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Summary. The complexity of a pattern recognition problem is determined by its representa-
tion. It is argued and illustrated by examples that the sampling density of a given data set and
the resulting complexity of a learning problem are inherently connected. A number of crite-
ria are constructed to judge this complexity for the chosen dissimilarity representation. Some
nonlinear transformations of the original representation are also investigated to illustrate that
such changes may affect the resulting complexity. If the initial sampling density is originally
insufficient, this may result in a data set of a lower complexity and with a satisfactory sam-
pling. On the other hand, if the number of samples is originally abundant, the representation
may become more complex.

2.1 Introduction

To solve a particular problem, one will be interested in its complexity to find a short
path to the solution. The analyst will face an easy and straightforward task if the
solution follows directly from the way the problem is stated. The problem will be
judged as complex if one needs to use a large set of tools and has to select the best
procedure by a trial-and-error approach or if one has to integrate several partial solu-
tions. A possible way to proceed is to simplify the initial problem, e.g., by removing
its most weakly determined aspects. This chapter focuses on these two issues: judg-
ing the complexity of a problem from the way it is presented, and discussing some
ways to simplify it if the complexity is judged as too large.

The complexity of pattern recognition problems has recently raised some interest
[16, 17]. It is hoped that its study may contribute to the selection of appropriate
methods to solve a given problem. As the concept of problem complexity is still
ill-defined, we will start to clarify our approach, building on some earlier work [10].

Pattern recognition problems may have some intrinsic overlap. This does not con-
tribute to the problem complexity, as an existing intrinsic overlap cannot be removed
by any means. The complexity of the problem lies in difficulties one encounters in
the above sketched sense, while approaching a classification performance related to
the intrinsic class overlap. Because problems are numerically encoded by data sets
representing the classes of objects for which either pattern classes have to be learned
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or classifiers have to be determined, the complexity of the recognition problem is
the complexity of the representation as one observes through some data set. Such
representations heavily influence the complexity of the learning problem.

An important aspect of the representation is the nature of numerical encoding
used for the characterization of objects, as, for example, features or proximities be-
tween pairs of objects, or proximities of objects to class models. Even if objects are
first represented in a structural form, such as relational graphs or strings, we will
assume that a numerical representation (e.g., by dissimilarities) is derived from such
an intermediate description. In addition, the number of objects in the data set, i.e.,
the sample size, and the way the objects are sampled from the problem (at random or
by some systematic procedure) influence the complexity. As the exploration or clas-
sification problems have to be solved using a data set based on some representation,
the complexity of the problem is reflected by the data set and the representation.

This chapter focuses on the influence of sample size on the complexity of data
sets used for learning pattern classes. These classes are characterized by dissimilarity
representations [22, 23], which are primarily identified by sample sizes and not yet
by the dimensionality of some space, as feature vector representations are. Since
the given problem, the chosen representation and the derived data set are essentially
connected, we will use the word complexity interchangeably with respect to these
three concepts.

To analyze complexity in learning, one needs to understand better what com-
plexity is. In general, complexity is defined as “the quality of being intricate and
compounded” [34]. Loosely speaking, this means that an entity, a problem, a task, or
a system is complex if it consists of a number of elements (components) related such
that it is hard to separate them or to follow their interrelations. Intuitively, an entity is
more complex if more components and more interdependencies can be distinguished.
So, complexity can be characterized by the levels and the kinds of distinction and de-
pendency. The former is related to the variability, i.e., the number of elements,and
their size and shape, while the latter refers to the dependency between the compo-
nents. It will be a key issue of this chapter to make clear that the set of examples used
to solve the pattern recognition problem should be sufficiently large in order to meet
the complexity of the representation.

Reductionism treats an entity by the sum of its components or a collection of
parts. Holism, on the other hand, treats an entity as a whole, hence it does not ac-
count for distinguishable parts. The complexity can be seen as an interplay between
reductionism and holism: it needs to see distinct elements, but also their interrela-
tions, in order to realize that they cannot be separated without losing a part of their
meaning; see also the development of the science of complexity as sketched by Wal-
drop [31]. In fact, reductionism and holism can be seen on different, organizational
levels. For instance, to understand the complexity of an ant colony (see Hofstadter’s
chapter on “Ant Fugue” [18]), one needs to observe the activities of individual ants
as well as the colony as a whole. On the level of individuals, they may seem to move
in random ways, yet on the level of specialized casts and the colony, clear patterns
can be distinguished. These relate to a sequential (ants following other ants), parallel
(groups of ants with a task), and simultaneous or emergent (the global movement)
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behavior of the colony. Therefore, complexity might be described by hierarchical
systems, where the lowest, indivisible parts serve for building higher level structures
with additional dependencies and abstraction (symbolism or meaning).

Complexity can also be placed between order and disorder (chaos). If all ants
follow sequentially one another, then although the ant colony is composed of many
individuals, its complexity is low because the pattern present there is simple and
regular. In this sense, the colony possesses redundant information. A single ant and
a direction of move will completely describe the entire colony. On the other hand,
if individual ants move in different directions, but emerge into a number of groups
with different tasks and following specified paths, the complexity of the ant colony
becomes larger. Finally, if all ants move independently in random ways without any
purpose and grouping behavior, no clear patterns can be identified. As a result, there
is no complexity as it is just chaos. Therefore, complexity may be characterized by
the surprise or unexpectedness on a low level that can be understood as following the
structure observed from a higher point of view. In brief, following Waldrop’s point
of view [31], complexity arises at the edge of structure and chaos as it is pictorially
illustrated in Figure 2.1.

complexity

patterns in

| , |
| structure

simple order  emergent structure chaos

Fig. 2.1. Complexity vs. structure.

In pattern recognition one distinguishes the task of finding a classifier between
some real-world classes of objects or phenomena. This task is defined on a high
level. The classes may have some hidden structure that is partially reflected in the
initial representation by which the problem is presented. For instance, this can be by
features, dissimilarities, graphs, or other relations. Another part of the structure is
implicitly available in the set of examples from which the pattern classifier has to be
learned. The wholeness of the recognition problem is thereby available to us in its
reduction to a set of examples by a chosen representation: the data set. The path from
a pattern recognition problem to a data set determines the complexity we encounter
if we try to solve the problem based on the given data set. The complexity of a
pattern recognition problem (its intrinsic complexity) is simply not defined before a
representation is chosen and a set of examples is collected. In the end, the data set
depicts our problem.

The following example may illustrate this point. Imagine an automatic sorting of
apples and pears on a moving conveyor. The complexity of this problem depends on
a selection of a representative sample of apples and pears to learn from, initial mea-
surements done by some sensors or other devices (images, spectral images, or simple
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characteristics such as weight, perimeter, or color) and the derived representation. In
a chosen representation, the problem is complex if many examples are necessary to
capture the variability and organization within the classes as well as the interrelations
between the classes, leading to complicated decision functions. If one wishes to dis-
criminate between apples and pears based on their weights only, such a problem will
likely be simple. The reason is that a few suitably chosen examples will determine
reliable thresholds on which such a decision relies, independently of whether this
leads to frequent errors or not. On the other hand, if various Fourier coefficient and
shape descriptors are computed on the images of apples and pears and treated as fea-
tures, the resulting problem may become complex. Changes in light illumination or
tilts of a camera may increase the variability of the (images of) apples and pears as
perceived in their vector representations. This would require a large sample for a de-
scription. So, it is the representation that determines the complexity of the problem.
We encounter this complexity through the data that are available.

Note, that the use of the data set as such is insufficient for solving the problem.
It is just chaos if no additional background knowledge, such as the context, the way
the examples are collected, or the way the numbers are measured, is given. This is
very clearly shown by the “no free-lunch theorem” [33], which states that without
additional knowledge, no learning algorithm is expected to be better than another. In
particular, no learning algorithm outperforms a random assignment.

A very useful and often implicitly assumed type of knowledge used for a con-
struction of the given data set is the compactness hypothesis [1, 8]. It states that
similar real-world objects have similar representations. In practice, this hypothesis
relies on some continuous mapping from an object to its (numerical) representation,
because it is expected that a small change in an object will result in a small change
in its representation. Still, the path from an object to its representation may be very
nonlinear (and thereby attributing to the complexity of the problem), resulting in the
violation of the reverse compactness hypothesis. This means that similar representa-
tions (e.g., feature vectors lying close in a feature vector space) may not necessarily
refer to similar objects. This causes a class overlap (identical representations belong
to essentially different objects as they differ in class membership) or complicates
decision boundaries.

In a given data set of a limited cardinality the compactness might not be en-
tirely realized if insufficient real-world objects are collected. Hence, it cannot be
guaranteed that each object has at least one close companion. The complexity of the
problem then demands a higher sampling density of (training) examples to make its
characteristics apparent. As a result, the assumption needed for building classifiers
on the data set is invalid and it is impossible to solve the pattern recognition prob-
lem with a sufficient accuracy. The data set resembles chaos (as patterns cannot be
distinguished) and the structure of the problem cannot be determined.

The above discussion makes clear that complexity and sample size are inter-
related. Complex problems (due to a complicated way they are represented by the
data sets) need more samples. A question that arises now is: if the data set is in-
sufficiently large, is it thereby less or more complex? We will return to this in the
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discussion section. In brief, the following issues are more explicitly studied by some
examples:

e The influence of representation on the problem complexity
e The relation between the problem complexity and the necessary sample size
e The consequences of using too small sample sizes for solving complex problems

Our examples are based on a number of dissimilarity representations, which allow
one to apply various modifications and transformations in a simple way. In section 2,
the data sets and procedures are summarized. In section 3, various criteria are pro-
posed and investigated to judge the sampling of single classes. Section 4 investigates
and discusses the complexity issues in relation to classification. A final discussion is
presented in section 2.5.

2.2 Data Sets

To limit the influence of dimensionality issues on the relations between the sample
size and the complexity, we will focus on dissimilarity representations [22, 23, 26].
These are representations in which a collection of objects is encoded by their dissim-
ilarities to a set of chosen examples, a so-called representation set. The reason we
choose this name is twofold. First, the representation set is a set of examples that are
not necessarily prototypical for the classes according to the usual understanding (on
the contrary, some of them might be outliers). Second, this set serves for a construc-
tion of a representation space, in which both exploration and learning are performed.
The representation set may be the training set itself, its randomly or selectively cho-
sen subset or some other set. The representation set R = {p1,p2,...,pn} of n
examples, the (training) set T = {x1,23,...,2y5} of N objects, and the dissimi-
larity measure d constitute together the representation D (7', R). This is an N x n
dissimilarity matrix, in which every entry d(z,, p;) describes the difference between
the object ¢; and the representation object p;.

Problems with various metric and nonmetric dissimilarity measures are chosen
for the study. Six data sets are used in our experiments and are briefly summarized in
Table 2.1. In addition to the given dissimilarity measures as listed in this table, two
monotonic power transformations will be also investigated. Concerning the original
representation D = (d;;), the transformed representations are denoted as D** = (dz,)
and D*° = (d;°), by taking the element-wise square or square root of the dissim-
ilarities d;;, respectively. Note that the metric properties of the measure d are pre-
served by a square root transformation, but not necessarily by a quadratic transfor-
mation [22]. By such modifications, it is expected that either large dissimilarities
and, thereby, more global aspects of the data set are emphasized in D*? or large
dissimilarities are suppressed in D*°-3, by which local aspects are strengthened. Re-
member that nondecreasing transformations like these do not affect the order of the
given dissimilarities. Thereby, the nearest neighbor relations are preserved.

Digits-38. The data describe a set of scanned handwritten digits of the National
Institute of Standards and Technology (NIST) data set [32], originally given as 128 x
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Table 2.1. Data sets used in the experiments.

Data Dissimilarity Property | # classes | # objects per class
Digits-38 Euclidean Euclidean 2 1000
Digits-all Template-match | Nonmetric 10 200

Heart Gower’s Euclidean 2 139/164
Polygon Mod. Hausdorft | Nonmetric 2 2000
ProDom Structural Nonmetric 4 878/404/271/1051
Tumor-mucosa || [y.g-distance Nonmetric 2 132/856

128 binary images. Just two classes of digits, 3 and 8, are considered here. Each
class consists of 1000 examples. The images are first smoothed by a Gaussian kernel
with o =8 pixels and then the Euclidean distances between such blurred images are
computed (summing up the squares of pixel-to-pixel gray value differences followed
by the square root). The smoothing is done to make this distance representation more
robust against tilting or shifting.

Digits-all. The data describe a set of scanned handwritten digits of the NIST data
set [32], originally given as 128 x 128 binary images. The similarity measure, based
on deformable template matching, as defined by Jain and Zongker [20], is used. Let
S =(s;;) denote the similarities. Since the similarity is asymmetric, the off-diagonal
symmetric dissimilarities are computed as d;; = (s;; + s;; — 8i; — sji)1/2 fori # j.
D is significantly nonmetric [24].

Heart. This data set comes from the University of California, Irvine (UCI) Ma-
chine Learning Repository [2]. The goal is to detect the presence of heart disease
in patients. There are 303 examples, of which 139 correspond to diseased patients.
Various measurements are performed; however, only 13 attributes are used by other
researchers for the analysis, as provided in Blake and Merz [2]. These attributes
are age, sex (1/0), chest pain type (1-4), resting blood pressure, serum cholesterol,
fasting blood sugar >120 mg/dl (1/0), resting electrocardiograph results, maximum
heart rate achieved, exercise-induced angina (1/0), the slope of the peak exercise ST
segment, ST depression induced by exercise relative to rest (1-3), number of major
vessels colored by fluoroscopy (0-3), and heart condition (normal, fixed defect, and
reversible defect). Hence, the data consist of mixed types: continuous, dichotomous,
and categorical variables. There are also several missing values.

Gower’s [14] dissimilarity is used for the representation. Assume m features and
let x;;, be the kth feature value for the ¢th object. A similarity measure is defined as

m
o D k1 Wk Oijk Sijk
ij — m
D ko1 Wk Oijk

where s;;;, is the similarity between the ith and jth objects based on the kth feature
fi only, and §;;, = 1, if the objects can legitimately be compared, and zero otherwise,
as, for example, in the case of missing values. For dichotomous variables, 0;;; =0
if z;1, = xj, = 0 and d;5, = 1 otherwise. The strength of feature contributions is
determined by the weights wy, which are omitted here as all wy, = 1. The similarity

2.1
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Sijks i,j =1,...,nand k=1,...,m becomes then s;;; =1 — W if fy, is
quantitative, s;;, =7 ((x; = xj) = 1) if f is dichotomous, s, =7 (xi = ;1)
if fi, is categorical and s;5, = 1 — g(lx"“rix”“) where 7, is the range of fj and
g is a chosen monotonic transformation if fk is ordinal. The Gower’s dissimilarity

between the ith and jth objects is defined as d;; = (1 — s;;)*/2.

Polygon. The data consist of two classes of randomly generated polygons, con-
vex quadrilaterals and irregular heptagons [22, 24]. Each class consists of 2000 ex-
amples. First, the polygons are scaled such that their total contour lengths are equal.
Next, the modified Hausdorff distances [7] are computed between their corners. Let
A and B be two polygons. The modified Hausdorff distance is defined as
dun (A, B) =max{d;,, (4, B), dz,.(B, A)},
where &>, .. (A, B)= |A| Y qca Mingep d(a,b),
and it is evaluated at the polygon corners a and b. This measure is nonmetric [7, 22].

ProDom. ProDom is a comprehensive set of protein domain families [5]. A sub-
set of 2604 protein domain sequences from the ProDom set [5] was selected by Roth
et al. [28]. These examples are chosen based on a high similarity to at least one se-
quence contained in the first four folds of the Structural Classification of Proteins
(SCOP) database. The pairwise structural alignments are computed by Roth using
the FASTA software [12]. Each SCOP sequence belongs to a group as labeled by
the experts [21]. We use the same set in our investigations. Originally, a structural
symmetric similarity S = (s;;) is derived first. Then, the nonmetric dissimilarities
are obtained by d;; = (s;; + 555 — 2545)'/? fori # j.

Tumor-mucosa. The data consist of the autofluorescence spectra acquired from
healthy and diseased mucosa in the oral cavity [29]. The spectra were collected from
97 volunteers with no clinically observable lesions of the oral mucosa and 137 pa-
tients having lesions in oral cavity. The measurements were taken using the excitation
wavelength of 365 nm. After preprocessing [30], each spectrum consists of 199 bins.
In total, 856 spectra representing healthy tissue and 132 spectra representing diseased
tissue were obtained. The spectra are normalized to a unit area. Here, we choose the
nonmetric [y g-distances (I,-distance is dp,(x, y) =[>_, (xr — yk)p]l/”) between the
first-order Gaussian-smoothed (o =3 samples) derivatives of the spectra.' The zero-
crossings of the derivatives indicate the peaks and valleys of the spectra, so they are
informative. Moreover, the distances between smoothed derivatives contain some in-
formation of the order of bins. In this way, the property of a continuity of a spectrum
is somewhat taken into account. This data set suffers from outliers, which are pre-
served here as we intend to illustrate their influence on the complexity.

! 1,-distances, p < 1, may be useful for problems characterized by the presence of a scattered
and very heterogeneous class, such as the class of diseased people here. The effect of large
absolute differences is diminished by p < 1. Indeed, this measure was found advantageous
in our earlier experiments [22].



32 Duin and Pekalska

2.3 Criteria for Sampling Density

Consider an nxn dissimilarity matrix D(R, R), where R = {p1,p2,...,pn} is a
representation set. In general, R may be a subset of a larger learning set 7', but
we assume here that R = T'. Every object p; is then represented by a vector of
dissimilarities D(p;, R),i=1,2, ..., n, to the objects from R. The research question
to be addressed is whether n, the cardinality of R, is sufficiently large for capturing
the variability in the data or, in other words, whether it is to be expected that only little
new information can be gained by increasing the number of representation objects.
This can be further rephrased as judging whether new objects can be expressed in
terms of the ones already present in R or not. Given the dissimilarity representations,
some criteria are proposed to judge its sampling sufficiency, and their usefulness is
experimentally evaluated on the data sets introduced in section 2. We focus here on
a set of unlabeled objects forming a single class.

Some possible statistics that can be used are based on the compactness hypothesis
[1, 8, 9], which was introduced in section 2.1. As it states that similar objects are also
similar (close) in their representation, it constrains the dissimilarity measure d in the
following way: d has to be such that d(z, y) is small if the objects = and y are very
similar; i.e., it should be much smaller for similar objects than for objects that are
very different.

Assume that the dissimilarity measure d is definite, i.e., d(z, y) =0 iff the objects
x and y are identical. If the objects are identical, they belong to the same class. This
reasoning can be extended by assuming that all objects z for which d(z, z) <¢, and
the positive ¢ is sufficiently small, are so similar to z that they belong to the same
class as z. Consequently, the dissimilarities of x and z to the representation objects
should be close (or positively correlated, in fact). This means that d(x, p;) = d(z, p;),
implying that the representations d(z, R) and d(z, R) are also close. We conclude
that for dissimilarity representations that satisfy the above continuity, the reverse
compactness hypothesis holds, as objects that are similar in their representations are
also similar in reality. Consequently, they belong to the same class.

A representation set R can be judged as sufficiently large if an arbitrary new
object of the same class is not significantly different from all other objects of that
class in the data set. This can be expected if R already contains many objects that
are very similar, i.e., if they have a small dissimilarity to at least one other object.
All the criteria studied below are based, in one way or another, on this observation.
In pathological cases, the data set may contain just an optimal set of objects, but if
there are no additional objects to validate this, it has to be considered as being too
small.

We will illustrate the performance of our criteria on an artificial example and
present also the results for some real data sets. The artificial example is chosen to
be the [y g-distance representation between n normally distributed points in a k-
dimensional vector space R*. Both n and k vary between 5 and 500. If n < k,
then the generated vectors lie in an (n — 1)-dimensional subspace, resulting in an
undersampled and difficult problem. If n > k, then the data set may be judged as
sufficiently sampled. Large values of k lead to difficult (complex) problems as they
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demand a large data cardinality n. The results are averaged over 20 experiments,
each time based on a new, randomly generated data set. The criteria are presented
and discussed below.

2.3.1 Specification of the Criteria

Sampling criteria for dissimilarity representations are directly or indirectly addressed
in three different ways: by the dissimilarity values as given; in dissimilarity vector
spaces, in which every dimension is defined by a dissimilarity to a representation
object and in embedded vector spaces, which are determined such that the origi-
nal dissimilarities are preserved; see [22, 23, 25] for more details. Each criterion is
introduced and illustrated by a separate figure, e.g., Figure 2.2 refers to the first crite-
rion. The results for artificially generated Gaussian data sets with the dimensionality
k varying from 5 to 500 represented by a Euclidean distance matrix D are always
shown on the top. Then, the results of other statistics are presented as applied to the
six real data sets.

Skewness. This is a statistic that evaluates the dissimilarity values directly. A new
object added to a set of objects that is still insufficiently well sampled will generate
many large dissimilarities and just a few small ones. As a result, for unsatisfactory
sampled data, the distribution of dissimilarities will peak for small values and will
show a long tail in the direction of large dissimilarities. After the set becomes “sat-
urated,” however, adding new objects will cause the appearance of more and more
small dissimilarities. Consequently, the skewness will grow with the increase of | R|.
The value to which it grows depends on the problem.

Let the variable d denote now the dissimilarity value between two arbitrary ob-
jects. In practice the off-diagonal values d;; from the dissimilarity matrix D = (d;;)
are used for his purpose. As a criterion, the skewness of the distribution of the dis-
similarities d is considered as

3
. 2.2

where E[-] denotes the expectation. In Figure 2.2, top, the skewness of the Gaussian
sets are shown. The cardinalities of small representation sets appear to be insufficient
to represent the problem well, as it can be concluded from the noisy behavior of
the graphs in that area. For large representation sets, the curves corresponding to
the Gaussian samples of the chosen dimensionality “asymptotically” grow to some
values of J,i. The final values may be reached earlier for simpler problems in low
dimensions, like £ =5 or 10. In general, the skewness curves for various k correspond
to the expected pattern that the simplest problems (in low-dimensional spaces) reach
the highest skewness values, whereas the most difficult problems are characterized
by the smallest skewness values.

Mean rank. An element d;; represents the dissimilarity between the objects p;
and p;. The minimum of d;; over all indices j points to the nearest neighbor of
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Di, say, p, if z = argminj#(dij). So, in the representation set R, p, is judged as
the most similar to p;. We now propose that a representation D(p;, R) describes
the object p; well if the representation of p,, i.e., D(p., R), is close to D(p;, R)
in the dissimilarity space D(-, R). This can be measured by ordering the neighbors
of the vectors D(p;, R) and determining the rank number r¥Y of D(p,, R) in the
list of neighbors of D(p;, R). By this we compare the nearest neighbor as found in
the original dissimilarities with the neighbors in the dissimilarity space. For a well-
described representation, the mean relative rank

1 n
e = — NN _ 1 23
n;r 2.3)

is expected to be close to 0. In Figure 2.3, top, the results for the Gaussian example
are shown. It can be concluded that the sizes of the representation set R larger than
100 are sufficient for Gaussian samples in 5 or in 10 dimensions.

PCA (principal component analysis) dimensionality. A sufficiently large rep-
resentation set R tends to contain some objects that are very similar to each other.
This means that their representations, the vectors of dissimilarities to R, are very sim-
ilar. This suggests that the rank of D should be smaller than |R], i.e., rank(D) < n.
In practice, this will not be true if the objects are not alike. A more robust crite-
rion, therefore, may be based on the principal component analysis applied to the
dissimilarity matrix D. Basically, the set is sufficiently sampled if n, the number of
eigenvectors of D for which the sum of the corresponding eigenvalues equals a fixed
fraction «, such as 0.95 of the total sum of eigenvalues (hence « is the explained
fraction of the variance), is small in comparison to n. So, for well-represented sets,
the ratio of n, /n is expected to be smaller than some small constant (the faster the
criterion curve drops with a growing R, the smaller intrinsic dimensionality of the
dissimilarity space representation). Our criterion is then defined as

L2

Jpca,oz = ?7 24

with n,, such that =31 A\;/ >_"*_; ;. There is usually no integer n,, for which
the above holds exactly, so it would be found by interpolation. Note that this criterion
relies on an intrinsic dimensionality? in a dissimilarity space D(-, R).

2 If a certain phenomenon can be described (or if it is generated) by m independent variables,
then its intrinsic dimensionality is m. In practice, however, due to noise and imprecision
in measurements or some other uncontrolled factors, such a phenomenon may seem to
be generated by more variables. If all these factors are not too dominant such that they
completely disturb the original phenomenon, one should be able to rediscover the proper
number of significant variables. Hence, the intrinsic dimensionality is the minimum number
of variables that explains the phenomenon in a satisfactory way. In pattern recognition, one
usually discusses the intrinsic dimensionality with respect to a collection of data vectors in
the feature space. Then, for classification, the intrinsic dimensionality can be defined as the
minimum number of features needed to obtain a similar classification performance as by
using all features. In a geometrical sense, the intrinsic dimensionality can be defined as the
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In the experiments, in Figure 2.4, top, the value of Jpe, 0.95 is shown for the
artificial Gaussian example as a function of |R|. The Gaussian data are studied as
generated in spaces of a growing dimensionality k. It can be concluded that the data
sets consisting of more than 100 objects may be sufficiently well sampled for small
dimensionalities such as k=5 or k=10 as just a small fraction of the eigenvectors is
needed (about 10% or less). On the other hand, the considered number of objects is
too small for the Gaussian sets of a larger dimensionality. These generate problems
of a too high complexity for the given data-set size.

Correlation. Correlations between objects in a dissimilarity space are also stud-
ied. Similar objects show similar dissimilarities to other objects and, thereby, are pos-
itively correlated. As a consequence, the ratio of the average of positive correlations
p+(D(pi, R), D(p;, R)) to the average of absolute values of negative correlations
p—(D(pi, R), D(pj, R)), given as

will increase for large sample sizes. The constant added in the denominator prevents
J,, from becoming very large if only small negative correlations appear. For a well-
sampled representation set, .J, will be large and it will increase only slightly when
new objects are added (new objects should not significantly influence the averages
of either positive or negative correlations). Figure 2.5, top, shows that this criterion
works well for the artificial Gaussian example. For the lower dimensional data sets
(apparently less complex) J, reaches higher values and exhibits a flattening behavior
for sets consisting of at least 100 objects.

2.5)

Intrinsic embedding dimensionality. For the study of dissimilarity representa-
tions, one may perform dimensionality reduction of a dissimilarity space (as the PCA
criterion, described above, does) or choose an embedding method. Consequently, the
judgment about whether R is sufficiently sampled relies on the estimate of the in-
trinsic dimensionality of an underlying vector space determined such that the origi-
nal dissimilarities are preserved. This can be achieved by a linear embedding of the
original objects (provided that D is symmetric) into a (pseudo-)Euclidean space. A
pseudo-Euclidean space? is needed if D does not exhibit the Euclidean behavior, as,
for example, the [ -distance or max-norm distance measures do [22, 23]. In this way,
a vector space is found in spite of the fact that one starts from a dissimilarity matrix
D. The representation X of m <n dimensions is determined such that it is centered
at the origin and the derived features are uncorrelated [13, 26].

dimension of a manifold that approximately (due to noise) embeds the data. In practice, the
estimated intrinsic dimensionality of a sample depends on the chosen criterion. Thereby, it
is relative for the task.

3 A pseudo-Euclidean space & := R® is a (p+ q)-dimensional nondegenerate indefinite
inner product space such that the inner product (-, -)¢ is positive definite (pd) on R? and
negative definite on R?. Therefore, (z,y)e = > 1_, Ty — f;‘;rl 2y = 7 Tpg,
where Jpq = diag (Ipxp; —Igxq) and I is the identity matrix. Consequently, the square
pseudo-Euclidean distance is d2 (x, y) = (x —y, ¢ —y)e = dar (2, y) —daq¢ (z,y).
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The embedding relies on linear operations. The inner product (Gram) matrix
G of the underlying configuration X is expressed by the square dissimilarities
D*?* = (d};) as G = —3JD**J, where J = I — 2117 is the centering ma-
trix [13, 22, 26]. X is determined by the eigen-decomposition of G = QAQT =
Q|A|Y2diag( Ty 13 0) |A|2QT, where Ty = (Iprsepr; — Iy xqr) and I is the iden-
tity matrix, |A| is a diagonal matrix of first decreasing p’ positive eigenvalues, then
decreasing magnitudes of ¢’ negative eigenvalues, followed by zeros. () is a matrix of
the corresponding eigenvectors. The sought configuration is first represented in R¥,
k=p +¢, as Qx| Ax|"/?. Because only some eigenvalues are large (in magnitude),
the remaining ones can be disregarded as noninformative. This corresponds to the
determination of intrinsic dimensionality. The final representation X = Q,,, | A, |'/?,
m=p—+q <k, is defined by the largest p positive and the smallest ¢ negative eigen-
values, since the features are uncorrelated.

This means that the number of dominant eigenvalues (describing the variances)
should reveal the intrinsic dimensionality (small variances are expected to show just
noise). (Note, however, that when all variances are similar, the intrinsic dimension-
ality is approximately n.) Let n€™® be the number of significant variances for which
the sum of the corresponding magnitudes equals a specified fraction «, such as 0.95,
of the total sum. Because n¢™" determines the intrinsic dimensionality, the following
criterion is proposed: emb

Ra (2.6)
n

Jemb,a =

For low intrinsic dimensionalities, smaller representation sets are needed to describe
the data characteristics. Figure 2.6, top, presents the behavior of this criterion as a
function of | R| for the Gaussian data sets. The criterion curves clearly reveal differ-
ent intrinsic embedding dimensionalities. If R is sufficiently large, then the intrinsic
dimensionality estimate remains constant. Because the number of objects is grow-
ing, the criterion should then decrease and reach a relatively constant small value in
the end (for very large sets). From the plot it can be concluded that data sets with
more than 100 objects are satisfactorily sampled for Gaussian data of an originally
low dimensionality such as k < 20. In other cases, the data set is too complex.

Compactness. As mentioned above, a symmetric distance matrix D can be em-
bedded in a Euclidean or a pseudo-Euclidean space £, depending on the Euclidean
behavior of D. When the representation set is sufficiently large, the intrinsic em-
bedding dimensionality is expected to remain constant during a further enlargement.
Consequently, the mean of the data should remain approximately the same and the
average distance to this mean should decrease (as new objects do not surprise any-
more) or be constant. The larger the average distance, the less compact the class is,
requiring more samples for its description. Therefore, a simple compactness crite-
rion can be investigated. It is estimated in the leave-one-out approach as the average
square distance to the mean vector in the embedded space &:

Jeomp= ! zn:zczg(m;j,m*j), 2.7)

2
n* —n — —~
J=1i#]
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where x; 7 is a vector representation of the ith object in the pseudo-Euclidean space

found by D(R™7, R=7) and R~/ is a representation set of all the objects, except the
jth one. ™7 is the mean of such a configuration. This can be computed from the
dissimilarities directly without the necessity of finding the embedded configuration;
see [26]. Figure 2.7, top, shows the behavior of this criterion, clearly indicating a high
degree of compactness of the low-dimensional Gaussian data. The case of £ =500 is
judged as not having a very compact description.

Gaussian intrinsic dimensionality. If the data points come from a spherical nor-
mal distribution in an m-dimensional Euclidean space, then m can be estimated from
the 2, distributed variable d? denoting the pairwise square Euclidean distances as
m= 2#%, where E[-] denotes the expectation; see [22]. If the data points
come from any other normal distribution, still some sort of an intrinsic dimension-
ality estimate can be found by the above formula. The judgement will be influenced
by the largest variances in the data. Basically, the volume of the hyper-ellipsoidal
normally distributed data is captured in the given distances. They are then treated
as if computed from a spherically symmetric Gaussian distribution. Hence, the de-
rived intrinsic dimensionality will reflect the dimensionality of a space to which the
original data sample is made to fit isotropically (in simple words, one can imagine
the original hyper-ellipsoidal Gaussian sample reshaped in space and “squeezed” in
the dimensions to make it the largest hyper-spherical Gaussian sample, the dimen-
sionality of the latter is then estimated). Since the above formula makes use of the
distances only, it can be applied to any dissimilarity measure. The criterion is then
defined as
(E[d])?

J6ia=2 Fl— (B

2.8)

where d? is realized by the off-diagonal square dissimilarity values d?j.

Boundary descriptor. A class descriptor (a one-class classifier) in a dissimi-
larity space was proposed in Pekalska et al. [27]. It is designed as a hyperplane
H: wTD(x, R) = p in a dissimilarity space that bounds the target data from above
(it assumed that d is bounded) and for which some particular distance to the origin
is minimized. Non-negative dissimilarities impose both p > 0 and w; > 0. This is
achieved by minimizing p/||w||1, which is the max-norm distance of the hyperplane
H to the origin in the dissimilarity space. Therefore, H can be determined by mini-
mizing p—||w||;. Normalizing such that ||w||; =1 (to avoid any arbitrary scaling of
w), H is found by the optimization of p only. A (target) class is then characterized by
a linear proximity function on dissimilarities with the weights w and the threshold
p. Itis defined as 7 (ij 20 wiD(z,p;) < p), where 7 is the indentificator (charac-
teristic) function (it takes the value of 1 if the condition is true and zero otherwise),
w; are found as the solution to a soft-margin linear programming formulation (the
hard-margin case is then straightforward) with v € (0, 1] being the upper bound on
the target rejection fraction in training [27]:
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n

Minimize p + -~ Y7 | &
such that, w' D(p;, R) < p + &, >jwi =1, w; >0, 2.9
p>0,62>0 i=1,...,n.
As aresult, a sparse solution is obtained. This means that many weights w; become
zero and only some are positive. The objects Rs, C R for which the corresponding
weights are positive are called support objects (SO). Our criterion then becomes the

number of support objects:
Jso=|Rsol- (2.10)

In the experiments we suffered from numerical problems for large representation set
sizes. For that reason, the solutions were found for all but one of the dimensionalities,
i.e., except for the case |R| = 500.

2.3.2 Discussion on Sampling Density Experiments

While studying the results presented in Figures 2.2 to 2.8, one should recall that
the height of the curve is a measure of the complexity and that a flat curve may
indicate that the given data set is sufficiently sampled. For the skewness, mean rank
and correlation statistics, it holds that lower values are related to a higher complexity.
For the other criteria, it is the other way around: lower values are related to a lower
complexity. An exception is the compactness, as defined here, since its behavior is
scale dependent.

For all data sets and all criteria, it can be observed that the complexity of the
original data set D (continuous lines) increases by the square root transformation
(dashed lines) and decreases by the quadratic transformation (dotted lines). This im-
plies that the D*9-5 data sets tend to be undersampled in most cases. For the original
data sets, this just holds for some of the classes of the Digits-all, the Heart, and the
ProDom problems. The diseased class of the Tumor-mucosa problem shows a very
irregular behavior, due to some large outliers. This is in fact useful as a number of
very different outliers is a sign of undersampling. Most D*? data sets may be judged
as well sampled. Exceptions are the Heart data set and, again, the diseased class of
the Tumor-mucosa problem.

It is interesting to observe the differences between various data sets, e.g., that
the curves of the boundary descriptor sometimes start with a linear increase or that
the correlation curve is usually an increasing function with some exceptions in the
case of the Polygon data. The high increase of the PCA dimensionality criterion
for the artificial Gaussian data set (Fig. 2.4) and for a large dimensionality k£ can
nowhere be observed, with an exception of the Heart data set. A global comparison of
all figures shows that the characteristics of high-dimensional Gaussian distributions
cannot be found in real-world problems. This may indicate that various methods for
data analysis and classification, based on the Gaussian assumption, need to be either
improved before they can be used in practice or avoided.

In general, the flattened behavior of a criterion curve implies a sufficient sam-
pling. All criteria, except for mean rank, are very sensitive to data modifications,
indicating that quadratic transformations decrease the original data-set complexity,
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whereas square root transformation increase it. Concerning specific approaches, the
following can be summarized:

Skewness is informative to judge the distribution of dissimilarities. Negative
skewness denotes a tail of small dissimilarities, whereas positive skewness de-
scribes a tail of large dissimilarities. Large positive values indicate outliers in the
class (the Tumor-mucosa data), whereas large negative values indicate heteroge-
neous characteristics of the class (the Heart data) or a class of possible clusters
having various spreads (the ProDom data). Skewness can be noisy for very small
sample sizes.

Mean rank is a criterion judging the consistency between the nearest neighbors
directly applied to the given dissimilarities and the nearest neighbor in a dissim-
ilarity space. For an increasing number of objects, this should approach zero. As
original nearest neighbor relations do not change after nondecreasing transfor-
mations (although they are affected in a dissimilarity space), this criterion is not
very indicative for such modifications. Except for the artificial Gaussian exam-
ples, the curves exhibit a similar behavior.

PCA dimensionality describes the fraction of significant eigenvalues in a dissim-
ilarity space of a growing dimensionality. If the data set is “saturated,” then the
criterion curve approaches a value close to zero since the intrinsic dimensional-
ity should stay constant. If the criterion does not approach zero, the problem is
characterized by many relatively similar eigenvalues, hence many similar intrin-
sic variables. In such cases, the problem is judged as complex, for instance for
the Heart and the Digits-all problems.

The correlation criterion indicates the amount of positive correlations versus neg-
ative correlations in a dissimilarity space. Positive values > 0.5 may suggest the
presence of outliers in the data as observed in the case of the ProDom and Tumor-
mucosa problems.

Intrinsic embedding dimensionality is judged by the fraction of dominant dimen-
sions determined by the number of dominant eigenvalues in a linear embedding.
In contrast to the PCA dimensionality, it is not likely to observe the criterion
curve approaching zero. Large dissimilarities determine the embedded space and
considerably affect the presence of large eigenvalues. Therefore, the criterion
curve may be close to zero if many eigenvalues tend to be so or if there are some
notable outliers (as the diseased class of the Tumor-mucosa problem). In this
case, a flat behavior of the curve may give evidence of an acceptable sampling.
However, the larger the final value of the criterion curve, the more complex the
class description (there is a larger variability in the class).

Compactness indicates how compact a set of objects is as judged by the distances
to the mean in an embedded space. In this case, the flattened behavior of the curve
is not very indicative, as all our problems for small sample sizes would be judged
as well sampled. What is more important is the value that the criterion curve
attains — the smaller the value the more compact the description.

Similarly to the criterion above, the smaller the final value to which the Gaussian
intrinsic dimensionality criterion curve converges, the less complex the problem.



40 Duin and Pekalska

e The boundary descriptor indicates the number of boundary objects necessary to
characterize the class. A large number of objects with respect to | R| indicates
a complex problem, as, for example, the Heart data set is. The criterion curves
may be noisy for small samples, as observed for the ProDom and Tumor-mucosa
cases, possibly indicating the presence of outliers.

In brief, the most indicative and insightful criteria are skewness, PCA dimensional-
ity, correlation, and boundary description. Intrinsic embedding dimensionality may
be also informative; however, a good understanding of the embedding procedure is
needed to judge it well. The remaining criteria have less impact, but they still bring
some additional information.

2.4 Classification Experiments

2.4.1 Introduction

Complexity should be studied with respect to a given task such as class description,
clustering, or classification. Hence, the complexity of the data set should describe
some of its characteristics or of an assumed model, relative to the chosen represen-
tation. In the previous section, some criteria for the complexity of unlabeled data
(data geometry and class descriptions) were studied. This section is concerned with
supervised learning.

As data-set complexity is a different issue than class overlap, its relation to clas-
sifier performance is not straightforward. We argued in the introduction that more
complex problems may need more complex tools, or more training samples, which
will be our focus here. Therefore, we will study the influence of data-set complexity
on the classifier performance. The original representation will be transformed by the
same power transformations as in section 2.3. As has been already observed, D*?
representations decrease, while D**5 representations increase the data set complex-
ity of the individual classes.

As we indicated in the chapter introduction, an intrinsic problem complexity, as
such, does not exist. Its complexity is entirely determined by the representation and
observed through the data set. If the data-set complexity is decreased by some trans-
formation simplifying the problem, as a result simpler classifiers may be used. Note
that no monotonic transformation of the data can either reduce or increase the in-
trinsic class overlap. Transformations are applied to enable one to train classifiers
that reach a performance, which is closer to this intrinsic overlap. If the problem
becomes less complex, smaller training sets probably will be sufficient. If it was
originally abundant, the decreased complexity may yield a better classification per-
formance. If the training set size was initially sufficient, the decreased complexity
may decrease the performance (due to perceived higher class overlap). An increased
problem complexity may open a way for constructing more complex classifiers. If
the sample size permits, these classifiers will reach an increased performance. If the
sample size is insufficient, such classifiers will be overtrained, resulting in a decrease
of the performance.
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In addition to these effects, there is a direct relation between data-set complex-
ity and a desirable size of the representation set. Remember that this desirable size
is indicated by the stability of the measures or the observed asymptotic behavior of
the criteria identified to be useful in the preceding analysis. More complex problems
need a larger representation set. The other way around also holds: a larger represen-
tation set used for the description may indicate more complex aspects of the problem.

The above effects will be illustrated by a set of classification experiments. As-
sume that a training set of N examples is provided. First, a suitable representation
set R C T has to be determined. We will proceed in two ways, starting from a full
representation D (T, T'). The representation set will be chosen either as a condensed
set found by the editing-and-condensing [condensed nearest neighbor (CNN)] pro-
cedure [6] or as the set of support objects determined in the process of constructing
a sparse linear programming classifier (LPC). In the resulting dissimilarity space, a
Fisher classifier on D(T, R) is trained.

2.4.2 Classifiers

The following classifiers are used in our experiments:

1-Nearest neighbor rule (1-NN). This classifier operates directly on the dissim-
ilarities computed for a test object. It assigns a test object to the class of the training
object that is the most similar as judged by the smallest dissimilarity. Because no
training is required, the values in D (7', T') are not used for the construction of this
rule.

k-Nearest neighbor rule (k-NN). Here, the test object is assigned to the most
frequent class in the set of the k-nearest neighbors. The value of % is optimized over
the original representation D(T, T') using a leave-one-out procedure. In this way, the
training set 7" is somewhat used in the learning process.

Editing and condensing (CNN). An editing and condensing algorithm is applied
to the entire dissimilarity representation D (7', T), resulting in a condensed set (CS)
Rcs. Editing takes care that the noisy objects are first removed so that the prototypes
can be chosen to guarantee a good performance of the 1-NN rule, which is used
afterward.

Linear programming classifier (LPC). By training a properly formulated linear
classifier f(D(z,T))= Zjvzl wj d(z, pj)+wo=w’ D(z, R)+wp in a dissimilarity
space D(T, T), one may select objects from T" necessary for the construction of the
classifier. The separating hyperplane is obtained by solving a linear programming
problem, where a sparse solution on R is imposed by minimizing the /;-norm of
the weight vector w, ||w||; = Z;Zl |w;|; see [4, 11] on the sparseness issues. As
a result, only some weights become nonzero. The corresponding objects define the
representation set.

A flexible formulation of a classification problem is proposed in Graepel et al.
[15]. The problem is to minimize ||w]||; — @ p, which means that the margin p be-
comes a variable of the optimization problem. To formulate such a minimization
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task properly, the absolute values |w;| should be eliminated from the objective func-
tion. Therefore, the weights w; are expressed by nonnegative variables «; and 3;
as w; = a; — 3;. (When the pairs (¢, 8;) are determined, then at least one of them
is zero.) Nonnegative slack variables &;, accounting for possible classification errors
are additionally introduced. Let y; = +1/—1 indicate the class membership. By im-
posing ||w||; to be constant, the minimization problem for x; €T then becomes

Minimize & SN & — pp
such that, Zfil (a; + 6;)=1
yzf(D(qu)) Z 1 _§i7 12177N
&, i, Bi, p 2 0.
A sparse solution w is obtained, which means that important objects are selected
(by nonzero weights) from the training set 7, resulting in a representation set R,.
The solution depends on the choice of the parameter 1 € (0, 1), which is related to a
possible class overlap [15]. To select it automatically, the following values are found
(as rough estimates based on the 1-NN error computed over a number of represen-
tations D(T', T') for various sizes of T'). These are 0.2 for the Heart data, 0.1 for the
Digits-all and Tumor-mucosa data, and 0.05 for the remaining sets.

The selection of objects described above is similar to the selection of features by
linear programming in a standard classification task; see [3, 4] . The important point
to realize is that we do not have control over the number of selected support objects.
This can be somewhat influenced by varying the constant i (hence influencing the
trade-off between the classifier norm and the training classification errors).

@2.11)

Fisher classifier (FC). This linear classifier minimizes the mean square error on
the training set D(T, R) with respect to the desired labels y; = +1/— 1. It finds
the minimal mean square error solution of Zjvzl w; d(z;, z;) + wo =y;. Note that
the common opinion that this classifier assumes Gaussian class densities is wrong.
The truth is that in the case of Gaussian densities with equal covariance matrices,
the corresponding Bayes classifier is found (in the case of equal class priors). The
Fisher classifier, however, is neither based on a density assumption nor does it try to
minimize the probability of misclassification in a Bayesian sense. It follows a mean
square error approach. As a consequence, it does suffer from multimodality in class
distributions.

Multiclass problems are solved for the LPC and the FC in a one-against-all-others
strategy using the classifier conditional posterior probability estimates [10]. Objects
are assigned to the class that receives the highest confidence as the “one” in this
one-against-all-others scheme.

2.4.3 Discussion on the Classification Experiments

The classification results for the six data sets are presented in Figures 2.9 to 2.14. In
each figure, the first plot shows the results of the LPC as a function of the training set
size. The averaged classification errors for the three modifications of the dissimilarity
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measures are presented. For comparison also the results of the 1-NN, the k-NN,
and the CNN rules are shown. Note that these are independent of the nondecreasing
transformations. The CNN curves are often outside the shown interval.

The resulting reduced object sets selected by the CNN, the condensed set CS, are
used as a representation set . Then, the Fisher classifier FC is constructed on the
dissimilarity representation D (7T, R). This will be denoted as FC-CS. The averaged
errors of this classifier are, again, together with the results for the 1-NN, the k-NN,
and the CNN rules (these are the same as in the first graph), shown in the second
plot. All experiments are averaged over 30 repetitions in which independent training
and test sets are generated from the original set of objects.

The third plot illustrates the sizes of the reduced training sets found by the LPC
and the CNN. For most data sets, the CNN reduces the training set further than the
LPC. The resulting sample sizes of the CNN set are approximately a linear function
of the training size |T'|. In all cases, the sets of support objects found by the LPC are
for the D*? representations smaller than for the original one, D, which are, in turn,
smaller than for the D*7-> representations. This is in agreement with our expectation
(see section 2.2) and with the results of section 2.3, that the data-set complexity of
D*? is lower and the data-set complexity of D*%-® is higher than it is of D.

The first two plots can be considered as learning curves (note, however, that
the determined representation set R increases with a growing training set 7°). The
dissimilarity-based classifiers, the LPC and the FC-CS, perform globally better than
the nearest neighbor rules, which is in agreement with our earlier findings; see [22,
23, 25]. The LPC and the FC-CS are comparable. The LPC is often better than the
FC-CS for smaller sample sizes, whereas the FC-CS is sometimes somewhat better
than the LPC for larger sample sizes. This might be understood from the fact that the
LPC, like the support vector machine, focuses on the decision boundary, whereas the
FC uses the information of all objects in the training set. Where this is profitable, the
FC will reach a higher accuracy.

Learning curves usually show a monotonic decreasing behavior. For simple data
sets they will decrease fast, whereas for complex data sets they will decrease slowly.
The complexity is understood here in relation to single class descriptions and to the
intricateness of the decision boundary between the classes (hence their geometrical
position in a dissimilarity space). The asymptotic behavior will be similar if a more
complex representation does not reveal any additional details that are useful for the
class separation. If it does, however, a more complex representation will show a
higher asymptotic accuracy, provided that the classifier is able to use the extra infor-
mation.

Following this reasoning, it is to be expected that the learning curves for D*? rep-
resentations decrease fast, but may have worse asymptotic values. This appears to be
true with a few exceptions. For the Tumor-mucosa problem (Fig. 2.15), the expecta-
tion is definitely wrong. This is caused by the outliers as the quadratic transformation
strengthens their influence. The global behavior, expected from this transformation,
is overshadowed by a few outliers that are not representative for the problem. A sec-
ond exception can be observed in the Digits-all results (see Fig. 2.11), especially for
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the FC. In this multiclass problem the use of the FC suffers from the multimodality
caused by the one-against-all-others strategy.

The learning curves for the D*%-% data sets change in most cases, as expected,
slower than those for the original data sets. The FC-CS for the Digits-all case (Fig.
2.11), is again an exception. In some cases, these two learning curves are almost
on top of each other; in some other cases, they are very different, as for the FC-CS
and the ProDom data set (Fig. 2.14). This may indicate that the data set complexity
increased by the square root transformation is really significant.

There are a few situations for which crossing points of the learning curves can
be observed after which a more complex representation (D*-% or D) enables the
classifiers to reach a higher performance than a simpler one (D or D*?, respectively)
due to a sufficient sample size. Examples are the LPC classification of the Digits-all
data (Fig. 2.11) and the Polygon data (Fig. 2.13).

Finally, we observe that for the undersampled Heart data set (see section 2.3), the
k-NN does relatively very well. This is the only case where the dissimilarity-based
classifiers LPC and FC-CS perform worse than the straightforward use of the nearest
neighbor rule.

2.5 Discussion

A real-world pattern recognition problem may have an inherent complexity: objects
of different classes may be similar; classes may consist of dissimilar subgroups;
and essential class differences may be hidden, distributed over various attributes or
may be context dependent. All that matters, however, is how the problem is repre-
sented using object models, features, or dissimilarity measures. The problem has to
be solved from a given representation, and its complexity should be judged from that.
It is the representation that is explicitly available, and it may be such that seemingly
simple problems are shown as complex or the other way around.

In this chapter we argued that the complexity of a recognition problem is de-
termined by the given representation and observed through a data set and may be
judged from a sample size analysis. If for a given representation, a problem is sam-
pled sufficiently well, then it is simpler than for a representation for which it appears
to be too low. In section 2.3, a number of tools are presented to judge the sample size
for a given unlabeled dissimilarity representation. It has been shown that these tools
are consistent with modifications of the representation that make it either more or
less complex. All the considered criteria are useful when judged as complementary
to each other. The most indicative ones, however, are skewness, PCA dimensionality,
correlation, embedding intrinsic dimensionality, and boundary descriptor.

In section 2.4, the same observations concerning the power transformations have
been confirmed by classification experiments. By putting emphasis on remote ob-
jects (hence considering D*? representations), a problem becomes simpler as local
class differences become less apparent. As a result, this simpler problem will have
a higher class overlap, but may be solved by a simpler classifier. By emphasizing
small distances between objects (hence considering D**-® representations), on the
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contrary, local class distances may be used better. The problem may now be solved
by a more complex classifier, requiring more samples, but resulting in a lower error
rate.

It can be understood from this study that data-set complexity is related to sam-
pling density if the data set has to be used for generalization like the training of
classifiers. A more complex data set needs a higher sampling density, and, conse-
quently, better classifiers may be found. If the training set is not sufficiently large,
representations having a lower complexity may perform better. This conclusion is
consistent with the earlier insights in the cause of the peaking phenomenon and the
curse of dimensionality [19]. The concepts of representation complexity and data-set
complexity, however, are more general than the dimensionality of a feature space.

In conclusion, we see a perspective for using the sample density to build a cri-
terion judging the complexity of a representation as given by a data set. If sufficient
samples are available, the representation may be changed such that local details be-
come highlighted. If not, then the representation should be simplified by emphasizing
its more global aspects.
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Fig. 2.10. Results of the classification
experiments on the Digits-38 data.
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Fig. 2.14. Results of the classification
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