
10

Polynomial Time Complexity Graph Distance
Computation for Web Content Mining

Adam Schenker, Horst Bunke, Mark Last, and Abraham Kandel

Summary. Utilizing graphs with unique node labels reduces the complexity of the maximum
common subgraph problem, which is generally NP-complete, to that of a polynomial time
problem. Calculating the maximum common subgraph is useful for creating a graph distance
measure, since we observe that graphs become more similar (and thus have less distance) as
their maximum common subgraphs become larger and vice versa. With a computationally
practical method of determining distances between graphs, we are no longer limited to using
simpler vector representations for machine learning applications. We can perform well-known
algorithms, such as k-means clustering and k-nearest neighbors classification, directly on data
represented by graphs, losing none of the inherent structural information. We demonstrate the
benefits of the additional information retained in a graph-based data model for web content
mining applications. We introduce several graph representations for capturing web document
information and present some examples of our experimental results, which compare favorably
with traditional vector methods.

10.1 Introduction

In this chapter we consider applying data mining algorithms, such as the k-nearest neighbors
classification algorithm and k-means clustering algorithm, to web document content; this is
known as web content mining. Content-based classification of web documents is useful be-
cause it allows users to more easily navigate and browse collections of documents [1, 2]. Such
classifications are often costly to perform manually, as it requires a human expert to examine
the content of each web document. Due to the large number of documents available on the
Internet in general, or even when we consider smaller collections of web documents, such as
those associated with corporate or university web sites, an automated system that performs
web document classification is desirable in order to reduce costs and increase the speed with
which new documents are classified. Clustering is an unsupervised method that attempts to
organize data items into similar groups, while classification is a supervised learning technique
that aims to assign a specific label to each data item. In web content mining, clustering is
performed in order to arrange web documents into related groups, such as by the topic of
the documents. This has benefits when the classes are not known a priori, such as in web
search engines [3], since it allows systems to display results grouped by clusters (topics), in

198 Schenker et al.

comparison to the usual “endless” ranked list, making browsing easier for the user. Using clas-
sification techniques with these types of systems is difficult due to the highly dynamic nature
of the Internet; creating and maintaining a training set would be challenging and costly. Simi-
larly, for clustering methods, cluster centers, or other representatives used for the clusters, are
required to change over time to reflect the Internet’s constant and rapid influence on language
and emerging new concepts. This process occurs, for example, because the topic associated
with a cluster representative takes on new meanings (e.g., “Java”), or because new concepts
are created that previously had no clusters related to them (e.g., “blogs”). With the arrival of
new training examples, we can create new clusters or update existing ones using methods of
incremental clustering (see [4]).

Traditionally, data mining methods have represented document content with a vector
model, which utilizes a series of numeric values associated with each document. Each value is
associated with a specific term (word) that may appear on a document, and the set of possible
terms is shared across all documents. The values may be binary, indicating the presence or
absence of the corresponding term. The values may also be nonnegative integers, which rep-
resent the number of times a term appears on a document (i.e., term frequency). Nonnegative
real numbers can also be used, in this case indicating the importance or weight of each term.
These values are derived through a method such as the popular inverse document frequency
model [5], which reduces the importance of terms that appear on many documents. Regardless
of the method used, each series of values represents a document and corresponds to a point
(i.e., vector) in a Euclidean feature space; this is called the vector-space model of information
retrieval. This model is often used when applying data mining techniques to documents, as
there is a strong mathematical foundation for performing distance measure and centroid cal-
culations using vectors. However, this method of document representation does not capture
important structural information, such as the order and proximity of term occurrence, or the
location of term occurrence within the document.

To overcome this limitation, we have introduced several methods of representing web
document content using graphs instead of vectors, and have extended existing data mining
methods to work with these graphs. Graphs are important and effective mathematical con-
structs for modeling relationships and structural information. Graphs (and their more restric-
tive form, trees) are used in many different problems, including sorting, compression, traf-
fic/flow analysis, resource allocation, etc. [6] Utilizing graphs allows us to keep the inherent
structural information of the original web document without having to discard information as
we do with a vector model representation. However, until recently, we have not had available
to us mathematical techniques for determining distance between graphs as we have had with
vectors. Thus data mining techniques such as clustering and classification could not be applied
to graphs without creating new mathematical frameworks for dealing with the graphs.

In this chapter we show how the determination of the maximum common subgraph be-
tween a pair of graphs can lead to a numerical distance measure between the graphs [7].
A problem with computing the maximum common subgraph is that this is an NP-complete
problem in the general case. However, it has been shown that when the nodes in the graphs
have unique labels associated with them, the time complexity of finding the maximum com-
mon subgraph becomes polynomial [8]. We introduce several methods of representing web
document content by graphs with unique node labels. We then proceed to describe how these
graphs may be clustered or classified by straightforward extensions to well-known machine
learning algorithms such as k-means or k-nearest neighbors when utilizing graph distance
measures. We also show some examples of some experimental results obtained from using
our graph-based methods.

10 Polynomial Time Complexity Graph Distance Computation 199

The remainder of the chapter is organized as follows. In section 10.2 we discuss the com-
plexity issues related to using graphs in machine learning. We show how the maximum com-
mon subgraph of a pair of graphs can be used to derive a distance measure between the graphs,
and how this computation of the maximum common subgraph can be performed in polynomial
time when the graphs have unique node labels. We describe our graph representations of web
document content, which make use of the unique node label property, in section 10.3. Ver-
sions of the k-means clustering and k-nearest neighbors classification algorithms that utilize
graphs and graph distance measures are presented in Section 10.4. Section 10.5 presents some
examples of results obtained when using these algorithms to perform web content mining on
graph-based data. Conclusions are presented in section 10.6.

10.2 Graph Complexity

10.2.1 Basic Definitions

In this subsection we present some basic definitions related to graph theory. Practically speak-
ing, graphs are used to model some system of entities such that the entities are represented by
nodes in the graph and the relationships present between the entities are reflected in the edges
connecting the nodes. Formally, we define a graph as follows:

Definition 1. A graph G is a 4-tuple: G = (V, E, α, β), where V is a set of nodes (also
called vertices), E ⊆ V × V is a set of edges connecting the nodes, α : V → ΣV is a
function labeling the nodes, and β : V × V → ΣE is a function labeling the edges (ΣV and
ΣE being the sets of labels that can appear on the nodes and edges, respectively). For brevity,
we may abbreviate G as G = (V, E) by omitting the labeling functions.

A graph that is contained within another graph is called a subgraph. Conversely, a graph
that contains another graph is also called a supergraph. Formally, subgraphs and supergraphs
are defined as follows:

Definition 2. A graph G1 = (V1, E1, α1, β1) is a subgraph of a graph G2 = (V2, E2, α2, β2),
denoted G1 ⊆ G2, if V1 ⊆ V2, E1 ⊆ E2 ∩ (V1 × V1), α1(x) = α2(x) ∀x ∈ V1, and
β1((x, y)) = β2((x, y)) ∀(x, y) ∈ E1. Conversely, graph G2 is also called a supergraph of
G1.

When we say that two graphs are isomorphic, we mean that the graphs contain the same
number of nodes and there is a direct 1-to-1 correspondence between the nodes in the two
graphs such that the edges between nodes and all labels are preserved.

Definition 3. Formally, a graph G1 = (V1, E1, α1, β1) and a graph G2 = (V2, E2, α2, β2)
are said to be isomorphic, denoted G1

∼= G2, if there exists a bijective function f : V1 → V2

such that the following conditions are met:

1. ∀x ∈ V1 : α1(x) = α2(f(x))
2. ∀(x, y) ∈ E1 : (f(x), f(y)) ∈ E2 and β1((x, y)) = β2((f(x), f(y)))
3. ∀(f(x), f(y)) ∈ E2 : (x, y) ∈ E1 and β2((f(x), f(y))) = β1((x, y))

Such a function f is also called a graph isomorphism between G1 and G2.

There is also the notion of subgraph isomorphism, meaning that a graph is isomorphic to
a part of (i.e., a subgraph of) another graph:

200 Schenker et al.

Definition 4. Given a graph isomorphism f between graphs G1 and G2 as defined above and
another graph G3, if G2 ⊆ G3, then f is a subgraph isomorphism between G1 and G3.

Graph isomorphism was one of the earliest approaches to graph matching, the procedure
of determining if two graphs are identical to each other. It is not known whether graph iso-
morphism is an NP-complete problem; however, subgraph isomorphism is NP-complete [9].
Clearly, as the number of nodes in the graphs increase, the number of possible matchings to
be checked increases combinatorally. A general procedure for determining subgraph isomor-
phism is given in Ullman [10]. The naive algorithm for graph isomorphism is to maintain a
matrix that indicates which nodes in each graph are compatible; it can require all possible
permutations of matchings to determine if there is an isomorphism. The procedure in Ullman
[10] improves the complexity by pruning the search space.

Graph isomorphism tells us only that there exists an exact match between two graphs
(i.e., that they are identical). It does not give us any indication of similarity between graphs,
only whether they are isomorphic or not. Subgraph isomorphism tells us if one graph appears
as part of another graph. More relaxed approaches to graph matching, inexact graph matching
and graph distance, have been proposed [11, 12]. Inexact graph matching attempts not to
find if two graphs are identical, but rather attempts to find a mapping between the nodes of
two graphs that achieves maximum similarity (a “best” matching). Graph distance approaches
provide a numerical value that approximates the dissimilarity (distance) between two graphs.

Such new methods have become very important for pattern recognition and machine learn-
ing, as they allow us to deal with more robust graph-based data in a manner similar to those
used for simpler vector models. Specifically, they permit algorithms to better tolerate noise
and imperfect data in the graphs. For example, a missing node or edge caused by noise is
not acceptable under graph isomorphism, but may still achieve good results using an inexact
matching approach.

10.2.2 Maximum Common Subgraph

A popular method for determining graph distance is the graph edit distance approach. Edit
distance is a method that is used to measure the difference between symbolic data structures
such as trees [13] and strings [14]. It is also known as the Levenshtein distance, from early
work in error-correcting/detecting codes that allowed insertion and deletion of symbols [15].
The concept is straightforward. Various operations are defined on the structures, such as dele-
tion, insertion, and renaming of elements. A cost function is associated with each operation,
and the minimum cost needed to transform one structure into the other using the operations
is the distance between them. Edit distance has also been applied to graphs, as graph edit dis-
tance [16, 17]. The operations in graph edit distance are insertion, deletion, and relabeling of
nodes and edges. The distance between two graphs is thus the minimum cost needed to edit
one graph into the other by adding, deleting, and renaming nodes and edges.

It has been shown that there is a direct relationship between graph edit distance and the
maximum common subgraph between two graphs [7]. Specifically, the two are equivalent
under certain restrictions on the cost functions. The maximum common subgraph of two graphs
is the largest graph the two graphs have in common, and is defined as follows:

Definition 5. A graph g is a maximum common subgraph (mcs) of graphs G1 and G2, de-
noted mcs(G1, G2), if: (1) g ⊆ G1 (2) g ⊆ G2 and (3) there is no other subgraph g′

(g′ ⊆ G1, g′ ⊆ G2) such that |g′| > |g|.

10 Polynomial Time Complexity Graph Distance Computation 201

In definition 5 above, |g| is usually taken to mean |V |, i.e., the number of nodes in the
graph; it is used to indicate the “size” of a graph. However, in this chapter we use a different
definition of graph size that also takes into account the contribution of the edges in the graphs
(see equation (10.5)). Otherwise, with the traditional definition, a sparsely connected graph
with many nodes is considered larger than a graph with a few nodes but many edges.

Similar to the maximum common subgraph, there is the complementary idea of minimum
common supergraph:

Definition 6. A graph g is a minimum common supergraph (MCS) of graphs G1 and G2,
denoted MCS(G1, G2), if: (1) G1 ⊆ g (2) G2 ⊆ g and (3) there is no other supergraph g′

(G1 ⊆ g′, G2 ⊆ g′) such that |g′| < |g|.
One method for determining the maximum common subgraph is given in Levi [18]; this

approach is to create a compatibility graph for the two given graphs, and then find the largest
clique within it. Another approach involves backtracking search [19].

Following the observation that the size of the maximum common subgraph is related to
the similarity between two graphs, a graph distance measure based on the maximum common
subgraph has been introduced [20]:

dMCS(G1, G2) = 1 − |mcs(G1, G2)|
max(|G1|, |G2|) , (10.1)

where max(x, y) is the usual maximum of two numbers x and y, and | . . . | indicates the size
of a graph (see above). The concept behind this distance measure is that as the size of the max-
imum common subgraph of a pair of graphs becomes larger, the more similar the two graphs
are (i.e., they have more in common). The larger the maximum common subgraph, the smaller
dMCS(G1, G2) becomes, indicating more similarity and less distance. If the two graphs are
in fact identical, their maximum common subgraph is the same as the graphs themselves, and
thus the size of all three graphs is equal: |G1| = |G2| = |mcs(G1, G2)|. This leads to the
distance, dMCS(G1, G2), becoming 0. Conversely, if no maximum common subgraph exists,
then |mcs(G1, G2)| = 0 and dMCS(G1, G2) = 1. This distance measure has been shown
to be a metric [20], and produces a value in [0, 1]. This distance measure has four important
properties. First, it is restricted to producing a number in the interval [0, 1]. Second, the dis-
tance is 0 only when the two graphs are identical. Third, the distance between two graphs is
symmetric. Fourth, it obeys the triangle inequality, which ensures that the distance measure
behaves in an intuitive way. For example, if we have two dissimilar objects (i.e., there is a
large distance between them) the triangle inequality implies that a third object that is similar
(i.e., has a small distance) to one of those objects must be dissimilar to the other. The ad-
vantage of this approach over the graph edit distance method is that it does not require the
determination of any cost coefficients or other parameters. However, the metric as it is defined
in (10.1) may not be appropriate for all applications; for example, the size of the smaller graph
in dMCS makes no contribution to the value of the distance measure, which may be useful to
consider in some instances. Thus other distance measures based on the size of the maximum
common subgraph or minimum common supergraph have been proposed.

A second distance measure that has been proposed by Wallis et al. [21], based on the idea
of graph union, is

dWGU (G1, G2) = 1 − |mcs(G1, G2)|
|G1| + |G2| − |mcs(G1, G2)| . (10.2)

By “graph union” we mean that the denominator represents the size of the union of the two
graphs in the set theoretic sense; specifically adding the size of each graph (|G1| + |G2|)

202 Schenker et al.

and then subtracting the size of their intersection (|mcs(G1, G2)|) leads to the size of the
union (the reader may easily verify this using a Venn diagram). This distance measure behaves
similarly to dMCS . The motivation for using graph union in the denominator is to allow for
changes in the smaller graph to exert some influence over the distance measure, which does
not happen with dMCS , as mentioned above. This measure was also demonstrated to be a
metric, and creates distance values in [0, 1].

Fernández and Valiente [22] have proposed a distance measure based on both the maxi-
mum common subgraph and the minimum common supergraph:

dMMCS(G1, G2) = |MCS(G1, G2)| − |mcs(G1, G2)|, (10.3)

where MCS(G1, G2) is the minimum common supergraph of graphs G1 and G2. The con-
cept that drives this distance measure is that the maximum common subgraph provides a
“lower bound” on the similarity of two graphs, while the minimum common supergraph is
an “upper bound.” If two graphs are identical, then both their maximum common subgraph
and minimum common supergraph are the same as the original graphs and |G1| = |G2| =
|MCS(G1, G2)| = |mcs(G1, G2)|, which leads to dMMCS(G1, G2) = 0. As the graphs
become more dissimilar, the size of the maximum common subgraph decreases, while the
size of the minimum common supergraph increases. This in turn leads to increasing values
of dMMCS(G1, G2). For two graphs with no maximum common subgraph, the distance will
become |MCS(G1, G2)| = |G1| + |G2|. dMMCS has also been shown to be a metric, but
it does not produce values normalized to the interval [0, 1], unlike dMCS or dWGU . Note that
if it holds that |MCS(G1, G2)| = |G1| + |G2| − |mcs(G1, G2)| ∀G1, G2, we can com-
pute dMMCS(G1, G2) as |G1|+ |G2| − 2|mcs(G1, G2)|. This is much less computationally
intensive than computing the minimum common supergraph.

10.2.3 Graphs with Unique Node Labels

As mentioned above, the subgraph isomorphism problem is NP-complete. As finding the
maximum common subgraph requires determining subgraph isomorphism, it is also an NP-
complete problem [8]. However, recently it has become known that for certain classes of
graphs the maximum common subgraph, and thus the graph distance, can be determined in
polynomial time. Specifically, graphs whose node labels are unique can have their maximum
common subgraphs computed in O(n2) time, where n is the number of nodes in the graph [8].
Formally, a graph has unique node labels according to the following definition:

Definition 7. A graph G = (V, E, α, β) has unique node labels if for ∀v1, v2 ∈ V, α(v1) �=
α(v2) unless v1 = v2.

Note that the elements of set V , i.e., the nodes, are always uniquely defined. However,
in the general case, i.e., in a graph without any restrictions, different nodes may carry the
same label. For example, the field of chemistry uses graphs to represent molecules; nodes
correspond to atoms and edges to bonds formed between atoms. A water molecule (H2O)
would have a graph with three nodes: one for oxygen (labeled “O”) and two for hydrogen
(both labeled “H”).

The above result follows from the fact that determining the nodes of the maximum com-
mon subgraphs between two graphs, G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2), each
with unique node labels, reduces to the problem of finding the intersection of two sets, namely
GL1 = {α1(v)|∀v ∈ V1} and GL2 = {α2(v)|∀v ∈ V2}. Similarly the minimum common
supergraph can be computed by taking the union of these two sets. The actual procedure can
be performed as follows:

10 Polynomial Time Complexity Graph Distance Computation 203

1. Determine the set of labels that each of the two original graphs have in common, GLmcs,
by computing the intersection of sets GL1 and GL2 (see above), i.e., GLmcs = GL1 ∩
GL2.

2. For each label L ∈ GLmcs, create a new node N in Vmcs labeled such that αmcs(N) =
L.

3. Determine the edges of the maximum common subgraph Emcs by examining all pairs of
nodes in Vmcs and add edges to Emcs that connect pairs of nodes in both of the original
graphs and that have matching edge labels; the added edge in the maximum common
subgraph will have the same label.

We see that the complexity of this method is O(|V1| · |V2|) for step 1, since we need
only compare each node label from one graph to each node label of the other and determine
whether there is a match or not. Thus the maximum number of comparisons is |V1| · |V2|,
and since each node has a unique label we need to consider each combination only once. For
step 2, the complexity is O(|Vmcs|). The complexity is O(|Vmcs|2) for step 3, since we have
|Vmcs| nodes and we look at all combinations of pairs of nodes to determine if an edge should
be added between them or not:(

|Vmcs|
2

)
=

|Vmcs|!
(|Vmcs| − 2)! · 2!

=
|Vmcs| · (|Vmcs| − 1)

2
< |Vmcs|2. (10.4)

Thus the overall complexity is O(|V1| · |V2| + |Vmcs| + |Vmcs|2) ≤ O(|V |2 + |Vmcs|2) =
O(|V |2) if we substitute V = max(|V1|, |V2|). Note that the case of the minimum common
supergraph is the same, except we change the intersection in step 1 to a union.

Given this result, we introduce graph representations of data that utilize unique node labels
to take advantage of the improved time complexity for determining the maximum common
subgraph, which, in turn, allows for graph distance to be calculated in polynomial time. Our
application domain is web content mining, and our graph representations of web documents
are given in the next section.

10.3 Graph Representations for Web Document Content

In this section we describe methods for representing web document content using graphs with
unique node labels instead of the vector representations that are traditionally used. All rep-
resentations are based on the adjacency of terms in a web document. These representations
are named standard, simple, n-distance, n-simple distance, raw frequency, and normalized
frequency.

Under the standard method each unique term (word) appearing in the document, except
for stop words such as “the,” “of,” and “and,” which convey little information, becomes a node
in the graph representing that document. Each node is labeled with the term it represents.
Note that we create only a single node for each word even if a word appears more than once
in the text. Also, if word a immediately precedes word b somewhere in a “section” s of the
document, then there is a directed edge from the node corresponding to term a to the node
corresponding to term b with an edge label s. We take into account certain punctuation (such
as periods) and do not create an edge when these are present between two words. Sections
we have defined for the standard representation are title, which contains the text related to the
document’s title and any provided keywords (meta-data); link, which is text that appears in
hyperlinks on the document; and text, which comprises any of the visible text in the document

204 Schenker et al.

(this includes text in links, but not text in the document’s title and keywords). Next we remove
the most infrequently occurring words in each document, leaving at most m nodes per graph
(m being a user-provided parameter). This is similar to the dimensionality reduction process
for vector representations [5]. For the final step in our graph creation process, we perform
a simple stemming method and conflate words (an information-retrieval term for merging
multiple word forms so they are represented by a single entity) to the most frequently occurring
form by relabeling nodes and updating edges as needed.

An example of this type of graph representation is given in Figure 10.1. The ovals indicate
nodes and their corresponding term labels. The edges are labeled according to title (TI), link
(L), or text (TX). The document represented by the example has the title “YAHOO NEWS,”
a link whose text reads “MORE NEWS,” and text containing “REUTERS NEWS SERVICE
REPORTS.” A brief point of clarification is necessary concerning the link section. We do not
examine the URLs of the hyperlinks to create the graphs; instead we are examining the text
that labels the hyperlink itself and appears on the web document for the user to click. Note
that there is no restriction on the form of the graph, and that cycles are allowed. If pairs of
terms appear adjacent in more than one section, we add an edge for each occurrence, labeled
appropriately.

While this approach to document representation appears superficially similar to the bi-
gram, trigram, or N-gram methods, those are statistically oriented approaches based on word
occurrence probability models [23]. The methods presented here, with the exception of the
frequency representations described below, do not require or use the computation of term
probability relationships.

YAHOO NEWS

SERVICE

MORE

REPORTS REUTERS

TI L

TX

TX

TX

Fig. 10.1. Example of a standard graph representation of a document.

The second type of graph representation we will look at is what we call the simple repre-
sentation. It is basically the same as the standard representation, except that we look at only
the visible text on the page, and do not include title and meta-data information (the title sec-
tion). Further, we do not label the edges between nodes, so there is no distinction between link
and text sections. An example of this type of representation is given in Figure 10.2.

The third type of representation is called the n-distance representation. Under this model,
there is a user-provided parameter, n. Instead of considering only terms immediately following
a given term in a web document, we look up to n terms ahead and connect the succeeding terms
with an edge that is labeled with the distance between them (unless the words are separated by
certain punctuation marks). For example, if we had the following text on a web page, “AAA
BBB CCC DDD,” then we would have an edge from term AAA to term BBB labeled with a

10 Polynomial Time Complexity Graph Distance Computation 205

Fig. 10.2. Example of a simple graph representation of a document.

1, an edge from term AAA to term CCC labeled 2, and so on. The complete graph for this
example is shown in Figure 10.3.

AAA BBB

CCC DDD

1

1

1

2 2

3

Fig. 10.3. Example of an n-distance graph representation of a document.

Similar to n-distance, we also have the fourth graph representation, n-simple distance.
This is identical to n-distance, but the edges are not labeled, which means we only know that
the distance between two connected terms is not more than n.

The fifth graph representation is what we call the raw frequency representation. This is
similar to the simple representation (adjacent words, no section-related information), but each
node and edge is labeled with an additional frequency measure. For nodes this indicates how
many times the associated term appeared in the web document; for edges, this indicates the
number of times the two connected terms appeared adjacent to each other in the specified
order. The raw frequency representation uses the total number of term occurrences (on the
nodes) and co-occurrences (edges).

A problem with this representation is that large differences in document size could lead to
skewed comparisons, similar to the problem encountered when using Euclidean distance with
vector representations of documents. Under the normalized frequency representation, instead
of associating each node with the total number of times the corresponding term appears in the
document, a normalized value in [0, 1] is assigned by dividing each node frequency value by
the maximum node frequency value that occurs in the graph; a similar procedure is performed
for the edges. Thus each node and edge has a value in [0, 1] associated with it, which indicates
the normalized frequency of the term (for nodes) or co-occurrence of terms (for edges).

NEWS

SERVICE

MORE

REPORTS REUTERS

206 Schenker et al.

Previously we stated that the “size” of a graph, |G|, is usually defined as the number
of nodes in the graph. However, for our particular representations of web documents it is
detrimental to ignore the contribution of the edges, which indicate the number of phrases (term
adjacencies) identified in the document content. Further, it is possible to have more than one
edge between two nodes for certain representations. Thus we will use the following definition
of graph size for all representations except the frequency representations (the size of a graph
under the frequency representations will be described below). Formally, the size of a graph
G = (V, E, α, β), denoted |G|, is defined as

|G| = |V | + |E|. (10.5)

Thus we will take the size to be the sum of the number of vertices and edges in the graph for
the standard, simple, n-distance, and n-simple distance representations.

However, under the raw frequency and normalized frequency representations the graph
size is defined as the total of the node frequencies added to the total of the edge frequencies. We
need this modification to reflect the frequency information in the graph size. As an example,
consider two raw frequency graphs each with a node “A”; however, term “A” appears two times
in one document and 300 in the other. This difference in frequency information is not captured
under equation (10.5). Further, when we compute the maximum common subgraph for these
representations, we take the minimum frequency element (either node or edge) as the value for
the maximum common subgraph. To continue the above example, node “A” in the maximum
common subgraph would have a frequency of 2, which is min(2, 300).

10.4 Graph-Based Web Mining Algorithms

Now that we have graph representations of web documents with unique node labels, we can
compute the distance between two web documents in polynomial time. This allows us to retain
the graph representations for use in various machine learning methods. The main benefit of
this approach is that the additional structural information captured in the graphs is maintained,
unlike other methods where we need to discard the structural information to arrive at a vector
representation.

In this section we describe two classical machine learning algorithms, k-means and k-
nearest neighbors, and show how they can be extended in a straightforward manner to utilize
graphs and graph distance.

10.4.1 k-Means Clustering with Graphs

The k-means clustering algorithm is a simple and straightforward method for clustering data
[24]. The basic algorithm is given in Figure 10.4. Traditionally, each item to be clustered is
represented as a vector in the Euclidean space �m, and a vector distance measure such as
Jaccard is used [5]:

distJAC(x,y) = 1 −
∑n

i=1 xiyi∑n
i=1 x2

i +
∑n

i=1 y2
i −∑n

i=1 xiyi
, (10.6)

where xi and yi are the ith components of vectors x and y, respectively.
For our graph-based approach, instead of vectors we will represent web document content

using graphs, as discussed in section 10.3. To compute distances, we simply use one of the

10 Polynomial Time Complexity Graph Distance Computation 207

Inputs: the set of n data items and a parameter, k, defining the number of clusters to create
Outputs: the centroids of the clusters and for each data item the cluster (an integer in [1,k]) it

belongs to

Step�1. Assign each data item randomly to a cluster (from 1 to k).
Step�2. Using the initial assignment, determine the centroids of each cluster.
Step�3. Given the new centroids, assign each data item to be in the cluster of its closest centroid.
Step�4. Re-compute the centroids as in Step 2. Repeat Steps 3 and 4 until the centroids do not

change.

Fig. 10.4. The basic k-means clustering algorithm.

methods described in section 10.2.2. However, note that the k-means algorithm, like many
clustering algorithms, requires not only the computation of distances, but also of cluster rep-
resentatives. In the case of k-means, these representatives are called centroids. Thus we need
a graph-theoretic version of the centroid, which itself must be a graph, if we are to extend this
algorithm to work with graph representations of web documents. Our solution is to compute
the representatives (centroids) of the clusters using median graphs [25]. Formally, the median
of a set of graphs S is a graph g ∈ S (S = {G1, G2, . . . , Gn}) such that g has the lowest
average distance to all graphs in S:

g = arg min
∀s∈S

(
1

|S|
|S|∑
i=1

dist(s, Gi)

)
. (10.7)

The median of a set of graphs is the graph from the set that has the minimum average distance
to all the other graphs in the set. Here the distance is computed with the graph-theoretic dis-
tance measures mentioned in section 10.2.2. The procedure is fairly straightforward, though
the equation may seem complex at first. We start by selecting some specific graph, let us call it
s, and then compute the distances between s and all other graphs in a pair-wise fashion. These
distances are summed and then divided by the total number of graphs to calculate an average
distance between s and all the other graphs. This number is saved and associated with graph s;
we repeat the above process with all the graphs, taking each one in turn to be “s.” The median
graph is then selected by finding the graph that has the minimum distance.

We wish to clarify here a point that may cause some confusion. Clustering with graphs is
well established in the literature. However, with those methods the entire clustering problem
is treated as a graph, where nodes represent the items to be clustered and the weights on the
edges connecting the nodes indicate the distance between the objects the nodes represent.
The goal is to partition this graph, breaking it up into several connected components that
represent clusters. The usual procedure is to create a minimal spanning tree of the graph and
then remove the remaining edges with the largest weight until the number of desired clusters
is achieved [26]. This is very different from the technique we described in this section, since
it is the data (in this case, the web documents) themselves that are represented by graphs, not
the overall clustering problem.

10.4.2 k-Nearest Neighbors Classification with Graphs

In this section we describe the k-nearest neighbors (k-NN) classification algorithm and how
we can easily extend it to work with the graph-based representations of web documents de-
scribed above. The basic k-NN algorithm [24] begins with a set of training examples; in the

208 Schenker et al.

traditional k-NN approach these are numerical feature vectors. Each of these training exam-
ples is associated with a label that indicates to what class the example belongs. Given a new,
previously unseen input instance, we attempt to estimate which class it belongs to. Under the
k-NN method this is accomplished by looking at the k training examples closest (i.e., with
least distance) to the input instance. Here k is a user-provided parameter and distance is com-
puted with a vector distance measure, such as equation (10.6).

Once we have found the k nearest training examples using some distance measure, we
estimate the class by the majority among the k training examples. This class is then assigned
as the predicted class for the input instance. If there are ties due to more than one class having
equal numbers of representatives among the nearest neighbors, we can either choose one class
randomly or break the tie with some other method, such as selecting the tied class that has the
minimum distance neighbor. For the experiments in this chapter we will use the latter method,
which in our experiments has shown a slight improvement over random tie breaking.

To extend the k-NN method to work with graph representations of web documents instead
of vector representations, we need only utilize one of the graph distance measures presented
in section 10.2.2 in place of the traditional vector distance measures. Then we may use graphs
in place of vectors with no further changes to the algorithm.

10.5 Experimental Results

10.5.1 Data Sets

To evaluate the performance of the graph-based k-means and k-NN algorithms as compared
with the traditional vector methods, we performed experiments on two different collections
of web documents, called the F-series and the J-series [27]. The data sets are available under
these names at ftp://ftp.cs.umn.edu/dept/users/boley/PDDPdata/. These
two data sets were selected because of two major reasons. First, all of the original HTML
documents are available, which is necessary if we are to represent the documents as graphs;
many other document collections provide only a preprocessed vector representation, which
is unsuitable for use with our method. Second, ground truth assignments are provided for
each data set, and there are multiple classes representing easily understandable groupings that
relate to the content of the documents. Some web document collections are not labeled or
are presented with some task in mind other than content-related classification (e.g., building a
predictive model based on user preferences).

The F-series originally contained 98 documents belonging to one or more of 17 sub-
categories of four major category areas: manufacturing, labor, business and finance, and elec-
tronic communication and networking. Because there are multiple subcategory classifications
from the same category area for many of these documents, we have reduced the categories
to just the four major categories mentioned above in order to simplify the problem. There
were five documents that had conflicting classifications (i.e., they were classified to belong
to two or more of the four major categories) that we removed in order to create a single
class classification problem, which allows for a more straightforward way of assessing clas-
sification accuracy. The J-series contains 185 documents and ten classes: affirmative action,
business capital, information systems, electronic commerce, intellectual property, employee
rights, materials processing, personnel management, manufacturing systems, and industrial
partnership. We have not modified this data set. Additional results on a third, larger data set
can be found elsewhere [28, 29, 30].

10 Polynomial Time Complexity Graph Distance Computation 209

For the vector representation experiments, which are presented as a baseline for compari-
son purposes, there were already several precreated term–document matrices available for our
experiments at the same location where we obtained the two document collections. We se-
lected the matrices with the smallest number of dimensions. For the F-series documents there
are 332 dimensions (terms) used, while the J-series has 474 dimensions. We performed some
preliminary experiments and observed that other term-weighting schemes (i.e., inverse docu-
ment frequency, see [5]) improved the accuracy of the vector-model representation for these
data sets either only very slightly or in many cases not at all. Thus we have left the data in its
original format.

10.5.2 Experimental Details

For our experiments we use a maximum graph size of 30 nodes per graph, which corresponds
to setting m = 30 (see section 10.3). This parameter value was selected based on previous
experimental results, and has been shown to work adequately for both data sets (further results
with other graph sizes are omitted for brevity). We select a single value for m to be used by
all graphs for experimental consistency. However, the value of m could be different for each
graph, which would allow for more flexibility than vector-space models, since they require
a fixed number of dimensions for every document. The graph model can allow for a differ-
ent representation size for each document, which would require some method of selecting a
“good” value of m for each document. This is part of the more general keyphrase extraction
problem [31], which does not have a trivial solution; describing methods for dealing with it is
beyond the scope of this chapter. Note that it is also possible to reduce the size of the graphs
by examination of graph-theoretic features, such as focusing on large connected components,
nodes with high edge degrees, or components with certain topologies.

The dMCS distance measure (10.1) was used to compute graph distance for both algo-
rithms. For the “distance” related graph representations, n-distance and n-simple distance, we
used n = 5 (i.e., 5-distance and 5-simple distance). The vector representation results reported
for comparison reflect using a distance measure based on Jaccard similarity, equation (10.6).
We used Jaccard distance because this was consistently the best performing vector distance
measure in our experimental results. Euclidean distance is generally not used for informa-
tion retrieval tasks and performs poorly because it lacks a length-invariance property. With
Euclidean distance, large variations in overall document size cause large distances between
their representative vectors, even though the two documents may be about identical topics; the
document content is ideally described by vector direction, not length. (For further discussion
of this topic, see [5, 32].)

Clustering performance is measured using two performance indices that indicate the sim-
ilarity of obtained clusters to the “ground truth” clusters. The first performance index is the
Rand index [33], which is computed by examining the produced clustering and checking how
closely it matches the ground truth clustering. It produces a value in the interval [0, 1], with
1 representing a clustering that perfectly matches ground truth. The second performance in-
dex we use for measuring clustering performance is mutual information [34], which is an
information-theoretic measure that evaluates the overall degree of agreement between the
clustering under consideration and ground truth, with a preference for clusters that have high
purity. Higher values of mutual information indicate better performance. The clustering ex-
periments were repeated ten times to account for the random initialization of the k-means
algorithm, and the average of these experiments is reported. Classification accuracy was as-
sessed by the leave-one-out method, where we use all but one of the instances in the data
set as training examples and attempt to classify the remaining input instance. The procedure

210 Schenker et al.

is carried out using each instance in the data set as the input instance once, and the overall
accuracy is reported.

10.5.3 Examples of Results

The performance of clustering the F and J data sets, as measured by the Rand index when
compared with ground truth, after applying k-means clustering, is given in Figure 10.5. Simi-
larly, the performance as measured by mutual information is given in Figure 10.6. The figures
compare the performance obtained when using the different graph representations presented
in section 10.3. These are, from left to right, standard, simple, 5-distance, 5-simple distance,
raw frequency, and normalized frequency. The final column is the accuracy of the vector rep-
resentation approach using a distance based on the Jaccard similarity [5], which is the best
performing vector distance measure we have worked with. The white bars correspond to the
F-series data set, whereas the black bars are the J-series. On our system, a 2.6 GHz Pentium 4
with 1 gigabyte of memory, the average time to create clusters for the F-series using the graph-
based method and the standard representation was 22.7 seconds, whereas it took 59.5 seconds
on average for the J-series.

Clustering Performance of k-means (Rand Index)

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

Standard Simple 5-Distance 5-Simple Distance Raw Frequency Normalized

Frequency

Vector (Jaccard)

Representation

R
a

n
d

 I
n

d
e

x

F-series J-series

Fig. 10.5. Performance of k-means clustering on F and J data sets as measured by the Rand
index.

The results for the k-nearest neighbors classification experiments are given in Figures 10.7
and 10.8 for the F and J data sets, respectively. Similar to the clustering results, the various
representations are compared. The different bars in each group correspond to different values
of k (the number of nearest neighbors). The white bars correspond to k = 1, the gray bars are
for k = 3, the striped bars indicate k = 5, and the black bars are k = 10. The graph-based
k-NN method took an average of 0.2 seconds to classify a document for the F-series, and
0.45 seconds for the J-series, both when using k = 1 and the standard representation.

10 Polynomial Time Complexity Graph Distance Computation 211

Clustering Performance of k-means (Mutual Information)

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

Standard Simple 5-Distance 5-Simple Distance Raw Frequency Normalized

Frequency

Vector (Jaccard)

Representation

M
u

tu
a

l
In

fo
rm

a
ti

o
n

F-series J-series

Fig. 10.6. Performance of k-means clustering on F and J data sets as measured by mutual
information.

Classification Accuracy of k-NN (F-series)

75%

80%

85%

90%

95%

100%

Standard Simple 5-Distance 5-Simple

Distance

Raw Frequency Normalized

Frequency

Vector (Jaccard)

Representation

C
la

s
s
ifi

c
a

ti
o

n
 A

c
c

u
ra

c
y

k=1 k=3 k=5 k=10

Fig. 10.7. Performance of k-nearest neighbors classification for the F-series data set with
accuracy measured using leave-one-out.

212 Schenker et al.

Classification Accuracy of k-NN (J-series)

66%

68%

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

Standard Simple 5-Distance 5-Simple Distance Raw Frequency Normalized

Frequency

Vector (Jaccard)

Representation

C
la

s
s
ifi

c
a
ti

o
n

 A
c
c
u

ra
c
y

k=1 k=3 k=5 k=10

Fig. 10.8. Performance of k-nearest neighbors classification for the J-series data set with ac-
curacy measured using leave-one-out.

The standard representation, in all experiments, exceeded the equivalent vector procedure.
In 11 out of 12 experiments, the simple representation outperformed the vector model. The
5-distance representation was better in eight out of 12 experiments. The 5-simple distance
representation was an improvement in nine out of 12 cases. Raw frequency was better in eight
of 12 cases, while normalized frequency was an improvement in 11 of 12 cases.

For the clustering experiments, the best F-series results were attained by the standard rep-
resentation (0.7202 for Rand index; 0.1604 for mutual information). The performance of the
vector approach was 0.6899 and 0.1020 for Rand and mutual information, respectively. For the
J-series, the best Rand index was obtained for standard (0.8741) while the best mutual infor-
mation value was attained for normalized frequency (0.2516). In comparison, the vector-based
clustering for the J-series achieved 0.8717 for Rand index and 0.2316 for mutual information.

For the classification experiments, the best accuracy for the F-series was 97.85%, which
was achieved by both the simple representation (for k = 3) and the normalized frequency
representation (for k = 1). In contrast, the best accuracy using a vector representation was
94.62% (for k = 3). For the J-series, the best graph-based accuracy was 85.95% (for simple,
k = 5); the best vector-based accuracy was 77.30%.

Additional experimental results comparing the performance of different graph distance
measures (section 10.2.2) can be found in [28, 35]. Evaluations of other clustering algorithms
when utilizing graphs are reported in [30, 36]. Creation of classifier ensembles using random
node selection for graphs is described in [37].

10 Polynomial Time Complexity Graph Distance Computation 213

10.6 Conclusion

We have demonstrated how using graphs with unique node labels reduces the complexity of
the maximum common subgraph problem to polynomial time, and how utilizing the maximum
common subgraph allows us to calculate a graph distance measure. Such graph distance mea-
sures are useful for allowing clustering and classification algorithms to work with graph rep-
resentations of data, which contain additional structural information when compared to their
vector counterparts. We introduced several methods of representing web document content
using graphs with unique node labels. We also presented graph-based versions of the k-means
and k-nearest neighbors algorithms, and showed some examples of experimental results when
applying these methods to web document collections. The results show our graph-based ap-
proach can outperform traditional vector models for both clustering and classification.

Acknowledgments

This work was supported in part by the National Institute for Systems Test and Productivity
at the University of South Florida under U.S. Space and Naval Warfare Systems Command
Contract No. N00039–02–C–3244.

References

[1] C. Apte, F. Damerau, S.M. Weiss. Automated learning of decision rules for text catego-
rization. ACM Transactions on Information Systems, 12, 233–251, 1994.

[2] S. Dumais, H. Chen. Hierarchical classification of web content. In Proceedings of
SIGIR-00, 23rd ACM International Conference on Research and Development in Infor-
mation Retrieval, pages 256–263, 2000.

[3] O. Zamir, O. Etzioni. Web document clustering: a feasibility demonstration. In Proceed-
ings of the 21st Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 46–54, 1998.

[4] A.K. Jain, M.N. Murty, P.J. Flynn. Data clustering: a review. ACM Computing Surveys,
31(3), 264–323, 1999.

[5] G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computer. Reading, MA: Addison-Wesley, 1989.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms. Cambridge, MA:
MIT Press, 1997.

[7] H. Bunke. On a relation between graph edit distance and maximum common subgraph.
Pattern Recognition Letters, 18, 689–694, 1997.

[8] P.J. Dickinson, H. Bunke, A. Dadej, M. Kraetzl. Matching graphs with unique node
labels. Pattern Analysis and Applications, 7(3), 243–254, 2004.

[9] M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York: W. H. Freeman, 1979.

[10] J.R. Ullman. An algorithm for subgraph isomorphism. Journal of the Association for
Computing Machinery, 23, 31–42, 1976.

[11] J.T.L. Wang, K. Zhang, G.-W. Chirn. Algorithms for approximate graph matching. In-
formation Sciences, 82, 45–74, 1995.

[12] B.T. Messmer, H. Bunke. A new algorithm for error-tolerant subgraph isomorphism
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5), 493–
504, 1998.

214 Schenker et al.

[13] K.-C. Tai. The tree-to-tree correction problem. Journal of the Association for Computing
Machinery, 26(3), 422–433, 1979.

[14] R.A. Wagner, M.J. Fischer. The string-to-string correction problem. Journal of the
Association for Computing Machinery, 21, 168–173, 1974.

[15] V. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics-Doklady, 10, 707–710, 1966.

[16] A. Sanfeliu, K.S. Fu. A distance measure between attributed relational graphs for pattern
recognition. IEEE Transactions on Systems, Man, and Cybernetics, 13, 353–363, 1983.

[17] H. Bunke, G. Allermann. Inexact graph matching for structural pattern recognition.
Pattern Recognition Letters, 1(4), 245–253, 1983.

[18] G. Levi. A note on the derivation of maximal common subgraphs of two directed or
undirected graphs. Calcolo, 9, 341–354, 1972.

[19] J.J. McGregor. Backtrack search algorithms and the maximal common subgraph prob-
lem. Software Practice and Experience, 12, 23–34, 1982.

[20] H. Bunke, K. Shearer. A graph distance metric based on the maximal common subgraph.
Pattern Recognition Letters, 19, 255–259, 1998.

[21] W.D. Wallis, P. Shoubridge, M. Kraetz, D. Ray. Graph distances using graph union.
Pattern Recognition Letters, 22, 701–704, 2001.

[22] M.-L. Fernández, G. Valiente. A graph distance metric combining maximum common
subgraph and minimum common supergraph. Pattern Recognition Letters, 22, 753–758,
2001.

[23] C.-M. Tan, Y.-F. Wang, C.-D. Lee. The use of bigrams to enhance text categorization.
Information Processing and Management, 38, 529–546, 2002.

[24] T.M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997.
[25] X. Jiang, A. Muenger, H. Bunke. On median graphs: properties, algorithms, and ap-

plications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10),
1144–1151, 2001.

[26] C.T. Zahn. Graph-theoretical methods for detecting and describing gestalt structures.
IEEE Transactions on Computers, C-20, 68–86, 1971.

[27] D. Boley, M. Gini, R. Gross, et al. Partitioning-based clustering for web document
categorization. Decision Support Systems, 27, 329–341, 1999.

[28] A. Schenker, M. Last, H. Bunke, A. Kandel. Classification of documents using graph
matching. International Journal of Pattern Recognition and Artificial Intelligence, 18(3),
475–496, 2004.

[29] A. Schenker, M. Last, H. Bunke, A. Kandel. Classification of web documents using a
graph model. In Proceedings of the 7th International Conference on Document Analysis
and Recognition, pages 240–244, 2003.

[30] A. Schenker, M. Last, H. Bunke, A. Kandel. A comparison of two novel algorithms for
clustering web documents. In Proceedings of the 2nd International Workshop on Web
Document Analysis, pages 71–74, 2003.

[31] P.D. Turney. Learning algorithms for keyphrase extraction. Information Retrieval, 2(4),
303–336, 2000.

[32] A. Strehl, J. Ghosh, R. Mooney. Impact of similarity measures on web-page clustering.
In AAAI-2000: Workshop of Artificial Intelligence for Web Search, pages 58–64, 2000.

[33] W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association, 66, 846–850, 1971.

[34] T.M. Cover, J.A. Thomas. Elements of Information Theory. New York: Wiley, 1991.
[35] A. Schenker, M. Last, H. Bunke, A. Kandel. Comparison of distance measures for graph-

based clustering of documents. In E. Hancock, M. Vento, eds. Proceedings of the 4th

10 Polynomial Time Complexity Graph Distance Computation 215

IAPR-TC15 International Workshop on Graph-based Representations in Pattern Recog-
nition, volume 2726 of Lecture Notes in Computer Science, pages 202–213. New York:
Springer-Verlag, 2003.

[36] A. Schenker, M. Last, H. Bunke, A. Kandel. Comparison of algorithms for web docu-
ment clustering using graph representations of data. In A. Fred, T. Caelli, R.P.W. Duin,
A. Campilho, D. de Ridder, eds. Proceedings of the Joint IAPR Workshop on Syntactical
and Structural Pattern Recognition, volume 3138 of Lecture Notes in Computer Science,
pages 190–197. New York: Springer-Verlag, 2004.

[37] A. Schenker, H. Bunke, M. Last, A. Kandel. Building graph-based classifier ensembles
by random node selection. In F. Roli, J. Kittler, T. Windeatt, eds. Proceedings of the 5th
International Workshop on Multiple Classifier Systems, volume 3077 of Lecture Notes
in Computer Science, pages 214–222. New York: Springer-Verlag, 2004.

