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Measures of Data and Classifier Complexity and the
Training Sample Size

Šarūnas Raudys

Summary. The size of the training set is important in characterizing data complexity. If a
standard Fisher linear discriminant function or an Euclidean distance classifier is used to
classify two multivariate Gaussian populations sharing a common covariance matrix, sev-
eral measures of data complexity play an important role. The types of potential classification
rules cannot be ignored while determining the data complexity. The three factors — sample
size, data complexity, and classifier complexity — are mutually dependent. In situations where
many classifiers are potentially useful, exact characterization of the data complexity requires
a greater number of characteristics.

3.1 Introduction

Today it is generally recognized that the complexity of a pattern recognition algo-
rithm should be chosen in accordance with the training sample size. The more com-
plex the classifier is, the more data are required for estimating its parameters reliably.
Conversely, if the sample size is small, one is obliged to use the simplest classifica-
tion algorithms (e.g., [9]). In addition, the complexity of the most suitable classifier
depends also on the complexity of the data.

Theory shows that the difference between generalization and asymptotic errors
of sample-based classifiers depends on both the sample size and the data configu-
ration. Consequently, data complexity affects both the sensitivity of the classifier to
training-set size and the complexity of the resultant decision boundary. For that rea-
son, there is no wonder that numerous attempts to introduce general measures of data
and classifier complexity that satisfy a majority of researchers did not lead to definite
success (see, e.g., comments in [6, 8]).

We believe that the concept ”complexity of the data” does not exist without ref-
erence to a concrete pattern recognition problem and a concrete decision-making
method. The measure of the data complexity depends on the purpose for which this
measure will be used. Three factors — the sample size, data complexity, and clas-
sifier complexity — are mutually related. An objective of this chapter is to examine
the complexity of the classification rule and that of the data from the point of view
of the sample size necessary to train the classifier.
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The study of data complexity is a complicated issue, and we do not expect to ob-
tain immediate success. For that reason, we restrict our main analysis to very simple
data models and two standard statistical classification algorithms. We will consider
linear decision boundaries and multivariate Gaussian distribution with a common
covariance matrix for two pattern classes.

3.2 Generalization Errors of Two Statistical Classifiers

In this section we present definitions of distinct types of classification errors: the
Bayes error, which is the asymptotic, conditional, and expected probabilities of mis-
classifications (PMC). We also present expressions of expected PMC (generalization
error) for two typical statistical classifiers frequently used in applications: the stan-
dard Fisher linear discriminant function and the Euclidean distance classifier.

Suppose one knows probability density functions (PDF) of the input vectors and
the prior probabilities of the pattern classes C1 and C2. One can then design the op-
timal Bayes classifier B, which, in classifying all possible vectors from C1 and C2,
results in a minimal probability of misclassification. This PMC is called the Bayes
error and is denoted by PB . The probability of misclassification of a classifier de-
signed from one particular training set using the classifier training algorithm A is
conditioned on this specific algorithm and on this particular training set. The error
rate for classifying the pattern vectors from the general population is called the con-
ditional probability of misclassification and is denoted by PA

N , where the index A in-
dicates that the classifier training algorithm A is utilized and the index N symbolizes
that the training set size is fixed. In the equation below, I assume N = N1 = N2,
where N1 and N2 are the sample sizes of the two classes. In theoretical analysis,
vectors of the training set may be considered as random ones; however, the sample
size (N1 and N2) is fixed. Then the conditional PMC, PA

N , may be considered as a
random variable too.

Let f(PA
N ) be the probability density function of the random variable PA

N and
let P̄A

N be its expectation over all possible randomly formed training sets of size
N1 and N2 for each of the two classes, respectively. This expectation is called an
expected probability of misclassification. The limit PA

∞ = lim
N1→∞,N2→∞

P̄A
N is called

an asymptotic probability of misclassification. In the neural network literature, both
the conditional and expected PMC frequently are called generalization error, often
without mentioning a proper distinction between the two notions.

The mathematical model of the data to be considered below are two multivariate
Gaussian distributions with different means, µ1,µ2, and a common covariance ma-
trix for both classes, Σ (the GCCM data model). The linear discriminant function
(DF)

g(X) = W T X + w0 (3.1)

is an asymptotically optimal (when N1 → ∞, N2 → ∞) decision rule for this data
model. In equation (3.1) W = Σ−1(µ1 − µ2), w0 = W T µ,µ = − 1

2 (µ1 + µ2),
and T denotes a transpose operation. The Bayes error rate can be expressed as
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PB = Φ{−δ

2
} = PA

∞, (3.2)

where Φ(c) is the cumulative distribution function of a standard N(0,1) Gaussian
random variable and δ is the Mahalanobis distance, δ2 = (µ1−µ2)T Σ−1(µ1−µ2).

In sample-based classifiers, the true values of the parameters µ1,µ2, and Σ are
unknown and are substituted by sample-based estimates. If one makes use of max-
imum likelihood estimates, µ̂1, µ̂2, Σ̂, one obtains the standard Fisher discriminant
function, F, with W F = Σ̂−1(µ̂1− µ̂2), w0 = W T µ̂, and µ̂ = −1/2(µ̂1 + µ̂2). The
Fisher DF was proposed 70 years ago; however, up to this day it remains one of the
most often used classification rules [4, 5, 12]. Approximately two dozen alternative
ways have been suggested to estimate the unknown coefficients of the linear discrim-
inant function in situations where either the data is non-Gaussian or the number of
training vectors is too small to estimate the covariance matrix reliably (see references
in [2, 3, 10, 11, 12]).

One easy way to develop a simple linear discriminant function is to ignore the co-
variance matrix. Then one obtains the Euclidean distance (nearest mean) classifier E.
Here only the mean vectors are used to calculate the weights: W E = µ̂1 − µ̂2, w0 =
W T µ̂. Therefore, it is less sensitive to sample size.

The expected (generalization) error of Fisher DF can be approximated by a rather
simple expression (see, e.g., [12, 14] and references therein)

P̄F
N ≈ Φ

{
− δ

2
1√

TMTΣ

}
(3.3)

where the term TM = 1 + 4p
δ2n arises due to the inexact sample estimation of the

mean vectors of the classes and the term TΣ̄ = 1 + p
n−p arises due to the inexact

sample estimation of the covariance matrix, p denotes the number of input variables
(the dimensionality of the feature vector), and n is the sample size: n = N1 + N2.
In equation (3.3) we assume N1 = N2 = N . An asymptotic error of Fisher linear
classifier, P̄F

∞, can be computed when N1 → ∞, N2 → ∞, and thus P̄F
N → P̄F

∞.
Note, for GCCM data model, the Bays error is P̄F

∞ = PB .
In an analogous expression for the Euclidean distance classifier (EDC) we have

to skip the term TΣ̄. This analytical expression for the generalization error of EDC
is valid if the data distribution is spherically symmetric Gaussian, i.e.,

Σ = σ2

⎡
⎢⎢⎣

1 0 0
0 1 0

. . .
0 0 1

⎤
⎥⎥⎦ = σ2I,

where I is the identity matrix and σ2 is a positive scalar constant.
In real-world applications, the input variables are often correlated. In those cases

the asymptotic errors differ:

PE
∞ = Φ{−δ∗

2
} ≥ P̄F

∞ = PB , (3.4)
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where PE
∞ is the asymptotic error of EDC, and δ∗ is an effective distance between

pattern classes,

δ∗ =
(µ1−µ2)T (µ1−µ2)√
(µ1−µ2)T Σ̄(µ1−µ2) .

(3.5)

The expected PMC of EDC is also affected by an effective number of features
p∗,

P̄E
N ≈ Φ

{
− δ∗

2
1√

1 + 4p∗
n(δ∗)2

}
, (3.6)

where

1 ≤ p∗ =
((µ1−µ2)T (µ1−µ2))

2tr(Σ2)
((µ1−µ2)T Σ(µ1−µ2)T )2

≤ ∞. (3.7)

3.3 Complexities of the Classifiers and the Data

Perhaps the least complicated theoretical data model in pattern recognition is the
spherically symmetric Gaussian distribution. Here all variables are uncorrelated and
have identical variances. In such a situation, PE

∞ = PF
∞ = PB , p∗ = p, and δ∗ = δ.

Only two parameters are needed to describe the data distribution: the dimensionality
p and the Mahalanobis distance δ. This data model is illustrated with the pair of
classes C1, C2 in Figure 3.1.

In a majority of known generalization error studies, the complexity of the data
is characterized by the dimensionality only (see, e.g., [1, 17]). The equations pre-
sented in the previous section advocate that, from the point of view of statistical pat-
tern recognition, a difference between the asymptotic and expected probabilities of
misclassification also is inducing the complexity of the data. The situation becomes
much more complicated in the case where input variables are mutually correlated.
Then it may happen that δ∗ < δ or even δ∗ << δ (for illustration see the pair of
classes C6, C7 in Fig. 3.1). It may also happen that the effective dimensionality p∗

is close to 1 (the pair of classes C4, C5 in Fig. 3.1). In this case, for EDC the actual
dimensionality of the data is one. Thus, looking from a perspective of a difference
between expected and asymptotic error rates, the pair of classes C4, C5 is very sim-
ple for EDC; however, it becomes more complex for the Fisher classifier. In another
extreme case, p∗ tends to infinity (the pair of classes C3, C4 in Fig. 3.1). In the latter
case, the distribution of pattern classes is much more “complicated” for the EDC.
For the Fisher classifier, however, the complexity of the data remains the same.

The following measures of complexity could be useful in characterizing the com-
plexity of the data from the point of view of classification error:

P̄F
N/P̄E

N , P̄F
N/PF

∞, P̄E
N/P̄E

∞,

min(P̄F
N , P̄E

N )/PB , PE
∞/PB , PF

∞/PB , PE
∞/PF

∞, p/p∗. (3.8)
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Fig. 3.1. Effect of the covariance matrix and the difference between the mean vectors, µ̂1−µ̂2,
on the effective dimensionality p∗ and the effective distance δ∗: for classes C1 and C2, p∗ =
p = 2, δ∗ = δ; for C3 and C4, p∗ >> p, δ∗ = δ; for C4 and C5, p∗ << p, δ∗ = δ. For
classes C6 and C7, δ∗ << δ, p∗ = 1.8 (DFE and DFF are the decision boundaries of the
EDC and the Fisher classifiers, respectively).

Instead of the ratios, absolute differences between each pair of quantities could
be utilized too. At first sight, in terms of these measures, the simplest data model
is the spherically symmetric Gaussian distribution where PE

∞/PF
∞ = 1 and p∗ = p.

From this viewpoint, it seems that the measure γEF∞ = PE
∞/PF

∞ is quite reasonable.
Condition γEF∞ = 1 indicates that the data set is simple enough and the simple
classifier EDC can be used instead of the more complex Fisher classifier. It is true
only if one does not take into account the fact that the training sample size is finite. A
deeper examination reveals, however, that the situation could exist where p∗ >> p.
In such cases, instead of EDC, the Fisher classifier could become more useful.

If PE
∞/PF

∞ = 1 and p∗ is close to 1, one prefers to use EDC. In those cases, the
intrinsic dimensionality for the data is equal to 1, and such data models should be
considered as very simple. For that reason, the parameter γEF∞ alone is insufficient
to characterize the data complexity. In fact all four parameters, p, δ, and p∗, δ∗,
jointly determine the complexity of a pattern recognition task if the data distribution
is Gaussian with a common covariance matrix for the two classes, such that either
EDC or Fisher potentially could be used for classification.

The data complexity problem becomes even more complicated if more types of
classification rules are considered as potential candidates for decision making. Con-
sider the GCCM data model. Let p = 200, N1 = N2 = 100, and δ = 3.76 (PF

∞ =
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0.03). Then the Fisher classifier will result in approximately 11% error. Such a high
generalization error rate means that the sample size is too small. If the features are
correlated, it could happen that PE

∞/PF
∞ >> 1. Therefore, EDC will be an inappro-

priate classifier too.
A number of ways could be attempted in order to design the classifier given small

sample size and high feature dimensionality. Examples are dimensionality reduction
by feature selection or feature extraction, different regularization methods, and struc-
turalization of the covariance matrix with a small number of parameters [12, 16].

A rather universal structuralization method is to approximate the dependence
structure among the variables by the first-order tree dependence. Here the probability
density function is approximated by the product of p−1 conditional and one marginal
density:

p(x1, x2, ..., xp) =
n∏

j=1

f(xj |xmj)(1 ≤ mj ≤ p). (3.9)

In representation equation (3.9) the sequence m1, m2, ...,mp constitutes an un-
known permutation of the integers, and f(x1|m1), by definition, is equal to p(x1). In
a general case, the covariance matrix has p × p nonzero elements. An inverse of this
matrix Σ−1, however, has only 2p−1 distinct nonzero elements. Thus, to design the
Fisher classifier with the first-order tree type structuralized covariance matrix (de-
noted by FT1), we estimate 2p parameters that are different in the opposite pattern
classes and 2p−1 parameters that are common for both classes. In addition, we need
to know the permutation m1, m2, ...,mp.

In practice, unknown permutations have to be found from the sample covariance
matrix. The theory shows that the expected PMC of this classifier is expressed by
equation (3.3) with TΣ̄ = 1 [12, 18]. Experiments with a dozen real-world data sets
indicated that in a majority of cases, such a decision-making rule outperforms both
the Euclidean distance and the Fisher classifiers [13].

For a layman, it seems that such a data model is very complex; we have to under-
stand the permutation structure and know how to estimate it and the coefficients of
the structuralized covariance matrix. For an expert in pattern recognition equipped
with well-organized software, such a model (the case where the dependencies be-
tween p input variables are determined by the first-order tree dependence model, so
that the asymptotic errors PFT1∞ ≈ PF

∞) implies that the classifier FT1 has very fa-
vorable small sample properties: P̄FT1

N /PFT1∞ ≈ P̄E
N/P̄E

∞. For him or her the data
set for classifier FT1 is rather simple. In contrast, for the Euclidean distance and the
Fisher classifiers this data set is complex. The above considerations about the first-
order tree dependence model advocate that the complexity of data depends also on
the researcher’s knowledge about this model and on the presence of the software for
estimating the structuralized covariance matrix.
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3.4 Other Classifiers and Concluding Remarks

Our main concern in this chapter is to show that the complexity of data should be
evaluated from the standpoint of the classifier utilized for decision making. In sec-
tions 3.2 and 3.3 we considered the unimodal GCCM model where a linear decision
rule is asymptotically optimal. Even in such a simple data model, we have found that
a number of issues are important while evaluating the data complexity.

If the covariance matrices of the classes are different, i.e., Σ2 �= Σ1, the as-
ymptotically optimal classifier is a quadratic disriminant function (DF). A good al-
ternative in the two-class case is a linear classifier suggested by Anderson-Bahadur
(known as the AB procedure) where the weight vector is expressed as (see, e.g., [12])

wAB = (Σ1α + Σ2)−1(µ1 − µ2) (3.10)

The unknown coefficients α1 and threshold weight w0 have to be found to min-
imize certain selected classification performance criteria. If Σ2 �= Σ1, the differ-
ences among the asymptotic errors of the quadratic DF, the AB procedure, and the
Fisher linear DF will affect the evaluation of the data complexity. If the sample size
is taken into account, one needs to remember that the quadratic DF is very sensitive
to sample size if the dimensionality of the input feature space is high. In a relatively
small region of a multidimensional feature space where the pattern classes overlap,
the quadratic DF can be approximated by a hyperplane. In the remaining space, we
will have relatively few overlapping vectors. Therefore, in a major part of the mul-
tivariate feature space, an exact position of the decision boundary is not important.
Simulations show that small sample properties of the AB procedure are much more
favorable than that of the quadratic DF. Therefore, in many real-world two-class
problems, the AB procedure works as well as or even better than the quadratic clas-
sifier [12, 14].

A very important concern in considering the quadratic DF is the fact that the ex-
pected classification error depends on the sample sizes of both classes, i.e., N1 and
N2. Such a situation is characteristic of nonoptimal statistical classifiers trained with
the plug-in design principle [5]. Another example where both sample sizes N1 and
N2 are affecting the generalization error is a multinomial classifier, such as the one
used in the behavior knowledge space method (see, e.g.. [7, 12]). In certain situa-
tions, an increase in the number of training vectors of one pattern class increases the
generalization error instead of decreasing it! [12, 15]. Therefore, while characteriz-
ing data complexity; both sample sizes N1 and N2 are important.

In addition to statistical pattern recognition and heuristically based methods, lin-
ear classifiers can be obtained by other procedures, such as by training a single layer
perceptron (SLP). In this way, one may obtain the EDC, regularized and robust dis-
criminant analysis, the standard Fisher rule and that with covariance matrix pseudo-
inversion, the minimum empirical error classifier, as well as the support vector ma-
chine [11, 12]. Which classifier will be obtained depends on the training parameters
and, most importantly, on stopping moment. Thus, the SLP is not a single classifi-
cation rule. It is a set of different rules of diverse complexity. Here the classifier’s
complexity is measured in terms of a number and a type of parameter of distribution
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density function if statistical methods would be utilized to estimate the weights of the
linear classifier. Some data sets could be very difficult for SLP training at the very
beginning; however, it becomes “easier” later. For example, the GCCM data with
low p and very high p∗ could become very difficult for the classical SLP training
procedure [12].

In difficult pattern classification problems, we deal with multimodal distribution
densities of input pattern vectors. In such situations nonparametric (local) classifica-
tion rules (k-NN, Parzen window, decision trees, etc.) have to be applied [5]. Com-
plexities of the local classification rules could be characterized by values of smooth-
ing parameters like the number of nearest neighbors, k, in the k-NN rule or the kernel
width in the Parzen window classifier. Optimal values of these parameters have to be
chosen according to the sizes of the training set (N1 and N2). Consequently, we have
a vicious circle: the complexity of the data depends on the complexity of the optimal
local classifier. Optimal parameters of these classifiers depend on training sample
size and data complexity.

Generally speaking, each new pattern classifier that potentially could be utilized
for classification introduces one or several measures of complexity. Yet a large num-
ber of characteristics is impractical to determine data complexity in concrete work.
As a compromise, a question arises: could some of the measures be clustered into a
smaller number of groups? The question remains unanswered. Factors similar to that
presented in equation (3.8) should be taken into account while trying to taxonomize
the data sets obtained in real experiments — comparative measures of asymptotic
errors of distinct classifiers, and the small sample properties of them.

In this chapter we discussed the possibilities and difficulties in estimating data
complexity assuming some simple data models, such as the spherically symmetric
Gaussian, where certain simple classifiers are known to be suitable. Based on the
behavior of several popular classifiers, a number of possible measures for the diffi-
culty of a classification task were given, each representing the perspective of some
specific classifiers. Examples were shown where the same problem may appear easy
or difficult depending on the classifier being used, through the influences of the den-
sity parameters and the sample sizes on the relevant measures such as the effective
dimensionality and the effective Mahalanobis distance.

Returning to the GCCM data model, it is worth mentioning also that the estima-
tion of complexity parameters from experimental data may become very problem-
atic. For example, in estimating the effective number of features p∗ [equation (3.7)],
we have to estimate the means and the covariance matrix. The confidence interval in
estimating parameter p∗ is too wide to be practically useful. Thus, the estimation of
parameter p∗ is more difficult and less reliable than training the linear Fisher classi-
fier. This fact suggests once more that the estimation of data complexity measures is
not necessarily easier than training a classifier for the task.
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