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Data Complexity Issues in Grammatical Inference

Colin de la Higuera

Summary. Grammatical inference (also known as grammar induction) is a field transversal
to a number of research areas including machine learning, formal language theory, syntac-
tic and structural pattern recognition, computational linguistics, computational biology, and
speech recognition. Specificities of the problems that are studied include those related to data
complexity. We argue that there are three levels at which data complexity for grammatical
inference can be studied: at the first (inner) level the data can be strings, trees, or graphs; these
are nontrivial objects on which topologies may not always be easy to manage. A second level
is concerned with the classes and the representations of the classes used for classification;
formal language theory provides us with an elegant setting based on rewriting systems and
recursivity, but which is not easy to work with for classification or learning tasks. The com-
binatoric problems usually attached to these tasks prove to be indeed difficult. The third level
relates the objects to the classes. Membership may be problematic, and this is even more the
case when approximations (of the strings or the languages) are used, for instance in a noisy
setting. We argue that the main difficulties arise from the fact that the structural definitions of
the languages and the topological measures do not match.

8.1 Introduction

8.1.1 The Field

Grammatical inference is transversal to various fields including machine learning, formal lan-
guage theory, structural and syntactic pattern recognition, computational linguistics, compu-
tational biology, and speech recognition.

In a very broad sense, a learner has access to some data that are sequential or structured
(strings, words, trees, terms, or even limited forms of graphs) and is asked to return a grammar
that should in some way explain these data. The grammar is supposed to be able to generate
the data, or recognize it. The learner is at least partially automatic, and is therefore sometimes
called an inference machine, or a learning algorithm. The induced (or inferred) grammar can
then be used to classify unseen data, compress this data, or provide some suitable model for
this data. Typical features of the problem are:
• The data, composed from a finite alphabet; is thus usually discrete, as opposed to numer-

ical; but on the other hand the unbounded length of strings makes the classification tasks
harder than with the usual symbolic data.
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• The sort of result: a grammar or an automaton, traditional objects from formal language
theory studied in computer science. The advantage of these objects is that they are under-
standable. The classes that are learned are described in an intelligible and sometimes even
graphical way, which may not always be the case in pattern recognition or classification.
In fields where human experts need to be able to derive new knowledge from what the
computer provides, this is undoubtedly a key feature.

• The hardness of even the easiest of problems: Grammatical inference is a field where
there are only a few positive theoretical results. Most learning problems are considered
intractable and are even used as examples of hard tasks in machine learning.

• The variety of potential applications: Data in many fields is today more and more com-
plex and structured, and therefore, techniques that concentrate on structural data are of
increasing importance.

There are a number of ways of addressing the different problems in grammatical inference:
searching for new algorithms, broadening the class of data for which existing techniques work,
better understanding the boundaries between those problems that one can solve and those that
correspond to classes that are not learnable, and the application of known techniques to new
problems.

8.1.2 The Literature and the Community

Grammatical inference scientists belong to a number of larger communities: machine learning
(with special emphasis on inductive inference), computational linguistics, and pattern recog-
nition (within the structural and syntactic subgroup). There is a specific conference the Inter-
national Colloquium on Grammatical Inference (ICGI) devoted to the subject, within whose
proceedings it is possible to find a number of technical papers. These conferences have been
held at Alicante, Spain [13], Montpellier, France [59], Ames, Iowa [37], Lisbon [24], and Am-
sterdam [1]. The web page of the grammatical inference community [85], and those of related
communities can be used to find most of the papers in the field. The Computational Learning
Theory (COLT) web page [46] or the Algorithmic Learning Theory (ALT) web page [92]
can provide good lists of papers with the machine learning perspective. Important key papers
setting the first definitions and providing important heuristics are those by Fu [27] and Fu
and Booth [28]. The structural and syntactic pattern recognition approaches can be found, for
instance, in Miclet’s book [57] and in the survey by Bunke and Sanfeliu [10], with special
interest in Miclet’s chapter [58].

Surveys or introductions to the subject have been published by Lee [51], Sakakibara [76],
Honavar and de la Higuera [36], and de la Higuera [20].

Books on formal languages by Harrison [35] and by Hopcroft and Ullman [38] give most
of the elementary definitions and results needed for the language theoretical background to
grammatical inference. Parsing issues are discussed in Aho and Ullman’s textbook [2]. On
machine learning the books by Mitchell [60], Natarajan [63], and Kearns and Vazirani [42]
all give elements that are of use to derive grammar induction results. Another place where
structural pattern recognition issues are discussed is Gonzalez and Thomason’s book [33]. An
early book with many important mathematical results on the subject of automata inference is
that by Trakhtenbrot and Barzdin [84].

8.1.3 Organization of This Chapter

The question under study is, What are the data complexity issues involved in grammatical
inference? The first problem is to discuss the different meanings that can be linked with these
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terms. The first idea is that the actual data (strings and trees) have a specific complexity,
independently of the concept classes that are involved. A second point of view may be that it
concerns the classes themselves (languages) which are non trivial mathematical objects when
dealing with grammatical inference: languages defined by grammars and automata. And a
third point of view appears when we consider simultaneously the strings and the languages.

Before discussing these issues, we will survey some of the main definitions and results
concerning grammar induction.

In section 8.2 we define the objects we intend to learn from. These are especially strings
and trees, but other more complex objects have sometimes been studied, such as infinite strings
or graphs. We also visit (section 8.3) the concept classes that are used in typical classification
tasks. In grammatical inference these are languages that are defined by automata or grammars
in the case of languages as sets of strings (section 8.3.1) or distributions (section 8.3.2). In sec-
tion 8.4 we survey the topological issues regarding both strings (8.4.1) and languages (8.4.2).
We deal in section 8.5 with the problems that arise from these definitions and that concern
what can be grouped under the heading of “data complexity problems” for grammatical infer-
ence: problems concerning the data from which one wants to learn (section 8.5.1), problems
relating to language theory and the specificity of grammatical definitions (section 8.5.2) and
questions arising from the specific relationship between the data and the classes, i.e., between
the strings and the languages (section 8.5.3). We draw conclusions in section 8.6.

8.2 Strings and Trees: from Which We Learn

Let Σ be a finite alphabet and Σ� the (infinite) set of all strings that can be built from Σ,
including the empty string denoted by λ.

By convention, symbols in Σ are denoted by letters from the beginning of the alphabet
(a, b, c, ...), and strings in Σ� are denoted by the end of the alphabet letters (..., x, y, z). The
length of a string x ∈ Σ� is written |x|. The set of all strings of length n (less than, at most
n) is denoted by Σn ( Σ<n, Σ≤n). A substring of x from position i to position j is denoted
as xi . . . xj . A substring xi . . . xj with j < i is the empty string λ.

Strings are totally ordered according to the hierarchical order, i.e., if x and y belong to
Σ�, x ≤ y ⇔ |x| < |y| or |x| = |y| ∧ x ≤lex y. The first strings, according to the
hierarchical order (also sometimes called the length-lexicographic or length-lex order), with
Σ = {a, b} are {λ, a, b, aa, ab, ba, bb, aaa, . . .}.

Extensions of strings include:

• Trees or terms that are recursively defined from a given ranked alphabet F = F0∪F1...Fk

as ∀c ∈ F0, c ∈ T and t1, ..tk ∈ T, f ∈ Fk =⇒ f(t1, .., tk) ∈ T . Alternative
definitions exist where the trees are unranked (the same symbol may belong to various
alphabets), or unordered (the order on the subtrees is not important). Learning tree au-
tomata and grammars are of increasing importance due to the interest in tasks involving
structured information (for instance XML files).

• Graphs and hypergraphs are even more complex to define by generative means, and gram-
mars that produce them have been studied in specific fields only. No positive learning
result is known, at least for nontrivial classes.

• Infinite strings are used to model situations in reactive systems. Grammatical inference
has been used on such data [18, 55, 79].
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8.3 Languages: What We Want to Learn

When considering languages, two points of view leading to two different settings have been
studied:

• A language is a subset of Σ�. In this case problems are those of membership (Does a
string belong or not to a language?) and the related issue of parsing strings, or that of the
equivalence of grammars (Do they define or generate the same language?).

• A (stochastic) language can also be a distribution of probabilities over Σ�. In this setting
the question is to use automata or grammars that assign a higher probability to the more
probable strings and a lower (or null) one to the others.

8.3.1 Languages

Formal language theory has been studied consistently over the past 50 years. The usual defi-
nitions and results can be found in references [35, 38]. Languages are sets of strings defined
through generative (grammars) or recognition (automata) processes. We recall here two of the
simpler but also more important definitions.

Regular Languages

Definition 1. A deterministic finite automaton (DFA) is a quintuple A = 〈Q, Σ, δ, F, q0〉
where Σ is an alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × Σ → Q
is a transition function, and F ⊆ Q is a set of marked states, called the final states.

It is usual to recursively extend δ to Σ∗: δ(q, λ) = q and δ(q, a.w) = δ(δ(q, a), w) for
all q ∈ Q, a ∈ Σ, w ∈ Σ∗. Let L(A) denote the language recognized by automaton A:

L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}
An alternative definition considers that the automaton may be nondeterministic [δ(q, a) may
have various values]. It is well known that the languages recognized by DFA form the fam-
ily of regular languages. This class is considered as a borderline case for grammatical infer-
ence [19] in the sense that DFA are learnable (in different senses), whereas slightly more
complex objects are not. Also, because the class is known to be the first level of the Chomsky
hierarchy, considerable attention has been given to the problem of learning it [23, 65, 66, 68].

There are alternative ways of defining regular languages; rational expressions, regular
grammars, or nondeterministic finite automata are some of these, but they all lead to learning
problems that are more complex than when considering DFA.

Context-Free Languages

The second level of the Chomsky hierarchy is concerned with context-free languages and
grammars:

Definition 2 (Context-Free Grammar). A Context-Free Grammar (CFG) G = (Σ, V, P, S)
is a quadruple where Σ is a finite alphabet (of terminal symbols), V is a finite alphabet (of
variables or nonterminals), P ⊂ V × (Σ ∪V )∗ is a finite set of production rules, and S ∈ V
is the axiom (start symbol).
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We denote uTv → uwv when (T, w) ∈ P .
∗→ is the reflexive and transitive closure of

→. If there exists u0, . . . , uk such that u0 → · · · → uk, we write u0
k→ uk. We denote by

LG(T ) the language {w ∈ Σ∗ : T
∗→ w}. Two grammars are equivalent if they generate the

same language. A language is context-free if it can be generated by a context-free grammar.
Learning context-free grammars has proved to be a much harder task than learning DFA.

Serious efforts in the past few years have included the following approaches:

• Subclasses of linear languages: linearity is considered by several authors to be a necessary
condition for learning to be possible. There has been active and successful research of even
linear grammars [44, 54, 80, 81, 82].

• Learning from structured data: learning tree automata [26, 34, 43], or context-free gram-
mars from bracketed data [74, 75], allows to obtain better results, either with queries,
regular distributions [15, 45, 72], or negative information [29]. This has also led to differ-
ent studies concerning the probability estimation of such grammars [11, 50].

• Heuristics based on genetic algorithms [40, 77, 78], lattice exploring [31, 86], or simplicity
bias [49].

Membership Issues

The problem of deciding if a given string belongs or not to a language is the first problem
one has to deal with. In both cases (for regular languages defined by DFA and context-free
languages defined by CFG) the problem is tractable: parsing can take place in linear time
with a DFA and in cubic time with a CFG.

Other language formalisms may exist where parsing is not an easy problem. For instance,
parsing with pattern languages [5, 25] is an intractable problem.

Equivalence Issues

Two grammars or automata are equivalent if they generate or recognize the same language.
If equivalence of DFA is easy to check (thanks to the existence of a nice canonical minimal
form), this is not the case if the regular languages are defined by other formalisms such as
regular expressions of nondeterministic finite automata. In the case of context-free grammars
the same holds: equivalence is undecidable.

This has direct consequences for the learning tasks, as is proved in [19].

8.3.2 Stochastic Languages

Stochastic languages and mechanisms allowing their generation are described in a number
of articles and books [39, 50, 51, 56, 64, 67, 71, 87, 88]. We describe only the key ideas of
stochastic languages and automata here.

A stochastic language D is a probability distribution over Σ�.
The probability of a string x ∈ Σ� under the distribution D is denoted as PrD(x) and

must verify
∑

x∈Σ� PrD(x) = 1. If the distribution is modeled by some syntactic machine A,
the probability of x according to the probability distribution defined by A is denoted PrA(x).
The distribution modeled by a machine A will be denoted DA and simplified to D in a non-
ambiguous context.

If L is a language (included in Σ�) and D a distribution over Σ�, PrD(L) =∑
x∈L PrD(x).
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Two distributions D and D′ are equal (denoted by D = D′) if ∀w ∈ Σ� : PrD(w) =
PrD′(w).

A sample S is a multiset of strings; as a sample is usually built through sampling, one
string may appear more than once. When considering the sample size, we note the difference
between notation |S|, which indicates the number of (not necessarily different) strings in S,
and ‖S‖, which is the total sum of lengths of the strings in S. We also write x ∈ S to indicate
that string x is represented in the sample.

Probabilistic Automata and Languages

Probabilistic languages are generated by probabilistic automata.

Definition 3. A PFA is a tuple A=〈QA, Σ, δA, IA, FA, PA〉, where:

• QA is a finite set of states;
• Σ is the alphabet;
• δA ⊆ QA × Σ × QA is a set of transitions;
• IA : QA → Q+ (initial-state probabilities);
• PA : δA → Q+ (transition probabilities);
• FA : QA → Q+ (final-state probabilities).

IA, PA and FA are functions such that:∑
q∈QA

IA(q) = 1,

and
∀q ∈ QA, FA(q) +

∑
a∈Σ, q′∈QA

PA(q, a, q′) = 1.

PA is extended with PA(q, a, q′) = 0 for all (q, a, q′) �∈ δA. Also, the subscript A is
dropped when there is no ambiguity.

The above automata definition corresponds to models that are generative in nature. This
is in contrast with the standard definition of automata in the conventional (nonprobabilistic)
formal language theory, where strings are generated by grammars while the automata are the
accepting devices. From a probabilistic point of view, the process of (randomly) accepting a
given string is essentially different from the process of generating a (random) string. Proba-
bilistic acceptors are defined in Fu [27], but they have not been as popular in both syntactic
pattern recognition and formal language theory.

Figure 8.1 shows a graphical representation of a PFA with four states, Q = {q0, q1,
q2, q3}, only one initial state, q0, and a four-symbol alphabet, Σ = {a, b, c, d}. The rational
numbers in the states and in the arrows are the final state and the transition probabilities,
respectively.

Deterministic Probabilistic Finite-State Automata (DPFA)

Definition 4. A PFA A = 〈Q, Σ, δ, I, F, P 〉 is a DPFA, if:

• ∃q0 ∈ Q (initial state), such that I(q0) = 1;
• ∀q ∈ Q, ∀a ∈ Σ, | {q′ : (q, a, q′) ∈ δ} |≤ 1.

In a DPFA, a transition (q, a, q′) is completely defined by q and a, and a DPFA can
be more simply denoted by 〈Q, Σ, δ, q0, F, P 〉.
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Fig. 8.1. Graphical representation of a PFA.

Distribution Modeled by a PFA

PFA generate strings of finite length. Given a PFA A, a string is generating by randomly
choosing (with respect to a distribution I over the initial states) one state q0 in Q as the initial
state. Call q this state. Then iteratively decide whether to halt, with probability F (q), or to
produce a move (q, a, q′) with probability P (q, a, q′) where a ∈ Σ and q′ ∈ Q in which case
a symbol a is emitted and the current state is set to q′.

It should be noticed that this generative process facilitates only generating a string but not
computing the probability of a given string, which can be generated in different ways or paths.
Dynamic programming techniques are used for this computation.

If
∑

x PrA(x) = 1, then A defines a distribution D on Σ�.

Definition 5. A distribution is regular if it can be generated by some PFA.

An alternative definition could be used: a regular distribution is a probabilistic distribution on
a regular language. However, we do not assume this definition because it would present the
following problem: there would exist regular distributions that could not be generated by any
PFA. This result can be easily derived from Wetherell [91].

Definition 6. A distribution is regular deterministic if it can be generated by some DPFA.

Definition 7. Two PFAs are equivalent if they generate the same distribution.

From the definition of PFA and DPFA the following hierarchy follows:

Proposition 1. A regular deterministic distribution is also a regular distribution.

We do not provide here the definition of context-free stochastic (or probabilistic) grammars,
which results from a combination of the definitions of context-free grammars and that of
stochastic automata. These have been studied in a variety of works, including [16, 21, 39, 50].

Questions Relating to Stochastic Languages

Following the Chomsky hierarchy, it is possible to extend the previous definitions to cope
with stochastic tree languages defined by stochastic tree automata or stochastic context-free
grammars.

Parsing issues have also been well studied. If the deterministic case is easy to solve, a
number of dynamic programming techniques have been used for the nondeterministic setting.

Equivalence of PFA is decidable, but the exact complexity is not known. More than the
question of equivalence, the one of the closeness (How close is one distribution to another?)
is a hard question, to which only partial answers have been given [62].
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8.4 Topological Issues

The way the set of instances or of possible examples is organized depends on the topology that
is used on this space. Whereas metrics over vectors and numerical representations are fairly
well known and obey mathematically well-studied laws, things get harder when dealing with
structured objects such as strings or trees.

Distances can be used to organize the set of examples, but also, sometimes, the set of
possible classes. We discuss both types of distance measures in this section.

8.4.1 Distances Between Strings

Given two strings x and y, a distance can be computed in several different ways. In a broad
sense the possibilities are:

• To compute the minimal number of operations needed to transform x into y. This is the
principle of the edit or Levenshtein distances [3, 89].

• To compute some similarity measure S(x, y) between the two strings, and then, with an
adequate function (2−S(x,y)) convert it into a distance.

• To select a set of measurable features over the strings and to use these to associate with
each string a vector in Rn. The vectors can then be compared by standard metrics.

In practice all three ideas have their advantages and their disadvantages.

• The edit distance is certainly the most natural form of distances on strings. But the com-
putation of this distance in quadratic in the length of the strings and many reasonable
operations (such as searching for the center of a set of strings [22]) can be intractable.

• Similarity measures abound: an easy distance based on this principle consists in comput-
ing the length of the longest common prefix and using this as S(x, y). Yet convincing
similarity measures have not been produced.

• Finding a finite set of features over strings and using numerical representations is a stan-
dard technique: n-grams are a typical way of doing this. But the intrinsic structure of the
string is usually lost.

8.4.2 Distances Between Languages

In the nonstochastic setting (when languages are just sets of strings), comparison is done by
usual set-theoretic tools. It should be noticed that without a distribution of probabilities over
the strings, the number of strings in the symmetric difference between two sets is not a valid
indicator, as it can easily be infinite.

The usual setting to study distances between languages is therefore the stochastic one.
Defining similarity measures between distributions is the most natural way of comparing them.
In tasks involving the learning of PFA or DPFA, one wants to measure the quality of the
result or of the learning process. When learning takes place from a sample, measuring how far
the learned automaton is from the sample can also be done by comparing distributions since a
sample can easily be encoded as a DPFA.

There are two families of distance measures: those that are true distances, and those that
measure a cross-entropy.
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Distances Between Distributions

All the definitions hereafter are seen as definitions of distances between distributions over Σ�.
In doing so they implicitly define distances between automata, but also between automata and
samples, or even between samples.

• The most general family of distances are referred to as the Minkowski distances or dis-
tances for the norm Ln. The general definition is as follows:

dn(D,D′) =

( ∑
x∈Σ�

|PrD(x) − PrD′(x)|n
) 1

n

.

• The following distance is used in [7] (under the name d∗ or distance for the L∞ norm):

dmax(D,D′) = max
x∈Σ�

|PrD(x) − PrD′(x)| .

Entropy-Based Measures

Based on entropy definitions we can use the well-known Kullback-Leibler divergence:

dKL(D,D′) =
∑

x∈Σ�

PrD(x) · log
PrD(x)

PrD′(x)
.

We set in a standard way 0 log 0 = 0 and 0
0

= 1.
In the case where some string has a null probability in D′, but not in D, then the Kullback-

Leibler divergence is infinite.
Rewriting the Kullback-Leibler divergence as

dKL(D,D′) =
∑

x∈Σ�

(PrD(x) · log PrD(x) − PrD(x) · log PrD′(x)),

one can note the first term is the entropy of D, and does not depend on D′ and the second term
is the cross-entropy of D given D′. From the information theory interpretation [17], the first
term measures the optimal number of bits needed to encode D and the second one measures
the cost (in number of bits of encoding) of estimating D using D′.

Computing Distances

The computation of distance dn and dmax has been studied for hidden Markov models in [53],
where it is shown that only for even values of n is the computation possible. Similar results
hold for DPFA [62]. The computation of dKL is possible in polynomial time for DPFA
[12].

8.5 How Data Complexity Can Affect Grammatical Inference

We now turn to the question of data complexity. As discussed earlier, we discuss three aspects
of the problem: the one specific to the data, the one concerning the classes, and the third one
which interrelates strings and classes.
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8.5.1 Problems Concerning the Data

Strings and trees are nontrivial structures. Their typical definitions are recursive, and they
allow for complex extensions (infinite strings, unordered trees). For a number of reasons in
grammatical inference, some basic operations over strings and trees are needed, and are not
always simple:

• Distances have to be computed. In section 8.4.1 we reviewed some of the typical distances
that could be used over strings, and noticed that the computation issues were not trivial.

• Finding patterns in strings [3] is a tricky issue also, for which elaborate algorithms have
been built.

• Comparing strings (or trees): is a string a substring of another? A number of algorithms
have been proposed for these tasks, but time complexity can be high.

All this has consequences when wanting to use traditional pattern analysis techniques (such
as a nearest neighbours approach) in an application where the data is described by strings and
requires specific heuristics [61, 73].

8.5.2 Problems Concerning the Languages

Formal language theory has been built on the Chomsky hierarchy which defines classes of
languages through the restrictions that one can make to the type of grammar that is admitted
[2]. Moreover, recursivity is central to this theory, which gives it elegance but also may not
help our understanding of it. A typical example of this is the intuitive distance that there can
be between a language and a grammar that generates it.

These definitions have another drawback: small changes made on the grammar (or the au-
tomaton) are likely to affect, in an important way, the language that is generated. The converse
also holds, as modifying in a very small way a language can easily lead to the construction of
a new grammar quite unrelated to the first one. The consequences of this is that the concept
classes are very sensitive to noise. Even a very small amount of noisy data in the learning
process affects what is being induced. Grammatical inference, because of this data complexity
issue, is quite incapable of dealing with noisy data. As in practice, noisy data is abundant; this
is a real problem for the field.

The question has probably not yet been explored in a systematic way, and there is still
much to argue about this. The point we raise here is simply that (and in contrast to other fields
in pattern recognition or machine learning) the topological theories over strings and the formal
language theories do not match.

Knowing if two representations of classes are equivalent is a central question both in
formal language theory and in learning. Indeed if the problem is intractable, then one should
not expect learning to be feasible:

• This may mean that the characteristic sets needed to learn are of a size that one cannot
expect to reach in reasonable time [19].

• This also means that learning from membership queries only is not tractable. If not, one
could use both grammars as black boxes and learn independently from each, and at the
end compare the results.
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8.5.3 Problems Concerning the Relationship Between Strings and Languages

When considering strings on their own, we have a problem with the complexity of the data.
When considering the classes and their representations, we have another. What happens when
we consider both issues together is that new hard problems arise. We mention some of them
now.

Negative Results Concerning the Combinatorics

A typical way of considering a classification task from both examples and counter-examples
is to find some representation of a class consistent with the observed data. In grammatical
inference, in general, this is insufficient, as any finite set of strings is a regular or a context-free
language. In that case, theory teaches us that it is a good policy to find a simplest consistent
class. This obeys the Occam’s razor principle.

Gold [32] proves that the problem of finding the smallest DFA consistent with a given set
of strings is NP-hard. Angluin [4] proves that this is the case even when the target automaton
only has two states (this peculiar result is quoted by Pitt and Warmuth [70]), or even when
only a very small fraction of all the strings up to length n, where n is the size of the target, is
absent. Trakhtenbrot and Barzdin [84] had shown previously that when all such strings were
present the problem was tractable.

There are several negative consequences of these combinatorical results. This is not
enough to obtain a direct proof that learning in polynomial time is impossible, but Angluin
proves the hardness of the task even using membership queries [6] (a string can be proposed
to the oracle who must answer if the string belongs or not to the target language) or equiva-
lence queries [8] (a grammar is proposed to the oracle, who answers yes if the hypothesis is
equivalent to the target, and provides a counterexample if not). In the second case Angluin in-
troduced the combinatorial notion of approximate fingerprints of independent interest, which
correspond to a subset of hypotheses out of which only a small fraction can be excluded, given
any counterexample, resulting in the necessity of using an exponential number of equivalence
queries to isolate a single hypothesis. Gavaldà [30] studies this notion with care. Pitt [68] uses
this result to prove the intractability of the task of identifying DFA with a polynomial num-
ber of mind changes only (i.e., the number of times the online learning algorithm changes its
hypothesis should be polynomial in the size of the target DFA). The problem is proved to be
hard [69], and by typical reduction techniques [90] is proved complete (hardest) in its class.
But Pitt’s model may be itself too demanding, as it is closely linked with Littlestone’s learning
model [52].

Problems with Approximation

The combinatorical results above imply that finding the exact solution is too hard, but there
could be hope for approximately learning. The probably approximately correct (PAC) para-
digm has been widely used in machine learning to provide a theoretical setting for this. But
even for the case of DFA, most results are negative, Kearns and Valiant [41] linked the diffi-
culty of learning DFA with that of solving cryptographic problems believed to be intractable
(a nice proof is published in Kearns and Vazirani’s book [42]).

Another point of view on the hardness of approximation can be seen through the different
competitions that have been organized for grammatical inference. In 1997, the ABBADINGO

competition [47] raised interest in the problem of DFA inference, and although a neural
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network technique seemed to do well, at the end, an evidence-driven technique developed by
Price, based on classical state merging, won (Lang et al., [48]). The idea was to try different
merges but keep the one that had the highest score. A (cheap) alternative to evidence-driven
heuristics is data-driven heuristics (de la Higuera et al., [23]), where the idea is to try merging
those states through which most information is known. Some problems from that competition
are still open.

Learning with Noise

As a consequence of the above observations, learning in a noisy setting is very hard. Whereas
in other areas of machine learning and pattern recognition there are many methods and results
allowing us to work on cases where the data may be imperfect, this is not the case in grammat-
ical inference. One of the few hopes of doing anything of use in this case is to learn stochastic
automata [14, 83].

8.6 Conclusion

Grammatical inference is faced with a number of intrinsic difficulties that differentiate the
field from other fields in pattern recognition or machine learning. These correspond to the
specific recursive unbounded structure of strings and trees, the special way languages are
defined, which is not some extension of well-known classes over vectors, and the combined
complexity of strings and languages when considering parsing issues.

When faced with these hardness questions a number of answers seem possible:

• Modifying the internal structure of the data offers only limited possibilities. Windowing
the data or associating to strings a finite number of characteristics has been done, but there
is necessarily a price to pay in terms of representation;

• Finding novel ways of defining languages that do not obey to the Chomsky hierarchy
would certainly be a good choice; for instance, different forms of pattern languages [5, 9,
25] have been studied and in certain areas, such as computational biology, are indeed of
use.

• Finally the inherent difficulties should not force researchers to abandon the idea of learn-
ing languages from strings of trees. The successes of grammatical inference show that
there still is a lot of room for new profound and useful results.
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Jean-Christophe Janodet, Thierry Murgue, Jose Oncina, Franck Thollard, and Enrique Vidal,
for discussions and previous related work that fostered the ideas in this chapter.

References

[1] P. Adriaans, H. Fernau, M. van Zaannen, eds. Grammatical Inference: Algorithms and
Applications, Proceedings of ICGI ’02, volume 2484 of LNAI. Berlin, Heidelberg:
Springer-Verlag, 2002.



8 Data Complexity Issues in Grammatical Inference 165

[2] A. Aho, J. D. Ullman. The Theory of Parsing, Translation and Compiling, Vol 1: Parsing.
Englewood Cliffs, NJ: Prentice-Hall, 1972.

[3] A .V. Aho. Algorithms for Finding Patterns in Strings. Handbook of Theoretical Com-
puter Science, pages 290–300. Amsterdam: Elsevier, 1990.

[4] D. Angluin. On the complexity of minimum inference of regular sets. Information and
Control, 39, 337–350, 1978.

[5] D. Angluin. Finding patterns common to a set of strings. In Conference record of the
eleventh annual ACM Symposium on Theory of Computing, pages 130–141. New York:
ACM Press, 1979.

[6] D. Angluin. Queries and concept learning. Machine Learning Journal, 2, 319–342,
1987.

[7] D. Angluin. Identifying languages from stochastic examples. Technical Report
YALEU/DCS/RR-614, Yale University, March 1988.

[8] D. Angluin. Negative results for equivalence queries. Machine Learning Journal, 5,
121–150, 1990.

[9] A. Brazma, I. Jonassen, J. Vilo, E. Ukkonen. Pattern discovery in biosequences. In
Honavar and Slutski [37], pages 257–270.

[10] H. Bunke, A. Sanfeliu, eds. Syntactic and Structural Pattern Recognition, Theory and
Applications, volume 7 of Series in Computer Science. Singapore: World Scientific,
1990.

[11] J. Calera-Rubio, R.C. Carrasco. Computing the relative entropy between regular tree
languages. Information Processing Letters, 68(6), 283–289, 1998.

[12] R.C. Carrasco. Accurate computation of the relative entropy between stochastic regular
grammars. RAIRO (Theoretical Informatics and Applications), 31(5), 437–444, 1997.

[13] R.C. Carrasco, J. Oncina, eds. Grammatical Inference and Applications, Proceedings of
ICGI ’94, number 862 in LNAI, Berlin: Springer, 1994.

[14] R.C. Carrasco, J. Oncina. Learning stochastic regular grammars by means of a state
merging method. In ICGI’94 [13], pages 139–150.

[15] R.C. Carrasco, J. Oncina, J. Calera-Rubio. Stochastic inference of regular tree languages.
Machine Learning Journal, 44(1), 185–197, 2001.

[16] Z. Chi, S. Geman. Estimation of probabilistic context-free grammars. Computational
Linguistics, 24(2), 298–305, 1998.

[17] T. Cover, J. Thomas. Elements of Information Theory. New York: John Wiley, 1991.
[18] C. de la Higuera, J-C. Janodet. Inference of ω-languages from prefixes. Theoretical

Computer Science, 313(2), 295–312, 2004.
[19] C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine

Learning Journal, 27, 125–138, 1997.
[20] C. de la Higuera. Current trends in grammatical inference. In F.J. Ferri et al., eds.

Advances in Pattern Recognition, Joint IAPR International Workshops SSPR+SPR 2000,
volume 1876 of LNCS, pages 28–31. New York: Springer-Verlag, 2000.

[21] C. de la Higuera, P. Adriaans, M. van Zaanen, J. Oncina, eds. Proceedings of the Work-
shop and Tutorial on Learning Context-free grammars. ISBN 953-6690-39-X, 2003.

[22] C. de la Higuera, F. Casacuberta. Topology of strings: median string is NP-complete.
Theoretical Computer Science, 230, 39–48, 2000.

[23] C. de la Higuera, J. Oncina, E. Vidal. Identification of DFA: data-dependent versus
data-independent algorithm. In Miclet and de la Higuera [59], pages 313–325.

[24] A. de Oliveira, ed. Grammatical Inference: Algorithms and Applications, Proceedings
of ICGI ’00, volume 1891 of LNAI, Berlin: Springer, 2000.



166 de la Higuera

[25] T. Erlebach, P. Rossmanith, H. Stadtherr, A. Steger, T. Zeugmann. Learning one-variable
pattern languages very efficiently on average, in parallel, and by asking queries. In
M. Li, A. Maruoka, eds. Proceedings of ALT ’97, volume 1316 of LNCS, pages 260–
276, Berlin: Springer, 1997.

[26] H. Fernau. Learning tree languages from text. In J. Kivinen, R.H. Sloan, eds. Proceed-
ings of COLT 2002, number 2375 in LNAI, pages 153–168, Berlin: Springer, 2002.

[27] K.S. Fu. Syntactic Methods in Pattern Recognition. New York: Academic Press, 1974.
[28] K.S. Fu, T.L. Booth. Grammatical inference: Introduction and survey. Part I and II. IEEE

Transactions on Syst. Man. and Cybern., 5, 59–72, 409–423, 1975.
[29] P. Garcı́a, J. Oncina. Inference of recognizable tree sets. Technical Report DSIC-

II/47/93, Departamento de Lenguajes y Sistemas Informáticos, Universidad Politécnica
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