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Simple Statistics for Complex Feature Spaces

George Nagy and Xiaoli Zhang

Summary. We study the constraints that govern the distribution of symbolic patterns (letters,
numerals, and other glyphs used for communication) and natural patterns in high-dimensional
feature spaces, with a view to gaining insight into the complexity of classification tasks. Pat-
tern vectors from several data sets of printed and hand-printed digits are standardized to iden-
tity covariance matrix variables via principal component analysis, shifting to zero mean and
scaling. The probability density of the radius of the set of patterns (their distance from the
origin) is computed and shown to predict accurately the observed average radius for a wide
range of features and dimensionality. We predict further that the class centroids of symbolic
patterns will form the vertices of a regular simplex (i.e., a d-dimensional tetrahedron). The
observed pairwise distances of the 45 class centroids in ten-class problems are shown to be
almost equal to the value predicted from the average radius of the class centroids. The class-
conditional distributions of the patterns are compared using two measures of divergence. The
difference between the distributions of the same class with different feature sets is found to be
larger than the difference between the distributions of different classes with the same feature
set. This suggests that the correlation among features of patterns of one class can predict the
correlation among features of patterns in another class. The amount of within-source consis-
tency in a data set is quantified using an entropy measure that takes into account small-sample
effects. The statistical dependence between the features of same-source patterns of different
classes is measured by mutual information applied to the discrete distributions resulting from
quantization of the style assignments. If these observations are supported by further studies
of symbolic and natural patterns with diverse data sets, they may eventually lead to improved
classification methods for same-source ensembles of symbolic patterns.

9.1 Introduction

Better understanding of the disposition of patterns in feature space may help predict the diffi-
culty and complexity of diverse classification tasks. To further this goal, we compute simple
statistics of collections of patterns in several domains of numeral recognition. We focus on
metrics that scale well with the number of samples and with the number of features. Unlike
the metric properties in Ho and Basu [1], these metrics describe only global aspects of the class
and style distributions, and neglect fine geometric details of the class boundaries.We compute
metrics only on the feature space, as opposed to the data space of bitmaps.
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Statistical classification algorithms are often based on the assumption of multimodal mix-
tures of multivariate Gaussian distributions in feature space. Such distributions can be uniquely
specified by their first- and second-order statistics. For d features (i.e., a d-dimensional feature
space), there are O(d) first-order statistics (mean vectors) and O(d2) second-order statis-
tics (covariance matrices). With values of d in the 10 to 256 range and tens of thousands of
samples per class, complete higher-order statistics cannot be estimated reliably. Furthermore,
there is a dearth of parametric multivariate distributions that can be specified in terms of arbi-
trary frequencies of triples of variables, because there is no convenient structure, analogous to
the covariance matrix, for estimating and specifying O(n3) dependences among n variables.
Therefore, we confine our attention to metrics that can be expressed in terms of only first- and
second-order population, class, and subclass statistics, i.e., conditional means and covariance
matrices.

We apply the proposed metrics to a set of 30,000 printed digits of six fonts, scanned at
300 dpi (Fig. 9.1), and to two sets of hand-printed digits (Fig. 9.2), SD3 (42,698 samples) and
SD7 (11,495) samples), from the National Institute of Standards and Technology (NIST). For
most of the analysis, SD3 and SD7 were merged to assure stable estimates of the distributions
of the entire sample set and of each class. The features are localized, directional, blurred
feature vectors [2], with 64 and 100 dimensions, respectively. These time-tested features are
based on eight chain-coded, directional edge-detectors applied in each of a set of rectangular
overlapping zones superimposed on the size-normalized bitmaps of the patterns.

Fig. 9.1. Samples from machine-printed
numeral database (originals printed at 6 pt,
scanned at 300 dpi).

Fig. 9.2. Samples from handwritten nu-
meral database. Each row corresponds to
a different writer. The top four writers are
from SD3 and the bottom four from SD7.

To remove the effects of the arbitrary means, variances, and statistical correlation of these
features, the printed and hand-printed feature data are separately subjected to principal com-
ponents analysis (PCA). The original features are projected on the eigenvectors, then shifted
and scaled, resulting in 64-dimensional and 100-dimensional distributions with zero means
and identity covariance matrices. The order of the eigenvalues is retained; in experiments on
lower-dimensional feature spaces, we select the PCA features with the largest eigenvalues.

The above preprocessing scheme is illustrated in Figure 9.3. It allows comparing data
with continuous-valued features from different application areas. The preprocessing does not
require labeled data and is applied to the entire data set, regardless of any subsequent sepa-
ration into training and test data. In the standard configuration, all features have zero mean
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Fig. 9.3. Normalization of feature space. The feature vectors (shown as +) are projected onto
the eigenvectors (V1, V2) of the overall covariance matrix. Then they are standardized to unit
variance, and translated to have mean zero. Hence the resulting feature vectors (X1, X2) have
mean zero and identity covariance matrix.

and unit variance, and they are uncorrelated. Differences between data sets are revealed by the
class- and subclass-conditional distributions.

The means and covariance matrices of the class distributions are obtained by straightfor-
ward maximum likelihood estimation. The corresponding style labels are the font labels for
the printed data. Each font has the same number of samples. The hand-printed digits were
clustered into three clusters per class by the Matlab K-means routine with Euclidian metric.
(Expecting three styles in each class is simply an act of faith; in hand printing, stylistic vari-
ations form a continuum. We restricted the number of clusters to three to ensure that each
cluster has enough samples for stable estimates. Given a fixed number of clusters, it would
probably be better not to assign them to classes uniformly.) Here the style labels are the ar-
bitrary cluster labels. The best of ten runs with different random initializations was retained.
Table 9.7 in section 9.5 shows the sizes of the resulting clusters for each class.

In section 9.2, we examine the surprisingly predictable configuration of the class cen-
troids. In section 9.3, we observe relative concentrations and volumes of samples, expressed
in terms of either the determinants of covariance matrices, or the average distance of patterns
from their centroid. Section 9.4 is an attempt to discover systematic departures from the sym-
metries imposed by the Gaussian assumption. Sections 9.5 and 9.6 posit multiple sources of
patterns that give rise to correlations across patterns that we call style. We ignore throughout
statistical dependence between the labels of adjacent patterns, known in character and speech
recognition as language context.

9.2 Average Radius of the Patterns

We first show that after the standardization described in section 9.1, most of the patterns oc-
cupy a relatively thin spherical shell centered on the origin. Assume that the individual features
are Gaussian. Consider the probability density function (pdf) of the distance from the origin,
Ri , of a single sample Xi, with features xi,j . Ri can be expressed as the sum of the squares
of the d feature values of sample Xi:

R2
i =

n∑
j=1

x2
i,j (9.1)
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The pdf fR2(r2) has mean µR2 = d and variance σ2
R2 = 2d, because the sum of

the squares of d samples from an independent identically distributed (i.i.d.), unit-variance
Gaussian distribution is Chi-square with d degrees of freedom. PCA guarantees only uncor-
related rather than independent features, but uncorrelated Gaussian variables are independent.
The sum is over the features (dimensions), not the samples.

fR(r) =
rd−1e−r2/2

2
d−2
2 Γ (d/2)

, with mean µR =

√
2π1 · 3 · 5 . . . (d − 1)

(d/2 − 1)!2d/2
, for d even (9.2)

The pdf of R, obtained by a transformation of variable from the χ2 distribution, is plotted
in Figure 9.4 for several even values of d. For d = 8, µR = 2.74, which is in good agreement
with the observed average values of 2.75 and 2.78, respectively, over all the samples of the
two data sets. (Lower-case r is the instantiated value of the random variable R. The formula
for odd values of d is slightly more complicated because the gamma function is not reduced
to a factorial.)

pdf of R 
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Fig. 9.4. Probability density function of radius of samples. As explained in the text, the
pdf is related to the Chi-square density. The average distance of the samples from the origin
increases with dimensionality, but the spread of the radii about their average value increases
only slowly. The combined effect means that, at high dimensions, most of the samples are
located in a thin spherical shell.

From the expressions for µR and µR2 , we can see that when d → ∞, µR2/(µR)2 → 1;
therefore, the thickness-to-radius ratio σR/µR of the shell containing the samples converges
to zero. The central limit theorem also justifies this asymptotic result. However, the Gaussian
assumption on the features is necessary for computing the variance of the radius (i.e., the
thickness of the shell) for finite dimensions. Table 9.1 shows expected value µR, the sample

average radius 〈R〉 of the samples, and the observed standard deviation
√

〈R2〉 − 〈R〉2 as a
function of d for both sets of samples. The unexpected increase in the variance with dimen-
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Table 9.1. Predicted and observed values of the average radius R of the samples. The
observed average values of R agree well with the values predicted by the pdfs of Figure 9.4.

Experiment
Theory Machine print Hand print

Average sample Standard Average sample Standard
d µR σR radius deviation radius deviation
8 2.74 0.70 2.75 0.65 2.78 0.51
16 3.94 0.70 3.94 0.67 3.94 0.71
24 4.84 0.70 4.84 0.76 4.82 0.88
50 7.03 0.71 6.98 1.13 6.96 1.23

sionality is puzzling. We will next make use of the predicted and observed regularity of the
average radius to predict the configuration of the class centroids.

Before considering the class centroids, we discuss the difference between symbolic and
natural patterns. Symbolic patterns are interpreted according to some alphabet intended for
communicating messages. Examples are printed and hand-printed digits and letters of alpha-
betic scripts (Roman, Cyrillic, Hangul), shorthand alphabets, glyphs designed specifically for
ease of machine reading (OCR fonts and Apple-Newton Graffiti), and the phoneme repertory
of various languages. Communication symbols have either evolved, or were engineered, to
maintain high separation between classes. We have no reason to believe that natural objects
exhibit this property.

Given finite resources for producing each symbol (size and stroke-width limitations for
print [3], limited ability to manipulate a stylus for hand print [4, 5, 6], energy budget, and a
fixed articulatory musculature for phonemes [7]), we would expect the distance between any
pair of classes to be approximately the same. (If it weren’t, then it would be possible to modify
the symbols to further separate the closest pair of classes at the cost of reducing the separation
between distant pairs.) “Appropriate” features would maintain this equidistance property. The
ten digits in a variety of scripts suggest that in a given alphabet most pairs are, in fact, roughly
equally distinguishable (Fig. 9.5). Exceptions may occur for very high frequency symbols,
such as 0, 1, and 2 (according to Benson’s law, these digits account for 60% of all the leading
digits in numerical fields [8, 9]), e in written English, and schwa in many spoken languages.
An information-theoretic justification based on maximal entropy would, of course, also have
to take into account linguistic context.

Arabic      

Devnagari 

                                                            Bengali 

Fig. 9.5. Digits of different scripts.

If most of the samples were confined to a thin spherical shell, as argued above, then we
would expect that the class centroids will be nearly equidistant from the origin. (The radii
Rc of the class centroids are slightly smaller than the average sample radius 〈R〉 because the
spread of the samples is orthogonal to the radii of the class centroids.) Further, if the c class
means are equidistant from each other and are at the same radius 〈Rc〉 from the origin in
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d-dimensional space, then they must form a c-dimensional regular tetrahedron with edges of
length ed:

ed =
〈R〉 sin (arccos d−1)

sin (π − 1/2(arccos d−1))
, where ed −→

d→∞

√
2〈Rc〉 (9.3)
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Fig. 9.6. The distance between class centroids is uniform. Machine-printed data on the left,
hand-printed on the right. The distance between same-class pairs is zero.

Figure 9.6 is a plot of the intercentroid distances in 50-dimensional space. There appears
to be little variation between them. Figure 9.7 shows the ratio of the difference between the
largest and smallest interclass distances (i.e., the Euclidian distances between the 45 pairs
of class centroids), divided by the median interclass distance. This ratio is a very rigorous
measure of uniformity. We see that for d = 50, the largest deviation from the median value is
less than 20% in both hand-printed and machine-printed data.

The average values of Rc for the ten classes are 2.51 and 2.75, respectively, for the two
data sets (d = 50). From these values we can predict an interclass separation ed of 3.58 and
3.92, whereas the observed average values are 3.75 and 4.10, respectively. Although the ob-
served pairwise distances are slightly larger than predicted (because the class centroids are
not all at exactly the same distance from the origin), it is clear that the pairwise distances are
quite uniform in high dimensions. This confirms our tetrahedral assumption. Note that while
the convergence of the sample configuration to a thin shell in high dimensions is a universal
law (the central limit theorem) given random feature perturbations, the equidistance property
of the class means is a consequence of the type of classification problem that we have posed.

It is impossible to place more than (d+1) equidistant points in d-dimensional space. We
therefore cannot expect the tetrahedral conjecture to be satisfied for d < 9. With increas-
ing d, the class separation grows and its variance among the class-pairs decreases. However,
the rate of increase in the separation of the classes tapers off as more features are added, in
conformance with the Hughes phenomenon [10].

Since the radius of the samples about their class centroid is also the sum of indepen-
dent variables, each class distribution is also a thin shell, with an average radius of rc about
the class centroid. The radius vector Rc to each class centroid is orthogonal to the subspace
spanned by the samples in the remaining dimensions, and therefore obeys the Pythagorean
equality R2 = r2

c + R2
c . The pairwise distance ed is given by equation (9.33). Therefore,
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Fig. 9.7. Ratio of range of distances between class centroids to their median distance. The
range is the difference between the maximum and the minimum separation of the 45 pairs
of class centroids. The ratio of this range over the median interclass distance is plotted as a
function of feature-space dimensionality. A low ratio means that the class centroids are located
near the vertices of a regular simplex.

Table 9.2. Comparison of predicted and observed values of sample radii.

Machine-printed Hand-printed

d µR σR 〈Rc〉 〈rc〉
√

〈Rc〉2 + 〈rc〉2 〈R〉 〈Rc〉 〈rc〉
√

〈Rc〉2 + 〈rc〉2 〈R〉
8 2.74 0.70 2.31 1.44 2.73 2.75 1.99 1.90 2.75 2.78
16 3.94 0.70 2.58 2.95 3.92 3.94 2.31 3.16 3.91 3.94
24 4.84 0.70 2.65 4.02 4.81 4.84 2.41 4.15 4.80 4.82
50 7.03 0.71 2.75 6.39 6.96 6.98 2.51 6.49 6.96 6.96

d dimensionality
µR theoretical mean radius
σR theoretical stardard deviation of radius
〈Rc〉 average centroid radius of each class
〈rc〉 average radius of samples of each class about class centroid
〈R〉 average radius of all the samples about the grand centroid

in standardized feature space, any of three single parameters can describe the configuration:
(1) the average distance 〈Rc〉 of the class centroids from the grand (overall) centroid, or (2)
the average distance 〈rc〉 of the samples from their own class centroid, or (3) average sep-
aration 〈ec〉 of the class centroids. These parameters depend on the features used. Once we
know any one of them, we can compute the average separation of the class centroids and the
average overlap of the class shells. These relations hold up surprisingly well across a broad
range of dimensionality for both hand-printed and machine-printed data (Table 9.2). Figure
9.8 illustrates the putative d-dimensional configuration.

The disposition of the subclass centroids about the class centroids is not tetrahedral, as can
be observed from Figures 9.9a and 9.9b. This is not surprising, because for communication
purposes there is no real premium in being able to recognize style. Nevertheless, there are
secondary problems like font and writer recognition where it is desired to discriminate styles
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Fig. 9.8. Class configurations in feature space. The radii of the samples from their class cen-
troids are orthogonal to the radii of the class centroids from the origin. The pairwise distance
between class centroids can be computed from either.
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Fig. 9.9a. Ratio of range of distances
between cluster centroids to their me-
dian distance (machine-printed digits).
The range is the difference between the
maximum and the minimum separation of
the 3 pairs of cluster centroids. The ratios
are high relative to those of Figure 9.6 be-
cause separation between cluster centroids
varies much more than between class cen-
troids.

Fig. 9.9b. Ratio of range of distances be-
tween cluster centroids to their median
distance (hand-printed digits). The sepa-
ration of the cluster centroids is not even
approximately constant as in the machine-
printed data.
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rather than classes. We have found that the principal components that discriminate between
classes are also most effective in separating styles [11].

Our observations are summarized in Table 9.3, which shows the parameters that character-
ize our data sets in low-dimensional and in high-dimensional feature space. Table 9.3 indicates
clearly that the separation of the class centroids is higher, and the class distributions are more
compact, for machine print than for handprint.

Table 9.3. Parameters for two data sets in 8-d and in 50-d.

Data d 〈R〉 〈Rc〉 〈rc〉 〈e〉
MP 8 2.7 2.3 1.4 3.5
HP 8 2.7 2.1 1.9 3.0
MP 50 7.0 2.8 6.4 4.7
HP 50 7.0 2.5 6.5 3.7

9.3 Class Distributions

The determinant of the covariance matrix is a measure of the volume of a distribution. If the
Gaussian assumption held, then the square root of the determinant would be proportional to
the volume of the feature space that holds all the samples within one standard deviation of the
mean. For a 1-d spherical distribution, 50% of the samples are within 0.6 standard deviations
from the mean. For 8-d, 16-d, and 24-d, the corresponding values are 2.7, 3.9, and 4.8 standard
deviations. We have computed the determinants of classes and subclasses in both data sets. We
also recorded the average distance 〈rc〉 and mean square distance 〈r2

c〉 of the samples from
their class centroid.

If the class distributions were spherical like the overall distribution, then the expected
squared radius µr2

c
of the samples could be computed from |Σc|, the determinant of their

covariance matrix, and vice versa. As was seen in section 9.2, the expected squared radius of
a zero-mean d-variant spherical distribution with components of variance σ2 is µr2

c
= dσ2.

Also σ2 = |Σ|1/d. Therefore √
µr2

c
=

√
d|Σc|1/2d. Figure 9.10 plots

√〈r2
c〉/

√
d〈|Σc|〉1/2d

against d for both data sets. (The average is taken over all samples and classes and that of the
determinants over the classes.) The ratio is greater than unity; therefore, the class distributions
must be somewhat flattened. A more detailed examination shows that the above ratio is similar
for all classes, with less than 5% difference for d = 50. The flattening increases with the
dimensionality. We may imagine the class distributions as saucers of approximately the same
size located at the vertices of a tetrahedron (Fig. 9.8).

Feature space, like the physical Universe, is very sparsely populated. We observed three
volumes spanned by all the samples, by the class distributions, and by the subclass (class-style)
distributions. Each distribution is assumed to have hyperellipsoidal equiprobability contours.
The volume of the hyperellipsoid at a given probability density is proportional to the square
root of the determinant of the corresponding covariance matrix. We compared three measures:
the volume of all the samples, the sum of the volume of samples from each class, and the
sum of the volume of samples from each subclass represented by the square root of the grand
covariance matrix, the sum of the square roots of determinants of the class-conditional covari-
ance matrix, and the sums of the square roots of the determinants of the subclass-conditional
covariance matrices respectively. The values in Table 9.4 are the ratios of these different mea-
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Fig. 9.10. The ratio of mean-square radius of the samples (distance from their class cen-
troid) to value predicted under the spherical assumption from the determinant of the
class covariance matrix. (a) Machine-printed samples. (b) Hand-printed samples.

sures in 8-dimensional feature space. Ratios of the same order of magnitude are obtained by
computing the volumes of hyper-spheres according to the average radii. We conclude that
there is a lot of empty space between classes, but much less between sub-classes.

Table 9.4. The ratios of the square roots of determinants of different covariance matri-
ces.

Data
√|Σg|/∑C

c=1

√|Σc| ∑C
c=1

√|Σc|/∑C
c=1

∑K
k=1

√|Σc,k|
MP 8.7 1.4
HP 283 3.5

Σg grand covariance matrix
Σc class-conditional covariance matrix
Σc,k class-style-conditional covariance matrix

The grand covariance matrix is the sum of the covariance matrices of the class mean vec-
tors and of all the class-conditional covariance matrices. Similarly, for each class, the class-
conditional covariance matrix is the sum of the covariance matrix of the subclass mean vectors
and of all the subclass-conditional covariance matrices. These relationships are schematically
illustrated in Figure 9.11. This figure portrays the relationship of equiprobability density con-
tours of 3 classes and 12 subclasses in two dimensions.

Classes are of course most clearly distinguished from one another by their mean vectors.
But are their covariance matrices also highly class-dependent? To answer this question, we
compared pairs of estimated class-conditional covariance matrices under the assumption that
they specify the feature dependences completely, i.e., that they induce Gaussian feature densi-
ties. For these comparisons we used two common similarity measures for probability densities,
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Fig. 9.11. Diagram of class and subclass geometry. The large solid circle passes through the
three class centroids, located at the apexes of an equilateral triangle. The small solid circles
pass through the centroids of the four subclasses of each class. The dotted and dashed circles
represent equiprobability contours corresponding to the overall, class, and subclass covariance
matrices.

specialized to Gaussian densities: the Bhattacharyya [12] and the Kullback-Leibler divergence
[10].

The Bhattacharyya (Bhatt) distance between two distributions p(X) and q(X) is defined
as

DB(p(X); q(X)) = − ln

∫
ϕ

[p(X)q(X)]
1
2 dX (9.4)

where ϕ is the feature space containing all samples.
Between two Gaussian distributions, p(X) = N(X; µp, Σp), q(X) = N(X; µq, Σq), it

is

DBN (µp, Σp; µq, Σq) =
1

8
(µp − µq)

T [
Σp + Σq

2
]−1(µp − µq) +

1

2
ln

|Σp+Σq

2
|√|Σp||Σq|

(9.5)

The Kullback-Leibler (KL) divergence for two distributions p(X) and q(X) is

KL(p(X); q(X)) =

∫
ϕ

p(X) ln
p(X)

q(X)
dX (9.6)

and for two Gaussian distributions, p(X) = N(X; µp, Σp), q(X) = N(X; µq, Σq), it is

KLN (µp, Σp; µq, Σq) =
1

2
ln

|Σq|
|Σp| +

1

2
Tr(Σ−1

q Σp) +
1

2
(µp − µq)

T Σ−1
q (µp − µq) − d

2
(9.7)

Table 9.5 shows the KL and Bhattacharyya distances (computed from the sample means
and sample covariance matrices) between class-conditional distributions of selected sets of
features for both hand-printed and machine-printed data. Comparing the low values of the
distances in the top part of the table to the high values in the two bottom parts, it appears
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Table 9.5. Divergence by class and by feature set.

Machine-print Hand-print
Configration Feature KL Bhatt KL Bhatt

pairs divergence divergence divergence divergence
mean std dev mean std dev mean std dev mean std dev

Different class 1-8 8.30 7.72 1.00 0.25 4.60 2.40 0.70 0.22
Same features 9-16 3.80 2.38 0.60 0.19 2.30 1.30 0.40 0.13

17-24 3.20 2.12 0.50 0.15 1.60 0.91 0.30 0.10
43-50 1.20 0.82 0.20 0.12 0.60 0.39 0.10 0.07

Same class 1-8 9-16 35.70 10.99 1.80 0.22 10.50 5.51 0.90 0.26
Different features 1-8 17-24 50.20 18.22 2.10 0.30 10.50 4.26 1.00 0.21

1-8 43-50 54.20 23.10 2.20 0.25 10.80 3.72 0.10 0.20
Different class 1-8 9-16 43.50 26.13 1.90 0.45 10.10 6.02 0.90 0.29

Different features 1-8 17-24 56.90 35.28 2.10 0.50 11.80 7.82 1.00 0.36
1-8 43-50 57.50 36.21 2.20 0.55 12.30 7.29 1.00 0.37

that the covariance matrix depends more on the feature set than on the class. With a given
feature set, all of the classes will have similar covariance matrices. Therefore, a good estimate
of the covariances can be obtained by pooling samples from all classes, while estimating the
variances separately for each class. This may explain the relative success of classifiers based
on an average covariance matrix and on covariance matrix regularization [13].

Fig. 9.12. The co-occurrence of two shapes, which leads to positive correlation between
the corresponding features, depends more on the nature of the features than of the
classes.

Figure 9.12 suggests why the covariance matrices depend more on the feature set than on
the individual classes. Two features are shown, both responses to directional edge detectors.
Such complementary gradients are likely to be present or absent at the same time, regardless
of the class. Similar arguments can be made for many other types of features.
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9.4 Departures from the Gaussian Model

The patterns are not distributed symmetrically about their class means. The usual measure of
asymmetry is the coefficient of skew of the distribution. It is zero for a Gaussian. We project
the patterns of each class onto the vector from the grand centroid (origin) to the class centroid.
Figure 9.13 shows the distribution of these projected patterns in each class. Table 9.6 lists the
coefficient of skew of these patterns. The negative values indicate a long tail towards the grand
centroid. The machine-printed data also exhibit negative, though smaller, coefficients of skew.

Table 9.6. Coefficients of skew for hand-printed data.

Class 0 1 2 3 4 5 6 7 8 9 Features
Skew −0.46 −0.91 0.03 −0.83 −0.27 0.18 −0.47 −0.55 −0.76 −0.38 2

−0.66 −0.67 −0.09 −0.56 −0.43 −0.58 −1.03 −0.80 −0.45 −1.08 8
−0.78 −0.95 −0.29 −0.46 −0.65 −0.72 −0.59 −0.13 −0.30 −0.80 16
−0.93 −0.79 −0.36 −0.28 −0.48 −0.68 −0.40 −0.19 −0.29 −0.89 24
−0.87 −1.08 −0.32 −0.46 −0.45 −0.84 −0.53 −0.55 −0.32 −0.68 50

Figure 9.14 shows some samples near the median and at the extreme values of the class
distribution projected onto the vector from the origin to the class centroid. The variability of
the patterns closer to the grand centroid is greater than that of the patterns far away. We have
observed earlier that the error rate of a quadratic discriminant varies by a factor of five de-
pending on which half of the patterns of each class is used for estimating the class-conditional
covariance matrices [11]. These observations may eventually also lead to improved methods
of regularization for estimating covariance matrices.

9.5 Single-Class Style

We now consider patterns labeled by source as well as by class. Instead of the distribution
of all the samples of a class, we observe class- and source-conditional properties. We have
already observed in section 9.3 that the volume occupied by samples partitioned either by
clustering or by font is much less than the volume spanned by all the samples.

In this section we use entropy as a more precise measure of source consistency. Single-
class style is the shape consistency of a single class among the samples from each source.
For handwriting, sources usually correspond to writers, so in the rest of this section we refer
specifically to writers rather than to generic sources. Our handwritten data sets contain about
100 isolated digits from each of 500 writers. They were partitioned, as mentioned, into three
clusters for each class. How consistent are the writers? Do most of the digits of each writer
tend to fall into a single cluster, indicating strong single-class style?

Note that style is not a property of a single writer, but of a whole group of writers. Even if a
single writer always wrote a particular digit in the same way, without looking at the other writ-
ers we could not know whether it was the only way of writing this digit. If 90% of the writers
always cross their sevens, then there is less style than if each writer is completely consistent,
but half cross their sevens and half don’t. The proposed measure reflects this consideration.

Quantification of Single-Class Style

To quantify single-class style, we first cluster the N feature vectors of M writers of a sin-
gle digit class c into K clusters. (We do not use a subscript to denote the class, because all
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Fig. 9.13. Histogram of the distribution of the patterns of each class projected onto the
vector from the grand centroid to the class centroid in 50-dimension feature space. The
horizontal axes are labeled in units of standard deviation of the overall standardized sample
distribution.
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Fig. 9.14. For each class, from top to bottom: patterns nearest the grand centroid, near
the class median sample, and farthest from the grand centroid. The patterns on the “out-
side” appear much more consistent. The patterns near the origin, and therefore near other
classes, are more likely to be confused.
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of the calculations are performed separately for each class.) We record Nm,k, the number of
samples for each writer and cluster. For writer m with Nm samples of the digit class under
consideration, the writer-class-style probability vector is

pm = (pm,1, pm,2, . . . , pm,K) (9.8)

where pm,k = Nm,k/Nm, for m = 1, 2, . . . , M , k = 1, 2, . . . , K .
We can now calculate the writer-class entropy for each writer:

Hm = −
K∑

k=1

pm,k log pm,k (9.9)

If all the samples of a digit class for a specific writer are assigned to the same cluster, then
this writer’s entropy is zero. That means that this writer has maximal single-class consistency.
In contrast, the writer entropy reaches the maximum value of log2 K for a writer who has
K equally probable variations in writing the same digit. Such a writer does not have a stable
single-class style for the observed digit. The average writer-class entropy is defined as

Haverage =
1

M

M∑
m=1

Hm (9.10)

Both the writer-class entropy Hm and its average value Haverage over all writers depend on
the underlying source probability distribution (i.e., the number of samples from all writers
in each cluster), as well as on the amount of style. To eliminate the effects of the source
distributions, we compute as a normalizing factor the class entropy Hc:

Hc = −
K∑

k=1

pk log2 pk for k = 1, 2, . . . , K (9.11)

where pk = N(k)/N . The class-style membership N(k) is the sum of the class-style as-
signments Nm,k over all writers, and N is the number of samples of this digit class from all
writers. Since the entropy function is convex, Haverage is less than or equal to Hc.

For an infinite number of samples per class per writer, the amount of single-class style is
indicated by the difference between the average writer-class entropy and the class entropy. A
large difference indicates strong single-class style for most writers.

Suppose that we cluster the samples of 100 writers into three clusters corresponding to
their styles. The class-style probability vector p = (p1, p2, p3) = (0.5, 0.3, 0.2), and the
class entropy is

Hc = −(0.5 log2 0.5 + 0.3 log2 0.3 + 0.2 log2 0.2) = 1.49 (9.12)

If each writer were perfectly consistent, then there would be 50 writers with every sample in
cluster 1, 30 writers with every sample in cluster 2, and 20 writers with every sample in cluster
3. The average writer-class entropy would be zero. In contrast, with no style, every writer
would have a mixture of samples in the ratio 5:3:2, and Haverage = Hc. We will compare the
empirically computed average entropy Haverage with its maximum possible value, the class
entropy Hc, as a measure of single-class consistency.

However, first we must compensate for small-sample effects. With a finite number of
samples, even if the writers did not exhibit single-class style, the cluster assignments would
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not all be exactly proportional to the elements of the class-style probability vector because
of sampling fluctuations. These sampling fluctuations decrease the average entropy and may
result in a significant difference between the average entropy and the class entropy even in the
complete absence of single-class style. To account for the finite sample size (10 samples per
class per writer), we compute the expected class entropy E[H] under the multinomial sampling
distribution P [n1, n2, . . . , nK ; p1, p2, . . . , pK ]:

P [n1, n2, . . . , nK ; p1, p2, . . . , pK ] =
n!∏K

k=1 nk!

K∏
k=1

p
nk
k pk =

N(k)

N
, n =

∑
nk =

N

M

(9.13)
where N(k) and N are the cluster and class memberships defined earlier.

We consider all the cases of the partitioning of n samples among K clusters and obtain
the class entropy for each case:

H[n1, n2, . . . , nK ] = −
K∑

k=1

nk

n
log2

nk

n
(9.14)

The expected class entropy is then obtained by summing the product of the multinomial
probability and the class entropy for every possible cluster assignment vector:

E[H] =
n∑

n1=0

n−n1∑
n2=0

. . .

n−n1−...−nK−1∑
nK=0

P [n1, n2, , nK ; p1, p2, . . . , pK ]H[n1, n2, . . . , nK ]

(9.15)

Table 9.7. Expected and average entropy for all classes of hand-printed digits. If there
were no single-class style, the ratio of the average entropy to the expected entropy would be
near 1. (The entropies are normalized by dividing them by log23, but this does not affect their
ratio.)

Cluster Membership Haverage

Class c N(1) N(2) N(3) E[H] Haverage E[H]
0 1179 1874 1391 0.89 0.52 0.58
1 2818 1393 625 0.77 0.39 0.51
2 1088 1459 1723 0.89 0.60 0.67
3 1100 1699 1701 0.89 0.58 0.65
4 1512 1822 769 0.85 0.45 0.54
5 912 1488 1312 0.87 0.48 0.55
6 950 1706 1547 0.88 0.47 0.54
7 811 1960 1710 0.85 0.49 0.57
8 1548 1344 1345 0.91 0.50 0.56
9 843 1672 1668 0.86 0.49 0.57

The expected entropy predicts the average entropy when there is no single-class style.
We can judge how much single-class style is present in a data set according to the ratio of
the average entropy to the expected entropy. If there were no single-class style, we would
expect the average entropy to be close to the expected entropy. We have verified that when the
writer identities of the samples are shuffled randomly, their ratio is over 0.98 for all classes.
In contrast, the actual ratios are between 0.5 and 0.7, as seen from Table 9.7, which lists the
average and expected entropy for K = 3 and 400 writers in the NIST SD3 data set. We also
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see from the table that “1” has least entropy while “2” has most. This means that individual
writers exhibit more variability in writing the digit “2” than “1.” We summarize this section
with a diagram:

                           Writer statistics   Cluster statistics

[ ]

1 amount of single-pattern style
[ ]

m C

average

average

H H

H E H

H

E H
− =

9.6 Multiclass Style

Multiclass style derives from the correlation between the features of different samples, of the
same or different class, from the same source. For now, consider only two patterns at a time,
although the concept of multiclass style can be extended to an arbitrary number of patterns.
We assume that all the samples have been clustered, as in the previous section. Now observe
the cluster assignments of pairs of samples from the same writers. If the cluster assignments
for samples of class i and class j of the same writer are statistically independent, then we can
affirm that there is no multiclass style for class-pair (i, j).

Table 9.8 shows a toy example for the digits 5 and 6 with only ten writers and three
clusters. There are exactly ten samples per class per writer. It is clear that writers who favor
cluster 2 for digit 5 tend to favor cluster 3 for digit 6, while writers whose 5 usually falls into
cluster 3 tend to write a 6 that often falls into cluster 1. Finally, fives of cluster 1 often happen
to be associated with sixes of cluster 2. The numbering of the clusters is completely arbitrary.

A convenient measure of nonlinear statistical dependence is the mutual information (MI)
between two variables X and Y with joint discrete probability distribution PX,Y (x, y). (Con-
sider X the cluster assignment for the digit 5, and Y the cluster assignment for digit 6. For
each writer, X and Y can each take on one of three possible values.) The marginal distribu-
tions PX(x) and PY (y) can be computed by summation. Then

MIX,Y =
∑
x,y

PX,Y (x, y) log2

PX,Y (x, y)

PX(x)PY (y)
(9.16)

We assign to every writer a cluster assignment vector (X, Y ), X = 1, 2, or 3; Y = 1, 2, or
3, according to where (in which cluster) most of that writer’s digits 5 and digits 6 fall. We
count the number of each of the nine possible (x, y) combinations. Dividing these sums by
the number of writers yields estimates of the probabilities PX,Y (x, y) required to compute the
mutual information. Note that here again we have dropped the class subscripts, because the
mutual information for every pair of classes is computed independently.
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Table 9.8 shows cluster probabilities for each writer and the resulting style assignments.
As mentioned, in this example, the cluster assignments are based simply on the dominant
cluster of each writer and class, i.e., the cluster with the largest number of samples. Ties are
broken randomly. The marginal and joint probabilities of X and Y , and the terms of the MI ,
are displayed below. The value 0.97 for the MI in this example is the sum of the individual
terms. The minimum value of MI , when X and Y are independent, is 0. The maximum value
of MI is min[HX , HY ], which is log2 3 = 1.6 when all the cluster assignments are equally
probable.

Table 9.8. An example of two-pattern style for digits 5 and 6.

Writer specific cluster membership, probability, and assignment
Number of samples Writer-specific Writer-specific

falling in each cluster cluster probability cluster assignments
Class 5 6 5 6 5 6

Cluster 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Writer 1 1 8 1 2 0 8 0.1 0.8 0.1 0.2 0.0 0.8 0 1 0 0 0 1
Writer 2 7 2 1 1 6 3 0.7 0.2 0.1 0.1 0.6 0.3 1 0 0 0 1 0
Writer 3 0 1 9 8 1 1 0.0 0.1 0.9 0.8 0.1 0.1 0 0 1 1 0 0
Writer 4 2 1 7 7 3 0 0.2 0.1 0.7 0.7 0.3 0.0 0 0 1 1 0 0
Writer 5 1 9 0 1 2 7 0.1 0.9 0.0 0.1 0.2 0.7 0 1 0 0 0 1
Writer 6 6 3 1 0 10 0 0.6 0.3 0.1 0.0 1.0 0.0 1 0 0 0 1 0
Writer 7 3 7 0 1 0 9 0.3 0.7 0.0 0.1 0.0 0.9 0 1 0 0 0 1
Writer 8 8 1 1 2 8 0 0.8 0.1 0.1 0.2 0.8 0.0 1 0 0 0 1 0
Writer 9 1 0 9 0 10 0 0.1 0.0 0.9 0.0 1.0 0.0 0 0 1 0 1 0
Writer 10 10 0 0 9 1 0 1.0 0.0 0.0 0.9 0.1 0.0 1 0 0 1 0 0

39 32 29 31 41 28 0.39 0.32 0.29 0.31 0.41 0.28 4 3 3 3 4 3

Marginal probability P(x), P(y) and joint probabilities P(x,y)
Joint probability P(x,y) P(y)-Class 6 P(x) (Class 5)

X-Class 5 1 2 3
1 0.1 0.3 0.0 0.4
2 0.0 0.0 0.3 0.3
3 0.2 0.1 0.0 0.3

P(y) (Class 6) 0.3 0.4 0.3 1.0

Mutual Information MI = 0.97
P(x,y)logP(x,y)/[P(x)P(y)] 1 2 3

1 −0.02 0.27 0
2 0 0 0.52
3 0.23 −0.03 0

It is possible to quantize the cluster assignments more finely. Even for only pairs of sam-
ples, the number of combinations of the values of X and Y grows quadratically. One soon
reaches the point where there are not enough samples for accurate estimates of the joint prob-
abilities.
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Table 9.9. Observed MI for hand-printed class pairs.

    Class 
MI 0 1 2 3 4 5 6 7 8 9

0 2.29 0.49 0.26 0.34 0.41 0.26 0.52 0.49 0.34 0.49 
1  1.93 0.31 0.44 0.63 0.29 0.52 0.60 0.44 0.69 
2   2.31 0.25 0.21 0.13 0.24 0.30 0.18 0.24 
3    2.31 0.37 0.17 0.30 0.44 0.28 0.39 
4     2.21 0.24 0.42 0.50 0.37 0.61 
5      2.32 0.24 0.25 0.23 0.22 
6       2.25 0.53 0.34 0.50 
7        2.19 0.33 0.65 
8         2.37 0.35 
9          2.24 

Table 9.9 shows the observed values of the MI for every pair of classes in SD3. We gener-
ated 64 possible cluster assignments for each digit-pair by quantizing the cluster probabilities
at two levels each, resulting in eight assignments per writer per class. Many of these assign-
ments never occur in our data. The quantization threshold was the corresponding cluster prob-
ability. More than one style can be assigned to a writer if he is inconsistent. We observe that
the values on the diagonal, i.e., for same class pairs, deviate from their maximum possible
value of log2 8 = 3.0 because the clusters don’t contain the same number of samples. We have
verified that when the data is shuffled to eliminate multiclass style, the values of the MI are
always less than 0.1.

9.7 Conclusion

We discussed the configuration of symbolic patterns in feature space. Our conjectures are
based on relatively broad assumptions about sets of independent samples of several classes
generated by multiple sources (i.e., source-conditional independence between the observable
attributes of the patterns). They are supported only by statistics collected on specific features
extracted from scanned printed and hand-printed numerals. We now summarize our findings,
subject to this caveat.

1. Standardizing the pattern vectors to zero mean, identity covariance variables facilitate
comparing data sets, within or across domains, with different patterns, features, and dimen-
sionality.

2. In a standardized feature space, the average radius (distance from the origin) of the
patterns depends only on the number of features. The mean of the radius can be predicted
accurately based on the dimensionality alone. The mean increases faster with dimensionality
than the standard deviation. Therefore, in any standardized high-dimensional feature space,
most of the samples will be contained in a thin spherical shell even if the sample density is
highest at the origin. This phenomenon is a direct consequence of well-known statistical facts.
The optimal decision boundaries, therefore, intersect at the origin of the standardized feature
space.

3. When the feature dimensionality exceeds the number of classes, the centroids of sym-
bolic patterns are located at the vertices of a regular simplex. The observed distribution of
pairwise distances is very peaked and its average value can be predicted accurately from the
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average radius of the class centroids. This can be explained only by the evolution of sym-
bolic patterns toward maximum discriminability, and may not hold for natural patterns. The
equidistance of class centroids may serve as an indication of the merit of a feature set, without
resorting to actual classification.

4. The pairwise distances between subclass centroids obtained by clustering the feature
vectors of each class, or by typeface designations, are not approximately equal, even in high
dimensions, nor could one expect it. Some pairs of styles are likely to be more similar than
others if style labels reflect shape.

5. The average distance of the samples from their own class centroids is about 50% higher
than predicted from the determinants of their covariance matrices under a spherical (identity
covariance matrix) assumption. The class distributions, therefore, are somewhat “flattened.”
However, the ratio of the predicted distances to observed distances is fairly uniform across
classes, suggesting that the distributions may be similar, except for scale.

6. The divergence between pattern distributions of the same class with different feature
sets is significantly larger than between different classes with the same feature set. We ex-
pect the class-conditional correlation matrices to be quite similar in any given feature space,
because they are determined more by the feature set than by the class. This holds for both
Kullback-Leibler and Bhattacharyya distance, although these two measures of the similarity
of two pdfs are not highly correlated. These observations bear on the regularization of covari-
ance matrices in small-sample conditions.

7. The class-conditional distributions of symbolic features are asymmetric. In training
a classifier, one may safely ignore samples on the “far” side of their class centroids, which
exhibit less variation. Support vector machines, of course, do just that.

8. The amount of single-class style in a data set, i.e., within-source consistency, can be
quantified by comparing the observed average entropy of style assignments to the expected
entropy of an appropriate multinomial distribution. Single-class style can be exploited for
classification through adaptation [14, 15, 16].

9. The amount of multiclass style, i.e., the statistical dependence between features ex-
tracted from samples of different classes from the same source, can be quantified by the mutual
entropy of the style assignments. Multiclass style can be exploited through style-consistent
classification [17, 18].

We intend to conduct similar measurements on natural patterns. We hope that a growing
collection of such measurements on diverse multisource collections of samples will provide
insight into the intrinsic complexity of classification tasks.
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List of Symbols

C The number of classes
DB(·) Bhattacharyya distance between two distributions p(X) and q(X)
DBN (·) Bhattacharyya distance between two Gaussian distributions
E[H] Expected class entropy for samples of a class sampled from

multinomial distribution
Haverage Average writer-class entropy
Hc Class entropy
Hm Writer-class entropy for writer m
H[n1, n2, . . . , nK ] Class entropy for a cluster assignment vector [n1, n2, . . . , nK ]
K Number of styles
KL(·) Kullback-Leibler divergence for two distributions p(X) and q(X)
KLN (·) Kullback-Leibler divergence for two Gaussian distributions
M Number of writers
MIX,Y Mutual information between two variables x and y
N Number of patterns of a class from all writers
N(X; µ, Σ) Normal distribution with mean µ and covariance matrix Σ
Nm Number of patterns within a class for writer m
Nm,k Number of patterns within a class for writer m and class-style k
N(k) Class-style membership for class-style k
P Class-style probability vector
PX(x) Marginal probability for variable X
PX,Y (x, y) Joint discrete probability distribution between variable X and Y
Ri Distance of pattern Xi from the origin
Rc Radius of centroid of class c
Xi Instance of the ith random d-dimensional singlet-pattern feature vector
c Instance of a class label
d Dimensionality of the singlet-pattern feature space
ed Length of edges of c-dimensional regular tetrahedron
k Instance of a style label
m Instance of a writer
n Average number of patterns within a class for each writer
nk Number of patterns of class-style k for each writer
[n1, n2, . . . , nK ] Class-cluster assignment vector
p(·) Distribution of samples
pk Probability for class-style k
pm Writer-class-style probability vector for writer m
pm,k Writer-class-style probability for writer m and class-style k
rc Radius of samples of class c from class centroid
r2

c Square radius of samples of class c from class centroid
xi,j The jth feature component of a feature vector Xi

Σc Class covariance matrix
Σc,k Class-style covariance matrix
Σg Grand covariance matrix
ϕ The feature space of all samples
µ Mean
σ Standard deviation
<> Average operation
| · | Determinant of a matrix




