

Random and Round-Robin
Classical task assignment policies such as random and
round-robin [52.39] have traditionally been used in dis-
tributed systems, and are still widely used for many
applications. Under the random policy, tasks are as-
signed to each back-end server with equal probability.
Using a round-robin policy, tasks are assigned to servers
in a cyclical fashion. Both policies equalize the expected
number of tasks allocated to each server, and are fre-
quently used as a baseline to compare with other task
distribution policies. Tasks are assigned with no consid-
eration of each host’s load or the distribution of task
sizes. Despite this, random and round-robin are still
commonly used in many scheduling environments (most
likely due to ease of implementation). It has been shown
previously [52.34] that random and round-robin both
have similar performance characteristics.

Dynamic Policies
Dynamic policies intelligently assign tasks based on
knowledge of the current load at each host. The LLF
(least loaded first) approach assigns tasks to the server
with the least amount of work remaining, attempting to
achieve instantaneous load balance. The work remain-
ing can be approximated by the queue length (shortest
queue), or assuming the task’s service requirement is
known a priori. By keeping the load balanced, the wait-
ing time in the queue can be reduced. It is known
that balancing the load minimizes the mean response
time [52.40] in the type of distributed system that we
consider in this paper. Despite this, a number of caveats
exist. Firstly, the best performance is not always obtained
by balancing the load, particularly if you are interested
in different measures of performance, such as the mean
slowdown. Secondly, balancing the load is not always
practical, as you are often depending on approximate
measures of the load, such as the queue length. Under
highly variable workload it is highly probable that the
length of a queue can be misleading as an indicator of
congestion.

Central Queue
The central-queue policy holds tasks in a queue at the
dispatcher until a host is idle. Such a policy has proved
to be equivalent to a least-work-remaining policy, show-
ing that equivalent performance can be obtained without
any prior knowledge of a task’s size [52.37, 38]. Re-
cently, two variations of the central-queue policy have

Part
F

5
2
.3



Queuing Theory Applications to Communication Systems 52.3 Distributed Systems and Load Balancing 1007

α
0.4

107

108

109

1010

1011

0.6 0.8 1 1.2 1.4 1.6 1.8 2
α

0.4
1

10

100

1000

10000

0.6 0.8 1 1.2 1.4 1.6 1.8 2

a)

E (X 2)

b)

C 2

Fig. 52.10a,b The second moment of a bounded Pareto distribution (E{X} = 3000, p = 107) is shown in (a), where α is
varied from 0.5 to 2.0. The squared coefficient of variation (C2 = E{X2}/E{X}2) is shown in (b)

been proposed – cycle stealing with immediate dis-
patch (CS-ID) and cycle stealing with central queue
(CS-CQ) [52.41]. CS-ID immediately dispatches tasks
to a back-end server, while CS-CQ holds tasks in a cen-
tral queue at the dispatcher until a host is idle. Both
policies are evaluated against a dedicated policy. In
a dedicated policy, one host is dedicated to servicing
all short jobs, while the other host services long jobs.
Both CS-ID and CS-CQ follow a similar arrangement,
but can steal cycles from an idle host if available and it is
prudent to do so. Both CS-ID and CS-CQ show improve-
ment over a dedicated policy in many areas (notably for
short tasks). The application of these policies are limited
to domains where a priori knowledge of a tasks size is
known, and in the case of CS-CQ, there needs to be con-
stant feedback between the dispatcher and the back-end
hosts to notify the dispatcher of an idle host.

Some Known Results
The round-robin policy results in a slightly less variable
arrival stream to the back-end hosts than the random
policy. Despite this, the performance of the random and
round-robin policies have been shown to be roughly
equivalent [52.38].

Assuming an M/M/c queueing system, a shortest-
queue policy has been shown to be optimal with respect
to maximizing the number of jobs completed by a certain
time [52.42]. Under more general assumptions, Nelson
and Phillips [52.43] claim that the central-queue (and
therefore least-work-remaining) policy is optimal.

A least-work-remaining policy is not analytically
tractable under M/G I/c queuing systems. Nonetheless,

this policy has been shown to be equivalent to a central-
queue policy [52.38], for which there exists known
approximations to its queue size using the following
result given in [52.44]:

E(L M/G I/c) = E(L M/M/c)
E(X2)

E(X2)
, (52.35)

where X is the service requirement, and Lmodel repre-
sents the queue length under the model specified. We
remark that, for the queueing model (M/GI/1), the ex-
pected waiting time in the queue is given by the famous
Pollaczek–Khinchin mean value formula [52.19]

E(Wq) = λE(X2)

2(1−ρ)
. (52.36)

Limitation
of Classical Load Distribution Policies
The task assignment policies listed above are not
suitable for heavy-tailed distributions such as the
Pareto distribution. Consider the metrics (52.35) and
(52.36); what is immediately apparent is that all
these metrics depend on the second moment of the
service requirement distribution, E{X2} and for poli-
cies, such as the least-work-remaining policy, they
will depend on the squared coefficient of variation
C2 = E{X2}/E{X}2. Figure 52.10 shows an example
of one such highly variable distribution (where the
y-axis is on a log scale). We can see that, as α de-
creases, the variation (as represented by the second
moment of the distribution, and the squared coef-
ficient of variation) increases substantially. Clearly,
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as the variability of the service time distribution in-
creases, the performance of the distributed system will
decrease rapidly using these classical load balancing
policies.

52.3.2 Size-Based Load Distribution Policies

In the previous section we have highlighted substantial
recent research indicating the frequent occurrence of
heavy-tailed workloads in many distributed computing
environments. The characteristics of these heavy-tailed
workloads make them very challenging to manage us-
ing traditional load distribution policies. Indeed, many of
these policies were created under the M/M/c queueing
model, where the distribution of service requirements
follows an exponential distribution. To deal with heavy-
tailed M/G/c workloads, where G is a heavy-tailed
distribution, new load distribution techniques need to be
employed. In particular, they must address the charac-
teristics of these workloads, such as their highly variable
nature, which cause such poor performance under tra-
ditional load distribution policies. In recent years, there
have been several load distribution techniques specif-
ically created to exploit the special characteristics of
heavy-tailed workloads. They can be broadly classified
as size-based policies where the workload is partitioned
into distinct size ranges, with each size range dedicated
to a specific server. For example, you may have a two
server system where one server processes only small
tasks, while another server processes only large tasks.

These size-based policies can be further classified by
what knowledge they assume is known at the dispatcher.
Some policies assumes that a task’s size is known a priori
at the dispatcher, and as such can assign the task directly
to the server that is responsible for servicing tasks in that
range. This obviously restricts the application of these
policies to domains where exact (or reasonably accurate)
a priori knowledge of a task’s size is available.

Other size-based policies have less restrictive as-
sumptions regarding what information is available at
the dispatcher. Policies such as task assignment based
on guessing size (TAGS) and task assignment based on
prioritizing traffic flows (TAPTF), which are discussed
later, assume no knowledge of a task’s size at the dis-
patcher. They do, however, require knowledge of the
distribution of task sizes.

SITA-E/V/U – Known Task Size
Size interval task assignment with equal load
(SITA-E) [52.38] is a sized-based approach proposed
by Harchol-Balter et al. that associates a unique size

range with each host in the distributed system. These
size ranges are chosen specifically to equalize the
expected load received at each host. Whilst proving ef-
fective under conditions of high task-size variability,
SITA-E is not the best policy in circumstances of lower
task-size variability, where a dynamic policy is more
suitable.

Size interval task assignment with variable load
(SITA-V) [52.40] intentionally operates the hosts in
a distributed system at different loads, and directs
smaller tasks to lighter-loaded servers. The authors
note that, depending on which performance metrics are
of interest, the conventional notion that balancing the
load on the respective hosts may not result in opti-
mal performance, especially when the size distribution
is heavy-tailed. SITA-V, like SITA-E, assigns tasks to
a given host based on their size. However, SITA-V
exploits the heavy-tailed property of the task size dis-
tribution by running the vast majority of tasks (i. e. the
small tasks) on lightly-loaded hosts, while running the
minority of tasks (the larger sized tasks) on the heavily-
loaded hosts, thus preventing small tasks getting held
up behind large tasks and allowing them to be pro-
cessed quickly. Thus, mean slowdown is reduced, and
the throughput is not adversely affected, but it can result
in an increase in mean waiting time – which is expected,
since minimal mean waiting time is known to occur
when load is balanced.

A size-based approach that is specifically suited
for batch computing environments under supercom-
puting workloads is size interval task assignment
with unbalanced load (SITA-U) [52.45]. SITA-U pur-
posely unbalances the load among the hosts while
also being fair, i. e. achieving the same expected
slowdown for all jobs. Two variations of SITA-U
are considered: SITA-U-opt, where service require-
ment cutoffs are chosen to minimize mean slowdown,
and SITA-U-fair, where service requirement cutoffs
are chosen to maximize fairness. The simulation
results showed that both variations of SITA-U per-
formed better under a range of load conditions –
with system loads in the range 0.1–0.8. SITA-U-
fair achieved significant performance gains over the
load range 0.5–0.8, demonstrating an improvement
of 4–10 times with regards to mean slow down, and
from 10–100 times with regards to variability in slow-
down.

Most size-based policies perform well under very
high task-size variation, but their advantage over exist-
ing approaches is reduced as variation decreases. Most
importantly, the application of the task assignment poli-
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cies listed above is limited by the assumption that the
service requirement of each task is known a priori, which
is frequently not the case.

TAGS/TAPTF – Unknown Task Size
The size-based approaches considered thus far all as-
sume that the exact service requirements are known at
the dispatcher in advance. Often this is not the case
– in many environments a task’s service requirement
is not known until execution time on a given host.
Task assignment based on guessing size (TAGS) [52.37]
assumes no prior knowledge of a task’s service require-
ment. Like SITA-V, TAGS is slightly counterintuitive
in that it unbalance the load, and also considers the
notion of fairness, i.e. that all tasks should experi-
ence the same expected slowdown. The TAGS approach
works by associating a processing time limit with
each host. Tasks are executed on a host, starting
with host 1 (refer to Fig. 52.2), up until the desig-
nated time limit associated with that host; if the task
has not completed by this point, it is aborted and
restarted from scratch at the next host. These cut-
offs are a function of the distribution of task sizes
and the external arrival rate, and can be computed
to optimize certain metrics, such as waiting time or
slowdown.

The design of the TAGS policy purposely exploits
properties of the heavy-tailed distribution, such as de-
creasing failure rate – where the longer a task has run,
the longer it is expected to run – and the fact that a tiny
fraction (less that 1%) of the very longest tasks can make
up over half the load.

λ
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q2

Fig. 52.11 TAPTF queueing system

Like other size-based approaches, under higher loads
and less variable conditions, TAGS does not perform so
well. TAGS gains much of its performance by exploit-
ing the heavy-tailed property, by moving the majority
of the load onto host 2, allowing the vast majority of
small tasks to be processed quickly on host 1. TAGS
also suffers under high loads due to excess – the ex-
tra work created by restarting many jobs from scratch.
As noted in [52.37], “ . . . overall excess increases with
load because excess is proportional to λ, which is in turn
proportional to load.”

Recently a new approach to task assignment in
a distributed system, task assignment based on prior-
itizing traffic flows (TAPTF) [52.46], was introduced
(Fig. 52.11). TAPTF is a flexible policy that addresses
some of the shortcomings of existing approaches to task
assignment. TAPTF showed improved performance un-
der heavy-tailed workloads for certain classes of traffic
by controlling the influx of tasks to each host. Tasks can
potentially be dispatched to any host, rather than just the
first host, as in the TAGS approach. This approach is ben-
eficial under two important scenarios. First, when task
size variation decreases it becomes harder to exploit the
so-called heavy-tailed properties. When the workload
becomes more uniformly distributed, improved perfor-
mance is gained from spreading the incoming tasks over
multiple hosts. Second, when the system load is high the
first host (which in a TAGS system receives all incom-
ing tasks) can become overloaded, causing a bottleneck
and resulting in a decrease in the overall performance
metrics.

TAPTF introduces multiple queues with processing
time limits (cutoffs). Each host has an ordinary queue
which receives tasks directly from the dispatcher. Each
host (excluding the first) also has a restart queue that
receives restarted tasks from the host directly above
it. The use of dual queues (combined with cutoffs at
each host) enables service differentiation at each host,
allowing smaller tasks to be executed quickly with-
out being delayed by larger tasks. To achieve this,
tasks that exceed the cutoff on a given host are mi-
grated to the next host’s restart queue (to be restarted
from scratch). As the ordinary queue has priority over
the restart queue, a potentially small task is not de-
layed by larger tasks that may exist in the restart
queue.

Improved performances were observed both in mean
waiting time and mean slowdown, the key areas where
TAGS and random policies suffer. Most significantly,
TAPTF exhibited improved performance under low to
high task size variation and high system load by reducing

Part
F

5
2
.3



1010 Part F Applications in Engineering Statistics

the excess associated with a large number of restarts and
by intelligently controlling the influx of tasks to each
back-end host.

Performance Under Heavy-Tailed Workloads
In this section, we illustrate how such size-based
approaches are effective at counteracting the high
variability in workloads that can affect the perfor-
mance of traditional approaches to load balancing.
Consider a size-based policy that partitions the work-
load between the back-end hosts. A size-based policy
assigns unique size ranges to each of the n back-
end hosts by partitioning the range of task sizes
[k, p], i. e. k = s0 < s1 < s2 < . . . < sn = p. For exam-
ple, in a two-host system, host 1 would service tasks
with sizes between s0 and s1, while host 2 would handle
the remaining tasks, with sizes between s1 and s2 = p.

Let pi equal the fraction of tasks whose destination,
i. e. where it will run to completion, is host i. That is,
tasks whose size is between si−1 and si . Using a bounded
Pareto distribution (52.34), this is given by:

pi = P(si−1 ≤ X ≤ si )

= αkα

1− (k/p)α

si∫

si−1

x−α−1 dx

= kα

1− (k/p)α
(
s−α

i−1− s−α
i

)
. (52.37)

Let us now consider only those tasks which are dis-
patched to and run-to-completion at host i. Let E
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Fig. 52.12a,b The squared coefficient of variation experienced at each host (C2 = E{X2}/E{X}2) in a four-host SITA-E
system is shown in (a). The fraction of tasks assigned to each host is shown in (b)

be the j-th moment of the distribution of tasks that are
dispatched to host i’s queue. We have:

E
(
X j

iO

)=
si∫

si−1

x j f (x)dx (52.38)

=

⎧
⎪⎨

⎪⎩

αsαi−1

( j−α)
[
1−(

si−1
si

)α
] if j �= α

si−1si
si−si−1

(ln si − ln si−1) otherwise .

(52.39)

Consider first the following example: a four-host system,
utilizing the SITA-E task assignment policy. The ar-
rival is Poisson and the service time distribution follows
a bounded Pareto distribution. As described previously,
SITA-E chooses its size ranges in order to equalize
the expected load assigned to each back-end host. Fig-
ure 52.12a shows the C2 values experienced by each
back-end host asα varies. We can see a significant reduc-
tion in variation that has been achieved by partitioning
the workload and assigning it to different hosts – ef-
fectively grouping like-sized tasks together. Indeed, the
first two hosts have C2 values that are less than one
from α= 1.1 to α= 2.0. Nevertheless, we can see that
the variation at the latter hosts is still quite high, ap-
proaching the value of C2 of the task size distribution
itself (i. e. before it is partitioned). This is not a prob-
lem in itself, as we can see in Fig. 52.12b. There, using
the formula for pi given in (52.37), we see that the vast
majority of tasks are processed by the lower hosts, and
predominantly the first host. These hosts have a signif-
icantly lower variance, and, given they process nearly
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Fig. 52.13 Performance of a two-host distributed system with system load of 0.3, 0.5 and 0.7. The expected waiting time
and slowdown are depicted under each load scenario

all tasks, they therefore contribute most to the over-
all system metrics, such as expected waiting time and
slowdown. Recall that our system metrics depend on the

second moment of the task size distribution; therefore,
by reducing the variance experienced by the majority
of tasks, size-based task assignment policies can signif-
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icantly improve a system’s performance over traditional
techniques under heavy-tailed workloads. Next, we con-
sider the performance of a distributed server cluster,
where again our arrival is Poisson and our service time
follows a bounded Pareto distribution. We set p (our
largest task) to 107, and vary k (our smallest task) to
keep the distributional mean, E{X}, fixed at 3000.

Figure 52.13 shows a comparison between the ran-
dom, dynamic, TAGS and TAPTF policies in a two-host
distributed system. The system load is varied, showing
performance where ρ = 0.3 (low load), ρ = 0.5 (moder-
ate load) and ρ = 0.7 (high load). The metrics used are
the expected waiting time and mean slowdown.

As observed in Sect. 52.3.1, the performance metrics
of both the random and dynamic policies are dependant
on the variation of the task size distribution. As the vari-

ation increases (when α decreases) the expected waiting
time and slowdown increase rapidly. Also, we note that
the scale of improvement shown by the dynamic policy
over the random policy decreases slightly as the sys-
tem load increases. As the system load increases, there
is a lower probability of a host being idle, even under
the random policy. As such the dynamic policy has less
scope for improvement.

Significantly, we can see an enormous improvement
for the size-based task assignment policies, especially
under conditions of high and extreme task size varia-
tions. These policies by their very nature reduce the vari-
ance of task sizes at each host, by partitioning the work-
load amongst each host. This has the effect of grouping
similarly sized tasks together at the queues of each host,
consequently reducing the variance at each host.

52.4 Active Queue Management for TCP Traffic

A description of how the TCP congestion control mech-
anism works, using a sliding congestion window to
control the flow of packets through the system, is given in
Sect. 52.0.3. The way in which the window size changes
depends on the version of TCP used, the most common
being the standard algorithms, slow start and congestion
avoidance.

52.4.1 TCP Algorithms

Slow Start
Most versions of TCP that use the slow start algo-
rithm are greedy and will attempt to take as large
a share of the network resources as possible. The
larger the window size a connection has, the larger
the amount of resources it has. The purpose of slow
start is to attempt to find the largest congestion win-
dow size a connection can have without causing too
much congestion on the network. The following de-
scribes how slow start changes the window size from
the commencement of a connection. In the algorithm
described next, W(a) refers to the window size after a
acknowledgements.

1. The window size is set to one and a single packet is
transmitted: W(0) = 1.

2. When an acknowledgement (ACK) for a packet ar-
rives, the window size is increased by one and slides,
allowing two new packets to be transmitted and
acknowledging that the previous packet has been

received correctly:

W(a+1) = W(a)+1 .

3. When the window size reaches a slow-start thresh-
old Wt (ssthresh), the slow-start phase ends and the
congestion-avoidance phase begins.

Notice that the number of packets transmitted grows
exponentially due to an increase in the number of ACKs
received as the window size increases. For example, send
one packet, receive one ACK, now send two packets and
receive two ACKs, each of which can send a further two
packets and so on.

Congestion Avoidance
Congestion avoidance usually commences after a slow-
start packet has been lost; its purpose is to increase the
window size slowly in an attempt to provide optimum
utilization while preventing packet loss. The following
are the steps of the congestion-avoidance algorithm:

1. After an ACK for one packet arrives, the window
moves across one slot and one new packet can be
transmitted.

2. After an ACK for every packet in an entire window
arrives, the window size is increased by one, which
allows two new packets to be transmitted. Therefore
the window size changes according to (52.40):

W(a+1) = W(a)+ 1

3W(a)4 , (52.40)
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where 3x4 refers to the floor function. For example,
if W(a)= 5, then an arrival of an ACK would change
the window to W(a+1) = 5.2 and five ACKs must
arrive in total for the window to increase to 6.

3. Congestion avoidance ends when a maximum win-
dow size (MWS) is reached or when a packet loss
occurs.

The above algorithm linearly increases the window
size. The window size will only increase by one when
all the ACKs from the window are received. Notice that
to find the value of the window size at any a we must
always take the floor of W(a).

Retransmission Algorithms
In TCP packet loss is an indicator of congestion in the
network and can occur in both slow start and congestion
avoidance. Two common methods for detecting packet
loss are fast retransmit and timeout.

Fast Retransmit. When the receiving end (client) ac-
knowledges a packet it also indicates what the next
required packet is. This will always be the packet that
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Fig. 52.14 Examples of fast retransmit and timeout

has the lowest sequence number. For example if the
client received packets 1, 3 and 4 the next packet re-
quired is 2. Every time a new packet arrives packet 2 will
be requested (in an ACK) until packet 2 arrives. These
acknowledgements are called duplicate ACKs. Fast re-
transmit is based on the number of duplicate ACKs that
are received which is usually three. If three duplicate
ACKs arrive at the sender then fast retransmit will oc-
cur. This is only possible if at least three packets have
been transmitted after the lost packet. Figure 52.14a
shows the sequence of events in a fast retransmit where
only one packet is lost. Notice packet 2 is transmitted
after the third duplicate ACK for packet 2 arrives.

Timeout. Every time a packet is transmitted a timer
is started, this timer will timeout, i. e. expire, after an
estimated ACK arrival time. This estimated ACK arrival
time is based on the mean and standard deviation of
previous ACK arrival times. A timeout loss is detected
when an ACK fails to arrive within the estimated arrival
time and if three duplicate ACKs are not received. This
means a timeout can only occur when a fast retransmit
does not occur. Figure 52.14b shows the sequence of

Part
F

5
2
.4



1014 Part F Applications in Engineering Statistics

events for a timeout loss. Notice that only one packet
is successfully transmitted after the first packet loss and
only one duplicate ACK is received. Also notice that
packets 5 and 6 are transmitted even though a packet
loss has occurred.

52.4.2 Modeling Changes
in TCP Window Sizes

Many models of TCP behavior have been proposed;
most concentrate on finding the throughput of a TCP
connections given some distribution of packet loss.
Some models concentrate on short flows [52.47, 48]
while other only consider long- or infinite-duration
flows [52.49, 50]. A small number of models such as
that of Casetti and Meo’s [52.51] consider a mixture of
long and short flows, which is the more realistic scenario.
When short flows are modeled it is important to consider
slow start because most short flows spend a majority of
their time in slow start. For long flows, congestion avoid-
ance is important because long flows spend most of their
time in congestion avoidance. In [52.51], a model of the
TCP congestion window size which represents both long
and short finite-duration flows is presented.

In [52.52], the window size distribution is modeled
as a Markov chain {Uk}, where k is the epoch of the
change in window size. The state space of the process
comprises four sets: active (N), idle (I), timeout (T )
and fast retransmit (F), as shown in Fig. 52.15. N rep-
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Fig. 52.15 Transitions between states in Markov model

resents the set of states where data is available for TCP
to transmit and members of this set are represented by
the vector (W, Wt, N ), where W is the window size, Wt
the window threshold and WM is the maximum received
window size. The active states model the dynamic way
the window size changes for both slow start and conges-
tion avoidance. When a loss event occurs, the process
makes a transition to one of two loss states, T and F,
i.e to state (W, T ) representing timeout has occurred, or
(W, F ) representing that fast retransmit has occurred.
A transition to an idle set I models the situation when
a connection has no data to send.

From each of the active states N there are three
different types of transition: timeout, fast retransmit and
normal (i. e. no packets drop); each transition has a prob-
ability of occurrence of PRt, PRf and Pnl, respectively,
which are used implicitly in calculating the transition
rates between states. Uk = (W, Wt, N ) is an active trans-
mitting state. All transitions from state Uk to Uk+1 are
summarized in (52.41) with their corresponding tran-
sition rates (the λs in the equations). For example if
WM = 8 and the current state is (4, 2, N ) then a transi-
tion to state (5, 2, N ) occurs if no packets are dropped.
If a loss occurs then there is a transition to either state
(4, T ), if it is a timeout, or (4, F ), if it is a fast retransmit.
If there is no more data to send then there is a transition
to state I .

Uk+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2W, Wt, N )λnl W < Wt

2W < Wt

(Wt, Wt, N )λnl W < Wt

2W ≥ Wt

(W +1, Wt, N )λnl Wt ≤ W < WM

(W, T ) λRtd

(W, F ) λRfd

I λI

(52.41)

A timeout reduces the window size to one and the
window threshold to W/2, which is half the window
size, when a loss occurred. So from the timeout state
Uk = (W, T ) a transition can occur to an active state
(1, 5W/26, N ) or the idle state if there is no more data
to send, i. e.

Uk+1 =
⎧
⎨

⎩
(1, 5W/26, N ) λRt

I λI .
(52.42)
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Transitions from the fast-retransmit state Uk = (W, F )
are the same as the timeout state except the window size
is reduced to half the loss window size instead of one,
i. e.

Uk+1 =
⎧
⎨

⎩
(5W/26, 5W/26, N ) λRf W > 3

I λI .

(52.43)

A transition from the idle state Uk = I to the initial active
state (1, 5WM/26, N ) occurs with an arrival, i. e.

Uk+1 = (1, 5WM/26, N ) α (52.44)

where α is the arrival rate.
The stationary distribution πU of {Uk} can be ob-

tained by solving the balance equations described by
the transitions displayed in (52.41), (52.42), (52.43) and
(52.44) in a similar way to that obtained for the MPDQ
in Sect. 52.2.2. Note that the rates λnl, λRt and λRf are
all functions of the window size W and must be de-
fined from the packet-loss probability, loss distribution
and delays of the network. A separate network model
is required to define these parameters. Details of these
derivations can be obtained from [52.52].

52.4.3 Modeling Queues
of TCP Connections

The network that supports TCP connections is usually
made up of a number of interconnected routers. Each
router contains one or more buffers and a number of
links. Bottlenecks can occur when a number of con-
nections all attempt to utilize one link. Even though
queueing can occur in any router, the bottleneck is usu-
ally most important because this is where the majority
of queueing delay will occur. The most common type of
queueing discipline assumed in routers are FCFS, the so
called droptail queues. Recently active queue manage-
ment (AQM) queues have been introduced specifically
for TCP traffic. One of the most popular is the random
early-detection queue (RED) [52.53]. In the following
sections the FCFS droptail and RED queues will be
described in more detail.

FCFS Droptail Queues
The most basic router queue on the internet is the drop-
tail FCFS queue. A droptail queue has a finite buffer
and drops packets if it is full. Packets arrive at the queue
at the rate λ and are served at the rate µ. The arrival
rate depends on the number of TCP connections con-
nected to the queue and their maximum transmission

rates. For example, if there are ten TCP connections
with a maximum send rate of ten packets per second,
then the maximum arrival rate would be one hundred
packets per second. The departure rate µ is the number
of packets that can be served on the outgoing link and
depends on the bandwidth of the link. For example the
outgoing link bandwidth may be 80 packets per second.
The service time of each packet is deterministic because
most packets of a TCP connection are the same size. The
load of the network ρ is defined in Sect. 52.1.2. If the
load is greater than one the network is considered con-
gested and packets must be dropped from the queue. TCP
aims to reduce the arrival rate of packets to the queue
to a value close to one in an effort to minimize dropped
packets and prevent packet retransmission, which adds
further load.

An M/D/1/K queue is a good model for approxi-
mating a queue of TCP connections because the arrival
process of packets can be approximated as Poisson when
there is a large number of sources, service time is deter-
ministic and the queue has a finite capacity K . However,
most of the operational parameters of an M/D/1/K
queue, such as average waiting time and drop prob-
ability PK , i. e. the queue is full, cannot be obtained
explicitly and the M/M/1/K queue has been found to
provide a good approximation [52.51]. As exhibited in
Sect. 52.1.4, this simpler model has explicit equations
for drop probability PK, average waiting time E(Wq)
and average number of packets in the queue E(Lq).

The average waiting time and packet drop probabil-
ity together with the TCP send rate can be used to find the
equilibrium point of a network using fixed-point anal-
ysis. The TCP send-rate equation finds the send rate
(arrival rate to the queue) as a function of packet drop
probability and average waiting time while the queue
model finds the average waiting time and packet drop
probability as a function of arrival rate.

Random Early Detection (RED)
As explained in previous sections, packet drops can con-
trol the send rate of a TCP connections. When the
network contains droptail queues, the control of the
TCP send rates is passive because only the queue length
affects the packet drop probability. In active queue man-
agement the packet loss probability is controlled by the
system administrator through various algorithms. These
algorithms attempt to drop packets in strategic ways to
control the send rate of TCP sources. One of the most
common algorithms is RED [52.53].

RED attempts to control the rate of TCP traffic
sources by dropping packets based on the average queue
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Table 52.1 Some heavy-tail distributions

Description of files α

Unix process CPU requirements [52.34] 1.0

Sizes of files transmitted 1.1−1.3

over the internet [52.31, 32]

1998 World Cup web site 1.37

file size distribution [52.36]

size, estimated using exponential weighted moving aver-
age (EWMA). It attempts to keep the average queue size
low and reduce delay. A number of thresholds are used
by the RED algorithm, which are defined as follows:

• minth – the average queue size at which packets will
start to be dropped. When the average queue size is
less than minth no packets are dropped.• maxth – the average queue size at which all packets
will be dropped if it is exceeded.• pmax – the maximum probability of dropping
a packet.

Using these threshold, RED calculates and sets the prob-
abilities pb and pa, which it uses in selecting packets
to drop. These probabilities are given by (52.45) and
(52.46), which are functions of average queue sizes avg:

Pb(avg) =

⎧
⎪⎪⎨

⎪⎪⎩

0 avg < minth

1 avg > maxth

pmax
avg−minth

maxth −minth
minth≤avg≤maxth

(52.45)

Pa = Pb

1− iPb
, (52.46)

where i is the number of packets since the last dropped
or marked packet. As the average queue size increases so
does the probability that packets are dropped randomly
from the queue. The relationship between the average
queue size and drop probability pb is linear within the
minth to maxth range (with values from 0 to pmax, respec-
tively). When the average queue size is below minth no
packets are dropped and when it is above maxth all pack-
ets are dropped. Using average queue sizes allows the
queue to grow up to its maximum size in order to accom-
modate erratic (bursty) traffic flows. We refer the reader
to [52.53] for details regarding the choice between using
pb and pa in marking and dropping packets.

The RED algorithm is also useful in providing dif-
ferentiated services because it can control the rate in
which different classes of packets enter the network. In

Table 52.2 Scheduling variables

Variable Description

x Priority state (high x = 1, low x = 2)

L The queue that obtains service

Qx The instantaneous queue length of priority x queue

Wx The weight assigned to the priority x queue

R1 Average goodput, i. e. the amount of packets

that gets transmitted through

a system (packets/second)

T1 Goodput threshold of high priority traffic

the next section we will investigate how RED is applied
to provide differentiated services.

52.4.4 Differentiated Services

Differentiated services allow differing traffic to be cat-
egorized into a number of different service groups that
provide different levels of service. For example, some
packets may require low delay, while for others high
throughput may be important. In a network, service is
provided to a packet at the router buffers. The router
can then schedule the order in which packets are al-
lowed access to the link. The two common scheduling
algorithms are weighted round-robin (WRR) and pri-
ority scheduling, which we have discussed earlier in
Sect. 52.2. Another popular method of differentiating
service at a buffer is by exploiting TCPs congestion
control mechanism to control the rate at which packets
enter the network. Packets can be actively dropped to
signal to the TCP sources to slow down and prevent the
packets from entering the network in the first place. Al-
gorithms that achieved this are weighted RED (WRED)
and RED in/out (RIO). These and other mechanisms of
differentiated services will be explained in the following
sections. For simplicity only two groups of service (high
and low priority) will be assumed when describing dif-
ferentiated services. Table 52.2 gives a list of variables
that will be used in the ensuing discussions.

Weighted Round-Robin (WRR)
Weighted round-robin is used in class-based queues
(CBQ) as an extension to round-robin scheduling (cf.
Sect. 52.3.1) where each priority has a separate first-
in first-out (FCFS) queue with a weight (refer to
Fig. 52.16). Each queue is assigned a number of slots
depending on its weight and for each slot, a queue can
transmit a packet of data. For example, say there is a total
of three slots and the high-priority queue is assigned two
of the three slots, the low-priority queue has the remain-
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ing slot. The slots are served in a round-robin fashion
by a single server who moves from queue to queue so
that the high-priority queue gets twice as much service
as the low-priority queue. Note that packets are also ser-
viced in order of priority with two-high priority packets
serviced then followed by one low-priority packet, and
so on. This can be formally described as follows:

S = W1+W2 ,

L =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 Q2 = 0, Q1 > 0

1 Q1 > 0, (a mod S) ≤ W1

2 Q1 = 0, Q2 > 0

2 Q2 > 0, W1 ≤ (a mod S) < S

,

where S is the total weight and the variable a is discrete
and increments by one after each service or when a queue
is empty.

The benefit of WRR is that no class denies any other
class services, the low-priority class will always get its
allocated amount of bandwidth. This provides a degree
of fairness to all classes much akin to that provided by
the dual queue in a MPDQ.

Priority Queues
A priority queue has been discussed in previous sec-
tions but in the context of customers rather than packets.
Here, a priority queue can be a single queue which re-
arranges packets based on their priority (as is assumed
in Sect. 52.2) or it can be multiple queues which have
a priority of services. A single-priority queue involves
complex rearrangement of packets within the queue,
which can be processor-intensive and hence difficult to
implement in practice. For this reason, we will mainly
concentrate on a priority CBQ where each queue serves
packets of a single priority and the service of the queues
is prioritized, i. e. a queue with high-priority packets are
always served before that with low-priority packets. The
only time a low-priority packet can be served is when the
high-priority queue is empty. The scheduling algorithm

Precedence

Queues

Scheduling

1 2 3

Fig. 52.16 A class-based queue

is then simply:

L =
⎧
⎨

⎩
1 Q1 > 0

2 Q1 = 0, Q2 > 0 .

As we have seen, in priority queues if the amount of
high-priority traffic is large the low-priority traffic can be
starved of service completely. The major advantage of
priority queues in packet networks is that high-priority
packets have much lower delay because they are always
served first [52.54].

Flow-Based Quality of Service (QoS) with RED
A single flow is made up of many different types of
packets, each of which can be given different levels of
services. For example, a flow of size 60 packets could
have 40 high-priority packets that must get to the other
end and 20 low-priority packets that may get to the
other end if there is available bandwidth. Weighted RED
and RED in/out are a couple of ways that have been
suggested to provide this differentiation within a flow.

Weighted RED (WRED). WRED [52.55] extends RED
to allow different classes of packets to be treated dif-
ferently. For example a high-priority class may have
a lower probability of packet drop than a lower-priority
class. WRED uses a single queue and maintains a sin-
gle average queue size in exactly the same way as RED.
It differs from RED by providing different minth, maxth
and pmax for each class of packet. For example, WRED
could be configured to have a larger minth and maxth for
high-priority traffic. This would make the high-priority
packet-drop probability lower than that for low prior-
ity packets for all average queue sizes. A higher drop
probability would mean that low-priority TCP sources
would decrease their sending rate more than high-
priority sources, thereby allowing more high-priority
traffic through the link.

RED in/out (RIO). RIO [52.56] is similar to WRED ex-
cept that it keeps a separate average queue length for the
high-priority (in) packets and for the low-priority (out)
packets. The reason different average queue sizes are
used is to isolate the effect of out packets from in pack-
ets. For example if a single queue is used then a large
load of out packets will increase the queue size and
cause in packets as well as out packets to be dropped.
By having a separate average queue size for in pack-
ets the number of in packets dropped is independent of
the load of the out packets. RIO suffers the same prob-
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lem as WRED in that when there is a large amount of in
traffic it can starve low-priority out traffic of service.

Class-Based QoS with RED
A CBQ system can be combined with RED packet drop-
ping to provide service differentiation between flows.
Note this is a different level of service for an entire
flow of packets rather than for individual packet. RED
plus scheduling is an advantage over scheduling with
FIFO because RED can control the source rate rather
than just allocate desired bandwidth between different
priority classes. For example if the high-priority traffic
is allocated 1 Mbps out of 3 Mbps bandwidth, the high-
priority load could be 2 Mbps. Rather than drop 1 Mbps
of packets RED would attempt to adjust the load to
1 Mbps to fit the available bandwidth. The CBQ could
use WRR or priority scheduling to serve each class of
queue.

WRR RED. WRR RED simply combines WRR schedul-
ing with RED. The WRR parameters are the same: each
RED queue is allocated a number of service slots out of
the total slots. Each RED queue can then use the same
minth, maxth and pmax, since the aim is to try to optimize
the average queue length for the bandwidth allocated to
the queue by WRR. WRR RED shares the advantages
and disadvantages of WRR where high-priority packets
are delayed by low-priority packets.

Table 52.3 DPRQ parameters

Parameter Description

K Maximum Buffer Size of both Queues

x Priority (high x = 1, low x = 2)

D Propagation delay

Sx Number of priority x TCP sources

λx Arrival rate of priority x packets

µ Service rate of packets

PFS Probability of exceeding threshold given the
current state is F and next state is S

(above threshold S or F = 1, below threshold S

or F = 0)

Tx Goodput threshold
of priority x queue

rx Average RED packet drop probability
of priority x queue

gx Average RED packet no drop probability
of priority x queue

dx Average total packet drop probability
of priority x queue. RED plus queue full

qx Average queuing delay of priority x packets

Priority RED. Priority scheduling can also be combined
with RED, just like WRR. Each RED queue is assigned
a priority of services. For example if the highest-priority
RED queue has packets in it, then it will always get ser-
vice first. Priority RED faces the same advantages and
disadvantages as the normal priority queueing discussed
earlier. When there is a large amount of high-priority
traffic it can starve low-priority traffic, with the advan-
tage being that there would be a much lower delay for
high-priority traffic.

Dynamic-Priority RED Queue (DPRQ)
Recently, we introduced the DPRQ [52.57], which ex-
tends the priority RED queue by adding a threshold
to the amount of high priority traffic that is allowed
service. The DPRQ scheduling algorithm allows a good-
put i. e. successfully transmitted packets, threshold T1
to be placed on high-priority traffic. The aim of the
threshold is to prevent high-priority traffic from starv-
ing low-priority traffic, a drawback associated with the
RED queues we have discussed earlier. The scheduling
algorithm is as follows (Table 52.2):

L =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 R1 ≤ T1, Q1 > 0

2 R1 > T1, Q2 > 0

2 Q1 = 0, Q2 > 0

1 Q1 > 0, Q2 = 0

. (52.47)

When the average goodput of high-priority traffic R1
is less than the threshold T1 the high-priority queue
will have priority in service. If R1 increases beyond the
threshold T1 then it has exceeded its allowed goodput
and the low-priority queue will be served with priority
until R1 is reduced. In this case R1 naturally reduces
because the high-priority queue is not being serviced.
When there are no high-priority packets the low-priority
queue will be serviced, if it is not empty. If the low-
priority queue is empty then the high-priority queue is
serviced. The average goodput R1 is calculated over
a specified time period using an exponential weighted
average, just like that used to find the average queue
length in the RED algorithm.

The DRPQ model and algorithm [52.57] will now be
described in detail using the parameters which we have
collected in Table 52.3.

As stated before in RED, the packet-drop probability
depends on the average queue length. If the RED router
is well configured the average queue length will not
change a great deal over a large period of time. Over
this period the average packet drop probability will be
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Table 52.4 States of the DPRQ

Range Description

m = 0, n = 0 Both queues empty

m = 0, 0 < n < K High priority queue is empty

m = 0, n = K High priority queue empty and the low priority queue full

0 < m < K, n = 0 Low priority queue empty

m = K, n = 0 Low priority queue empty and the high priority queue full

0 < m < K, 0 < n < K General queue

m = K, 0 < n < K High priority queue full

0 < m < K, n = K Low priority queue full

m = K, n = K Both queues full

Pb from (52.45). The probability of a packet not being
dropped is therefore gx = 1− Pb, where x represents the
priority of the queue.

Two possible states are defined for the threshold:
either the threshold has been exceeded which is repre-
sented by a 1 or the threshold has not been exceeded,
represented by a 0. The probability of the threshold
changing from state F to state S is PFS. For example,
P01 is the probability, given that the threshold is cur-
rently not exceeded, that it will be exceeded in the next
transition. Clearly, PFS satisfy the following equations:

P00+ P01 = 1 ,

P10+ P11 = 1 .

We assume that the number of packets served in any
time interval has a Poisson distribution, which is a valid
assumption if the number of packets traversing the queue
is large, as it is in this case. Therefore, the goodput R1 is
also Poisson with mean µ1 = S1g1λ1 and standard de-
viation σ1 =√

S1g1λ1. If the mean is large, which it is
here since λ and Sx are usually large, the cumulative
normal distribution can be used to approximate the cu-
mulative Poisson distribution, i. e. we approximate R1
by a normal random variable X. Therefore, for y ≥ 0

P(R1 ≤ y) ≈ P(X ≤ y)

= 1

2

[
1+ erf

(
y−µ1

σ1
√

2

)]
, (52.48)

where erf(z) = 2√
π

z∫

0

e−t2
dt

is the error function. To approximate the probability that
the threshold T1 is not exceeded, simply set y = T1 in
(52.48) giving the following equation:

P00 = P10 = 1

2

[
1+ erf

(
T1−µ1

σ1
√

2

)]
.

The queue length process is modeled using the
Markov chain {Vk} defined at the epoch of the k-th packet
arrival to the queue. The states of {Vk} are represented
by the vectors (m, n, G), where m is the number of pack-
ets in the high-priority queue, n is the number of packets
in the low-priority queue and G represents whether the
threshold is exceeded in the high-priority queue: G = 1
signifies that the threshold is exceeded while G = 0 sig-
nifies that it is not. Table 52.4 indicates the possible
range of states of Vk.

Different rate diagrams are needed for the differ-
ent ranges shown in Table 52.4 but, due to lack of
space, we will only show diagrams for the general
range 0 < n < K and 0 < m < K . We note that there are
two sets of diagrams describing these transitions, one
when G = 0 and another when G = 1. When the thresh-
old has not been exceeded, the transitions from state
Vk = (m, n, 0) to Vk+1 when 0 < m < K and 0 < n < K
are described by (52.49) with corresponding transition
rates:

Vk+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(m, n+1, 0) g2λ2

(m+1, n, 0) g1λ1

(m−1, n, 0) P00µ

(m−1, n, 1) P01µ .

(52.49)

When the threshold has been exceeded, the transition
from Vk = (m, n, 1) to Vk+1 when 0 < m < K and 0 <

n < K are described by (52.50).

Vk+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(m, n+1, 1) g2λ2

(m+1, n, 1) g1λ1

(m, n−1, 0) P10µ

(m, n−1, 1) P11µ.

(52.50)

Figure 52.17 shows the general transition-rate diagram.
When the threshold is not exceeded the interactive
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Below
threshold

Above
threshold

a) b)

g2λ2
m, n–1, 0 m, n , 0

m+1, n , 0

g1λ1

P00 µ1

m , n+1, 1

m , n+1, 0

m–1, n , 0m–1, n , 1

P01 µ1

P00 µ1

g1λ1

g2λ2

P10 µ1

g2λ2

m, n–1, 0

m, n , 1

m+1, n , 0

g1λ1

P11 µ2

m , n+1, 1

m–1, n , 1

P10 µ2

P01 µ1

g1λ1

g2λ2

P11 µ2

m+1, n , 1

m, n–1, 1

Fig. 52.17 DPRQ Markov process model (0 < n < K ) and (0 < m < K )

queue has priority, therefore interactive packets are
only served from states where the threshold has not
been exceeded (G = 0 states). Similarly the low-priority
queue is only serviced when the threshold has been
exceeded therefore transitions can only occur from
the low-priority queue when G = 1. Arrival of pack-

ets to either queue will cause the queue to increase in
size.

Finally, extensive simulations based on the DPRQ
and reported in [52.57] show general performance im-
provements, such as the reduction of packet loss, when
compared to RED CBQ.

52.5 Conclusion

Modern communication systems, as exemplified by web
server systems, continue to grow in complexity and
level of sophistication. Queueing models have been ex-
tensively used to model and test new communication
systems with the aim of improving QoS to users. In this
chapter, we have discussed several approaches that have
been advocated to reduce congestion and improve load
balancing in these systems. We have considered both
theoretical and practical aspects of analyzing and evalu-
ating new systems, especially when the traffic flows are
differentiated into different priority classes. The MPDQ

discussed in Sect. 52.2 have been analyzed thoroughly,
both in the theoretical and practical sense. However,
a complete theoretical analysis of the network of mul-
tiple dual queues used in load balancing in Sect. 52.3
remains a challenge, as is the dynamic-priority RED
queue (DPRQ) discussed in Sect. 52.4. All this is tied up
with the feasibility of a comprehensive theoretical anal-
ysis of networks of queues with a specific type of node.
Success in this venture would provide a unique oppor-
tunity to extend the range of problems that arise when
designing new and reliable communication systems.
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Support Vecto53. Support Vector Machines for Data Modeling
with Software Engineering Applications

This chapter presents the basic principles of support
vector machines (SVM) and their construction
algorithms from an applications perspective. The
chapter is organized into three parts. The first part
consists of Sects. 53.2 and 53.3. In Sect. 53.2 we
describe the data modeling issues in classification
and prediction problems. In Sect. 53.3 we give an
overview of a support vector machine (SVM) with
an emphasis on its conceptual underpinnings. In
the second part, consisting of Sects. 53.4–53.9,
we present a detailed discussion of the support
vector machine for constructing classification and
prediction models. Sections 53.4 and 53.5 describe
the basic ideas behind a SVM and are the key
sections. Section 53.4 discusses the construction
of optimal hyperplane for the simple case of
linearly separable patterns and its relationship to
the Vapnik–Chervonenkis dimension. A detailed
example is used for illustration. The relatively more
difficult case of nonseparable patterns is discussed
in Sect. 53.5. The use of inner product kernels
for nonlinear classifiers is described in Sect. 53.6
and is illustrated via an example. Nonlinear
regression is described in Sect. 53.7. The issue
of specifying SVM hyperparameters is addressed
in Sect. 53.8, and a generic SVM construction
flowchart is presented in Sect. 53.9. The third part
details two case studies. In Sect. 53.10 we present
the results of a detailed analysis of module-level
NASA data for developing classification models. In
Sect. 53.11, effort data from 75 projects is used to
obtain nonlinear prediction models and analyze
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their performance. Section 53.12 presents some
concluding remarks, current activities in support
vector machines, and some guidelines for further
reading.

53.1 Overview

The problem of predictive data modeling is of both aca-
demic and practical interest in many engineering and
scientific disciplines, including software engineering. It
is the process of building a model of the input–output
relationship from historical or experimental data. This
model is used to predict the output of a future occur-
rence for which only the input will be known. Such

models have their roots in traditional statistics. How-
ever, recent advances in machine learning and related
disciplines have been shifting focus away from statis-
tical methods toward these approaches. In particular,
a new type of learning machine, called a support vector
machine (SVM), has gained prominence within the last
decade. These machines are based on statistical learn-
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ing theory, possess some very nice properties, and have
exhibited impressive performance in a wide range of
applications.

In this chapter we present the basic principles of
support vector machines and their construction algo-
rithms, with emphasis on applications. In Sect. 53.2
we formally describe data modeling for classifica-
tion and prediction in software engineering and some
important considerations in model development. Sup-
port vector machines are introduced in Sect. 53.3.
Section 53.4 deals with the case of developing max-
imal margin classifiers for linearly separable classes
and their relationship to the important concept of
the Vapnik–Chervonenkis (VC) dimension. An illus-
trative example is used to explain the computations
involved. Next, the more difficult problem of nonsep-
arable patterns is presented in Sect. 53.5. Nonlinear
classifiers using inner-product kernels are discussed
in Sect. 53.6, and their computational steps are illus-
trated via an example. The development of nonlinear

prediction models using the SVM algorithm is dis-
cussed in Sect. 53.7 and some comments about selecting
SVM hyperparameters are summarized in Sect. 53.8.
In Sect. 53.9, a generic SVM flow chart is presented
to depict the development of classification and predic-
tion models using SVM. In Sect. 53.10 a case study for
module classification is detailed using public-domain
software metrics data. Software effort-prediction us-
ing SVM nonlinear regression modeling is presented
in Sect. 53.11 for some commercial software projects.
A summary, a mention of current activities in SVM,
and suggestions for further reading are included in
Sect. 53.12.

For readers who want to get a general understanding
of support vector machines, Sects. 53.2, 53.3, 53.4.1,
53.4.3, and 53.10 should be adequate. Section 53.6 is
useful in understanding how SVM develops classifiers
for practical classification problems. The remaining sec-
tions provide a description of related issues and SVM
nonlinear regression.

53.2 Classification and Prediction in Software Engineering

53.2.1 Classification

A classification model is constructed from a set of data
for which the attributes and the true classes are known
and is employed to assign a class to a new object on
the basis of its observed attributes or features. In soft-
ware engineering, metric-based classification models are
employed to classify a module as fault-prone or not fault-
prone. Other terms that are used for module classes
are high or low risk, high or low criticality, etc. An
ability to identify fault-prone modules early in their life-
cycle is of practical significance in software engineering
because it enables allocation of appropriate resources
such as additional reviews and testing to these mod-
ules and will thus enhance the quality of the delivered
system.

Formally, the problem can be stated as follows. We
have available metrics data (xi ) about n modules and
their corresponding class labels, yi , denoted as

S =
{

(xi , yi ), xi ∈ R
d , yi ∈ (−1,+1)

}
, i

= 1, 2, . . . , n , (53.1)

where d is the dimensionality of the input metrics data.
Here the value of yi as−1 or+1 is based on some thresh-
old value of the numbers of faults found in the module.

The modeling task is to construct a support vector clas-
sifier (SVC) that captures the unknown pattern between
the inputs and the outputs, based on the evidence pro-
vided by the data. The developed model is then used
to predict the criticality class of a future module whose
software metrics values (x) would be known, but not the
class (y).

The objective is to develop a model with good accu-
racy on both the training data and on future predictions.
A common measure used for assessing accuracy is the
classification error (CE), which is the ratio of the num-
ber of modules classified correctly to the total number of
modules. To seek an objective measure of the future per-
formance of the classification model, one approach is to
partition the sample data randomly into three sets: train-
ing, validation, and test, as shown in Fig. 53.1. The first
set is used for model development, i. e., for training.

Sample
data

Training data

Validation data

Test data

Fig. 53.1 Sample-data partitioning
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The candidate models are evaluated on the validation
data and usually the model with the smallest CE is se-
lected. Then, the selected model is used to classify the
data in the test set, and this error is considered to be
an objective measure of future performance, or gen-
eralization error, of the selected model. The relative
sizes of these sets are application-dependent. However,
50% of the data is often used for training, 25% for val-
idation, and 25% for testing. This is called the hold
out approach. Sometimes, only two subsets are created,
training and the test, and the test set is used for model
selection.

If the data set is small, the generalization error is
estimated using cross validation. For k-fold cross val-
idation (KCV), the data set is randomly divided into
almost equal k sets and the model is developed from
(k−1) sets and tested on the omitted k-th set. The pro-
cess is repeated k times, leaving a different set out each
time. The average CE on the k omitted sets is called
the KCV error of the model. Commonly used values
for k are five and ten. Sometimes, we use k = 1. Then,
the estimated error is called the leave one out (Loo)
error.

53.2.2 Prediction

The development of such models can also be seen as
finding input–output mapping, but now between the
project features and the effort. This problem can be
stated as follows. Given some input and output data
about previous projects, find a suitable functional rela-
tionship between them. Suppose we are given a training

data set,

S =
{

(xi , yi ), xi ∈ R
d , yi ∈ R

}
, i = 1, 2, . . ., n ,

(53.2)

where x are the software project features, d is the number
of features, y is the effort, and n is the number of projects
in the data set. Then, the goal is to find a function or
mapping that maps xi to yi , i = 1, . . . , n, such that the
training and generalization errors are small. Two error
evaluation measures commonly employed in software
effort research are the mean magnitude of relative error
(MMRE) and PRED(25), defined as follows:

MMRE =
1

n

n∑

i=1

∣∣Actual effort, yi −Predicted effort, ŷi
∣∣

Actual effort, yi
;

(53.3)

PRED (25)=
Number of estimates within 25% of actual y

n
.

(53.4)

These are measured for the model using the training data
set and evaluated on the test data, usually by the Loo
cross validation, since the number of projects used for
effort estimation is generally small. Note that MMRE
is a measure of error, while PRED(25) is a measure
of accuracy. Therefore, we seek low MMRE and high
PRED(25) values. The model performance on test data
is used as a measure of its generalization ability, that is,
a measure of the predictive accuracy on future projects
for which the effort would be estimated.

53.3 Support Vector Machines

In this section we provide a very brief introduction to
support vector machines. Consider the classification and
regression tasks we just discussed. The statistical tech-
niques for dealing with these require a knowledge of the
underlying distribution. In many practical situations this
distribution is not known and has to be assumed. Due
to this restriction we seek alternative, distribution-free
procedures. A support vector machine provides such
a procedure that is relatively new and has some very
nice properties. In particular, SVM is a learning proce-
dure that can be used to derive learning machines such as
polynomial approximators, neural networks, and radial
basis functions. The origins of SVMs are in statistical
learning theory (SLT) and they represent an approx-

imate implementation of the principle of structural
risk minimization (SRM). These are discussed in-depth
in [53.1, 2] and are beyond the scope of this chapter.
Briefly, the SRM principle is based on the fact that the
test error of a learning machine, that is, the generaliza-
tion error, is bounded by the sum of two quantities. The
first is the training error, that is, the error on the training
set. The second quantity is a function of the Vapnik–
Chervonenkis (VC) dimension [53.1] and is called the
VC bound. The underlying theory shows that a learning
machine with a low VC bound will have a low general-
ization error. Thus, a low-VC classifier will have a low
CE on new data. Similarly, a prediction model with a low
VC bound will have a low MMRE or a high PRED(25)
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when used for future predictions. Consider the classifi-
cation problem for a set of separable patterns. For this
case, SVM derives a learning machine with a training
error of zero. It also minimizes the second term.

However, in practice, the VC dimension of nonlinear
classifiers or predictors, such as radial basis functions,
cannot be accurately estimated and hence the results of
this theory cannot be precisely implemented. That is

why the statement above about SVM used the words
approximate implementation. What is discussed in sub-
sequent sections is a practical realization of this theory.
We first show how the SVM develops classifiers for the
separable case. SVM algorithms are then derived to deal
with the more difficult cases of nonseparable patterns.
These ideas are then extended to nonlinear prediction
models.

53.4 Linearly Separable Patterns

This is the simplest classification task and was the
first to be introduced for support vector machines
(SVM) [53.1]. It is applicable for data that are linearly
separable in the input space. Although not very useful
for many real-world applications, it helps focus on the
key aspects for developing SVM classifiers for more
complex applications. We are given training data as in
(53.1). We seek to determine a decision function D such
that D (x) = y, where y is the class label of data point x.
The goal is to find a D that minimizes generalization
error. The decision boundary is given by the hyperplane

D(x) :wT x+b = 0 , (53.5)

where w is a d-dimensional weight vector, and b is the
bias term. If the data is separable, it will be correctly
classified, i. e., for i = 1, 2, . . ., n,

wT xi +b ≥ 0 for yi =+1

and wT xi +b < 0 for yi =−1 . (53.6)

Separation between the decision function and the closest
data point is called the margin of separation and equals
1/||w||. There can be many possible hyperplanes that
separate the two classes. However, intuitively, the larger

Larger margin Smaller margin

Margin

Fig. 53.2 Two linearly separable classes

the margin, the lower the generalization error. This is so
because points closest to the decision surface are harder
to classify, and by providing a maximal separation be-
tween the two classes it should be easier to classify a new
data point. For illustration, sample data points from two
classes are shown in Fig. 53.2 with two margins, small
and large. The boundaries with a larger margin can be
seen to be preferable.

53.4.1 Optimal Hyperplane

Given the linearly separable training data, the hy-
perplane that maximizes the margin is sought in the
support vector machine formulation. Equivalently, we
seek (w, b), which solves the following problem:

L (w)= minw b

(
1

2
wTw

)
. (53.7)

subject to yi
(
wTxi +b

)≥ 1, i = 1, 2, . . . , n .

(53.8)

The aforementioned optimization problem may be
solved by the method of Lagrange multipliers. Usually,
the dual of this primal problem is solved. For details,
see [53.3, 4]. The dual problem can then be stated as
finding the Lagrange multipliers for the data in (53.1)
that maximize the following objective function:

LD ≡
n∑

i=1

αi − 1

2

∑

i, j

αiα j yi y j xT
i · x j , (53.9)

The constraints are

n∑

i=1

αi yi = 0 , (53.10)

αi ≥ 0, i = 1, 2, . . . , n . (53.11)
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Note that in the dual only the input data appears in
(53.9) in the form of dot products of xi and x j , i, j =
1, 2, . . . , n.

The solution yields the Lagrange multipliers α∗i , i =
1, 2, . . ., n. The optimal weight vector and the bias term
are then given by

w∗ =
n∑

i=1

α∗i yi xi (53.12)

and w∗Tx+b ≥ 1 . (53.13)

The optimal decision hyperplane can now be obtained
by substituting for w∗ and b∗ in (53.5) as

D (x) : w∗T · x+b∗ = 0 . (53.14)

To classify a new data point, only its x will be known,
and its y is determined based on (53.12) and (53.14) as

class of new data = sgn

[
n∑

i=1

α∗i yi (xi · x)+b∗
]

.

(53.15)

Note from (53.15) that only nonzero α∗i participate in
determining the class. The indices of these determine
the data points that determine the class. These points are
support vectors.

53.4.2 Relationship to the SRM Principle

To see how minimization in (53.7), or equivalently
maximizing the margin, is related to implementing the
SRM principle, suppose that the following bound holds,

Nearest
data (ND)

(1.1, 3)
(3, 4)

(4.9, 3)

Hyperplane

R = 2

x1 – x2 = 0

1/A

Fig. 53.3 Relationship between maximal margin and VC
dimension

||w||< A, which means that the distance d(w, b; x) of
a point from the hyperplane (w, b) is greater than or
equal to 1/A. The VC dimension, h, of the set of canon-
ical hyper planes in n-dimensional space is bounded
by

h ≤ min
[

R2 A2, n
]
+1 ,

where R is the radius of a hypersphere enclosing all
the data points. Minimizing the above is equivalent
to minimizing an upper bound on the VC dimen-
sion. Let us illustrate this by a simple numerical
example.

Consider three (n = 3) data: (1.1, 3), (3, 4), and
(4.9, 3), as shown in Fig. 53.3. The radius of a hy-
persphere enclosing all the data points, R, is 2. The
distance between the nearest point (3, 4) and hyperplane
(x1− x2) = 0 is

d (w, b; x)=
∣∣wx p±b

∣∣
‖w‖

=
∣∣w1x1p+w2x2p+�wn xn p±b

∣∣
√
w2

1+w2
2+� +w2

n

= |(1) (3)+ (−1) (4)|√
12+ (−1)2

= 0.7071 .

Therefore, 1/A ≤ 0.7071 ≈ 1.4142 ≤ A. In this ex-
ample, we define A = 1.5 and min[R2 A2, n]+1 =
min

[(
22
)(

1.52
)
, 2

]+1 = min[9, 2]+1 = 3. Therefore,
the VC dimension, h ≤ 3. Also, we can show that
the norm of the weight vector should be equal to
the inverse of the distance of the nearest point in the
data set to the hyperplane. Here, the inverse of the
distance between the nearest point (3, 4) and the hy-
perplane is 1/0.7071 = 1.4142, which is equal to the
norm of the weight vector [1−1],

√
12+ (−1)2 = 2

= 1.4142.

53.4.3 Illustrative Example

We take a simple data set to illustrate in detail the compu-
tational steps involved in deriving the optimal separating
hyperplane. Consider five normalized input data points
in a two-dimensional plane along with their class la-
bels, as shown in Table 53.1. Recall that our goal is
to solve (53.9) subject to the constraints (53.10) and
(53.11). We first compute the dot-product kernel of the
input points and then compute H (i, j)= yi · y j · xT

i · x j
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as shown below.

xT
i · x j =

⎛
⎜⎝

xT
1 x1 xT

1 x2 xT
1 x3 xT

1 x4 xT
1 x5

� � �

xT
5 x1 xT

5 x2 xT
5 x3 xT

5 x4 xT
5 x5

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(
0 0

(
0

0

)) (
0 0

(
0

1

)) (
0 0

(
0.3333

0.75

)) (
0 0

(
0.6667

0.75

)) (
0 0

(
1

1

))

� � �(
1 1

(
0

0

)) (
1 1

(
0

1

)) (
1 1

(
0.3333

0.75

)) (
1 1

(
0.6667

0.75

)) (
1 1

(
1

1

))

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎝

0 0 0 0 0

� � �

0 1.0000 1.0833 1.4167 2.0000

⎞
⎟⎠ ,

H =
⎛
⎜⎝

y1 y1 � y1

� � �

y5 y5 � y5

⎞
⎟⎠ ·∗

⎛
⎜⎝

y1 y2 y5

� � �

y1 y2 y5

⎞
⎟⎠ ·∗ xT

i · x j

=
⎛
⎜⎝
−1 −1 � −1

� � �

−1 −1 � −1

⎞
⎟⎠ ·∗

⎛
⎜⎝
−1 +1 � −1

� � �

−1 +1 � −1

⎞
⎟⎠ ·∗

⎛
⎜⎝

0 0 � 0

� � �

0 1.0000 � 2.0000

⎞
⎟⎠ ,

or H =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1.0000 0.7500 −0.7500 −1.0000

0 0.7500 0.6736 −0.7847 −1.0833

0 −0.7500 −0.7847 1.0069 1.4167

0 −1.0000 −1.0833 1.4167 2.0000

⎞
⎟⎟⎟⎟⎟⎠

.

With the expression H as above, we now use the
quadratic programming (QP) program, MATLAB Sup-
port Vector Machine Toolbox [53.5] to solve the dual
problem given in (53.9), subject to the constraints in
(53.10) and (53.11). The solution yields the optimal
Lagrange multipliers given as

(
α∗

)T = (7.11, 0.00, 32.22, 25.11, 0.00) .

Next, the optimal weight vector is obtained from
(53.12) and its norm ||w∗|| =√

64.44. Thus the maximal
margin separating the hyperplanes is 2/||w∗|| = 0.25.
Finally, the optimal bias from (53.13) is obtained as
b∗ = −1.0.

As mentioned before, only the nonzero values of the
Lagrange multipliers participate in the solution, and they
are α∗1 = 7.11, α∗3 = 32.22, α∗4 = 25.11.

The input data points (1, 3, and 4) corresponding to
the indices of these become the support vectors; the other
two data points (2 and 5) can be ignored for classification

decision. Thus the decision function of (53.15) can be
written as

D (x)= sgn

(
5∑

i=1

yiα
∗
i xT

i x+b∗
)

. (53.16)

Next, we illustrate how a new data point for which only
the x values are known is labeled by the above classifier.
We first normalize the new data point according to the
same scheme as used for the training data. Let the new
point be (0.67, 1.00). The class computations proceed
as follows. First, compute the dot product and H for the

Table 53.1 Data points for the illustrative example

X Y

0.00 1.00 −1

0.00 1.00 +1

0.33 0.75 +1

0.67 0.75 −1

1.00 1.00 −1
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new point and then substitute in (53.16), which yields
the class as +1.

A graphical representation of the five data points
used to develop the classifier, the optimal separating hy-
perplane, and the decision boundaries for classes −1
and +1 are shown in Fig. 53.4 in the normalized in-

put space. We note that data points 1 and 4 are on the
boundary for class −1, and data 3 is on the bound-
ary of class +1. These are the three support vectors
that participate in classification decisions. The other
two points, 2 and 5, play no role in classification
decisions.

53.5 Linear Classifier for Nonseparable Classes

In real-world applications, it is not realistic to construct
a linear decision function without encountering errors. If
the data are noisy, in general there will be no linear sepa-
ration in the input space. Two situations may arise. In the
first, data points fall in the region of separation, but on
the right side so that the classification is correct. In the
second case, data points fall on the wrong side and mis-
classification of points occurs. To accommodate such
situations, the problem of the separable case is modi-
fied as follows. First, the classification constraints for
the separable case are revised by adding slack variables
(ξi ). Next, the cost of constraint violation is set to C.
With these modifications the function to be minimized
becomes

L (w, ξi)= 1

2
wTw+C

n∑

i=1

ξi , (53.17)

subject to yi (w
Txi +b) ≥ 1− ξI (53.18)

and ξi ≥ 0, i = 1, 2, . . ., n . (53.19)

Minimizing wTw is related to minimizing the
Vapnik–Chervonenkis (VC) dimension of the SVM, and
the second term in (53.17) is an upper bound on the
number of test errors. Thus, C controls the tradeoff be-
tween maximum margin and classification error, and ξi
measures the deviation of a data point from the ideal
condition of separability. If 0 ≤ ξi ≤ 1, the data point
is inside the decision region, but on the right side. If
ξi > 1, the data point is on the wrong side. The data
points that satisfy the above constraints are the sup-
port vectors. Proceeding as for the separable case with
Lagrange multipliers αi , the new dual problem is to

x2

x1

(+1)

(+3) (–1)4

(–1)(–1)

(–1)1

Fig. 53.4 Graphical representation of illustrative example

maximize

L (α)=
∑

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j xT
i x j

(53.20)

subject to
n∑

i=1

αi yi = 0 (53.21)

and 0 ≤ αi ≤ C, i = 1, 2, . . ., n . (53.22)

Then the optimal weights are

w∗ =
n∑

i=1

α∗i yi xi . (53.23)

Again, only those points with nonzero α∗i contribute to
w∗, i. e., only those points which are the support vectors.

53.6 Nonlinear Classifiers

This situation arises when the data are linearly non-
separable in the input space and the separation lines
are nonlinear hypersurfaces. This is a common case in

practical applications. Here, we seek nonlinear decision
boundaries in the input space. For this, the approach de-
scribed above is extended to derive nonlinear decision
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1030 Part F Regression Methods and Data Mining

boundaries. This is achieved by first mapping the input
data into a higher-dimensional feature space using an
inner-product kernel K (x, xi ). Then, an optimum sep-
arating hyperplane is constructed in the feature space.
This hyperplane is defined as a linear combination of
the feature space vectors and solves a linear classi-
fication problem in the feature space. Together, these
two steps produce the solution for the case of nonlinear
classifiers.

53.6.1 Optimal Hyperplane

We provide below a brief justification for the above two-
step procedure. According to Cover’s theorem [53.3,6],
a nonseparable space may be nonlinearly transformed
into a new feature space where the patterns are very
likely separable. Three inner-product kernels employed
for SVMs are listed in Table 53.2. Among these, the
Gaussian kernel is most commonly used in practical
applications.

Finally, the dual of the constrained optimization
problem for this case can be obtained as

Q (α)=
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j K
(
xi , x j

)
,

(53.24)

where Q(α) has to be maximized with respect to the αi
subject to

n∑

i=1

αi yi = 0 (53.25)

and 0 ≤ αi ≤ C, i = 1, 2, . . ., n . (53.26)

Here the parameter C is to be specified by the user. In the
above, K (xi , x j ) is the ij-th element of the symmetric
n × n matrix K. A solution of the above problem yields
the optimum Lagrange multipliers α∗i , which yield the
optimal weights as

w∗ =
n∑

i=1

α∗i yiφ (xi) , (53.27)

Table 53.2 Three common inner-product kernels

Type K (x,xi ), i = 1,2,. . .,n Comments

Linear xTxi

Polynomial (xTxi +1)b b is user-specified

Gaussian exp
[−(1/2σ2)(||x− xi ||2)

]
σ2 is user-specified

where φ(xi ) represents the mapping of the input vector
xi into the feature space.

53.6.2 Illustrative Example

We illustrate the development of nonlinear classi-
fiers using a Gaussian kernel for a small data set.
The step-by-step solution procedure can be stated as
follows:

• Preprocess input data• Specify C, the kernel and its parameter• Compute the inner-product matrix H• Perform optimization using quadratic programming
and compute the optimum α∗• Compute the optimum weight vector w∗

• Obtain support vectors and the decision boundary

Consider a data set of five points that consists of a 5 × 2
input matrix and a 5 × 1 vector y. Here, x1 is the normal-
ized fan-in, x2 is the normalized module size in lines of
code, and y is the module class.

X y
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.29 0.00
... +1

1.00 0.02
... −1

0.00 0.19
... −1

0.06 1.00
... +1

0.02 0.17
... −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We use the radial basis function (rbf) kernel with
σ = 1.3, and C is taken to be 100. Note that selection of
C and σ is an important problem, as will be discussed
later. These values are selected for illustrative purpose
and are based on some preliminary analysis.

Next, the matrix H is obtained as

H (i, j)=
n∑

i=1

n∑

j=1

yi ∗ y j ∗kernel
(
rb f, xi, x j

)

≡ (5 × 5)∗ . (5 × 5)∗ . (5 × 5) .
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By substituting the appropriate values, the computations
for H proceed as shown below. Here the symbol � repre-
sents entries not shown but obtained similar to the shown
entries.

H =

⎛
⎜⎜⎜⎜⎜⎝

y1 � y1

y2 � y2

y3 � y3

y4 � y4

y5 � y5

⎞
⎟⎟⎟⎟⎟⎠
·∗
⎛
⎜⎝

y1 y2 y3 y4 y5

� � � � �

y1 y2 y3 y4 y5

⎞
⎟⎠

·∗

⎛
⎜⎜⎜⎜⎜⎝

rb f (σ) , x1, x1 rb f (σ) , x1, x2 rb f (σ) , x1, x3 rb f (σ) , x1, x4 rb f (σ) , x1, x5

rb f (σ) , x2, x1 rb f (σ) , x1, x2 rb f (σ) , x1, x3 rb f (σ) , x1, x4 rb f (σ) , x1, x5

rb f (σ) , x3, x1 rb f (σ) , x1, x2 rb f (σ) , x1, x3 rb f (σ) , x1, x4 rb f (σ) , x1, x5

rb f (σ) , x4, x1 rb f (σ) , x1, x2 rb f (σ) , x1, x3 rb f (σ) , x1, x4 rb f (σ) , x1, x5

rb f (σ) , x4, x1 rb f (σ) , x1, x2 rb f (σ) , x1, x3 rb f (σ) , x1, x4 rb f (σ) , x1, x5

⎞
⎟⎟⎟⎟⎟⎠
·∗

=

⎛
⎜⎜⎜⎜⎜⎝

1 � 1

−1 � −1

−1 � −1

1 � 1

−1 � −1

⎞
⎟⎟⎟⎟⎟⎠
·∗
⎛
⎜⎝

1 −1 −1 1 −1

� � � � �

1 −1 −1 1 −1

⎞
⎟⎠

·∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp

⎛

⎝
−

KKKKKK

⎛

⎝0.29

0.00

⎞

⎠−
⎛

⎝0.29

0.00

⎞

⎠

KKKKKK

2

2(1.3)2

⎞

⎠ � exp

⎛

⎝
−

KKKKKK

⎛

⎝0.29

0.00

⎞

⎠−
⎛

⎝0.02

0.17

⎞

⎠

KKKKKK

2

2(1.3)2

⎞

⎠

� � �

exp

⎛

⎝
−

KKKKKK

⎛

⎝0.02

0.17

⎞

⎠−
⎛

⎝0.29

0.00

⎞

⎠

KKKKKK

2

2(1.3)2

⎞

⎠ � exp

⎛

⎝
−

KKKKKK

⎛

⎝0.02

0.17

⎞

⎠−
⎛

⎝0.02

0.17

⎞

⎠

KKKKKK

2

2(1.3)2

⎞

⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 −0.86 −0.97 0.73 −0.97

−0.86 1 0.74 −0.58 0.75

−0.97 0.74 1 −0.82 1.00

0.73 −0.58 −0.82 1 −0.82

−0.97 0.75 1.00 −0.82 1

⎞
⎟⎟⎟⎟⎟⎠

.

After performing optimization by quadratic program-
ming, the optimal α values are obtained. Then the
optimal vector w is computed fromα∗ and H . Its squared
length is computed from these as below, where α∗′ is
the transpose of α∗

w2 = α∗′ ∗H ∗α∗

=
(

100 29.40 0 20.60 92.90
)

∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −0.86 −0.97 0.73 −0.97

−0.86 1 0.74 −0.58 0.75

−0.97 0.74 1 −0.82 1.00

0.73 −0.58 −0.82 1 −0.82

−0.97 0.75 1.00 −0.82 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

100

29.40

0

20.60

92.90

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 102.

The indices of the support vectors are those α∗ that
satisfy 0 < α∗ ≤ C. Here, α∗3 = 0 so that points 1, 2, 4,
and 5 become the support vectors for this classification
problem; point 3 plays no role and can be ignored.

A graphical illustration of the decision boundaries
in the input space is shown in Fig. 53.5. Also, note that
the decision boundaries are nonlinear, while the deci-
sion hyperplane in the feature space computed from
the feature vector is expected to be linear. Finally, for
this problem, data point 1 is misclassified as being
in class −1 rather than in class +1, i. e., the classi-
fication error of the model derived here is 20%. To
classify a new point, suppose its normalized values us-
ing the same normalization as for the training data are
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(0.03, –0.03). The classification computations proceed
as follows:

H (i, j)=
m∑

i=1

n∑

j=1

y j ∗kernel
(
rb f, xti, x j

)

=
(

y1 y2 y3 y4 y5

)

∗

⎛
⎜⎜⎜⎜⎜⎝

(rb f (σ) , xt1, x1)

(rb f (σ) , xt1, x2)

(rb f (σ) , xt1, x3)

(rb f (σ) , xt1, x4)

(rb f (σ) , xt1, x5)

⎞
⎟⎟⎟⎟⎟⎠

�

=
(

1 −1 −1 1 −1
)

.∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp

⎛

⎝
−

KKKKKK

⎛

⎝ 0.03

−0.03

⎞

⎠−
⎛

⎝0.29

0.00

⎞

⎠

KKKKKK

2

2.(1.3)2

⎞

⎠

�

exp

⎛

⎝
−

KKKKKK

⎛

⎝ 0.03

−0.03

⎞

⎠−
⎛

⎝0.02

0.17

⎞

⎠

KKKKKK

2

2.(1.3)2

⎞

⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

=
(

0.98 −0.76 −0.98 0.73 −0.99
)
;

y = sgn (H ∗α+ bias)

x2

x1

(+1)

(–1)2(+1)1

(–1)5(–1)

Fig. 53.5 Graphical illustration of nonlinear decision
boundaries

= sgn

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

0.98

−0.76

−0.98

0.73

−0.99

⎞
⎟⎟⎟⎟⎟⎠

�

∗

⎛
⎜⎜⎜⎜⎜⎝

100.00

29.40

0.00

20.60

92.90

⎞
⎟⎟⎟⎟⎟⎠

+0

⎞
⎟⎟⎟⎟⎟⎟⎠

= sgn (−0.92)=−1 .

The new module belongs to class –1.

53.7 SVM Nonlinear Regression

As mentioned earlier, the support vector technique was
initially developed for classification problems. This ap-
proach has been extended to nonlinear regression where
the output y are real-valued. A general nonlinear regres-
sion model for y based on x can be written as

y = f (x,w)+ δ , (53.28)

where f represents a function, w is a set of parame-
ters, and δ represents noise. In terms of some nonlinear
basis functions, as discussed earlier, we can write ŷ, an
estimate of y, as

ŷ =wTφ (x) . (53.29)

Next, we employ the commonly used Vapnik’s ε-loss
function and estimate ŷ via support vector regression as

summarized below. The ε-loss is defined as

Lossε
(
y, ŷ

)=
⎧
⎨

⎩

∣∣y− ŷ
∣∣− ε, if

∣∣y− ŷ
∣∣≥ ε .

0 , otherwise

The dual problem for regression can be formulated us-
ing an approach similar to that for classification. The
optimization problem now is to maximize Q:

Q
(
αi , α

′
i

)=
n∑

i=1

yi
(
αi −α′i

)− ε

n∑

i=1

(
αi +α′i

)

− 1

2

n∑

i=1

n∑

j=1

(
αi −α′i

)
(53.30)

×
(
α j −α′j

)
K
(
xi , x j

)
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subject to
n∑

i=1

(
αi −α′i

)= 0 , (53.31)

0 ≤ αi , α
′
i ≤ C, i = 1, 2, . . . , n . (53.32)

In (53.30–53.32), ε and C are user-specified values. The
optimal values of αi and α′i are used to find the optimal
value of the weight vector. The estimated ŷ is given by

ŷ (x,w)= wTx =
n∑

i=1

(
αi −α′i

)
K (x, xi) .

53.8 SVM Hyperparameters

The classification and regression modeling problems us-
ing SVM are formulated as quadratic programming (QP)
optimization problems. Many algorithms are available
for solving QP problems and are commonly used for
support vector modeling applications. However, there
are some parameters that are to be specified by the
user. These are called the SVM hyperparameters and
are briefly described below.

For the linearly nonseparable case, we need to spec-
ify the penalty parameter C. It controls the tradeoff
between the small function norm and empirical risk
minimization. Further, for nonlinear classifiers, we also
need to specify the kernel and its parameters. For ex-
ample, for the radial basis function kernel, its width,
σ , needs to be specified by the user. In practical ap-
plications, there are no easy answers for choosing C
and σ . In general, to find the best values, different
combinations are tried and their performances are com-
pared, usually via an independent data set, known as
the validation set. However, some empirical rules for
their determination have been proposed in the litera-
ture [53.7, 8].

For nonlinear regression, a loss function is specified.
In support vector machine applications, a commonly
used loss function is the so-called ε-loss function as
indicated above. Thus, for regression problems this ad-
ditional hyperparameter is to be specified by the user.
Generally, a trial-and-error approach is used to evaluate

the performance of different hyperparameter combina-
tions on some validation data set.

Input data (x1, y1)

Kernel

Hyperparameters
(C, σ, s)

H = Inner-product

α = Optimization (QP)

w = α' * H * α

Support vectors

Predictive model

Linear

Polynomial

Radial basis
function (rbf)

Others

Fig. 53.6 Support vector modeling flow chart

53.9 SVM Flow Chart

A generic flow chart depicting the development of sup-
port vector classification and regression models is shown
in Fig. 53.6. For given data (x, y), the kernel is selected
by the user, followed by the appropriate hyperparam-

eters. Computation of several intermediate quantities
and optimization by quadratic programming yields the
weights and support vectors. Finally, these values are
used to define the classification or regression model.
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1034 Part F Regression Methods and Data Mining

53.10 Module Classification

There are several reasons for developing software clas-
sification models. One is the limited availability of
resources. Not all modules can be treated in the same
way. The potentially critical modules require a more
time-consuming and costly development process that in-
volves activities such as more rigorous design and code
reviews, automated test-case generation and unit testing,
etc. Another reason is that faults found later in the de-
velopment life-cycle are more expensive to correct than
those found earlier.

The problem of software module classification has
been addressed in the software engineering literature for
more than thirty years. Different techniques have been
applied by many authors with varying degrees of predic-
tive accuracy [53.9, 10]. Most of the early work on this
topic used statistical techniques such as discriminant
analysis, principle-component analysis, and factor an-
alysis, as well as decision or classification trees [53.11].
In recent years, machine learning techniques and fuzzy
logic have also been used for software module classifi-
cation. Typical of these are classification and regression
trees (CART), case-based reasoning (CBR), expert judg-
ment, and neural networks [53.10]. The main problem
with most of the current models is their low predictive
accuracy. Since the published results vary over a wide
range, it is not easy to give a specific average accuracy
value achieved by current models.

In this section, we develop support vector classi-
fication models for software data obtained from the
public-domain National Aeronautics and Space Admin-
istration (NASA) software metrics database [53.12]. It
contains several product and process metrics for many
software systems and their subsystems. The fifteen
module-level metrics used here and a brief description
of each are given in Table 53.3. The metric x7 is the

Table 53.4 Classification results

Classification error (average)
Set σ C SV Training 5CV

I 0.8 1 30.6 0.18 0.21

II 1.2 100 26.8 0.10 0.20

III 1.6 1000 27.2 0.12 0.20

IV 2.0 100 26.6 0.13 0.21

V 2.4 1000 25.8 0.09 0.21

VI 2.8 1000 26.4 0.11 0.19

VII 3.2 1000 25.8 0.12 0.17

VIII 3.6 1000 26.2 0.12 0.17

IX 4.0 1000 25.4 0.12 0.21

Table 53.3 List of metrics from NASA database

X7 Faults

X9 Fan out

X10 Fan in

X11 Input–output statements

X12 Total statements

X13 Size of component in program lines

X14 Number of comment lines

X15 Number of decisions

X16 Number of assignment statements

X17 Number of formal statements

X18 Number of input–output parameters

X19 Number of unique operators

X20 Number of unique operands

X21 Total number of operators

X22 Total number of operands

number of faults, while x9 to x22 are module-level prod-
uct metrics which include the design-based metrics (x9,
x10, x18) and primarily coding metrics (x13, x14, x15).
Metrics x19 to x22 are Halstead’s software science meas-
ures; x19 and x20 are the vocabulary, while x21 and
x22 are measures of program size. Other metrics are
self-explanatory. These represent typical metrics used
in module classification studies. This system consists of
67 modules with a size of about 40k lines of code.

Here, faults are the outputs and the others are the
inputs. Referring to (53.1), we have n = 67 and d = 14.
We first preprocess the input data. After transformation,
this data set resides in a fourteen-dimensional unit cube.
To determine module class, we use a threshold value of 5
so that, if x7 ≤ 5, the class is −1, and +1 otherwise.

We now develop nonlinear classifiers for this data
set using the SVM algorithm of Sect. 53.6 [53.13]. The

Part
F

5
3
.1

0



Support Vector Machines for Data Modeling with Software Engineering Applications 53.11 Effort Prediction 1035

0.5

0.4

0.3

0.2

0.1
104
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100 0
1

2
3

4
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σ

Fig. 53.6 Test error; left panel: surface; right panel: con-
tours

optimization problem to be solved is given by (53.24–
53.26). First, we choose a kernel. Since Gaussian is
a popular choice, we also choose it. Next we need to
specify the hyperparameters, that is, the width of the
Gaussian and the penalty parameter C. To determine the
best combination of these two, we follow the common
practice of performing a grid search. In this case the
grid search is on the two parameters C and σ . We took
C = 10−2(10)104 and σ = 0.8(0.4)4.0 for a total of 56
grid points. For each combination, we use the SVM algo-
rithm for nonlinear classifiers of Sect. 53.6. Further, we
used five-fold cross validation (5CV) as a criterion for
selecting the best hyperparameter combination. Thus,
we are essentially doing a search for the best set of
hyperparameters among the 56 potential candidates by
constructing 56 ×5= 280 classifiers, using the approach
described in Sect. 53.6.

As an example, a list of nine sets and their cor-
responding classification errors is given in Table 53.4.

104

103

102

101

100

0.5 1 1.5 2 2.5 3 3.5 4

C

σ

0.45
0.4
0.35
0.3
0.25
0.2

0.45

0.4
0.35

0.3 0.25

0.25

Best
classification

model

0.2

The average number of input points that became sup-
port vectors for the given model is also included. Data
such as that in Table 53.4 is used to select the best
set.

From this we select set VII with C = 1000 and
kernel width 3.2. To further study the behavior of the
five-fold cross validation test error versus (C, σ), its
surface and the contours are shown in Fig. 53.6. We
note that the surface for this data is relatively flat for
high (σ , C) values and sharp for low σ and high C.
This behavior is quite typical for many applications.
Also shown in the contour plot is the chosen set with
σ = 3.2 and C = 1000. Finally, these values are used
as the SVM hyperparameters to solve the optimization
problem of (53.24–53.26) using quadratic program-
ming. This gives the desired, possibly best, classification
model for this data set. The developed model is likely
to have an error of about 17% on future classification
tasks.

53.11 Effort Prediction

Development of software effort-prediction models has
been an active area of software engineering research
for over 30 years. The basic premise underlying these
models is that historical data about similar projects can
be employed as a basis for predicting efforts for fu-
ture projects. For both engineering and management
reasons, an accurate prediction of effort is of signifi-
cant importance in software engineering, and improving
estimation accuracy is an important goal of most soft-
ware development organizations. There is a continuing

search for better models and tools to improve predictive
performance.

The so-called general-purpose models are gener-
ally algorithmic models developed from a relatively
large collection of projects that capture a func-
tional relationship between effort and project char-
acteristics [53.14, 15]. The statistical models are
derived from historical data using statistical meth-
ods, mostly regression analysis. The statistical models
were some of the earliest to be developed. Exam-
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1036 Part F Regression Methods and Data Mining

Table 53.5 Performance of effort prediction models

Data set LooMMRE LooPred(25)
expected training expected test average training average test

D 0.54 0.52 0.33 0.46

D−1 0.28 0.35 0.72 0.54

D−2 0.24 0.24 0.72 0.64

D−3 0.12 0.25 0.44 0.80

ples of such models are the meta-model [53.16]
and the MERMAID [53.17]. Recently, machine
learning techniques have been used for software
effort prediction modeling. These include neural
networks [53.18], rule induction, and case-based
reasoning.

The effort-modeling problem can be restated as fol-
lows from Sect. 53.2 above. We are given data about n
projects {xi , yi} ∈ R

n ×R , i = 1, . . ., n, each consisting
of d software features the y are the effort values. A gen-
eral nonlinear regression model for y based on x was
given in (53.28).

In this section we summarize the prediction model
development by support vector nonlinear regression
from [53.13]. The effort data and the project features
are taken from [53.19]. The data were collected from
a Canadian software house. It consists of 75 projects
developed in three different environments. The data is
grouped by each environment (D−1, D−2, D−3) and
as combined projects (D). There were six features col-

lected for each project. Thus, for data set D, n = 75 and
d = 6 in (53.2).

The methodology for developing SVM nonlinear re-
gression models is very similar to that used for module
classification in Sect. 53.10. The optimization problem
to be solved now is given in (53.30–53.32). Further, as-
suming a Gaussian kernel, three hyperparameters have to
be specified. Therefore, a three-dimensional grid search
has to be performed for selecting σ , C, and ε. The crite-
rion for this selection can be MMRE or Pred(25). Note
that we seek a low MMRE error and a high Pred(25)
accuracy.

The final results of SVM modeling for the above data
sets are summarized in Table 53.5 for both selection cri-
teria. For projects in D, the best model obtained has test
values of LooMMRE = 0.52 and LooPred(25) = 0.46.
However, for D−1, D−2 and D−3, model perfor-
mance is much better due to the fact that the projects
in these data sets were developed in more homogeneous
environments than those in D.

53.12 Concluding Remarks

We have presented an introduction to support vector
machines, their conceptual underpinnings and the main
computational techniques. We illustrated the algorith-
mic steps via examples and presented a generic SVM
flowchart. Results from two software engineering case
studies using SVM were summarized.

SVM is a very active area of research and applica-
tions. An impressive body of literature on this topic has
evolved during the last decade. Many open problems,
theoretical and applied, are currently being pursued.
These include hyperparameter selection, Bayesian rele-
vance vector machines, reduced SVM, multiclass SVM,

etc. Applications include intrusion detection, data min-
ing, text analysis, medical diagnosis and bioinformatics.
Papers on these aspects regularly appear in the machine
learning and related literature.

For further reading, chapters in Kecman [53.4],
Cherkassky et al. [53.20] and Haykin [53.3] provide
good insights. Books on SVM include Cristianini
et al. [53.21], Scholkopf et al. [53.22], and Vapnik [53.1].
Tutorials, such as Burges [53.23], and other useful in-
formation is available at websites dealing with support
vector machines and kernel machines. Software pack-
ages are also available from several websites.

References

53.1 V. N. Vapnik: Statistical Learning Theory (Wiley,
New York 1998)

53.2 V. N. Vapnik: An overview of statistical learning
theory, IEEE Trans. Neural Netw. 10(5), 988–1000
(1999)

Part
F

5
3



Support Vector Machines for Data Modeling with Software Engineering Applications References 1037

53.3 S. Haykin: Neural Networks – A Comprehensive
Foundation, 2nd edn. (Prentice Hall, Upper Saddle
River, NJ 1999)

53.4 V. Kecman: Learning and Soft Computing (MIT
Press, Cambridge, MA 2001)

53.5 S. R. Gunn: MATLAB Support Vector Machine Tool-
box ( 1998), http://www.isis.ecs.soton.ac.uk/re-
sources/svminfo/

53.6 T. Hastie, R. Tibshirani, J. H. Friedman: The El-
ements of Statistical Learning: Data Mining,
Inference, and Prediction (Springer, Berlin Heidel-
berg New York 2001)

53.7 S. S. Keerthi, C-J. Lin: Asymptotic behaviors of sup-
port vector machines with Gaussian kernels, Neural
Comput. 15(7), 1667–1689 (2003)

53.8 O. Chapelle, V. Vapnik: Model Selection for Support
Vector Machines. Advances in Neural Information
Processing Systems (AT&T Labs-Research, Lyone
1999)

53.9 A. L. Goel: Software Metrics Statistical Analysis
Techniques and Final Technical Report (U. S. Army,
1995)

53.10 T. M. Khoshgoftaar, N. Seliya: Comparative assess-
ment of software quality classification techniques:
An empirical case study, Empir. Softw. Eng. 9,
229–257 (2004)

53.11 C. Ebert, T. Liedtke, E. Baisch: Improving Reliability
of Large Software Systems. In: Annals of Software
Engineering, Vol. 8, ed. by A. L. Goel (Baltzer Sci-
ence, Red Bank, NJ 1999) pp. 3–51

53.12 NASA IV & V Metrics Data Program. http://mdp.ivv.
nasa.gov/

53.13 H. Lim: Support Vector Parameter Selection Using
Experimental Design Based Generating Set Search
(SVEG) with Application to Predictive Software Data

Modeling. Ph.D. Thesis (Syracuse Univ., New York
2004)

53.14 B. W. Boehm: Software Engineering Economics
(Prentice Hall, New York 1981)

53.15 L. H. Putnam: A general empirical solution to the
macro sizing and estimating problem, IEEE Trans.
Softw. Eng. 4, 345–361 (1978)

53.16 J. W. Bailey, V. R. Basili: A Meta-Model for Software
Development Resource Expenditures, Proceedings
of the 5th International Conference on Software
Engineering, San Diego, CA (IEEE Press, Piscataway,
NJ 1981) 107–116

53.17 P. Kok, B. A. Kitchenham, J. Kirakowski: The MER-
MAID Approach to Software Cost Estimation. In:
Proceedings ESPRIT Technical Week (Kluwer Aca-
demic, Brussels 1990)

53.18 M. Shin, A. L. Goel: Empirical data modeling in soft-
ware engineering using radial basis functions, IEEE
Trans. Softw. Eng. 36(5), 567–576 (2000)

53.19 J. M. Desharnais: Analyse Statistique de la Pro-
ductivitie des Projets Informatique a Partie de la
Technique des Point des Fonction. MSc Thesis (Univ.
of Quebec, Montreal 1988)

53.20 V. Cherkassky, F. Mulier: Learning from Data: Con-
cepts, Theory, and Methods (Wiley-Interscience,
New York 1998)

53.21 N. Cristianini, J. Shawe-Taylor: An Introduction to
Support Vector Machines and Other Kernel-Based
Learning Methods (Cambridge Univ. Press, Cam-
bridge 2000)

53.22 P. Scholkopf, A. Smola: Learning with Kernels (MIT
Press, Cambridge, MA 2002)

53.23 C. J. C. Burges: A Tutorial on SVM for Pattern Recog-
nition, Data Mining and Knowledge Discovery 2,
167–212 (1998)

Part
F

5
3



1039

Optimal Syste54. Optimal System Design

The first section of this chapter describes
various applications of optimal system design
and associated mathematical formulations.
Special attention is given to the consideration the
randomness associated with system characteristics.
The problems are described from the reliability
engineering point of view. It includes a detailed
state-of-the-art presentation of various spares
optimization models and their applications.

The second section describes the importance of
optimal cost-effective designs. The detailed for-
mulations of cost-effective designs for repairable
and nonrepairable systems are discussed. Various
cost factors such as failure cost, downtime cost,
spares cost, and maintenance cost are consid-
ered. In order to apply these methods for real-life
situations, various constraints including accept-
able reliability and availability, weight and space
limitations, and budget limitations are addressed.

The third section describes the solution
techniques and algorithms used for optimal
system-design problems. The algorithms are
broadly classified as exact algorithms, heuristics,
meta-heuristics, approximations, and hybrid
methods. The merits and demerits of these
algorithms are described. The importance of
bounds on the optimal solutions are described.

The fourth section describes the usefulness
of hybrid methods in solving large problems in
a realistic time frame. A detailed description of the
latest research findings relating to hybrid methods
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and their computational advantages are provided.
One of the major advantages of these algorithms
is finding the near-optimal solutions as quickly
as possible and improving the solution quality
iteratively. Further, each iteration improves the
search efficiency by reducing the search space as
a result of the improved bounds. The efficiency
of the proposed method is demonstrated through
numerical examples.

54.1 Optimal System Design

In everyday life, we come across various kinds
of decision-making problems, ranging from personal
decisions related to investment, travel, and career de-
velopment to business decisions related to procuring
equipment, hiring staff, product design, and modifica-
tions to existing design and manufacturing procedures.
Decision analysis involves the use of a rational process
for selecting the best of several alternatives. The solution

to decision-making problem requires the identification
of three main components.

1. What are the decision alternatives?
Examples: Should I select vendor X or vendor Y?
Should I keep an additional spare component or not?

2. Under what restrictions (constraints) is the decision
to be made?
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Examples: Do not spend more than $ 10 000 for
procuring new equipment. On average, downtime
of the system should not exceed two days in a year.

3. What is an appropriate objective criterion for evalu-
ating the alternatives?
Examples: Overall profit is maximum. Overall avail-
ability is maximum. Overall cost is minimum.

Generally, the alternatives of the decision prob-
lem may take the form of unknown variables. The
variables are then used to construct the restrictions
and the objective criterion in appropriate mathemati-
cal functions. The end results is a mathematical model
relating the variables, constraints, and objective func-
tion. The solution of the model then yields the values
of the decision variables that optimize (maximize or
minimize) the value of the objective function while
satisfying all the constraints [54.1]. The resulting so-
lution is referred to as the optimum feasible solution
(or simply optimal solution). A typical mathematical
model for optimal decision-making is organized as
follows:

Maximize or minimize (objective function)

subject to (constraints) .

In the mathematical models for optimization, the de-
cision variables may be integer or continuous, and the
objective and constraint functions may be linear and
nonlinear. It should be noted that the discrete variables,
such as component reliability choices that are restricted
to the set {0.6, 0.75, 0.9}, as well as categorical vari-
ables such as names can be converted into equivalent
integer variables (by using mapping). The optimization
problems posed by these models give rise to variety of
problem formulations. Each category of problem for-
mulation (or the model) can be solved using a class
of solution methods, each designed to account for the
special mathematical properties of the model.

1. Linear programming problem: where all objective
and constraint functions are linear, and all the vari-
ables are continuous.

2. Linear integer programming: is a linear program-
ming problem with the additional restriction that all
the variables are integers.

3. Nonlinear programming: where the objective or at
least one constraint function is nonlinear, and all the
variables are continuous.

4. Nonlinear integer programming: is a nonlinear pro-
gramming problem with the additional restriction
that all the variables are integers.

5. Nonlinear mixed integer programming: is a nonlin-
ear programming problem where some variables are
integers and other variables are continuous.

Problems with integer variables and nonlinear func-
tions are difficult to solve. The difficulty further
increases if there exist both integer and continuous
variables.

54.1.1 System Design

System design is one of the important applications of
optimal decision-making problems. One of the impor-
tant goals of system design is to build the system such
that it performs its functions successfully. When a sys-
tem is unable to perform its functions, this is called
a system failure. Several factors related to system design
as well as external events influence the system func-
tionality. In most cases, the effects of these factors are
random, which means that they cannot be determined
precisely but can only be explained through probabil-
ity distributions. Therefore, failure events or the time
to system failure are random variables. The engineering
discipline that deals with the successful and unsuccess-
ful (failure) operations of systems is known as reliability
engineering. Reliability is one of the important sys-
tem characteristics and is defined as the probability that
the system performs its intended (or specified) func-
tions successfully over a specified period of time under
the specified environment. One of the goals of relia-
bility engineering is to illustrate how high reliability,
through careful design and analysis, can be built into
systems within the limits of economical and physical
constraints. Some important principles for enhancing
system reliability are [54.2–4]:

1. Keep the system as simple as compatible with per-
formance requirements. This can be achieved by
minimizing the number of components in series and
their interactions.

2. Increase the reliability of the components in the sys-
tem. This can be achieved by reducing the variations
in the components’ strength and applied load (better
quality control and controlled operational environ-
ment), increasing the strength of the components
(better materials), and reducing the applied loads
(derating). Alternatively, to some extent, this can be
achieved by using large safety factors or manage-
ment programs for product improvement.

3. Use burn-in procedures for components that have
high infant mortality to eliminate early failures in
the field.
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4. Use redundancy (spares) for less-reliable compo-
nents; this can be achieved by adding spares in the
parallel or standby redundancy.

5. Use fault-tolerant design such that system can con-
tinue its functions even in the presence of some
failures. This can be achieved using sparing redun-
dancy, fault-masking, and failover capabilities.

In addition to this, if system or its components
are repairable, the availability of the system should
be considered as a system performance index. The
availability of the system is the probability that the
system is operational at a specified time. In the
long run, the system availability estimate reaches
an asymptotic value called the steady-state avail-
ability [54.5]. Therefore, in most cases, we focus
our attention on improving the steady-state avail-
ability of the system. The system availability can
be increasing by reducing the downtime. Some im-
portant principles for enhancing system reliability
are:

1. Use methods that increase the reliability of the sys-
tem.

2. Decrease the downtime by reducing delays in per-
forming the repair. This can achieved by keeping
additional spares on site, providing better training to
the repair personnel, using better diagnosis proce-
dures, and increasing the size of the repair crew.

3. Perform preventive maintenance such that compo-
nents are replaced by new ones whenever they fail,
or at some regular time intervals or age, whichever
comes first.

4. Perform condition-based maintenance such that
downtime related to either preventive or corrective
maintenance is minimal.

5. Use better arrangement for exchangeable compo-
nents.

Implementation of the above steps often consume
some resources. The resources to improve system per-
formance (reliability or availability) may be limited.
This resources limitation may include available bud-
get, space to keep components, and weight limitations.
In such cases, the objective should be to obtain the
maximum performance within the utilization of avail-
able resources. However, in some cases, achieving high
performance may not lead to high profit (or low cost).
In such cases, optimal designs should be performed to
achieve the most cost-effective solution that strikes a bal-
ance between system failure cost and the cost of efforts
for reducing the system failures.

54.1.2 System Design Objectives

Depending on the situation, the objective of optimal
system design can be one of the following.

1. Maximize system performance.
There are a number of measures that indicate
the performance of a system. For nonrepairable
systems, reliability is an important performance
measure. For repairable systems, the availability
or total uptime is important. When the sys-
tem has several levels of performance (multi-state
systems), the average capacity or throughput is
important.

2. Minimize the losses associated with unwanted sys-
tem behaviors.
We can also design the system such that the losses
associated with downtime can be minimized. There-
fore, we can focus on reducing the unreliability,
unavailability, downtime, or number of failures.

3. Maximize the overall profit (or minimize the overall
cost) associated with the system.

In general, the optimal design corresponding to the
maximum system performance (or minimum unwanted
behavior) may not exactly coincide with the optimal de-
sign that maximizes system profit (or minimum overall
cost). In such cases, the objective should be minimizing
the overall cost associated with the system that meets
the acceptable system performance as well as resource
consumption.

In order to solve these optimization problems, we
should specify the objectives in a mathematical form.
Therefore, we should express the objective functions in
a mathematical form.

54.1.3 Notation

m number of subsystems in the system,
ni number of components in subsystem i;

i ∈ [1, · · · ,m],
ki minimum number of good components

required for successful operation of the
subsystem i; 1 ≤ ki ≤ ni ,

si number of spares in subsystem i;
si = ni − ki ,

n vector of components; n= [n1, · · · , nm],
nK vector of components with ni = ki ;

nK = [k1, · · · , km],
n∗ optimal value of n,
nL, nU [lower, upper] bound on the optimal value

of n; nL ≤ n∗ ≤ nU; nL
i and nU

i are the
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lower and upper bounds on n∗i ; nL and nU

are the lower and upper bounds on n∗,
φi , ψi , ϕi [mean time to failure = MTTF, mean time

to repair = MTTR, mean logistic delay
time = MLDT] of a component in sub-
system i,

γi fixed miscellaneous cost per each repair of
a component in subsystem i,

δi variable cost per unit repair time for a com-
ponent in subsystem i,

νi frequency of failures for a component in
subsystem i,

ci maintenance cost per unit time for each
component in subsystem i,

cf cost of system downtime per unit time,
ri or Ri reliability of subsystem i,
Qi unreliability of subsystem i; Qi = 1− Ri ,
Rs reliability of the system,
Qs unreliability of the system; Qs = 1− Rs,
f (.) is a function; f (r1, · · · , rm) is a function in

ri , which is used to represent system relia-
bility in terms of component reliabilities,

gi (.) is a function;
gi (r1, · · · , rm) is a function in ri , which is
used to represent the constraints in terms
of component reliabilities,

r l
j explicit lower limit on r j ,

ru
j explicit upper limit on r j ,

Td(n) average downtime cost per unit time with
component vector n,

Tm(n) average maintenance cost per unit time
with component vector n,

T (n) average system cost per unit time with
component vector n,

CK total maintenance cost with nK ;
CK = Tm(nK ) =∑m

i=1 kici
CU total maintenance cost at the upper

bound nU; CU = Tm(nU) =∑m
i=1 nU

i ci ,
CL total maintenance cost at the lower

bound nL; CL = Tm(nL) =∑m
i=1 nL

i ci ,
pi , qi [availability, unavailability] or [reliability,

unreliability] of a component in subsys-
tem i,

Ai , Ui [availability, unavailability] of subsystem i
when there are ni components in that sub-
system; Ai ≡ Ai (ni ); Ui ≡Ui (ni ),

A(n),U(n) [availability, unavailability] of the system
with component vector n,

h1
i , h0

i Pr{system is operating | subsystem i is
[operating, failed]},

binf(k; p, n) cumulative distribution function of bino-
mial distribution;
binf(k; p, n) ≡∑k

i=0

(n
i

)
pi (1− p)n−i ;

binfc(k; p, n) ≡ 1−binf(k; p, n),
gilb(·) greatest integer lower bound; floor(·)

54.1.4 System Reliability

If the objective is maximization of system reliability,
then we should express the system reliability in a math-
ematical form. The form of the reliability expression
varies with system configuration.

Series Configuration
Series configuration is the simplest and perhaps one of
the most common configurations. Let m be the number
of subsystems (or components) in the system. In this
configuration, all m subsystems (components) must be
operating to ensure system operation. In other words,
the system fails when any one of the m subsystems
fails. Therefore, the reliability of the series system,
when all subsystems are independent, is the product of
reliabilities of its systems

Rs =
m∏

i=1

Ri . (54.1)

Parallel Configuration
In the parallel configuration, several paths (subsystems)
perform the same operation simultaneously. Therefore,
the system fails if all of the m subsystems fail. This is also
called an active redundant configuration. The parallel
system may occur as a result of the basic system structure
or may be produced as a results of additional spares
included to improve the system reliability. The parallel
system configuration is successful if any one of the m
subsystems is successful. In other words, the system fails
when all m subsystems fail. Thus the unreliability of the
parallel system, when all subsystems are independent,
is the product of the unreliabilities of its components

Qs =
m∏

i=1

Qi ,

Rs = 1−Qs = 1−
m∏

i=1

Qi = 1−
m∏

i=1

(1− Ri ) . (54.2)

Standby Configuration
Standby components are used to increase the reliabil-
ity of the system. There are three types of redundancy
[54.6, 7]: (1) cold standby, (2) warm standby, and (3) hot
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standby. In the cold-standby redundancy configuration,
a component (or subsystem) does not fail before it is put
into operation. In warm-standby redundancy configura-
tion, the component can fail in standby mode. However,
the chances of failure (failure rate in standby) are less
than the chances of failure in operation (failure rate in
operation). If the failure pattern of a standby component
does not depend on whether the component is idle or
in operation, then it is called hot standby. In this chap-
ter, the analysis is provided for cold- and hot-standby
components only.

If the redundant components operate simultaneously
from time zero, even though the system needs only one
of them at any time, such an arrangement is called paral-
lel (or active) redundancy. This arrangement is essential
when switching or starting a good component follow-
ing a component failure is ruled out. The mathematical
models for hot-standby and parallel redundancy arrange-
ments are equivalent. In the cold-standby redundancy
configuration, the redundant components are sequen-
tially used in the system at component failure times. The
system fails when all components fails. Cold-standby re-
dundancy provides longer system life than hot-standby
redundancy.

For a cold-standby system with a total of m compo-
nents where initially the first component is in operation
and the rest of the m−1 components are in standby, the
system reliability at time t is

Rs(t)

= Pr(system operates successfully until time t)

= Pr(X1+ X2+· · ·+ Xm ≥ t) , (54.3)

where Xi is the random variable that represents the fail-
ure time of component i. The final expression for the
system reliability is a function of the parameters of
the component failure-time distribution. If all compo-
nents are identical and follow exponential failure-time
distributions with hazard rate λ, then the reliabil-
ity of the cold-standby system with m components
is [54.7, 8]

Rs(t) = exp(−λt)

(
m−1∑

i=0

(λt)i

i!

)

= p

(
m−1∑

i=0

[− ln(p)]i

i!

)
, (54.4)

where p = exp(−λt) is the reliability of each
component.

k-out-of-n Active Standby Configuration
In this configuration, the system consists of n active

components in parallel. The system functions success-
fully when at least k of its n components function. This
is also referred to as a k-out-of-n:G parallel (or hot or
active standby) system or simply a k-out-of-n system.
A parallel system is a special case of a k-out-of-n sys-
tem with k = 1, i. e., a parallel system is a 1-out-of-n
system. Similarly, a series system is a special case of
a k-out-of-n system with n = 1, i. e., a series system is
an n-out-of-n system.

When all components (or subsystems) are indepen-
dent and identical, the reliability of a k-out-of-n system
with component reliability equal to p is [54.3, 8, 9]:

Rs =
n∑

i=k

(
n

i

)
pi (1− p)n−i

= 1−
k−1∑

i=0

(
n

i

)
pi (1− p)n−i

= binfc(k−1; p, n) . (54.5)

k-out-of-n Cold-Standby Configuration
In this configuration, the system consists of a total of
n components. Initially, only k components are in op-
eration and the remaining (n-k) redundant components
are kept in cold standby. The redundant components
are sequentially used to replace the failed components.
When all components (or subsystems) are identical and
the failure distribution is exponential, the reliability of
a k-out-of-n cold-standby system is [54.8]:

Rs(t) = exp(−kλt)

(
k−1∑

i=0

(kλt)i

i!

)

= pk

(
k−1∑

i=0

[−k ln(p)]i

i!

)
. (54.6)

General System Configuration
It is well known that the reliability of a system is a func-
tion of the component reliabilities or its parameters.
Hence, we have [54.8]

Rs = h(R1, · · · , Rm) . (54.7)

Here, h is the function that represents the system relia-
bility in terms of the component reliabilities. The actual
formula for h(R1, · · · , Rm) depends on the system con-
figuration. Several algorithms are available [54.7] to
compute (54.7). Recent literature [54.10] has shown
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that, in many cases, algorithms based on binary decision
diagrams are more efficient in computing (54.7).

54.1.5 System Availability

If the objective is to maximize the system availability,
then we should express the system availability in a math-
ematical form. The form of the availability expression
varies with system configuration. In this section, we
provide the availability expressions for some specific
configurations. These expressions are valid under the
following assumptions.

1. The failure- and repair-time distributions of all com-
ponents are independent.

2. There are sufficient repair resources such that repair
of a failed component starts immediately.

Series Configuration
The availability of the series system is [54.7]

As =
m∏

i=1

Ai , (54.8)

where Ai is the availability of component (subsystem) i
and m is the number of components.

Parallel Configuration
The availability of the parallel system is [54.7]:

As = 1−
m∏

i=1

Ai = 1−
m∏

i=1

(1− Ai ) , (54.9)

where Ai is the availability of component (subsystem) i
and m is the number of components.

k-out-of-n Active-Standby Configuration
The availability of a k-out-of-n system with identical
components is [54.7, 9]

As =
n∑

i=k

(
n

i

)
pi (1− p)n−i

= binfc(k−1; p, n) , (54.10)

where p represents the component availability.

General System Configuration
When failure and repair processes of all components or
subsystems are independent, then we can represent the
system availability as a function of component availabil-
ities. Hence, we have

Rs = h(A1, · · · , Am). (54.11)

Here, h is the function that represents the system avail-
ability in terms of component availabilities. The actual
formula for h(A1, · · · , Am) depends on the system con-
figuration. In this cases, the same algorithms used for
system reliability can be used for computing system
availability.

54.1.6 Other Objective Functions

Similarly, we can also find the other objective functions
analytically [54.11–17]. When closed-form expression
are not available the objective function can be calculated
using either numerical methods or simulation [54.7]. In
such cases, the methods for finding the optimal solutions
should not depend on the form of the objective func-
tion. The generic nature of these solution methods may
lose the advantages associated with the specific form of
the objective function. In this section, we provide the
expressions for some of the objective functions.

Unreliability
In some systems, the objective would be minimization
of unreliability. The unreliability of a system can be
obtained from its reliability [54.7]

Unreliability= 1−Reliability,

Qs = 1− Rs . (54.12)

Unavailability
In some systems, the objective would be minimization
of unavailability. We have [54.7]

Unavailability= 1−Availability,

Us = 1− As . (54.13)

Total Uptime
In some systems, the objective would be the maximiza-
tion of total uptime (or operational time) over a period
of time. We have [54.7]

TUTs(t) =
t∫

0

As(x)dx . (54.14)

Total Downtime
In some systems, the objective would be minimization
of total downtime during a specified period of time. We
have [54.7]

TDTs(t)=
t∫

0

Us(x)dx = t−TUTs(t) . (54.15)
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Mean Availability
In some systems, the objective would be maximization
of system mean availability over a period of time. We
have [54.7]

AM(t) = TUTs(t)

t
. (54.16)

Mean Unavailability
In some systems, the objective would be minimization of
mean unavailability over a period of time. We have [54.7]

UM(t) = TDTs(t)

t
= 1− AM(t) . (54.17)

Average cost
In the majority of applications, the objective of system

design is to minimize the overall cost associated with the
system. The total cost is the sum of several cost factors.
These include:

1. System failure cost,
2. Cost of components and spares,
3. Cost of maintenance (repair, replacement, and in-

spection costs),
4. Warranty costs,
5. Cost associated with downtime (or loss of produc-

tion).

The actual formulas and cost factors vary with the
applications. For details, see [54.11–15, 17].

Decision Variables
These are the values that we are interested to find
such that the specified objective is minimized or maxi-
mized [54.1]. The decision variables include:

1. Type of system configuration,
2. Types of components or spares,
3. Number of spares in a specific application (or sub-

system),
4. Number of repair personnel.

The type of a component is applicable if there are
several alternative components for the same application
with various costs, weights, volumes, and failure rates
(or reliabilities).

Constraints
The optimal solutions should be obtained within the
allowed resource restrictions. These are also called con-
straints of the optimization problem. The constraints
include:

1. Desired reliability,
2. Desired availability,
3. Desired mean time to failure (MTTF) or mean time

between failures (MTBF),
4. Allowed downtime,
5. Allowed unavailability,
6. Allowed budget (for spares or repair resources),
7. Allowed weight,
8. Available space (or volume).

54.1.7 Existing Optimization Models

As described in the previous sections, there are several
possibilities for objective functions, constraints, and de-
cision variables. Furthermore, the diversity of the system
configurations and their special properties lead to several
optimization models. In this section, we present some
well-studied optimization models and associated math-
ematical formulations. A detailed treatment of these
problems is presented in [54.6].

In all these models, it is assumed that the system con-
sists of several stages (subsystems or modules). In most
cases, the objective is to maximize the system reliabil-
ity by optimally assigning the component reliabilities
and/or redundancy levels at various stages, subject to
resources constraints.

Allocation of Continuous Component Reliabilities
In this formulation, the system reliability can be im-
proved through the selection of component reliabilities
at stages subject to resource constraints. Therefore,
the decision variables are the reliabilities of the stages
(r1, · · · , rm). The problem of maximizing system reli-
ability through the selection of component reliabilities
subject to resource constraints can be expressed as:

Maximize Rs = f (r1, · · · , rm)

subject to:

gi(r1, · · · , rm) ≤ bi for i = 1, · · · , k ,

r l
j ≤ r j ≤ ru

j for j = 1, · · · ,m . (54.18)

This is a nonlinear programming problem.

Allocation of Discrete and Continuous Component
Reliabilities
In this formulation, we have u j discrete choices for
component reliability at stage j for j = 1, · · · , s and
the choice for the component reliability at stages s+
1, · · · ,m is on a continuous scale. Therefore, the deci-
sion variables are the reliabilities of stages (r1, · · · , rm).
Because we have discrete choices for the reliability
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at stage j for j = 1, · · · , s, selecting the reliability
at each stage is equivalent to selecting the related
choice, which can be expressed as an integer. Hence,
the decision variables are: (x1, · · · , xs, Rs+1, · · · , Rm).
Alternatively, they are equivalent to specifying
[R1(x1), · · · , Rs(xs), Rs+1, · · · , Rm]. The problem of
maximizing system reliability through the selection of
component reliabilities subject to resource constraints
can be expressed as:

Maximize

Rs = f (R1(x1), · · · , Rs(xs), Rs+1, · · · , Rm)

subject to:

gi[R1(x1), · · · , Rs(xs), Rs+1, · · · , Rm] ≤ bi

for i = 1, · · · , k ,

x j ∈ {1, 2, · · · , u j} for j = 1, · · · , s ,

r l
j ≤ r j ≤ ru

j for j = 1, · · · ,m .

(54.19)

This problem is called the reliability allocation problem.
This problem can be simplified when the separability
assumption is applicable. With the separability assump-
tion, we have

gi(R1, · · · , Rm) =
m∑

j=1

gij (ri ) . (54.20)

This problem is a nonlinear mixed integer programming
problem.

Redundancy Allocation
System reliability can be improved through the selec-
tion of redundancy levels at stages, subject to resource
constraints. Therefore, the decision variables are the re-
dundancy levels of stages (x1, · · · , xm). Alternatively,
they are equivalent to specifying [R1(x1), · · · , Rm(xm)].
The problem of maximizing the system reliability
through the selection of optimal redundancy levels,
x1, · · · , xn , subject to resource constraints can be ex-
pressed as:

Maximize Rs = f (x1, · · · , xn)

subject to:

gi(x1, · · · , xn) ≤ bi for i = 1, · · · , k ,

l j ≤ x j ≤ u j for j = 1, · · · ,m ,

x j is an integer . (54.21)

This problem is called the redundancy allocation prob-
lem. It is a nonlinear integer programming problem. As
in other cases, this problem can be simplified with the

separability assumption, which is often applicable in real
life. With the separability assumption, we have

gi(x1, · · · , xm) =
m∑

j=1

gij (xi ) . (54.22)

This problem is thoroughly discussed in the litera-
ture [54.3, 4, 6, 18–21].

Reliability-Redundancy Allocation
In this formulation, the system reliability can be im-
proved through the selection of component reliabilities
as well as redundancy levels at stages, subject to re-
source constraints. Therefore, the decision variables are
the pair of values containing the reliability and level of
redundancy for each stage s(rs, xs). Hence, the decision
variables are both (x1, · · · , xn) and (r1, · · · , rn). The
problem of finding simultaneously the optimal redun-
dancy levels (x1, · · · , xn) and the optimal component
reliabilities (r1, · · · , rn) that maximize system reliabil-
ity subject to the resource constraints can be expressed
as:

Maximize

Rs = f (x1, · · · , xn; r1, · · · , rn)

subject to:

gi(x1, · · · , xn; r1, · · · , rn) ≤ bi for i = 1, · · · , k ,

l j ≤ x j ≤ u j for j = 1, · · · ,m ,

r l
j ≤ r j ≤ ru

j for j = 1, · · · ,m ,

x j is an integer .

(54.23)

This problem is called the reliability-redundancy al-
location problem. It is a nonlinear mixed integer
programming problem. This problem can also be sim-
plified when the separability assumption is applicable.
With the separability assumption, we have:

gi(x1, · · · , xm; r1, · · · , rn) =
m∑

j=1

gij (xi , ri ) .
(54.24)

Redundancy Allocation for Cost Minimization
In this formulation, the objective is cost minimization.
In traditional models, the overall cost of the system is ex-
pressed as the sum of the cost of all components (stages).
The cost of each stage is a function of the redundancy
level of the stage. Therefore, the decision variables are
the redundancy levels at states (x1, · · · , xn). The prob-
lem of finding simultaneously optimal the redundancy
levels (x1, · · · , xn) that minimize the system cost subject
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to resource constraints can be expressed as:

Minimize Cs =
m∑

j=1

C j (x j )

subject to:
gi(x1, · · · , xn) ≤ bi for i = 1, · · · , k ,

l j ≤ x j ≤ u j for j = 1, · · · ,m ,

x j is an integer . (54.25)

Here, c j (x j ) is the cost of x j components at stage j.
Cost-minimization problems are less studied in the

literature. Furthermore, there is a lot of scope to improve
this formulation by incorporating various cost factors
associated with system.

Other Formulations
Other formulations include:

1. Allocation of discrete component reliabilities and

redundancies. In this formulation, depending on the

type of stage, we can select either a discrete com-
ponent reliability or the redundancy level (which
is also discrete). Therefore, it is a nonlinear inte-
ger programming problem. A generalization to this
formulation could be by allowing a combination of
discrete and continuous choices for component reli-
ability along with choosing the redundancies levels
at each stage. Hence, this generalization problem
becomes a mixed integer nonlinear programming
problem.

2. Component assignment problem. This is applicable
when components at various stages can be inter-
changeable

3. Multi-objective optimization problem. This is ap-
plicable when there are multiple simultaneous
objectives such as maximization of reliability and
minimization of cost, volume, weight, etc.

For more details on these formulations, see [54.6].

54.2 Cost-Effective Designs

In most of the problems studied in the literature, the
objective is to maximize the system reliability. How-
ever, as we discussed earlier, the optimal solution that
maximizes reliability may not necessarily minimizes the
overall cost associated with the system. Even though
some formulations allow the specification of cost fac-
tors in the constraints, they do not minimize the cost.
Instead they provide optimal solutions within the speci-
fied cost constraints, such as an allowed budget. Further,
the well-known cost-minimization problem minimizes
the total cost of components subject to other constraints
such as desired reliability and allowed volume, weight,
etc. However, the cost of the system not only includes
the cost of components but also includes various other
factors, which are discussed in Sect. 54.1.6. The opti-
mal solution should strike a balance between various
competing cost factors such that the overall cost of the
system is minimized and at the same time all constraints
are satisfied. The cost factors varies with the system
type, failure mode, and other details related to a specific
system.

54.2.1 Nonrepairable Systems

General Cost Structure
For nonrepairable systems, the major cost factors are
the cost of spares and the cost of failure. The system
failure cost can be minimized by using reliable system

designs. System reliability can be improved by using the
redundancy of spares, which can be kept in hot- or cold-
standby mode (or in some cases in warm-standby mode).
Although the reliability of a system increases with the
addition of spares, the cost of the system also increases
due to the number of redundant components added to
the system. Thus, it is desirable to derive a cost-effective
solution that strikes a balance between the system failure
cost and the cost of spares in the system. Therefore, the
objective is to minimize the average cost associated with
the system

Average cost

= Cost of minimum required components

+Cost of spares+Cost of failure . (54.26)

Because the cost of the minimum required components
is a fixed initial cost, this cost can be eliminated. Alter-
natively, minimizing the cost using (54.26) and (54.27)
are mathematically the same and produce the same op-
timal solution for the spares. Therefore, depending on
convenience, we can use one of these formulations

Average cost = Cost of spares+Cost of failure .

(54.27)

The cost of failure can be modeled in several ways. There
can be a cost (fixed or randomly distributed with a fi-
nite mean) for not completing the mission successfully.
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Therefore,

Average cost of failure

= Cost of failure of a mission × Unreliability .

(54.28)

For example, this kind of cost is applicable for mis-
sions such as landing on a planet or a moon. Finally, the
average system cost is

Average cost = Cost of spares

+Cost of failure of a mission

× Unreliability . (54.29)

In some scenarios the cost of system failure may depend
on the time at which the failure occurs. If the system
fails at the beginning of the mission, the losses are high
compared to if the system fails almost at the end of
the mission. If the cost is linearly proportional to the
remaining mission time, then we can express the average
system cost in terms of the average remaining mission
time. Therefore,

Average cost of failure

= Cost of failure of a mission per unit time

× Remaining mission

= Cost of failure of a mission per unit time

× Mission duration

× Average unreliability or unavailability

= Cost of failure of a mission per unit time

× Mean downtime . (54.30)

In most cases, the problem of minimizing the average
cost of the system can be converted into the problem
of maximizing the average profit of the system. When
there is a fixed profit for each successful operation of
the mission, we can easily show that these two problems
are identical.

Average system profit

= Profit during success × Reliability

−Losses during failure × Unreliability

−Cost of components

= Profit during success

− (Profit during success−Losses during failure)

× Unreliability

−Cost of components . (54.31)

Because the profit during success is fixed, it is a con-
stant. Therefore, the problem of maximizing the system

profit is reduced to maximization of Function1 shown in
(54.32):

Function1

=−(Profit during success−Losses during failure)

× Unreliability

−Cost of components . (54.32)

Because maximizing [ f (x)] is equivalent to minimizing
[− f (x)], the problem is equivalent to minimizing the
Function2 in (54.33). For details, see [54.1].

Function2

= (Profit when success−Losses during failure)

× Unreliability

+Cost of components . (54.33)

The objective functions shown in (54.29) and (54.33)
have the same form. Therefore, the same methods that
are used for cost-minimization problems can also be
used for profit-maximization problems.

A specific Model for Nonrepairable Systems
In this section, we provide a detailed model for a specific
class of nonrepairable systems. The system consists of
several subsystems, which are arranged in a network
configuration. Each subsystem requires a minimum
number of identical components to perform its functions.
The additional spare components in each subsystem
can be kept online or in cold- or hot-standby mode.
Therefore, each subsystem behaves like a k-out-of-n:G
cold/hot-standby system. The objective of the problem
considered in this chapter is to find the optimal cost-
effective design of the overall system. This means that
the optimal number of components in each subsystem
must be found to minimize the overall cost associated
with the system.

Assumptions.

1. The system consists of m subsystems. The sub-
systems can be arranged in a complex network
configuration [54.22].

2. System structure function is coherent with respect to
the subsystems.

3. All subsystems are statistically independent.
4. Each subsystem consists of ni ≡ ki + si identical

components.
5. Subsystem i requires ki components for its success-

ful operation.
6. Subsystem i can have si spares. Spares of a subsys-

tem can be kept in hot- or cold-standby mode.
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7. The failure rate of an operational component is con-
stant. The failure rate of a hot-standby component is
equivalent to the failure rate of an operational com-
ponent. The failure rate of a cold-standby component
is zero.

Problem Formulation. Because the subsystems are
independent, we can compute the reliability of each sub-
system separately and use those results to compute the
overall system reliability. The reliability calculation of
a subsystem depends on the type of spares used.

1. Hot standby

Ri = binfc(ki −1; pi , ni ) . (54.34)

2. Cold standby

Ri = exp(−kiλi t)

⎛

⎝
si∑

j=0

(kiλi t) j

j!

⎞

⎠

= pki
i

⎛

⎝
si∑

j=0

[−ki ln(pi )] j

j!

⎞

⎠ . (54.35)

System reliability is a function of the subsystem
reliabilities

R(n) = h(R1, · · · , Rm)

= Ri h
1
i + (1− Ri )h

0
i

= (
h1

i −h0
i

)
Ri +h0

i . (54.36)

The average cost of the system, Ts(n), is the cost in-
curred when the system has failed, plus the cost of all
components in the system

T (n) =
m∑

i=1

cini + cf [1− R(n)] . (54.37)

The objective is to find the optimal n that minimizes
T (n). The problem can be further refined by considering
minimum acceptable reliability (Ra), acceptable upper
limit on total weight & volume, and allowable budget
for spares acquisition. Therefore, the constraints are

Budget constraint:
m∑

i=1

si .ci ≤ B

Volume constraint:
m∑

i=1

vi ≤ V

Weight constraint:
m∑

i=1

wi ≤ W

Reliability constraint: R(n) ≥ Ra , (54.38)

where B is the allowed budget, V is the maximum al-
lowed volume, W is the maximum allowed weight, and
Ra is the minimum acceptable reliability.

In addition, we can also add explicit constraints on
the number of components in each subsystem. However,
in general, the problem is difficult to solve when no ex-
plicit constraints on the decision variables are specified.
The solution can be simplified by finding the explicit
bounds for each decision variable, i. e., the number
of components. It is a nonlinear integer programming
problem.

54.2.2 Repairable Systems

General Cost Structure
For repairable systems, the major cost factors are:

• initial cost of spares,• cost of failures,• cost of repair and replacement,• cost of storage.

However, in the long run, the cost of the initial cost of
spares is negligible compared to the other costs. The cost
of failure can be minimized by minimizing the system
unreliability, which in turn can be achieved by increas-
ing the number of spares in the system. However, the
increase in the number of spares can also increase the
maintenance and operational costs of spares, which in-
clude repair, replacement and storage costs. Thus, it is
desirable to derive a cost-effective solution that strikes
a balance between the system failure cost and the cost
of maintenance and operation

Average system cost

= Cost of maintenance

+Cost of failure × Unavailability . (54.39)

However, for short-duration systems, we have

Average system cost

= Initial cost of components and spares

+Cost of set up

+Cost of maintenance

+Cost of failure × Unavailability

+Cost of disposal . (54.40)

The cost of disposal can be positive or negative (for re-
sale value it is negative). When we can calculate the cost
of each component including the cost of procurement,
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set up, and resale values. The problem can be reduced to
Average system cost

= Effective cost of components and spares

+Cost of maintenance

+Cost of failure × Unavailability . (54.41)

A Specific Model for Repairable Systems
The majority of engineering and manufacturing systems
consist of several subsystems [54.22], which are usu-
ally nonidentical. In general, all subsystems need not
be in series, but can be arranged in any configuration.
The success logic of these types of systems can be rep-
resented using networks or reliability block diagrams,
which are collectively known as combinatorial reliabil-
ity models [54.23]. Each subsystem can have one or
more functionally similar components [54.24]. For suc-
cessful operation of a subsystem, there must be at least
a specified number of components in operation. Such
subsystems, known as k-out-of-n subsystems [54.9],
have a wide range of applications [54.9, 12, 13, 25].
A special case of a k-out-of-n subsystem with k = 1
is called a parallel subsystem [54.26].

In general, systems and components are repairable.
Therefore, systems and components undergo several
failure–repair cycles that include logistic delays while
performing repairs [54.27]. In the long run, the down-
time costs are directly related to the asymptotic
unavailability of the system. System unavailability can
be reduced by increasing the availability of its subsys-
tems, which in turn can be increased by additional spares
for each subsystem. Although the availability of a sys-
tem increases with the addition of spares, the cost of
the system also increases due to the added operational
and maintenance costs. Thus, it is desirable to derive
a cost-effective solution that strikes a balance between
the system downtime cost and the operational and main-
tenance costs of spares in the system. The objective of
the cost-effective solution is to find the optimal number
of spares in each subsystem that minimizes the overall
system cost.

Assumptions.

1. The system consists of m subsystems. All subsys-
tems are statistically independent.

2. Subsystem i consists of ni ≡ ki + si components,
where subsystem i requires at least ki components
for its successful operation.

3. Failure, repair, and logistic delay times of all
components are independent and can follow any
distribution.

4. System failure cost is proportional to the downtime.
5. There is a fixed miscellaneous cost for each repair of

a component. In addition to the fixed cost, the cost of
repair has a variable cost, which is proportional to the
amount of repair time. The downtime of a component
is the sum of the repair time and logistic delay time.

Problem Formulation. The average system cost is the
sum of the average cost of downtime plus the average
cost of maintenance

T (n) = Td(n)+Tm(n) . (54.42)

The cost of downtime can be calculated from the percent-
age of downtime within a unit time duration and the loss
(cost) per unit downtime. As time progresses, the sys-
tem reaches a steady-state condition. Under steady-state
conditions, the percentage of downtime is equivalent to
the steady-state unavailability. Hence,

Td(n) = cfU(n) = cf [1− A(n)] . (54.43)

System availability is a function of the subsystem avail-
abilities

A(n) = h(A1, · · · , Am) . (54.44)

The actual formula for h(A1, · · · , Am) depends on the
system configuration. For example, if the system con-
figuration is series, then

A(n) =
m∏

i=1

Ai (ni ) . (54.45)

Several algorithms are available [54.7] to compute
(54.44). Recent literature [54.10] has shown that, in
many cases, algorithms based on binary decision dia-
gram are more efficient in computing (54.44).

If the system is under steady-state conditions, and
the failure and repair processes of all components are
independent, the availability of each component can be
calculated using its mean time to failure (MTTF), mean
time to repair (MTTR), and mean logistic delay time
(MLDT). Because each subsystem consists of identical
components and the configuration of each subsystem is
ki -out-of-ni , we have:

Ai = Ai (ni ) = binf(ni − ki; qi , ni )

= binfc(ki −1; pi , ni ) (54.46)

where pi and qi are, respectively, the operational avail-
ability and unavailability of a component in subsystem
i. Furthermore, given that qi = 1− pi = (ψi +ϕi )/(φi
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+ψi +ϕi ), where φi is the MTTF, ψi is the MTTR, and
ϕi is the MLDT of a component in subsystem i.

The cost of maintenance is proportional to the cost
associated with the repairs of individual components.
The cost of repair of a failed component includes the mis-
cellaneous fixed cost as well as the variable cost based
on the repair time. Therefore, if the repair of a failed
component in the subsystem i takes on average ψi units
of time, then the average cost of repair for each instance
of repair is

Ri = γi +ψiδi . (54.47)

Let νi be the failure frequency, i. e., expected number of
failures per unit time, of a component in subsystem i.
Because all components in a subsystem are identical, on
average, we have Ni ≡ ni fi failures per unit time. Under
steady-state conditions, we have

νi = 1

φi +ψi +ϕi

Ni = ni

φi +ψi +ϕi
. (54.48)

Hence, the cost of maintenance of a subsystem per unit
time is θi (ni )

θi (ni ) = Ni Ri = niνi Ri . (54.49)

The cost of maintenance of the entire system is

Tm(n) =
m∑

i=1

θi (ni ) =
m∑

i=1

niνi Ri . (54.50)

It should be noted that, in the long run, the initial cost
of the spares per unit time is negligible and need not be
considered.

Therefore, the average cost of the system is

T (n) =
m∑

i=1

cini + cfU(n) ,

ci = γi +ψiδi

φi +ψi +ϕi
,

U(n) = 1− A(n) ,

A(n) = h(A1, · · · , Am) ,

Ai ≡ Ai (ni ) = binf(ni − ki; qi, ni ) ,

qi = ψi +ϕi

φi +ψi +ϕi
= 1− φi

φi +ψi +ϕi
. (54.51)

The objective is to find the optimal n that minimizes
T (n). The problem can be further refined by consid-
ering the maximum acceptable unavailability (Ua) and
the acceptable upper limit on total weight and volume.
Therefore, the constraints are

Volume constraint:
m∑

i=1

vi ≤ V ;

Weight constraint:
m∑

i=1

wi ≤ W ;

Unavailability constraint: U(n) ≤Ua . (54.52)

Similarly, we can also add explicit constraints on
the number of components in each subsystem. This
is a nonlinear integer programming problem. More
specific forms of average cost functions are studied
in [54.11–15, 17].

54.3 Optimal Design Algorithms

54.3.1 An Overview

In this section, we discuss various methods for solv-
ing optimal system problems. We demonstrate these
methods for solving the problems associated with cost-
effective designs. The same algorithms can also be
applied for the other problem formulations. The algo-
rithms can be broadly classified as follows:

1. Exact methods. These methods produce exact op-
timal solutions. It is generally difficult to develop
efficient exact methods for spares optimization prob-
lems. This is because the objective function, which
is the function to be minimized, is nonlinear and

involves several integer variables, which are the
components to be optimized. In addition, the ob-
jective function may have several peaks and may
not possess monotonic increasing or decreasing
characteristics. Therefore, exact methods involve
more computational effort and usually require large
amounts of computer memory.
One exact method is exhaustive searching, where
the objective function is computed for all possi-
ble combinations of the decision variables, which
would be the quantities of spares. However, exhaus-
tive searching is infeasible even for a moderately
size problem for optimizing the number of spares.
Other algorithms in this category involve dynamic
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programming, branch-and-bound methods, and non-
linear mixed integer programming techniques. Some
researchers have developed exact methods that have
closed-form or computationally efficient solutions
for some well-structured systems such as k-out-
of-n systems, parallel–series, and series–parallel
systems.

2. Approximation methods. Some of the difficulties of
spares optimization problem are due to the pres-
ence of an integer variable (the number of spares),
the variable forms of cost functions (the number of
terms in the cost function is based on the number
of spares), and non-polynomial cost functions. In
addition, the cost function may have several peaks
and valleys. By using approximation methods, these
complex problems can be modeled in a simpler
form by considering continuous variables for spares
quantities and approximate forms for the cost func-
tion. This approach produces near-optimal solutions,
or solutions that are very close to the exact solu-
tion result. However, approximation methods cannot
guarantee the global optimal solutions, which are
exact solutions that actually minimize the objective
functions.

3. Heuristic methods. Finding exact optimal solu-
tions for large complex systems is not always
feasible because such problems involve resource-
intensive computation efforts and usually require
large amounts of computer memory. For these rea-
sons, researchers in reliability optimization have
placed more emphasis on heuristic approaches,
which are methods based on rules of thumb or guide-
lines that generally find the solutions but do not
guarantee an exact solution. In most of these ap-
proaches, the solution is improved in each iteration.
One of the simple heuristic approaches is the greedy
method, where the quantity of spares is incremented
for the subsystem where the maximum reduction in
cost is achieved. This iterative process is stopped
when a point is reached where adding spares to
any component increases the cost. Heuristic meth-
ods typically produce local optimal solutions within
a short time. However, they may not guarantee the
global optimal solutions and may produce local opti-
mal solutions, which is an optimal solution in a local
neighborhood. For spares optimization, there may
exist several local optimal solutions, where chang-
ing any variable slightly (increasing or decreasing
any spare) increases the total cost. The global op-
timal solution corresponds to the minimal solution
out of all such local optimal solutions.

4. Meta-heuristic methods. These methods are
based more on artificial reasoning than classical
mathematics-based optimization. They include ge-
netic algorithms (GA) and simulated annealing (SA).
GAs seek to imitate the biological phenomenon of
evolutionary production through parent–child rela-
tionships. SA is based on a physical process in
metallurgy. Most of these methods use stochastic
searching mechanisms. Meta-heuristic methods can
overcome the local optimal solutions and, in most
cases, they produce efficient results. However, they
also cannot guarantee the global optimal solutions.

5. Hybrid methods. These methods use combinations
of different optimization techniques. An example
of a hybrid method would be to find the initial
solution with different heuristic approaches or ap-
proximations and then apply meta-heuristic methods
to search for better solutions.

54.3.2 Exact Methods

In order to find an exact solution to the optimization
problem, we should either compute the objective func-
tion for all possible combinations of decision variables
or systematically identify all potential combinations of
decision variables. Therefore, exact methods are appli-

Table 54.1 Exhaustive search results

n1 n2 Rs Cs Remarks

1 1 0.600 000 – C5 violated

1 2 0.720 000 – C5 violated

1 3 0.744 000 – C5 violated

1 4 0.748 800 – C5 violated

2 1 0.750 000 – C5 violated

2 2 0.900 000 106.000 000

2 3 0.930 000 78.000 000

2 4 0.936 000 74.000 000

3 1 0.787 500 – C5 violated

3 2 0.945 000 62.000 000

3 3 0.976 500 32.500 000

3 4 0.982 800 28.200 000

4 1 0.796 875 – C5 violated

4 2 0.956 250 51.750 000

4 3 0.988 125 21.875 000

4 4 0.994 500 17.500 000

5 1 0.799 219 – C5 violated

5 2 0.959 062 49.937 500

5 3 0.991 031 19.968 750

5 4 0.997 425 – C3, C4 violated
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cable only when the problem size is very small or it
posses a special properties that can be used to iden-
tify the potential optimal solutions. Many exact methods
were developed before 1980 and documented in Tillman
et al. [54.4].

Exhaustive Searching
In this method, compute the objective function for all
possible combination of decision variable. In order to
achieve this goal, we should know the lower and up-
per limits on the decision variables. This method is
demonstrated for a nonrepairable system consisting of
two subsystems in series. The objective is to find the
optimal number of online spares in each subsystem
that minimizes the average cost associated with the
system

Minimize Cs = n1c1+n2c2+ cf[1− Rs(n1, n2)]
where, (54.53)

Rs(n1, n2) = R1(n1)R2(n2) ,

R1(n1) = 1− (q1)n1 ,

R2(n2) = 1− (q2)n2 ,

cf = 1000, c1 = 1, c2 = 2 ,

p1 = 0.75, p2 = 0.8

subject to:

C1 : 1 ≤ n1 ≤ 5

C2 : 1 ≤ n2 ≤ 6

C3 : n1+n2 ≤ 8 total number constraint

C4 : 2.n1+3.n2 ≤ 20 weight constraints

C5 : Rs(n1, n2) ≥ 0.9 .

Because we know the explicit limits on n1 and n2,
we can find all possible combinations of the possible
solutions. For each possible solution combination, we
check the other constraints. If any constraint is vio-
lated, we discard that combination and go for the next
combination. For all valid combinations, we compute
the objective function. The combination that corre-
spond to the minimum value for the objective function
is the optimal solution. This is described in the Ta-
ble 54.1.

The optimal solution is (n1 = 4, n2 = 4) and the
corresponding cost is 17.5. If there are no constraints
for this problem, the optimal solution is (n1 = 5, n2 = 4)
and the corresponding cost is 15.575.

Although it is easy to understand and program ex-
haustive searching methods, they are infeasible for large

systems. This is because the search space increases expo-
nentially with the problem size. Therefore, researchers
proposed methods that can only search within a reduced
space. Misra [54.20] has proposed an exact algorithm
for optimal redundancy allocation problem with a reli-
ability maximization objective based on a search near
the boundary of the feasible region. This method was
later implemented by Misra and Sharma [54.28], and
Misra and Misra [54.29] to solve various redundancy
allocation problems. This does not always gives an ex-
act optimal solution. Prasad and Kuo [54.30] recently
developed a partial enumeration method based on lexico-
graphic search with an upper bound on system reliability.
This method was demonstrated for both small and large
problems. An overview of other exact methods can be
found in [54.6]. With some minor modifications, the
same concepts can also be used for cost-effective design.

Dynamic Programming
Dynamic programming (DP) is a solution methodol-
ogy based on Richard Bellman’s principle of optimality.
DP is an approach for solving a wide spectrum of
decision-making problems and is highly effective at
solving certain types of deterministic and stochastic
optimization problems. In this approach, a decision-
making problem involving n variables is reduced to
a set of n single-variable problems, which are derived
sequentially in such a way that the solution of each prob-
lem is obtained using the preceding answer. The DP
approach transforms an n-variable optimization prob-
lem into a multi-stage decision-making process. Such
a transformation is not always straightforward and it
quite often requires a lot of ingenuity. For this reason,
it is not easy to describe the general DP approach as
an algorithm. An outline of DP is given for various
optimization problems in [54.6].

The basic DP approach is generally used to solve
optimization problems with, at most, one constraints
and with or without bounds on the decision variables.
In this section, we demonstrate the DP approach solv-
ing a three-unit series system without constraints and
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bounds.

Minimize

Cs = n1c1+n2c2+n3c3+ cf[1− Rs(n1, n2, n3)]
where, (54.54)

Rs(n1, n2, n3) = R1(n1)R2(n2)R3(n3) ,

R1(n1) = 1− (q1)n1 ,

R2(n2) = 1− (q2)n2 ,

R3(n3) = 1− (q3)n3 ,

cf = 10, c1 = 1, c2 = 1, c3 = 0.2 ,

p1 = 0.75, p2 = 0.5, p3 = 0.33 .

For example assume that the optimal configurations for
stages 2 and 3 are fixed, i. e., n2 and n3 are fixed. There-
fore, n2c2+n3c3 and R2(n2)R3(n3) are also fixed. Let
us define vi as the probability that the stages i, · · · , 3
are working. Hence, the problem is reduced to:

Minimize Cs = n1c1+ cf[1−v2 R1(n1)] . (54.55)

The solution to this problem depends on the value of
v2. For variable values of v2, we find optimal value of
n1, n∗1, using simple search techniques. We can also find
the optimal solution analytically. Let the corresponding
value for Cs be f1(v2). The results are provided in Ta-
ble 54.2. Now the remaining problem is to find the value
of v2 corresponding to the optimal values of n2 and n3.
Let us assume that we know the value of n3. There-
fore, we also know v3 ≡ R3(n3). Hence, the problem is
reduced to:

Minimize

Cs = n1c1+n2c2+ cf[1−v3 R1(n1)R2(n2)]
= n2c2+ f1[v3 R2(n2)] . (54.56)

For any fixed v3, we can find the value of Cs for varying
values of n2. In this process, we need to compute f1(v)
for given value of x2. This can be done through interpo-
lation. For example, the value of f1(v) for v= 0.88 is
determined by interpolation of f1(0.9) and f1(0.8) ob-
tained in the previous stage (see Table 54.2). Once we
compute the Cs for various values of n2, we can find the
n∗2 that minimize Cs. Let the corresponding value for Cs
for a fixed v3 be f2(v3).

Now the problem is reduced to find the value of
v3 corresponding to the optimal value of n3. The cost
function can be rewritten as

Minimize

Cs = n1c1+n2c2+n3c3+ cf[1− Rs(n1, n2, n3)]
= n3c3+ f2(R3(n3)) (54.57)

Table 54.2 Dynamic programming solution

v2 n∗
1(v2) f1(v2) n∗

2(v3) f2(v3)

1.0 2 2.625 1.0 6.997

0.9 2 3.563 0.9 7.617

0.8 2 4.500 0.8 8.375

0.7 2 5.438 0.7 9.031

0.6 2 6.375 0.6 9.625

0.5 1 7.250 0.5 10.125

0.4 1 8.000 0.4 10.500

0.3 1 9.750 0.3 10.875

0.2 1 9.500 0.2 11.250

0.1 1 10.250 0.1 11.125

We can find the value of R3(n3) for varying values of n3.
Hence, we can compute f2(v) and Cs for varying values
of n3. Hence, we can find the value n∗3 that minimizes Cs.
The optimal value of n3 is n∗3 = 7, and the corresponding
minimum cost is 8.6787. This is the minimum cost for
the overall system. From this we can calculate the cor-
responding v3 = R3(n∗3)= 0.94. Using the backtracking
method, we can compute n∗2(v3) = n∗2(0.94) = 3. Sim-
ilarly, we can compute v2 = 0.82. The optimal choice
for n1 is n∗1(v2) = n∗1(0.82) = 2 and the corresponding
v1 is 0.77.

Therefore, the optimal solution is (n∗1, n∗2, n∗3) =
(2,3,7) and the corresponding minimum average cost
is 8.6787.

It should be noted that the whole process can be
expressed using the following recursive relationship. Let
fi (vi+1) denote the minimum expected average profit
due to redundancy at stages 1, · · · , i, where vi+1 is the
probability that the stages i+1, · · · , 3 work. Let v4 = 1.
Then, for i = 1, · · · , 3, we have the following recursive
relationship

fi (vi +1)= min argni
{ fi−1[vi+1 Ri (xi )]+ ci xi}

(54.58)

for i = 2, 3. For i = 3, it is enough to consider only the
value 1.0 for vi+1. Let ni

∗(vi+1) denote the value of ni
that maximizes fi−1[vi+1 Ri (ni )]+ cini , then

f1(v2) = min argn1
{cfv2[1− (1−r1)n1 ]+ c1n1},

f2(v3) = min argn2
{ f1(v3[1− (1−r2)n2 ])+ c2n2},

f3(1.0) = min argn3
{ f2[1− (1−r3)n3 ]+ c3n3} .

(54.59)

Although recursive relations are available, it is not com-
putationally feasible to evaluate fi (v) for all v in the
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continuous interval [0, 1]. Thus, fi (v) is evaluated on
a grid of v for i = 1 and 2. Linear interpolation is done

when fi (v) is needed, but not available, for a required
value of v.

54.4 Hybrid Optimization Algorithms

54.4.1 Motivation

The problem of finding the optimal number of spares
is known as a redundancy allocation problem. It is
a nonlinear programming problem involving integer
variables [54.31]. Chern [54.18] has shown that the
problem is NP-hard even for series–parallel systems.
A summary of approaches to determine optimal or near
optimal solutions in this area is presented in [54.2, 3].
In most of the published articles, the objective is the
maximization of a system performance measure such as
reliability or availability that satisfies a set of given con-
straints. In a cost-effective solution, the objective should
be the minimization of the total costs associated with the
system, which is the sum of the cost of initial spares, cost
of maintenance, and cost of downtime. The publications
on cost-effective designs are limited [54.9, 12, 32, 33].
Furthermore, even though the majority of systems are
repairable, few publications exist on the optimal design
issues of repairable systems [54.12, 21, 33, 34].

In general, it is difficult to obtain the optimal solution
for complex systems. There exist several heuristics algo-
rithms [54.35–37] in the literature to find near-optimal
solutions. However, the efficiency and computational
effort of those methods depend on the lower and upper
bounds of the decision variables [54.2]. In this chap-
ter we present a new method to find tighter bounds for
obtaining the optimal number of spares. The main con-
tributions of this research is a development of a new
method to find tighter bounds for the optimal num-
ber of spares for each subsystem. The efficiency of
the proposed bounds is demonstrated through several
examples.

54.4.2 Rationale for the Hybrid Method

Under some mild assumptions the cost-effective solu-
tions of both repairable and nonrepairable systems can
be represented using the same mathematical formula-
tion. For example, the cost-effective formulations used
in Sects. 54.1 and 54.2 are in the same form. Therefore,
the same optimization methods can used for solving
these two problems. Although, the underlying problem
is NP-hard, when there is only one subsystem in the
system, we can find the exact solution in an efficient

way even when spares are in cold- or hot-standby mode.
Furthermore, we can find the exact solution even if the
subsystem adopt the k-out-of-n configuration. Using our
latest research findings, we can show that, when the cost
of failure is the same, optimal value obtained for the
subsystem in a stand-alone analysis is in fact the upper
bound in the entire analysis. The upper bound can be
used find the lower bounds. Further, using these lower
and upper bounds, we can find better bounds in an iter-
ative way until we reach stable bounds. This new way
of finding bounds reduces the search space considerably
and hence improves the solution quality.

We first describe this method for repairable systems.
Then we apply the same method for the nonrepairable
case.

54.4.3 Repairable Systems

Cost Minimization with One Subsystem
Before solving the actual problem, first consider a sim-
pler problem that contains only one subsystem, i. e.,
m = 1. Say it is the subsystem i. Therefore, the cost
of the system is

T (ni ) = cini + cf [1− Ai (ni )] ,

Ai (ni ) ≡ binf(ni − ki; qi , ni ) . (54.60)

It should be noted that the exact solution for this prob-
lem cannot be found with simple searching methods,
where adding spares is stopped once a spares quan-
tity that increases the overall system cost is reached.
This is because there can exist multiple discontinuous
regions where the average system cost increases with ad-
ditional spares. For details, refer to [54.32]. Therefore,
we need efficient algorithms to solve these optimization
problems. Optimal design policies for k-out-of-n sys-
tems, i. e., systems with single subsystems, are studied
in [54.9, 33].

Definition

f (ni ) ≡ Ai (ni +1)− Ai (ni )

=
(

ni

ki −1

)
pki

i qni−ki+1
i ,
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m0 ≡ max

[
ki , gilb

(
ki −1

pi

)]
,

m1 ≡ T (ki )

ci
,

m2 ≡ inf{ni ∈ [m0,m1] : f (ni ) < ci/cf} .
(54.61)

It should be noted that m2 can be evaluated efficiently
using binary searching methods. When sequential
searching is performed, we can use the following re-
lationship to reduce the computational efforts

f (ni ) = f (ni −1)
niqi

ni − ki +1
,

f (ki −1) = 1 . (54.62)

Theorem 54.1
For fixed ki , pi , ci , and cf, the optimal value of ni that
minimizes T (ni ) is n∗i :

if f (m0) < ci/cf, then n∗i = ki
else if f (ki ) ≥ ci/cf, then n∗i = m2

else if T (ki ) > T (m2), then n∗i = m2
else n∗i = ki .

Proof: The form of the cost function for this problem
is equivalent to the form of the cost function used in
references [54.9, 33] for minimizing the total cost of
a nonrepairable k-out-of-n system. Therefore, the un-
derlying mathematical problem is the same. For details,
refer to [54.9, 33].

Corollary 54.1
If the configuration of the subsystem is parallel, i. e.,
ki = 1, then for fixed pi , ci , and cf, the optimal value of
ni that minimizes T (ni ) is n∗i = e1

e0 ≡
ln

(
ci

cf ,pi

)

ln(qi )
,

e1 ≡ max[1, gilb(e0)+1] . (54.63)

Proof: For parallel systems, f (n)= qn p [54.33]. There-
fore, the rest of the proof is straightforward from
Theorem 54.1. It should be noted that Corollary 54.1
is a special case of Theorem 54.1.

Corollary 54.2
For fixed ki , pi , and ci , the optimal value of ni that
minimizes T (ni ) is nondecreasing with an increase in cf.

Proof: Because ci/cf is decreasing, ki ≤ m2, and f (ni )
is decreasing in [m0,m1], the proof is straightforward.

Cost Minimization with Multiple Subsystems
The system consists of several subsystems. Except for
one subsystem (say subsystem i), the configurations of
these subsystems are fixed. The system availability can
be expressed using conditional probabilities based on
Shannon’s decomposition formula [54.10]. The theorem
related to this formula is known as the total probabil-
ity theorem [54.7]. Let us consider that subsystem i is
the pivotal element (also called the key element) in the
decomposition; then

A(n) = h(A1, · · · , Am)

= Ai h
1
i + (1− Ai )h

0
i

= (
h1

i −h0
i

)
Ai +h0

i . (54.64)

Here h1
i and h0

i are the conditional availabilities of the
system given that subsystem i is operating and nonoper-
ating, respectively. Therefore, the total system cost with
ni components in subsystem i is

T (ni ) =
m∑

j=1

c jn j + cf

[
1− (

h1
i −h0

i

)
Ai (ni )−h0

i

]

= c0+ cf
(
1−h1

i

)+ cini

+ cf
(
h1

i −h0
i

)
[1− Ai (ni )] ,

c0 =
m∑

j=1; j �=i

c jn j . (54.65)

Because
[
c0+cf

(
1−h1

i

)]
is independent of ni , minimiz-

ing T (ni ) in (54.65) is equivalent to minimizing T1(ni )
in (54.66)

T1(ni ) = cini + cf
(
h1

i −h0
i

)
[1− Ai (ni )] . (54.66)

The cost equations (54.60) and (54.66) are similar.
Therefore, we can find the optimal ni using Theo-
rem 54.1. However, instead of using cf, we need to use
the modified system cost cf

(
h1

i −h0
i

)
in Theorem 54.1.

The results are presented in Corollary 54.3.

Definition

m′
2 ≡ inf

{
ni ∈ [m0,m1] : f (ni ) <

ci

cf
(
h1

i −h0
i

)
}

.

(54.67)
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Corollary 54.3
For fixed configurations of all subsystems (except sub-
system i) and for fixed ki , pi , ci , and cf, the optimal
value of ni that minimizes T (ni ) is n∗i :

if f (m0) < ci

cf
(
h1

i −h0
i

) , then n∗i = ki

else if f (ki ) ≥ ci

cf
(
h1

i −h0
i

) , then n∗ = m′
2

else if T (ki ) > T (m2), then n∗i = m′
2

else n∗i = ki .

Proof: The proof is straightforward from Theorem 54.1.

Corollary 54.4
If all subsystems are in series and the configuration of
each subsystem is parallel, then for fixed configurations
of all subsystems (except subsystem i) and for fixed h1

i ,
pi , ci , and cf, the optimal value of ni that minimizes
T (ni ) is n∗i = e3:

e2 ≡
ln

(
ci

cfh1
i p

)

ln(q)
,

e3 ≡ max[1, gilb(e2)+1] . (54.68)

Proof: For series systems: h0
i = 0 and Ai (ni ) = 1−qni

i .
Hence, the rest of the proof follows from Corollaries 1
and 3.

It should be noted that Corollary 54.4 is also appli-
cable even if all subsystems are not in series. The only
requirement is that subsystem i is in series with the rest
of the system.

Corollary 54.5
The optimal n that minimizes the average system cost is
always less than or equal to the n that minimizes average
cost of the subsystem with the same failure cost.

Proof: Because cf
(
h1

i −h0
i

)≤ cf, from Corollary 54.2,
the proof is straightforward.

Simultaneous Optimization
It is well known that simultaneous optimization of the
components in all subsystems is a nonlinear integer pro-
gramming problem consisting of a vector of decision
variables. It is important to know the bounds on the
decision variables for applying general-purpose opti-
mization algorithms such as GA or SA. The efficiency
of optimization algorithms, in terms of computational

time as well as solution quality, can be improved by
reducing the search space [54.6].

It is reasonable to assume that all subsystems must
contain at least the minimum number of components that
are required for its successful operation. This assump-
tion is valid as long as we are not allowed to change the
system configuration by removing some subsystems. In
this chapter, we assume that we are not allowed to change
the system configuration and subsystem i must have at
least ki components. Therefore, nL

i = ki ; i. e., the default
lower bound is nL = nK .

Furthermore, it is well known that the maintenance
cost of all components should be less than or equal to
the cost of downtime. Therefore,

m∑

i=1

nici ≤ cf . (54.69)

In the worst case, the above equation can lead to the
following upper bound on n∗i [54.33]

nU
i = gilb

(
cf

ci

)
. (54.70)

However, a better upper bound [54.33] could be:

nU
i = ki +gilb

(
cf[1− A(nK )]

ci

)
. (54.71)

Within a given set of lower and upper bounds, the to-
tal number of solution vectors in the search space is
equivalent to M

M =
m∏

i=1

(
nU

i −nL
i +1

)
. (54.72)

In general, these lower and upper bounds are very wide
(refer to the examples). At the same time, there seems
to be no method that finds the better bounds in a sys-
tematic way. In this chapter, we show that the results
presented in the previous sections can be used to find
tighter bounds that reduce the search space and hence
increase the efficiency of the solution procedure.

Upper Bound. According to Corollary 54.5, the upper
bound on n∗i (i. e., nU

i ) that minimizes the average system
cost is always less than or equal to the n∗i that minimizes
the average cost of the subsystem with the same failure
cost. Therefore, the optimal value obtained using Theo-
rem 54.1 is an upper bound for n∗i . An improved upper
bound can be found using Theorem 54.2.

Theorem 54.2
If nL is a lower bound for n∗ and nU is an upper bound
for n∗, then the improved upper bound on n∗i is equal
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to nU ′
i .

nU ′
i ≡ optimal value obtained using Corol-

lary 54.3 with the following parameters,

h1
i ≡ h1

i (nU)= conditional availability with nU

given that subsystem i is operating

≡ h
(
AU

1 , · · · , AU
i = 1, · · · , AU

m

)
,

AU
j ≡ binf(n j − k j; q j , nU

j ) ,

h0
i ≡ h0

i (nL)= conditional availability with nL

given that subsystem i is nonoperating

≡ h
(
AL

1 , · · · , AL
i = 0, · · · , AL

m

)
,

AL
j ≡ binf

(
n j − k j; q j , nL

j

)
. (54.73)

Proof: Because the system is coherent, h1
i (nU) is greater

than or equal to h1
i (n∗), and h0

i (nL) is less than or
equal to h0

i (n∗). Therefore, (h1
i −h0

i ) at the optimal point
is always less than or equal to [h1

i (nU)−h0
i (nL)]. From

Corollary 54.2, the optimal value is decreasing with a de-
crease in cf (the effective cf). Therefore, nU

i , obtained
from Theorem 54.2 using Corollary 54.3, is the better
upper bound.

Lower Bound. The default lower bound is nL = nK . The
upper bound nU can be computed using the procedure
presented in Sect. 54.4.3. In this section, we provide an
improved lower bound for a given set of previous lower
and upper bounds: nL and nU.

Theorem 54.3
If nL is a lower bound for n∗ and nU is an upper bound
for n∗, then the improved lower bound on n∗i is equal
to nL ′

i

nL ′
i ≡ inf{ni ≥ nL

i : Ai (ni ) ≥ Bi}

Bi ≡
A(nU)−h0

i (nU)− (CU−CL)
cf

h1
i (nU)−h0

i (nL)
. (54.74)

Proof: It should be noted that the average cost of the
system at the optimal point should always be less than
or equal to the cost of the system at any other n. Hence,

T (n∗) ≤ T (nU) = CU+ cfU(nU) . (54.75)

Maintenance cost is a strictly increasing function in n∗.
Therefore, CL ≤ Tm(n∗). Hence,

CL+ cfU(n∗) ≤ CU+ cfU(nU) ,
[
h1

i (n∗)−h0
i (n∗)

]
Ai (n

∗
i )+h0

i (n∗)

≥ A(nU)− (CU−CL)

cf
. (54.76)

Because the system is coherent, we have

h0
i (nU) ≥ h0

i (n∗) ,

h1
i (nU)−h0

i (nL) ≥ h1
i (n∗)−h0

i (n∗) . (54.77)

Hence,

Ai (n
∗
i ) ≥ A(nU)−h0

i (nU)− (CU−CL)
cf

h1
i (nU)−h0

i (nL)
≡ Bi .

(54.78)

Because Ai (n∗i ) is an increasing function n∗i , the new
lower bound is

nL ′
i ≡ inf[ni : Ai (ni ) ≥ Bi ] . (54.79)

Corollary 54.6
If nL is a lower bound for n∗, nU is an upper bound for
n∗, and the configuration of subsystem i is parallel, then
the improved lower bound on n∗i is equal to nL ′

i .

nL ′
i ≡ max[1, gilb(Li )+1] ,
Li ≡ ln(1− Bi )

ln(qi )
. (54.80)

Bi is defined in (54.74).

Proof: For parallel subsystems, Ai (n∗i ) = 1−q
n∗i
i .

Hence, the rest of the proof is straightforward from
Theorem 54.3.

If the subsystem i is in series with the rest of the
system, then the equation for Bi can be simplified as
shown in (54.81).

Bi ≡ Ai
(
nU

i

) (
1− (CU−CL)

cf A(nU)

)
. (54.81)

Algorithm

1. Find the default lower bound. It is nL = nK =
[k1, · · · , km].

2. Find the optimal value for each subsystem using
Theorem 54.1, considering that there is only one
subsystem in the system and the cost of failure is cf.
Let the optimal value for subsystem i be nU

i . From
Corollary 54.5, it is the upper bound for n∗i .

3. Find Ai (nL
i ) and Ai (nU

i ) for each subsystem.
4. Find A(nL) and A(nU).
5. Find h0

i (nL
i ), h0

i (nU
i ), h1

i (nL
i ), and h1

i (nU
i ) for

each subsystem. For series configurations, we
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have: h0
i (nL

i ) = 0, h0
i (nU

i ) = 0, h1
i (nL

i ) = A(nL)
Ai (nL

i )
, and

h1
i (nU

i ) = A(nU)
Ai (nU

i )
.

6. Using Theorem 54.2, find the updated nU.
7. Using Theorem 54.3, find the updated nL.
8. If stable lower and upper bounds are reached, i. e., if

there are no change in the lower and upper bounds,
then continue to Step 9. Otherwise (if there is
a change), repeat from Step 3.

9. Using nL
i and nU

i as the bounds for optimal ni , find
the optimal vector that minimizes T (n).
– We can use any search algorithm for optimiza-

tion including GA [54.38, 39], SA [54.40], or
any other general-purpose optimization algo-
rithms [54.35–37, 41].

– In this chapter, we use an exhaustive searching
algorithm to illustrate the example problems.

Numerical Examples
Series System with Parallel Subsystems. Consider
a system consisting of five parallel subsystems arranged
in a series configuration. The reliability block diagram
of the system is shown in Fig. 54.1.

The failure-time distribution of a component in sub-
system i is Weibull with characteristic life ηi and shape
parameter βi . There exist several forms of probabil-
ity density function (PDF) for the Weibull distribution.
The form of the Weibull distribution considered in this
chapter is

fi (t) = βi

ηi

(
t

ηi

)βi−1

exp

[
−

(
t

ηi

)βi
]

. (54.82)

Hence, the MTTF of each component (φi ) is

φi = ηiΓ (1/βi +1) . (54.83)

The repair-time distribution of a component in subsys-
tem i is lognormal with parameters µi and σi . Hence,

Table 54.3 Parameters for a series system

Subsystem Failure distribution Repair distribution Repair cost

ID Weibull Lognormal Parameters

i ηi βi φi µi σi ψi γi δi

1 1125 2 997.01 4.00 1.10 99.98 10.00 1.00

2 540 1.3 498.73 3.20 1.50 75.57 20.00 1.20

3 2200 1.5 1986.04 3.75 0.60 50.91 30.00 2.00

4 800 1.2 752.52 3.20 0.25 25.31 20.00 2.50

5 475 0.9 499.79 4.35 1.00 127.74 10.00 3.00

Cost per unit downtime (cf) = 1000 cost units

1S T2 3 4 5

Fig. 54.1 Reliability block diagram for a series system

Table 54.4 Parameters for optimization of a series system

i pi qi νi Ri ci

1 0.90886 0.09114 0.00091 109.98298 0.10026

2 0.86842 0.13158 0.00174 110.67862 0.19272

3 0.97501 0.02499 0.00049 131.81396 0.06471

4 0.96746 0.03254 0.00129 83.27819 0.10706

5 0.79644 0.20356 0.00159 393.22117 0.62662

the MTTR of each component (ψi ) is

ψi = exp

(
µi + σ2

i

2

)
. (54.84)

In this example, the MLDT associated with repairs is
considered to be zero for all components. Using the sys-
tem parameters in Table 54.3, we can find the other
parameters of the components in each subsystem. These
parameters include availabilities (pi ), unavailabilities
(qi ), failure frequencies (νi ), cost of each repair (Ri ), and
repair cost per unit time (ci ). Values for these parameters
are provided in Table 54.4.

1. Because the configuration of the system is series, the
system availability expression can be obtained using
(54.1).

2. Without the results of this chapter, nL = {1, 1, 1, 1, 1}
and nU = {4060, 2113, 6291, 3802, 650}. Therefore,
the search space contains more than 1.3 × 1017 solu-
tion vectors. It is unrealistic to search for an exact
solution within such a large solution space.

3. Using common-sense reasoning, we may guess that
the actual optimal solution will be somewhere be-
tween the following bounds: nL = {1, 1, 1, 1, 1} and
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nU = {100, 100, 100, 100, 100}. Even this search
space contains 1010 solution vectors. To reduce the
search space, we may guess that the upper bound
might be nU = {10, 10, 10, 10, 10}. This contains
105 solution vectors. To reduce the search space even
further, we might guess that nU = {4, 4, 4, 4, 4}.
This search space contains 1024 solution vectors.
Now, if we can compute the objective function
(cost function) for each vector, we can find the
exact solution. However, if the optimal vector is
not within the assumed lower and upper bounds,
then we will not obtain correct results. There-
fore, a systematic procedure to find the bounds is
essential.

4. Using Theorem 54.1 (Corollary 54.1) and Corol-
lary 54.5, nU = {4, 5, 3, 3, 5}. Even without ap-
plying the proposed lower bound, i.e, even with
nL = {1, 1, 1, 1, 1}, we have 900 solution vectors.
The number of solution vectors using this upper
bound is less than the number of solution vectors
of the above wild guess (which leads to incorrect
results).

5. Further, using Theorem 54.2 (Corollary 54.6), we
have nL = {3, 3, 2, 2, 4}. Therefore, now there are
only 48 solution vectors within the bounds.

6. With exhaustive searching, the optimal vec-
tor of components that minimizes T (n) is
n∗ = {4, 5, 3, 3, 5}. For this example, n∗ = nU. The
corresponding system availability is 0.99949, and
the corresponding minimum cost per unit time is
5.521.

Table 54.5 Parameters for a hypothetical reliability block diagram

Subsystem ID Required # MTTF/MTTR/MLDT Repair cost

i ki φi ψi ϕi γi δi

1 2 1000 90 10 10.00 1.20

2 3 500 50 25 20.00 2.00

3 2 2000 40 10 30.00 2.50

4 3 750 20 5 20.00 3.00

5 2 500 100 25 10.00 3.50

Cost per unit downtime (cf) = 1000 cost units

Table 54.6 Parameters for the optimization of a hypothetical reliability block diagram

i ki pi qi νi Ri ci

1 2 0.90886 0.09114 0.00091 109.98298 0.10026

2 3 0.86842 0.13158 0.00174 110.67862 0.19272

3 2 0.97501 0.02499 0.00049 131.81396 0.06471

4 3 0.96746 0.03254 0.00129 83.27819 0.10706

5 2 0.79644 0.20356 0.00159 393.22117 0.62662

1S T

2

4

3

5

Fig. 54.2 A hypothetical reliability block diagram

Hypothetical Reliability Block Diagram. Consider a hy-
pothetical example where subsystems are connected
using the reliability block diagram shown in Fig. 54.2.
The failure and repair times of each component fol-
low exponential distributions. The logistic delay follows
a deterministic time distribution. The parameters of the
system are shown in Table 54.5. The parameters required
for optimization are provided in Table 54.6.

1. The expression for the availability as a function
of the subsystems availabilities can be obtained as
follows.

A(n) = h(A1, A2, A3, A4, A5)

= A1 A5 [1− (1− A2 A3)(1− A4)] ,

(54.85)

where Ai can be calculated using (54.51).
2. The default lower bound for n∗i is nL

i = ki . Therefore,
nL = {2, 3, 2, 3, 2}.

3. Without using the results of this chapter,
nU = {2860, 1472, 1889, 7765, 1386}. This pro-

Part
F

5
4
.4



Optimal System Design 54.4 Hybrid Optimization Algorithms 1061

S T5

1 3

2 4

Fig. 54.3 A repairable bridge network

duces more than 8.5 × 1016 solution vectors (points
of the search space).

4. Using Theorem 54.1 and Corollary 54.5, nU = {6, 8,
5, 5, 5}. At present, the search space contains 1440
solution vectors.

5. Within two iterations, we obtain the stable
nL = {5, 3, 2, 3, 4} and nU = {6, 6, 4, 5, 5}. Now the
search space contains 144 solution vectors.

6. With exhaustive searching, the optimal vec-
tor of components that minimizes T (n) is
n∗ = {6, 3, 2, 5, 5}. The corresponding system avail-
ability is 0.9998, and the corresponding minimum
cost is 3.1065.

We observe that, in most cases, if a subsystem is in
series with the rest of the system, then its optimal value
is equivalent or very close to its upper bound. Therefore,
using this information, we can further reduce the search
space. Hence, the effective search space contains only
36 solution vectors.

Bridge Network. Consider a hypothetical example
where subsystems are connected as a bridge network as
shown in Fig. 54.3. The parameters used in Table 54.5
and Table 54.6 are considered for this example.

1. The expression for the availability as a function of
the subsystem availabilities can be obtained using
(54.86).

A(n) = h(A1, A2, A3, A4, A5)

= A1 A3+ A2 A4(1− A1 A3)

+ A1 A4 A5U2U3+ A2 A3 A5U1U4 ,

(54.86)

where Ai can be calculated using (54.51).
2. The default lower bound for n∗i is nL

i = ki . Therefore,
nL = {2, 3, 2, 3, 2}.

3. Using Theorem 54.1 and Corollary 54.5, nU =
{6, 8, 5, 5, 5}. At present, the search space contains
1440 solution vectors.

4. Within one iteration, we obtain the stable
nL = {2, 3, 2, 3, 2} and nU = {5, 7, 4, 5, 4}. Now the
search space contains 540 solution vectors.

5. With exhaustive searching, the optimal vec-
tor of components that minimizes T (n) is
n∗ = {5, 3, 4, 3, 2}. The corresponding system avail-
ability is 0.9998, and the corresponding minimum
cost is 2.5631.

54.4.4 Nonrepairable Systems

The same algorithms that are used for repairable systems
can also be used for nonrepairable systems. However, the
individual subsystems should be solved using different
methods.

The general form for the cost of the single subsystem
is

T (ni ) = cini + cf [1− R(ni )] ,

R(ni ) ≡ Ri (ni ) . (54.87)

Optimal design policies for k-out-of-n systems, i. e., sys-
tems with single subsystems, are studied in [54.9,25,33].
Theorem 54.1 presents optimal design policies for k-out-
of-n cold/hot-standby systems. Let

Case 1: For hot-standby systems:

f (ni ) ≡
(

ni

ki −1

)
pki

i qni−ki+1
i

m0 ≡ max

[
ki , gilb

(
ki −1

pi

)]
; (54.88)

Case 2: For cold-standby systems:

f (ni ) ≡ exp(−kiλi t)kiλi
(kiλi t)ni−ki

(ni − ki )! ,

m0 ≡ max
[
ki , gilb (kiλi t+ ki −1)

] ; (54.89)

Definition

m1 ≡ T (ki )

ci
,

m2 ≡ inf{ni ∈ [m0,m1] : f (ni ) < ci/cf} . (54.90)
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S TCold

Hot Hot

Hot Hot

S1 S3

S2 S4

S5

Fig. 54.4 A non-repairablebridge network

Theorem 54.4
For fixed ki , pi , ci , and cf, the optimal value of ni that
minimizes T (ni ) is n∗i :
if f (m0) < ci/cf, then n∗i = ki
else if f (ki ) ≥ ci/cf, then n∗i = m2
else if T (ki ) > T (m2), then n∗i = m2
else n∗i = ki .

Proof: Refer to [54.9, 33].

Numerical Examples
Bridge Network. Consider a hypothetical example
where subsystems are connected as a bridge network
(Fig. 54.4). The parameters of the system are shown in
Table 54.7.

1. The lower bound for n∗i is nL
i = ki . Therefore, nL =

{2, 3, 3, 2, 3}.
2. Without using the results of this chapter, i. e., from

reference [54.32], nU is {665, 334, 268, 223, 192}.
This produces more than 2.4 × 1012 solution vec-
tors. Therefore, exhaustive searching is almost
impossible.

3. Using Theorem 54.1 and Corollary 54.3, nU is
{6, 6, 7, 5, 8}. At present, the search space con-
tains 2, 400 solution vectors. The search space can

Table 54.7 Parameters for a bridge network

Subsystem ki Standby λi pi ci

S1 2 hot 0.0001 0.904837 1

S2 3 hot 0.00005 0.951229 2

S3 3 hot 0.0001 0.904837 2.5

S4 2 hot 0.00005 0.951229 3

S5 3 cold 0.0002 0.818731 3.5

Mission time (t) = 1000 time units

Cost per unit downtime (cf) = 10 000 cost units

be reduced further by using the proposed iterative
procedure.

4. Within two iterations, we obtain the stable nU =
{5, 6, 6, 4, 6}. Now the search space contains 768
solution vectors.

5. With exhaustive searching, the optimal vec-
tor of components that minimizes T (n) is
n∗ = {5, 3, 6, 2, 3}. The corresponding system re-
liability is 0.9998, and the corresponding minimum
cost is 44.7640.

The algorithm presented in this chapter reduced the
search space and allowed us to use exhaustive searching
to find the optimal component vector.

Series System. Consider a hypothetical space vehicle
consisting of the following subsystems arranged in a se-
ries configuration:

• guided control subsystem consisting of computers,• monitoring subsystem consisting of sensors,• power-generating subsystem.

1. The lower bound for n∗i is nL
i = ki . Therefore, nL is

{2, 3, 2}.
2. Because it is a series system, h0

i = 0 for all i.
3. Using Theorem 54.1 and Corollary 54.3, nU is

{6, 13, 10}.
4. In this example, with exhaustive searching, the op-

timal vector of components that minimizes T (n)
is n∗ = {6, 13, 10}, which is equivalent to nU. The
corresponding system reliability is 0.9834, and the
corresponding minimum cost is 139.63.

54.4.5 Conclusions

The proposed lower and upper bounds are easy to find.
The computational complexity to find these bounds is
linearly proportional to the number of subsystems (m).
The lower and upper bounds reduce the search space
drastically. Therefore, within a practical time frame,
high-quality optimal solutions can be found.

The numerical results demonstrate that, if a subsys-
tem is in series with the rest of the system, then the
optimal value for that subsystem is generally equivalent
to its upper bound. Therefore, the configuration of such
a subsystem can be considered as fixed while performing
the simultaneous optimization. This reduces the search
space further. For example, in a series system, all subsys-
tems are in series with the rest of the system. Therefore,
the optimal solution vector matches with the vector of
the upper bounds.
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Computational Advantages
One of the main contributions of this chapter is provid-
ing the lower and upper bounds on the optimal number of
spares in each subsystem. The upper bound for parallel
subsystems can be found in constant time using Corol-
lary 54.1. Therefore, the computational complexity of
finding the upper bound for this case is O(1). For the
general case, the upper bound can be found from Theo-
rem 54.1 using binary searching methods. Therefore, the
computational complexity for the general case in find-
ing the upper bound is O[log(m1)], which is equivalent
to O[log(ki )].

1. For series systems with parallel subsystems, it is
known that the near-optimal solution, which is the
optimal solution in most cases, is equivalent to its
upper bound. Because there are m subsystems, the
computation complexity is O(m).

2. For series systems with k-out-of-n subsystems, it is
known that the near-optimal solution, which is the
optimal solution in most cases, is equivalent to its
upper bound. Because there are m subsystems, the
computation complexity is O[m log(k)].

3. For the general case, where k-out-of-n type
subsystems are arranged in a complex network con-
figuration, the tighter bounds on the decision variable
reduces the search space exponentially. Let r < 1 be

the reduction factor in the width of the bounds ob-
tained by using the proposed tighter bounds with
respect to some existing wider bounds on the de-
cision variables [54.33]. Then, the search space is
reduces by rm times. If stochastic algorithms are
used to find the optimal solution, then the chances
of finding the exact solution will be high with the re-
duced search space. Let So be the search space with
some existing bounds, and Sr be the search space
with the proposed bounds. Here Sr = rm So. Now,
randomly select M vectors from the search space.
With the original search space, we can find the exact
solution with probability M

So
. With the reduced search

space, we can find the exact solution with proba-
bility M

Sr
≡ M

rm So
. Therefore, the chances of finding

the exact solution increases exponentially. However,
evolutionary algorithms, such as GA and SA, find
the exact solutions with high probability compared
to pure random algorithms. Therefore, the advantage
may not be exponential in this case. However, the re-
duced search space always increase the chances of
finding better-quality solutions. If the iterations are
not fixed, the same quality of solutions can be ob-
tained quickly with the reduced search space. Our
further research will be in the experimental compar-
ison of various algorithms with and without using
the proposed bounds.
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and the application of machine learning techniques to various data mining problems,
especially those arising from genomics and proteomics studies. His dissertation takes
an initiative step to analyze the popular classification algorithm Random Forest and to
improve the random subspace method.

Yi Li Chapter E.38

Harvard University
Department of Biostatistics
Boston, MA, USA
yili@jimmy.harvard.edu
http://www.hsph.harvard.edu/faculty/
YiLi.html

Dr. Li is an associate professor of biostatistics at the University of
Cincinnati. He obtained his Ph.D. degree in biostatistics from the
University of Michigan in 1999. He has been working on survival
analysis, longitudinal/spatial data analysis and observational studies, He
is the recipient of several prestigious awards, including the David
P. Byar Young Investigator Award, John van Ryzin Award and Roger L.
Nichols Excellence in Teaching Award. He is a member of the review
panel of Mathematical Reviews and is an associate editor of Biometrics.

Hojung Lim Chapter F.53

Korea Electronics Technology Institute
(KETI)
Ubiquitous Computing Research Center
Seongnam-Si, Gyeonggi-Do, Korea
hlim@keti.re.kr

Hojung Lim received her Ph.D. in computer and information science
from Syracuse University, New York. Her research interests are in
support vector machines and software modelling. Currently she is
involved in ubiquitous sensor networks and radio frequency
identification (RFID).
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Haiqun Lin Chapter E.41

Yale University School of Medicine
Department of Epidemiology and Public
Health
New Haven, CT, USA
haiqun.lin@yale.edu
http://publichealth.yale.edu/faculty/lin.
htm

Haiqun Lin received her Ph.D. in biometry from Cornell University. She also holds
a medical degree from Beijing Medical University, China. Haiqun Lin’s current
research focuses on latent variable modelling and missing data issues in longitudinal
data. In the last a few years, Haiqun Lin has been collaborating with scientific
researchers in the fields of cancer research, psychiatry, and geriatric medicine.

Nan Lin Chapter D.30

Washington University in Saint Louis
Department of Mathematics
St. Louis, MO, USA
nlin@math.wustl.edu
http://www.math.wustl.edu/~nlin

Dr. Lin received his Ph.D. degree in statistics from the University of Illinois at
Urbana-Champaign in 2003. He is an assistant professor in the Department of
Mathematics, Washington University in Saint Louis. His research interest includes
robust statistics, Bayesian modeling, and applications of statistical methodologies in
bioinformatics studies such as protein–protein interaction prediction and topological
structure inference in yeast.

Wei-Yin Loh Chapter D.29

University of Wisconsin – Madison
Department of Statistics
Madison, WI, USA
loh@stat.wisc.edu
http://www.stat.wisc.edu/~loh

Wei-Yin Loh has a Ph.D. from Berkeley. He is a fellow of the American
Statistical Association and the Institute of Mathematical Statistics. He
invented the GUIDE regression tree algorithm and co-authored the
CRUISE, LOTUS, and QUEST algorithms. He currently serves on the
editorial boards of the ACM Transactions on Knowledge Discovery
from Data and the Journal of Machine Learning Research.

Jye-Chyi Lu Chapter A.2

The School of Industrial and Systems
Engineering
Georgia Institute of Technology
Atlanta, GA, USA
jclu@isye.gatech.edu
http://www.isye.gatech.edu/~JCLU;
http://www.isye.gatech.edu/
faculty-staff/profile.php?entry=jl234

Jye-Chyi (JC) Lu is a professor in the School of Industrial and Systems
Engineering (ISyE). He received a Ph.D. in statistics from University of
Wisconsin at Madison in 1988, and joined the faculty of North Carolina
State University (NCSU) where he remained until 1999 when he joined
ISyE. Dr. Jye-Chyi Lu’s research areas cover industrial statistics, signal
processing, semiconductor and electronic manufacturing, data mining,
bioinformatics, supply-chain management, logistics planning and
nanotechnology. He has about 58 disciplinary and interdisciplinary
publications, which have appeared in both engineering and statistics
journals. Currently, he is an associate editor for Technometrics, IEEE
Transactions on Reliability and Journal of Quality Technology.

William Q. Meeker, Jr. Chapter C.22

Iowa State University
Department of Statistics
Ames, IA, USA
wqmeeker@iastate.edu
http://www.public.iastate.edu/
~wqmeeker

Dr. Meeker is distinguished professor of statistics at Iowa State University. He is
a fellow of the American Statistical Association and a past editor of Technometrics.
He is co-author of the books Statistical Methods for Reliability Data, and Statistical
Intervals, and of numerous publications in the engineering and statistical literature. He
has consulted extensively on problems in reliability and accelerated testing.

Mirjam Moerbeek Chapter E.39

Utrecht University
Department of Methodology and Statistics
Utrecht, Netherlands
m.moerbeek@fss.uu.nl
http://www.fss.uu.nl/ms/moerbeek

Dr. Mirjam Moerbeek studied biometrics at Wageningen Agricultural University, the
Netherlands. She obtained her Ph.D. from Maastricht University, the Netherlands. She
is currently employed at Utrecht University, the Netherlands. In 2003 she received
a prestigious research grant from the Dutch government for young researchers. Her
research topic is on the design and analysis of experiments with nested data.
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Terrence E. Murphy Chapter B.10

Yale University School of Medicine
Department of Internal Medicine
New Haven, CT, USA
terrence.murphy@yale.edu

Terrence E. Murphy earned his Ph.D. in industrial and systems
engineering from the Georgia Institute of Technology in 2004. Prior to
his graduate work in engineering statistics, he worked for the Eastman
Kodak and Johnson & Johnson companies in the manufacture and
development of clinical instrumentation. His interests include
multivariate statistics, experimental design and medical decision
making.

D.N. Pra Murthy Chapters A.3, A.5

The University of Queensland
Division of Mechanical Engineering
Brisbane, QLD, Australia
p.murthy@uq.edu.au

Pra Murthy obtained his Ph.D. degree from Harvard University. He has
authored or co-authored 5 books, 20 book chapters and 150 journal
papers and co-edited 2 books. His current areas of research deal with
various topics in product reliability and product warranty. He has held
visiting appointments at several universities in the USA, Europe and
Asia and is on the editorial boards of nine international journals.

H. N. Nagaraja Chapter A.4

Ohio State University
Department of Statistics
Columbus, OH, USA
hnn@stat.ohio-state.edu
http://www.stat.ohio-state.edu/~hnn

H.N. Nagaraja, Ph.D., is a professor in the Departments of Statistics and Internal
Medicine and serves as a General Clinical Research Centre Biostatistician at Ohio
State University. He is interested in order and record statistics, general distribution
theory, stochastic modelling, and biostatistical applications. He is a fellow of the
American Statistical Association, and an elected member of the International
Statistical Institute.

Toshio Nakagawa Chapter E.46

Aichi Institute of Technology
Department of Marketing and
Information Systems
Toyota, Japan
toshi-nakagawa@aitech.ac.jp
http://www.aitech.ac.jp/

Toshio Nakagawa received his Ph.D. from Kyoto University in 1977. He is now
a professor of marketing and information systems at Aichi Institute of Technology in
Toyota. His research interests are optimization problems, and computer and
information systems in reliability and maintenance theory.

Joseph Naus Chapter E.43

Rutgers University
Department of Statistics
Piscataway, NJ, USA
naus@stat.rutgers.edu
http://www.stat.rutgers.edu/people/
faculty/naus.html

Joseph Naus is a professor of statistics at Rutgers University. He
received his Ph.D in statistics from Harvard University. He was elected
a Fellow of The American Statistical Association based on his research
into scan statistics, a continuing research area for more than 40 years.

Harriet B. Nembhard Chapter B.14

Pennsylvania State University
Harold and Inge Marcus Department of
Industrial and Manufacturing Engineering
University Park, PA, USA
hbn2@psu.edu
http://www.ie.psu.edu/People/IEFaculty/
facultypage.cfm?FacID=18

Dr. Nembhard’s research mission is to investigate the design and
implementation of concepts and methods of quality, economics,
productivity, and improvement for manufacturing systems. She is also
an ASQ certified Six Sigma Black Belt and has served as an expert
consultant for several major companies. She is on the editorial boards of
Quality Engineering and Quality and Reliability Engineering
International.
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Douglas Noe Chapter D.30

University of Illinois
at Urbana-Champaign
Department of Statistics
Champaign, IL, USA
dnoe@uiuc.edu

Douglas Noe is a Ph.D. candidate in the Department of Statistics at the University of
Illinois at Urbana-Champaign. He earned an M.S. from this department in 2003 and
received his M.A. in economics from the University of Michigan in 2000. His research
explores statistical aspects of data mining.

Arrigo Pareschi Chapter F.48

University of Bologna
Department of Industrial and Mechanical
Engineering (D.I.E.M.)
Bologna, Italy
arrigo.pareschi@unibo.it

Arrigo Pareschi is is full professor of industrial logistics at the Department of
Mechanical Constructions (DIEM) of the University of Bologna. He has been dean of
Faculty of Engineering of Bologna from 1955 to 2001 and president of the
Commission for Scientific Research and of the “Spin-Off” Committee of the
University of Bologna. He is author of over 90 scientific papers (both experimental
and theoretical) on industrial mechanical plants.

Francis Pascual Chapter C.22

Washington State University
Department of Mathematics
Pullman, WA, USA
jpascual@math.wsu.edu

Dr. Francis Pascual received his Ph.D. in statistics from Iowa State
University. He has a joint appointment in the Department of Statistics
and the Department of Mathematics at Washington State University. His
research interests include statistical analysis of reliability data,
accelerated life test planning, statistical process control, and analysis of
spatial correlations.

Raymond A. Paul Chapter C.24

C2 Policy
U.S. Department of Defense (DoD)
Washington, DC, USA
raymond.paul@osd.mil

Ray Paul has been a professional electronics engineer, software
architect, developer, tester and evaluator for the past 24 years, holding
numerous positions in the field of software engineering. Currently, he
serves as the deputy for C2 Metrics and Performance Measures for
Software for the Department of Defense (DoD) Chief Information
Officer (CIO). In this position, he supervises development of objective,
quantitative data on the status of software resources in DoD information
technology (IT) to support major investment decisions. These metric
data are required to meet various congressional mandates, most notably
the Clinger-Cohen Act. He holds a doctorate in software engineering
and is an active member of the IEEE Computer Society. He has
published more than 50 articles on software engineering in various
technical journals and symposia proceedings, primarily under IEEE
sponsorship.

Alessandro Persona Chapter F.48

University of Padua
Department of Industrial and Technology
Management
Vicenza, Italy
alessandro.persona@unipd.it

Alessandro Persona is a full professor of industrial plants and logistics in the
Department of Management and Technology at Padua University. The scientific
activity has been carried out in many areas of research in industrial plants, logistic and
maintenance topics. He is author of more than 90 publications. In 2005 he received the
award for the best paper printed in the Int. Journal of Manufacturing Technology
Management. He is member of the editorial board of the International Journal on
Operational Research. Currently he manages the Ph.D. on Mechatronics and Industrial
Systems and he is the president of mechanical engineering degree at Padua University.
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Daniel Peña Chapter D.28

Universidad Carlos III de Madrid
Departamento de Estadistica
Getafe (Madrid), Spain
daniel.pena@uc3m.es
http://halweb.uc3m.es/daniel_pena

Daniel Peña is professor of statistics at the Universidad Carlos III of Madrid. He was
full professor of statistics at Universidad Politécnica de Madrid and visiting full
professor at the Universities of Wisconsin – Madison and Chicago. He has published
13 books and more than 150 research papers on time series, linear models, robust and
diagnostic methods, bayesian statistics, econometrics, multivariate analysis and
quality methods. He is a member of ISI and IMS fellow.

Hoang Pham Chapters A.1, A.7, C.27, E.45

Rutgers University
Department of Industrial and Systems
Engineering
Piscataway, NJ, USA
hopham@rci.rutgers.edu

Dr. Hoang Pham is professor in the Department of Industrial and
Systems Engineering at Rutgers University. Before joining Rutgers, he
was a senior engineering specialist at the Boeing Company, Seattle, and
the Idaho National Engineering Laboratory, Idaho Falls. His research
interests include software reliability, system reliability modeling,
maintenance, fault-tolerant computing, and biological
systemability-risk assessment. He is the author/editor of more than 15
books and is currently the editor of the Springer Series in Reliability
Engineering. He has published more than 90 journal articles and 30
book chapters. Dr. Hoang Pham is a fellow of the IEEE.

John Quigley Chapter A.6

University of Strathclyde
Department of Management Science
Glasgow, Scotland
j.quigley@strath.ac.uk
http://www.managementscience.org/
staff/john.asp

Dr. John Quigley earned a BMath in actuarial science from the
University of Waterloo, Canada and a Ph.D. from the Department of
Management Science, University of Strathclyde, Scotland. His research
interests include applied probability modelling, statistical inference and
reliability growth modelling. He is a member of the Safety and
Reliability Society, a chartered statistician and an associate of the
Society of Actuaries.

Alberto Regattieri Chapter F.48

Bologna University
Department of Industrial and Mechanical
Engineering
Bologna, Italy
alberto.regattieri@mail.ing.unibo.it

Alberto Regattieri is a professor in the Department of Industrial and Mechanical
Engineering at the University of Bologna. He received his Ph.D. degree from Parma
University in 1999. His current research interests include the optimal design of
manufacturing systems, production planning and control, and the maintenance of
industrial plants. In 2005 he received the Williamson Award [Emerald Literati Club
(UK)] for his studies. He has authored or co-authored several books and over 50
technical publications.

Miyoung Shin Chapter D.35

Kyungpook National University
School of Electrical Engineering
and Computer Science
Daegu, Republic of Korea
shinmy@knu.ac.kr

Dr. Miyoung Shin is an assistant professor in the School of Electrical Engineering and
Computer Science at Kyungpook National University. She earned her Ph. D. degree in
computer and information science from Syracuse University in 1998 and was awarded
the All-University Doctoral Prize for her outstanding Ph.D. thesis. Prior to joining to
Kyungpook National University in 2005, she had worked as a senior member of
research staff in the Electronics and Communications Research Institute. Her current
research interests include data mining algorithms, bioinformatics and
context-awareness computing.

Au
th

ors



1080 About the Authors

Karl Sigman Chapter A.8

Columbia University in the City of New
York,
School of Engineering and Applied
Science
Center for Applied Probability (CAP)
New York, NY, USA
karl.sigman@columbia.edu
http://www.columbia.edu/~ks20

Professor Sigman’s areas of research include stochastic modeling,
stochastic networks and queueing theory, point processtheory, and
insurance risk. He was a recipient of the Presidential Young Investigator
Award from the National Science Foundation, and continues to be
co-director of Columbia’s Center for Applied Probability.

Loon C. Tang Chapter C.23

National University of Singapore
Department of Industrial and Systems
Engineering
Singapore, Singapore
isetlc@nus.edu.sg
http://www.ise.nus.edu.sg/staff/tanglc/
index.html

Dr. Loon Ching Tang, a faculty member of National University of
Singapore, obtained a Ph.D. degree in 1992 from Cornell University in
the field of operations research. He has published more than 50 papers
in international journals in the field of quality, reliability and operations
research. In particular, his research interest lies in the application of
probability, statistics and optimization techniques in solving real world
problems. He is currently the area editor of the International Journal of
Performability Engineering.

Charles S. Tapiero Chapter F.47

Polytechnic University
Technology Management and Financial
Engineering
Brooklyn, NY, USA
ctapiero@poly.edu

Charles S. Tapiero is the Topfer Chair Professor of Financial Engineering and
Technology Management at the Polytechnic University of New York. He has
a worldwide reputation as an active researcher and consultant in risk and
computational finance and risk management. He is currently the area editor for finance
in the Journal of Applied Stochastic Models for Business and Industry as well as
a member of the editorial board of several other journals. Professor Tapiero has
published 12 books and over 250 papers on a broad range of issues spanning risk
management, stochastic modeling and applied stochastic control in operations,
insurance and finance.

Zahir Tari Chapter F.52

Royal Melbourne Institute of Technology
University
School of Computer Science and
Information Technology
Melbourne, Victoria, Australia
zahirt@cs.rmit.edu.au
http://www.cs.rmit.edu.au/~zahirt

Dr. Zahir Tari is a full professor at RMIT University and the director of Distributed
Systems and Networking at the School of Computer Science and Information
Technology. He has extensively published in the area of middlewares and Web
services, especially in the area of performance (caching and load balancing), security
(i.e. access control and information flow control) and service discovery.

Xiaolin Teng Chapter C.27

Time Warner Inc.
Research Department
New York, NY, USA
xiaolin_teng@timeinc.com

Xiaolin Teng received his Ph.D. in industrial engineering from Rutgers
University in 2001. He also holds master degrees in statistics, computer
science, and automation. He is a member of ASA, INFORMS, IEEE
and IIE. Currently Dr. Teng works at Time Warner Inc. as a research
manager. His research interests include reliability, quality control,
inventory optimization and data mining.
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Wei-Tek Tsai Chapter C.24

Arizona State University
Computer Science & Engineering
Department
Tempe, AZ, USA
wtsai@asu.edu
http://cse.asu.edu/directory/faculty/
tsai.php

Professor Tsai received his Ph.D. from University of California at
Berkeley 1985 and is professor of Computer Science and Science at
Arizona State University. His research areas include service-oriented
computing, software engineering, dependable computing, software
engineering, software testing, and embedded systems. He has
coauthored more than 300 research papers in these areas.

Kwok-Leung Tsui Chapters B.10, D.36

Georgia Institute of Technology
School of Industrial and Systems
Engineering
Atlanta, GA, USA
ktsui@isye.gatech.edu
http://www.isye.gatech.edu/~ktsui

Kwok-Leung Tsui is professor at Georgia Institute of Technology. He has a Ph.D. in
statistics from the University of Wisconsin. Dr. Tsui is a (elected) fellow of American
Statistical Association and was a recipient of the NSF Young Investigator Award. He
is currently the departmental editor of the IIE Transactions.

Fugee Tsung Chapter F.50

Hong Kong University of Science
and Technology
Department of Industrial Engineering
and Logistics Management
Kowloon, Hong Kong
season@ust.hk

Dr. Fugee Tsung is an associate professor in the Department of Industrial Engineering
and Logistics Management at the Hong Kong University of Science and Technology.
He received both his M.S. and Ph.D. in industrial and operations engineering from the
University of Michigan, Ann Arbor. He is an associate editor of Technometrics,
a department editor of the IIE Transactions, and on the editorial boards for the
International Journal of Reliability, Quality and Safety Engineering (IJRQSE) and the
International Journal of Six Sigma and Competitive Advantage (IJSSCA). He is an
ASQ Certified Six Sigma Black Belt, ASQ authorized Six Sigma Master Black Belt
Trainer, and former chair of the Quality, Statistics, and Reliability (QSR) Section at
INFORMS. He is also the winner of the Best Paper Award for the IIE Transactions
focus issue on Quality and Reliability in 2003. His research interests include quality
engineering and management, statistical process control, monitoring and diagnosis.

Lesley Walls Chapter A.6

University of Strathclyde
Department of Management Science
Glasgow, Scotland
lesley.walls@strath.ac.uk
http://www.managementscience.org/
staff/lesley.asp

Lesley Walls has a Ph.D. (applied statistics). She is an IEC/TC56/WG2
expert and editorial board member of several reliability journals. Her
research includes reliability modelling, business processes and risk
assessment. She is a fellow of the UK Safety and Reliability Society,
chartered statistician and was awarded the 2002 Simms prize by the
Royal Aeronautical Society for REMM modelling research.

Wei Wang Chapter C.21

Dana-Farber Cancer Institute
Department of Biostatistics
and Computational Biology
Boston, MA, USA
wwang@jimmy.harvard.edu

Dr. Wang is assistant professor of biostatistics at Harvard School of
Public Health and Dana-Farber Cancer Institute. She obtained her Ph.D.
degree in statistics from the University of California at Davis. Dr.
Wang’s current research interests are mainly in developing
semi-parametric and non-parametric methods in areas of survival
analysis, longitudinal data analysis and functional data analysis. Dr.
Wang also works at the statistical center of the Eastern Cooperative
Oncology Group (ECOG) on collaborative research in cancer clinical
trials.
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Kenneth Williams Chapter D.34

Yale University
Molecular Biophysics and Biochemistry
New Haven, CT, USA
kenneth.williams@yale.edu
http://info.med.yale.edu/wmkeck/

Dr. Williams received the Ph.D. degree in biochemistry from the University of
Vermont in 1976. In 1980 he founded the Keck Laboratory (http://info.med.yale.edu/
wmkeck/) and in 1986 he was one of the six founding members of the Association of
Biomolecular ResourceFacilities (http://www.abrf.org/). He has 155 publications and
directs the Yale/NHLBI Proteomics Center, NIDA Neuroproteomics Center, and the
Proteomics Core of the Northeast Biodefense Center.

Richard J. Wilson Chapter A.5

The University of Queensland
Department of Mathematics
Brisbane, Australia
rjw@maths.uq.edu.au
http://www.maths.uq.edu.au/~rjw

Dr. Wilson is a senior lecturer in statistics at The University of Queensland. His main
research interests are in random processes, extremes and reliability, from both
theoretical and applied statistics perspectives. Accordingly, he has worked on such
diverse topics as modelling mineral phases in ores at the micro level, investigating
warranty policies in manufacturing, exploring the relationship between the location of
nerves to wisdom teeth and various factors, modelling wind downbursts, fitting
models to significant wave height data and investigating aspects of the combustion of
metal rods.

Baolin Wu Chapter D.34

University of Minnesota, School of
Public Health
Division of Biostatistics
Minneapolis, MN, USA
baolin@biostat.umn.edu
http://www.biostat.umn.edu/~baolin

Baolin Wu received the B.Sc. degree in probability and statistics from
Beijng University in 1999 and the Ph.D. degree in biostatistics from
Yale University in 2004. In 2004 he joined the Division of Biostatistics
at the University of Minnesota as an assistant professor. His current
research areas focus on computational biology and statistical learning.

Min Xie Chapters A.3, B.16

National University of Singapore
Dept. of Industrial & Systems Engineering
Singapore, Singapore
mxie@nus.edu.sg
http://www.ise.nus.edu.sg/staff/xiemin/

Dr. Min Xie is a professor at National University of Singapore. He
received his Ph.D. from Linköping University, Sweden in 1987 and has
published over 100 articles in refereed journals and six books. He is an
editor of International Journal of Reliability, Quality and Safety
Engineering, a regional editor of Economic Quality Control,
a department editor of IIE Transactions and associate editor IEEE Trans
on Reliability. He is a fellow of IEEE.

Chengjie Xiong Chapter C.19

Washington University in St. Louis
Division of Biostatistics
St. Louis, MO, USA
chengjie@wubios.wustl.edu
http://www.biostat.wustl.edu/
faculty_staff/xiongc.shtml

Dr. Chengjie Xiong is a research assistant professor of biostatistics at Washington
University School of Medicine. He received a B.S. in Mathematics from Xiangtan
University (P.R. China), an M.S. in Applied Mathematics from Peking University (P.
R. China), and a Ph.D. in statistics from Kansas State University in 1997. Dr. Xiong’s
research interests include statistical design of experiments, linear and nonlinear mixed
models, longitudinal data analysis, survival analysis and reliability, categorical data
analysis, order restricted statistical inferences, and their applications in medicine,
biology, education, and engineering. Dr. Xiong has provided statistical consulting for
researchers across the US in the areas of biology, medicine, agriculture, marketing and
education and is the principal investigator of a NIH-funded project to study the
statistical application in medical research. He is a member of the American Statistical
Society.
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Di Xu Chapter B.12

Amercian Express
Dept. of Risk Management and Decision
Science
New York, NY, USA
di.w.xu@aexp.com

Di Xu is a director in risk management and decision science in the consumer card
services group at American Express. His research interests are multivariate statistical
modelling, data mining, mathematical optimization, and their application in process
control, product design, risk management and direct marketing acquisition. He
graduated from Rutgers Univerity with a Ph.D. in Industrial Engineering in 2001.

Shigeru Yamada Chapter C.26

Tottori University
Department of Social Systems
Engineering
Tottori-shi, Japan
yamada@sse.tottori-u.ac.jp
http://www.sse.tottori-u.ac.jp/
jouhou_source/hpsubmit/index.html

Dr. Yamada has been working as a professor in the Department of
Social Systems Engineering at Tottori University, Japan, since 1993. He
received his Ph.D. degree from Hiroshima University, Japan, in 1985.
He has published numerous technical papers and books in the area of
software reliability engineering, reliability engineering, and statistical
quality. Dr. Yamada received the Best Author Award (1992) from the
Information Processing Society of Japan, the TELECOM System
Technology Award (1993) from the Telecommunications Advancement
Foundation, the Best Paper Award (1999) from the Reliability
Engineering Association of Japan, and the International Leadership
Award in Reliability Engineering Research (2003) from the ICQRIT/
SREQOM.

Jun Yan Chapter F.51

University of Iowa
Department of Statistics
and Actuarial Science
Iowa City, IA, USA
jyan@stat.uiowa.edu
http://www.stat.uiowa.edu/~jyan/

Dr. Jun Yan earned a Ph.D. in statistics from the Universityof Wisconsin
– Madison in 2003. His research interests are functionaldata analysis,
survival analysis, spatial statistics, statisticalcomputing, and
cross-disciplinary statistical applications.

Shang-Kuo Yang Chapter E.44

Department of Mechanical Engineering
National ChinYi Institute of Technology
Taiping City, Taiwan, R.O.C.
skyang@ncit.edu.tw
http://irw.ncit.edu.tw/mechanical/
skyang/skyang.htm

Professor Yang received his B.S. in 1982 and the M.S. in 1985 in automatic control
engineering from Feng Chia University, Taiwan. From 1985 to 1991 he was an
assistant researcher and instrumentation system engineer of Flight Test Group,
Aeronautic Research Laboratory, Chung Shan Institute of Science and Technology,
Taiwan. Since 1991, he has been with the Department of Mechanical Engineering at
National Chin Yi Institute of Technology, Taiwan, where he is a full professor and the
chairperson. He received a Ph.D. in 1999 in mechanical engineering from National
Chiao Tung University, Taiwan. His research interests are in reliability, data
acquisition, and automatic control.

Kai Yu Chapter C.19

Washington University in St. Louis, School
of Medicine
Division of Biostatistics
St. Louis, MO, USA
yuka@mail.nih.gov

Dr. Yu is a research assistant professor at the Division of Biostatistics at Washington
University, St. Louis. He obtained his Ph.D. in biostatistics from University of
Pittsburgh in 2000. He completed a one-year postdoctoral training in statistical
genetics in 2001 at Stanford University. His current research interests include
biostatistics and genetic epidemiology.
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Weichuan Yu Chapter D.34

Yale Center for Statistical Genomics
and Proteomics, Yale University
Department of Molecular Biophysics
and Biochemistry
New Haven, CT, USA
weichuan.yu@yale.edu
http://noodle.med.yale.edu/~weichuan

Weichuan Yu received his Ph.D. degree in computer vision and image
analysis from the University of Kiel, Germany in 2001. He was a
postdoctoral associate at Yale University from 2001 to 2004. Currently
he is a research faculty member in the Center for Statistical Genomics
and Proteomics at Yale University. He is interested in computational
analysis problems with biological and medical applications.

Panlop Zeephongsekul Chapter F.52

Royal Melbourne Institute of Technology
University
School of Mathematical and Geospatial
Sciences
Melbourne, Victoria, Australia
panlopz@rmit.edu.au

Dr. Zeephongsekul received his B.Sc. degree with honors from
Melbourne University and a Ph.D. degree in statistics from the
University of Western Australia. He is currently an associate professor
in the School of Mathematical and Geospatial Sciences at RMIT
University, Melbourne, Australia. His research interests are broad, being
in stochastic point processes, fuzzy sets, game theory, queuing theory
and software reliability analysis. He has published in all those areas and
his papers have appeared in many well-known international journals. He
is also involved in many consulting projects with diverse clients,
especially in applied statistics and the design and analysis of
experiments.

Cun-Hui Zhang Chapter E.40

Rutgers University
Department of Statistics
Piscataway, NJ, USA
czhang@stat.rutgers.edu
http://www.stat.rutgers.edu/people/
faculty/zhang.html

Cun-Hui Zhang received his Ph.D. in statistics from Columbia University in 1984. He
is currently a professor in the Department of Statistics at Rutgers University. His
research interests include empirical Bayes, nonparametric and semiparametric
methods, functional MRI, biased and incomplete data, networks, multivariate data,
biometrics, and probability theory.

Heping Zhang Chapter D.33

Yale University School of Medicine
Department of Epidemiology
and Public Health
New Haven, CT, USA
heping.zhang@yale.edu
http://peace.med.yale.edu

Heping Zhang is professor of biostatistics, child study, and statistics. He is interested
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– acceleration factor 405
– motivation 404
– relationship 404
inversion
– formula 137, 144
– mutation 762
iterative generalized least squares

(IGLS) 709

K

Kalman filter 793, 794, 798, 799,
801, 804

Kalman prediction 799, 800
Kelvin scale 402
kernel function 660
k-fold cross validation (KCV) 1025
– error 1025
Khintchine–Korolyuk theorem 147
K -mediods 662
k-nearest neighbors (KNN) 608
knowledge discovery 651, 652, 665
knowledge discovery in databases

(KDD) 640, 652–655, 663, 667
known good dies (KGD) 161
Kolmogorov-Smirnov test 26
k-within-consecutive-m-out-of-N

systems 783

L

lack of anticipation condition (LAC)
149

lack-of-fit criterion (LOF) 656
lack-of-memory property (LMP) 82
Laplace transform 511
least median of squares (LMS) 528
least squared estimation 26
least-squares estimate (LSE) 524,

528, 721
leave one out (LOO) 1025
leverage of the observation 525
LIFO (last in first out) 995
likelihood function 22, 513
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likelihood ratio (LR) 54
limiting quality level 264
linear
– method 656, 660
– mixed model 688, 689
– model 651, 674, 681, 682
– regression 26
linear cumulative exposure model

(LCEM) 433
linear discriminant analysis (LDA)

562, 601, 602, 608, 615, 656
linear transportation problem (LTP)

766
LLF (least loaded first) 1006
local pooled error (LPE) 591, 594
location–allocation problem 769
location-scale family 352
logistic regression (LR) 537, 602
log-linear process (LLP) 933
lognormal distribution 11, 351, 400
– CDF 400
– PDF 400
– quantiles 400
logrank test 348
LOTUS model 540, 541
low turnaround index (LTI) 905
lower control limit (LCL) 969
lower specification limit (LSL) 195
lowest class first (LCF) 1000
LR discriminant analysis 601
lymphoblastic leukemia (ALL) 601

M

Mahalanobis–Taguchi system (MTS)
665

maintenance 807
– action 826
– cost 826
– model 831
– threshold 807
manufacturing process modeling

665
marginal testing effort function

(MTEF) 492
Mark space 138
marked point process (MPP) 137
Markov chain marginal bootstrap

(MCMB) 674, 680, 681
Markov processes 32
MART, multiple additive regression

tree 567
matching word 782
mathematical maintenance cost

808
Matlab 663

maximal margin 1024
maximum likelihood (ML) 484,

527, 538, 709, 981
– estimates 350, 355, 361, 513, 538
– exact 981
– for ALT 399
– procedure 674
– software for ATs 424
maximum likelihood estimation

(MLE) 3, 18, 49, 54, 84, 357,
513, 689

maximum window size (MWS)
1013

mean absolute deviation (MAD)
122, 913

mean absolute percentage error
(MAPE) 913

mean logistic delay time (MLDT)
1051

mean magnitude of relative error
(MMRE) 1025

mean residual life (MRL) 66, 81
mean square error (MSE) 221, 559,

640, 730, 945
mean time before failure (MTBF)

915
mean time between failures 35
mean time between replacement

(MTBR) 907
mean time to failure (MTTF) 6,

792, 836, 837, 1045, 1051
mean time to repair (MTTR) 916,

1051
mean time to system failure 841
mean value function 510, 517
means squares (MS) 708
measurement system analysis (MSA)

961, 963
median of the absolute deviation

(MAD) 533, 593
memoryless property 9
method of moment 19, 362
microarray 719
microarray and GeneChipTMgene

expression 591
minimal maintenance 807
minimal repair 98, 99, 101, 105,

838, 840, 842, 843
minimum
– cardinality (MinCard) 662
– cost flow (MCF) 759
– cut sets (MCS) 57
– error pruning (MEP) 558
– mean squared error 176
– path sets (MPS) 57
– spanning tree (MST) 754

misclassification penalized posterior
(MiPP) 600

mixed integer linear programming
model (MILP) 768

Miyazawa’s rate conservation law
(RCL) 148

model checking 444
model selection 101
model validation 102
modeling 98
modeling process 99
modeling usage rates 108
moment generating function (MGF)

80
moments 63
Monte Carlo analysis 155
Monte Carlo Newton-Raphson

(MCNR) 694
Monte Carlo simulation (MCS) 793
MTTF 837
multi-collinearity 540, 549
multidimensional mixed sampling

plans 276
multidimensional OLAP (MOLAP)

654
multi-objective optimization

problems 752
multi-objective transportation

problem (mTP) 767
multiple-dependent state plan 270
multiple-priority dual queues

(MPDQ) 993
multistage process planning (MPP)

760
multi-state degraded system 807
multivariant adaptive regression

splines (MARS) 568
multivariate cumulative sum

(MCUSUM) 983
multivariate EWMA 333
multivariate exponentially weighted

moving average (MEWMA) 983
multi-way semilinear models

(MW-SLM) 724
MUMCUT 453
mutation 750
myeloid leukemia (AML) 601

N

Nelder–Mead downhill simplex
method 807

neural network 651, 658, 659, 661,
663, 666

new, unique, and difficult (NUD)
966, 967
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(NHPP) 41, 478, 481–483, 488,
490, 493, 507, 932

nonlinear programming (NLP) 427
nonoverlapping batch means 177
nonparametric regression 657
nonparametric tolerance limits 30
normal distribution 10, 79, 85
normal parameters 27
nutritional prevention cancer (NPC)

743

O

offspring 750
one-dimensional models 99
online analytical processing (OLAP)

654
operating characteristic 264
operator 750
opportunistic scheme 831
optimal burn-in 162
optimal hyperplane 1026
optimal specification 194
optimization 214, 479, 488, 493,

494, 828
optimum test plan 359
order crossover (OX) 762
order statistics 82, 361
orderly point process 146
orthogonal array 498, 501
orthogonal matrix 574
orthogonal polynomials 194
oulier 525
out-of-bag (oob) observation 568
overlapping batch means 177

P

package-level burn-in (PLBI) 161
Page’s CUSUM 329
Palm distribution 137, 146
Palm transformation 146
PAR 845
parallel redundant system 836, 839,

841
parallel system 841
parameter estimation 18
parameter optimization 213
parametric yield 155
Pareto distribution 15, 88
Pareto solution 752
partial likelihood 388–391
partial one-dimensional (POD) 540
partial-mapped crossover (PMX)

762

penalized quasi-likelihood (PQL)
method 696

perfect repair 98, 100, 105, 106
periodic replacement 836, 838–840
pessimistic error pruning (PEP)

558
Pham distribution 16
phased array radar 836, 843, 845
physics-of-failure (POF) 160
pivotal vector 363
planning multiple-step SSALT 435
point estimation 18
point-stationary 137
Poisson arrivals see time averages

(PASTA) 1004
Poisson distribution 8, 79, 88, 282,

284
Poisson process 37, 89
policy specification and enforcement

language (PSEL) 460
population 750
positive FDR (pFDR) 610
prediction interval 113–116
prediction method 553
predictive data modeling 1023
predisposition 498
preventive maintenance (PM) 792,

793, 830, 836–840, 842, 844, 953
principal components 338
principle-component analysis (PCA)

608
printed circuit board (PCB) 653,

970
proactive technique 154
probabilistic model-based clustering

(PMC) 613
probabilistic processes 809
probabilistic rational model (PRM)

608
probability density function (PDF)

4, 80, 197, 293, 361, 371, 400, 510,
975

probability limit 282, 284, 288, 289
probability plot 49, 399
– application 406, 408, 410, 411,

413–415, 417, 419, 420
probe yield 155
process
– capability indices (PCI) 961
– improvement 194
– variables (PV) 967
– yield 155
Procrustes model 574
proportional hazard model 348
proportional-integral-derivative 176
pro-rata warranty (PRW) 127

Q

QoS (quality of service) 992
quadratic discriminant analysis

(QDA) 602
quadratic programming (QP) 1028
Quadratically constrained quadratic

programming (QCQP) 223
qualified manufacturing line (QML)

160
quality engineering 214
– approach 498
quality function deployment (QFD)

961, 962, 967
quality loss function 194
quantile function 53
quasi-renewal process 39
QUEST, quick, unbiased and efficient

statistical tree 553, 561, 564, 565,
663

quick-switching sampling 272
quota 781

R

radial basis function (RBF) 639,
660

random
– effect 688–691
– forest 565, 567–569
– shocks 809
– variable (RV) 79, 138
– yield 155
random early-detection queue (RED)

1015
random-coefficient degradation path

809
randomized logistic degradation path

809
rate conservation law 137
Rayleigh distribution 15
reactive technique 154
reciprocity 401
recursive partitioning 543
RED in/out (RIO) 1016
reduced error pruning (REP) 558
regression 232, 234, 235, 552, 553,

555, 558, 559, 562, 564, 566–569,
651, 655–658, 660, 663, 667

regression tree 553
relational OLAP 654
release time 478, 488
reliability 63, 97, 792, 793, 804,

810
– defect 156
– for systems 49
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– growth 113, 114, 119, 122
– measure 810
– measures 5
– model 444
– modeling 807
– optimization 763
– prediction 517
renewal
– function 105, 838
– function plots 107
– process 105
– process (RP) 39, 142, 931, 932
repair limit policy 836, 843, 844
repairable degraded systems 819
repair-cost-limit warranty (RCLW)

128
repair-number-limit warranty

(RNLW) 128
repair-time-limit warranty (RTLW)

128
repeating yield 155
repetitive group sampling 270
residual sum of squares (RSE) 534
resource allocation 478, 479
response surface method (RSM)

184, 194, 207, 213, 214, 216, 962
restricted iterative generalized least

squares (RIGLS) 709
restricted maximum likelihood

(REML) 709
risk priority number (RPN) 963
risk-neutral pricing (RNP) 857
robust design 173
robust optimization 213
role-based access control (RBAC)

model 462
run 781

S

Salford Systems 663
SAS proc NLMIXED 740
(SC) 453
scale-accelerated failure-time (SAFT)

399, 401
scan statistic 776
scenario specification and analysis

444
scheduling problem 761
score test 697, 698
SCSALT, two(three)-stress-level

constant-stress accelerated life
testing 429

seasonal process 255
seasonal regression model (SRM)

912

second-order-accurate 674, 676,
679

selection bias 543, 561, 562, 564
self-clocked fair queueing (SCFQ)

992
self-organization maps (SOM) 608,

613, 663
semidefinite program (SDP) 223
semilinear in-slide model (SLIM)

720
semiparametric least squares

estimator (SLSE) 722
semiparametric regression model

(SRM) 721
sequential sampling 30
service 451
service-oriented architecture (SOA)

444, 451
set-to-zero constraint 539
SG algorithm 640
Shewhart X-bar chart 328
significance analysis of microarray

(SAM) 591, 593, 610
simple step-stress ALT (SSALT)

355
Simpson’s paradox 545
simulated annealing (SA) 1052
simulated maximum likelihood

estimation 693, 701
simulation
– Archimedean copula 981
– copula 977
– elliptical copula 979
– extrapolation (SIMEX) 699
– framework 454
single-exponential smoothing (SES)

907
singular value decomposition 576
SIRO (service in random order) 995
Six Sigma black belts (SSBB) 959
Six Sigma process 194, 195
size interval task assignment
– with equal load (SITA-E) 1008
– with unbalanced load (SITA-U)

1008
– with variable load (SITA-V)

1008
Sklar’s theorem 975
sliding window 775
smallest extreme value (SEV) 400,

429
SNR, signal-to-noise ratio 498, 501,

502, 504
software 651–653, 663, 664, 667
– development life cycle (SDLC)

477, 478

– engineering 1023
– engineering applications 1023
– failure data 507
– model 24
– reliability 477, 498
– reliability growth models (SRGMs)

478
– reliability model 509
– testing 452, 510
spacing 778
spatial stationarity 151
special cause 249
special orthogonal matrix 574
special-cause charts 176
spherical regression model 574
SQL 654
squared error 102
SRGM 478, 479, 481–483, 485,

486, 488–493
standard deviation (s.d.) 945
standard error rate 501
standard normal distribution 10
standardized time series 177
STATA module 739, 740
state estimation 793, 794, 801, 804
static analysis 451
static burn-in (SBI) 161
stationary process 137, 140
stationary sequence 140
Statistica 663
statistical inference 673
statistical learning theory (SLT)

1025
statistical process control (SPC)

173, 249, 250, 274, 285, 289, 664,
962, 964

step-stress accelerated life test
349

stepwise cross-validated discriminant
procedure (SCVD) 601

stochastic approximation 694
stochastic discount factor (SDF)

862
stochastic process 32
stress–response relationship (SRR)

356
structural risk minimization (SRM)

1025
Student’s t distribution 12
S–U algorithm 694
subsequent failures 99, 103, 105
sum of squared errors (SSE) 223
supervised learning 592, 651, 655,

656, 659, 661
suppliers, inputs, process, outputs and

customer (SIPOC) 962
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supply chain management (SCM)
768

support vector classifier (SVC)
1024

support vector machine (SVM) 568,
599, 602, 608, 615, 1023

surface mount technology (SMT)
970

survival analysis 387
survival function (SF) 80
survivor function 99
SVM flow chart 1024
Swiss cheese 453
symbolical-design faults 498, 504
system evaluation 451
system maintenance 826
systematic yield 155

T

Taguchi loss function 213
Taguchi method 173
Taguchi robust design methods 665
TAPTF, task assignment based on

prioritizing traffic flows 1009
task assignment based on guessing

size (TAGS) 1009
temperature differential factor (TDF)

402
test analyse and fix 113
test during burn-in (TDBI) 161
testing environment 511
the method of moment estimates

(MME) 361
thin threads 445
tile yield 155
time-between-events 282, 286, 288,

289
time-stationary 137
total quality management (TQM)

958
tracking signal (TS) 913

transmission control protocol (TCP)
993

traveling salesman problem (TSP)
756

tree 651, 657, 658, 661, 663, 666
tree coefficient 658
trees and forests 608
trend-adjusted exponential smoothing

(TAES) 907
two-dimensional models 103
twoing rule 557
two-way semilinear model

(TW-SLM) 719, 720
type II censoring 361

U

unbiased linear estimating equation
678

uniform design 229–231, 236–245
uniform distribution 10, 87
universal description, discovery, and

integration (UDDI) technique
471

unsupervised learning 592, 651,
655, 661, 663

upper control limit (UCL) 969, 984
upper specification limit (USL) 195
usage 97
usage rates 109
useful life 159

V

validation 107
value at risk (VaR) 133
Vapnik–Chervonenkis (VC)

dimension 1024
variable sampling intervals (VSI)

310
variance components 689
variance inflation factor (VIF) 712

variance matrix 22
voice of customer (VOC) 966
vtub-shaped hazard rate 15

W

wafer-level burn-in (WLBI) 161
wafer-level burn-in and testing

(WLBT) 161
wafer-level reliability (WLR) 160
warranty 125
weakest link pruning 557
web services (WS) 444
Weibull derived 63
Weibull distribution 12, 49, 63, 87,

287, 350, 351, 400, 429
– CDF 400
– PDF 400
– quantiles 400
Weibull models 99
Weibull probability plot 100, 109
Weibull probability plot 63
weighted cardinality 662
weighted moving averages (WMA)

907
weighted RED (WRED) 1016
weighted round-robin (WRR) 992,

1016
white-box modeling 98
WPP Weibull probability plot 63

Y

Y2K (year 2000) testing 444
yield defect 156
yield modeling 666

Z

zero-defect process 281, 289
zero-inflated Poisson distribution

284–286
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