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Preface

Machines capable of automatic pattern recognition have been fascinating subjects
that capture much popular imagination. Algorithms for supervised classification,
where one infers a decision boundary from a set of training examples, are at the core
of this capability. Over the last few decades, tremendous progress has been made
on inventing and refining such algorithms. Yet, automatic learning in many simple
tasks in daily life still appears to be far from reach. So we ask, what is missing from
these efforts? When the automatic classifiers are not perfect, is it a deficiency of the
algorithms by design, or is it a difficulty intrinsic to the classification task? How do
we know whether we have exploited to the fullest extent the knowledge embedded
in the training data?

A well-known description of the intrinsic difficulty of a classification problem
is the Bayes error, which can be computed if complete knowledge is given on the
probability distribution of each class in the feature space. But empirical observations
suggest that, from the perspectives of automatic classifiers given limited training
data, problems can be difficult for different reasons even if they have the same Bayes
error. This results in strongly data-dependent performances of classifiers. Factors af-
fecting accuracy can be, for example, the shapes of the classes and thus the shape
the decision boundary, the amount of overlap among the classes, the proximity of
two classes, and the number of informative samples available for training. Classifiers
respond to these factors in their unique ways. A recent realization is that the com-
plexity of the data must be weighed in when evaluating the performance of various
classifiers.

Besides pattern recognition, classification is also a central topic in several re-
lated disciplines such as machine learning, neural networks, and data mining. Prac-
tical applications are also numerous, in image, video, and speech signal processing,
biometrics, digital libraries, biomedical studies, financial engineering, military deci-
sions, and many other areas of scientific, engineering, and business data analysis. A
prerequisite for setting proper expectations on classification performance is to under-
stand the complexity of a specific data set arising from an application. To understand
the data complexity is to find out whether, or to what extent, patterns exist in the



VI Preface

data. It is also to obtain guidance on selecting specific classification techniques. We
believe that this is the key to further advances in classification.

We have seen relevant attempts to understand data characteristics in several ma-
jor methodological areas. However, the huge and diverse literature of the field has
made it extremely difficult for one to keep up with the progress. In addition, be-
cause of background and terminology differences, it has become a sad state of affairs
that many researchers are often unaware of concurrent developments under slightly
different names. Motivated by this, we collected in this book a set of reviews, com-
mentaries, and case studies on data complexity and its role in shaping the theories
and techniques in different areas.

The book consists of two parts: (I) Theory and Methodology, and (II) Applica-
tions. Part I begins with several chapters that propose measures of data complexity
from different perspectives. Chapter 1 describes several measures of geometrical and
topological characteristics of point sets in high-dimensional spaces, and their utility
in analyzing data sets with known or controlled complexity. Chapter 2 focuses on
a dissimilarity based representation of objects and addresses the intricate relation-
ship between the intrinsic complexity of a data set, the chosen object representation,
the apparent complexity determined by the sampling density with respect to this
representation, along with the implications of these on classifier choices. Chapter
3 discusses the possibilities and difficulties in estimating data complexity when the
data models are assumed to be in a known form, such as an isotropic Gaussian, for
which certain simple classifiers are suitable. Examples are shown where the same
problem may appear easy or difficult depending on the classifier being used, due to
influences of the density parameters and the sample size on the relevant measures.
The chapter concludes with an interesting remark that estimating such measures is
not necessarily easier than training a classifier for the task.

Various aspects of data complexity can affect the behavior of different families
of classifiers in different ways. Among the earliest concerns is the role of linear
separability on the effectiveness of linear classifiers. This concern is carried into
recent studies on support vector machines that are linear classifiers in a transformed
feature space. Chapter 4 reviews descent procedures for linear classifier training, and
discusses the effect of linear separability on the behavior of such procedures. Chapter
5 relates data complexity to the inductive learning principle and the control of model
complexity. Two approaches to control classifier complexity are compared: a margin-
based approach and an adaptive parameterization approach. Experiments are shown
that highlights conditions under which the margin-based approach is more effective.

Chapter 6 describes the influence of data geometry on the performance of a pop-
ular genetic algorithm based classifier, XCS. The chapter continues to use several
geometrical complexity measures to analyze the regions in the complexity space
where XCS performs favorably. This study is extended to six classifiers in chapter 7,
where the domains of dominant competence are found for three traditional classifiers
and three types of ensemble classifiers.

Grammatical inference has received much attention recently. Concerted efforts
from diverse disciplines to find tractable inference techniques have added new di-
mensions and opened up unexplored territories. Chapter 8 studies the data complex-
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ity issue in grammatical inference at three concentric levels: representational level
(strings, trees, and graphs), class of languages, and the issue of membership. Choices
made at one level may affect data complexity as seen at another level. For example,
the choice in the representational level may make the later tasks easier or harder. The
author reviews necessary basic concepts and presents discussions on how stochastic
and other languages have evolved to address the needs.

The question of data complexity affects all applications of classification, in re-
vealing or rejecting existence of dependences, suggesting and justifying a particular
classification method, and determining the utility of predictions. For example, stud-
ies on data complexity can help explore the existence of patterns in occurrences
of diseases, characteristics of dependencies in retail transactions, reliability of bio-
metrical authentication techniques, feasibility of earthquake prediction by seismic
waveforms, and the practicality of categorizing regular text, email message, and web
pages. Similar problems also occur in many other areas of science and engineering.

In Part II, we collected studies of several key applications on their sources of
difficulties and how data complexity influences the complexity and behavior of their
solutions.

Chapter 9 features a large set of detailed analyses of properties of pattern dis-
tributions in a high-dimensional feature space associated with a symbol recognition
problem, both from theory and from empirical observations. The tools and arguments
developed there can be useful to many other application areas involving natural or
artificial patterns.

Chapter 10 proposes a set of graph-representation–based methods suitable for
document comparison, with special motivations for usage in a web mining con-
text. The methods feature compact representation, practical speed, and comparable
or even favorable accuracy over traditional vector-based methods. This exemplifies
how methods are designed to adapt to the difficulty of a problem.

Chapter 11 reviews clustering algorithms that are applied to microarray data,
showing that the classical algorithms are inadequate to extract the underlying char-
acteristics. The authors call attention to issues facing the bioinformatics community
and describes attempts in this community to redesign clustering algorithms that are
sensitive to data complexity in biological data.

Chapter 12 presents the problem of classifying magnetic resonance spectra where
high dimensionality of the raw feature space and extreme sample sparsity have
caused many difficulties. Classification accuracies are strongly influenced by the
problem representation using different extracted features. Geometrical complexity
offers an explanation for this influence.

Chapter 13 gives a tutorial introduction to the problem of tropical cyclone track-
ing in weather forecasting, and discusses the various aspects of the problem where
complexities in the data have strong impacts on the prediction accuracy.

Chapter 14 argues strongly for involving humans in the loop of developing a
solution to a visual pattern recognition problem where automatic methods may not
be able to fully adapt to data complexity. The chater describes the CAVIAR software
that serves as a proof of the concept.
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Finally, is classification complexity always something to be avoided? It turns
out that there are occasions where one actually wishes to exploit the difficulty of
a machine vision problem for some good use. Chapter 15 describes a new topic of
study called “human interactive proof,” where the security of an information system
is guarded by “reverse Turing tests” that present patterns difficult for machines but
easy for human to recognize.

Data complexity is a fundamental, important, and far-reaching topic. Our attempt
in this book captures only a snapshot of the recent activities related to this theme.
There have been many other related investigations in statistics and information the-
ory. Although it is not possible to survey all the relevant past and current works in
this single volume, we hope this collection will bring attention to this topic, and that
the references included here will provide some background to researchers interested
in following up this development in pattern recognition. It is our belief that mak-
ing these discussions accessible to a wider audience will stimulate further exchanges
among various communities dealing with data analysis.

We are grateful to all the contributors and reviewers who have made this en-
deavor an enjoyable and exciting learning experience. The editorial and production
staff at Springer have provided valuable support during the preparation of the manu-
script. We are also in debt to Anil Jain, Robert Duin, and George Nagy, who kindly
provided much encouragement in the early phases of this study. Tin thanks the sup-
port of Bell Labs management on her pursuits, and in particular, Lawrence Cowsar,
Wim Sweldens, Al Aho, Margaret Wright, and Bill Coughran, for hosting visits from
Mitra, George, Ester, and Martin over the last few years while this work developed.

Mitra Basu, Arlington, VA
Tin Kam Ho, Murray Hill, NJ
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Part I

Theory and Methodology
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Measures of Geometrical Complexity in Classification
Problems

Tin Kam Ho, Mitra Basu, and Martin Hiu Chung Law

Summary. When popular classifiers fail to perform to perfect accuracy in a practical applica-
tion, possible causes can be deficiencies in the algorithms, intrinsic difficulties in the data, and
a mismatch between methods and problems. We propose to address this mystery by develop-
ing measures of geometrical and topological characteristics of point sets in high-dimensional
spaces. Such measures provide a basis for analyzing classifier behavior beyond estimates of
error rates. We discuss several measures useful for this characterization, and their utility in
analyzing data sets with known or controlled complexity. Our observations confirm their ef-
fectiveness and suggest several future directions.

1.1 Introduction

Research progress in supervised classification in the past several decades has pro-
duced a rich set of classifier technologies. But several fundamental questions remain
unanswered: Given data from a new problem, can we determine whether there exists
a clean decision boundary between the classes? To what extent can this boundary be
inferred by the automatic algorithms? Which classifiers can do the best job?

In selecting a classifier methodology for a practical application, current ap-
proaches mostly follow a trial-and-error strategy. In benchmarking studies, one can
often see many methods in close rivalry with similar levels of accuracy. Continuous
attempts have been made on interpreting existing techniques, testing known methods
on new applications, or mix-matching different approaches [6], but no revolutionary
breakthrough appears to be in sight. It almost seems that a plateau has been reached in
classification research, and questions like these begin to linger: (1) Have we reached
the end of classifier development? (2) Have we exhausted what can be learned from
a given set of data? (3) What else can be done?

But do we really need fundamental breakthroughs in classification research? Or
are all remaining difficulties merely engineering problems that will eventually be
solved with more machine power, or more likely, more human labor to find better
feature extractors and fine-tune the classifier parameters?

To answer these questions we need to know whether there exists a limit in the
knowledge that can be derived from a data set, and where this limit lies. That is, are
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the classes intrinsically distinguishable? And to what extent are they distinguishable,
using each of our known methods? These questions are about the intrinsic complexity
of a classification problem, and the match of a classifier’s capability to a problem’s
intrinsic complexity. We believe that an understanding of these issues is the only way
to find out about the current standing of classification research, and to obtain insights
to guide further developments. In this chapter we describe our recent efforts along
these lines, including a summary of the early studies reported in [7, 8].

1.2 Sources of Difficulty in Classification

We begin with an analysis of what makes classification difficult. Difficulties in classi-
fication can be traced to three sources: (1) class ambiguity, (2) boundary complexity,
and (3) sample sparsity and feature space dimensionality.

Class Ambiguity

Class ambiguity refers to the situation when there are cases in a classification prob-
lem whose classes cannot be distinguished using the given features by any classifica-
tion algorithm. It is often a consequence of the problem formulation. Classes can be
ambiguous for two reasons. It could be that the class concepts are poorly defined and
intrinsically inseparable. An example is that the shapes of the lower case letter “l”
and the numeral “1” are the same in many fonts (Fig. 1.1a). Such ambiguity cannot
be resolved at the classifier level, a solution has to involve the application context.
Another way to say it is that the classes are not well defined; the two symbols should
belong to the same shape class.

There is another situation where the classes are well defined, but the chosen fea-
tures are not sufficient for indicating such differences (Fig. 1.1b). Again, there is no
remedy at the classifier level. The samples need to be represented by other features
that are more informative about the classes.

Class ambiguity can occur for only some input cases in a problem. Problems
where the classes are ambiguous for at least some cases are said to have nonzero
Bayes error, which sets a bound on the lowest achievable error rate.

(a) The shapes of the lower case letter
“l” and the numeral “1” are the same
in many fonts. They cannot be distin-
guished by shape alone. Which class a
sample belongs to depends on context.

(b) There may be sufficient features for
classifying the shells by shape, but not
for classifying by the time of the day
when they were collected, or by which
hand they were picked up.

Fig. 1.1. Ambiguous classes due to (a) class definition; (b) insufficient features.
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Boundary Complexity

Problems with the same Bayes erorr (such as zero) are not necessarily all alike be-
cause of their differences in boundary complexity (Fig. 1.2). Here we choose the
class boundary to be the simplest (of minimum measure in the chosen feature space)
decision boundary that minimizes Bayes error. With a complete sample, the class
boundary can be characterized by its Kolmogorov complexity [12, 14], the length of
the shortest program required to compute/describe it. A class boundary is complex
if it requires a long description, possibly including a listing of all the points together
with their class labels. This aspect of difficulty comes from the nature of the prob-
lem, and is unrelated to the sampling process. It exists even if a complete sample is
given and if the classes are well defined. An example is a realization of a random
labeling of all observable points in a feature space, where each point has a definite
label, but points of the same label are scattered over the entire space with no obvious
regularity. The only way to describe the classes could be an explicit listing of the
positions of the points with the same label.

(a) (b) (c) (d)

Fig. 1.2. Classification problems of different geometrical complexity: (a) linearly separable
problem with wide margins and compact classes; (b) linearly separable problem with narrow
margins and extended classes; (c) problem with nonlinear class boundary; (d) heavily inter-
leaved classes following a checker board layout.

Kolmogorov complexity describes the absolute amount of information in a data
set, and is known to be algorithmically incomputable [15]. Thus we resort to rela-
tive measures that depend on the chosen descriptors. Specifically, we can choose a
number of geometrical descriptors that we believe to be relevant in the context of
classification. We then describe the regularities and irregularities contained in the
data set in terms of the chosen geometrical primitives. We refer to these descriptors
as measures of the geometrical complexity of a data set. This would be sufficient for
pattern recognition where most classifiers can also be characterized by geometrical
descriptions of their decision regions.

Sample Sparsity and Feature Space Dimensionality

An incomplete or sparse sample adds another layer of difficulty to a discrimination
problem. How an unseen point should share the class labels of the training samples
in its vicinity depends on specific generalization rules. Without sufficient samples to
constrain a classifier’s generalization mechanism, the decisions on the unseen sam-
ples can be largely arbitrary. The difficulty is especially severe in high-dimensional
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spaces where the classifier’s decision region, or the generalization rule, can vary with
a large degree of freedom. The difficulty of working with sparse samples in high di-
mensional spaces has been addressed by many other researchers [3, 17, 20].

In practical applications, often a problem becomes difficult because of a mixture
of boundary complexity and sample sparsity effects. Sampling density is more crit-
ical for an intrinsically complex problem (e.g., one with many isolated subclasses)
than for an intrinsically simple problem (e.g., a linearly separable problem with wide
margins), because longer boundaries need more samples to specify. If the sample
is too sparse, an intrinsically complex problem may appear deceptively simple, for
example, when representative samples are missing from many isolated subclasses.
However, it can also happen that an intrinsically simple problem may appear de-
ceptively complex. An example is a linearly separable problem that appears to have
a nonlinear boundary when represented by a sparse training set. Thus, in lack of a
complete sample, measures of problem complexity have to be qualified by the repre-
sentativeness of the training set. We will refer to the boundary complexity computed
from a fixed training set as the apparent complexity.

With a given, fixed training set, there is little one can do to find out how close the
apparent complexity is to the “true” complexity. But this does not prevent one from
inferring about the true complexity with some confidence, if some weak assump-
tions on the geometry of the class distributions can be made. Here we distinguish
such assumptions from the more commonly adopted assumptions on the functional
form of class distributions (e.g., Gaussians), which can be overly strong. By weak
assumptions on class geometry, we mean those properties such as local compactness
of the point sets, local continuity, and piecewise linearity of the boundaries, all to be
constrained by parameters specifying a small neighborhood.

We believe that even with very conservative assumptions on the geometrical reg-
ularity, better uses of limited training samples can be made, and more useful error
estimates can be obtained than those derived from purely combinatorial arguments
emphasizing the worst cases. One should be able do these estimates without invoking
strong assumptions on the functional form of the distributions.

1.3 Characterization of Geometrical Complexity

Among the different sources of classification difficulty, the geometrical complexity
of class boundaries is probably most ready for detailed investigation. Thus in this
chapter we focus on effective ways for characterizing the geometrical complexity of
classification problems.

We assume that each problem is represented by a fixed set of training data con-
sisting of points in a d-dimensional real space Rd, and that each training point is
associated with a class label. Furthermore, we assume that we have a sparse sample,
i.e., there are unseen points from the same source that follow the same (unknown)
probability distribution but are unavailable during classifier design. The finite and
sparse sample limits our knowledge about the boundary complexity; thus we are ad-
dressing only the apparent geometrical complexity of a problem based on a given
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training set. We discuss only two-class problems, because most of the measures we
use are defined only for two-class discrimination. For multiclass problems, one can
either generalize the measure definitions as we will try later in this chapter, or pro-
duce a matrix of two-class values for each chosen measure. Summaries of the mea-
sure matrices can be made in many ways, possibly weighted with cost matrices. We
acknowledge that the summary by itself is a nontrivial problem.

One natural measure of a problem’s difficulty is the error rate of a chosen classi-
fier. However, because our eventual goal is to study behavior of different classifiers,
we want to find other measures that are less dependent on classifier choices. More-
over, measures other than classifier error rates may give hints on how the errors arise,
which could lead to improvements in classifier design, and give guidance on collec-
tion of additional samples.

Early in our investigations it became clear that there are multiple aspects of a
problem’s geometrical complexity that cannot be easily described by a single known
measure. Furthermore, while it is easy to construct many measures for various char-
acteristics of a point set, an arbitrary measure does not necessarily give a complexity
scale, such that values of the measure computed from easy problems are different
from those computed from difficult problems. Such considerations led us to an eval-
uation of different types of measures using controlled or synthetic data with known
levels of difficulty. We describe this early experiment as follows.

We constructed a complexity measurement space for classification problems
where each feature dimension is a complexity measure. Each problem, specified by
a labeled training set, is represented by a point in this space. Most of the individual
measures came from the literature of both supervised and unsupervised learning, and
a few others are defined by ourselves. All measures are normalized as far as possible
for comparability across problems. The measures we investigated can be divided into
several categories:

1. Measures of overlaps in feature values from different classes. These mea-
sures focus on the effectiveness of a single feature dimension in separating the
classes, or the composite effects of a number of dimensions. They examine the
range and spread of values in the data set within each class, and check for over-
laps among different classes (Table 1.1).

2. Measures of separability of classes. These measures evaluate to what extent
two classes are separable by examining the existence and shape of the class
boundary. The contributions of individual feature dimensions are combined and
summarized in a single score, usually a distance metric, rather than evaluated
separately (Table 1.2).

3. Measures of geometry, topology, and density of manifolds. These measures
give indirect characterizations of class separability. They assume that a class is
made up of a single or multiple manifolds that form the support of the probability
distribution of the given class. The shape, position, and interconnectedness of
these manifolds give hints on how well two classes are separated, but they do
not describe separability by design (Table 1.3).
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Table 1.1. Measures of overlaps in feature values from different classes.

Complexity measure Remarks
F1: maximum Fisher’s discriminant ratio (fisher)

Fisher’s discriminant ratio for one feature dimension is
defined as:

f = (µ1−µ2)2

σ12+σ22

where µ1, µ2, σ1
2, σ2

2 are the means and variances of
the two classes respectively, in that feature dimension.
We compute f for each feature and take the maximum
as measure F1.

For a multidimensional prob-
lem, not all features have to
contribute to class discrimi-
nation. The problem is easy
as long as there exists one
discriminating feature. There-
fore, we can just take the max-
imum f over all feature di-
mensions in discussing class
separability.

F2: volume of overlap region (overlap)

Let the maximum and minimum values of each feature
fi in class cj be max(fi, cj) and min(fi, cj), then the
overlap measure F2 is defined to be

F2 =
∏

i
MINMAXi−MAXMINi
MAXMAXi−MINMINi

where i = 1, ..., d for a d-dimensional problem, and

MINMAXi = MIN(max(fi, c1), max(fi, c2))
MAXMINi = MAX(min(fi, c1), min(fi, c2))
MAXMAXi = MAX(max(fi, c1), max(fi, c2))
MINMINi = MIN(min(fi, c1), min(fi, c2))

F2 measures the amount of
overlap of the bounding boxes
of two classes. It is the product
of per-feature overlap ratios,
each of which is the width
of the overlap interval normal-
ized by the width of the entire
interval encompassing the two
classes. The volume is zero as
long as there is at least one
dimension in which the value
ranges of the two classes are
disjoint.

F3: maximum (individual) feature efficiency (maxfeaeff)

In a procedure that progressively removes unambigu-
ous points falling outside the overlapping region in each
chosen dimension [5], the efficiency of each feature is
defined as the fraction of all remaining points separa-
ble by that feature. To represent the contribution of the
feature most useful in this sense, we use the maximum
feature efficiency (largest fraction of points distinguish-
able with only one feature) as a measure (F3).

This measure considers only
separating hyperplanes per-
pendicular to the feature axes.
Therefore, even for a linearly
separable problem, F3 may be
less than 1 if the optimal sep-
arating hyperplane is oblique.

Some of these measures have been used before, individually and sometimes im-
plicitly, to characterize classification problems. But there have been few serious stud-
ies on their effectiveness. Some are known to be good only for certain types of data
sets. For instance, Fisher’s discriminant ratio is good for indicating the separation
between two classes each following a Gaussian distribution, but not for two classes
forming nonoverlapping concentric rings one inside the other. We believe that more
measures used in combination can provide a better picture about class separation,
which determines the difficulty of classification.
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1.4 Data Sets for Validating Complexity Measures

Arbitrary functions can be constructed to measure characteristics of a point set, but
the measures are useful for our purpose only if they can describe complexity relevant
to classification, that is, they can distinguish easy classification problems from the
difficult ones. The measures need to be validated first using problems known to be
easy or difficult.

We evaluated the effectiveness of the complexity measures with two collections
of classification problems, one from the real world and the other synthetic. The first
collection includes all pairwise discrimination problems from 14 data sets in the
University of California, Irvine (UCI) Machine Learning Depository [2]. The data
sets are those that contain at least 500 points with no missing values: abalone, car,
german, kr-vs-kp, letter, lrs, nursery, pima, segmentation, splice, tic-tac-toe, vehicle,
wdbc, and yeast. Categorical features in some data sets are numerically coded. There
are altogether 844 two-class discrimination problems, with training set sizes varying
from 2 to 4648, and feature space dimensionality varying from 8 to 480. Using the
linear programming procedure by Smith [18] (as given in the description of the L1
measure in Table 1.1), 452 out of the 844 problems are found to be linearly separa-
ble [1]. They are referred to as the UCI linearly separable group. The class boundary
in each of these problems, as far as the training set is concerned, can be described
entirely by the weight vector of the separating hyperplane, so by Kolmogorov’s no-
tion these are simple problems. Thus a valid complexity measure should place these
problems at one end of its scale.

To nail the other end of a complexity scale, we need problems that are known to
be difficult. These should be problems that are known to have no learnable structure.
We created these problems artificially as the second collection. This collection con-
sists of 100 artificial two-class problems each having 1000 points per class. Problem
1 has one feature dimension, problem 2 has two, and so forth, and the last problem
contains 100 features. Each feature is a uniformly distributed pseudorandom num-
ber in [0, 1]. The points are randomly labeled, with equal probability, as one of two
classes. Because the class label of a point cannot be used to predict the class of
its neighbor, these problems have an intrinsically complex class boundary. They are
expected to locate at the other end of any complexity scale.

We studied the complexity measures on the distribution of these three groups of
problems: (1) UCI linearly separable, (2) UCI linearly nonseparable, and (3) random
labelings. A single measure is considered useful for describing problem complexity
if the three groups of problems are identifiable on its scale, and a set of measures are
considered useful if the groups of problems are separable in the space spanned by
the set.

1.5 Key Observations

The distribution of the three groups of classification problems in our chosen 12-
dimensional complexity space displays many interesting characteristics. A detailed
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Table 1.2. Measures of geometry, topology, and density of manifolds.

L3: nonlinearity of linear classifier by LP (nonlin-LP)

Hoekstra and Duin [11] proposed a measure for the
nonlinearity of a classifier with respect to a given data
set. Given a training set, the method first creates a test
set by linear interpolation (with random coefficients)
between randomly drawn pairs of points from the same
class. Then the error rate of the classifier (trained by the
given training set) on this test set is measured. Here we
use such a nonlinearity measure for the linear classifier
defined for L1.

This measure is sensitive to
the smoothness of the clas-
sifier’s decision boundary as
well as the overlap of the con-
vex hulls of the classes. For
linear classifiers and linearly
separable problems, it mea-
sures the alignment of the de-
cision surface with the class
boundary. It carries the effects
of the training procedure in
addition to those of the class
separation.

N4: nonlinearity of 1NN classifier (nonlin-NN)

This is the nonlinearity measure, as defined for L3, cal-
culated for a nearest neighbor classifier.

This measure is for the align-
ment of the nearest-neighbor
boundary with the shape of
the gap or overlap between the
convex hulls of the classes.

T1: fraction of points with associated adherence subsets retained (pretop)

This measure originated from a work on describing
shapes of class manifolds using the notion of adherence
subsets in pretopology [13]. Simply speaking, it counts
the number of balls needed to cover each class, where
each ball is centered at a training point and grown to
the maximal size before it touches another class. Re-
dundant balls lying completely in the interior of other
balls are removed. We normalize the count by the total
number of points.

A list of such balls is a com-
posite description of the shape
of the classes. The number
and size of the balls indi-
cate how much the points tend
to cluster in hyperspheres or
spread into elongated struc-
tures. In a problem where each
point is closer to points of the
other class than points of its
own class, each point is cov-
ered by a distinctive ball of a
small size, resulting in a high
value of the measure.

T2: average number of points per dimension (npts-ndim)

This is a simple ratio of the number of points in the data
set over the number of feature dimensions.

This measure is included
mostly for connection with
prior studies on sample sizes.
Because the volume of a re-
gion scales exponentially with
the number of dimensions,
a linear ratio between the
two is not a good measure of
sampling density.
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Table 1.3. Measures of class separability.

L1: minimized sum of error distance by linear programming (sumdist-LP)

Linear classifiers can be obtained by a linear program-
ming formulation proposed by Smith [18]. The method
minimizes the sum of distances of error points to the
separating hyperplane (subtracting a constant margin):

minimize att
subject to Ztw + t ≥ b

t ≥ 0

where a, b are arbitrary constant vectors (both chosen
to be 1), w is the weight vector to be determined, t is
an error vector, and Z is a matrix where each column z
is defined on an input vector x (augmented by adding
one dimension with a constant value 1) and its class c
(with value c1 or c2) as follows:{

z = +x if c = c1

z = −x if c = c2.

The value of the objective function in this formulation
is used as a measure (L1).

The measure has a zero value
for a linearly separable prob-
lem. Its value can be heavily
affected by outliers occurring
on the wrong side of the opti-
mal hyperplane. The measure
is normalized by the number
of points in the problem and
also by the length of the di-
agonal of the hyperrectangu-
lar region enclosing all train-
ing points in the feature space.

L2: error rate of linear classifier by LP (error-LP)

This measure is the error rate of the linear classifier de-
fined for L1, measured with the training set.

With a small training set this
can be a severe underestimate
of the true error rate.

N1: fraction of points on class boundary (boundary)

This method constructs a class-blind minimum span-
ning tree over the entire data set, and counts the num-
ber of points incident to an edge going across the two
classes. The fraction of such points over all points in the
data set is used as a measure.

For two heavily interleaved
classes, a majority of points
are located next to the class
boundary. However, the same
can be true for a sparsely sam-
pled linearly separable prob-
lem with margins narrower
than the distances between
points of the same class.

N2: ratio of average intra/inter class NN distance (intra-inter)

We first compute the Euclidean distance from each
point to its nearest neighbor within the class, and also
to its nearest neighbor outside the class. We then take
the average (over all points) of all the distances to intra-
class nearest neighbors, and the average of all the dis-
tances to interclass nearest neighbors. The ratio of the
two averages is used as a measure.

This compares the within-
class spread to the size of the
gap between classes. It is sen-
sitive to the classes of the
closest neighbors to a point,
and also to the difference in
magnitude of the between-
class distances and that of the
within-class distances.

N3: error rate of 1NN classifier (error-NN)

This is simply the error rate of a nearest-neighbor clas-
sifier measured with the training set.

The error rate is estimated by
the leave-one-out method.
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description of the observations in this study can be found elsewhere [8]. Here we
summarize the main findings.

1.5.1 Continuum of Problem Locations in Complexity Space

The first remarkable observation in this study is that the data sets fall on a continuum
of positions along many dimensions of the complexity space. Even though there have
been no special selection criteria imposed on the naturally arising data sets, we find
that the problems cover a large range of values in almost all the chosen complexity
scales. This reminds us of the challenges in the practice of pattern recognition: to
pursue a good match of methods to problems, we must make sure that the classifier
methodology we choose is robust to variations in these problem characteristics, or we
must understand the nature of the dependence of classifier behavior on such varia-
tions. Without accomplishing either, applications of arbitrary classifiers to a problem
have little hope of ensuring highest success.

A more encouraging observation is that many of the real-world (UCI) data sets
are located far away from the random labelings, suggesting that these practical prob-
lems do indeed contain some regularity or learnable structure.

Interestingly, there is substantial spread among the random labelings of differ-
ent dimensionality. While there is no immediate explanation for how dimensionality
affects their intrinsic difficulties, closer examination of the differences suggests that
this is more an effect of differences in apparent complexity due to different sam-
pling densities, because these data sets all have the same number of points while the
volume of the space increases exponentially with dimensionality.

1.5.2 Effectiveness of Individual Measures in Separating Problems of Known
Levels of Difficulty

The concentrations of the three groups of problems (UCI linearly separable, UCI
linearly nonseparable, and random labelings) in different regions in the complexity
space suggest that many of the chosen measures are able to reveal their differences.
As a stand-alone scale of complexity, several measures (F1, F2, F3, L2, L3) are
especially effective in separating at least two of the three groups, with the easiest
set (UCI linearly separable) and the hardest set (random labelings) occupying two
opposite ends of the scale. However, none of the measures can completely separate
the three groups with no overlap. Some measures, such as N4 and T2, are especially
weak when used in isolation.

The nearest-neighbor related measures (N1, N2, N3) have almost the same dis-
criminating power for the three groups, except for a few peculiar cases where the
training set consists of only two or three points. For those extremely sparse data sets,
although the class boundary (for the training set) is linear, the nearest neighbors are
almost always in a wrong class; thus the nearest-neighbor error rate becomes very
high. This is an artifact of the leave-one-out estimate. However, it also suggests that
a single error rate, even that of a simple and well-understood classifier, may tell a
distorted story about the data complexity. This reinforces our belief that measures of
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data complexity should not be based entirely on classifier performances but should
be on underlying problem characteristics.

1.6 Relationship among the Complexity Measures

1.6.1 Classifying the Measures

There are different ways to describe the measures. A complexity measure can be
viewed as metric based or non–metric based. The fractions of points on class bound-
ary (N1) and NN nonlinearity (N4) are examples of metric based measures, whereas
the minimized sum of error distances by linear programming (L1) are example of a
non–metric-based measure. The effectiveness of metric-based measures suffers when
there are many noisy features in a classification problem, because in those cases the
dissimilarity represented by the distance metric could be dominated by the noise and
is no longer reliable. On the other hand, non–metric-based measures usually rely on
some assumptions on the nature of the decision boundary, such as a linear separating
hyperplane. The same is not true for metric-based measures.

1.6.2 Principal Components of the Complexity Space

A principal component analysis (PCA) using the distribution of the problems in the
12-dimensional space shows that there are six significant components each explain-
ing more than 5% of the variance. Among these, the first component (PC1) explains
over 50% of the variance, and comprises even contributions from F2, L2, L3, N1,
N2, and N3. It is a combination of effects of linearity of class boundaries and prox-
imity between opposite-class neighbors. The next three components explain 12%,
11% and 9% of the variance, respectively, and can be interpreted as the contrast
between within-class and between-class scatter (PC2), the concentration and orien-
tation of class overlaps (PC3), and within-class scatter (PC4). For a more detailed
discussion of these components, as well as for the trajectory traced in the PC pro-
jection by an example series of problems with controlled class separation, we refer
readers to our earlier work [8].

1.6.3 Pairwise Correlations Between the Complexity Measures

Bivariate plots of the distributions show that some pairs of measures, such as L2 and
L3, or N1 and N3, are strongly correlated, whereas little correlation is seen between
many other pairs. The correlation coefficients between each pair of measures are
shown in Table 1.4. The existence of many uncorrelated pairs (as small values in the
table) suggests that there are more than one independent factors affecting a problem’s
complexity.

An examination of the correlation between L2 (linear classifier error rate) and
N3 (nearest neighbor error rate) and between each of these two measures and oth-
ers suggests that these error rates are not perfectly correlated, nor are they always
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predictable by an arbitrary measure. This reconfirms the risk of relying on simple
classifier error rates for complexity measurement. These two classifiers, operating
on very different principles (linearity versus proximity), have difficulties caused by
different characteristics of a problem (Fig. 1.3). More on these two classifiers will be
discussed in a subsequent chapter in this book.
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Fig. 1.3. Error rates of linear and nearest-neighbor classifiers, and the measures they are most
strongly correlated with. (�: UCI linearly separable problems; +: UCI linearly nonseparable
problems; �: random labelings.)

Some measures, while on their own are very weak in separating all three groups
of problems, can reveal between-group differences when used in combination with
other measures (Fig. 1.4). This demonstrates the importance of a joint examination
of multiple aspects of a problem’s complexity.

The measure T1, while on its own being a strong separator of the three groups,
characterizes a very different aspect of complexity from others as evidenced by its
weak correlation with others. Inspection of the plots involving T1 and others suggests
that while the shapes of the classes can vary a lot across different problems, it is less
relevant to classification accuracy than the shapes of the class boundaries.
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Fig. 1.4. Groups of problems that overlap heavily on an individual complexity scale may show
clear separation in the interaction of the effects. (�: UCI linearly separable problems; +: UCI
linearly nonseparable problems; �: random labelings)

Table 1.4. Correlation coefficients between each pair of measures.

F1 F2 F3 L1 L2 L3 N1 N2 N3 N4 T1 T2
F1 1.00 –0.02 0.06 –0.01 –0.02 –0.02 0.07 0.01 0.14 –0.02 0.03 –0.03
F2 1.00 –0.53 0.07 0.91 0.91 0.69 0.71 0.61 0.17 0.28 0.19
F3 1.00 –0.24 –0.65 –0.62 –0.39 –0.69 –0.29 –0.40 –0.68 –0.28
L1 1.00 0.33 0.32 0.37 0.37 0.28 0.53 0.18 –0.10
L2 1.00 1.00 0.78 0.81 0.67 0.47 0.37 0.16
L3 1.00 0.78 0.81 0.67 0.46 0.35 0.16
N1 1.00 0.76 0.96 0.49 0.39 –0.02
N2 1.00 0.68 0.51 0.55 0.12
N3 1.00 0.38 0.38 –0.04
N4 1.00 0.28 0.30
T1 1.00 0.17
T2 1.00

1.6.4 1NN Error Rates Are Equal to Or Less Than Fractions of Points on
Boundary

Error rates of 1NN classifiers (N3) can be shown to relate closely with fractions of
points on boundary (N1). If a point has its nearest neighbor in the opposite class,
in the minimum spanning tree on which measure N1 is based, it is connected to the
rest of the data set by an edge to that neighbor; thus it will always be a point on a
cross-boundary edge. This point at the same time will contribute to nearest neighbor
classification error. Thus the number of boundary points will be no less than the
number of nearest neighbor errors. Note that there can be many boundary points that
are not misclassified by 1NN. An extreme example is a configuration like this in one
dimension:

xx oo xx oo xx oo xx oo
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1.6.5 1NN Nonlinearity and Fractions of Points on Boundary Are Unrelated

Another observation is that fractions of points on boundary (N1) have no relationship
with 1NN nonlinearity (N4). Consider a data set made up of two concentric spirals
as in Figure 1.2c. There are only two boundary points connecting the two classes at
the center of the spirals; thus the value of N1 is small. However, the nonlinearity of
the 1NN classifier (N4) is about 0.5, maximum for a classifier. In another scenario,
the nonlinearity of a linear classifier (L3) can be small even if many points are on
the boundary. For example, in a problem where points of the two classes form an
elongated chain along a linear decision boundary with wide gaps between points in
the same class, L3 is small even if all the data points are on a boundary causing a
high value of N1.

1.6.6 Overlap Volume Versus Maximum Feature Efficiency

The volume of overlap (F2) is the product of the intervals in each dimension of
the feature space that are occupied by points from both classes. Maximum feature
efficiency (F3) is more related to the variation of density of data points. While it
is usually the case that these two measures are anticorrelated (large overlap volume
hints low feature efficiency), it is possible to come up with counterexamples of this
rule as in the configuration below.

A one-dimensional example of large overlap volume and large feature efficiency
is like this:

x xxxxxxxxx
o o o o o o o o o o

Small overlap and small feature efficiency can also coexist if the points are dense
within a small overlap region.

1.7 Extensions for More Complicated Classification Problems

The measures we used in the exploratory studies are shown to be useful for unam-
biguous two-class discrimination. There are many ways these can be extended to
handle more complicated situations in classification. Here we describe four ways to
do so, addressing issues caused by more than two classes, class ambiguity, differ-
ences between local and global data properties, and potential transformations on the
data that may reduce their complexity.

1.7.1 Extension to Multiple Classes

We have discussed the complexity measures designed for two-class problems. Many
of these measures are not directly applicable to a multiclass problem. An easy way
out is to convert a multiclass problem to many instances of two-class problems by,
say, one-versus-all-the-rest. Alternatively, we can extend the complexity measures to
multiple classes according to their semantics. Examples include:
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• Fisher discriminant ratio. Fisher’s multiple discriminant ratio for C classes is
defined to be

f =

∑C
i=1,j=1,i �=j pipj(µi − µj)2∑C

i=1 piσ2
i

where µi, σ2
i , and pi are the mean, variance, and proportion of the ith class,

respectively. In practice the inverse of the Fisher ratio is preferred, such that a
small complexity value represents an easy problem.

• Fractions of points on boundary. To generalize to multiple classes, the count
of boundary points can be changed to the count of edges with end points from
different classes. The same applies to 1NN nonlinearly, LP nonlinearity, where
misclassifications are now just points assigned to a wrong class. For the pretopo-
logical measure (T1), the adherence subsets around each point can be grown until
touching any other point with a different class label.

• Volume of overlap region. This measure can be generalized to describe the over-
lap of the bounding boxes of any pair of classes. Let Vi be the hyperrectangular
region spanned by the ith class. The overlapping volume can be defined as

f = volume of
⋃

i,j,i �=j

Vi ∩ Vj .

For computational efficiency one may approximate the above by

f =
∑

i,j,i �=j

volume of Vi ∩ Vj .

For some complexity measure, extension to multiple classes is not straight-
forward. An example is the minimized sum of error distances by linear program-
ming (L1) that is defined on a separating hyperplane between two classes. There are
several possible generalizations. One can sum the values for all one-versus-all-the-
rest problems, or one can consider the average value over different pairs of classes.
Other ways include various proposed schemes to generalize the concept of margin to
multiple classes [4].

1.7.2 Dealing with Intrinsic Ambiguity

Intrinsic ambiguity in the tails of class distributions can lead to deceptive values in
some complexity measures, suggesting that the boundary is more complicated than
that a dense sample would reveal. The ambiguity can be caused by inappropriate
class definitions or a lack of class-discriminating power in the chosen features. It can
also be caused by accidental errors in class labels in the training data. An illustrative
example is given in Figure 1.5. There are two ways to interpret those “error” points.
One can simply assume that those points are correct and estimate the complexity of
the decision boundary as in Figure 1.5b. Alternatively, one can treat those “error”
points as accidental and argue that the proper decision boundary is the straight line,
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as in Figure 1.5a. Without any prior information, it is difficult to choose between
these two interpretations.

Labeling errors and intrinsic ambiguity can have a large impact on certain com-
plexity measures. An example is the one-dimensional problem shown in Figure 1.6.
The overlapping interval of the two classes in this feature is illustrated by the long
arrow on top of the data points. However, if we interpret the leftmost point from
class 2 as an erroneous data point and ignore it, the overlapping region shrinks sig-
nificantly, as illustrated by the arrow at the bottom. Another way of saying this is that
a complexity measure may depend too much on the details of the class boundary and
is not robust.

As argued earlier, we cannot distinguish between an unambiguous, correctly la-
beled complex boundary and an ambiguous or erroneously labeled simple boundary.
In practice, most classifiers do choose between these two by imposing assumptions
on the decision boundary. For the study on measuring boundary complexity, however,
such a choice can discard useful information and is undesirable. A modification of
the measures can alleviate us of this choice. Instead of reporting a single complexity
value, we can report a sequence of values, or a measure curve. If needed, the com-
plexity measure curve can be summarized by, say, its average curvature or the area
under the curve.

Formally, let f(D) be a certain complexity measure applied on a data set D.
Without loss of generality we shall assume that a small value of f(.) corresponds to
a simple classification problem. Let D∗ be a perturbed version of D, and h(D,D∗)
be a distance metric that measures the difference between D and D∗. We define the
complexity measure curve as

gD(ε) = min
D∗:h(D,D∗)≤ε

f(D∗)

where ε specifies an error level. The complexity measure curve consists of gD(.)
evaluated at different values of ε. Note that the original complexity measure is a
point in this complexity curve, namely the point gD(0).

Combinatorics may prohibit an exact calculation of the minimization which
needs to find the best perturbation of D at each error level. A greedy algorithm
may be preferable instead, which proceeds as follows. For each error level ε, we look
for a good perturbation by trying to change the class labels of a sufficient number
of points (depending on the error level) that individually cause the largest drop in
the complexity value. There may be situations where no relabeling can decrease the
complexity. In such cases the search can be made on omitting the points from the
data set that cause the largest contribution to complexity.

1.7.3 Local Properties

The complexity measures we used describe global properties of a data set. However,
sometimes local characteristics of the data may also be important. For example, a
data set is often almost linearly separable when viewed locally but is not so globally.



1 Measures of Geometrical Complexity 19

Local characteristics like this can reveal themselves in a multiresolution study under
reasonable choices of partitioning methods such as the grids used in Singh [19].

We propose using the neighborhood of a data point to define the local properties
instead of grids, which make the values of the measures sensitive to grid boundaries.
The drawback of using neighborhoods is that it is computationally more expensive.
Let Ni,k be the set of the k nearest neighbors of the point xi in a data set D of size
n, including xi itself. We can then compute the complexity measure value at scale k
by

f̄(D, k) =
1
n

n∑
i=1

f(Ni,k).

Implementation is straightforward for most of the measures we discussed, as one
can simply recompute the measures at different locality levels. For some measures,
such as those involving a minimum spanning tree, an incremental approach may be
preferable for efficiency.

1.7.4 Nonlinear Boundaries

Some of the complexity measures implicitly assume a linear decision boundary. In
particular, the calculation of measures L1, L2, and L3 starts with an optimal hyper-
plane for a linear classifier. Data with a nonlinear boundary will lead to a large value
in those measures even if the class boundary can be fit with a simple, smooth (e.g.,
quadratic) surface with wide margin as in Figure 1.7b. In these cases, a kernel prin-
cipal component transformation can be performed that projects the data to a linear
feature space where the complexity can be evaluated (Fig. 1.7c).

The choice of the kernel function is based on what types of decision boundary
characteristics one wants to use as references. For example, if we want to see how
“quadratic”-like the decision boundary is, we should use the polynomial kernel of
degree two. On the other hand, if we want to see how similar the decision boundary
would be when compared to a spline, we should use a spline kernel.

1.8 Conclusion

We described some early investigation into the complexity of a classification prob-
lem, with emphasis on the geometrical characteristics that can be measured directly
from a training set. We studied the validity of the chosen measures as a complexity
scale using a collection of problems of known levels of difficulty. We found some in-
teresting spread among different types of problems, and evidence of the existence of
independent factors affecting a problem’s difficulty. We believe that such descriptors
of complexity are useful for identifying and comparing different types of problems,
characterizing the domains of competence of a classifier [16], and in many ways
guiding the development of a solution to a pattern recognition problem. We also in-
vestigated some relationship among these descriptors and potential generalizations
of their definitions to more complicated classification problems.
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(a) Simple Decision Boundary (b) Complex Decision Boundary

Fig. 1.5. An example illustrating the effect of intrinsic ambiguity. The erroneous data points
can lead to an overly complex decision boundary, which is usually not optimal in practice
because of overfitting.

Fig. 1.6. An example illustrating that the overlap region can be severely affected by erroneous
data points.
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Fig. 1.7. An example illustrating a nonlinear decision boundary.
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A complexity measurement space like this has many potentially interesting uses.
For a particular application, the measured levels of complexity can help determine
the existence of any learnable structure and set expectations on potential gains by
automatic learning algorithms. Within the context of the same application, the mea-
sures can be used to compare different problem formulations, including alternative
class definitions, noise conditions and sampling strategies, choices of features, and
potential feature transformations. They can be used to guide the selection of classi-
fiers and classifier combination schemes, or control the process of classifier training.
A use of these measures for comparing two methods for decision forest construction
is reported in Ho[9].

For research in classification methods, the measures can be used to determine if a
particular data set is suitable for evaluating different learning algorithms. Collection
of benchmarking data sets can be tailored to span a large range in the complexity
space to fully characterize the behavior of individual classifiers. Regions occupied
by data sets on which classifiers display homogeneous performances can be used to
outline the domain of competences of those classifiers, with the expectation that per-
formances on new data sets falling in the same region can be predicted accordingly.
Regions where no known classifiers can do well may be characterized in detail by
the complexity measures, which could lead to new classifier designs covering those
blind spots. In later chapters, we will report detailed characterizations of the domain
of competence of XCS, a genetic algorithm-based classifier, as well as several other
popular classifiers.

One may wish to study the distribution of all classification problems in this space.
An empirical approach will be to seek a representation of the distribution by a much
larger collection of synthetic or practical problems. A theoretical approach will be
more challenging; it involves reasoning about regions in this space that are possi-
ble or impossible for any data set to occupy. The identification of such regions will
require a better understanding of constraints in high-dimensional point set geometry
and topology. The intrinsic dimensionality of the problem distribution will give more
conclusive evidence on how many independent factors contribute to a problem’s dif-
ficulty.

We have made some first steps towards developing elements of a mathemat-
ical language with which we can talk more precisely about properties of high-
dimensional data sets, especially those aspects affecting classifier performances. We
believe this is necessary for classification research to advance beyond the current
plateau. Finally, we believe that such abstract studies are best accompanied by data
generation facilities and software tools for interactive data visualization, so that an
intuitive understanding may be obtained on how complexity arises from a particular
problem [10].
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2

Object Representation, Sample Size, and Data Set
Complexity

Robert P.W. Duin and Elżbieta Pe.kalska

Summary. The complexity of a pattern recognition problem is determined by its representa-
tion. It is argued and illustrated by examples that the sampling density of a given data set and
the resulting complexity of a learning problem are inherently connected. A number of crite-
ria are constructed to judge this complexity for the chosen dissimilarity representation. Some
nonlinear transformations of the original representation are also investigated to illustrate that
such changes may affect the resulting complexity. If the initial sampling density is originally
insufficient, this may result in a data set of a lower complexity and with a satisfactory sam-
pling. On the other hand, if the number of samples is originally abundant, the representation
may become more complex.

2.1 Introduction

To solve a particular problem, one will be interested in its complexity to find a short
path to the solution. The analyst will face an easy and straightforward task if the
solution follows directly from the way the problem is stated. The problem will be
judged as complex if one needs to use a large set of tools and has to select the best
procedure by a trial-and-error approach or if one has to integrate several partial solu-
tions. A possible way to proceed is to simplify the initial problem, e.g., by removing
its most weakly determined aspects. This chapter focuses on these two issues: judg-
ing the complexity of a problem from the way it is presented, and discussing some
ways to simplify it if the complexity is judged as too large.

The complexity of pattern recognition problems has recently raised some interest
[16, 17]. It is hoped that its study may contribute to the selection of appropriate
methods to solve a given problem. As the concept of problem complexity is still
ill-defined, we will start to clarify our approach, building on some earlier work [10].

Pattern recognition problems may have some intrinsic overlap. This does not con-
tribute to the problem complexity, as an existing intrinsic overlap cannot be removed
by any means. The complexity of the problem lies in difficulties one encounters in
the above sketched sense, while approaching a classification performance related to
the intrinsic class overlap. Because problems are numerically encoded by data sets
representing the classes of objects for which either pattern classes have to be learned
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or classifiers have to be determined, the complexity of the recognition problem is
the complexity of the representation as one observes through some data set. Such
representations heavily influence the complexity of the learning problem.

An important aspect of the representation is the nature of numerical encoding
used for the characterization of objects, as, for example, features or proximities be-
tween pairs of objects, or proximities of objects to class models. Even if objects are
first represented in a structural form, such as relational graphs or strings, we will
assume that a numerical representation (e.g., by dissimilarities) is derived from such
an intermediate description. In addition, the number of objects in the data set, i.e.,
the sample size, and the way the objects are sampled from the problem (at random or
by some systematic procedure) influence the complexity. As the exploration or clas-
sification problems have to be solved using a data set based on some representation,
the complexity of the problem is reflected by the data set and the representation.

This chapter focuses on the influence of sample size on the complexity of data
sets used for learning pattern classes. These classes are characterized by dissimilarity
representations [22, 23], which are primarily identified by sample sizes and not yet
by the dimensionality of some space, as feature vector representations are. Since
the given problem, the chosen representation and the derived data set are essentially
connected, we will use the word complexity interchangeably with respect to these
three concepts.

To analyze complexity in learning, one needs to understand better what com-
plexity is. In general, complexity is defined as “the quality of being intricate and
compounded” [34]. Loosely speaking, this means that an entity, a problem, a task, or
a system is complex if it consists of a number of elements (components) related such
that it is hard to separate them or to follow their interrelations. Intuitively, an entity is
more complex if more components and more interdependencies can be distinguished.
So, complexity can be characterized by the levels and the kinds of distinction and de-
pendency. The former is related to the variability, i.e., the number of elements,and
their size and shape, while the latter refers to the dependency between the compo-
nents. It will be a key issue of this chapter to make clear that the set of examples used
to solve the pattern recognition problem should be sufficiently large in order to meet
the complexity of the representation.

Reductionism treats an entity by the sum of its components or a collection of
parts. Holism, on the other hand, treats an entity as a whole, hence it does not ac-
count for distinguishable parts. The complexity can be seen as an interplay between
reductionism and holism: it needs to see distinct elements, but also their interrela-
tions, in order to realize that they cannot be separated without losing a part of their
meaning; see also the development of the science of complexity as sketched by Wal-
drop [31]. In fact, reductionism and holism can be seen on different, organizational
levels. For instance, to understand the complexity of an ant colony (see Hofstadter’s
chapter on “Ant Fugue” [18]), one needs to observe the activities of individual ants
as well as the colony as a whole. On the level of individuals, they may seem to move
in random ways, yet on the level of specialized casts and the colony, clear patterns
can be distinguished. These relate to a sequential (ants following other ants), parallel
(groups of ants with a task), and simultaneous or emergent (the global movement)



2 Object Representation, Sample Size, and Data Set Complexity 27

behavior of the colony. Therefore, complexity might be described by hierarchical
systems, where the lowest, indivisible parts serve for building higher level structures
with additional dependencies and abstraction (symbolism or meaning).

Complexity can also be placed between order and disorder (chaos). If all ants
follow sequentially one another, then although the ant colony is composed of many
individuals, its complexity is low because the pattern present there is simple and
regular. In this sense, the colony possesses redundant information. A single ant and
a direction of move will completely describe the entire colony. On the other hand,
if individual ants move in different directions, but emerge into a number of groups
with different tasks and following specified paths, the complexity of the ant colony
becomes larger. Finally, if all ants move independently in random ways without any
purpose and grouping behavior, no clear patterns can be identified. As a result, there
is no complexity as it is just chaos. Therefore, complexity may be characterized by
the surprise or unexpectedness on a low level that can be understood as following the
structure observed from a higher point of view. In brief, following Waldrop’s point
of view [31], complexity arises at the edge of structure and chaos as it is pictorially
illustrated in Figure 2.1.

structure
patterns in
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chaossimple order emergent structure

Fig. 2.1. Complexity vs. structure.

In pattern recognition one distinguishes the task of finding a classifier between
some real-world classes of objects or phenomena. This task is defined on a high
level. The classes may have some hidden structure that is partially reflected in the
initial representation by which the problem is presented. For instance, this can be by
features, dissimilarities, graphs, or other relations. Another part of the structure is
implicitly available in the set of examples from which the pattern classifier has to be
learned. The wholeness of the recognition problem is thereby available to us in its
reduction to a set of examples by a chosen representation: the data set. The path from
a pattern recognition problem to a data set determines the complexity we encounter
if we try to solve the problem based on the given data set. The complexity of a
pattern recognition problem (its intrinsic complexity) is simply not defined before a
representation is chosen and a set of examples is collected. In the end, the data set
depicts our problem.

The following example may illustrate this point. Imagine an automatic sorting of
apples and pears on a moving conveyor. The complexity of this problem depends on
a selection of a representative sample of apples and pears to learn from, initial mea-
surements done by some sensors or other devices (images, spectral images, or simple
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characteristics such as weight, perimeter, or color) and the derived representation. In
a chosen representation, the problem is complex if many examples are necessary to
capture the variability and organization within the classes as well as the interrelations
between the classes, leading to complicated decision functions. If one wishes to dis-
criminate between apples and pears based on their weights only, such a problem will
likely be simple. The reason is that a few suitably chosen examples will determine
reliable thresholds on which such a decision relies, independently of whether this
leads to frequent errors or not. On the other hand, if various Fourier coefficient and
shape descriptors are computed on the images of apples and pears and treated as fea-
tures, the resulting problem may become complex. Changes in light illumination or
tilts of a camera may increase the variability of the (images of) apples and pears as
perceived in their vector representations. This would require a large sample for a de-
scription. So, it is the representation that determines the complexity of the problem.
We encounter this complexity through the data that are available.

Note, that the use of the data set as such is insufficient for solving the problem.
It is just chaos if no additional background knowledge, such as the context, the way
the examples are collected, or the way the numbers are measured, is given. This is
very clearly shown by the “no free-lunch theorem” [33], which states that without
additional knowledge, no learning algorithm is expected to be better than another. In
particular, no learning algorithm outperforms a random assignment.

A very useful and often implicitly assumed type of knowledge used for a con-
struction of the given data set is the compactness hypothesis [1, 8]. It states that
similar real-world objects have similar representations. In practice, this hypothesis
relies on some continuous mapping from an object to its (numerical) representation,
because it is expected that a small change in an object will result in a small change
in its representation. Still, the path from an object to its representation may be very
nonlinear (and thereby attributing to the complexity of the problem), resulting in the
violation of the reverse compactness hypothesis. This means that similar representa-
tions (e.g., feature vectors lying close in a feature vector space) may not necessarily
refer to similar objects. This causes a class overlap (identical representations belong
to essentially different objects as they differ in class membership) or complicates
decision boundaries.

In a given data set of a limited cardinality the compactness might not be en-
tirely realized if insufficient real-world objects are collected. Hence, it cannot be
guaranteed that each object has at least one close companion. The complexity of the
problem then demands a higher sampling density of (training) examples to make its
characteristics apparent. As a result, the assumption needed for building classifiers
on the data set is invalid and it is impossible to solve the pattern recognition prob-
lem with a sufficient accuracy. The data set resembles chaos (as patterns cannot be
distinguished) and the structure of the problem cannot be determined.

The above discussion makes clear that complexity and sample size are inter-
related. Complex problems (due to a complicated way they are represented by the
data sets) need more samples. A question that arises now is: if the data set is in-
sufficiently large, is it thereby less or more complex? We will return to this in the
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discussion section. In brief, the following issues are more explicitly studied by some
examples:

• The influence of representation on the problem complexity
• The relation between the problem complexity and the necessary sample size
• The consequences of using too small sample sizes for solving complex problems

Our examples are based on a number of dissimilarity representations, which allow
one to apply various modifications and transformations in a simple way. In section 2,
the data sets and procedures are summarized. In section 3, various criteria are pro-
posed and investigated to judge the sampling of single classes. Section 4 investigates
and discusses the complexity issues in relation to classification. A final discussion is
presented in section 2.5.

2.2 Data Sets

To limit the influence of dimensionality issues on the relations between the sample
size and the complexity, we will focus on dissimilarity representations [22, 23, 26].
These are representations in which a collection of objects is encoded by their dissim-
ilarities to a set of chosen examples, a so-called representation set. The reason we
choose this name is twofold. First, the representation set is a set of examples that are
not necessarily prototypical for the classes according to the usual understanding (on
the contrary, some of them might be outliers). Second, this set serves for a construc-
tion of a representation space, in which both exploration and learning are performed.
The representation set may be the training set itself, its randomly or selectively cho-
sen subset or some other set. The representation set R = {p1, p2, . . . , pn} of n
examples, the (training) set T = {x1, x2, . . . , xN} of N objects, and the dissimi-
larity measure d constitute together the representation D(T,R). This is an N × n
dissimilarity matrix, in which every entry d(xj , pi) describes the difference between
the object tj and the representation object pi.

Problems with various metric and nonmetric dissimilarity measures are chosen
for the study. Six data sets are used in our experiments and are briefly summarized in
Table 2.1. In addition to the given dissimilarity measures as listed in this table, two
monotonic power transformations will be also investigated. Concerning the original
representation D=(dij), the transformed representations are denoted as D∗2 =(d2

ij)
and D∗0.5 =(d0.5

ij ), by taking the element-wise square or square root of the dissim-
ilarities dij , respectively. Note that the metric properties of the measure d are pre-
served by a square root transformation, but not necessarily by a quadratic transfor-
mation [22]. By such modifications, it is expected that either large dissimilarities
and, thereby, more global aspects of the data set are emphasized in D∗2 or large
dissimilarities are suppressed in D∗0.5, by which local aspects are strengthened. Re-
member that nondecreasing transformations like these do not affect the order of the
given dissimilarities. Thereby, the nearest neighbor relations are preserved.

Digits-38. The data describe a set of scanned handwritten digits of the National
Institute of Standards and Technology (NIST) data set [32], originally given as 128×
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Table 2.1. Data sets used in the experiments.

Data Dissimilarity Property # classes # objects per class
Digits-38 Euclidean Euclidean 2 1000
Digits-all Template-match Nonmetric 10 200
Heart Gower’s Euclidean 2 139/164
Polygon Mod. Hausdorff Nonmetric 2 2000
ProDom Structural Nonmetric 4 878/404/271/1051
Tumor-mucosa l0.8-distance Nonmetric 2 132/856

128 binary images. Just two classes of digits, 3 and 8, are considered here. Each
class consists of 1000 examples. The images are first smoothed by a Gaussian kernel
with σ =8 pixels and then the Euclidean distances between such blurred images are
computed (summing up the squares of pixel-to-pixel gray value differences followed
by the square root). The smoothing is done to make this distance representation more
robust against tilting or shifting.

Digits-all. The data describe a set of scanned handwritten digits of the NIST data
set [32], originally given as 128× 128 binary images. The similarity measure, based
on deformable template matching, as defined by Jain and Zongker [20], is used. Let
S =(sij) denote the similarities. Since the similarity is asymmetric, the off-diagonal
symmetric dissimilarities are computed as dij =(sii + sjj − sij − sji)1/2 for i �= j.
D is significantly nonmetric [24].

Heart. This data set comes from the University of California, Irvine (UCI) Ma-
chine Learning Repository [2]. The goal is to detect the presence of heart disease
in patients. There are 303 examples, of which 139 correspond to diseased patients.
Various measurements are performed; however, only 13 attributes are used by other
researchers for the analysis, as provided in Blake and Merz [2]. These attributes
are age, sex (1/0), chest pain type (1-4), resting blood pressure, serum cholesterol,
fasting blood sugar>120 mg/dl (1/0), resting electrocardiograph results, maximum
heart rate achieved, exercise-induced angina (1/0), the slope of the peak exercise ST
segment, ST depression induced by exercise relative to rest (1-3), number of major
vessels colored by fluoroscopy (0-3), and heart condition (normal, fixed defect, and
reversible defect). Hence, the data consist of mixed types: continuous, dichotomous,
and categorical variables. There are also several missing values.

Gower’s [14] dissimilarity is used for the representation. Assume m features and
let xik be the kth feature value for the ith object. A similarity measure is defined as

sij =
∑m

k=1 wk δijk sijk∑m
k=1 wk δijk

, (2.1)

where sijk is the similarity between the ith and jth objects based on the kth feature
fk only, and δijk =1, if the objects can legitimately be compared, and zero otherwise,
as, for example, in the case of missing values. For dichotomous variables, δijk = 0
if xik = xjk = 0 and δijk = 1 otherwise. The strength of feature contributions is
determined by the weights wk, which are omitted here as all wk =1. The similarity
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sijk, i, j = 1, . . . , n and k = 1, . . . , m becomes then sijk = 1 − |xik−xjk|
rk

if fk is
quantitative, sijk =I ((xik = xjk) = 1) if fk is dichotomous, sijk =I (xik = xjk)
if fk is categorical and sijk = 1 − g( |xik−xjk|

rk
), where rk is the range of fk and

g is a chosen monotonic transformation if fk is ordinal. The Gower’s dissimilarity
between the ith and jth objects is defined as dij =(1 − sij)1/2.

Polygon. The data consist of two classes of randomly generated polygons, con-
vex quadrilaterals and irregular heptagons [22, 24]. Each class consists of 2000 ex-
amples. First, the polygons are scaled such that their total contour lengths are equal.
Next, the modified Hausdorff distances [7] are computed between their corners. Let
A and B be two polygons. The modified Hausdorff distance is defined as
dMH(A,B)=max {d�

avr(A,B), d�
avr(B,A)},

where d�
avr(A,B)= 1

|A|
∑

a∈A minb∈B d(a, b),
and it is evaluated at the polygon corners a and b. This measure is nonmetric [7, 22].

ProDom. ProDom is a comprehensive set of protein domain families [5]. A sub-
set of 2604 protein domain sequences from the ProDom set [5] was selected by Roth
et al. [28]. These examples are chosen based on a high similarity to at least one se-
quence contained in the first four folds of the Structural Classification of Proteins
(SCOP) database. The pairwise structural alignments are computed by Roth using
the FASTA software [12]. Each SCOP sequence belongs to a group as labeled by
the experts [21]. We use the same set in our investigations. Originally, a structural
symmetric similarity S = (sij) is derived first. Then, the nonmetric dissimilarities
are obtained by dij =(sii + sjj − 2sij)1/2 for i �= j.

Tumor-mucosa. The data consist of the autofluorescence spectra acquired from
healthy and diseased mucosa in the oral cavity [29]. The spectra were collected from
97 volunteers with no clinically observable lesions of the oral mucosa and 137 pa-
tients having lesions in oral cavity. The measurements were taken using the excitation
wavelength of 365 nm. After preprocessing [30], each spectrum consists of 199 bins.
In total, 856 spectra representing healthy tissue and 132 spectra representing diseased
tissue were obtained. The spectra are normalized to a unit area. Here, we choose the
nonmetric l0.8-distances (lp-distance is dp(x,y)=[

∑
k(xk − yk)p]1/p) between the

first-order Gaussian-smoothed (σ=3 samples) derivatives of the spectra.1 The zero-
crossings of the derivatives indicate the peaks and valleys of the spectra, so they are
informative. Moreover, the distances between smoothed derivatives contain some in-
formation of the order of bins. In this way, the property of a continuity of a spectrum
is somewhat taken into account. This data set suffers from outliers, which are pre-
served here as we intend to illustrate their influence on the complexity.

1 lp-distances, p≤1, may be useful for problems characterized by the presence of a scattered
and very heterogeneous class, such as the class of diseased people here. The effect of large
absolute differences is diminished by p<1. Indeed, this measure was found advantageous
in our earlier experiments [22].
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2.3 Criteria for Sampling Density

Consider an n×n dissimilarity matrix D(R,R), where R = {p1, p2, . . . , pn} is a
representation set. In general, R may be a subset of a larger learning set T , but
we assume here that R = T . Every object pi is then represented by a vector of
dissimilarities D(pi, R), i=1, 2, . . . , n, to the objects from R. The research question
to be addressed is whether n, the cardinality of R, is sufficiently large for capturing
the variability in the data or, in other words, whether it is to be expected that only little
new information can be gained by increasing the number of representation objects.
This can be further rephrased as judging whether new objects can be expressed in
terms of the ones already present in R or not. Given the dissimilarity representations,
some criteria are proposed to judge its sampling sufficiency, and their usefulness is
experimentally evaluated on the data sets introduced in section 2. We focus here on
a set of unlabeled objects forming a single class.

Some possible statistics that can be used are based on the compactness hypothesis
[1, 8, 9], which was introduced in section 2.1. As it states that similar objects are also
similar (close) in their representation, it constrains the dissimilarity measure d in the
following way: d has to be such that d(x, y) is small if the objects x and y are very
similar; i.e., it should be much smaller for similar objects than for objects that are
very different.

Assume that the dissimilarity measure d is definite, i.e., d(x, y)=0 iff the objects
x and y are identical. If the objects are identical, they belong to the same class. This
reasoning can be extended by assuming that all objects z for which d(x, z)<ε, and
the positive ε is sufficiently small, are so similar to x that they belong to the same
class as x. Consequently, the dissimilarities of x and z to the representation objects
should be close (or positively correlated, in fact). This means that d(x, pi) ≈ d(z, pi),
implying that the representations d(x,R) and d(z,R) are also close. We conclude
that for dissimilarity representations that satisfy the above continuity, the reverse
compactness hypothesis holds, as objects that are similar in their representations are
also similar in reality. Consequently, they belong to the same class.

A representation set R can be judged as sufficiently large if an arbitrary new
object of the same class is not significantly different from all other objects of that
class in the data set. This can be expected if R already contains many objects that
are very similar, i.e., if they have a small dissimilarity to at least one other object.
All the criteria studied below are based, in one way or another, on this observation.
In pathological cases, the data set may contain just an optimal set of objects, but if
there are no additional objects to validate this, it has to be considered as being too
small.

We will illustrate the performance of our criteria on an artificial example and
present also the results for some real data sets. The artificial example is chosen to
be the l0.8-distance representation between n normally distributed points in a k-
dimensional vector space Rk. Both n and k vary between 5 and 500. If n < k,
then the generated vectors lie in an (n−1)-dimensional subspace, resulting in an
undersampled and difficult problem. If n � k, then the data set may be judged as
sufficiently sampled. Large values of k lead to difficult (complex) problems as they
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demand a large data cardinality n. The results are averaged over 20 experiments,
each time based on a new, randomly generated data set. The criteria are presented
and discussed below.

2.3.1 Specification of the Criteria

Sampling criteria for dissimilarity representations are directly or indirectly addressed
in three different ways: by the dissimilarity values as given; in dissimilarity vector
spaces, in which every dimension is defined by a dissimilarity to a representation
object and in embedded vector spaces, which are determined such that the origi-
nal dissimilarities are preserved; see [22, 23, 25] for more details. Each criterion is
introduced and illustrated by a separate figure, e.g., Figure 2.2 refers to the first crite-
rion. The results for artificially generated Gaussian data sets with the dimensionality
k varying from 5 to 500 represented by a Euclidean distance matrix D are always
shown on the top. Then, the results of other statistics are presented as applied to the
six real data sets.

Skewness. This is a statistic that evaluates the dissimilarity values directly. A new
object added to a set of objects that is still insufficiently well sampled will generate
many large dissimilarities and just a few small ones. As a result, for unsatisfactory
sampled data, the distribution of dissimilarities will peak for small values and will
show a long tail in the direction of large dissimilarities. After the set becomes “sat-
urated,” however, adding new objects will cause the appearance of more and more
small dissimilarities. Consequently, the skewness will grow with the increase of |R|.
The value to which it grows depends on the problem.

Let the variable d denote now the dissimilarity value between two arbitrary ob-
jects. In practice the off-diagonal values dij from the dissimilarity matrix D = (dij)
are used for his purpose. As a criterion, the skewness of the distribution of the dis-
similarities d is considered as

Jsk =E

[
d − E[d]√

E[d − E[d]]2

]3

, (2.2)

where E[·] denotes the expectation. In Figure 2.2, top, the skewness of the Gaussian
sets are shown. The cardinalities of small representation sets appear to be insufficient
to represent the problem well, as it can be concluded from the noisy behavior of
the graphs in that area. For large representation sets, the curves corresponding to
the Gaussian samples of the chosen dimensionality “asymptotically” grow to some
values of Jsk. The final values may be reached earlier for simpler problems in low
dimensions, like k=5 or 10. In general, the skewness curves for various k correspond
to the expected pattern that the simplest problems (in low-dimensional spaces) reach
the highest skewness values, whereas the most difficult problems are characterized
by the smallest skewness values.

Mean rank. An element dij represents the dissimilarity between the objects pi

and pj . The minimum of dij over all indices j points to the nearest neighbor of
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pi, say, pz if z = argminj �=i(dij). So, in the representation set R, pz is judged as
the most similar to pi. We now propose that a representation D(pi, R) describes
the object pi well if the representation of pz , i.e., D(pz, R), is close to D(pi, R)
in the dissimilarity space D(·, R). This can be measured by ordering the neighbors
of the vectors D(pi, R) and determining the rank number rNN

i of D(pz, R) in the
list of neighbors of D(pi, R). By this we compare the nearest neighbor as found in
the original dissimilarities with the neighbors in the dissimilarity space. For a well-
described representation, the mean relative rank

Jmr =
1
n

n∑
i=1

rNN
i − 1 (2.3)

is expected to be close to 0. In Figure 2.3, top, the results for the Gaussian example
are shown. It can be concluded that the sizes of the representation set R larger than
100 are sufficient for Gaussian samples in 5 or in 10 dimensions.

PCA (principal component analysis) dimensionality. A sufficiently large rep-
resentation set R tends to contain some objects that are very similar to each other.
This means that their representations, the vectors of dissimilarities to R, are very sim-
ilar. This suggests that the rank of D should be smaller than |R|, i.e., rank(D) < n.
In practice, this will not be true if the objects are not alike. A more robust crite-
rion, therefore, may be based on the principal component analysis applied to the
dissimilarity matrix D. Basically, the set is sufficiently sampled if nα, the number of
eigenvectors of D for which the sum of the corresponding eigenvalues equals a fixed
fraction α, such as 0.95 of the total sum of eigenvalues (hence α is the explained
fraction of the variance), is small in comparison to n. So, for well-represented sets,
the ratio of nα/n is expected to be smaller than some small constant (the faster the
criterion curve drops with a growing R, the smaller intrinsic dimensionality of the
dissimilarity space representation). Our criterion is then defined as

Jpca,α =
nα

n
, (2.4)

with nα such that α=
∑nα

i=1 λi/
∑n

i=1 λi. There is usually no integer nα for which
the above holds exactly, so it would be found by interpolation. Note that this criterion
relies on an intrinsic dimensionality2 in a dissimilarity space D(·, R).

2 If a certain phenomenon can be described (or if it is generated) by m independent variables,
then its intrinsic dimensionality is m. In practice, however, due to noise and imprecision
in measurements or some other uncontrolled factors, such a phenomenon may seem to
be generated by more variables. If all these factors are not too dominant such that they
completely disturb the original phenomenon, one should be able to rediscover the proper
number of significant variables. Hence, the intrinsic dimensionality is the minimum number
of variables that explains the phenomenon in a satisfactory way. In pattern recognition, one
usually discusses the intrinsic dimensionality with respect to a collection of data vectors in
the feature space. Then, for classification, the intrinsic dimensionality can be defined as the
minimum number of features needed to obtain a similar classification performance as by
using all features. In a geometrical sense, the intrinsic dimensionality can be defined as the
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In the experiments, in Figure 2.4, top, the value of Jpca,0.95 is shown for the
artificial Gaussian example as a function of |R|. The Gaussian data are studied as
generated in spaces of a growing dimensionality k. It can be concluded that the data
sets consisting of more than 100 objects may be sufficiently well sampled for small
dimensionalities such as k=5 or k=10 as just a small fraction of the eigenvectors is
needed (about 10% or less). On the other hand, the considered number of objects is
too small for the Gaussian sets of a larger dimensionality. These generate problems
of a too high complexity for the given data-set size.

Correlation. Correlations between objects in a dissimilarity space are also stud-
ied. Similar objects show similar dissimilarities to other objects and, thereby, are pos-
itively correlated. As a consequence, the ratio of the average of positive correlations
ρ+(D(pi, R), D(pj , R)) to the average of absolute values of negative correlations
ρ−(D(pi, R), D(pj , R)), given as

Jρ =
1

n2−n

∑n
i,j �=i ρ+(D(pi, R), D(pj , R))

1 + 1
n2−n

∑n
i,j �=i |ρ−(D(pi, R), D(pj , R))| (2.5)

will increase for large sample sizes. The constant added in the denominator prevents
Jρ from becoming very large if only small negative correlations appear. For a well-
sampled representation set, Jρ will be large and it will increase only slightly when
new objects are added (new objects should not significantly influence the averages
of either positive or negative correlations). Figure 2.5, top, shows that this criterion
works well for the artificial Gaussian example. For the lower dimensional data sets
(apparently less complex) Jρ reaches higher values and exhibits a flattening behavior
for sets consisting of at least 100 objects.

Intrinsic embedding dimensionality. For the study of dissimilarity representa-
tions, one may perform dimensionality reduction of a dissimilarity space (as the PCA
criterion, described above, does) or choose an embedding method. Consequently, the
judgment about whether R is sufficiently sampled relies on the estimate of the in-
trinsic dimensionality of an underlying vector space determined such that the origi-
nal dissimilarities are preserved. This can be achieved by a linear embedding of the
original objects (provided that D is symmetric) into a (pseudo-)Euclidean space. A
pseudo-Euclidean space3 is needed if D does not exhibit the Euclidean behavior, as,
for example, the l1-distance or max-norm distance measures do [22, 23]. In this way,
a vector space is found in spite of the fact that one starts from a dissimilarity matrix
D. The representation X of m≤n dimensions is determined such that it is centered
at the origin and the derived features are uncorrelated [13, 26].

dimension of a manifold that approximately (due to noise) embeds the data. In practice, the
estimated intrinsic dimensionality of a sample depends on the chosen criterion. Thereby, it
is relative for the task.

3 A pseudo-Euclidean space E := R(p,q) is a (p+q)-dimensional nondegenerate indefinite
inner product space such that the inner product 〈·, ·〉E is positive definite (pd) on Rp and
negative definite on Rq . Therefore, 〈x, y〉E =

∑q
i=1 xiyi − ∑p+q

i=p+1 xiyi = xTJpqy,
where Jpq = diag (Ip×p;−Iq×q) and I is the identity matrix. Consequently, the square
pseudo-Euclidean distance is d2

E(x, y)==〈x−y, x−y〉E =d2
Rp(x, y)−d2

Rq (x, y).
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The embedding relies on linear operations. The inner product (Gram) matrix
G of the underlying configuration X is expressed by the square dissimilarities
D∗2 = (d2

ij) as G = − 1
2JD∗2J , where J = I − 1

n11T is the centering ma-
trix [13, 22, 26]. X is determined by the eigen-decomposition of G = QΛQT =
Q|Λ|1/2diag(Jp′q′ ; 0) |Λ|1/2QT , where Jp′q′ = (Ip′×p′ ;−Iq′×q′) and I is the iden-
tity matrix, |Λ| is a diagonal matrix of first decreasing p′ positive eigenvalues, then
decreasing magnitudes of q′ negative eigenvalues, followed by zeros. Q is a matrix of
the corresponding eigenvectors. The sought configuration is first represented in Rk,
k = p′+q′, as Qk|Λk|1/2. Because only some eigenvalues are large (in magnitude),
the remaining ones can be disregarded as noninformative. This corresponds to the
determination of intrinsic dimensionality. The final representation X =Qm |Λm|1/2,
m=p+q <k, is defined by the largest p positive and the smallest q negative eigen-
values, since the features are uncorrelated.

This means that the number of dominant eigenvalues (describing the variances)
should reveal the intrinsic dimensionality (small variances are expected to show just
noise). (Note, however, that when all variances are similar, the intrinsic dimension-
ality is approximately n.) Let nemb

α be the number of significant variances for which
the sum of the corresponding magnitudes equals a specified fraction α, such as 0.95,
of the total sum. Because nemb

α determines the intrinsic dimensionality, the following
criterion is proposed:

Jemb,α =
nemb

α

n
. (2.6)

For low intrinsic dimensionalities, smaller representation sets are needed to describe
the data characteristics. Figure 2.6, top, presents the behavior of this criterion as a
function of |R| for the Gaussian data sets. The criterion curves clearly reveal differ-
ent intrinsic embedding dimensionalities. If R is sufficiently large, then the intrinsic
dimensionality estimate remains constant. Because the number of objects is grow-
ing, the criterion should then decrease and reach a relatively constant small value in
the end (for very large sets). From the plot it can be concluded that data sets with
more than 100 objects are satisfactorily sampled for Gaussian data of an originally
low dimensionality such as k≤20. In other cases, the data set is too complex.

Compactness. As mentioned above, a symmetric distance matrix D can be em-
bedded in a Euclidean or a pseudo-Euclidean space E , depending on the Euclidean
behavior of D. When the representation set is sufficiently large, the intrinsic em-
bedding dimensionality is expected to remain constant during a further enlargement.
Consequently, the mean of the data should remain approximately the same and the
average distance to this mean should decrease (as new objects do not surprise any-
more) or be constant. The larger the average distance, the less compact the class is,
requiring more samples for its description. Therefore, a simple compactness crite-
rion can be investigated. It is estimated in the leave-one-out approach as the average
square distance to the mean vector in the embedded space E :

Jcomp =
1

n2 − n

n∑
j=1

∑
i�=j

d2
E(x−j

i ,m−j), (2.7)
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where x−j
i is a vector representation of the ith object in the pseudo-Euclidean space

found by D(R−j , R−j) and R−j is a representation set of all the objects, except the
jth one. m−j is the mean of such a configuration. This can be computed from the
dissimilarities directly without the necessity of finding the embedded configuration;
see [26]. Figure 2.7, top, shows the behavior of this criterion, clearly indicating a high
degree of compactness of the low-dimensional Gaussian data. The case of k=500 is
judged as not having a very compact description.

Gaussian intrinsic dimensionality. If the data points come from a spherical nor-
mal distribution in an m-dimensional Euclidean space, then m can be estimated from
the χ2

m distributed variable d2 denoting the pairwise square Euclidean distances as

m=2 (E[d2])2

E[d4]−(E[d2])2 , where E[·] denotes the expectation; see [22]. If the data points
come from any other normal distribution, still some sort of an intrinsic dimension-
ality estimate can be found by the above formula. The judgement will be influenced
by the largest variances in the data. Basically, the volume of the hyper-ellipsoidal
normally distributed data is captured in the given distances. They are then treated
as if computed from a spherically symmetric Gaussian distribution. Hence, the de-
rived intrinsic dimensionality will reflect the dimensionality of a space to which the
original data sample is made to fit isotropically (in simple words, one can imagine
the original hyper-ellipsoidal Gaussian sample reshaped in space and “squeezed” in
the dimensions to make it the largest hyper-spherical Gaussian sample, the dimen-
sionality of the latter is then estimated). Since the above formula makes use of the
distances only, it can be applied to any dissimilarity measure. The criterion is then
defined as

JGid =2
(E[d2])2

E[d4] − (E[d2])2
, (2.8)

where d2 is realized by the off-diagonal square dissimilarity values d2
ij .

Boundary descriptor. A class descriptor (a one-class classifier) in a dissimi-
larity space was proposed in Pekalska et al. [27]. It is designed as a hyperplane
H : wT D(x,R) = ρ in a dissimilarity space that bounds the target data from above
(it assumed that d is bounded) and for which some particular distance to the origin
is minimized. Non-negative dissimilarities impose both ρ ≥ 0 and wi ≥ 0. This is
achieved by minimizing ρ/||w||1, which is the max-norm distance of the hyperplane
H to the origin in the dissimilarity space. Therefore, H can be determined by mini-
mizing ρ−||w||1. Normalizing such that ||w||1 =1 (to avoid any arbitrary scaling of
w), H is found by the optimization of ρ only. A (target) class is then characterized by
a linear proximity function on dissimilarities with the weights w and the threshold
ρ. It is defined as I(

∑
wj �=0 wjD(x, pj) ≤ ρ), where I is the indentificator (charac-

teristic) function (it takes the value of 1 if the condition is true and zero otherwise),
wj are found as the solution to a soft-margin linear programming formulation (the
hard-margin case is then straightforward) with ν ∈ (0, 1] being the upper bound on
the target rejection fraction in training [27]:
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Minimize ρ + 1
ν n

∑n
i=1 ξi

such that, wT D(pi, R) ≤ ρ + ξi,
∑

j wj = 1, wj ≥ 0,

ρ ≥ 0, ξi ≥ 0, i = 1, . . . , n.

(2.9)

As a result, a sparse solution is obtained. This means that many weights wi become
zero and only some are positive. The objects Rso ⊆ R for which the corresponding
weights are positive are called support objects (SO). Our criterion then becomes the
number of support objects:

Jso = |Rso|. (2.10)

In the experiments we suffered from numerical problems for large representation set
sizes. For that reason, the solutions were found for all but one of the dimensionalities,
i.e., except for the case |R| = 500.

2.3.2 Discussion on Sampling Density Experiments

While studying the results presented in Figures 2.2 to 2.8, one should recall that
the height of the curve is a measure of the complexity and that a flat curve may
indicate that the given data set is sufficiently sampled. For the skewness, mean rank
and correlation statistics, it holds that lower values are related to a higher complexity.
For the other criteria, it is the other way around: lower values are related to a lower
complexity. An exception is the compactness, as defined here, since its behavior is
scale dependent.

For all data sets and all criteria, it can be observed that the complexity of the
original data set D (continuous lines) increases by the square root transformation
(dashed lines) and decreases by the quadratic transformation (dotted lines). This im-
plies that the D∗0.5 data sets tend to be undersampled in most cases. For the original
data sets, this just holds for some of the classes of the Digits-all, the Heart, and the
ProDom problems. The diseased class of the Tumor-mucosa problem shows a very
irregular behavior, due to some large outliers. This is in fact useful as a number of
very different outliers is a sign of undersampling. Most D∗2 data sets may be judged
as well sampled. Exceptions are the Heart data set and, again, the diseased class of
the Tumor-mucosa problem.

It is interesting to observe the differences between various data sets, e.g., that
the curves of the boundary descriptor sometimes start with a linear increase or that
the correlation curve is usually an increasing function with some exceptions in the
case of the Polygon data. The high increase of the PCA dimensionality criterion
for the artificial Gaussian data set (Fig. 2.4) and for a large dimensionality k can
nowhere be observed, with an exception of the Heart data set. A global comparison of
all figures shows that the characteristics of high-dimensional Gaussian distributions
cannot be found in real-world problems. This may indicate that various methods for
data analysis and classification, based on the Gaussian assumption, need to be either
improved before they can be used in practice or avoided.

In general, the flattened behavior of a criterion curve implies a sufficient sam-
pling. All criteria, except for mean rank, are very sensitive to data modifications,
indicating that quadratic transformations decrease the original data-set complexity,
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whereas square root transformation increase it. Concerning specific approaches, the
following can be summarized:

• Skewness is informative to judge the distribution of dissimilarities. Negative
skewness denotes a tail of small dissimilarities, whereas positive skewness de-
scribes a tail of large dissimilarities. Large positive values indicate outliers in the
class (the Tumor-mucosa data), whereas large negative values indicate heteroge-
neous characteristics of the class (the Heart data) or a class of possible clusters
having various spreads (the ProDom data). Skewness can be noisy for very small
sample sizes.

• Mean rank is a criterion judging the consistency between the nearest neighbors
directly applied to the given dissimilarities and the nearest neighbor in a dissim-
ilarity space. For an increasing number of objects, this should approach zero. As
original nearest neighbor relations do not change after nondecreasing transfor-
mations (although they are affected in a dissimilarity space), this criterion is not
very indicative for such modifications. Except for the artificial Gaussian exam-
ples, the curves exhibit a similar behavior.

• PCA dimensionality describes the fraction of significant eigenvalues in a dissim-
ilarity space of a growing dimensionality. If the data set is “saturated,” then the
criterion curve approaches a value close to zero since the intrinsic dimensional-
ity should stay constant. If the criterion does not approach zero, the problem is
characterized by many relatively similar eigenvalues, hence many similar intrin-
sic variables. In such cases, the problem is judged as complex, for instance for
the Heart and the Digits-all problems.

• The correlation criterion indicates the amount of positive correlations versus neg-
ative correlations in a dissimilarity space. Positive values> 0.5 may suggest the
presence of outliers in the data as observed in the case of the ProDom and Tumor-
mucosa problems.

• Intrinsic embedding dimensionality is judged by the fraction of dominant dimen-
sions determined by the number of dominant eigenvalues in a linear embedding.
In contrast to the PCA dimensionality, it is not likely to observe the criterion
curve approaching zero. Large dissimilarities determine the embedded space and
considerably affect the presence of large eigenvalues. Therefore, the criterion
curve may be close to zero if many eigenvalues tend to be so or if there are some
notable outliers (as the diseased class of the Tumor-mucosa problem). In this
case, a flat behavior of the curve may give evidence of an acceptable sampling.
However, the larger the final value of the criterion curve, the more complex the
class description (there is a larger variability in the class).

• Compactness indicates how compact a set of objects is as judged by the distances
to the mean in an embedded space. In this case, the flattened behavior of the curve
is not very indicative, as all our problems for small sample sizes would be judged
as well sampled. What is more important is the value that the criterion curve
attains – the smaller the value the more compact the description.

• Similarly to the criterion above, the smaller the final value to which the Gaussian
intrinsic dimensionality criterion curve converges, the less complex the problem.
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• The boundary descriptor indicates the number of boundary objects necessary to
characterize the class. A large number of objects with respect to |R| indicates
a complex problem, as, for example, the Heart data set is. The criterion curves
may be noisy for small samples, as observed for the ProDom and Tumor-mucosa
cases, possibly indicating the presence of outliers.

In brief, the most indicative and insightful criteria are skewness, PCA dimensional-
ity, correlation, and boundary description. Intrinsic embedding dimensionality may
be also informative; however, a good understanding of the embedding procedure is
needed to judge it well. The remaining criteria have less impact, but they still bring
some additional information.

2.4 Classification Experiments

2.4.1 Introduction

Complexity should be studied with respect to a given task such as class description,
clustering, or classification. Hence, the complexity of the data set should describe
some of its characteristics or of an assumed model, relative to the chosen represen-
tation. In the previous section, some criteria for the complexity of unlabeled data
(data geometry and class descriptions) were studied. This section is concerned with
supervised learning.

As data-set complexity is a different issue than class overlap, its relation to clas-
sifier performance is not straightforward. We argued in the introduction that more
complex problems may need more complex tools, or more training samples, which
will be our focus here. Therefore, we will study the influence of data-set complexity
on the classifier performance. The original representation will be transformed by the
same power transformations as in section 2.3. As has been already observed, D∗2

representations decrease, while D∗0.5 representations increase the data set complex-
ity of the individual classes.

As we indicated in the chapter introduction, an intrinsic problem complexity, as
such, does not exist. Its complexity is entirely determined by the representation and
observed through the data set. If the data-set complexity is decreased by some trans-
formation simplifying the problem, as a result simpler classifiers may be used. Note
that no monotonic transformation of the data can either reduce or increase the in-
trinsic class overlap. Transformations are applied to enable one to train classifiers
that reach a performance, which is closer to this intrinsic overlap. If the problem
becomes less complex, smaller training sets probably will be sufficient. If it was
originally abundant, the decreased complexity may yield a better classification per-
formance. If the training set size was initially sufficient, the decreased complexity
may decrease the performance (due to perceived higher class overlap). An increased
problem complexity may open a way for constructing more complex classifiers. If
the sample size permits, these classifiers will reach an increased performance. If the
sample size is insufficient, such classifiers will be overtrained, resulting in a decrease
of the performance.
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In addition to these effects, there is a direct relation between data-set complex-
ity and a desirable size of the representation set. Remember that this desirable size
is indicated by the stability of the measures or the observed asymptotic behavior of
the criteria identified to be useful in the preceding analysis. More complex problems
need a larger representation set. The other way around also holds: a larger represen-
tation set used for the description may indicate more complex aspects of the problem.

The above effects will be illustrated by a set of classification experiments. As-
sume that a training set of N examples is provided. First, a suitable representation
set R ⊂ T has to be determined. We will proceed in two ways, starting from a full
representation D(T, T ). The representation set will be chosen either as a condensed
set found by the editing-and-condensing [condensed nearest neighbor (CNN)] pro-
cedure [6] or as the set of support objects determined in the process of constructing
a sparse linear programming classifier (LPC). In the resulting dissimilarity space, a
Fisher classifier on D(T,R) is trained.

2.4.2 Classifiers

The following classifiers are used in our experiments:

1-Nearest neighbor rule (1-NN). This classifier operates directly on the dissim-
ilarities computed for a test object. It assigns a test object to the class of the training
object that is the most similar as judged by the smallest dissimilarity. Because no
training is required, the values in D(T, T ) are not used for the construction of this
rule.

k-Nearest neighbor rule (k-NN). Here, the test object is assigned to the most
frequent class in the set of the k-nearest neighbors. The value of k is optimized over
the original representation D(T, T ) using a leave-one-out procedure. In this way, the
training set T is somewhat used in the learning process.

Editing and condensing (CNN). An editing and condensing algorithm is applied
to the entire dissimilarity representation D(T, T ), resulting in a condensed set (CS)
RCS . Editing takes care that the noisy objects are first removed so that the prototypes
can be chosen to guarantee a good performance of the 1-NN rule, which is used
afterward.

Linear programming classifier (LPC). By training a properly formulated linear
classifier f(D(x, T ))=

∑N
j=1 wj d(x, pj)+w0 =wT D(x,R)+w0 in a dissimilarity

space D(T, T ), one may select objects from T necessary for the construction of the
classifier. The separating hyperplane is obtained by solving a linear programming
problem, where a sparse solution on R is imposed by minimizing the l1-norm of
the weight vector w, ||w||1 =

∑r
j=1 |wj |; see [4, 11] on the sparseness issues. As

a result, only some weights become nonzero. The corresponding objects define the
representation set.

A flexible formulation of a classification problem is proposed in Graepel et al.
[15]. The problem is to minimize ||w||1 − µ ρ, which means that the margin ρ be-
comes a variable of the optimization problem. To formulate such a minimization
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task properly, the absolute values |wj | should be eliminated from the objective func-
tion. Therefore, the weights wj are expressed by nonnegative variables αj and βj

as wj = αj−βj . (When the pairs (αj , βj) are determined, then at least one of them
is zero.) Nonnegative slack variables ξi, accounting for possible classification errors
are additionally introduced. Let yi = +1/−1 indicate the class membership. By im-
posing ||w||1 to be constant, the minimization problem for xi∈T then becomes

Minimize 1
N

∑N
i=1 ξi − µ ρ

such that,
∑N

i=1(αi + βi)=1

yi f(D(xi, T )) ≥ 1 − ξi, i=1, . . . , N

ξi, αi, βi, ρ ≥ 0.

(2.11)

A sparse solution w is obtained, which means that important objects are selected
(by nonzero weights) from the training set T , resulting in a representation set Rso.
The solution depends on the choice of the parameter µ∈ (0, 1), which is related to a
possible class overlap [15]. To select it automatically, the following values are found
(as rough estimates based on the 1-NN error computed over a number of represen-
tations D(T, T ) for various sizes of T ). These are 0.2 for the Heart data, 0.1 for the
Digits-all and Tumor-mucosa data, and 0.05 for the remaining sets.

The selection of objects described above is similar to the selection of features by
linear programming in a standard classification task; see [3, 4] . The important point
to realize is that we do not have control over the number of selected support objects.
This can be somewhat influenced by varying the constant µ (hence influencing the
trade-off between the classifier norm and the training classification errors).

Fisher classifier (FC). This linear classifier minimizes the mean square error on
the training set D(T,R) with respect to the desired labels yi = +1/−1. It finds
the minimal mean square error solution of

∑N
j=1 wj d(xi, xj) + w0 = yi. Note that

the common opinion that this classifier assumes Gaussian class densities is wrong.
The truth is that in the case of Gaussian densities with equal covariance matrices,
the corresponding Bayes classifier is found (in the case of equal class priors). The
Fisher classifier, however, is neither based on a density assumption nor does it try to
minimize the probability of misclassification in a Bayesian sense. It follows a mean
square error approach. As a consequence, it does suffer from multimodality in class
distributions.

Multiclass problems are solved for the LPC and the FC in a one-against-all-others
strategy using the classifier conditional posterior probability estimates [10]. Objects
are assigned to the class that receives the highest confidence as the “one” in this
one-against-all-others scheme.

2.4.3 Discussion on the Classification Experiments

The classification results for the six data sets are presented in Figures 2.9 to 2.14. In
each figure, the first plot shows the results of the LPC as a function of the training set
size. The averaged classification errors for the three modifications of the dissimilarity
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measures are presented. For comparison also the results of the 1-NN, the k-NN,
and the CNN rules are shown. Note that these are independent of the nondecreasing
transformations. The CNN curves are often outside the shown interval.

The resulting reduced object sets selected by the CNN, the condensed set CS, are
used as a representation set R. Then, the Fisher classifier FC is constructed on the
dissimilarity representation D(T,R). This will be denoted as FC-CS. The averaged
errors of this classifier are, again, together with the results for the 1-NN, the k-NN,
and the CNN rules (these are the same as in the first graph), shown in the second
plot. All experiments are averaged over 30 repetitions in which independent training
and test sets are generated from the original set of objects.

The third plot illustrates the sizes of the reduced training sets found by the LPC
and the CNN. For most data sets, the CNN reduces the training set further than the
LPC. The resulting sample sizes of the CNN set are approximately a linear function
of the training size |T |. In all cases, the sets of support objects found by the LPC are
for the D∗2 representations smaller than for the original one, D, which are, in turn,
smaller than for the D∗0.5 representations. This is in agreement with our expectation
(see section 2.2) and with the results of section 2.3, that the data-set complexity of
D∗2 is lower and the data-set complexity of D∗0.5 is higher than it is of D.

The first two plots can be considered as learning curves (note, however, that
the determined representation set R increases with a growing training set T ). The
dissimilarity-based classifiers, the LPC and the FC-CS, perform globally better than
the nearest neighbor rules, which is in agreement with our earlier findings; see [22,
23, 25]. The LPC and the FC-CS are comparable. The LPC is often better than the
FC-CS for smaller sample sizes, whereas the FC-CS is sometimes somewhat better
than the LPC for larger sample sizes. This might be understood from the fact that the
LPC, like the support vector machine, focuses on the decision boundary, whereas the
FC uses the information of all objects in the training set. Where this is profitable, the
FC will reach a higher accuracy.

Learning curves usually show a monotonic decreasing behavior. For simple data
sets they will decrease fast, whereas for complex data sets they will decrease slowly.
The complexity is understood here in relation to single class descriptions and to the
intricateness of the decision boundary between the classes (hence their geometrical
position in a dissimilarity space). The asymptotic behavior will be similar if a more
complex representation does not reveal any additional details that are useful for the
class separation. If it does, however, a more complex representation will show a
higher asymptotic accuracy, provided that the classifier is able to use the extra infor-
mation.

Following this reasoning, it is to be expected that the learning curves for D∗2 rep-
resentations decrease fast, but may have worse asymptotic values. This appears to be
true with a few exceptions. For the Tumor-mucosa problem (Fig. 2.15), the expecta-
tion is definitely wrong. This is caused by the outliers as the quadratic transformation
strengthens their influence. The global behavior, expected from this transformation,
is overshadowed by a few outliers that are not representative for the problem. A sec-
ond exception can be observed in the Digits-all results (see Fig. 2.11), especially for
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the FC. In this multiclass problem the use of the FC suffers from the multimodality
caused by the one-against-all-others strategy.

The learning curves for the D∗0.5 data sets change in most cases, as expected,
slower than those for the original data sets. The FC-CS for the Digits-all case (Fig.
2.11), is again an exception. In some cases, these two learning curves are almost
on top of each other; in some other cases, they are very different, as for the FC-CS
and the ProDom data set (Fig. 2.14). This may indicate that the data set complexity
increased by the square root transformation is really significant.

There are a few situations for which crossing points of the learning curves can
be observed after which a more complex representation (D∗0.5 or D) enables the
classifiers to reach a higher performance than a simpler one (D or D∗2, respectively)
due to a sufficient sample size. Examples are the LPC classification of the Digits-all
data (Fig. 2.11) and the Polygon data (Fig. 2.13).

Finally, we observe that for the undersampled Heart data set (see section 2.3), the
k-NN does relatively very well. This is the only case where the dissimilarity-based
classifiers LPC and FC-CS perform worse than the straightforward use of the nearest
neighbor rule.

2.5 Discussion

A real-world pattern recognition problem may have an inherent complexity: objects
of different classes may be similar; classes may consist of dissimilar subgroups;
and essential class differences may be hidden, distributed over various attributes or
may be context dependent. All that matters, however, is how the problem is repre-
sented using object models, features, or dissimilarity measures. The problem has to
be solved from a given representation, and its complexity should be judged from that.
It is the representation that is explicitly available, and it may be such that seemingly
simple problems are shown as complex or the other way around.

In this chapter we argued that the complexity of a recognition problem is de-
termined by the given representation and observed through a data set and may be
judged from a sample size analysis. If for a given representation, a problem is sam-
pled sufficiently well, then it is simpler than for a representation for which it appears
to be too low. In section 2.3, a number of tools are presented to judge the sample size
for a given unlabeled dissimilarity representation. It has been shown that these tools
are consistent with modifications of the representation that make it either more or
less complex. All the considered criteria are useful when judged as complementary
to each other. The most indicative ones, however, are skewness, PCA dimensionality,
correlation, embedding intrinsic dimensionality, and boundary descriptor.

In section 2.4, the same observations concerning the power transformations have
been confirmed by classification experiments. By putting emphasis on remote ob-
jects (hence considering D∗2 representations), a problem becomes simpler as local
class differences become less apparent. As a result, this simpler problem will have
a higher class overlap, but may be solved by a simpler classifier. By emphasizing
small distances between objects (hence considering D∗0.5 representations), on the
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contrary, local class distances may be used better. The problem may now be solved
by a more complex classifier, requiring more samples, but resulting in a lower error
rate.

It can be understood from this study that data-set complexity is related to sam-
pling density if the data set has to be used for generalization like the training of
classifiers. A more complex data set needs a higher sampling density, and, conse-
quently, better classifiers may be found. If the training set is not sufficiently large,
representations having a lower complexity may perform better. This conclusion is
consistent with the earlier insights in the cause of the peaking phenomenon and the
curse of dimensionality [19]. The concepts of representation complexity and data-set
complexity, however, are more general than the dimensionality of a feature space.

In conclusion, we see a perspective for using the sample density to build a cri-
terion judging the complexity of a representation as given by a data set. If sufficient
samples are available, the representation may be changed such that local details be-
come highlighted. If not, then the representation should be simplified by emphasizing
its more global aspects.
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Fig. 2.2. Skewness criterion applied to dissimilarity representations D∗p(R, R), p=0.5, 1, 2,
per class. Continuous curves refer to the original representation, while the dashed and dotted
curves correspond to D∗05 and D∗2 representations, respectively. Note scale differences.
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Fig. 2.3. Mean rank criterion applied to dissimilarity representations D∗p(R, R), p =
0.5, 1, 2, per class. Continuous curves refer to the original representation, while the dashed
and dotted curves correspond to D∗05 and D∗2 representations, respectively. Note scale dif-
ferences.
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Fig. 2.4. PCA dimensionality criterion applied to dissimilarity representations D∗p(R, R),
p=0.5, 1, 2, per class. Continuous curves refer to the original representation, while the dashed
and dotted curves correspond to D∗05 and D∗2 representations, respectively.
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Fig. 2.5. Correlation criterion applied to dissimilarity representations D∗p(R, R), p =
0.5, 1, 2, per class. Continuous curves refer to the original representation, while the dashed
and dotted curves correspond to D∗05 and D∗2 representations, respectively. Note scale dif-
ferences.
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Fig. 2.6. Intrinsic embedding dimensionality criterion applied to dissimilarity representa-
tions D∗p(R, R), p = 0.5, 1, 2, per class. Continuous curves refer to the original representa-
tion, while the dashed and dotted curves correspond to D∗05 and D∗2 representations, respec-
tively.
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Gaussian data set
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Fig. 2.7. Compactness criterion applied to dissimilarity representations D∗p(R, R), p =
0.5, 1, 2, per class. Continuous curves refer to the original representation, while the dashed
and dotted curves correspond to D∗05 and D∗2 representations, respectively. Note scale dif-
ferences.
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Gaussian data set
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Fig. 2.8. Gaussian intrinsic dimensionality criterion applied to dissimilarity representations
D∗p(R, R), p = 0.5, 1, 2, per class. Continuous curves refer to the original representation,
while the dashed and dotted curves correspond to D∗05 and D∗2 representations, respectively.
Note scale differences.
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Gaussian data set
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Fig. 2.9. Boundary descriptor criterion applied to dissimilarity representations D∗p(R, R),
p=0.5, 1, 2, per class. Continuous curves refer to the original representation, while the dashed
and dotted curves correspond to D∗05 and D∗2 representations, respectively. Note scale dif-
ferences.



56 Duin and Pe.kalska

LPC on the set of support objects
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Fig. 2.10. Results of the classification
experiments on the Digits-38 data.

LPC on the set of support objects

200 400 600 800 1000
0.04

0.08

0.12

0.16

|T| in total

A
ve

ra
ge

d 
cl

as
si

fic
at

io
n 

er
ro

rs

1NN
kNN
CNN
LPC; D0.5

LPC; D
LPC; D2

FC on the condensed set

200 400 600 800 1000
0.04

0.08

0.12

0.16

|T| in total

A
ve

ra
ge

d 
cl

as
si

fic
at

io
n 

er
ro

rs

1NN
kNN
CNN
FC−CS; D0.5

FC−CS; D
FC−CS; D2

Size of the representation set

200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

|T| in total

# 
su

pp
or

t o
bj

ec
ts

CS
SO; D0.5

SO; D
SO; D2

Fig. 2.11. Results of the classification
experiments on the Digits-all data.
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LPC on the set of support objects
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Fig. 2.12. Results of the classification
experiments on the Heart data.
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Fig. 2.13. Results of the classification
experiments on the Polygon data.
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LPC on the set of support objects
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Fig. 2.14. Results of the classification
experiments on the ProDom data.
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Fig. 2.15. Results of the classification
experiments on the Tumor-mucosa data.
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Measures of Data and Classifier Complexity and the
Training Sample Size

Šarūnas Raudys

Summary. The size of the training set is important in characterizing data complexity. If a
standard Fisher linear discriminant function or an Euclidean distance classifier is used to
classify two multivariate Gaussian populations sharing a common covariance matrix, sev-
eral measures of data complexity play an important role. The types of potential classification
rules cannot be ignored while determining the data complexity. The three factors — sample
size, data complexity, and classifier complexity — are mutually dependent. In situations where
many classifiers are potentially useful, exact characterization of the data complexity requires
a greater number of characteristics.

3.1 Introduction

Today it is generally recognized that the complexity of a pattern recognition algo-
rithm should be chosen in accordance with the training sample size. The more com-
plex the classifier is, the more data are required for estimating its parameters reliably.
Conversely, if the sample size is small, one is obliged to use the simplest classifica-
tion algorithms (e.g., [9]). In addition, the complexity of the most suitable classifier
depends also on the complexity of the data.

Theory shows that the difference between generalization and asymptotic errors
of sample-based classifiers depends on both the sample size and the data configu-
ration. Consequently, data complexity affects both the sensitivity of the classifier to
training-set size and the complexity of the resultant decision boundary. For that rea-
son, there is no wonder that numerous attempts to introduce general measures of data
and classifier complexity that satisfy a majority of researchers did not lead to definite
success (see, e.g., comments in [6, 8]).

We believe that the concept ”complexity of the data” does not exist without ref-
erence to a concrete pattern recognition problem and a concrete decision-making
method. The measure of the data complexity depends on the purpose for which this
measure will be used. Three factors — the sample size, data complexity, and clas-
sifier complexity — are mutually related. An objective of this chapter is to examine
the complexity of the classification rule and that of the data from the point of view
of the sample size necessary to train the classifier.
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The study of data complexity is a complicated issue, and we do not expect to ob-
tain immediate success. For that reason, we restrict our main analysis to very simple
data models and two standard statistical classification algorithms. We will consider
linear decision boundaries and multivariate Gaussian distribution with a common
covariance matrix for two pattern classes.

3.2 Generalization Errors of Two Statistical Classifiers

In this section we present definitions of distinct types of classification errors: the
Bayes error, which is the asymptotic, conditional, and expected probabilities of mis-
classifications (PMC). We also present expressions of expected PMC (generalization
error) for two typical statistical classifiers frequently used in applications: the stan-
dard Fisher linear discriminant function and the Euclidean distance classifier.

Suppose one knows probability density functions (PDF) of the input vectors and
the prior probabilities of the pattern classes C1 and C2. One can then design the op-
timal Bayes classifier B, which, in classifying all possible vectors from C1 and C2,
results in a minimal probability of misclassification. This PMC is called the Bayes
error and is denoted by PB . The probability of misclassification of a classifier de-
signed from one particular training set using the classifier training algorithm A is
conditioned on this specific algorithm and on this particular training set. The error
rate for classifying the pattern vectors from the general population is called the con-
ditional probability of misclassification and is denoted by PA

N , where the index A in-
dicates that the classifier training algorithm A is utilized and the index N symbolizes
that the training set size is fixed. In the equation below, I assume N = N1 = N2,
where N1 and N2 are the sample sizes of the two classes. In theoretical analysis,
vectors of the training set may be considered as random ones; however, the sample
size (N1 and N2) is fixed. Then the conditional PMC, PA

N , may be considered as a
random variable too.

Let f(PA
N ) be the probability density function of the random variable PA

N and
let P̄A

N be its expectation over all possible randomly formed training sets of size
N1 and N2 for each of the two classes, respectively. This expectation is called an
expected probability of misclassification. The limit PA

∞ = lim
N1→∞,N2→∞

P̄A
N is called

an asymptotic probability of misclassification. In the neural network literature, both
the conditional and expected PMC frequently are called generalization error, often
without mentioning a proper distinction between the two notions.

The mathematical model of the data to be considered below are two multivariate
Gaussian distributions with different means, µ1,µ2, and a common covariance ma-
trix for both classes, Σ (the GCCM data model). The linear discriminant function
(DF)

g(X) = W T X + w0 (3.1)

is an asymptotically optimal (when N1 → ∞, N2 → ∞) decision rule for this data
model. In equation (3.1) W = Σ−1(µ1 − µ2), w0 = W T µ,µ = − 1

2 (µ1 + µ2),
and T denotes a transpose operation. The Bayes error rate can be expressed as
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PB = Φ{−δ

2
} = PA

∞, (3.2)

where Φ(c) is the cumulative distribution function of a standard N(0,1) Gaussian
random variable and δ is the Mahalanobis distance, δ2 = (µ1−µ2)T Σ−1(µ1−µ2).

In sample-based classifiers, the true values of the parameters µ1,µ2, and Σ are
unknown and are substituted by sample-based estimates. If one makes use of max-
imum likelihood estimates, µ̂1, µ̂2, Σ̂, one obtains the standard Fisher discriminant
function, F, with W F = Σ̂−1(µ̂1− µ̂2), w0 = W T µ̂, and µ̂ = −1/2(µ̂1 + µ̂2). The
Fisher DF was proposed 70 years ago; however, up to this day it remains one of the
most often used classification rules [4, 5, 12]. Approximately two dozen alternative
ways have been suggested to estimate the unknown coefficients of the linear discrim-
inant function in situations where either the data is non-Gaussian or the number of
training vectors is too small to estimate the covariance matrix reliably (see references
in [2, 3, 10, 11, 12]).

One easy way to develop a simple linear discriminant function is to ignore the co-
variance matrix. Then one obtains the Euclidean distance (nearest mean) classifier E.
Here only the mean vectors are used to calculate the weights: W E = µ̂1 − µ̂2, w0 =
W T µ̂. Therefore, it is less sensitive to sample size.

The expected (generalization) error of Fisher DF can be approximated by a rather
simple expression (see, e.g., [12, 14] and references therein)

P̄F
N ≈ Φ

{
− δ

2
1√

TMTΣ

}
(3.3)

where the term TM = 1 + 4p
δ2n arises due to the inexact sample estimation of the

mean vectors of the classes and the term TΣ̄ = 1 + p
n−p arises due to the inexact

sample estimation of the covariance matrix, p denotes the number of input variables
(the dimensionality of the feature vector), and n is the sample size: n = N1 + N2.
In equation (3.3) we assume N1 = N2 = N . An asymptotic error of Fisher linear
classifier, P̄F

∞, can be computed when N1 → ∞, N2 → ∞, and thus P̄F
N → P̄F

∞.
Note, for GCCM data model, the Bays error is P̄F

∞ = PB .
In an analogous expression for the Euclidean distance classifier (EDC) we have

to skip the term TΣ̄. This analytical expression for the generalization error of EDC
is valid if the data distribution is spherically symmetric Gaussian, i.e.,

Σ = σ2

⎡
⎢⎢⎣

1 0 0
0 1 0

. . .
0 0 1

⎤
⎥⎥⎦ = σ2I,

where I is the identity matrix and σ2 is a positive scalar constant.
In real-world applications, the input variables are often correlated. In those cases

the asymptotic errors differ:

PE
∞ = Φ{−δ∗

2
} ≥ P̄F

∞ = PB , (3.4)
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where PE
∞ is the asymptotic error of EDC, and δ∗ is an effective distance between

pattern classes,

δ∗ =
(µ1−µ2)T (µ1−µ2)√
(µ1−µ2)T Σ̄(µ1−µ2) .

(3.5)

The expected PMC of EDC is also affected by an effective number of features
p∗,

P̄E
N ≈ Φ

{
− δ∗

2
1√

1 + 4p∗
n(δ∗)2

}
, (3.6)

where

1 ≤ p∗ =
((µ1−µ2)T (µ1−µ2))

2tr(Σ2)
((µ1−µ2)T Σ(µ1−µ2)T )2

≤ ∞. (3.7)

3.3 Complexities of the Classifiers and the Data

Perhaps the least complicated theoretical data model in pattern recognition is the
spherically symmetric Gaussian distribution. Here all variables are uncorrelated and
have identical variances. In such a situation, PE

∞ = PF
∞ = PB , p∗ = p, and δ∗ = δ.

Only two parameters are needed to describe the data distribution: the dimensionality
p and the Mahalanobis distance δ. This data model is illustrated with the pair of
classes C1, C2 in Figure 3.1.

In a majority of known generalization error studies, the complexity of the data
is characterized by the dimensionality only (see, e.g., [1, 17]). The equations pre-
sented in the previous section advocate that, from the point of view of statistical pat-
tern recognition, a difference between the asymptotic and expected probabilities of
misclassification also is inducing the complexity of the data. The situation becomes
much more complicated in the case where input variables are mutually correlated.
Then it may happen that δ∗ < δ or even δ∗ << δ (for illustration see the pair of
classes C6, C7 in Fig. 3.1). It may also happen that the effective dimensionality p∗

is close to 1 (the pair of classes C4, C5 in Fig. 3.1). In this case, for EDC the actual
dimensionality of the data is one. Thus, looking from a perspective of a difference
between expected and asymptotic error rates, the pair of classes C4, C5 is very sim-
ple for EDC; however, it becomes more complex for the Fisher classifier. In another
extreme case, p∗ tends to infinity (the pair of classes C3, C4 in Fig. 3.1). In the latter
case, the distribution of pattern classes is much more “complicated” for the EDC.
For the Fisher classifier, however, the complexity of the data remains the same.

The following measures of complexity could be useful in characterizing the com-
plexity of the data from the point of view of classification error:

P̄F
N/P̄E

N , P̄F
N/PF

∞, P̄E
N/P̄E

∞,

min(P̄F
N , P̄E

N )/PB , PE
∞/PB , PF

∞/PB , PE
∞/PF

∞, p/p∗. (3.8)
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Fig. 3.1. Effect of the covariance matrix and the difference between the mean vectors, µ̂1−µ̂2,
on the effective dimensionality p∗ and the effective distance δ∗: for classes C1 and C2, p∗ =
p = 2, δ∗ = δ; for C3 and C4, p∗ >> p, δ∗ = δ; for C4 and C5, p∗ << p, δ∗ = δ. For
classes C6 and C7, δ∗ << δ, p∗ = 1.8 (DFE and DFF are the decision boundaries of the
EDC and the Fisher classifiers, respectively).

Instead of the ratios, absolute differences between each pair of quantities could
be utilized too. At first sight, in terms of these measures, the simplest data model
is the spherically symmetric Gaussian distribution where PE

∞/PF
∞ = 1 and p∗ = p.

From this viewpoint, it seems that the measure γEF∞ = PE
∞/PF

∞ is quite reasonable.
Condition γEF∞ = 1 indicates that the data set is simple enough and the simple
classifier EDC can be used instead of the more complex Fisher classifier. It is true
only if one does not take into account the fact that the training sample size is finite. A
deeper examination reveals, however, that the situation could exist where p∗ >> p.
In such cases, instead of EDC, the Fisher classifier could become more useful.

If PE
∞/PF

∞ = 1 and p∗ is close to 1, one prefers to use EDC. In those cases, the
intrinsic dimensionality for the data is equal to 1, and such data models should be
considered as very simple. For that reason, the parameter γEF∞ alone is insufficient
to characterize the data complexity. In fact all four parameters, p, δ, and p∗, δ∗,
jointly determine the complexity of a pattern recognition task if the data distribution
is Gaussian with a common covariance matrix for the two classes, such that either
EDC or Fisher potentially could be used for classification.

The data complexity problem becomes even more complicated if more types of
classification rules are considered as potential candidates for decision making. Con-
sider the GCCM data model. Let p = 200, N1 = N2 = 100, and δ = 3.76 (PF

∞ =
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0.03). Then the Fisher classifier will result in approximately 11% error. Such a high
generalization error rate means that the sample size is too small. If the features are
correlated, it could happen that PE

∞/PF
∞ >> 1. Therefore, EDC will be an inappro-

priate classifier too.
A number of ways could be attempted in order to design the classifier given small

sample size and high feature dimensionality. Examples are dimensionality reduction
by feature selection or feature extraction, different regularization methods, and struc-
turalization of the covariance matrix with a small number of parameters [12, 16].

A rather universal structuralization method is to approximate the dependence
structure among the variables by the first-order tree dependence. Here the probability
density function is approximated by the product of p−1 conditional and one marginal
density:

p(x1, x2, ..., xp) =
n∏

j=1

f(xj |xmj)(1 ≤ mj ≤ p). (3.9)

In representation equation (3.9) the sequence m1, m2, ...,mp constitutes an un-
known permutation of the integers, and f(x1|m1), by definition, is equal to p(x1). In
a general case, the covariance matrix has p × p nonzero elements. An inverse of this
matrix Σ−1, however, has only 2p−1 distinct nonzero elements. Thus, to design the
Fisher classifier with the first-order tree type structuralized covariance matrix (de-
noted by FT1), we estimate 2p parameters that are different in the opposite pattern
classes and 2p−1 parameters that are common for both classes. In addition, we need
to know the permutation m1, m2, ...,mp.

In practice, unknown permutations have to be found from the sample covariance
matrix. The theory shows that the expected PMC of this classifier is expressed by
equation (3.3) with TΣ̄ = 1 [12, 18]. Experiments with a dozen real-world data sets
indicated that in a majority of cases, such a decision-making rule outperforms both
the Euclidean distance and the Fisher classifiers [13].

For a layman, it seems that such a data model is very complex; we have to under-
stand the permutation structure and know how to estimate it and the coefficients of
the structuralized covariance matrix. For an expert in pattern recognition equipped
with well-organized software, such a model (the case where the dependencies be-
tween p input variables are determined by the first-order tree dependence model, so
that the asymptotic errors PFT1∞ ≈ PF

∞) implies that the classifier FT1 has very fa-
vorable small sample properties: P̄FT1

N /PFT1∞ ≈ P̄E
N/P̄E

∞. For him or her the data
set for classifier FT1 is rather simple. In contrast, for the Euclidean distance and the
Fisher classifiers this data set is complex. The above considerations about the first-
order tree dependence model advocate that the complexity of data depends also on
the researcher’s knowledge about this model and on the presence of the software for
estimating the structuralized covariance matrix.
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3.4 Other Classifiers and Concluding Remarks

Our main concern in this chapter is to show that the complexity of data should be
evaluated from the standpoint of the classifier utilized for decision making. In sec-
tions 3.2 and 3.3 we considered the unimodal GCCM model where a linear decision
rule is asymptotically optimal. Even in such a simple data model, we have found that
a number of issues are important while evaluating the data complexity.

If the covariance matrices of the classes are different, i.e., Σ2 �= Σ1, the as-
ymptotically optimal classifier is a quadratic disriminant function (DF). A good al-
ternative in the two-class case is a linear classifier suggested by Anderson-Bahadur
(known as the AB procedure) where the weight vector is expressed as (see, e.g., [12])

wAB = (Σ1α + Σ2)−1(µ1 − µ2) (3.10)

The unknown coefficients α1 and threshold weight w0 have to be found to min-
imize certain selected classification performance criteria. If Σ2 �= Σ1, the differ-
ences among the asymptotic errors of the quadratic DF, the AB procedure, and the
Fisher linear DF will affect the evaluation of the data complexity. If the sample size
is taken into account, one needs to remember that the quadratic DF is very sensitive
to sample size if the dimensionality of the input feature space is high. In a relatively
small region of a multidimensional feature space where the pattern classes overlap,
the quadratic DF can be approximated by a hyperplane. In the remaining space, we
will have relatively few overlapping vectors. Therefore, in a major part of the mul-
tivariate feature space, an exact position of the decision boundary is not important.
Simulations show that small sample properties of the AB procedure are much more
favorable than that of the quadratic DF. Therefore, in many real-world two-class
problems, the AB procedure works as well as or even better than the quadratic clas-
sifier [12, 14].

A very important concern in considering the quadratic DF is the fact that the ex-
pected classification error depends on the sample sizes of both classes, i.e., N1 and
N2. Such a situation is characteristic of nonoptimal statistical classifiers trained with
the plug-in design principle [5]. Another example where both sample sizes N1 and
N2 are affecting the generalization error is a multinomial classifier, such as the one
used in the behavior knowledge space method (see, e.g.. [7, 12]). In certain situa-
tions, an increase in the number of training vectors of one pattern class increases the
generalization error instead of decreasing it! [12, 15]. Therefore, while characteriz-
ing data complexity; both sample sizes N1 and N2 are important.

In addition to statistical pattern recognition and heuristically based methods, lin-
ear classifiers can be obtained by other procedures, such as by training a single layer
perceptron (SLP). In this way, one may obtain the EDC, regularized and robust dis-
criminant analysis, the standard Fisher rule and that with covariance matrix pseudo-
inversion, the minimum empirical error classifier, as well as the support vector ma-
chine [11, 12]. Which classifier will be obtained depends on the training parameters
and, most importantly, on stopping moment. Thus, the SLP is not a single classifi-
cation rule. It is a set of different rules of diverse complexity. Here the classifier’s
complexity is measured in terms of a number and a type of parameter of distribution
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density function if statistical methods would be utilized to estimate the weights of the
linear classifier. Some data sets could be very difficult for SLP training at the very
beginning; however, it becomes “easier” later. For example, the GCCM data with
low p and very high p∗ could become very difficult for the classical SLP training
procedure [12].

In difficult pattern classification problems, we deal with multimodal distribution
densities of input pattern vectors. In such situations nonparametric (local) classifica-
tion rules (k-NN, Parzen window, decision trees, etc.) have to be applied [5]. Com-
plexities of the local classification rules could be characterized by values of smooth-
ing parameters like the number of nearest neighbors, k, in the k-NN rule or the kernel
width in the Parzen window classifier. Optimal values of these parameters have to be
chosen according to the sizes of the training set (N1 and N2). Consequently, we have
a vicious circle: the complexity of the data depends on the complexity of the optimal
local classifier. Optimal parameters of these classifiers depend on training sample
size and data complexity.

Generally speaking, each new pattern classifier that potentially could be utilized
for classification introduces one or several measures of complexity. Yet a large num-
ber of characteristics is impractical to determine data complexity in concrete work.
As a compromise, a question arises: could some of the measures be clustered into a
smaller number of groups? The question remains unanswered. Factors similar to that
presented in equation (3.8) should be taken into account while trying to taxonomize
the data sets obtained in real experiments — comparative measures of asymptotic
errors of distinct classifiers, and the small sample properties of them.

In this chapter we discussed the possibilities and difficulties in estimating data
complexity assuming some simple data models, such as the spherically symmetric
Gaussian, where certain simple classifiers are known to be suitable. Based on the
behavior of several popular classifiers, a number of possible measures for the diffi-
culty of a classification task were given, each representing the perspective of some
specific classifiers. Examples were shown where the same problem may appear easy
or difficult depending on the classifier being used, through the influences of the den-
sity parameters and the sample sizes on the relevant measures such as the effective
dimensionality and the effective Mahalanobis distance.

Returning to the GCCM data model, it is worth mentioning also that the estima-
tion of complexity parameters from experimental data may become very problem-
atic. For example, in estimating the effective number of features p∗ [equation (3.7)],
we have to estimate the means and the covariance matrix. The confidence interval in
estimating parameter p∗ is too wide to be practically useful. Thus, the estimation of
parameter p∗ is more difficult and less reliable than training the linear Fisher classi-
fier. This fact suggests once more that the estimation of data complexity measures is
not necessarily easier than training a classifier for the task.



3 Measures of Data and Classifier Complexity 67

References

[1] S. Amari, N. Fujita, S. Shinomoto. Four types of learning curves. Neural Com-
putation, 4, 605–618, 1992.

[2] M. Basu, T.K. Ho. The learning behavior of single neuron classifiers on lin-
early separable or nonseparable input. Proc. of IEEE Intl. Joint Conf. on Neural
Networks, July 10-16, 1999, Washington, DC.

[3] J. Cid-Sueiro, J.L. Sancho-Gomez. Saturated perceptrons for maximum mar-
gin and minimum misclassification error. Neural Processing Letters, 14, 217–
226, 2001.

[4] R.O. Duda, P.E. Hart, D.G. Stork. Pattern Classification and Scene Analysis.
2nd ed. New York: John Wiley, 2000.

[5] K. Fukunaga. Introduction to Statistical Pattern Recognition. 2nd ed. New
York: Academic Press, 1990.

[6] T.K. Ho, M. Basu. Complexity measures of supervised classification problems.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 289–
300, 2002.

[7] Y.S. Huang, C.Y. Suen. A method of combining multiple experts for the recog-
nition of unconstrained handwritten numerals. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(1), 90–94, 1995.

[8] M. Li, P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applica-
tions. New York: Springer, 1993.

[9] S. Raudys. On the problems of sample size in pattern recognition. In V. S. Pu-
gatchiov, ed. Detection, Pattern Recognition and Experiment Design, volume
2, pages 64–76. Proc. of the 2nd All-Union Conference Statistical Methods in
Control Theory. Moscow: Nauka, 1970 (in Russian).

[10] S. Raudys. On dimensionality, sample size and classification error of nonpara-
metric linear classification algorithms. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19, 669–671, 1997.

[11] S. Raudys. Evolution and generalization of a single neuron. I. SLP as seven
statistical classifiers. Neural Networks, 11, 283–296, 1998.

[12] S. Raudys. Statistical and Neural Classifiers: An Integrated Approach to De-
sign. New York: Springer-Verlag, 2001.

[13] S. Raudys, A. Saudargiene. Tree type dependency model and sample size -
dimensionality properties. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 23, 233–239, 2001.

[14] S. Raudys. Integration of statistical and neural methods to design classifiers in
case of unequal covariance matrices. Lecture Notes in Computer Science, New
York: Springer, 3238, 270–280, 2004.

[15] S. Raudys, D. Young. Results in statistical discriminant analysis: A review of
the former Soviet Union literature. Journal of Multivariate Analysis, 89, 1–35,
2004.

[16] A. Saudargiene. Structurization of the covariance matrix by process type and
block diagonal models in the classifier design. Informatica 10(2), 245–269,
1999.



68 Raudys

[17] V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer,
1995.

[18] V.I. Zarudskij. The use of models of simple dependence problems of classi-
fication. In S. Raudys, ed. Statistical Problems of Control, volume 38, pages
33–75, Vilnius: Institute of Mathematics and Informatics, 1979 (in Russian).



4

Linear Separability in Descent Procedures for Linear
Classifiers

Mitra Basu and Tin Kam Ho

Summary. Determining linear separability is an important way to understand structures
present in data. We review the behavior of several classical descent procedures for determining
linear separability and training linear classifiers in the presence of linearly nonseparable input.
We compare the adaptive procedures to linear programming methods using many pairwise
discrimination problems from a public database. We found that the adaptive procedures have
serious implementational problems that make them less preferable than linear programming.

4.1 Introduction

Usually classification approaches in pattern recognition appear to fall into two broad
types: the parametric methods that often rely on an assumption that each class of vec-
tors follows certain known forms of probability distribution, and the nonparametric
methods that do not make any assumptions about the class distributions. When there
are indications from the observations that the assumption of Gaussian distributions
has to be abandoned, there are few alternatives left, so that one has to resort to non-
parametric methods. We believe that if some knowledge about the class boundaries
can be derived from the data, there are advantages in using a recognition method
suited to such boundaries.

In practice, a classification problem is often presented with a finite training set
assumed to be representative of the expected input. Important clues about the com-
plexity of the problem can be obtained by studying the geometrical structures present
in such a training set. Extracting important information from small amount of data is
also the focus of a recent trend in statistical learning theory [32].

A geometrical property that is of fundamental importance is linear separability
of the classes. Based on this property, a number of descriptors of the point set geom-
etry can be constructed. Whether the input is linearly separable or nonseparable, in
constructing a classifier, deriving a linear discriminant that is optimal in some sense
is a useful first step. Linear discriminants can serve as building blocks for piecewise
linear classifiers, or be used to separate points transformed into a higher dimensional
space where they may become linearly separable.
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The need to study the structures in data also arises from the study of neural net-
works. One of the most promising attributes of a neural network is its ability to learn
by interacting with an information source. Learning in a neural network is achieved
through an adaptive procedure, known as a learning rule or algorithm, whereby the
weights of the network are incrementally adjusted so as to improve a predefined per-
formance measure over time. There is usually an assumed architecture of the network
and a desired mapping. Very often, the outputs of the mapping are specified only for
some subset of the possible inputs, namely, the training set. One of the main issues in
learning is the design of efficient learning algorithms with good generalization prop-
erties. Although generalization is not a mathematically well-defined term, it usually
refers to the capability of the network to produce desirable responses to inputs that
are not included in the training set. The existing learning rules can be broadly cate-
gorized into three main groups: (1) supervised, (2) unsupervised, and (3) reinforced.
We focus our attention on Supervised learning where the network architecture con-
sists of a single layer of neurons, which can represent all linear classifiers. The rules
in this category can be viewed as error-correction or gradient-descent types. Gradi-
ent descent is an iterative method commonly used to search for a solution (the global
minima) in a high-dimensional space that has a number of local minima. Specif-
ically, given a criterion function, the search point can be incrementally improved
at each iteration by moving in the direction of the negative of the gradient on the
surface defined by this criterion function in the appropriate parameter space. It has
been shown that all these rules can be derived as minimizers of a suitable criterion
function [6], and the corresponding algorithms, also appropriately known as descent
algorithms, for implementation are based on gradient-descent method.

Notations

Consider a two-class (ω1, ω2) problem. Let us assume that there are m sets of train-
ing pairs, namely, (x1, d1), (x2, d2),..., where xj ∈ Rn is the jth input vector and
dj ∈ {−1,+1}, j = 1, 2, ...,m is the desired output for the jth input vector.
In a single unit neural network, the output yj for an input vector xj is computed as
yj = sgn(wtxj − θ), where wt denotes the transpose of the (column) weight vector
w. Such a network is referred to as a single-layer perceptron or a linear classifier.

Remark 1: Without loss of generality we include the threshold value θ in the
weight vector as its last element and increase the dimension of every input vector
by augmenting it with an entry that equals 1. Thus the weight vector is wt =
[w1, ..., wn, θ] and the input vector is xjt = [x1

j , ..., xn
j , 1], and the output of the

perceptron can be written as yj = sgn(
∑n+1

k=1 wkxj
k) = sgn(wtxj).

From now on let us assume that the input and the weight vectors are already
augmented, and let n be the augmented dimension; then the problem of learning can
be defined as follows:

Proposition 4.1.1 Given a set of input vectors (x1, ...,xm), xi ∈ Rn, and a set of
desired output values {d1, ..., dm}, di ∈ {1,−1}, find a weight vector w ∈ Rn

such that sgn(wtxj) = yj = dj for j = 1, ...,m.
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The goal is to determine a weight vector w such that the following conditions are
satisfied:

wtxj > 0 if dj = +1,
wtxj < 0 if dj = −1. (4.1)

The equation w∗tx = 0 defines a hyperplane in Rn. Therefore finding a solu-
tion vector w∗ to this equation is equivalent to finding a separating hyperplane that
correctly classifies all vectors xj , j=1,2,...,m. In other words, an algorithm must be
designed to find a hyperplane w∗tx = 0 that partitions the input space into two dis-
tinct half-spaces, one containing all points xj for which the desired output is +1 and
the other containing all points xj for which the desired output is −1. We reformulate
this condition (4.1) to adopt the convention usually followed in the literature.

Remark 2: Define a vector zj :{
zj = +xj if dj = +1,
zj = −xj if dj = −1.

The data matrix Z is defined to be [z1, z2, ..., zm]. The output yj for the modified
input vector zj is computed as yj = sgn(wtzj). The goal is to determine a weight
vector w such that the following condition is satisfied:

wtzj > 0 for all j. (4.2)

Note that this simplification aids only in theoretical analysis. As far as the imple-
mentation is concerned, this does not alter the actual computation in a significant
manner.

All learning algorithms1 for neural networks are guaranteed to find a separating
surface in a finite number of steps for linearly separable classes. A comprehensive
review of standard learning algorithms and analysis of their behavior for linearly
separable classes can be found in reference [34]. However, when it comes to lin-
early nonseparable cases, the behavior of these algorithms is not usually explored.
In practice, most real-world problems are assumed to be nonlinear without any con-
crete evidence, and multilayer neural networks are used to address these problems.
However, the use of a multilayer network is overkill for a problem that is linear.
Moreover, effective use of a multilayer neural net involves a proper choice of the
network architecture.

Backpropagation, the standard learning algorithm, is used to train a fixed topol-
ogy multilayer neural net. In general, this approach works well only when the net-
work architecture is chosen correctly. Too small a network may not be able to capture
the characteristics of the training samples, and too large a size may lead to overfitting
and poor generalization performance. Results are available to determine the correct
size of a network. It has been shown that a single hidden-layer neural network with
N−1 hidden units can give any N input-target relationship exactly [14, 25], whereas
a network with two hidden layers can do the same with negligible error using N/2+3
1 The only exceptions are the Widrow-Hoff and other linear regression-based algorithms.
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hidden units [28]. Note that these results provide only an upper bound on the number
of hidden neurons needed. For a specific problem one may be able to do far better by
exploiting the structure in the data.

Recently, some researchers have investigated methods that alter network archi-
tecture as learning proceeds. These can be grouped into two categories, namely, (1)
pruning algorithms, where one starts with a larger than needed network that itera-
tively removes inactive hidden neurons and associated connections until an accept-
able solution is found; and (2) constructive algorithms, where one starts with a small
network and adds hidden units and weights until a satisfactory solution is obtained.
Each of the two methods has distinct advantages and disadvantages. For an overview
on pruning algorithms, see [22]. Discussion on constructive approaches can be found
in [15].

This chapter presents a review of standard learning algorithms for single-
neuron/two-class problems where the set of input vectors is not linearly separable.
We begin in section 4.2 with a review of the concepts of linear separability and its
relationship to linear independence. In section 4.3 we categorize all such learning
algorithms into two broad classes, and discuss representative algorithms from each
class. In section 4.4 we choose a set of examples where the input data are not neces-
sarily linearly separable and study the performance of each of these algorithms. The
chapter concludes with a brief discussion in section 4.5.

In our analysis of performance of various learning algorithms we will draw from
reference [26], which presents a detailed study on linearly nonseparable sets of input
in general. It also includes specifically an analysis of the perceptron algorithm. In the
rest of this chapter, we assume that the vectors are modified to satisfy the properties
mentioned in remarks 1 and 2 above.

4.2 Linear Separability and Linear Independence

Let us explore the geometrical interpretation of equation (4.2) for a better under-
standing of the structure of the data set. For a linearly separable set of vectors, a
separating hyperplane can be determined such that all vectors lie on one side of it.
The normal to this hyperplane is the solution weight vector w∗. In other words, plac-
ing a hyperplane such that all vectors lie on one side of this plane implies that the
angle between any pair of vectors from the set must be less than π. Equivalently, the
angle between the weight vector and any vector from the set must be less than π/2.
This observation agrees with the fact presented in Nilsson [21] that input vectors that
are almost perpendicular to the weight vectors are most difficult to train. Next, we
explore the interesting relationship between linear separability and the more general
concept of linear dependence/independence of a set of vectors.

The following theorems and definitions are taken from Siu et al. [26].

Proposition 4.2.1 A set of vectors {z1, z2, ..., zm} is linearly nonseparable if and
only if there exists a positive linear combination of the vectors that equals 0, i.e.,
there exists qi ≥ 0, 1 ≤ i ≤ m, such that

∑m
i=1 qizi = 0 and qj > 0 for

some j, 1 ≤ j ≤ m.
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Note the similarity with the definition of a set of vectors that are linearly depen-
dent. We provide definitions of linear dependence and linear independence for easy
reference.

Proposition 4.2.2 A set of vectors {z1, z2, ..., zm} in vector space Z are linearly de-
pendent if there exists numbers q1, q2, ..., qm not all equal to zero [the key difference
with (4.2.1) is that here qis may take negative values] such that

∑m
i=1 qizi = 0.

We use geometry to present an alternative interpretation. The convention for mea-
suring the angle between a pair of vectors is specified in the following remark:

Remark 3: The angle between any pair of vectors is the angle subtended on that
side of the hyperplane for which the desired responses of the original set of vectors
are +1.

A set of vectors is linearly dependent if one can construct a closed figure2 using
a subset (possibly the whole set) of the vectors. It is permissible to change the mag-
nitude as well as the orientation of the vectors (change in orientation in this context
means that one may either include the vector a or include −a). On the other hand,
a set of vectors is linearly nonseparable (that is, they cannot be made to lie on the
same side of a hyperplane) if one can construct a closed figure using a subset (pos-
sibly the whole set) of the vectors. Here it is permissible to change the magnitude of
the vectors but not their orientations. One may easily deduce that linear nonsepara-
bility implies linear dependence. However, linear dependence may or may not lead
to linear nonseparability since if in constructing the closed figure one is required to
change orientations of vectors, that would violate the restrictions imposed by lin-
ear nonseparability. Intuitively, it is more likely that one may be able to construct a
closed figure (without changing the orientations) if the vectors do not lie on one side
of a plane.

Proposition 4.2.3 A set of vectors {z1, z2, ..., zm} in vector space Z is linearly in-
dependent if and only if the following condition is satisfied: Whenever q1, q2, ..., qm

are numbers such that
∑m

i=1 qizi = 0, then qi = 0 ∀i.

Note that linear independence implies linear separability, but the converse is not
true. That is, linear separability may or may not lead to linear independence (Fig.
4.1), since all we need to show for a set of vectors to be linearly separable is that
no positive q can be found. If some negative q’s (multiplication by −q amounts to
changing the direction of the vector) are found, then the set of vectors is linearly
dependent as well as linearly separable. Intuitively, if all vectors are lying on the
same side of a plane (the set is linearly separable), then it is highly unlikely that one
can construct a closed figure with these vectors without changing their directions.3

Here, we present a more general definition of linear nonseparability than one that is
found in Siu et al.[26].

2 We plot a set of n vectors by joining the head of the ith to the tail of the (i +1)th. A closed
figure is formed if the head of the nth vector touches the tail of the 1st vector.

3 It is rather conceivable that, for all vectors lying on one side of a hyperplane, a mixture of
positive and negative q’s can be found that satisfies linear dependence.
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Proposition 4.2.4 A set of vectors {z1, z2, ..., zm} is linearly nonseparable if and
only if there exists a linear combination of the vectors that equals 0, i.e., there exists
qi, 1 ≤ i ≤ m, such that

∑m
i=1 qizi = 0 and qj �= 0 for some j, 1 ≤ j ≤ m

and all nonzero qj’s have the same sign.

all sets of vectors in space Z

linearly dependent sets linearly independent sets

linearly separable setslinearly nonseparable sets

Fig. 4.1. Illustration of the relationship between linear dependence and linear separability.
The dashed line divides between the linearly separable and nonseparable vector sets, and the
solid line divides between the linearly dependent and independent vector sets. Linearly non-
separable sets are in a proper subset of linearly dependent sets.

In other words, a set of vectors can be (1) linearly nonseparable and dependent,
(2) linearly separable and dependent, and (3) linearly separable and independent, but
not (4) linearly nonseparable and independent.

Example 1: Linearly nonseparable and linearly dependent set
Consider a linearly nonseparable set A (XOR problem)

A1 = [−1 − 1 1]t; A2 = [1 1 1]t; A3 = [−1 1 − 1]t; A4 = [1 − 1 − 1]t.

One solution to the equation q1A1 + q2A2 + q3A3 + q4A4 = 0 is

q1 = q2 = q3 = q4 = a,

where a can be any real number. The vectors in set A are linearly nonseparable since
they satisfy proposition (4.2.1) and more generally proposition (4.2.4). Note that
these vectors are linearly dependent since they satisfy proposition (4.2.2).

Example 2: Linearly separable and linearly dependent set
Consider a linearly separable set B

B1 = [1 1 1]t; B2 = [1 − 1 1]t; B3 = [1 − 1 − 1]t; B4 = [1 1 − 1]t.

A linear combination with either all positive or all negative coefficients that
equals to zero cannot be found for the vectors in set B.

The only possible solution, with all q’s bearing the same sign, to q1B1 + q2B2 +
q3B3 + q4B4 = 0 is

q1 = q2 = q3 = q4 = 0.

Thus we conclude that vectors in this set are linearly separable. Note that these vec-
tors are linearly dependent, since the equation can be satisfied with q1 = 1, q2 =
−1, q3 = 1, q4 = −1.
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Example 3: Linearly separable and linearly independent set
The following example illustrates that a set of linearly separable vectors can be

linearly independent.

C1 = [1 1 1]t; C2 = [1 − 1 1]t; C3 = [1 − 1 − 1]t.

The only values of coefficients that satisfy q1C1 + q2C2 + q3C3 = 0 are
q1 = q2 = q3 = 0.

In discussions of linear separability, one usually refers to a set of vectors of dif-
ferent classes. However, if the input vectors have been modified to carry the class
membership as in remark 2, discussion on linear separability can be extended to
single vectors. Such a discussion turns out to be helpful for characterization of the
detailed structure of a data set.

Definition: A vector zi is defined to be separable if it never participates in a
positive linear combination that equals 0, i.e.,

∑m
j=1 qjzj = 0; qj ≥ 0 implies

that qi = 0.
Definition: A vector zi is defined to be nonseparable if it participates in a positive

linear combination that equals 0, i.e.,
∑m

j=1 qjzj = 0; qj ≥ 0 implies that there
is some qi �= 0.

Two properties are noted on a set of nonseparable vectors [26]:

1. If the set of nonseparable vectors is nonempty, then it must consist of at least
two vectors.

2. There exists a hyperplane passing through the origin, such that all the nonsep-
arable vectors lie on the plane, and all the separable vectors lie on one side of
it.

Geometrically, any given set of vectors are in one of the three configurations [17]
(as shown in Fig. 4.2):

(a) there exists a vector x that makes a strict acute angle (< π/2) with all the vectors
in A;

(b) there exists a vector x that makes an acute angle (≤ π/2) with all the vectors in A,
and the origin 0 can be expressed as a nonnegative linear combination of vectors
in A with positive weights assigned to those vectors in A that are orthogonal to
x; and

(c) the origin can be expressed as a positive linear combination of all the vectors in
A.

The proof is from Tucker’s [30] first existence theorem, which states:
For any given p × n matrix A, the systems

Ax ≥ 0 and A′y = 0, y ≥ 0
possess solutions x and y satisfying

Ax + y > 0.

The set of vectors is linearly separable in case (a), and nonseparable in cases (b)
and (c). The nonseparability is caused by all the vectors in case (c), but only some of
the vectors in case (b).
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A3 A2

A1
A2

A1

O

A3
O O A3

A2

A1

Fig. 4.2. Any given set of vectors A must be in one of these three configurations [17] shown
by examples of three vectors in a two-dimensional space

.

Roychowdhury et al. [24] give a simple procedure to determine the set of sepa-
rable and nonseparable vectors using a linear programming (LP) formulation. Let ei

be a column vector with component i being 1 and all other components being zero.
Vector zi is nonseparable if the objective function of the linear program

minimize ei
tq

subject to Ztq = 0

q ≥ 0 (4.3)

is unbounded. This happens if and only if vector zi participates, with a nonzero
coefficient, in a positive linear combination of the input vectors that equals zero.
Hence, the set of separable and nonseparable vectors can be determined by solving
one such LP problem for each input vector, i.e., a total of m LP problems.

4.3 Analysis of Representative Learning Algorithms

Descent procedures are those that modify the weight vector as the algorithms exam-
ine the input vectors one by one. There are non–descent- based methods for obtaining
linear classifiers such as Fisher’s linear discriminant analysis. In this chapter we fo-
cus on descent procedures. We broadly categorize them into two groups, namely,
(A) error correction procedures and (B) error minimization procedures. However, it
should be noted that the term error is defined differently in each context. In group
A it refers to an instance of misclassification, and in group B it refers to a measure
of distance of a point from a hyperplane. The remainder of this section discusses
representative methods from each group.

4.3.1 Group A: Error Correction Procedures

Fixed-Increment Perceptron Training Rule: Among the adaptive procedures, the
fixed-increment perceptron training rule (from now on called the perceptron rule) is
the most well known. We discuss the performance of the classic perceptron rule and
its several variations for the nonseparable case. The perceptron weight update rule
[23] can be stated as
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w0 arbitrary

wj+1 = wj + αzj if zjtwj ≤ 0 (4.4)

wj+1 = wj otherwise.

The learning coefficient α > 0 and the length of the input vector control the magni-
tude of change. It can be shown [23] that if the vectors are linearly separable, this rule
will produce a solution vector w∗ in a finite number of steps. However, for input vec-
tors that are not linearly separable the perceptron algorithm does not converge, since,
if the input vectors are nonseparable, then for any set of weights w, there will exist
at least one input vector, z, such that w misclassifies z. In other words, the algorithm
will continue to make weight changes indefinitely. The following theorem, however,
states that even if the algorithm iterates indefinitely, the length of the weight vector
will remain bounded.

Proposition 4.3.1 The perceptron cycling theorem:4 Given a finite set of linearly
nonseparable training samples {z1, z2, ..., zm}, there exists a number N such that if
the perceptron learning rule is applied to this set, then the weight vector wl at any
iteration l remains bounded, i.e., |wl| ≤ N .

Instead of formally proving this theorem (interested readers can find the proof in [3]),
for intuitive purposes we explore the geometric aspect of the perceptron updating rule
to see why the perceptron cycling theorem holds. Let zn be the training sample that
is misclassified by the current weight vector wn. Therefore, the angle between the
two vectors must satisfy

π/2 < θ(zn,wn) < 3π/2 (4.5)

in order for the inner product to be negative. We observe that, maintaining the satis-
fiability of the criterion |wn|2 < |wn+1|2 < (|wn|2 + |zn|2), with |zn| remaining
fixed, becomes increasingly difficult as |wn| grows. Ultimately, the above criterion
becomes unsatisfiable at some point as |wn| becomes larger than certain limiting
value. Therefore, |wn| cannot grow without bound.

In cases where the input vectors are integer-valued, the bounded weight vectors
cycle through a finite set of values [19]. An observation of such cycling is an indica-
tion that the input is linearly nonseparable, though there are no known time bounds
for this to become observable. Therefore, this theorem is of little use for practical
applications.

Gallant [8] has proposed a modification of the perceptron rule, the pocket algo-
rithm, so that it finds the optimal weight vector, i.e., a weight vector that will classify
as many training samples as possible. The idea is to keep a separate set of weights,
wpocket, along with the number of consecutive training samples that it has classified
correctly. Whenever the current perceptron weight, wn, has a longer run of correct
classification, the pocket weight wpocket is replaced by wn. Unfortunately, there is
no known bound on the number of iterations required to guarantee optimal weight.

4 This theorem is also true for separable classes.
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Usually suboptimal weight is achieved by this algorithm. A further revised version,
the pocket algorithm with ratchet, is proposed [8] to ensure that the pocket weight
strictly improves as it gets replaced by the current weight. This is implemented by
checking whether the current weight wn classifies more training examples than the
current wpocket. Only then wpocket is replaced by wn. Note that this improvement
comes with increased computational burden, especially when there are many training
samples.

In a much earlier and rarely cited reference, we find that Butz [5] has proposed
to modify the perceptron update rule to address nonseparable data. A small positive
reinforcement factor µ, µ ≤ µ0 < 1 is introduced, with µ0 being a certain constant,
so that in place of (4.4) one has

w0 arbitrary

wj+1 = wj + αzj if zjtwj ≤ 0 (4.6)

wj+1 = wj + µzj otherwise.

Note the similarity in the underlying concept in (4.6) and the pocket algorithm. Both
attempt to reward the weight vector that correctly classifies the training samples. This
approach moves the weight vector closer to the sample that is correctly classified,
unlike the perceptron rule (and most others) where no action is taken in such cases.
Let zj and zj+1 be two consecutive training samples from the same class. Let us
assume that zj gets correctly classified by the current weight vector wj . The next
weight vector is wj+1 = wj + µzj . Let us assume that the next sample zj+1

is misclassified by the weight vector wj+1. The resulting weight vector wj+2 is
more likely to keep zj correctly classified in the current procedure than in that of the
perceptron update procedure. Butz has shown that the error rate k(n)/n decreases
considerably with the introduction of a small reinforcement factor where n is the
number of samples and k(n) is the number of misclassifications.5 The author goes
on to show that

• A µ0 < 1 exists.
• If {zn} is a sequence of mutually independent sample vectors, then k(n)/n ≤

G(µ) with probability 1 as n → ∞. G(µ) is a continuous and monotone nonin-
creasing function of µ, with G(0) < 1 and G(µ0) = p0. The quantity p0 is the
lower limit of the error probabilities associated with the weight vector set.

In other words, with the choice of right µ ≤ µ0, one can find a weight vector w′

such that the rate of misclassification decreases.
However, the quantity µ0 (thus µ) rarely is known or can be estimated with rea-

sonable accuracy. Successful application of this rule depends on a good value of µ

5 The comparison between Butz’s result and the perceptron behavior is not quite appropriate.
With nonlinear input (i.e., linearly nonseparable input) the weight vectors produced by the
perceptron rule may go from the best possible to the worst possible classification result in
one iteration. It is almost impossible to pick the best weight vector from the perceptron
procedure to make comparisons on misclassification especially for a large data set.
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which has to be searched for, and the search may be computationally expensive. The
other major concern is the stopping criterion, which is not discussed in this chapter.

It has been shown in [26] that perceptron learning algorithm can be used to learn
the set of separable vectors and identify the set of nonseparable vectors. The defini-
tions of separable and nonseparable vectors are given at the end of section 4.2. The
major results related to the perceptron algorithm with nonlinear input are as follows:

Proposition 4.3.2 The perceptron algorithm can separate a set of given vectors into
(i) a set of separable vectors and (ii) a set of nonseparable vectors in a finite number
of steps.

A note of caution is in order. The proof of this theorem establishes the finiteness
of the number of steps by showing that the upper bound for the number of steps is
the constant N , which appears in the perceptron cycling theorem. With no concrete
information on the upper bound and no stopping criterion, the usefulness of the above
theorem in practical applications is questionable.

Proposition 4.3.3 Given a set of vectors, the perceptron algorithm can be used to
determine a linearly separable subset of maximum cardinality.

Proposition 4.3.2 can be implemented in polynomial time using linear program-
ming formulation (not the perceptron algorithm). This yields a set of separable vec-
tors that may not lead to the best possible classification result. Proposition 4.3.3 is
much more useful because it can be used to produce a weight vector that gives the
least number of misclassifications. In this sense it is a more powerful result than the
least-square methods (Widrow-Hoff, since there is no problem with local minima),
Gallant’s pocket algorithm, and Butz’s reinforcement approach. Unfortunately, the
authors show that an algorithm for this proposition is NP-complete. They propose
a heuristic approach to solve proposition 4.3.3, which does not guarantee optimal
results.
Projection Learning Rule (Alias fractional correction rule:) The projection learn-
ing rule [1] (more commonly known as the fractional correction rule), a variation of
the perceptron rule, is also based on the error correcting principle. However, its be-
havior with nonlinear input is quite different from that of the perceptron rule. The
weights are updated in the following manner:

w0 arbitrary

wj+1 = wj − α (wjt
zj)zj

|zj |2 if zjt
wj ≤ 0. (4.7)

It can be shown that this algorithm converges for linearly separable input. The result
pertaining to nonlinear input can be stated as follows [1]:

Proposition 4.3.4 If the pattern set is not linearly separable, then the projection
learning rule converges to a 0 solution for 0 < α < 2.

Proof: Since no hyperplane can separate the input, the weight vector has to be up-
dated at least once in each cycle. From equation 4.7 one can derive that
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‖wj+1‖2 − ‖wj‖2 =
α(α − 2)(zjtwj)2

‖zj‖2
.

Note that ∀ α, 0 < α < 2, ‖wj+1‖2 < ‖wj‖2. This indicates that the sequence
‖w0‖, ‖w1‖, ... is a strictly monotonically decreasing sequence with the lower bound
0. Therefore, ‖wj‖ approaches zero as j approaches infinity. This proves that the
projection learning rule converges to the only solution (i.e., w = 0) in the linearly
nonseparable case for 0 < α < 2.

For one-dimensional linearly nonseparable input, one can show that ‖w‖ falls
within a small distance ε from zero in a number of steps that can be expressed as a
function of the initial weight vector, α, ε, and the angles between the input vectors
[1]. However, no similar expression has been known for higher dimensional input.

A link can be established between this result and the concept of linear indepen-
dence. From the given set of m n-dimensional vectors {z1, z2, ..., zm}, construct a
set of n m-dimensional vectors{ẑ1, ẑ2, ..., ẑn} in the following manner:

ẑj = {z1
j , z2

j , ...zm
j }

where zi
j is the jth component of the zi vector. If the original set of vectors is not

linearly separable, the weight update rule converges to the only solution, which is
w = 0. This leads to the fact that the constructed set of vectors will be a linearly
independent set in m-dimensional space.

4.3.2 Group B: Error Minimization Procedures

The error correction procedure focuses on misclassified samples. Other procedures
modify the weight vector using all samples at each iteration. Moreover, thus far a
weight vector w is sought such that wtzj ∀j is positive. Next, we discuss attempts
to reformulate the problem of finding the solution to a set of linear inequalities as a
problem of finding a solution to a set of linear equations. Let b = (b1, b2, ..., bm)t

be a column vector. The decision equation (4.2) can be restated as

Ztw = b. (4.8)

The solution vector w is overdetermined since Zt is rectangular with more rows than
columns, assuming m > n. The idea is to search for a weight vector that minimizes
some function of the error between the left and the right sides of equation (4.8). The
usual choice of a function to be minimized is the one that represents the sum-of-
squared error:

J = |Ztw − b|2.
The central theme in both the Widrow-Hoff and the Ho-Kashyap procedures is to
minimize J , though the difference in the details of the algorithms leads to drastically
different results.
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Widrow-Hoff delta rule: The α-Least-Mean-Square (α-LMS) algorithm or Widrow-
Hoff delta rule embodies the minimal disturbance principle6 [33]. It is designed to
handle both linearly separable and linearly nonseparable input. The criterion function
is minimized with respect to the weight vector w using the gradient decent method.
The unknown vector b is chosen arbitrarily and held constant throughout the com-
putation. See [35] for derivation of the weight update equation using the gradient
decent method. The iterative version of the weight update equation can be written as
follows [35]:

w0 arbitrary

wj+1 = wj + α (bj−wjt
zj)zj

|zj |2 . (4.9)

Note that the class labels (or desired output for all input samples) dj , which are
the output after the nonlinearity, are known. Since the error εj

l = (bj − wjtzj) is
measured at the linear output, not after the nonlinearity, as in the case of the percep-
tron rule, one must choose the magnitude as well as the sign of bj (arbitrarily) to
continue. It has been shown [35] that, in both linearly separable as well as linearly
nonseparable cases, this rule converges in the mean square sense to the solution w∗

that corresponds to the least mean square output error if all input vectors are of the
same length. It is known that in some cases this rule may fail to separate training
vectors that are linearly separable [18]. This is not surprising, since the mean square
error (MSE) solution depends on the margin vector b. Different choices for b give
the solution different properties. Hence, when one does not have any clue about the
distribution of the input data and arbitrarily fixes a margin vector, it is very likely that
the resulting weight vector may not classify all vectors correctly even for a linearly
separable problem.

Ho-Kashyap algorithm: Ho and Kashyap [13] modified the Widrow-Hoff proce-
dure to obtain a weight vector w as well as a margin vector b. They imposed the re-
striction that the m-dimensional margin vector must be positive-valued, i.e., b > 0,
(bk > 0, ∀ k). The problem is equivalent to finding w and b > 0 such that
J = |Ztw − b|2 is minimized with respect to both w and b. Note that since both w
and b (subject to the imposed constraint) are allowed to play a role in the minimiza-
tion process, the minimum value (i.e., 0) for J can be achieved in this case. Thus the
w that achieves that minimum is the separating vector in the linearly separable case.
The weight update rule is (for detailed derivation see [13])

6 The rule aims at making minimum possible change in the weight vector during the update
process such that the output for as many of the previously correctly classified samples as
possible remains unperturbed.
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b0 > 0 otherwise arbitrary

w0 = (Zt)†b0

εj = Ztwj − bj

bj+1 = bj + α(|εj | + εj)
wj+1 = wj + α(Zt)†(|εj | + εj) (4.10)

where (Zt)† = (ZZt)−1Z is the pseudoinverse of Zt. Computation of the
pseudoinverse may be avoided by using the following alternate procedure [12]:

εj
k = zkt

wj − bk
j

bk
j+1 = bk

j + ρ1/2(|εj
k| + εj

k)

wj+1 = wj − ρ2zk(zktwj − bj+1
k ). (4.11)

This algorithm yields a solution vector in the case of linearly separable samples in a
finite number of steps if 0 < ρ1 < 2, and 0 < ρ2 < 2/‖zk‖2. Since the focus
of this chapter is on data that are not separable, let us examine the behavior of this
algorithm under nonseparable situation.

Note the following two facts for nonseparable case: fact 1, εj �= 0 for any j; and
fact 2, |εj+1|2 < |εj |2, i.e., the sequence |ε1|2, |ε2|2, ... is a strictly monotonically
decreasing sequence and must converge to the limiting value |ε|2, though the limiting
value cannot be zero. It can be shown that (εj + |εj |) converges to zero, suggesting a
termination of the procedure. Now consider the following two cases:

• Suppose the error vector has no positive component for some finite j, then |εj |+
εj = 0. In that case the correction will cease and neither the weight vector nor
the margin vector will change [see (4.10)]. Thus an error vector with no positive
components conclusively points to the nonlinear nature of the data.7

• Suppose εj
+ = (εj + |εj |) is never zero for finite j. We can derive from fact

2 that |εj+1
+|2 < |εj

+|2. Therefore, |εj
+| must converge to zero. However, its

distance from zero is unknown for any fixed j.

In summary, the Ho-Kashyap algorithm indicates nonseparability, but there is no
bound on the number of steps.

Hassoun and Song [12] propose a variation of the Ho-Kashyap algorithm
equipped to produce an optimal separating surface for linearly nonseparable data.
The authors claim that it can identify and discard nonseparable samples to make
the data linearly separable with increased convergence speed. Again we notice sim-
ilarity with the heuristic approach proposed in Siu et al. [26]. However, the authors
do not provide any theoretical basis to their claim. The algorithm is tested only on
simple toy problems. We have no knowledge of any extensive testing on real-world
problems.

7 It can be shown that for linearly separable data, it is impossible for all components of the
error vector to be negative at any given iteration.
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linear programming: In searching for a linear classifier, the input vectors give a
system of linear inequalities constraining the location and orientation of the opti-
mal separating hyperplane. With a properly defined objective function, a separating
hyperplane can be obtained by solving a linear programming problem. Several al-
ternative formulations have been proposed in the past ([4, 9, 16, 24, 27]) employing
different objective functions. An early survey of these methods is given in Grinold
[11]. Here we mention a few representative formulations.

In a very simple formulation described in [24], the objective function is trivial,
so that it is simply a test of linear separability by finding a feasible solution to the LP
problem

minimize 0tw

subject to Ztw ≥ 1 (4.12)

where w is the weight vector of a separating hyperplane, Z = [z1, z2, ..., zm] is a
matrix of column vectors zj (j = 1, ...,m), the m augmented input vectors are as
defined before, and 0 and 1 are vectors of zero’s and one’s, respectively. The con-
straint requires that all training samples must fall on the same side of the hyperplane
(the linear classifier to be found). This is possible only if the points are linearly sep-
arable. 1 is an arbitrarily chosen nonzero constant vector that specifies a margin, so
that the points do not lie on the hyperplane.

This formulation gives only a test for linear separability (whether the constraints
give a feasible region) but does not lead to any useful solution if the data are not
linearly separable [24]. Another formulation suggested by Smith ([27]; see also [10])
minimizes an error function:

minimize att

subject to Ztw + t ≥ b

t ≥ 0 (4.13)

where Z is the augmented data matrix as before, a is a positive vector of weights, b
is a positive margin vector chosen arbitrarily (e.g., b = 1), and t and w are the error
and weight vectors, which are also decision variables for the LP problem. In [27]
each component of a was set to be 1/m. The variable error vector t allows that some
points locate on the other side of the hyperplane. t is required to be positive so it will
decrease the fixed margin specified by b. Using this formulation, the error function
will be minimized at zero with linearly separable data, and at a nonzero value with
linearly nonseparable data.

Bennett and Mangasarian [4] modified this formulation to use different weights
for input vectors belonging to each of the two classes. Let m1, m−1 be the number
of vectors belonging to the two classes, respectively, a = (a1, a2, ..., am)t, for j =
1, ...,m,
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aj = 1/m1 if dj = 1,
aj = 1/m−1 if dj = −1.

It is argued that this formulation is more robust in the sense that it can guarantee
a nontrivial solution w even if the centroids of the two classes happen to coincide.

Instead of minimizing an error function that depends on distances of all input
points to the separating hyperplane, Vapnik and Chervonenkis [31] proposed max-
imizing the distances of only those points that are closest to the hyperplane. This
approach of maximal margin hyperplanes led to the development of support vector
machines [32], which optimize the same objective function for points transformed to
a different space.

Though arguably algorithms for solving LP problems are more sophisticated than
the previously discussed iterative procedures, an important advantage of finding w
by solving an LP problem is that if the feasible region is nonempty, the solution can
be determined in a finite number of steps.

The number of steps it takes to arrive at the solution, however, is dependent on
the geometrical configuration of the data points. If the LP is solved by the simplex
method, in the worst case the algorithm may have to visit every vertex formed by the
intersections of the constraining hyperplanes before reaching an optimum. Empiri-
cal evidence shows that in practice this rarely happens. More recently, interior-point
methods [36], such as Karmarkar’s, are shown to have a better worst-case time com-
plexity. Still, the comparative advantages of such methods for an arbitrary problem
remain unclear, partly because there has not been a good way to characterize the
structure of a particular problem and relate that to the detailed operations of the al-
gorithms.

4.4 Experimental Results

In this section we present some experimental results on applying several representa-
tive learning algorithms to data sets that are not necessarily linearly separable. The
purpose of these experiments is more for assessing the practicality of the methods
than for a comprehensive evaluation and comparison.

4.4.1 Algorithms for Determining Linear Separability

We applied the three procedures [Ho-Kashyap (HK), fractional correction rule
(FCR), and linear programming (LP)] that are claimed to indicate linear nonsepara-
bility to a collection of two-class discrimination problems. The original Ho-Kashyap
rule involves computing a pseudoinverse matrix, which turned out to be overly ex-
pensive for large problems. So the adaptive algorithm (4.11) was used instead. With
LP, we used the simple formulation (4.12) to test for linear separability (referred to
as LPtest), and also Smith’s formulation (4.13) to derive a minimum error separat-
ing hyperplane (referred to as LPme). We included the perceptron training rule too
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for comparison purpose (denoted by PER for PERceptron), although it is understood
that it does not converge for nonseparable input.

Recall that as reviewed in previous sections, LPtest determines linearly separabil-
ity by checking whether the constraints give a feasible region, and LPme by checking
whether the optimal value for the objective function is zero. HK reports linear sepa-
rability by arriving at an error vector with zero norm, and linear nonseparability by
that the error vector has only negative components, or the norm of the positive part of
the error is very close to zero. FCR determines separability by arriving at a solution,
or the norm vector as well as the difference in subsequent norm vectors are very close
to zero; and PER determines separability by arriving at a solution. Experimentally, a
solution is not pursued further after some fixed time, and no solution indicates that
the programs do not stop within that time.

The problem was discrimination between all pairs of classes in each of 14 data
sets from the University of Californa, Irvine (UCI) Machine Learning Depository [2]:
abalone, car, german, kr-vs-kp, letter, lrs, nursery, pima, segmentation, splice, tic-tac-
toe, vehicle, wdbc, and yeast. The data sets were chosen so that each set has at least
500 input vectors and no missing values in the features. For those sets containing
categorical features, the values were numerically coded. There are a total of 844 two-
class discrimination problems. Outcomes from the algorithms may be a conclusion
of whether the problem is linearly separable or not, or inconclusive after a chosen
number of iterations. We compared such outcomes from all three procedures and the
relative time it took for them to derive the results.

Table 4.1 shows the number of problems reported by each algorithm as sepa-
rable, nonseparable, or inconclusive. Since LPtest always gives a definite answer,
conclusions of other algorithms are compared to its results.

Table 4.1. Conclusion on linear separability by each algorithm (entries are number of prob-
lems; sep: separable, non: nonseparable, inc: inconclusive).

LPtest HK FCR PER
sep non inc sep non inc sep non inc

separable 452 272 31 149 449 0 3 428 0 24
nonseparable 392 0 1 391 0 4 388 0 0 392

We found that within similar, affordable run-time limits, linear programming
always arrived at a definite conclusion, while HK and FCR often ended the runs
inconclusively (100,000 iterations were used for HK, FCR, and PER). Of the 844
problems, LPtest reported that 452 are linearly separable and 392 are not. For 54%
(453/844) of these problems, FCR arrived at a conclusion, but the fraction is only
36% (304/844) for HK. For the separable problems, FCR arrived at the conclusion
generally sooner than HK. For the nonseparable problems, both algorithms have a
problem fulfilling the claim of giving an indication; within the affordable time, only
one problem was reported to be nonseparable by HK, and only four by FCR.

We also found that the results were very sensitive to the choices of the learning
coefficient and convergence thresholds for the Ho-Kashyap rule. Other than affect-
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Table 4.2. Correlation coefficients of number of iterations for each pair of algorithms to con-
verge to a separating hyperplane.

LPme HK FCR PER
LPtest 0.6974 0.0164 0.1930 0.1256
LPme −0.0275 0.1586 0.1341
HK 0.7306 0.5723
FCR 0.5421

Table 4.3. Correlation coefficients of problem size measures and number of iterations for
each algorithm to converge to a separating hyperplane. n: no. of dimensions; m: no. of input
vectors.

LPme LPtest HK FCR PER
n 0.1970 0.5749 −0.0928 −0.0746 −0.0555
m 0.8856 0.4056 −0.0067 −0.0704 −0.0768
nm 0.4778 0.7636 −0.0429 −0.0388 −0.0287

ing the speed of convergence, they can change the conclusion on separability; for 31
separable problems HK reported that they were nonseparable. An improper learning
coefficient may cause overly large correction steps. The tolerance threshold deter-
mines when a number is considered zero, which leads to a conclusion. Of those 31
problems falsely reported to be nonseparable by HK, 26 contain only one vector in
the smaller class. The other five problems have two vectors in the smaller class. With
a change in the learning coefficient (to 10% of original value), six were reported
separable, nine remained nonseparable, and the other 16 became inconclusive.

Table 4.2 shows, for the separable problems, the correlation coefficients of the
number of iterations it took for each pair of algorithms to converge to a hyperplane,
computed over only those cases where both algorithms converged. In LP each itera-
tion involves an input vector, but in the adaptive algorithm each iteration involves a
loop through all relevant vectors in the entire set. For this reason, significant correla-
tion exists only between the adaptive algorithms or the two LP formulations, but not
between any of the adaptive algorithms and LP. The correlation is stronger between
HK and FCR than between each of them and PER.

Correlation coefficients were also calculated between measures of the problem
size and the number of iterations before convergence for each algorithm (Table 4.3).
For the adaptive procedures, the absence of significant correlation suggests that the
difficulty of a problem does not necessarily depend on the problem size.

4.4.2 Analysis of the Linearly Nonseparable Cases

For each of the 392 problems that LPtest reported to be linearly nonseparable, we
applied procedure (4.3) to determine the set of separable and nonseparable vectors.
Several of those problems can be considered nearly linearly separable, since only a
small fraction of vectors are found responsible for nonseparability. However, for the
majority (332) of those problems, the LP procedure found no separable vectors. That
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is to say, every point in those problems is (jointly) responsible for linear nonsepa-
rability. This is a rather surprising result. It suggests a need to further examine the
difference between these problems and those with some separable points.

We attempted to relate the fraction of separable vectors to the number of steps
taken for the three algorithms (LPtest, HK, FCR) to reach the conclusion of linear
separability. However, since HK and FCR arrived at the conclusion for only a few
of these nonseparable cases, we studied only the run time of LPtest. It appears that
for most of the problems with no separable vectors and for almost all problems with
many separable vectors, LPtest determined nonseparability fairly quickly. However,
occasionally it did take many iterations for LPtest to arrive at that conclusion. This
suggests a need for a more detailed examination of the locations of the separable and
nonseparable vectors to understand the implications.

4.4.3 Discussion

Our experiments show that linear programming, although long neglected in classifi-
cation studies, generally yields more affordable and dependable results. In contrast,
the Ho-Kashyap and the fractional correction rules frequently do not converge within
affordable time limits. The Ho-Kashyap rule may even lead to the wrong conclusions.
It is very difficult to choose the learning coefficients and error tolerance thresholds
to get all the conclusions right. This reinforces the theoretical results that there is
no known proof of convergence for HK and FCR in a predictable number of steps,
and that linear programming has known, predictable time bounds for convergence
on both linearly separable and nonseparable cases. The implementation difficulties
raise doubts about the practicality of these adaptive algorithms.

The only reservation we have about this conclusion is related to the efficiency
of the implementations. For linear programming we used the MINOS solver [20]
through the AMPL interface [7], which was a highly optimized commercial code,
whereas the adaptive procedures were run with simple implementations in C writ-
ten by ourselves. So, affordable (elapsed) time may not mean the same thing for the
two groups. Also, we have not tested the dependence of the run time on the order
in which the input vectors were presented to the adaptive procedures, and we have
not investigated the dual problems that can be formulated for a given problem and
solved by any of these procedures [24]. Nevertheless, we advocate that linear pro-
gramming methods warrant more serious attention in classification studies. Without
more sophisticated derivatives such as simultaneous primal-dual algorithms, the only
apparent advantages of the adaptive procedures such as HK and FCR rules seem to
be that (1) they can be implemented on very simple machines; and (2) their adaptive
nature permits easier inclusion of new input that may become available during the
training process, and thus they are better suited for online learning.

4.5 Conclusion

We reviewed a set of representative descent procedures for constructing linear clas-
sifiers, and experimented, using a public database, with three of those procedures
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that are claimed to detect linear nonseparability. We found that both the fractional
correction rule and the adaptive Ho-Kashyap algorithm are not delivering on their
promises, and that linear programming is the only reliable and efficient method. We
suggest that linear programming methods can play a more significant role in classi-
fication studies. Moreover, we tested a linear programming formulation that reveals
how close a problem is to linear separability by identifying vectors that are responsi-
ble for nonseparability. We believe further investigations along this line will lead to
better understanding of the complexity of a given data set.
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5

Data Complexity, Margin-Based Learning, and
Popper’s Philosophy of Inductive Learning

Vladimir Cherkassky and Yunqian Ma

Summary. This chapter provides a characterization of data complexity using the framework
of Vapnik’s learning theory and Karl Popper’s philosophical ideas that can be readily inter-
preted in the context of empirical learning of inductive models from finite data. We approach
the notion of data complexity under the setting of predictive learning, where this notion is
directly related to the flexibility of a set of possible models used to describe available data.
Hence, any characterization of data complexity is related to model complexity control. Recent
learning methods [such as support vector machines (SVM), aka kernel methods] introduced
the concept of margin to control model complexity. This chapter describes the characteriza-
tion of data complexity for such margin-based methods. We provide a general philosophical
motivation for margin-based estimators by interpreting the concept of margin as the degree
of a model’s falsifiability. This leads to a better understanding of two distinct approaches to
controlling model complexity: margin-based, where complexity is controlled by the size of
the margin (or adaptive empirical loss function); and model-based, where complexity is con-
trolled by the parameterization of admissible models. We describe SVM methods that com-
bine margin-based and model-based complexity control, and show the effectiveness of the
SVM strategy via empirical comparisons using synthetic data sets. Our comparisons clarify
the difference between SVM methods and regularization methods. Finally, we introduce a
new index of data complexity for margin-based classifiers. This new index effectively mea-
sures the degree of separation between the two classes achieved by margin-based methods
(such as SVMs). The data sets with a high degree of separation (hence, good generalization)
are characterized as simple, as opposed to complex data sets with heavily overlapping class
distributions.

5.1 Introduction and Motivation

The task of estimating (learning) a useful model from available data arises in many
applications ranging from financial engineering to genomics and signal processing.
In many cases, the parametric form of the “true” model is unknown, and estimating
a “good” model involves a trade-off between the model complexity and the accuracy
of fitting the available data. Since learning problems with finite data are inherently
ill-posed, one can only expect to obtain reasonably good (but not perfect) models.
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Hence, it is important to understand the assumptions and inherent limitations of a
particular methodological framework underlying various learning algorithms.

There are two distinct goals of learning [1, 2], leading to different interpretations
of what constitutes a good model:

• Understanding/interpretation of a given data set
• Prediction (generalization), where the goal is to estimate models providing good

prediction (for future data)

In an ideal world, one may attempt to achieve both goals at the same time; how-
ever, for many applications accurate prediction does not require good understanding
of an underlying (physical or social) system generating the training data. Likewise,
good understanding (of past data) does not necessarily guarantee good prediction.
Interpretation is usually subjective, and it is heavily influenced by the personal bias
(belief system) of an observer. In contrast, predictive modeling is more objective,
because the generalization performance can, in principle, be empirically evaluated.
Frequently, the distinction between the two goals (understanding vs. generalization)
is rather blurred, because most constructive learning methods (for both approaches)
implement the idea of fitting a model to the empirical data. Moreover, many practical
applications are difficult to formalize, so practitioners tend to apply existing learn-
ing algorithms developed under the predictive learning setting, in order to perform
exploratory data analysis.

This chapter assumes the setting of predictive learning, following the framework
of statistical learning theory or Vapnik-Chervonenkis (VC) theory. This theory is
concerned with establishing general conditions and developing methods for estimat-
ing (learning) good predictive models from past (or training) data. Under this frame-
work, any discussion of data complexity should be related to predictive capabilities
of models (estimated from data).

The problem of predictive learning (with finite data) has a natural connection
to the philosophy of science, as explained next. All scientific theories are obtained
from and/or corroborated by empirical data. However, not every theory explaining
the data is scientific. Truly scientific theories can be used to explain new observa-
tions, i.e., in a predictive way. Hence we can see the similarity between the central
problem in predictive learning (i.e., formulating conditions for good generalization)
and the central problem in the philosophy of science known as the criterion for de-
marcation between “true” scientific theories and metaphysical theories (or beliefs).
This demarcation criterion can be interpreted as a general requirement under which
a method can learn good predictive models (i.e., can generalize). Karl Popper pro-
posed his famous criterion for demarcation, stating that the necessary condition for
a theory to be true is its testability or falsifiability. In other words, a genuine theory
cannot explain every possible fact (in its domain), and there are facts (observations)
that such a theory cannot explain. In predictive learning, this can be interpreted as
the condition that a “good” learning method cannot explain (fit) some data samples.
The fundamental result in VC theory, stating that any learning method should have
limited capacity (finite VC dimension) in order to be able to generalize [3], can be
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viewed as a mathematical formulation of Popper’s demarcation criterion in predic-
tive learning [1, 3]. Moreover, Popper’s criterion implies that all true theories should
be predictive (rather than explanatory), because falsifiability refers to the inability of
making correct predictions for all possible future samples.

This chapter extends Popper’s ideas to the analysis of data complexity and model
complexity. In particular, we provide an interpretation of the concept of margin as
the degree of a model’s falsifiability. This leads to a better understanding of two dis-
tinct approaches to model complexity control: margin-based, where complexity is
controlled by the size of the margin (or adaptive empirical loss function), and model-
based, where complexity is controlled by the parameterization of admissible models.
The proposed approach provides a very general framework for understanding many
recent methods inspired by SVM methodology (such as kernel-based methods, reg-
ularization networks, etc.).

The chapter is organized as follows. Section 5.2 reviews the general setting for
predictive learning, following Vapnik’s terminology. Section 5.3 provides an inter-
pretation of Popper’s ideas in the context of predictive learning with finite samples.
This interpretation leads naturally to margin-based learning formulations for various
learning problems (such as inductive classification, inductive regression, and trans-
duction). Section 5.4 contrasts margin-based methods and regularization approaches
(implementing model-based complexity control). We include several empirical com-
parisons illustrating the role of margin for model complexity control in classification
(pattern recognition) problems. Based on these comparisons, we argue that for small-
sample settings, margin-based complexity control tends to be more effective than
traditional model-based complexity control. This helps to explain the practical suc-
cess of SVMs and other related methods. Conclusions and discussion are presented
in Section 5.5.

5.2 General Setting for Predictive Learning

This section briefly reviews the general setting for predictive learning and three major
methodological frameworks for estimating predictive models from data. A learning
system shown in Figure 5.1 describes so-called supervised learning problems such
as regression and classification [1, 3], also known as statistical inference problems
[2]. This system has three components: a generator of input samples (according to
some unknown but fixed distribution); a system that produces a (scalar) output y
for each input vector x, and a learning machine (or learning algorithm) that tries to
approximate the system’s output. Estimation (or learning) is based on a given (finite)
number of samples called training data Z = (xi, yi), (i = 1, . . . , n), and the goal of
learning is to estimate the unknown mapping f : x → y in order to predict future
samples. More formally, the learning machine implements a set of possible models
(aka approximating functions)f(x,ω),ω ∈ Ω parameterized by a set of parameters
ω, and the goal of learning is to select the function (model) f(x,ω∗)providing the
best generalization for future samples. This (generic) setting describes many types
of learning problems, i.e., the regression learning formulation, where the system’s
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output is real-valued y ∈ R, and the classification formulation, where the system’s
output is binary indicator function y ∈ (+1,−1) [1, 2, 3].

Generator
of samples

Learning
Machine

System

x

y

y

Fig. 5.1. Generic system for supervised learning.

Depending on specific assumptions about the “true” model of the system, several
different learning methodologies (for estimating predictive models from data) have
been developed:

1. Parametric estimation. This classical statistical inference approach (attributed to
R. Fisher) assumes that the form of the unknown dependency (or true model) is
known, up to the value of its parameters. So the goal of statistical inference is
accurate parameter estimation using the available data. It can be easily shown,
however, that the parametric setting does not yield accurate generalization with
finite samples, even when the true parametric model is known [1].

2. Model identification or function approximation. This is an extension of the clas-
sical approach (1) where the assumption of knowledge about the parametric form
is relaxed. Under the function approximation framework, the true model (aka
target function) is unknown, and the goal of learning is accurate approximation
of the target function via a set of known basis functions. Classical approaches
consider representations linear in parameters (i.e., polynomials, harmonic func-
tions), whereas recent nonlinear methods include nonlinear parameterizations
(such as multilayer perceptron networks, projection pursuit, multivariate adap-
tive regression splines, etc.). Many references extend the classical statistical and
function approximation approach to developing flexible (adaptive) learning al-
gorithms [2, 4, 5, 6].

3. Risk minimization approach, aka predictive learning. Under this framework, the
goal of learning is generalization, i.e., obtaining models providing minimal pre-
diction risk (for future samples). This approach has been developed by practi-
tioners in the field of artificial neural networks in the late 1980s (with no particu-
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lar theoretical justification). The theoretical framework for predictive learning is
known as statistical learning theory or VC theory [7]. VC theory investigates the
conditions for generalization for methods based on fitting a set of possible mod-
els (or approximating functions) f(x,ω) to the training data. In this sense, the
VC theory describes the generalization properties of the other two approaches
(parametric estimation and model identification), which are also based on the
idea of fitting the model to available data.

Unfortunately, an important distinction between approaches (2) and (3) is not
clearly understood in the current research literature. Effectively, the goal of approach
(2) is accurate identification of the unknown system, whereas the goal of (3) is ac-
curate imitation (of the unknown system). Clearly, achieving the more ambitious
goal (2) is not necessary for achieving good generalization in the sense of (3). As
pointed out by Vapnik [8], the goal of learning under the model identification/ func-
tion approximation approach is to estimate the true model of observed random events
(presumed to exist), whereas under the predictive learning approach the goal is just
to find a “good” model (in the sense of generalization). This distinction is critical for
learning with finite samples, for the following reasons:

• One can easily show examples where a good model (in the sense of generaliza-
tion) provides very inaccurate (poor) approximation of the true model.

• One can easily show examples where attempting to use the true parametric form
of unknown dependency leads to poor generalization [1].

• Classical statistics and function approximation frameworks rely on the notion
of the true model (for describing available data). This is clearly an additional
(restrictive) assumption imposed on the learning problem. In many applications,
the goal is to find a good model (in the sense of generalization), and the notion
of the true model (target function) is simply a theoretical construct (i.e., a by-
product of a theoretical framework) that cannot be observed (i.e., measured).
In contrast, the VC theoretical formulation is based only on the concept of risk
minimization, and it does not rely on the notion of the true model.

Likewise, the characterization of data complexity has different flavors under
each learning framework. Under the model identification approach, data complex-
ity is usually expressed in terms of the properties of a true model (being estimated
from data), i.e., the properties of the unknown distributions, or the complexity of the
Bayesian decision boundary. Under the predictive learning (system imitation) set-
ting, data complexity is directly related to the properties of a set of possible models
(aka approximating functions). More specifically, the well-known trade-off between
the accuracy of fitting the data and the complexity (capacity) of the approximat-
ing functions affects the generalization performance [3]. Hence, under the predictive
learning (system imitation) framework used in this chapter, characterization of data
complexity can be discussed only in the context of this trade-off.
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5.3 Margin-Based Methods and Popper’s Concept of Falsifiability

In the philosophy of science, the central question is the problem of demarcation, that
is, determining under what conditions an inductive theory (based on experimental
data or past observations) is true or scientific, as opposed to nonscientific or meta-
physical theories (such as alchemy or astrology, which also can be used to “explain”
experimental data). In the field of predictive learning, one can interpret “true” in-
ductive theories as predictive models with good generalization (for future data). Karl
Popper formulated his famous criterion for distinguishing between scientific (true)
and nonscientific theories [9], according to which the necessary condition for true
theory is the possibility of its falsification by certain observations (facts, data sam-
ples) that cannot be explained by this theory. Quoting Popper [10]:

It must be possible for an empirical theory to be refuted by experience ... Every
“good” scientific theory is a prohibition; it forbids certain things to happen. The
more a theory forbids, the better it is.

Of course, general philosophical ideas can be interpreted (in the context of
learning) in many different ways. For example, the main result of VC theory (the
finiteness of VC dimension as a condition for generalization) can be interpreted
as the possibility of falsification [3]. Next we propose another specific interpreta-
tion of Popper’s ideas in the context of predictive learning from finite samples. The
goal of learning is to select a good empirical model from a set of possible models
or approximating functions f(x,ω), based on a finite number of training samples
(xi, yi), (i = 1, . . . , n). Next we interpret several notions in Popper’s criterion, and
relate them to predictive learning:

• In Popper’s quotation, empirical theory seems to refer to a single model (func-
tion). However the VC theoretical setting considers a set of functions f(x,ω) as
possible models. We interpret Popper’s notion of empirical theory as a predictive
model f(x,ω∗) estimated from training data.

• Experimental facts or empirical observations can be interpreted as data samples
in predictive learning. However, there seems to be no clear distinction between
the training and test data in Popper’s writings.

• The notion of falsifiability is qualitative and rather vague. We propose to interpret
falsifiability via an empirical loss function. That is, a model is falsified by a data
sample if the empirical loss (for this sample) is large (nonzero). On the other
hand, if a model explains the data well, then the corresponding loss is small (or
zero).

An inductive model should explain past observations (i.e., training data) but also
be easily falsified by additional observations (new data). In other words, a good
model should have maximum ambiguity with respect to future data (“the more a
theory forbids, the better it is”). Under standard inductive learning formulations, we
only have the training data. During learning, the training data are actually used as a
proxy for future (test) data, as in resampling techniques. So a good predictive model
should strive to achieve two (conflicting) goals:
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1. Explain the training data, i.e., minimize the empirical risk.
2. Achieve maximum ambiguity with respect to other possible data, i.e., the model

should be refuted (or falsified) by other unlabeled data.

A possible way to achieve both goals is to introduce a loss function such that a
(large) portion of the training data can be explained by a model perfectly well (i.e.,
achieve zero empirical loss), and the rest of the data can only be explained with some
uncertainty (i.e., nonzero loss). Such an approach effectively partitions the sample
space into two regions, where the training data can be explained by the model with
perfect certainty (i.e., zero loss) or not (i.e., nonzero loss). For classification prob-
lems, the region with nonzero loss specifies the band separating the two classes,
called the margin. Moreover, such a loss function should have an adjustable para-
meter that controls the partitioning (the size of margin, for classification problems),
and effectively controls the trade-off between the two conflicting goals of learning.
The idea of margin-based loss is illustrated in Figure 5.2 for the (nonseparable) bi-
nary classification problem, where a model D(x) = sign(f(x,ω)) is the decision
boundary separating an input space into a positive class region where f(x,ω) > 0
, and a negative class region where f(x,ω) < 0. In this case, training samples that
are correctly classified by the model and lie far away from the decision boundary
f(x,ω) = 0, are assigned zero loss. On the other hand, samples that are incorrectly
classified by the model and /or lie close to the decision boundary have nonzero (pos-
itive) loss (see Fig. 5.2). Then a good decision boundary achieves an optimal balance
between

• minimizing the total empirical loss for samples that lie inside the margin, and
• achieving maximum separation (margin) between training samples that are cor-

rectly classified (or explained) by the model.

L = 0
Margin

L > 0

f(x,w) = 0

L = 0

Fig. 5.2. Margin-based loss for classification (nonseparable case).

Clearly, these two goals are contradictory, since a larger margin (or greater fal-
sifiability) implies larger empirical risk. So in order to obtain good generalization,
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one chooses the appropriate margin size (or the degree of falsifiability, according to
Popper’s interpretation).

Next we show several examples of margin-based formulations for specific learn-
ing problems. All examples assume a linear parameterization of approximating func-
tions, i.e., linear models f(x,ω) = (x · w) + b

y = +1

y = -1

Margin

y = +1

y = -1

(a)

(b)

Margin

Fig. 5.3. Binary classification for separable data, where © denotes samples from one class,
and � denote samples from another class. The margin describes the region where the data
cannot be unambiguously explained (classified) by the model. (a) Linear model with margin
size ∆1. (b) Linear model with margin size ∆2.

Classification inductive formulation. First, consider a case of linearly separable
data when the first goal of learning can be perfectly satisfied. That is, a set of linear
models can fit the training data perfectly well (i.e., provide separation with zero er-
ror). Then the best model is the one that has maximum ambiguity for other possible
data. For example, consider the (binary) classification problem with linearly separa-
ble data shown in Figure 5.3a. Instead of using a single decision boundary, a band
(called the margin) is used to represent the region where the output is ambiguous,
dividing the input space into two regions (Fig. 5.3a). That is, new unlabeled data
points falling on the “correct” side of the margin can be always correctly classified,
whereas data points falling inside the margin cannot be unambiguously classified.
The size of the margin (denoted as ∆1 in Fig. 5.3a) plays an important role in con-
trolling the flexibility (complexity) of the decision boundary. Even though there are
many linear decision boundaries that separate (explain) this training data perfectly
well, such models differ in the degree of separation (or margin) between the two
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classes. For example, Figure 5.3b shows another possible linear decision boundary,
for the same data set, which has a smaller margin ∆2. Then, according to our in-
terpretation of Popper’s philosophy, the better classification model should have the
largest margin (i.e., maximum possibility of falsification by the future data). The
mathematical formulation for this setting, known as the optimal hyperplane, is intro-
duced below following Vapnik [3]. First note that the distance between a separating
hyperplane f(x,ω) = (x ·w) + b = 0 and a sample xk is |(w·xk)+b|

||w|| . Hence for the
linearly separable data (with separation margin 2∆) all samples obey this inequality:

yk((w · xk) + b)
||w|| ≥ ∆ where k = 1, . . . , n and yk ∈ (+1,−1) (5.1)

This inequality implies that maximizing the margin ∆ is equivalent to minimiza-
tion of ||w|| . Rescaling parameters w and b by fixing the scale ∆||w|| = 1 leads to
the canonical form representation for the separating hyperplane:

yk((w · xk + b)) ≥ 1 where k = 1, . . . , n and yk ∈ (+1,−1) (5.2)

The optimal separating hyperplane satisfies the above constraints and also mini-
mizes ||w||2 , with respect to both w and b.

The optimal separating hyperplane formulation makes a strong assumption that
the data can be explained perfectly well by a set of admissible models, i.e., the train-
ing data are linearly separable. In most cases, however, the empirical risk cannot be
minimized to zero. In this case, a good inductive model attempts to strike a balance
between the goal of minimization of empirical risk (i.e., fitting the training data) and
maximizing the margin (or model’s falsifiability). In the case of classification with
nonseparable training data, this is accomplished by allowing some training samples
to fall inside the margin, and quantifying the empirical risk (for these samples) as
deviation from the margin borders, i.e., the sum of slack variables ξi corresponding
to the deviation from the margin borders (Fig. 5.4). In this case, again, the notion of
ambiguity or falsifiability can be directly related to the margin. More precisely, for
classification problems the degree of falsifiability can be naturally measured as the
size of the margin. For the nonseparable case, the optimization formulation known
as “soft margin” hyperplane is

minimize
1
2
||w||2 + C

n∑
i=1

ξi (5.3)

subject to yi(w · xi + b) ≥ 1 − ξi, i = 1, . . . , n

Note that soft margin formulation (5.3) attempts to maximize the margin (via
minimization of ||w||2) and minimize the total empirical loss for incorrectly classi-
fied samples (inside the margin). The trade-off between these two goals is controlled
by (positive) parameter C. The appropriate value of C is usually determined via re-
sampling. A given C value implicitly specifies the size of margin ∆ via formulation
(5.3), so the optimal soft margin hyperplane w∗ defined by (5.3) is the ∆-margin
hyperplane with ∆ = 1/||w∗||. Alternatively, one can think of an equivalent soft
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y = +1

y = -1

Fig. 5.4. Binary classification for nonseparable data involves both goals: (1) minimizing the
total error for samples inside the margin, usually quantified as a sum of slack variables ξi

corresponding to deviation from margin borders; (2) maximizing the size of the margin.

margin formulation where the size of the margin is used explicitly as a user-defined
parameter controlling generalization. This interpretation leads to an adaptive loss
function that effectively partitions the input space into two regions, one where the
training data can be explained by the model (zero loss) and the margin band (where
the data are falsified or cannot be explained by the model). Such a loss function [aka
support vector machine (SVM) loss] can be defined for classification problems as

L∆(y, f(x,ω)) = max(∆ − yf(x,ω), 0) (5.4)

Our notation for SVM loss uses explicitly margin ∆, in order to emphasize its
importance, in contrast to traditional representation for SVM loss [2]:

L(y, f(x,ω)) = max(1 − yf(x,ω), 0) (5.5)

Both representations (5.4) and (5.5) are, of course, equivalent and differ only in
scaling of f(x,ω) = (x · w) + b. The soft margin SVM formulation (5.3) is some-
times described as a special case of regularization formulation with a “particular
SVM loss function”. The interpretation of margin-based loss proposed in this chap-
ter takes a different view. That is, we argue that the special form of SVM loss is, in
fact, responsible for generalization. Later in section 5.4 we elaborate on the resem-
blance between SVM and classical regularization formulations, and present several
empirical comparisons.

Regression inductive formulation. Even though the interpretation of margin in the
sense of Popper’s “possibility of falsification” for classification is fairly natural, such
an interpretation for other types of learning problems is not quite straightforward.
For example, for real-valued function estimation (aka regression), an appropriate
interpretation of falsifiability is not obvious. In this case we will formalize the inter-
pretation of the two goals of learning according to Popper’s philosophy, as explained
next. A good model should be able to

• explain well the majority of the training data (i.e., achieve zero empirical loss);
and
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• maximize the region in the (x, y) space where the data cannot be explained by
the model, i.e., where the loss is nonzero.

Formally, achieving these two (conflicting) goals can be achieved via specifi-
cation of a new empirical loss function, which equals zero when the discrepancy
between the model and the data is small (below a certain threshold) and nonzero
when the discrepancy is large (above this threshold). The first goal favors a large
threshold, so that the empirical risk for the majority of training data is zero, whereas
the second goal favors a small threshold, so that the ambiguity of the model with
respect to available data is maximized. The optimal threshold value is selected typ-
ically based on a priori knowledge or using resampling methods in order to achieve
optimal generalization performance.

In the case of regression, an appropriate margin-based loss function called ε-
insensitive loss [3] is defined as

Lε(y, f(x,ω)) = max(|f(x,ω)| − ε, 0) (5.6)

where parameter ε controls the margin size. This loss function is shown in Figure 5.5,
illustrating the partitioning of the (x, y) space for linear parameterization of f(x,ω).

(a) (b)

Fig. 5.5. ε-insensitive loss function: (a) ε-insensitive loss for SVM regression; (b) slack vari-
able ξ for linear SVM regression formulation.

This loss function is used in the SVM regression formulation [3, 8]. For linear
regression problems f(x,ω) = w · x + b, SVM regression amounts to (simultane-
ous) minimization of ε-insensitive loss (5.6) and minimization of the norm of linear
parameters ||w||2. Minimization of the ε-insensitive loss function can be formally
described by introducing (nonnegative) slack variables ξi, ξ

∗
i , i = 1, . . . , n , to mea-

sure the deviation of training samples outside ε-insensitive zone (see Fig. 5.5). Thus
SVM regression can be formulated as minimization of the following functional:

minimize
1
2
||w||2 + C

n∑
i=1

(ξi + ξ∗i ) (5.7)
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subject to

⎧⎨
⎩

yi − w · xi − b ≤ ε + ξi

w · xi + b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, . . . , n

For such a loss function (5.6), the model is falsified by samples outside the ε-
insensitive zone around the model f(x,ω) . Note that small ε-values correspond to
a small margin (for classification formulation), so that a model can explain well just
a small portion of available (training) data. On the other hand, larger ε-values corre-
spond to a larger margin, when the model can explain well most (or all) of the data,
so it cannot be easily falsified. We also point out the conceptual similarity between
the SVM loss for classification (5.4) and regression (5.6). In fact, many other SVM-
inspired formulations, such as single-class learning [17], can be described using a
similar margin-based loss.

The loss function (5.6) effectively partitions the (x, y) space into two regions –
one where the model explains the data perfectly well (zero loss) and another where
the loss is nonzero. The relative size of these two regions is effectively controlled
by the value of ε. Since the proper choice of ε-value controls the model’s degree
of falsification, it is critical for generalization. It depends mainly on the standard
deviation of the additive noise and the number of samples [12]. An important point
here is that such margin-based loss functions are adaptive, in the sense that the size
of the margin (for classification problems) or the value of ε (for regression) should
be optimally selected for a given data set.

We point out that for inductive learning problems (such as classification and
regression, discussed above), the concept of margin describes partitioning of the
sample space into regions where the model can or cannot be falsified by the data.
This approach can be naturally extended to other inductive learning problems, and
to other (noninductive) types of learning. In this sense, Popper’s idea of falsifica-
tion can be used as a general philosophical principle for introducing margin-based
methods (such as SVMs). For example, consider the problem of local learning for
binary classification, where the goal is to predict the class label of a given (unla-
beled) input, given a set of labeled examples (xi, yi). Let us assume (for simplicity)
that the training data (xi, yi), i = 1, . . . , n is linearly separable, so we can use lin-
ear approximating functions. Then one can consider two possible class labels for the
unlabeled input, yielding two possible labeled data sets. For each possible data set,
we estimate the maximum-margin linear model, resulting in two candidate models
(Fig. 5.6). Note that each of the maximum-margin models explains its training data
set perfectly well, so we choose the model that is easier to falsify, i.e., has the largest
margin, in accordance with Popper’s principle. This model predicts a class label of
y = −1 for the unlabeled input. It is also worth noting that margin-based approaches
may yield different solutions than standard learning methods. For example, for the
data set shown in Figure 5.6, the standard nearest neighbor classification method
would assign class label y = +1 to the unknown input.

The previous discussion suggests that margin-based methods introduce new loss
functions that can be naturally interpreted using Popper’s notion of falsifiability. So
next we elaborate on the differences between margin-based loss functions and the
traditional loss functions used in statistics. The main distinction is that statistical
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Fig. 5.6. Example of margin-based local learning for classification. Unknown input X can be
classified as y = −1, resulting in a linear decision boundary with margin M1, or it can be
classified as y = +1, resulting in another linear decision boundary with margin M2. Since
M1 > M2, unknown input is classified as negative class.

loss functions have been introduced for parametric estimation under large sample
settings. For example, the squared loss (in regression problems) is statistically opti-
mal when the true parametric form of a model is known, the noise model is known
(Gaussian), and the number of samples is large. In contrast, margin-based loss func-
tions are appropriate under sparse (or finite) sample settings when the noise model
is unknown and the true parametric model is unknown. For finite sample problems,
the use of squared loss is difficult to justify even for linear regression with Gaussian
noise. Further, it can be shown that the width of the margin effectively controls the
model complexity or the VC dimension [3]. This means that with margin-based loss
functions, model selection (complexity control) can be achieved via the loss function
itself. In terms of VC theory, the structure of margin-based methods is defined via an
(adaptive) loss function. This is in contrast to classical statistical methods, where the
empirical loss function is given (fixed) a priori, and the structure is usually defined
via the parameterization of approximating functions f(x,ω), i.e., by the number of
basis functions in dictionary methods [1].

Similarly, we can also contrast the two philosophical interpretations of induc-
tive learning, one originating from the classical statistical framework (related to Oc-
cam’s razor principle) and another based on Popper’s philosophy appropriate for
finite sample estimation. The statistical framework is based on the idea of function
approximation appropriate for low-dimensional problems with large number of train-
ing samples. Under this framework, the goal of learning is accurate estimation of an
unknown (target) function t(x) = E(y/x). This naturally leads to the minimization
of risk based on the squared loss functional. Here the trade-off is between the accu-
racy of function approximation (i.e., mean squared error) and the model complexity
(quantified as the number of basis functions or the number of free parameters). This
trade-off is usually described as Occam’s razor principle, which prescribes the selec-
tion of a model with lowest complexity that explains (fits) the training data. There
are two important points implicit in this classical approach:
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1. The measure of function approximation accuracy (empirical loss) is given (fixed)
a priori (i.e., squared loss).

2. Model complexity is quantified as the number of free parameters (number of
entities in the original Occam’s razor formulation).

In contrast, the VC theoretical approach is based on the notion of prediction risk
minimization. This goal is less demanding than the goal of function approximation/
density estimation. Since the VC theory has been developed for finite sample settings
where accurate model (function) estimation is intrinsically difficult (or impossible,
due to the curse of dimensionality), we adopt Popper’s idea of falsifiability as a
guiding principle. That is, we seek a trade-off between the model’s accuracy and the
possibility of its falsification. This leads naturally to margin-based loss functions that
are adaptable and can be tuned for a given data set (via some parameter controlling
the size of margin). For such (margin-based) methods, the model complexity [of the
structural risk minimization (SRM) structure] is indirectly controlled by the size of
the margin, rather than directly by the number of free parameters.

Based on the above discussion, we can identify two distinct approaches for con-
trolling model complexity with finite samples:

(a) Use an adaptive parameterization of the approximating functions f(x,ω), along
with fixed empirical loss to fit the training data. This approach leads to types
of structures used in classical statistical methods such as dictionary methods,
penalization, and subset selection.

(b) Use an adaptive loss function (margin-based) along with a fixed parameteriza-
tion of approximating functions f(x,ω). This leads to margin-based methods
introduced in this section (see examples in Figs.5.2-5.5).

Note that both types of structures (a) and (b) originate from the same SRM in-
ductive principle, where one jointly minimizes empirical risk and complexity (VC
dimension), in order to achieve the minimal value of the upper bound on risk. In
adaptive parameterization methods the VC dimension is controlled by the chosen
parameterization of f(x,ω), whereas in margin-based methods the VC-dimension
is (implicitly) controlled via an adaptive empirical loss function.

In this section, we used the notion of falsifiability to motivate margin-based es-
timators (structures), but the original motivation attributed to Vapnik [3, 7] is based
on the general SRM inductive principle. For example, the VC generalization bound
for classification has the form

R(ω) ≤ Remp(ω) + Φ(Remp(ω),
n

h
) (5.8)

Here the first term is the empirical risk (i.e., classification error), and the second
term is called the confidence interval (its analytical form is provided in VC theory).
Since the empirical risk decreases with h (VC dimension) whereas the confidence
interval increases with h, there is an optimal VC dimension providing the minimum
bound (5.8) on prediction risk. The usual strategy for minimizing this bound is to
minimize the first term (empirical risk) using a set of functions (an element of a
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structure) of fixed complexity. Under this strategy for implementing SRM (used in
dictionary methods), the value of the confidence interval is fixed while the empirical
risk is minimized. In contrast, under the margin-based approach, the confidence in-
terval is minimized (by maximizing the margin) while the empirical risk is kept zero.
Pure implementation of such a strategy is only possible for restricted data sets, i.e.,
linearly separable data as shown in Figure 5.2. For more realistic (nonseparable) data
sets, implementation of the margin-based approach requires a trade-off between the
two terms in the bound (5.8). This leads to the soft margin SVM formulation (5.3),
where the optimal margin size is adaptively selected for a given data set.

5.4 Support Vector Machines and Regularization

The distinction between margin-based methods and adaptive parameterization meth-
ods presented in section 5.3 leads to two obvious questions: First, under what condi-
tions do margin-based methods provide better (or worse) generalization than adap-
tive parameterization methods? Second, is it possible to combine both approaches?
It is difficult to answer the first question, since both types of structures may pro-
vide comparable performance, depending on a number of factors, such as the noise
level, number of samples, type of noise (in regression problems), etc. Empirical ev-
idence suggests that under sparse sample settings, margin-based methods are gener-
ally more robust than methods implementing classical structures. In response to the
second question, the two approaches can be easily combined into a single formula-
tion. Effectively, this is done under the SVM framework, where the model complex-
ity is controlled (simultaneously) via adaptive parameterization of approximating
functions (kernel selection) and adaptive loss function (margin selection). Nonlinear
SVM loss functions effectively combine

• margin-based loss in order to control the complexity (VC-dimension) of a learn-
ing method, and

• nonlinear (adaptive) parameterization of possible models via selection of the so-
called kernel functions.

Let us consider learning problems where (for simplicity) admissible models have
linear parameterization f(x,ω) = w · x + b. Then the generic SVM risk functional
has the following form:

RSV M (Z,w, b) =
1
2
||w||2 + C

n∑
i=1

L(yi, f(xi,ω)) (5.9)

where the specific form of the loss function depends on a learning problem formula-
tion. For regression problems, the loss Lε(y, f(x,ω)) is specified by (5.6), and for
classification problems the loss is given by (5.5).

Nonlinear or kernel-based methods extend the SVM approach to estimating non-
linear models [3]. By using flexible parameterizations (more complex models), one
can significantly increase the degree of falsifiability, by effectively using “curved
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margin” boundaries (Fig. 5.7). SVM provides the mathematical framework for gen-
erating such nonlinear models with curved margin boundaries, via the use of kernels
[3]. Such nonlinear SVM methods achieve improved generalization by effectively
combining flexible nonlinear (kernel) parameterizations with margin-based loss.

Fig. 5.7. Example of nonlinear SVM decision boundary (curved margin).

In this chapter, however, we only focus on linear SVMs, i.e., use linear parame-
terization of f(x,ω), in order to explain the role of margin. Since the SVM risk func-
tional (5.9) has an obvious similarity to standard regularization (penalization) loss,
many recent references [2, 6] describe SVMs as a special case of the regularization
formulation. For example, consider the standard formulation for ridge regression:

Rreg(Z,w, b) =
n∑

i=1

(yi − f(xi,ω))2 + λ||w||2 (5.10)

Hence, we can obtain the SVM formulation (5.9) by using ε-insensitive loss and
substituting the regularization parameter λ ∼ 1/C in formulation (5.10). The dif-
ference, however, is that the SVM formulation includes an adaptive (margin-based)
loss that controls the model complexity, in addition to the penalization term. So the
SVM functional (5.9) depends on two hyperparameters: the regularization parameter
C (which controls the trade-off between the smoothness of approximating functions)
and the parameter controlling the margin [i.e., the value of ε-parameter in SVM loss
(5.6)]. So interpretations of SVMs as a “special case of the regularization formula-
tion” simply ignore an important role of the margin-based loss. In fact, all classical
regularization formulations use a fixed (nonadaptive) loss term (i.e., squared loss), so
that the model complexity is controlled exclusively by the regularization parameter.

Similarly, for classification problems, the soft margin SVM formulation (5.3)
is sometimes contrasted to the penalized linear least squares formulation that mini-
mizes
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Rreg(Z,w, b) =
n∑

i=1

(ξi)2 + λ||w||2 (5.11)

subject to ξi = yi − (w · xi + b), i = 1, . . . , n

It can be shown that the least squares regression to the class labels (5.11) is
equivalent to (penalized) linear discriminant analysis LDA [2, 11]. The nonlinear
version of formulation (5.11) has been introduced under the names least squares
SVM classifiers [13] and Fisher kernel discriminants [16].

Next we show empirical comparisons between the SVM formulation (5.3) and
the penalized least squares classifier (5.11), aka penalized LDA for binary classifi-
cation. Such comparisons are fair, in the sense that both formulations have a single
parameter for complexity control. Since both formulations use the same (linear) pa-
rameterization, such comparisons clarify the importance of margin vs. standard reg-
ularization approach. The first toy data set is shown in Figure 5.8 and described next.
Each class is a two-dimensional ellipsoid, with a long-to-short axis variance ratio
of 4:1. The long axes of the two ellipsoids are perpendicular to each other. More
specifically,

• the positive class data is centered at (1.2, 1.2), with the short axis’s variance 0.02,
and the long axis’s variance 0.08; and

• The negative class data is centered at (0, 0), with the short axis’s variance 0.02,
and the long axis’s variance 0.08.

(a) (b)

Fig. 5.8. Training data for empirical comparisons: (a) small data set; (b) large data set.

Both classes have equal prior probabilities, and we used a small training set (40
samples, 20 per class), and large training set (200 samples, 100 per class), for com-
parisons. A test set of 1000 samples was used to estimate the prediction error, i.e.,
the classification error rate. The effect of each method’s tuning parameter on the pre-
diction error is shown in Tables 5.1 and 5.2, for the small training set. Likewise, the
effect of each method’s tuning parameter on the prediction error for the large data set
is shown in Tables 5.3 and 5.4.
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Table 5.1. Prediction error for linear SVM: small sample size.

C 0.13 0.37 1 2.7 7.3 256
Margin 1.57 1.14 0.97 0.64 0.56 0.56
Prediction error 2.45% 1.1% 1.1% 0.5% 0.9% 0.9%

Table 5.2. Prediction error for penalized LDA: small sample size.

LDA Penalized Linear Discriminant
λ λ = 0.01 λ = 0.1 λ = 1 λ = 10 λ = 100
Prediction error 2.8% 2.8% 2.8% 2.9% 3% 3.8%

Table 5.3. Prediction error for linear SVM: large sample size.

C 0.37 1 2.7 20 54 148 1096
Margin 0.94 0.75 0.62 0.45 0.35 0.19 0.16
Prediction error 1.5% 1.4% 1.1% 0.6% 0.5% 0.4% 0.5%

Table 5.4. Prediction error for penalized LDA: large sample size.

LDA Penalized Linear Discriminant
λ λ = 0.01 λ = 0.1 λ = 1 λ = 10 λ = 100
Prediction error 2.8% 2.8% 2.8% 2.9% 3% 3.8%

Fig. 5.9. Training data for classification problem generated according to a mixture of Gaus-
sians [15].
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These comparisons suggest that margin-based complexity control is more effec-
tive than standard regularization. In particular, penalized LDA is rather ineffective
when the number of samples is large (see results in Table 5.4 and Table 5.6), whereas
margin-based complexity control is very effective for both small and large sample
settings. Optimal selection of parameter C (∼margin) for SVM formulation, and
regularization parameter λ for the least squares classifier can be performed using
standard resampling techniques. However, our empirical comparisons suggest that
for these data sets even the best choice of λ for penalized LDA would yield inferior
generalization performance than crude tuning of the margin in the SVM classifier.

The next data set is a mixture of Gaussians proposed by Ripley [15], and used in
many empirical comparisons [4]. In this example, the training data (250 samples) are
generated according to a mixture of Gaussian distributions as shown in Figure 5.9.
The positive class data have centers (0.3, 0.7) and (0.4, 0.7), and the negative class
data have centers (−0.7, 0.3) and (0.3, 0.3). All Gaussian clusters have the same
variance 0.03. A test set of 1000 samples is used to estimate the prediction error,
shown in Tables 5.5 and 5.6. For this data set, there is no significant difference in the
prediction performance of a (linear) SVM vs. LDA classifier. This can be explained
by the nonlinear nature of an optimal decision boundary, which cannot be captured
by the linear parameterization. Hence, in this case, the prediction accuracy suffers
due to a mismatch between a complex (nonlinear) optimal decision boundary and a
too simple (linear) class of possible models, assumed for both LDA and SVM. This
example shows that in practice margin-based complexity control should be used in
combination with model-based complexity control, i.e., adaptive parameterization
of admissible models. This combination is implemented in nonlinear SVMs, via the
choice of a kernel [8]. In fact, the distinction between model-based and margin-based
approaches naturally leads to two complementary measures of data complexity, as
discussed later in section 5.5.

Table 5.5. Prediction error for linear SVM: mixture of Gaussians data set.

C 1 2.7 7.3 54 256
Margin 0.37 0.31 0.27 0.24 0.23
Prediction error 11.5% 10.2% 10.4% 10.5% 10.5%

Also, it should be clear that the notion of margin has a very distinct meaning
for different learning problem formulations (i.e., classification vs. regression). This
implies different strategies for margin-based complexity control, specific to each for-
mulation. For instance, there exist simple analytic prescriptions for selecting good
values of the ε-parameter in regression problems [12].

Finally, the proposed distinction between margin-based and model-based ap-
proaches to complexity control leads to a simple quantitative characterization of data
complexity with respect to a given (fixed) model parameterization. The basic idea
is to compare the generalization (prediction risk) of an SVM model with optimally
tuned margin vs. the prediction risk of a model with a smallest possible margin.
Then if margin-based complexity control can achieve significant improvement in the
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Table 5.6. Prediction error for penalized LDA: mixture of Gaussians data set.

LDA Penalized Linear Discriminant
λ λ = 0.01 λ = 0.1 λ = 1 λ = 10 λ = 1000
Prediction error 10.8% 10.8% 10.8% 10.8% 10.8% 11.9%

prediction risk, the data set is “simple.” We emphasize that the proposed data com-
plexity measure is defined with respect to a given parameterization, say linear SVM
f(x,ω) = w ·x+b, or radial basis function (RBF) kernels with a given (fixed) width
parameter. Using formal notation, the proposed data complexity index is defined as

ρ(Z, f(x,ω)) =
R(opt margin)

R(small margin)
(5.12)

That is, the complexity index ρ of a data set Z is a ratio of the prediction risk
achieved by an SVM model with optimally selected margin, to the prediction risk
of a model with a “small” margin. Then index ρ is a positive number between 0
and 1, such that small values of ρ (closer to zero) indicate low data complexity, and
large values (close to 1) suggest high complexity. For example, for a data set with
totally random class labeling, this index equals 1, indicating that all SVM classifiers
(irrespective of tuning the margin) provide the same prediction risk (i.e., about 50%
error).

Technically, this index can be evaluated by applying standard SVM implemen-
tations to the data, and estimating the prediction risk using standard resampling ap-
proaches. The model with small margin is obtained by an appropriate setting of the
SVM hyperparameters, i.e., setting the value of C very large (in the classification
formulation), or setting the ε -value to zero (in the regression formulation). The pro-
posed measure of data complexity is quite different from many existing criteria, such
as the shape (complexity) of the decision boundary, the shape of class distributions,
the amount of overlap between classes, etc., in that such traditional criteria do not
account for the role of margin.

Next we show a few examples of calculating this index for synthetic data sets
introduced earlier in this chapter. For the first data set (two ellipsoids), the complexity
index obtained with linear SVM is

• for the small data set,

ρ(Z, f(x,ω)) =
R(opt margin)

R(small margin)
=

0.5%
0.9%

= 0.56

• for the large data set,

ρ(Z, f(x,ω)) =
R(opt margin)

R(small margin)
=

0.4%
0.5%

= 0.8

Note that the complexity index has lower value for the small data set, indicating
that this data set is “simpler” than the large data set. This is consistent with our
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intuitive interpretation (see Fig. 5.8) since the small data set is linearly separable.
Also, the complexity index clearly depends on the number of samples (since both
data sets originate from the same distribution).

For the data set from Ripley [15], the index obtained using linear SVM is

ρ(Z, f(x,ω)) =
R(opt margin)

R(small margin)
=

10.2%
10.5%

= 0.97

This high value suggests that linear parameterization is not a good choice for this
data, since the decision boundary should be nonlinear (see Fig. 5.9). However, for the
same data set using nonlinear SVM with RBF kernel, the complexity index becomes

ρ(Z, f(x,ω)) =
R(opt margin)

R(small margin)
=

8.7%
14.6%

= 0.6

The low value of index ρ suggests that the nonlinear SVM classifier is a very good
choice for this data set. Note that margin-based complexity control is very effective
in combination with flexible RBF kernel parameterization, in achieving an error rate
of 8.7%, quite close to the Bayes-optimal error rate of 8% [15].

5.5 Discussion and Conclusion

The empirical success of SVM-based methods has motivated the development of
various conceptual interpretations of SVM such as the regularization framework,
Bayesian formulations, and fuzzy logic. This could be expected since the SVM ap-
proach combines several powerful ideas from statistical learning (“margin”), func-
tional analysis (“kernels”), and optimization theory. This chapter provides a novel
philosophical motivation for the notion of margin, which is central to the success of
all SVM-based approaches. The idea of margin is introduced as a general philosoph-
ical concept related to Karl Popper’s notion of falsifiability. This view enables better
understanding of many different SVM formulations. On a technical level, improved
understanding of the role of margin leads to an important distinction between margin-
based methods (such as SVM) and classical regularization methods. We elaborate on
this distinction and show empirical comparisons between the two approaches. Our
comparisons intentionally apply linear estimators to simple data sets, in order to
demonstrate the importance of margin-based complexity control, as opposed to stan-
dard regularization. It may be interesting to note that our findings (regarding supe-
riority of linear SVM over penalized LDA) contradict several empirical comparison
studies, suggesting similar generalization performance of nonlinear SVMs and non-
linear penalized least squares classifiers [6, 14, 16]. The reasons for this disagreement
are likely due to many additional factors arising in application of flexible nonlinear
classifiers to real-life data sets, such as a methods tuning, data preprocessing and
encoding, kernel selection, etc. These considerations are very important for practical
applications, but they have nothing to do with the role of the margin. In contrast, our
(arguably simple) comparison setup has a single tunable parameter for each method,
so one can clearly see the effect of margin on the generalization performance.
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Finally, we introduced a new index for data complexity, designed for margin-
based methods, and showed its application for pattern recognition problems. Whereas
most existing data complexity measures aim at evaluating the complexity of the deci-
sion boundary itself, the proposed index measures the benefits of using the margin for
a given model parameterization. The index effectively measures the degree of sepa-
ration between the two classes that can be achieved by margin-based methods (such
as SVM). This index provides discrimination of simple data sets that can achieve
a high degree of separation (hence, good generalization) vs. complex data sets that
cannot achieve high separation. A high value of the data complexity index may be
due to a large amount of overlap between the two classes and/or poorly chosen model
parameterization (as in the case of a linear decision boundary for Ripley’s data set in
Fig. 5.9).

However, the proposed data complexity index does not provide information about
the nature of the decision boundary itself. In a way, the margin-based complexity in-
dex is complementary to many traditional complexity measures describing the com-
plexity of the decision boundary (i.e., linear, piecewise linear, second-order poly-
nomial, etc.). The distinction between model-based and margin-based complexity
control, introduced in this chapter, appears quite useful for understanding these two
complementary measures of data complexity and their effect on the generalization
performance. For traditional model-based classifiers, the choice of the correct para-
meterization is critical for achieving good generalization. In contrast, SVM methods
combine both the margin-based and the model-based complexity control (where the
latter is performed by the choice of a kernel).

For SVM classifiers with noisy real-life data, correct model parameterization
(kernel selection) is less important than for traditional classifiers, in the sense that
the overfitting due to (too complex) kernel selection can be usually compensated
by margin-based complexity control. This robustness with respect to a wide range
of kernel specifications may help to explain the practical success of SVM methods.
These points are clarified next using toy data sets in Figures 5.8 and 5.9. For ex-
ample, for both data sets in Figure 5.8, we can apply nonlinear SVM (e.g., with
polynomial kernels of second or third degree) and achieve an optimal prediction ac-
curacy very similar to the best error of a linear SVM (reported in Tables 5.1 and 5.3,
for the small and large data set, respectively). As an aside, note that for the distri-
butions used to generate data sets in Figure 5.8, the theoretically optimal decision
boundary is known to be a second-order polynomial. However, it does not mean that
estimating a second-order polynomial model from finite data is a good idea. In fact,
with finite data it is often better to estimate an LDA model even when the optimal
decision boundary is known to be nonlinear [1]. Likewise, for the nonlinear data set
in Figure 5.9, we can apply nonlinear SVM with different kernels (i.e., linear spline,
higher-order polynomials etc.) and achieve the prediction accuracy very similar to
optimal results obtained with RBF kernels (in section 5.4). In all of these cases, ker-
nels provide very flexible model parameterization, and the problem of overfitting is
effectively controlled by using the margin. The same effect can be seen in the results
used to calculate the complexity index for the Ripley’s data set using nonlinear SVM
with RBF kernel (see the last paragraph in section 5.4). These results show that such
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an SVM classifier (with a small margin) has a high error rate (14.6%), indicating the
problem of overfitting. However, the same RBF parameterization yields excellent
performance (error rate of 8.7%) with an optimally tuned margin. Even though SVM
complexity control is arguably similar to traditional regularization approaches (such
as penalized LDA, ridge regression, etc.), this chapter underscores an important role
of margin for complexity control and for the characterization of data complexity in
predictive methods.
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Data Complexity and Evolutionary Learning

Ester Bernadó-Mansilla, Tin Kam Ho, and Albert Orriols

Summary. We study the behavior of XCS, a classifier based on genetic algorithms. XCS
summarizes the state of the art of the evolutionary learning field and benefits from the long
experience and research in the area. We describe the XCS learning mechanisms by which a
set of rules describing the class boundaries is evolved. We study XCS’s behavior and its re-
lationship to data complexity. We find that the difficult cases for XCS are those with long
boundaries, high class interleaving, and high nonlinearities. Comparison with other classifiers
in the complexity space enables identifying domains of competence for XCS as well as do-
mains of poor performance. The study lays the basis to further apply the same methodology
to analyze the domains of competence of other classifiers.

6.1 Introduction

Genetic algorithms (GAs) are search algorithms based on the mechanisms of natural selec-
tion and genetics [14, 15, 18]. They have been applied to search, optimization, and machine
learning problems with great success. GAs explore the search space by using a population
of solutions instead of a single point. This population is evaluated and then developed with
potential improvements by the mechanisms of selection, crossover, and mutation. One of
the abilities of GAs is to keep a good balance between exploration of the search space and
exploitation of the best found solutions. This equilibrium facilitates exploring large search
spaces efficiently, tending to avoid local minima. GAs can also be applied to a wide range of
applications, because it does not require many assumptions on the data model. They can also
work with different representations, allowing even wider applicability.

The GAs’ capability to use different types of representations has resulted in their usage
in many learning scenarios that are as diverse as induction of decision trees [12], instance
sets [21], rule sets [6, 10], evolution of neural networks [23, 29], etc. Particularly, the evo-
lution of rule sets has attracted growing interest in the last decades. Since the first proposal
developed by Holland [18] in 1975, the field has benefited from much active research and
development, which have resulted in effective classifiers such as XCS [26]. Currently, XCS is
mature enough to be considered as a competitive classifier, supported by experimental studies
demonstrating its efficiency in real problems [3, 6], as well as theoretical studies giving insight
in the functioning of their mechanisms and providing guidelines to exploit its potential by the
use of appropriate parameter settings [10]. XCS has also been improved from its first version,
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with the inclusion of generalization mechanisms [27], new representations [19, 20, 25, 28],
improved components [10], etc.

At this stage of XCS’s maturity, researchers have started to analyze its domain of compe-
tence to understand where XCS is applicable and whether it is better or worse than other classi-
fiers for certain types of problems. Several studies have approached this subject by comparing
XCS’s performance to that of other classifiers in a varied range of classification problems
[3, 4, 6]. These studies draw their conclusions from observable measures of the data sets, such
as the number or types of attributes or the number of classes. But this approach is insufficient
for relating XCS’s performance, and relative performances between classifiers, to the data-set
complexity. A more recent approach [5] started to analyze XCS’s performance related to data
complexity, building on previous proposals of complexity metrics for classification problems
[17]. The aim of this chapter is to summarize this study and enhance the investigation on the
domain of competence of XCS.

First, we introduce XCS and its learning mechanisms, showing how XCS evolves rules
approximating the class boundaries. The study by Bernadó-Mansilla and Ho [5] included an
extended analysis on XCS’s performance related to data complexity, and introduced an analy-
sis on relative performances by making pairwise comparisons of XCS with other classifiers. In
this chapter, we briefly summarize this study by showing how XCS adapts to data complexity.
Then, we extend it by showing the best and worst domain of XCS with comparison to several
other representative classifiers.

The chapter is structured as follows. Section 6.2 gives a brief introduction to genetic algo-
rithms and evolutionary learning classifier systems. It sets the framework and defines the basic
GA’s terminology that is used here. Section 6.3 describes the learning mechanisms of XCS,
and section 6.4 introduces the available knowledge representations, focusing on the hyper-
rectangle representation , which is the approach taken in this chapter. Next, we study XCS’s
behavior in two classification problems designed artificially, and we show graphically how
classification problems may imply different degrees of difficulty to different types of classi-
fiers (section 6.5). Then, we evaluate XCS’s performance on data complexity and identify the
complexity measures most relevant to XCS (section 6.6). We also aim at identifying prob-
lems to which XCS is best suited among a set of competing classifiers. Although there are
other types of classifiers based on GAs, we focus our study on XCS because it is one of the
best representatives of evolutionary learning classifier systems (LCSs). Section 6.7 outlines
how this study can be extended to other types of evolutionary learning classifier systems and
summarizes the main conclusions.

6.2 Genetic Algorithms for Classification

6.2.1 GA Basics

Genetic algorithms (GAs) [14, 15, 18] are defined as search algorithms inspired by natural
selection and genetics. GAs explore the search space by means of a population of candidate
solutions to the problem. Each solution is called an individual and is codified in a chromosome,
a data structure that keeps the genetic information of the solution in a representative way so
that it can be manipulated by the genetic operators.

The population may be initialized at random and then incrementally evaluated and im-
proved through selection, crossover, and mutation. Evaluation of each solution is performed
by the fitness function, which provides the quality of the solution for the given problem. Fit-
ness guides the evolution toward the desired areas of the search space. Individuals with higher
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fitness have higher chances to be selected and to participate in recombination (crossover) and
mutation. Crossover combines the genetic material of two parent individuals to form new off-
spring. Thus, it exploits good solutions to potentially move the population toward even better
solutions. Mutation is applied to single individuals, performing slight changes into their chro-
mosomes. Its aim is to introduce diversity in the population. The new solutions thus obtained
are evaluated and the cycle of selection, crossover, and mutation is repeated until a satisfactory
solution is found or a predefined time limit expires.

6.2.2 Evolutionary Learning Classifier Systems

Although GAs are primarily defined as search algorithms, they can be applied to learning
problems where learning is expressed as a search in a space of models representing the target
concept. In this sense, GAs must codify a model and evolve it by means of selection, recombi-
nation, and mutation. The so-called learning classifier systems (LCSs) approach searches for
a set of rules describing the target concept. In this context, there are two different approaches,
called Pittsburgh and Michigan, respectively, which differ mainly in their representation.

The Pittsburgh approach [2, 13] codifies each individual as a rule set. Then the GA evolves
a population of rule sets. Once convergence is achieved, the best individual is selected and
their rule set used as the result of learning. Evaluation of each individual (rule set) is per-
formed independently against the training set of examples, considering different aspects as
the classification accuracy, the number of required rules, etc.

The Michigan approach [18, 26] codifies each individual as a single rule. Thus each in-
dividual represents a partial solution, and the whole population is needed to codify a rule set.
Evaluation differs from the Pittsburgh approach in that each individual’s relative contribution
to the whole target concept must be measured. Also the GA takes a different approach so
that at convergence a set of diverse solutions are present that jointly codify a rule set. The
XCS classifier system, where we base the current study, takes this approach. The next section
describes it in more detail.

6.3 The XCS Classifier System

XCS evolves a set of rules, by means of interacting with the environment through a reinforce-
ment learning scheme and a search mechanism based on a GA. Although XCS can be applied
to both single-step and multistep tasks, we restrict this analysis to XCS acting only as a clas-
sifier system. For more details, the reader is referred elsewhere for an introduction of XCS
[26, 27], and for an algorithmic description [11].

6.3.1 Representation

XCS evolves a population [P] of classifiers. In the XCS context, a classifier1 consists of a
rule and a set of associated parameters. Each rule has a condition part and a class part:
condition → class. The condition specifies the set of input states where the rule can be

1 In XCS, the term classifier is used to refer to a rule and a set of associated parameters. In
the machine learning and pattern recognition fields, a classifier refers to the whole system
that classifies. In this section, we use this term in the sense of a rule and a set of associated
parameters. The remaining sections use the term classifier as the whole system.
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applied. The class part specifies the classification that the rule proposes when its condition is
satisfied.

The condition of each rule is a conjunction of tests over the features. If an example satisfies
these tests, then it is classified with the class codified in the rule. The representation of these
tests depends on the types of the features. It also depends on the particular setting of XCS,
since several representations are available for a particular type of attribute. Section 6.4 gives
an introduction to the most commonly used representations.

Each classifier has a set of associated parameters that estimate the quality of the rule for
the given problem:

• Payoff prediction (p): an estimate of the payoff that the classifier will receive if its condi-
tion matches the input and its action is selected.

• Prediction error (ε): an estimate of the average error between the classifier’s prediction
and the payoff received from the environment.

• Fitness (F ): an estimate of the accuracy of the payoff prediction.
• Experience (exp): the number of times that the classifier has participated in a classifica-

tion.
• Action set size (as): the average number of classifiers of the action sets where the classifier

has participated.
• Time-step (ts): time-step of the last application of the genetic algorithm.
• Numerosity (num): the number of actual microclassifiers this macroclassifier represents.2

These parameters are incrementally evaluated each time the classifier participates in the
classification of an example. Their values serve as the basis to guide the search mechanisms.

6.3.2 Performance Component

At each time step, an input example coming from the training data set is selected randomly
and presented to XCS. The system finds the matching classifiers and proposes a classification.
Then, the environment returns a reward that is used by XCS to update the parameters of the
contributing rules. In the following discussion we give the details.

At each time step, an input example x is presented to XCS. Given x, the system builds a
match set [M], which is formed by all the classifiers in [P] whose conditions are satisfied by
the example.

An XCS’s run may be started with an empty or incomplete rule set. Therefore, an input
example may not find any matching classifier. In this case the covering operator is triggered,
creating new classifiers that match the current sample. Covering may also trigger if the number
of actions represented in [M] is less than a threshold θmna. Then new classifiers are generated
with conditions matching the example and classes selected randomly from those not present
in [M].

From the resulting match set, a class must be selected and sent to the environment. In
exploration mode (i.e., during training), the class is selected randomly so that the system can
learn the consequences of all possible classes for each input. The chosen class is used to
form the action set [A], which consists of all the classifiers proposing that class. Then, the
parameters of these classifiers are updated as described in the next section.

In exploitation mode (i.e., during test) the best class, from those present in [M], is selected
to maximize performance. This selection is based on a measure of quality for each class,

2 Classifiers in XCS are in fact macroclassifiers i.e., each classifier represents num micro-
classifiers having the same conditions and actions [11].
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P (a), which is computed as a fitness-weighted average of the predictions of all classifiers
proposing that class. In fact, P (a) estimates the payoff that the system will receive if class a
is chosen. The selected class determines the action set [A] as in the case of exploration mode.
The difference here is that the classifier’s parameters are not updated.

6.3.3 Reinforcement Component

In exploration mode, the class is sent to the environment, which returns a reward r that is
used to update the parameters of the classifiers in [A]. First, the prediction of each classifier is
updated:

p ← p + β(r − p) (6.1)

where β (0 ≤ β ≤ 1) is the learning rate. Next, the prediction error:

ε ← ε + β(|r − p| − ε) (6.2)

Then, the accuracy of the classifier is computed as an inverse function of its prediction error:

k =

{
α(ε/ε0)

−ν ε ≥ ε0
1 otherwise

(6.3)

where ε0 (ε0 > 0) determines the threshold error under which a classifier is considered to
be accurate. α (0 < α < 1) and ν (ν > 0) control the degree of decline in accuracy if
the classifier is inaccurate [9]. Then, XCS computes the classifier’s accuracy relative to the
accuracies of the classifiers in the action set:

k′ =
k∑

cl∈[A] kcl
(6.4)

This value is then used to update the fitness F as follows:

F ← F + β(k′ − F ) (6.5)

Thus, fitness estimates the accuracy of the classifier’s prediction relative to the accuracies of
the classifiers belonging to the same action sets.

The experience parameter exp counts the number of times that a classifier is updated.
It is increased by 1 each time the classifier participates in an action set. It is a measure of
the confidence on the classifier’s parameters. The action set size parameter as averages the
number of classifiers of the action sets where the classifier participates. It is updated whenever
the classifier belongs to an action set.

6.3.4 Search Component

The search component in XCS tries to improve the rule set, by means of a GA. The GA is
triggered eventually and takes place in [A]. The GA’s trigger mechanism is designed to give
balanced resources to the different action sets. That is, the GA is activated when the average
time since the last occurrence of the GA in the action set (computed from the classifiers’
parameter ts) exceeds a threshold θGA. If the GA is triggered, then it is applied locally into
the current [A]. It selects two parents from [A] with probability proportional to fitness, and
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gets two offspring by applying crossover with probability χ and mutation with probability µ
per allele.

The resulting offspring are introduced into the population. First, the offspring are checked
for subsumption with their parents. If one of the parents is experienced, accurate, and more
general that the offspring, then the offspring is subsumed by its parent. This tends to condense
the population toward maximally general classifiers.

If an offspring classifier cannot be subsumed by its parents, it is inserted into the popula-
tion, deleting another classifier if the population is full. Deletion is the mechanism by which
useless classifiers are discarded from the population, leaving its place to promising solutions.
The classifiers with higher probabilities of being deleted are those that participate in large ac-
tion sets. Also those classifiers with enough experience and low fitness have higher probabili-
ties of being removed from the population. This biases the search toward highly fit classifiers,
and at the same time balances the distribution of classifiers through the feature space.

6.3.5 How XCS Learns the Target Concept

When XCS operates as a pure classifier system, it receives training instances from the data set,
performs classifications, and gets feedback from the environment in the form of rewards. The
environment is designed to give a maximum reward if the system predicts the correct class
and a minimum reward (usually zero) otherwise. XCS’s goal is to maximize rewards, which
is internally translated to the compound goal of evolving a complete, consistent, and minimal
representation of the target concept.

XCS learns incrementally. Usually, it starts from an empty population and performs gen-
eralizations (in the form of rules) of the input examples to cover the empty regions of the
feature space. These rules are incrementally evaluated by the reinforcement component and
revised by the search mechanism.

The reinforcement component evaluates the current classifiers so that highly fit classifiers
correspond to consistent (accurate) descriptions of the target concept. The fitness of each clas-
sifier is based on the accuracy of the reward prediction. Highly fit classifiers are those that
accurately predict the environmental reward in all the situations where they match.

The search component is based on a genetic algorithm. The GA is guided by fitness, and
since fitness is based on accuracy, the GA will tend to evolve accurate rules. The GA should
also favor the maintenance of a diverse set of rules that jointly represent the target concept.
This is enforced by the use of niching mechanisms, which try to balance the classifiers’ al-
location in the different regions of the search space. Niching is implicit in different parts of
the GA: (a) the GA’s triggering mechanism, which tries to balance the application of the GA
among all the action sets; (b) selection, applied locally to the action sets; (c) crossover, per-
forming a kind of restricted mating; and (d) the deletion algorithm, which tends to delete
resources from the more numerous action sets. The GA also enforces the evolution of maxi-
mally general rules, which allow more compact representations. This generalization pressure
is explained by Wilson’s generalization hypothesis [26], which can be summarized as follows:
if two classifiers are equally accurate but have different generalizations, then the most general
one will participate in more action sets, having more reproductive opportunities and finally
displacing the specific classifier. Through the interaction of these components, the GA tries to
evolve consistent, complete, and minimal representations. For more details, see Butz [10].
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6.4 Knowledge Representation

A rule in XCS takes the form: condition → class. The condition is a conjunction of tests
over the problem features: t1 ∧ t2 ∧ · · · ∧ tn. The representation of each test depends on the
type of attribute. Even for some types of attributes, several representations are available. In
fact, this is a particularity of the codification of solutions in GAs. GAs are not tied to any
specific representation, so that they can be applied to many domains. The only restriction is
to adapt the genetic operators to the particular representation so that the search algorithm can
explore efficiently.

If the feature is binary (or belongs only to two categories), the test over this feature is
usually codified in the ternary representation, which consists of the symbols {0,1,#}. 0 and
1 codify the two categories, respectively, while the symbol # codifies the “don’t care” case,
which belongs to the case where the feature is found to be irrelevant.

If the feature is categorical, several encodings are available. The enumeration encoding
maps an attribute with c possible categories into a binary string of length c, where each bit tests
membership to a distinct category. The test is then a disjunction of the membership tests over
each category. An irrelevant feature is codified by a string with all bits set to 1. The nominal
encoding codifies the test with a single symbol, which can take values from {0,1,2,...,c−1,#},
where c is the number of categories. Again the “don’t care” symbol makes the attribute irrele-
vant.

In the case of continuous-valued features, a possibility is to discretize the real values
into nominal ranges, and then proceed as in the categorical case. However, this can limit the
accuracy of the rule since the nominal ranges must be fixed a priori. Another approach is to let
the GA find the necessary ranges, by codifying an interval of type [li, ui], where li ≤ ui. A set
of such intervals describes a hyperrectangle in the feature space. For simplicity, the attributes
of the data set examples are usually normalized to the range [0,1].

Other representations have been proposed for XCS, such as messy coding [19] and S-
expressions [20]. Focusing on real features within the scope of this chapter, we use the hyper-
rectangle representation, one of the most used and successful representations (see [4]). The
class is codified as an integer.

Genetic Operators

Once the representation is designed, the genetic operators that manipulate representations must
be adapted. This affects covering, mutation, and crossover. Covering must be designed to
cover training points that are not covered by the current pool of rules. Crossover exploits the
potentially good solutions by recombining parts of them. Mutation should give randomness to
explore new regions of the rule space.

Covering initializes new rules that cover empty regions of the search space. Given a train-
ing example described by its features x = (x1, x2, ..., xn), covering obtains a rule by means
of generalizing each attribute with a matching interval. For each attribute xi, covering creates
an interval [li, ui], where li = xi − rand(r0) and ui = xi + rand(r0). rand(r0) gives a
random value between 0 and r0, where r0 is a parameter set by the user. Figure 6.1(a) gives
two examples of rules obtained by covering.

Mutation introduces randomness into the exploration process. It is applied with probability
µ per allele, where an allele is each of the hyperrectangle bounds. To mutate an allele, its
valued is changed by an amount ±rand(m0), where the sign is selected randomly and m0 is
a parameter set by the user (a typical value is 0.1). Figure 6.1(b) shows the effect of mutation
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Fig. 6.1. Example of covering and mutation on the hyperrectangle representation. (a) The cov-
ering operator is applied to two training points (plotted by a cross) and two rules are obtained.
(b) Mutation alters one of dimensions of the hyperrectangle rule.

over an individual in a two-feature space. The individual, with interval ranges defined by
([l1, u1], [l2, u2]), suffers mutation on l2, which is decreased by 0.09.

Crossover takes two parent solutions and produces two offspring. Usually two-point
crossover is applied. It computes two random cut points on the rule, and the subsequences
defined by them are interchanged into the offspring. The cut points can occur between inter-
vals as well as within intervals. Figure 6.2 shows an example of crossover. On the left, there
are two parents selected for crossover. On the right, two offspring are obtained by their re-
combination. This case corresponds to a cut point among the first and the second dimension.
Observe that each offspring gets respectively the first interval (i.e., that of the first attribute)
from one parent and the second interval from the other parent.

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0

a2

a1

(a)

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0

a2

a1

(b)

Fig. 6.2. A crossover example: (a) plots for two parent individuals; (b) plots for the offspring
resulting from a cut point occurring between the first and the second interval.
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Fig. 6.3. Distribution of training points in the checkerboard problem (a) and the four-class
problem (b).

If the recombination operators result in an invalid interval, either exceeding the [0,1] range
or violating the condition li ≤ ui, then a repair process is applied so that the interval is
restricted to a valid one.

6.5 Evolving Class Boundaries: Two Case Studies

We study XCS’s behavior in two artificial problems: the checkerboard problem (depicted in
Fig. 6.3a) and the four-class problem (Fig. 6.3b). The checkerboard problem is designed to test
XCS on a case of multiple distributed classification regions. It has two classes alternating as
in a checkerboard. The four-class problem is designed to test XCS in problems with multiple
classes and curved boundaries. Figure 6.3 shows the distribution of the training points in each
problem. Each point is plotted with a different symbol depending on the class to which it
belongs. We analyze XCS’s behavior in these problems, and compare its performance with
a nearest neighbor (NN) classifier. We aim to show that classification problems may present
different degrees of difficulty to different classifiers. We restrict the analysis to two-feature
problems so that we can have a graphical representation of the results of each classifier.

To analyze the classification boundaries evolved by each classifier, we train a classifier
with the training points depicted in Figure 6.3. Then we test the classifier with a dense data
set that samples the feature space with 10,000 points distributed uniformly. XCS is run with
the following parameter settings (see [11] for the terminology): reward = 1000/0, N =
6400, explore trials = 200, 000, θmna = number of actions, β = 0.2, ε0 = 1.0, α = 0.1,
ν = 5, θGA = 25, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1, doGASubsumption = yes,
doActionSetSubsumption = no, θsub = 30, r0 = 0.6, and m0 = 0.1. The NN is designed
with neighborhood 1 and Euclidian distance.

Figure 6.4a,c shows the classification boundaries obtained by XCS. In the checkerboard
problem, XCS has evolved an accurate representation of the feature space. The boundaries
almost correspond to the true boundaries of the problem. This is a case where the hyperrectan-
gle representation fits very well, which coupled with the learning mechanisms of XCS, allows
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XCS to extract a good knowledge representation. In the four-class problem, XCS approxi-
mates the curved boundaries by partially overlapping several hyperrectangles. The resulting
boundaries are less natural than the original training set, due to this knowledge representation.
The generalization mechanisms of XCS result in complete coverage of the feature space, al-
though there are no representative training points in all the feature space. This means that rules
tend to expand as much as possible until they reach the boundaries with points belonging to
different classes. Figure 6.4b,d shows the same test performed on a nearest neighbor classifier,
whose representation based on the Voronoi cells is more suitable to the four-class problem
but less appropriate for the checkerboard problem. The result is that classification accuracy
in both classifiers is different; in the checkerboard problem, XCS’s error is 0.6%, while NN’s
error is 0.7%; in the four-class problem, XCS’s error is 1.9% and NN’s error is 0.06%.

The classifier’s behavior depends on the geometrical complexity of boundaries and the
capability of the knowledge representation to approximate these boundaries. In XCS, as also
happens with most of the classifiers, the error rate depends on both the knowledge repre-
sentation and the ability of the search mechanisms to evolve it. Although a knowledge rep-
resentation may fit perfectly, the algorithms of XCS may not find the appropriate rules. This
especially tends to happen with imbalanced problems, i.e., when there are regions of the search
space with very few examples. The generalization algorithms of XCS may mask these regions
by overgeneral rules (see [4]).

We emphasize the need to characterize XCS’s behavior on computable measures of prob-
lem complexity and relate the differences between classifiers to these measures. The study
performed in the next section takes this approach. The study is tied to XCS using the hyper-
rectangle representation, so we include the limitations of the search algorithms coupled with
the hyperrectangle constraints.

6.6 How XCS Adapts to Data Complexity

We study how XCS’s behavior depends on data complexity. First, we aim to relate XCS’s per-
formance to measures of problem complexity and identify easy and difficult domains for XCS.
Such an study could serve to give an expectation of accuracy for XCS given a classification
problem with computed complexity measures. We also want to establish the relation between
XCS’s performance and that of other classifiers in the complexity measurement space. The
final aim is to identify areas of the measurement space where XCS excels among other classi-
fiers. Thus, given a problem with its complexity characterization, we could either recommend
XCS as a suitable classifier or discard XCS in favor of other better approaches.

6.6.1 Analysis Procedure

We characterize the complexity of a classification problem by a set of measures that describe
different aspects of boundary complexity. We rely on the study by Ho and Basu [17] where a
suite of metrics is proposed and analyzed as measurements of problem complexity. These met-
rics are found to quantify the complexity of problems so that easy problems (such as linearly
separable problems) and difficult problems (such as random labeling problems) represent two
extremes of the complexity space, with different problems spanning through these extremes.
From this study, we select seven metrics representative of the most relevant aspects of com-
plexity. These are enumerated in Table 6.1. They describe different geometrical distributions
of class boundaries, such as boundary, intra-inter, nonlin-NN, nonlin-LP, and
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Fig. 6.4. Boundaries evolved by (a) XCS and (b) NN in the checkerboard problem, and (c)
XCS and (d) NN in the four-class problem.

pretop, as well as the discriminant power of attributes (fisher). We include the ratio of
the number of points to the number of dimensions (npts-ndim) as an estimation of sparsity.
All these metrics are computed from the available training sets, so that they give measurements
of the apparent complexity of problems.

We evaluate XCS on a set of 392 two-class problems. These problems are generated from
pairwise comparisons of 14 problems from the University of California, Irvine (UCI) reposi-
tory [7] containing at least 500 points with no missing values. These are abalone, car, german,
kr-vs-kp, letter, lrs, nursery, pima, segmentation, splice, tic-tac-toe, vehicle, wdbc, and yeast.
Their pairwise comparisons result in 844 two-class problems, 452 of which are discarded
for being linearly separable problems. The remaining 392 are used as our test-bed. All the
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Table 6.1. Complexity metrics used in this study

Measure Description
boundary Percentage of points on boundary estimated by an MST
intra-inter Ratio of average intra-inter class nearest neighbor distances
nonlin-NN Nonlinearity of nearest neighbor
nonlin-LP Nonlinearity of linear classifier
pretop Percentage of points with maximal adherence subset retained
fisher Maximum Fisher’s discriminant ratio
npts-ndim Ratio of the number of points to the number of dimensions

categorical values are translated into numerical values. Therefore, XCS is using only the hy-
perrectangle representation.

We measure the relation between XCS’s error and data complexity, which is characterized
by a set of seven metrics. To estimate the classifier’s error, we use a ten-pass twofold cross-
validation test. The detailed steps are as follows:

1. Each data set is randomly permuted ten times.
2. Each time, the data set is divided in two disjoints sets. Then the classifier is trained in each

of these two sets and tested on the other one. The error rate for this particular permutation
is estimated as the sum of the errors on each half, divided by the data set size.

3. Thus, for each data set there are ten error estimates, one for each permutation. The final
XCS’s error on the data set is the average of these ten error rates.

6.6.2 XCS’s Error and Data Complexity

Figure 6.5 plots XCS’s error related to each of the complexity measures. The y axis depicts
the error of XCS for a given problem, while the x axis is one of the complexity metrics.

We observe a clear dependency (almost a linear correlation) of XCS’s error rate with
respect to the percentage of points in boundary. Since this behavior is also observed in other
classifiers (not shown, for brevity), it seems that the percentage of points of boundary is a
good measure for data complexity. Nevertheless, there are some exceptions to this behavior
where XCS performs reasonably well despite a high number of points in boundary. These
cases are car (acc vs. good), kr-vs.-kp (no-win vs. won), nursery (priority vs. spec prior), and
tic-tac-toe (neg vs. pos). As shown in Table 6.2, these cases belong to very low nonlinearities.
This suggests that the combined effect of different measures may be necessary to explain data
complexity.

Other metrics are also relevant for XCS’s performance. These are the intra-interclass NN
distances ratio and the nonlinearities. A high value of intra-interclass ratio means that the
classes are very dispersed with respect to the class groupings. Also the nonlinearities impose
a degree of difficulty for XCS. If the nonlinearity is high, it probably means that the classes
are very interleaved. In both cases, the complex distribution of class groupings makes XCS
evolve a high number of small rules, i.e., specialized rules with few possible generalizations,
producing higher classification errors.

The remaining metrics do not influence XCS’s error in the same way as before. For exam-
ple, the highest XCS’s error rates correspond to high percentages of retained adherence subsets
(pretop), but the converse is not true; a high pretop value does not imply necessarily a
high error. On the contrary, low values on the pretop measure always give low XCS’s error
rates.
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Table 6.2. Four easy problems for XCS despite having moderate boundary values. The table
shows the values of the complexity measures for each of the problems.

car kr-vs.-kp nursery tic-tac-toe
acc-good nowin-won pr-sp neg-pos

boundary 33.11 20.49 22.90 32.99
intra-inter 0.87 0.71 0.96 0.96
nonlin-NN 0.00 0.00 0.00 0.00
nonlin-LP 0.93 0.79 5.14 1.67
pretop 100.00 100.00 100.00 100.00
fisher 0.47 0.54 0.38 0.28
npts 453 3196 8310 958
ndim 21 73 27 27
npts-ndim 21.57 43.78 307.78 35.48
XCS’s error 1.96 4.82 1.19 2.00

The error rate of XCS depends neither directly on the ratio between the number of points
nor the number of dimensions of the data set. We can observe only that there are some prob-
lems where the XCS’s error rate is high (greater than 40%), which corresponds to a ratio
npts-ndim below 50%. In fact, the ratio of the number of points to the number of dimen-
sions is a rough estimate of the sparsity of the training set, so it is difficult to relate XCS’s
error to the training set sparsity.

High values of the maximum Fisher’s discriminant ratio indicate that there is an attribute
discriminating fairly well. The higher this value, the easier the problem. This is consistent
with our results with XCS. Observe that high values of this metric (greater than 3) always
correspond to low error rates. The converse is not necessarily true. A low value of fisher
does not lead necessarily to high error rates. However, note that the highest error rates all
belong to low fisher values.

Trying to identify easy and difficult domains for XCS, we have classified our current set
of problems in four types: the most difficult problems (XCS’s error ≥45%), difficult problems
(XCS’s error ≥40%), easy problems (XCS’s error ≤10%), and the easiest problems (XCS’s
error ≤5%). Table 6.3 gives the mean and standard deviation of the complexity metrics for
these types of problems. Note that if we move from difficult problems to easy problems, the
percentage of points in the boundary decreases dramatically, as well as the nonlinearities.
Also the intra-interclass NN distances decrease in the easy problems. The maximum Fisher’s
discriminant ratio tends to be higher for low error rates. Similarly, the ratio of the number
of points to the number of dimensions is higher for the easiest problems. The percentage of
retained adherence subsets is very similar in the three types of problems, although a bit higher
for the most difficult problems.

In summary, the highest error rates correspond to problems with a high percentage of
points in the boundary between classes, a high percentage of retained adherence subsets, high
training set sparsity, high values of intra-interclass distances, high nonlinearities of NN and LP,
and low Fisher values. The easiest problems correspond to a small percentage of points in the
boundary, low nonlinearities (both NN and LP), low values of intra-interclass NN distances,
and a varied range over percentage of adherence subsets, fisher, and npts-ndim values.
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Fig. 6.5. Relation between XCS’s error and data complexity. The y axis shows the error of
XCS, and the x axis shows, respectively, the following complexity metrics: (a) the percentage
of points in the boundary, (b) the ratio of intra-interclass nearest neighbor distances, (c) the
nonlinearity of the nearest neighbor, (d) the nonlinearity of the linear classifier, (e) the per-
centage of retained adherence subsets, (f) the maximum Fisher’s discriminant ratio, and (g)
the ratio of the number of points to the number of dimensions.
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Table 6.3. Four groups of problems, classified according to XCS’s error rates. For each group,
we show the mean and standard deviation of each complexity metric.

error ≥ 45% error ≥ 40% error ≤ 10% error ≤ 5%
mean std mean std mean std mean std

boundary 67.13 7.29 65.01 6.72 4.03 5.12 2.56 3.94
intra-inter 0.99 0.11 0.98 0.097 0.30 0.12 0.30 0.12
nonlin-NN 27.78 3.48 27.80 4.23 1.88 1.80 1.48 1.21
nonlin-LP 34.38 7.00 32.14 7.65 1.42 1.80 1.02 1.45
pretop 99.62 0.57 99.51 0.72 92.05 10.32 92.69 9.49
fisher 0.06 0.089 0.06 0.075 2.69 1.90 2.82 1.92
npts 213.31 240.79 288.86 347.36 1268.57 685.80 1411.58 642.56
ndim 10.88 3.50 10.79 2.99 14.56 4.78 15.42 4.65
npts-ndim 17.69 13.43 26.12 31.79 83.10 27.81 89.26 24.09
No. of data sets 16 28 281 238

6.6.3 On the Domain of Competence of XCS

The previous section identified easy and difficult domains for XCS. Here we want to analyze
whether other classifiers can perform better or worse than XCS in the current set of problems
and identify where these cases are located in the complexity measurement space.

We have chosen an initial set of five classifiers:

• A nearest neighbor classifier (nn), with neighborhood set to 1 and Euclidian distance [1].
• A linear classifier (lc) computed by linear programming using the AMPL software [24].

It separates the classes by linear boundaries.
• A decision tree (odt) using oblique hyperplanes [22]. The hyperplanes are derived using

a simplified Fisher’s method, as described in [16].
• A subspace decision forest (pdfc), which trains oblique trees on sampled feature subsets

and combines them by averaging the posterior leaf probabilities [16].
• A subsample decision forest (bdfc), also known as bagged decision trees, which trains

oblique trees on sampled training subsets and then combines the result by averaging the
posterior leaf probabilities [8].

Decision forests belong to the category of classifier ensemble methods. They are known to
outperform decision trees in a varied range of domains. Their comparison with XCS aims to
identify the relation between the behavior of classifier combination methods and XCS.

In reference [5], pairwise comparisons of XCS with each classifier enabled identifying
regions of the measurement space where XCS was better, equivalent, or worse than each par-
ticular classifier. Here we take a different approach; we analyze for each problem which is the
best classifier and the worst classifier (from those mentioned above including XCS) and com-
pare XCS with their results. This tells us where XCS excels among the classifiers and where
XCS is the worst method. The results are tied to the particular set of classifiers; as a future
effort, we plan to add other well-known classifiers, such as neural networks, support vector
machines, boosting ensembles, and stochastic discrimination.

The methodology is the following:

1. For each problem and each method, we estimate the error rate by a ten-pass twofold
cross-validation test, as explained in section 6.2.
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Table 6.4. Mean and standard deviation of complexity metrics for problems where XCS per-
forms as the best classifier, as an “average” classifier, and as the worst classifier. Last row
shows the percentage of problems in each case.

Metric Best Average Worst
mean std mean std mean std

boundary 17.53 19.17 9.21 16.30 33.79 22.72
intra-inter 0.40 0.28 0.37 0.18 0.60 0.29
nonlin-NN 6.14 8.50 4.36 7.04 13.64 10.03
nonlin-LP 6.26 10.02 4.07 7.83 14.89 12.10
pretop 89.90 14.76 94.85 6.12 94.12 10.40
fisher 2.11 2.45 2.39 1.69 0.86 1.64
npts-ndim 57.66 45.16 84.88 25.16 33.38 25.22

Problems (%) 19% 64% 17%

2. For each problem, we consider the classifier with the lowest mean error. Then, we span
the ten error estimates of the best method, and compare all other classifiers with these
values by means of a paired t-test with a 95% confidence level.

3. The same procedure is used to find the worst method of each problem and test the re-
maining methods against it.

Figure 6.6 shows where XCS performs equivalently to the best classifier (marked by a
circle), equivalently to the worst classifier (marked by a cross), and the remaining cases (de-
noted by a small plus sign). The plots show XCS’s error against selected projections of the
measurement space. Figure 6.6a shows XCS’s error against the percentage of points in the
boundary, plotted in a logarithmic scale. Observe that for very low boundary values, XCS is
in the average methods. For larger values, a range of problems correspond to a higher propor-
tion of XCS performing as the best classifier. And while the boundary metric is increasing,
the percentage of problems where XCS is best diminishes while the problems where XCS is
worst increase. The problems where XCS is best also correspond to low nonlinearities (Fig.
6.6c) and low ratio of intra-interclass NN distances (Fig. 6.6b). The fisher metric is higher
where XCS is best (Fig. 6.6d), while the sparsity of the training set (npts-ndim) tends to
be smaller (Fig. 6.6e). Figure 6.6f shows XCS’s performance in a projection of two combined
metrics: the percentage of points in boundary vs. the percentage of retained adherence subsets.
This plot separates more clearly the three types of problems: problems where XCS performs
in the average are located in boundary values under 2% and high pretop values. In these
cases, the nearest neighbor was shown to perform better than XCS [5]. There is another range
of problems for which XCS is the best method that are mainly located in boundary values
between 2% and 20%, with a varied range of pretop. Finally, for boundary values higher
than 20% and high pretop values, XCS is the worst method or equivalent to the worst. The
plot also reveals gaps in the measurement space. We are currently investigating if they corre-
spond to constraints imposed by the current pool of data sets or they reflect some geometrical
and topological constraints tied to our complexity measurement space. Table 6.4 complements
these observations by averaging the complexity measurements in the three types of problems.

6.7 Conclusion

XCS is an evolutionary learning classifier system that evolves a set of rules describing the tar-
get concept. Rules are incrementally evaluated by means of a reinforcement learning scheme
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Fig. 6.6. Distribution of problems where XCS is the best method (plotted with a 
), the worst
method (plotted with a ×), and the remaining problems (plotted with a small +).
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and improved through a search mechanism based on a genetic algorithm. Through an ap-
propriate balance of generalization and specialization pressures, rules cover the feature space
approximating the class boundaries. The quality of the rule set approximation will depend on
the geometrical distribution of these boundaries. Thus we studied to what degree XCS’s per-
formance depends on it. Using computable measures of data complexity, we identified that
XCS’s error is low for very compact classes, with little interleaving, which is characterized
by a low percentage of points in the boundary, low nonlinearities, and low nearest neighbor
distances with points of the same class related to points of the other classes. Problems with a
dominant discriminating feature tend to be easier. Moving along the complexity axis, XCS’s
performance becomes increasingly worse for higher points in the class boundaries, higher
nonlinearities, and higher intra-interclass nearest neighbor distances. The maximum Fisher’s
discriminating ratio and percentage of adherence subsets are not significant in setting a com-
plex problem for XCS.

We centered our study on XCS, because it is one of the best representatives of evolution-
ary learning classifier systems. However, there are other types of evolutionary classifiers, such
as those based on the Pittsburgh approach, which evolve a population of rule sets. Usually
Pittsburgh-type classifiers tend to evolve a low number of rules. Problems that require a high
number of rules will be difficult for them, since the search space becomes extremely high.
Large rule sets will be needed for dispersed classes, i.e., for a high percentage of points in the
boundary, high nonlinearities, and high intra-interclass NN distances. We hypothesize that in
these cases Pittsburgh classifiers will perform poorly, even worse than XCS, while they can of-
fer good approximations for easier problems. We believe that the current study on evolutionary
learning and data complexity can be much enhanced considering other types of evolutionary
classifiers.

We also studied the domain of competence of XCS, by comparing its performance with
that of other classifiers: a nearest neighbor, a linear classifier, an oblique tree, and two types of
decision forests. XCS is the best classifier for a moderate percentage of points in the bound-
ary. For very low boundaries, XCS is overcome by the nearest neighbor. High number of
points in the boundary, high nonlinearities, and high intra-interclass distances, where XCS’s
error is high, mainly correspond to cases where XCS is one the worst performing classifiers.
Nevertheless, there are few problems placed in this measurement region where XCS performs
reasonably well, indicating that the measures may not suffice to discriminate these cases. The
sparsity of the training set may be an important factor to help discriminate between these
cases, although we cannot compute the true sparsity of the real-world data sets. The number
of points to the number of dimensions has been demonstrated to be a rough estimate of the
true sparsity.

The current study has estimated the domain of competence of XCS, leaving many open
questions related to the other classifiers’ behavior, such as: What are the domains of compe-
tence of other classifiers? Do classifiers perform similarly or are some classifiers significantly
dominant over others? Are there any problems where several classifiers can be applied? The
next chapter addresses these questions by enhancing the current study to the domain of com-
petence of the remaining classifiers.
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134 Bernadó-Mansilla, Ho, and Orriols

[19] P.L. Lanzi. Extending the representation of classifier conditions. Part I: from binary
to messy coding. In W. Banzhaf, J. Daida, A.E. Eiben, et al., eds. Proceedings of the
Genetic and Evolutionary Computation Conference, (GECCO-99), pages 337–344. San
Francisco:Morgan Kaufmann, 1999.

[20] P.L. Lanzi. Extending the representation of classifier conditions. Part II: from messy
coding to S-expressions. In W. Banzhaf, J. Daida, A.E. Eiben, et al., eds. Proceedings of
the Genetic and Evolutionary Computation Conference, (GECCO-99), pages 345–352.
San Francisco:Morgan Kaufmann, 1999.
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7

Classifier Domains of Competence in Data Complexity
Space

Tin Kam Ho and Ester Bernadó-Mansilla

Summary. We study the domain of competence of a set of popular classifiers, by means of
a methodology that relates the classifier’s behavior to problem complexity. We find that the
simplest classifiers—the nearest neighbor and the linear classifier—have extreme behavior in
the sense that they mostly behave either as the best approach for certain types of problems
or as the worst approach for other types of problems. We also identify that the domain of
competence of the nearest neighbor is almost opposed to that of the linear classifier. Ensemble
methods such as decision forests are not outstanding in any particular set of problems but
perform more robustly in general. A by-product of this study is the identification of the features
of a classification task that are most relevant in optimal classifier selection.

7.1 Introduction

Research in pattern recognition and machine learning has yielded many competent classifiers
from different families, including decision trees, decision forests, support vector machines,
neural networks, and genetic algorithms, in addition to traditional methods like Bayesian and
nearest neighbor classifiers. Researchers have often demonstrated the competence and robust-
ness of such classifiers across different domains. Nevertheless, the practitioner may find it
difficult to choose a particular classifier for a given problem, due to the great variability of
classifiers and a lack of knowledge on the optimal classifier family for the given problem.
Many classifiers appear in close rivalry in benchmark problems. Which one can be selected?
Many seem applicable to a wide range of problems, but will they also be suitable to the given
problem?

The analysis of data complexity sets a framework to characterize the problem and identify
domains of competence of classifiers. In Ho and Basu [8] a methodology is introduced by
which classification problems are characterized by a set of complexity measures. This char-
acterization facilitates identifying easy problems (close to linearly separable problems) and
difficult problems (close to random labeling) in the complexity measurement space. Deriva-
tions of this study led to relating the behavior of classifiers to problem complexity. The first
attempt is made in Ho [7], where two decision forests are compared to identify for which
problems each is preferable. Chapter 6 studied the behavior of a particular classifier based on
genetic algorithms called XCS. The study identifies the domain of competence of XCS com-
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pared with a set of other classifiers. In this chapter, we extend this analysis to study the domain
of competence of different classifiers.

We investigate the domain of competence of six popular classifiers in the complexity
measurement space, and compare these domains to identify which classifiers are optimal for
certain classes of problems. We include classifiers as diverse as a nearest neighbor, a linear
classifier, an oblique decision tree, two types of decision forests, and XCS. We also analyze
whether different classifiers have opposed domains of applicability or some of them perform
similarly. Ensemble methods are shown to outperform single classifiers, but we aim to estab-
lish if single classifiers are still suitable to certain types of problems. Along this analysis we
will validate the current measurement space and identify the set of complexity metrics most
relevant for the identification of optimal classifiers.

This chapter is structured as follows. First, we describe the methodology that we use to
analyze the domain of competence of classifiers. Although this methodology is essentially
the same as that described in the last chapter, we summarize it here to make the chapter self-
contained. Section 7.3 analyzes where each classifier performs optimally and poorly. Section
7.4 takes a different view and analyzes the problems with a single dominant classifier and a
single worst classifier. Section 7.5 discusses the limitations of the current study and directions
to overcome them. Section 7.6 gives the main conclusions.

7.2 Analysis Methodology

We characterize a classification problem by a set of complexity metrics. Table 7.1 sum-
marizes the set of metrics used in our study. They are selected from Ho and Basu [8]
for being the best representatives of problem complexity. They describe different geomet-
rical distributions of class boundaries, such as boundary, intra-inter, nonlin-NN,
nonlin-LP, pretop, as well as the discriminant power of attributes (fisher, max-eff,
and volume-overlap). We include the ratio of the number of points to the number of di-
mensions (npts-ndim) as an estimation of sparsity. All these metrics are computed from
the available training sets; therefore, they give measurements of the apparent complexity of
problems.

Table 7.1. Complexity metrics used in this study

Measure Description
boundary Percentage of points on boundary estimated by an MST

(minimum spanning tree)
intra-inter Ratio of average intra-interclass nearest neighbor distances
nonlin-NN Nonlinearity of nearest neighbor
nonlin-LP Nonlinearity of linear classifier
pretop Percentage of points with maximal adherence subset retained
fisher Maximum Fisher’s discriminant ratio
max-eff Maximum individual feature efficiency
volume-overlap Volume of overlap region of class bounding boxes
npts-ndim Ratio of the number of points to the number of dimensions

We study the domain of competence of six classifiers:

• A nearest neighbor classifier (nn), with neighborhood set to 1 and Euclidian distance [1]
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• A linear classifier (lc) computed by linear programming using the AMPL software [10]
• A decision tree (odt) using oblique hyperplanes [9]; the hyperplanes are derived using a

simplified Fisher’s method, as described in Ho [6]
• A subspace decision forest (pdfc), which trains oblique trees on sampled feature subsets

and combines them by averaging the posterior leaf probabilities [6]
• A subsample decision forest (bdfc), also known as bagged decision trees, which trains

oblique trees on sampled training subsets and then combines the result by averaging the
posterior leaf probabilities [5]

• XCS, an evolutionary learning classifier [11, 12]

They have been selected for representing different families of classifiers. The nearest neighbor,
the linear classifier, and the single tree are traditional well-known classifiers. The forests be-
long to the category of classifier combination. They train several decision trees by subsampling
either the training points (bdfc) or the features (pdfc). They are known to outperform sin-
gle trees. XCS evolves a set of rules by means of a genetic algorithm. This particular selection
facilitates studying whether ensemble methods are always preferable to individual classifiers
or, on the contrary, whether there are still cases where single classifiers can be applied, and if
so, where these cases are located in the measurement space. We do not pretend to have a fully
representative set of classifiers. Rather, we want to try the methodology with an initial subset
of classifiers and expand this study to other popular classifiers once the methodology becomes
mature.

We evaluate each classifier in a set of 392 two-class problems, extracted from the Uni-
versity of California, Irvine (UCI) repository [4], as explained in the previous chapter. For
each problem, we estimate its complexity by computing each of the complexity metrics on the
whole available data set. We run each classifier using a ten-pass, twofold cross-validation test
and identify the best and worst classifier for each problem. Then, we compare each classifier
against them respectively. Details are as follows:

1. Each data set is randomly permuted ten times.
2. Each time, the data set is divided in two disjoints sets. Then each classifier is trained

in each of these two sets and tested on the other one. The classifier’s error rate for this
particular permutation is estimated as the sum of the errors on each test set, divided by
the data-set size.

3. Thus, for each data set there are ten error estimates, one for each permutation. The final
classifier’s error on the data set is the average of its ten error rates.

4. For each problem, we identify the classifier with the lowest mean error. Then, we use its
ten error estimates as the basis for comparison with the other classifiers, using a paired
t-test with a 95% confidence level. Thus, we identify which classifiers are equivalent to
the best method or worse than the best method.

5. The same procedure is used to identify the worst classifier for each problem and test
the remaining classifiers against it, so that we identify classifiers equivalent to the worst
method or better than the worst method.

We approach the domains of competence of classifiers from two different views. The first
one, taken in section 7.3, estimates the domain of competence of each classifier. We analyze
where each classifier performs as the best method, and as the worst method, trying to identify
types of problems where the classifier is well suited and poorly suited. The second approach,
taken in section 7.4, analyzes, for each problem, the set of classifiers that are well suited and
poorly suited. Although the views are similar, here we distinguish the problems where there
is a single dominant best classifier from problems where more than one classifier is optimal.
Thus, we try to determine if there are differences between these types of problems. We also
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study the problems where a single classifier performs significantly worse and those problems
where several classifiers are equivalently poor. This approach was already taken in Bernadó-
Mansilla and Ho [3], where the domains of dominant competence were succinctly identified.
This study is enhanced here with the addition of the first approach. Both views are necessary
to help choose an optimal classifier, given a problem with computed complexity metrics. The
results obtained herein are tied to the particular choice of classifiers, so other choices or the
inclusion of new classifiers may lead to different results.

7.3 On the Domains of Competence of Classifiers

We analyze where each classifier performs as one of the best methods and as one of the worst
methods. We try to relate this to the complexity measurement space so that we can identify
domains of competence of classifiers.

We show different projections of the complexity measurement space and plot the clas-
sifier’s membership to three categories: best, worst, or none of them. We use a circle when
the classifier is equivalent to the best method (i.e., it is the best method or its performance is
equivalent to the best method on a paired t-test with a 95% confidence level). We use a cross
when the classifier is equivalent to the worst method (which means it is the worst classifier
or its performance is found to be equivalent to that of the worst classifier). The rest of the
problems, where the classifier is neither best nor worst, are shown with a small plus sign.

Nearest Neighbor

Figure 7.1 shows the domain of competence of the nearest neighbor classifier. We find that
most of the problems where nn performs optimally belong to very low percentage of points
in boundary and low nonlinearities (see Fig. 7.1a). They also tend to be placed in low intra-
interclass nearest neighbor distances, as shown in Figure 7.1b, although other problems with
low values in this metric do not correspond to an optimal nn’s behavior. The remaining met-
rics do not influence the classifier’s behavior significantly. The pretopological measure on the
percentage of retained adherence subsets is not very significant to set the nn’s behavior, as
shown in Figure 7.1c. The discriminant power of the attributes is not significant for determin-
ing the nn’s behavior; see, for example, the maximum’s Fisher discriminant ratio in Figure
7.1b. Analyzing npts-ndim, it seems that almost all the problems where the nn is optimal
correspond to high ratios of npts-ndim (about 100, Figure 7.1d). But this is just a coinci-
dence because almost all problems located in this value belong to the letter problem, which all
have the same relation of the number of points over the number of dimensions. The problems
do not present a uniform distribution over this metric, so it is difficult to extrapolate observa-
tions from it. We note that the nn is optimal for the easiest problems; observe that in these
cases, the nn’s error is very low. We also verified that these problems also correspond to low
errors from the remaining classifiers.

Table 7.2 summarizes the number of problems where each classifier is best, worst, and
average. We identify that the nearest neighbor has the extreme behavior of either behaving
mostly like the best classifier (54% of the problems) or like the worst classifier (34% of the
problems). There is a greater tendency to behave optimally, although this may be biased by
the current selection of problems. Only in 12% of the problems is the nn an average classifier.
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Fig. 7.1. Problems where the nearest neighbor (nn) performs best (
), worst (×), and average
(+), shown in selected projections of the complexity measurement space: (a) percentage of
points in boundary vs. nonlinearity of nn, both in logarithmic scale; (b) intra-interclass near-
est neighbor distances vs. maximum Fisher’s discriminant ratio; (c) percentage of retained
adherence subsets vs. nn’s error (in logarithmic scale); and (d) ratio of the number of points
to the number of dimensions vs. nn’s error (in logarithmic scale).
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Table 7.2. Percentage of problems where each classifier is equivalent to the best method,
equivalent to the worst method, and none of them.

Best(%) Worst (%) Avg. (%)
nn 54 34 12
lc 33 40 27
odt 3 70 27
pdfc 12 10 78
bdfc 20 11 69
xcs 19 17 64

Linear Classifier

The linear classifier has a behavior almost contrary to that of the nearest neighbor. Figure
7.2 shows that for a very low percentage of points in boundary (less than 10%), it performs
as the worst method, while it performs as the best method for a number of problems with
boundary values between 10% and 70%. Nevertheless, there are also some few problems
with the percentage of points in the boundary inside this range (10%–70%) where the linear
classifier performs as the worst method or as an average method. Tracing the lc’s behavior
along the different projections of complexity, we identify that the lc performs best for high
boundary values, high intra-interclass nearest neighbor distances, and high nonlinearities of
both the linear classifier and nearest neighbor. But there are also some problems (although
in fewer proportions) that are placed in similar regions of the measurement space, where the
linear classifier performs as the worst method.

The general tendency is that the linear classifier performs optimally when the problems
are more difficult. For very easy problems (few points in boundary, low nonlinearities, etc.)
the linear classifier, although having a low error, is the worst method.

This behavior is in fact surprising; one can question how a linear classifier separating the
class boundaries by a hyperplane can overcome other more sophisticated classifiers as the de-
cision forests or XCS, especially in the most difficult problems. We hypothesize that sparsity
of the training set may be a possible cause, making other classifiers overfit. In sparse training
sets, sophisticated classifiers may try to approximate too precisely the class boundaries when
these boundaries are not described by sufficient representative points. Then, these classifiers
may perform poorly with new unseen instances. A linear approach may be well suited to this
type of problem, having less tendency to overfit. The number of points to the number of di-
mensions tries to approximate the sparsity of the training set. But we find no clear relation
between the lc’s behavior and this metric, which may indicate that the metric is a rough esti-
mation of the training set sparsity. In fact, the metric can only consider the apparent sparsity of
the training set, which may be uncorrelated from the true sparsity. The distribution of points in
the available training set might be very different from the original distribution of the problem.
As we do not have the original sources of the data sets, we cannot compute the true sparsity
for the current set of problems.

Since we find that the linear classifier tends to behave optimally for the most complex
problems, where the classifiers’ errors are very high, we may also hypothesize that this con-
dition can be due to the presence of noise, i.e., the presence of mislabeled points in these data
sets. For these types of problems, a linear classifier may be more robust than other classifiers
that try to evolve more complex boundaries, which result in being too overfitted.

The current measurement space is insufficient to distinguish clearly the problems where
the linear classifier is best and worst. Although the reasons may be justified by the two previous
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hypotheses, they may also be due to a lack of metrics describing more precisely the complexity
of the problem.

The lc’s behavior is somehow extreme too, as found in the case of the nn classifier.
Observe that lc is optimal in 33% of cases, and worst in 40% of cases, as shown in Table 7.2.

Decision Tree

The decision tree performs optimally in very few problems; to be exact, in only 12 problems
out of 392, which corresponds to a percentage of 3%. In 70% of the problems, the single tree
performs as the worst method, while it performs in the average in 27% of the problems, as
shown in Table 7.2.

It is difficult to determine for what kind of problems the single tree is best suited. It
performs optimally in only 12 problems, which is not sufficient to extrapolate general obser-
vations. Moreover, these problems are not compacted in the same area of the measurement
space, as can be observed from Figure 7.3. It is also difficult to discriminate between the prob-
lems where the single tree performs worst and the problems where the single tree is an average
performer.

Subspace Decision Forest

The subspace decision forest improves the behavior of the single tree, in the sense that the
forest is more robust in a high proportion of problems. Table 7.2 shows that the subspace
forest is an average method in 307 problems (78%), and is best and worst in fewer proportions
(12% and 10%, respectively).

Figure 7.4 shows the pdfc’s behavior on selected projections of the complexity measure-
ment space. The plots do not show very compact areas of the measurement space to distinguish
clearly among the best, average, and worst problems for the subspace decision forest. But the
general trend is that a higher percentage of problems where the pdfc performs optimally
belong to a small percentage of points in the boundary, and also small nonlinearities and intra-
interclass nearest neighbor distances. However, observe that for very few points in boundary
and small nonlinearities, the best classifier is the nearest neighbor, as shown in Figure 7.3. For
boundary values higher than 30%, there are cases where the pdfc is best and also other
cases where the pdfc is worst or average. Other projections of the complexity measurement
space do not show any significant discrimination between these three cases.

Subsample Decision Forest

Comparing the subsample forest with the single tree, we find that the subsample forest has
more robustness across a high range of problems. In almost 69% of the problems, the subsam-
ple decision forest is in the average, being the best method in 20% of problems and the worst
in the remaining 11% (see Table 7.2). A similar behavior in terms of robustness is observed
with the subspace decision forest.

Nevertheless, it seems that the subspace decision forest and the subsample decision forest
do have differences in their domains of competence. Comparing Figure 7.4 with Figure 7.5,
we note that the subsample forest is able to be optimal in problems with higher boundary
values than the subspace forest. In fact, the average percentage of points in boundary is 14.38%
for the problems where the subspace forest is best, and 30.37% for the problems where the
subsample forest is best. The same behavior is observed with the nonlinearities. While the
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Fig. 7.2. Problems where the linear classifier (lc) performs best (
), worst (×), and aver-
age (+), shown in selected projections of the complexity measurement space: (a) percentage
of points in boundary vs. nonlinearity of nn; (b) percentage of points in boundary vs. non-
linearity of nn, in logarithmic scale; (c) intra-interclass nn distances vs. maximum Fisher’s
discriminant ratio; (d) percentage of retained adherence subsets vs. lc’s error; (e) maximum
individual feature efficiency vs. lc’s error; and (f) ratio of the number of points to the number
of dimensions vs. lc’s error.
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Fig. 7.3. Problems where the single tree (odt) performs best (
), worst (×), and average
(+), shown in selected projections of the complexity measurement space: (a) percentage of
points in boundary vs. nonlinearity of nn; (b) intra-interclass nearest neighbor distances vs.
maximum Fisher’s discriminant ratio; (c) percentage of retained adherence subsets vs. odt’s
error; and (d) ratio of the number of points to the number of dimensions vs. odt’s error.
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Fig. 7.4. Problems where the subspace decision forest (pdfc) performs best (
), worst (×),
and average (+), shown in selected projections of the complexity measurement space: (a)
percentage of points in boundary vs. nonlinearity of nn; (b) percentage of points in boundary
vs. nonlinearity of nn in logarithmic scale; (c) intra-interclass nearest neighbor distances vs.
maximum Fisher’s discriminant ratio; (d) percentage of retained adherence subsets vs. pdfc’s
error; and (e) volume of overlap region vs. pdfc’s error.
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subspace forests work best for low nonlinearities, the subsample forests work best for higher
values. This also happens with the ratio of intra-interclass nearest neighbor distances. These
results are consistent with previous experiments in the literature [7], where subspace decision
forests are compared with subsample decision forests.

XCS

The domain of competence of XCS was analyzed in the previous chapter. Summarizing our
results, we found that XCS performs best for low points in boundary. For the lowest percent-
ages of points in boundary, XCS is in the average methods (in these cases, the best classifier
is the nearest neighbor). XCS also tends to be optimal for low nonlinearities and low ratios
of intra-interclass nn distances. The maximum’s Fisher discriminant ratio and the number of
points to the number of dimensions tend also to be higher for the problems where XCS is best.

The domain of competence of XCS appears to have similarities with that of the subspace
decision forest (see [2]). In fact, we can view XCS as a type of classifier ensemble method,
where each classifier contains a rule with generalizations in some attributes, having an effect
similar to that of sampling over the feature space.

Comparative Analysis

Figure 7.6 compares jointly the domains of competence of each classifier against some se-
lected metrics. Each column refers to a classifier; from left to right these are the nn, lc,
pdfc, bdfc, and XCS. The single tree is omitted because of its scarce contribution as an
optimal classifier. Each row plots a particular complexity metric. Each figure shows three box
plots summarizing the complexity distribution of each classifier when it performs best (1),
worst (2), or average (3). The box plot has a box with lines at the lower quartile, the median,
and the upper quartile. Whiskers extend to 1.5 times the box length, and the remaining points
are considered as outliers and are plotted with points. The box plot is useful to analyze the
distribution of each type of problems succinctly, because the ranges and the spread of data can
be easily observed. Nevertheless, the number of points in each box plot remains hidden so that
this number must be coupled with the previous figures.

Note that the comparison of complexity distributions between the nn and the lc empha-
sizes again that these classifiers have opposed domains of competence, as seen especially in
measures such as boundary, nonlin-NN, intra-inter, and volume-overlap. The
fisher metric is not as relevant, although we also observe a tendency for higher discrimi-
nant attributes in problems where the nn is best. The decision forests have different domains of
competence, being the measures related with class distributions; boundary, nonlin-NN,
and intra-inter are the most discriminant ones. XCS’s domain of competence appears
again very similar to that of the subspace decision forest. Again the three metrics boundary,
nonlinNN, and intra-inter show high correlations for the domains where XCS and the
subspace decision forests are best and worst.

7.4 Dominant Competence of Classifiers

So far we have studied the problems where each classifier performs best and worst. The ap-
proach taken was that of analyzing each classifier separately and relating the results to the



146 Ho and Bernadó-Mansilla
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Fig. 7.5. Problems where the subsample decision forest (bdfc) performs best (
), worst (×),
and average (+), shown in selected projections of the complexity measurement space: (a)
percentage of points in boundary vs. nonlinearity of nn; (b) percentage of points in boundary
vs. nonlinearity of nn, in logarithmic scale; (c) intra-interclass nearest neighbor distances vs.
maximum Fisher’s discriminant ratio; and (d) percentage of retained adherence subsets vs.
bdfc’s error.
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Fig. 7.6. Box plot distributions of best (1), worst (2), and average (3) domains for each classi-
fier, shown in individual projections of the complexity measurement space.
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complexity measurement space. In this section, we take a different point of view. We ana-
lyze, for each problem, which is the best and worst classifier solving it. Doing this, we have
observed that some problems are solved by only one dominant method. In contrast, other prob-
lems have more than one outstanding methods. These are problems where several classifiers
can obtain good results and therefore their study is less important. Therefore, we will focus
on the first types of problems, that is, problems that are solved by only one dominant method.
A similar behavior is observed for the worst methods of each problem. Some problems have
only one worst classifier, while others have more than one worst classifier. We also analyze
which kinds of problems present only one worst classifier.

There are 270 problems that have a dominant best classifier. This represents 69% of all
the data sets. Figure 7.7 shows these problems, plotted against selected projections of the mea-
surement space. We use a different symbol for each classifier, as indicated in the legend of each
plot. We also show with small dots the location of the problems with more than one optimal
classifiers. Note that there are only four methods that are dominant out of six methods. These
are the nearest neighbor, the linear classifier, the subsample decision forest, and XCS. The
rest of the classifiers (the single tree and the subspace decision forest) are not outstanding in
any problem. When they perform as the best method, there are also other methods performing
equivalently.

Moreover, it is also interesting to note that almost all these problems are solved predom-
inantly by the nearest neighbor or the linear classifier. Table 7.3 details the proportion of
problems where each method is predominantly best and worst. See that the nn classifier is
dominantly best in 69% of problems, and worst in 11%. The lc is dominantly best in 23%
of problems and worst in 30%. This is significantly different from the forests and XCS; they
are almost neither dominantly best nor worst. We can conclude that the nearest neighbor and
the linear classifier are very specialized methods, being successful only for specific types of
problems. On the other hand, the ensemble methods and XCS are more robust but they are
not outstanding in many problems. Figure 7.7 also shows that the domain of competence of
the nearest neighbor is placed in a low percentage of points in the boundary, and low nonlin-
earities. For increasing boundary values, XCS seems to be the best classifier, although for a
small range of problems (in boundary values between 2% and 10%). For higher boundary
values, there is a range of problems where the linear classifier mostly stands out, but also
sometimes, and with less frequency, the subsample forest and XCS stand out.

It is also interesting to compare Figure 7.7a–c with Figure 7.7d–f, which show the prob-
lems where there is only one method performing poorly. There are 157 problems with a sin-
gle worst classifier. Note that the single tree appears very often as the dominant worst clas-
sifier, mainly located in low boundary values. Also the linear classifier is worst for low
boundary values and low nonlinearities. The nearest neighbor tends to be worst for percent-
age of points in the boundary greater than 10% and nonlinearities greater than approximately
4%. XCS appears as the worst method for high boundaries and nonlinearities.

We also note that there is no compact area where problems solved by more than one
outstanding (best or worst) methods are placed. They are distributed along all projections of
the complexity measurement space, so we cannot give any apparent reason to discriminate
problems with a dominant method from those with several applicable methods, at least for the
current measurement space.
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Fig. 7.7. Dominant competence of classifiers. Problems with a dominant best classifier (a, c,
and e), and problems with a dominant worst classifier (b, d, and f), shown in selected projec-
tions of the complexity measurement space: percentage of points in boundary vs. nonlinearity
of nn (a and b), intra-interclass nearest neighbor distances vs. percentage of retained adher-
ence subsets (c and d), and maximum feature efficiency vs. volume of overlap region (e and
f).
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Table 7.3. Distribution of classifiers for problems with a best dominant classifier and a worst
dominant classifier.

Best Worst
nn 69% 11%
lc 23% 30%
odt 0% 56%
pdfc 0% 0%
bdfc 4% 1%
xcs 4% 1%
total 270 157

7.5 Discussion

The current study facilitates also identifying the most relevant metrics for discriminating be-
tween domains of competence of classifiers. These are the percentage of points in the bound-
ary, the nonlinearities, and the ratio of intra-interclass nearest neighbor distances. These met-
rics are more related to the geometry of the problem and the shape and distribution of the
class boundaries. The metrics describing the discriminative power of the attributes, like the
maximum Fisher’s discriminant ratio and the maximum feature efficiency, seem to be less
important in identifying domains of competence. Although they influence the complexity of
the problem, they are not as useful as the other metrics to discriminate between two classi-
fiers. This means that the domains of competence of classifiers are mostly determined by the
geometry of the problem.

Some metrics, although also describing the geometry of the problem, are able to give
particular explanations of some classifier’s behavior, but they are not general enough. One
of the reasons for their narrower applicability is that they are not spread uniformly for the
current set of problems. This is the case of the pretopological measure on the percentage
of retained adherence subsets. It presents high values for almost all the problems (between
80% and 100%). Although small values may indicate that the problem has a less complex
geometry, there are insufficient problems located in these cases to extract useful conclusions.
Moreover, there are empty regions in the measurement space. The problems are not evenly
distributed along all dimensions of the measurement space; i.e., there are some regions that
are not covered by any problem. We still do not know if these empty regions are induced by
some geometrical constraints or are due to the particular choice of classification problems.

Another source of difficulty for the current study, which limits the extraction of more
conclusive results, is the estimation of the complexity of the problems. Recall that all metrics
are computed from the available training sets, and therefore they represent the apparent com-
plexity of the problem. The measure of sparsity seems to be particularly sensitive to it. The
estimation of the sparsity of the training set by the ratio of the number of points to the number
of dimensions on the available training set may be uncorrelated with the real distribution of
points in the original problem. This leads us to inconclusive results when we try to explain the
domain of competence of the linear classifier related to the sparsity of the training set.

On the other hand, there are also some correlations between the metrics themselves. For
example, the percentage of points in the boundary is fairly related to the nonlinearities, and
to the intra-interclass nearest neighbor distances to some extent. Although this correlation is
reasonable, it is not necessary. For example, a problem can have a high percentage of points
in the boundary but present low nonlinearities. The correlation between these metrics in the
current set of problems may lead to conclusions too overfitted for these problems.
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The lack of uniformity, the apparent estimation of metrics and the correlation between
metrics are some of the sources of difficulty found in the present study. Also the current choice
of problems may bias the results and lead to conclusions that may not be directly extrapolated
to other types of problems. The use of problems designed artificially may overcome these
difficulties.

7.6 Conclusion

We propose a methodology based on the analysis of data complexity to study the domains of
competence of classifiers. We find that the simplest methods, i.e., the linear classifier and the
nearest neighbor, have extreme behaviors. They perform optimally in a number of problems
(1/3 and 1/2 of all the problems, respectively), but also perform as the worst method in almost
the same percentages of problems. This means that they are very specialized methods. When
the conditions are favorable for these particular methods, they perform optimally. The key
issue is to detect which conditions these are and whether they apply given a certain problem.
The single decision tree is almost biased toward performing as the worst method or as an
average method. On the other hand, the most elaborate classifiers tend to have a more robust
behavior. They are mostly placed between the best and the worst method. They are not very
specific to behave optimally in a particular set of problems, nor to behave poorly in another
type of problems, but to behave in the average for a high proportion of problems. These types
of classifiers are more general methods. They are applicable to a higher range of problems,
where we can expect a moderately good result. This happens with the subsample decision
forest, the subspace decision forest, and XCS.

The key issue is to identify which type of problems are suitable and not suitable for each
classifier. This is more important for the most specialized classifiers, since their behavior can
change dramatically depending on the problem. The domain of competence of the nearest
neighbor classifier is located in problems with compact classes and little interleaving. Par-
ticularly for problems with less than 10% of points in the boundary, intra-interclass nearest
neighbor distances less than 0.4, and nonlinearities less than 5%, the nearest neighbor classi-
fier has good applicability. For problems outside this region, the nearest neighbor classifier is
hardly recommended. The identification of the domain of competence of the linear classifier
is more difficult. We effectively identify that the linear classifier is not well suited for prob-
lems with compact classes. In these cases, other classifiers perform better. But to what kind
of problems the linear classifier is best suited is not conclusive enough, at least for the cur-
rent measurement space. A possible hypothesis points out the problems with sparse training
sets, but this is also difficult to determine since we do not know the original distribution of
the problems. The decision tree is almost always outperformed by the other classifiers. Never-
theless, the ensemble classifiers based on the same tree, the subspace decision forest, and the
subsample decision forest are much more applicable. In fact, the ensemble classifiers and XCS
are average methods for a wide range of problems. In cases of uncertainty, so that there is no
guarantee that a simple classifier will perform best, ensemble methods can offer a reasonable
result. In these cases, XCS seems to perform better when the classes are more compact, sim-
ilarly to the subspace decision forest. In contrast, the subsample decision forest works better
for higher percentage of points in boundary and higher nonlinearities.

Limitations of the current study are identified, such as biases due to the current choice
of problems, uneven distribution of problems along the measurement space, and apparent es-
timation of complexity. The study is also biased by the current pool of classifiers. Further
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studies are needed to provide higher understanding on the relationship among class distribu-
tions, complexity, and classifier’s behavior. Also adding in synthetic data sets may be useful
to control the apparent estimation of complexity and its influence on data complexity.
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Data Complexity Issues in Grammatical Inference

Colin de la Higuera

Summary. Grammatical inference (also known as grammar induction) is a field transversal
to a number of research areas including machine learning, formal language theory, syntac-
tic and structural pattern recognition, computational linguistics, computational biology, and
speech recognition. Specificities of the problems that are studied include those related to data
complexity. We argue that there are three levels at which data complexity for grammatical
inference can be studied: at the first (inner) level the data can be strings, trees, or graphs; these
are nontrivial objects on which topologies may not always be easy to manage. A second level
is concerned with the classes and the representations of the classes used for classification;
formal language theory provides us with an elegant setting based on rewriting systems and
recursivity, but which is not easy to work with for classification or learning tasks. The com-
binatoric problems usually attached to these tasks prove to be indeed difficult. The third level
relates the objects to the classes. Membership may be problematic, and this is even more the
case when approximations (of the strings or the languages) are used, for instance in a noisy
setting. We argue that the main difficulties arise from the fact that the structural definitions of
the languages and the topological measures do not match.

8.1 Introduction

8.1.1 The Field

Grammatical inference is transversal to various fields including machine learning, formal lan-
guage theory, structural and syntactic pattern recognition, computational linguistics, compu-
tational biology, and speech recognition.

In a very broad sense, a learner has access to some data that are sequential or structured
(strings, words, trees, terms, or even limited forms of graphs) and is asked to return a grammar
that should in some way explain these data. The grammar is supposed to be able to generate
the data, or recognize it. The learner is at least partially automatic, and is therefore sometimes
called an inference machine, or a learning algorithm. The induced (or inferred) grammar can
then be used to classify unseen data, compress this data, or provide some suitable model for
this data. Typical features of the problem are:
• The data, composed from a finite alphabet; is thus usually discrete, as opposed to numer-

ical; but on the other hand the unbounded length of strings makes the classification tasks
harder than with the usual symbolic data.
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• The sort of result: a grammar or an automaton, traditional objects from formal language
theory studied in computer science. The advantage of these objects is that they are under-
standable. The classes that are learned are described in an intelligible and sometimes even
graphical way, which may not always be the case in pattern recognition or classification.
In fields where human experts need to be able to derive new knowledge from what the
computer provides, this is undoubtedly a key feature.

• The hardness of even the easiest of problems: Grammatical inference is a field where
there are only a few positive theoretical results. Most learning problems are considered
intractable and are even used as examples of hard tasks in machine learning.

• The variety of potential applications: Data in many fields is today more and more com-
plex and structured, and therefore, techniques that concentrate on structural data are of
increasing importance.

There are a number of ways of addressing the different problems in grammatical inference:
searching for new algorithms, broadening the class of data for which existing techniques work,
better understanding the boundaries between those problems that one can solve and those that
correspond to classes that are not learnable, and the application of known techniques to new
problems.

8.1.2 The Literature and the Community

Grammatical inference scientists belong to a number of larger communities: machine learning
(with special emphasis on inductive inference), computational linguistics, and pattern recog-
nition (within the structural and syntactic subgroup). There is a specific conference the Inter-
national Colloquium on Grammatical Inference (ICGI) devoted to the subject, within whose
proceedings it is possible to find a number of technical papers. These conferences have been
held at Alicante, Spain [13], Montpellier, France [59], Ames, Iowa [37], Lisbon [24], and Am-
sterdam [1]. The web page of the grammatical inference community [85], and those of related
communities can be used to find most of the papers in the field. The Computational Learning
Theory (COLT) web page [46] or the Algorithmic Learning Theory (ALT) web page [92]
can provide good lists of papers with the machine learning perspective. Important key papers
setting the first definitions and providing important heuristics are those by Fu [27] and Fu
and Booth [28]. The structural and syntactic pattern recognition approaches can be found, for
instance, in Miclet’s book [57] and in the survey by Bunke and Sanfeliu [10], with special
interest in Miclet’s chapter [58].

Surveys or introductions to the subject have been published by Lee [51], Sakakibara [76],
Honavar and de la Higuera [36], and de la Higuera [20].

Books on formal languages by Harrison [35] and by Hopcroft and Ullman [38] give most
of the elementary definitions and results needed for the language theoretical background to
grammatical inference. Parsing issues are discussed in Aho and Ullman’s textbook [2]. On
machine learning the books by Mitchell [60], Natarajan [63], and Kearns and Vazirani [42]
all give elements that are of use to derive grammar induction results. Another place where
structural pattern recognition issues are discussed is Gonzalez and Thomason’s book [33]. An
early book with many important mathematical results on the subject of automata inference is
that by Trakhtenbrot and Barzdin [84].

8.1.3 Organization of This Chapter

The question under study is, What are the data complexity issues involved in grammatical
inference? The first problem is to discuss the different meanings that can be linked with these
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terms. The first idea is that the actual data (strings and trees) have a specific complexity,
independently of the concept classes that are involved. A second point of view may be that it
concerns the classes themselves (languages) which are non trivial mathematical objects when
dealing with grammatical inference: languages defined by grammars and automata. And a
third point of view appears when we consider simultaneously the strings and the languages.

Before discussing these issues, we will survey some of the main definitions and results
concerning grammar induction.

In section 8.2 we define the objects we intend to learn from. These are especially strings
and trees, but other more complex objects have sometimes been studied, such as infinite strings
or graphs. We also visit (section 8.3) the concept classes that are used in typical classification
tasks. In grammatical inference these are languages that are defined by automata or grammars
in the case of languages as sets of strings (section 8.3.1) or distributions (section 8.3.2). In sec-
tion 8.4 we survey the topological issues regarding both strings (8.4.1) and languages (8.4.2).
We deal in section 8.5 with the problems that arise from these definitions and that concern
what can be grouped under the heading of “data complexity problems” for grammatical infer-
ence: problems concerning the data from which one wants to learn (section 8.5.1), problems
relating to language theory and the specificity of grammatical definitions (section 8.5.2) and
questions arising from the specific relationship between the data and the classes, i.e., between
the strings and the languages (section 8.5.3). We draw conclusions in section 8.6.

8.2 Strings and Trees: from Which We Learn

Let Σ be a finite alphabet and Σ� the (infinite) set of all strings that can be built from Σ,
including the empty string denoted by λ.

By convention, symbols in Σ are denoted by letters from the beginning of the alphabet
(a, b, c, ...), and strings in Σ� are denoted by the end of the alphabet letters (..., x, y, z). The
length of a string x ∈ Σ� is written |x|. The set of all strings of length n (less than, at most
n) is denoted by Σn ( Σ<n, Σ≤n). A substring of x from position i to position j is denoted
as xi . . . xj . A substring xi . . . xj with j < i is the empty string λ.

Strings are totally ordered according to the hierarchical order, i.e., if x and y belong to
Σ�, x ≤ y ⇔ |x| < |y| or |x| = |y| ∧ x ≤lex y. The first strings, according to the
hierarchical order (also sometimes called the length-lexicographic or length-lex order), with
Σ = {a, b} are {λ, a, b, aa, ab, ba, bb, aaa, . . .}.

Extensions of strings include:

• Trees or terms that are recursively defined from a given ranked alphabet F = F0∪F1...Fk

as ∀c ∈ F0, c ∈ T and t1, ..tk ∈ T, f ∈ Fk =⇒ f(t1, .., tk) ∈ T . Alternative
definitions exist where the trees are unranked (the same symbol may belong to various
alphabets), or unordered (the order on the subtrees is not important). Learning tree au-
tomata and grammars are of increasing importance due to the interest in tasks involving
structured information (for instance XML files).

• Graphs and hypergraphs are even more complex to define by generative means, and gram-
mars that produce them have been studied in specific fields only. No positive learning
result is known, at least for nontrivial classes.

• Infinite strings are used to model situations in reactive systems. Grammatical inference
has been used on such data [18, 55, 79].
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8.3 Languages: What We Want to Learn

When considering languages, two points of view leading to two different settings have been
studied:

• A language is a subset of Σ�. In this case problems are those of membership (Does a
string belong or not to a language?) and the related issue of parsing strings, or that of the
equivalence of grammars (Do they define or generate the same language?).

• A (stochastic) language can also be a distribution of probabilities over Σ�. In this setting
the question is to use automata or grammars that assign a higher probability to the more
probable strings and a lower (or null) one to the others.

8.3.1 Languages

Formal language theory has been studied consistently over the past 50 years. The usual defi-
nitions and results can be found in references [35, 38]. Languages are sets of strings defined
through generative (grammars) or recognition (automata) processes. We recall here two of the
simpler but also more important definitions.

Regular Languages

Definition 1. A deterministic finite automaton (DFA) is a quintuple A = 〈Q, Σ, δ, F, q0〉
where Σ is an alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × Σ → Q
is a transition function, and F ⊆ Q is a set of marked states, called the final states.

It is usual to recursively extend δ to Σ∗: δ(q, λ) = q and δ(q, a.w) = δ(δ(q, a), w) for
all q ∈ Q, a ∈ Σ, w ∈ Σ∗. Let L(A) denote the language recognized by automaton A:

L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}
An alternative definition considers that the automaton may be nondeterministic [δ(q, a) may
have various values]. It is well known that the languages recognized by DFA form the fam-
ily of regular languages. This class is considered as a borderline case for grammatical infer-
ence [19] in the sense that DFA are learnable (in different senses), whereas slightly more
complex objects are not. Also, because the class is known to be the first level of the Chomsky
hierarchy, considerable attention has been given to the problem of learning it [23, 65, 66, 68].

There are alternative ways of defining regular languages; rational expressions, regular
grammars, or nondeterministic finite automata are some of these, but they all lead to learning
problems that are more complex than when considering DFA.

Context-Free Languages

The second level of the Chomsky hierarchy is concerned with context-free languages and
grammars:

Definition 2 (Context-Free Grammar). A Context-Free Grammar (CFG) G = (Σ, V, P, S)
is a quadruple where Σ is a finite alphabet (of terminal symbols), V is a finite alphabet (of
variables or nonterminals), P ⊂ V × (Σ ∪V )∗ is a finite set of production rules, and S ∈ V
is the axiom (start symbol).
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We denote uTv → uwv when (T, w) ∈ P .
∗→ is the reflexive and transitive closure of

→. If there exists u0, . . . , uk such that u0 → · · · → uk, we write u0
k→ uk. We denote by

LG(T ) the language {w ∈ Σ∗ : T
∗→ w}. Two grammars are equivalent if they generate the

same language. A language is context-free if it can be generated by a context-free grammar.
Learning context-free grammars has proved to be a much harder task than learning DFA.

Serious efforts in the past few years have included the following approaches:

• Subclasses of linear languages: linearity is considered by several authors to be a necessary
condition for learning to be possible. There has been active and successful research of even
linear grammars [44, 54, 80, 81, 82].

• Learning from structured data: learning tree automata [26, 34, 43], or context-free gram-
mars from bracketed data [74, 75], allows to obtain better results, either with queries,
regular distributions [15, 45, 72], or negative information [29]. This has also led to differ-
ent studies concerning the probability estimation of such grammars [11, 50].

• Heuristics based on genetic algorithms [40, 77, 78], lattice exploring [31, 86], or simplicity
bias [49].

Membership Issues

The problem of deciding if a given string belongs or not to a language is the first problem
one has to deal with. In both cases (for regular languages defined by DFA and context-free
languages defined by CFG) the problem is tractable: parsing can take place in linear time
with a DFA and in cubic time with a CFG.

Other language formalisms may exist where parsing is not an easy problem. For instance,
parsing with pattern languages [5, 25] is an intractable problem.

Equivalence Issues

Two grammars or automata are equivalent if they generate or recognize the same language.
If equivalence of DFA is easy to check (thanks to the existence of a nice canonical minimal
form), this is not the case if the regular languages are defined by other formalisms such as
regular expressions of nondeterministic finite automata. In the case of context-free grammars
the same holds: equivalence is undecidable.

This has direct consequences for the learning tasks, as is proved in [19].

8.3.2 Stochastic Languages

Stochastic languages and mechanisms allowing their generation are described in a number
of articles and books [39, 50, 51, 56, 64, 67, 71, 87, 88]. We describe only the key ideas of
stochastic languages and automata here.

A stochastic language D is a probability distribution over Σ�.
The probability of a string x ∈ Σ� under the distribution D is denoted as PrD(x) and

must verify
∑

x∈Σ� PrD(x) = 1. If the distribution is modeled by some syntactic machine A,
the probability of x according to the probability distribution defined by A is denoted PrA(x).
The distribution modeled by a machine A will be denoted DA and simplified to D in a non-
ambiguous context.

If L is a language (included in Σ�) and D a distribution over Σ�, PrD(L) =∑
x∈L PrD(x).
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Two distributions D and D′ are equal (denoted by D = D′) if ∀w ∈ Σ� : PrD(w) =
PrD′(w).

A sample S is a multiset of strings; as a sample is usually built through sampling, one
string may appear more than once. When considering the sample size, we note the difference
between notation |S|, which indicates the number of (not necessarily different) strings in S,
and ‖S‖, which is the total sum of lengths of the strings in S. We also write x ∈ S to indicate
that string x is represented in the sample.

Probabilistic Automata and Languages

Probabilistic languages are generated by probabilistic automata.

Definition 3. A PFA is a tuple A=〈QA, Σ, δA, IA, FA, PA〉, where:

• QA is a finite set of states;
• Σ is the alphabet;
• δA ⊆ QA × Σ × QA is a set of transitions;
• IA : QA → Q+ (initial-state probabilities);
• PA : δA → Q+ (transition probabilities);
• FA : QA → Q+ (final-state probabilities).

IA, PA and FA are functions such that:∑
q∈QA

IA(q) = 1,

and
∀q ∈ QA, FA(q) +

∑
a∈Σ, q′∈QA

PA(q, a, q′) = 1.

PA is extended with PA(q, a, q′) = 0 for all (q, a, q′) �∈ δA. Also, the subscript A is
dropped when there is no ambiguity.

The above automata definition corresponds to models that are generative in nature. This
is in contrast with the standard definition of automata in the conventional (nonprobabilistic)
formal language theory, where strings are generated by grammars while the automata are the
accepting devices. From a probabilistic point of view, the process of (randomly) accepting a
given string is essentially different from the process of generating a (random) string. Proba-
bilistic acceptors are defined in Fu [27], but they have not been as popular in both syntactic
pattern recognition and formal language theory.

Figure 8.1 shows a graphical representation of a PFA with four states, Q = {q0, q1,
q2, q3}, only one initial state, q0, and a four-symbol alphabet, Σ = {a, b, c, d}. The rational
numbers in the states and in the arrows are the final state and the transition probabilities,
respectively.

Deterministic Probabilistic Finite-State Automata (DPFA)

Definition 4. A PFA A = 〈Q, Σ, δ, I, F, P 〉 is a DPFA, if:

• ∃q0 ∈ Q (initial state), such that I(q0) = 1;
• ∀q ∈ Q, ∀a ∈ Σ, | {q′ : (q, a, q′) ∈ δ} |≤ 1.

In a DPFA, a transition (q, a, q′) is completely defined by q and a, and a DPFA can
be more simply denoted by 〈Q, Σ, δ, q0, F, P 〉.
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Fig. 8.1. Graphical representation of a PFA.

Distribution Modeled by a PFA

PFA generate strings of finite length. Given a PFA A, a string is generating by randomly
choosing (with respect to a distribution I over the initial states) one state q0 in Q as the initial
state. Call q this state. Then iteratively decide whether to halt, with probability F (q), or to
produce a move (q, a, q′) with probability P (q, a, q′) where a ∈ Σ and q′ ∈ Q in which case
a symbol a is emitted and the current state is set to q′.

It should be noticed that this generative process facilitates only generating a string but not
computing the probability of a given string, which can be generated in different ways or paths.
Dynamic programming techniques are used for this computation.

If
∑

x PrA(x) = 1, then A defines a distribution D on Σ�.

Definition 5. A distribution is regular if it can be generated by some PFA.

An alternative definition could be used: a regular distribution is a probabilistic distribution on
a regular language. However, we do not assume this definition because it would present the
following problem: there would exist regular distributions that could not be generated by any
PFA. This result can be easily derived from Wetherell [91].

Definition 6. A distribution is regular deterministic if it can be generated by some DPFA.

Definition 7. Two PFAs are equivalent if they generate the same distribution.

From the definition of PFA and DPFA the following hierarchy follows:

Proposition 1. A regular deterministic distribution is also a regular distribution.

We do not provide here the definition of context-free stochastic (or probabilistic) grammars,
which results from a combination of the definitions of context-free grammars and that of
stochastic automata. These have been studied in a variety of works, including [16, 21, 39, 50].

Questions Relating to Stochastic Languages

Following the Chomsky hierarchy, it is possible to extend the previous definitions to cope
with stochastic tree languages defined by stochastic tree automata or stochastic context-free
grammars.

Parsing issues have also been well studied. If the deterministic case is easy to solve, a
number of dynamic programming techniques have been used for the nondeterministic setting.

Equivalence of PFA is decidable, but the exact complexity is not known. More than the
question of equivalence, the one of the closeness (How close is one distribution to another?)
is a hard question, to which only partial answers have been given [62].
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8.4 Topological Issues

The way the set of instances or of possible examples is organized depends on the topology that
is used on this space. Whereas metrics over vectors and numerical representations are fairly
well known and obey mathematically well-studied laws, things get harder when dealing with
structured objects such as strings or trees.

Distances can be used to organize the set of examples, but also, sometimes, the set of
possible classes. We discuss both types of distance measures in this section.

8.4.1 Distances Between Strings

Given two strings x and y, a distance can be computed in several different ways. In a broad
sense the possibilities are:

• To compute the minimal number of operations needed to transform x into y. This is the
principle of the edit or Levenshtein distances [3, 89].

• To compute some similarity measure S(x, y) between the two strings, and then, with an
adequate function (2−S(x,y)) convert it into a distance.

• To select a set of measurable features over the strings and to use these to associate with
each string a vector in Rn. The vectors can then be compared by standard metrics.

In practice all three ideas have their advantages and their disadvantages.

• The edit distance is certainly the most natural form of distances on strings. But the com-
putation of this distance in quadratic in the length of the strings and many reasonable
operations (such as searching for the center of a set of strings [22]) can be intractable.

• Similarity measures abound: an easy distance based on this principle consists in comput-
ing the length of the longest common prefix and using this as S(x, y). Yet convincing
similarity measures have not been produced.

• Finding a finite set of features over strings and using numerical representations is a stan-
dard technique: n-grams are a typical way of doing this. But the intrinsic structure of the
string is usually lost.

8.4.2 Distances Between Languages

In the nonstochastic setting (when languages are just sets of strings), comparison is done by
usual set-theoretic tools. It should be noticed that without a distribution of probabilities over
the strings, the number of strings in the symmetric difference between two sets is not a valid
indicator, as it can easily be infinite.

The usual setting to study distances between languages is therefore the stochastic one.
Defining similarity measures between distributions is the most natural way of comparing them.
In tasks involving the learning of PFA or DPFA, one wants to measure the quality of the
result or of the learning process. When learning takes place from a sample, measuring how far
the learned automaton is from the sample can also be done by comparing distributions since a
sample can easily be encoded as a DPFA.

There are two families of distance measures: those that are true distances, and those that
measure a cross-entropy.
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Distances Between Distributions

All the definitions hereafter are seen as definitions of distances between distributions over Σ�.
In doing so they implicitly define distances between automata, but also between automata and
samples, or even between samples.

• The most general family of distances are referred to as the Minkowski distances or dis-
tances for the norm Ln. The general definition is as follows:

dn(D,D′) =

( ∑
x∈Σ�

|PrD(x) − PrD′(x)|n
) 1

n

.

• The following distance is used in [7] (under the name d∗ or distance for the L∞ norm):

dmax(D,D′) = max
x∈Σ�

|PrD(x) − PrD′(x)| .

Entropy-Based Measures

Based on entropy definitions we can use the well-known Kullback-Leibler divergence:

dKL(D,D′) =
∑

x∈Σ�

PrD(x) · log
PrD(x)

PrD′(x)
.

We set in a standard way 0 log 0 = 0 and 0
0

= 1.
In the case where some string has a null probability in D′, but not in D, then the Kullback-

Leibler divergence is infinite.
Rewriting the Kullback-Leibler divergence as

dKL(D,D′) =
∑

x∈Σ�

(PrD(x) · log PrD(x) − PrD(x) · log PrD′(x)),

one can note the first term is the entropy of D, and does not depend on D′ and the second term
is the cross-entropy of D given D′. From the information theory interpretation [17], the first
term measures the optimal number of bits needed to encode D and the second one measures
the cost (in number of bits of encoding) of estimating D using D′.

Computing Distances

The computation of distance dn and dmax has been studied for hidden Markov models in [53],
where it is shown that only for even values of n is the computation possible. Similar results
hold for DPFA [62]. The computation of dKL is possible in polynomial time for DPFA
[12].

8.5 How Data Complexity Can Affect Grammatical Inference

We now turn to the question of data complexity. As discussed earlier, we discuss three aspects
of the problem: the one specific to the data, the one concerning the classes, and the third one
which interrelates strings and classes.
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8.5.1 Problems Concerning the Data

Strings and trees are nontrivial structures. Their typical definitions are recursive, and they
allow for complex extensions (infinite strings, unordered trees). For a number of reasons in
grammatical inference, some basic operations over strings and trees are needed, and are not
always simple:

• Distances have to be computed. In section 8.4.1 we reviewed some of the typical distances
that could be used over strings, and noticed that the computation issues were not trivial.

• Finding patterns in strings [3] is a tricky issue also, for which elaborate algorithms have
been built.

• Comparing strings (or trees): is a string a substring of another? A number of algorithms
have been proposed for these tasks, but time complexity can be high.

All this has consequences when wanting to use traditional pattern analysis techniques (such
as a nearest neighbours approach) in an application where the data is described by strings and
requires specific heuristics [61, 73].

8.5.2 Problems Concerning the Languages

Formal language theory has been built on the Chomsky hierarchy which defines classes of
languages through the restrictions that one can make to the type of grammar that is admitted
[2]. Moreover, recursivity is central to this theory, which gives it elegance but also may not
help our understanding of it. A typical example of this is the intuitive distance that there can
be between a language and a grammar that generates it.

These definitions have another drawback: small changes made on the grammar (or the au-
tomaton) are likely to affect, in an important way, the language that is generated. The converse
also holds, as modifying in a very small way a language can easily lead to the construction of
a new grammar quite unrelated to the first one. The consequences of this is that the concept
classes are very sensitive to noise. Even a very small amount of noisy data in the learning
process affects what is being induced. Grammatical inference, because of this data complexity
issue, is quite incapable of dealing with noisy data. As in practice, noisy data is abundant; this
is a real problem for the field.

The question has probably not yet been explored in a systematic way, and there is still
much to argue about this. The point we raise here is simply that (and in contrast to other fields
in pattern recognition or machine learning) the topological theories over strings and the formal
language theories do not match.

Knowing if two representations of classes are equivalent is a central question both in
formal language theory and in learning. Indeed if the problem is intractable, then one should
not expect learning to be feasible:

• This may mean that the characteristic sets needed to learn are of a size that one cannot
expect to reach in reasonable time [19].

• This also means that learning from membership queries only is not tractable. If not, one
could use both grammars as black boxes and learn independently from each, and at the
end compare the results.
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8.5.3 Problems Concerning the Relationship Between Strings and Languages

When considering strings on their own, we have a problem with the complexity of the data.
When considering the classes and their representations, we have another. What happens when
we consider both issues together is that new hard problems arise. We mention some of them
now.

Negative Results Concerning the Combinatorics

A typical way of considering a classification task from both examples and counter-examples
is to find some representation of a class consistent with the observed data. In grammatical
inference, in general, this is insufficient, as any finite set of strings is a regular or a context-free
language. In that case, theory teaches us that it is a good policy to find a simplest consistent
class. This obeys the Occam’s razor principle.

Gold [32] proves that the problem of finding the smallest DFA consistent with a given set
of strings is NP-hard. Angluin [4] proves that this is the case even when the target automaton
only has two states (this peculiar result is quoted by Pitt and Warmuth [70]), or even when
only a very small fraction of all the strings up to length n, where n is the size of the target, is
absent. Trakhtenbrot and Barzdin [84] had shown previously that when all such strings were
present the problem was tractable.

There are several negative consequences of these combinatorical results. This is not
enough to obtain a direct proof that learning in polynomial time is impossible, but Angluin
proves the hardness of the task even using membership queries [6] (a string can be proposed
to the oracle who must answer if the string belongs or not to the target language) or equiva-
lence queries [8] (a grammar is proposed to the oracle, who answers yes if the hypothesis is
equivalent to the target, and provides a counterexample if not). In the second case Angluin in-
troduced the combinatorial notion of approximate fingerprints of independent interest, which
correspond to a subset of hypotheses out of which only a small fraction can be excluded, given
any counterexample, resulting in the necessity of using an exponential number of equivalence
queries to isolate a single hypothesis. Gavaldà [30] studies this notion with care. Pitt [68] uses
this result to prove the intractability of the task of identifying DFA with a polynomial num-
ber of mind changes only (i.e., the number of times the online learning algorithm changes its
hypothesis should be polynomial in the size of the target DFA). The problem is proved to be
hard [69], and by typical reduction techniques [90] is proved complete (hardest) in its class.
But Pitt’s model may be itself too demanding, as it is closely linked with Littlestone’s learning
model [52].

Problems with Approximation

The combinatorical results above imply that finding the exact solution is too hard, but there
could be hope for approximately learning. The probably approximately correct (PAC) para-
digm has been widely used in machine learning to provide a theoretical setting for this. But
even for the case of DFA, most results are negative, Kearns and Valiant [41] linked the diffi-
culty of learning DFA with that of solving cryptographic problems believed to be intractable
(a nice proof is published in Kearns and Vazirani’s book [42]).

Another point of view on the hardness of approximation can be seen through the different
competitions that have been organized for grammatical inference. In 1997, the ABBADINGO

competition [47] raised interest in the problem of DFA inference, and although a neural
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network technique seemed to do well, at the end, an evidence-driven technique developed by
Price, based on classical state merging, won (Lang et al., [48]). The idea was to try different
merges but keep the one that had the highest score. A (cheap) alternative to evidence-driven
heuristics is data-driven heuristics (de la Higuera et al., [23]), where the idea is to try merging
those states through which most information is known. Some problems from that competition
are still open.

Learning with Noise

As a consequence of the above observations, learning in a noisy setting is very hard. Whereas
in other areas of machine learning and pattern recognition there are many methods and results
allowing us to work on cases where the data may be imperfect, this is not the case in grammat-
ical inference. One of the few hopes of doing anything of use in this case is to learn stochastic
automata [14, 83].

8.6 Conclusion

Grammatical inference is faced with a number of intrinsic difficulties that differentiate the
field from other fields in pattern recognition or machine learning. These correspond to the
specific recursive unbounded structure of strings and trees, the special way languages are
defined, which is not some extension of well-known classes over vectors, and the combined
complexity of strings and languages when considering parsing issues.

When faced with these hardness questions a number of answers seem possible:

• Modifying the internal structure of the data offers only limited possibilities. Windowing
the data or associating to strings a finite number of characteristics has been done, but there
is necessarily a price to pay in terms of representation;

• Finding novel ways of defining languages that do not obey to the Chomsky hierarchy
would certainly be a good choice; for instance, different forms of pattern languages [5, 9,
25] have been studied and in certain areas, such as computational biology, are indeed of
use.

• Finally the inherent difficulties should not force researchers to abandon the idea of learn-
ing languages from strings of trees. The successes of grammatical inference show that
there still is a lot of room for new profound and useful results.
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Simple Statistics for Complex Feature Spaces

George Nagy and Xiaoli Zhang

Summary. We study the constraints that govern the distribution of symbolic patterns (letters,
numerals, and other glyphs used for communication) and natural patterns in high-dimensional
feature spaces, with a view to gaining insight into the complexity of classification tasks. Pat-
tern vectors from several data sets of printed and hand-printed digits are standardized to iden-
tity covariance matrix variables via principal component analysis, shifting to zero mean and
scaling. The probability density of the radius of the set of patterns (their distance from the
origin) is computed and shown to predict accurately the observed average radius for a wide
range of features and dimensionality. We predict further that the class centroids of symbolic
patterns will form the vertices of a regular simplex (i.e., a d-dimensional tetrahedron). The
observed pairwise distances of the 45 class centroids in ten-class problems are shown to be
almost equal to the value predicted from the average radius of the class centroids. The class-
conditional distributions of the patterns are compared using two measures of divergence. The
difference between the distributions of the same class with different feature sets is found to be
larger than the difference between the distributions of different classes with the same feature
set. This suggests that the correlation among features of patterns of one class can predict the
correlation among features of patterns in another class. The amount of within-source consis-
tency in a data set is quantified using an entropy measure that takes into account small-sample
effects. The statistical dependence between the features of same-source patterns of different
classes is measured by mutual information applied to the discrete distributions resulting from
quantization of the style assignments. If these observations are supported by further studies
of symbolic and natural patterns with diverse data sets, they may eventually lead to improved
classification methods for same-source ensembles of symbolic patterns.

9.1 Introduction

Better understanding of the disposition of patterns in feature space may help predict the diffi-
culty and complexity of diverse classification tasks. To further this goal, we compute simple
statistics of collections of patterns in several domains of numeral recognition. We focus on
metrics that scale well with the number of samples and with the number of features. Unlike
the metric properties in Ho and Basu [1], these metrics describe only global aspects of the class
and style distributions, and neglect fine geometric details of the class boundaries.We compute
metrics only on the feature space, as opposed to the data space of bitmaps.
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Statistical classification algorithms are often based on the assumption of multimodal mix-
tures of multivariate Gaussian distributions in feature space. Such distributions can be uniquely
specified by their first- and second-order statistics. For d features (i.e., a d-dimensional feature
space), there are O(d) first-order statistics (mean vectors) and O(d2) second-order statis-
tics (covariance matrices). With values of d in the 10 to 256 range and tens of thousands of
samples per class, complete higher-order statistics cannot be estimated reliably. Furthermore,
there is a dearth of parametric multivariate distributions that can be specified in terms of arbi-
trary frequencies of triples of variables, because there is no convenient structure, analogous to
the covariance matrix, for estimating and specifying O(n3) dependences among n variables.
Therefore, we confine our attention to metrics that can be expressed in terms of only first- and
second-order population, class, and subclass statistics, i.e., conditional means and covariance
matrices.

We apply the proposed metrics to a set of 30,000 printed digits of six fonts, scanned at
300 dpi (Fig. 9.1), and to two sets of hand-printed digits (Fig. 9.2), SD3 (42,698 samples) and
SD7 (11,495) samples), from the National Institute of Standards and Technology (NIST). For
most of the analysis, SD3 and SD7 were merged to assure stable estimates of the distributions
of the entire sample set and of each class. The features are localized, directional, blurred
feature vectors [2], with 64 and 100 dimensions, respectively. These time-tested features are
based on eight chain-coded, directional edge-detectors applied in each of a set of rectangular
overlapping zones superimposed on the size-normalized bitmaps of the patterns.

Fig. 9.1. Samples from machine-printed
numeral database (originals printed at 6 pt,
scanned at 300 dpi).

Fig. 9.2. Samples from handwritten nu-
meral database. Each row corresponds to
a different writer. The top four writers are
from SD3 and the bottom four from SD7.

To remove the effects of the arbitrary means, variances, and statistical correlation of these
features, the printed and hand-printed feature data are separately subjected to principal com-
ponents analysis (PCA). The original features are projected on the eigenvectors, then shifted
and scaled, resulting in 64-dimensional and 100-dimensional distributions with zero means
and identity covariance matrices. The order of the eigenvalues is retained; in experiments on
lower-dimensional feature spaces, we select the PCA features with the largest eigenvalues.

The above preprocessing scheme is illustrated in Figure 9.3. It allows comparing data
with continuous-valued features from different application areas. The preprocessing does not
require labeled data and is applied to the entire data set, regardless of any subsequent sepa-
ration into training and test data. In the standard configuration, all features have zero mean
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Fig. 9.3. Normalization of feature space. The feature vectors (shown as +) are projected onto
the eigenvectors (V1, V2) of the overall covariance matrix. Then they are standardized to unit
variance, and translated to have mean zero. Hence the resulting feature vectors (X1, X2) have
mean zero and identity covariance matrix.

and unit variance, and they are uncorrelated. Differences between data sets are revealed by the
class- and subclass-conditional distributions.

The means and covariance matrices of the class distributions are obtained by straightfor-
ward maximum likelihood estimation. The corresponding style labels are the font labels for
the printed data. Each font has the same number of samples. The hand-printed digits were
clustered into three clusters per class by the Matlab K-means routine with Euclidian metric.
(Expecting three styles in each class is simply an act of faith; in hand printing, stylistic vari-
ations form a continuum. We restricted the number of clusters to three to ensure that each
cluster has enough samples for stable estimates. Given a fixed number of clusters, it would
probably be better not to assign them to classes uniformly.) Here the style labels are the ar-
bitrary cluster labels. The best of ten runs with different random initializations was retained.
Table 9.7 in section 9.5 shows the sizes of the resulting clusters for each class.

In section 9.2, we examine the surprisingly predictable configuration of the class cen-
troids. In section 9.3, we observe relative concentrations and volumes of samples, expressed
in terms of either the determinants of covariance matrices, or the average distance of patterns
from their centroid. Section 9.4 is an attempt to discover systematic departures from the sym-
metries imposed by the Gaussian assumption. Sections 9.5 and 9.6 posit multiple sources of
patterns that give rise to correlations across patterns that we call style. We ignore throughout
statistical dependence between the labels of adjacent patterns, known in character and speech
recognition as language context.

9.2 Average Radius of the Patterns

We first show that after the standardization described in section 9.1, most of the patterns oc-
cupy a relatively thin spherical shell centered on the origin. Assume that the individual features
are Gaussian. Consider the probability density function (pdf) of the distance from the origin,
Ri , of a single sample Xi, with features xi,j . Ri can be expressed as the sum of the squares
of the d feature values of sample Xi:

R2
i =

n∑
j=1

x2
i,j (9.1)
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The pdf fR2(r2) has mean µR2 = d and variance σ2
R2 = 2d, because the sum of

the squares of d samples from an independent identically distributed (i.i.d.), unit-variance
Gaussian distribution is Chi-square with d degrees of freedom. PCA guarantees only uncor-
related rather than independent features, but uncorrelated Gaussian variables are independent.
The sum is over the features (dimensions), not the samples.

fR(r) =
rd−1e−r2/2

2
d−2
2 Γ (d/2)

, with mean µR =

√
2π1 · 3 · 5 . . . (d − 1)

(d/2 − 1)!2d/2
, for d even (9.2)

The pdf of R, obtained by a transformation of variable from the χ2 distribution, is plotted
in Figure 9.4 for several even values of d. For d = 8, µR = 2.74, which is in good agreement
with the observed average values of 2.75 and 2.78, respectively, over all the samples of the
two data sets. (Lower-case r is the instantiated value of the random variable R. The formula
for odd values of d is slightly more complicated because the gamma function is not reduced
to a factorial.)

pdf of R 
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Fig. 9.4. Probability density function of radius of samples. As explained in the text, the
pdf is related to the Chi-square density. The average distance of the samples from the origin
increases with dimensionality, but the spread of the radii about their average value increases
only slowly. The combined effect means that, at high dimensions, most of the samples are
located in a thin spherical shell.

From the expressions for µR and µR2 , we can see that when d → ∞, µR2/(µR)2 → 1;
therefore, the thickness-to-radius ratio σR/µR of the shell containing the samples converges
to zero. The central limit theorem also justifies this asymptotic result. However, the Gaussian
assumption on the features is necessary for computing the variance of the radius (i.e., the
thickness of the shell) for finite dimensions. Table 9.1 shows expected value µR, the sample

average radius 〈R〉 of the samples, and the observed standard deviation
√

〈R2〉 − 〈R〉2 as a
function of d for both sets of samples. The unexpected increase in the variance with dimen-
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Table 9.1. Predicted and observed values of the average radius R of the samples. The
observed average values of R agree well with the values predicted by the pdfs of Figure 9.4.

Experiment
Theory Machine print Hand print

Average sample Standard Average sample Standard
d µR σR radius deviation radius deviation
8 2.74 0.70 2.75 0.65 2.78 0.51
16 3.94 0.70 3.94 0.67 3.94 0.71
24 4.84 0.70 4.84 0.76 4.82 0.88
50 7.03 0.71 6.98 1.13 6.96 1.23

sionality is puzzling. We will next make use of the predicted and observed regularity of the
average radius to predict the configuration of the class centroids.

Before considering the class centroids, we discuss the difference between symbolic and
natural patterns. Symbolic patterns are interpreted according to some alphabet intended for
communicating messages. Examples are printed and hand-printed digits and letters of alpha-
betic scripts (Roman, Cyrillic, Hangul), shorthand alphabets, glyphs designed specifically for
ease of machine reading (OCR fonts and Apple-Newton Graffiti), and the phoneme repertory
of various languages. Communication symbols have either evolved, or were engineered, to
maintain high separation between classes. We have no reason to believe that natural objects
exhibit this property.

Given finite resources for producing each symbol (size and stroke-width limitations for
print [3], limited ability to manipulate a stylus for hand print [4, 5, 6], energy budget, and a
fixed articulatory musculature for phonemes [7]), we would expect the distance between any
pair of classes to be approximately the same. (If it weren’t, then it would be possible to modify
the symbols to further separate the closest pair of classes at the cost of reducing the separation
between distant pairs.) “Appropriate” features would maintain this equidistance property. The
ten digits in a variety of scripts suggest that in a given alphabet most pairs are, in fact, roughly
equally distinguishable (Fig. 9.5). Exceptions may occur for very high frequency symbols,
such as 0, 1, and 2 (according to Benson’s law, these digits account for 60% of all the leading
digits in numerical fields [8, 9]), e in written English, and schwa in many spoken languages.
An information-theoretic justification based on maximal entropy would, of course, also have
to take into account linguistic context.

Arabic      

Devnagari 

                                                            Bengali 

Fig. 9.5. Digits of different scripts.

If most of the samples were confined to a thin spherical shell, as argued above, then we
would expect that the class centroids will be nearly equidistant from the origin. (The radii
Rc of the class centroids are slightly smaller than the average sample radius 〈R〉 because the
spread of the samples is orthogonal to the radii of the class centroids.) Further, if the c class
means are equidistant from each other and are at the same radius 〈Rc〉 from the origin in
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d-dimensional space, then they must form a c-dimensional regular tetrahedron with edges of
length ed:

ed =
〈R〉 sin (arccos d−1)

sin (π − 1/2(arccos d−1))
, where ed −→

d→∞

√
2〈Rc〉 (9.3)
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Fig. 9.6. The distance between class centroids is uniform. Machine-printed data on the left,
hand-printed on the right. The distance between same-class pairs is zero.

Figure 9.6 is a plot of the intercentroid distances in 50-dimensional space. There appears
to be little variation between them. Figure 9.7 shows the ratio of the difference between the
largest and smallest interclass distances (i.e., the Euclidian distances between the 45 pairs
of class centroids), divided by the median interclass distance. This ratio is a very rigorous
measure of uniformity. We see that for d = 50, the largest deviation from the median value is
less than 20% in both hand-printed and machine-printed data.

The average values of Rc for the ten classes are 2.51 and 2.75, respectively, for the two
data sets (d = 50). From these values we can predict an interclass separation ed of 3.58 and
3.92, whereas the observed average values are 3.75 and 4.10, respectively. Although the ob-
served pairwise distances are slightly larger than predicted (because the class centroids are
not all at exactly the same distance from the origin), it is clear that the pairwise distances are
quite uniform in high dimensions. This confirms our tetrahedral assumption. Note that while
the convergence of the sample configuration to a thin shell in high dimensions is a universal
law (the central limit theorem) given random feature perturbations, the equidistance property
of the class means is a consequence of the type of classification problem that we have posed.

It is impossible to place more than (d+1) equidistant points in d-dimensional space. We
therefore cannot expect the tetrahedral conjecture to be satisfied for d < 9. With increas-
ing d, the class separation grows and its variance among the class-pairs decreases. However,
the rate of increase in the separation of the classes tapers off as more features are added, in
conformance with the Hughes phenomenon [10].

Since the radius of the samples about their class centroid is also the sum of indepen-
dent variables, each class distribution is also a thin shell, with an average radius of rc about
the class centroid. The radius vector Rc to each class centroid is orthogonal to the subspace
spanned by the samples in the remaining dimensions, and therefore obeys the Pythagorean
equality R2 = r2

c + R2
c . The pairwise distance ed is given by equation (9.33). Therefore,
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Fig. 9.7. Ratio of range of distances between class centroids to their median distance. The
range is the difference between the maximum and the minimum separation of the 45 pairs
of class centroids. The ratio of this range over the median interclass distance is plotted as a
function of feature-space dimensionality. A low ratio means that the class centroids are located
near the vertices of a regular simplex.

Table 9.2. Comparison of predicted and observed values of sample radii.

Machine-printed Hand-printed

d µR σR 〈Rc〉 〈rc〉
√

〈Rc〉2 + 〈rc〉2 〈R〉 〈Rc〉 〈rc〉
√

〈Rc〉2 + 〈rc〉2 〈R〉
8 2.74 0.70 2.31 1.44 2.73 2.75 1.99 1.90 2.75 2.78
16 3.94 0.70 2.58 2.95 3.92 3.94 2.31 3.16 3.91 3.94
24 4.84 0.70 2.65 4.02 4.81 4.84 2.41 4.15 4.80 4.82
50 7.03 0.71 2.75 6.39 6.96 6.98 2.51 6.49 6.96 6.96

d dimensionality
µR theoretical mean radius
σR theoretical stardard deviation of radius
〈Rc〉 average centroid radius of each class
〈rc〉 average radius of samples of each class about class centroid
〈R〉 average radius of all the samples about the grand centroid

in standardized feature space, any of three single parameters can describe the configuration:
(1) the average distance 〈Rc〉 of the class centroids from the grand (overall) centroid, or (2)
the average distance 〈rc〉 of the samples from their own class centroid, or (3) average sep-
aration 〈ec〉 of the class centroids. These parameters depend on the features used. Once we
know any one of them, we can compute the average separation of the class centroids and the
average overlap of the class shells. These relations hold up surprisingly well across a broad
range of dimensionality for both hand-printed and machine-printed data (Table 9.2). Figure
9.8 illustrates the putative d-dimensional configuration.

The disposition of the subclass centroids about the class centroids is not tetrahedral, as can
be observed from Figures 9.9a and 9.9b. This is not surprising, because for communication
purposes there is no real premium in being able to recognize style. Nevertheless, there are
secondary problems like font and writer recognition where it is desired to discriminate styles
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Fig. 9.8. Class configurations in feature space. The radii of the samples from their class cen-
troids are orthogonal to the radii of the class centroids from the origin. The pairwise distance
between class centroids can be computed from either.

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9

Class Label

R
at

io

8-D
16-D
24-D
50-D

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9

Class Label

R
at

io

8-D
16-D
24-D
50-D

Fig. 9.9a. Ratio of range of distances
between cluster centroids to their me-
dian distance (machine-printed digits).
The range is the difference between the
maximum and the minimum separation of
the 3 pairs of cluster centroids. The ratios
are high relative to those of Figure 9.6 be-
cause separation between cluster centroids
varies much more than between class cen-
troids.

Fig. 9.9b. Ratio of range of distances be-
tween cluster centroids to their median
distance (hand-printed digits). The sepa-
ration of the cluster centroids is not even
approximately constant as in the machine-
printed data.
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rather than classes. We have found that the principal components that discriminate between
classes are also most effective in separating styles [11].

Our observations are summarized in Table 9.3, which shows the parameters that character-
ize our data sets in low-dimensional and in high-dimensional feature space. Table 9.3 indicates
clearly that the separation of the class centroids is higher, and the class distributions are more
compact, for machine print than for handprint.

Table 9.3. Parameters for two data sets in 8-d and in 50-d.

Data d 〈R〉 〈Rc〉 〈rc〉 〈e〉
MP 8 2.7 2.3 1.4 3.5
HP 8 2.7 2.1 1.9 3.0
MP 50 7.0 2.8 6.4 4.7
HP 50 7.0 2.5 6.5 3.7

9.3 Class Distributions

The determinant of the covariance matrix is a measure of the volume of a distribution. If the
Gaussian assumption held, then the square root of the determinant would be proportional to
the volume of the feature space that holds all the samples within one standard deviation of the
mean. For a 1-d spherical distribution, 50% of the samples are within 0.6 standard deviations
from the mean. For 8-d, 16-d, and 24-d, the corresponding values are 2.7, 3.9, and 4.8 standard
deviations. We have computed the determinants of classes and subclasses in both data sets. We
also recorded the average distance 〈rc〉 and mean square distance 〈r2

c〉 of the samples from
their class centroid.

If the class distributions were spherical like the overall distribution, then the expected
squared radius µr2

c
of the samples could be computed from |Σc|, the determinant of their

covariance matrix, and vice versa. As was seen in section 9.2, the expected squared radius of
a zero-mean d-variant spherical distribution with components of variance σ2 is µr2

c
= dσ2.

Also σ2 = |Σ|1/d. Therefore √
µr2

c
=

√
d|Σc|1/2d. Figure 9.10 plots

√〈r2
c〉/

√
d〈|Σc|〉1/2d

against d for both data sets. (The average is taken over all samples and classes and that of the
determinants over the classes.) The ratio is greater than unity; therefore, the class distributions
must be somewhat flattened. A more detailed examination shows that the above ratio is similar
for all classes, with less than 5% difference for d = 50. The flattening increases with the
dimensionality. We may imagine the class distributions as saucers of approximately the same
size located at the vertices of a tetrahedron (Fig. 9.8).

Feature space, like the physical Universe, is very sparsely populated. We observed three
volumes spanned by all the samples, by the class distributions, and by the subclass (class-style)
distributions. Each distribution is assumed to have hyperellipsoidal equiprobability contours.
The volume of the hyperellipsoid at a given probability density is proportional to the square
root of the determinant of the corresponding covariance matrix. We compared three measures:
the volume of all the samples, the sum of the volume of samples from each class, and the
sum of the volume of samples from each subclass represented by the square root of the grand
covariance matrix, the sum of the square roots of determinants of the class-conditional covari-
ance matrix, and the sums of the square roots of the determinants of the subclass-conditional
covariance matrices respectively. The values in Table 9.4 are the ratios of these different mea-
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Fig. 9.10. The ratio of mean-square radius of the samples (distance from their class cen-
troid) to value predicted under the spherical assumption from the determinant of the
class covariance matrix. (a) Machine-printed samples. (b) Hand-printed samples.

sures in 8-dimensional feature space. Ratios of the same order of magnitude are obtained by
computing the volumes of hyper-spheres according to the average radii. We conclude that
there is a lot of empty space between classes, but much less between sub-classes.

Table 9.4. The ratios of the square roots of determinants of different covariance matri-
ces.

Data
√|Σg|/∑C

c=1

√|Σc| ∑C
c=1

√|Σc|/∑C
c=1

∑K
k=1

√|Σc,k|
MP 8.7 1.4
HP 283 3.5

Σg grand covariance matrix
Σc class-conditional covariance matrix
Σc,k class-style-conditional covariance matrix

The grand covariance matrix is the sum of the covariance matrices of the class mean vec-
tors and of all the class-conditional covariance matrices. Similarly, for each class, the class-
conditional covariance matrix is the sum of the covariance matrix of the subclass mean vectors
and of all the subclass-conditional covariance matrices. These relationships are schematically
illustrated in Figure 9.11. This figure portrays the relationship of equiprobability density con-
tours of 3 classes and 12 subclasses in two dimensions.

Classes are of course most clearly distinguished from one another by their mean vectors.
But are their covariance matrices also highly class-dependent? To answer this question, we
compared pairs of estimated class-conditional covariance matrices under the assumption that
they specify the feature dependences completely, i.e., that they induce Gaussian feature densi-
ties. For these comparisons we used two common similarity measures for probability densities,
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e

RC

R

Fig. 9.11. Diagram of class and subclass geometry. The large solid circle passes through the
three class centroids, located at the apexes of an equilateral triangle. The small solid circles
pass through the centroids of the four subclasses of each class. The dotted and dashed circles
represent equiprobability contours corresponding to the overall, class, and subclass covariance
matrices.

specialized to Gaussian densities: the Bhattacharyya [12] and the Kullback-Leibler divergence
[10].

The Bhattacharyya (Bhatt) distance between two distributions p(X) and q(X) is defined
as

DB(p(X); q(X)) = − ln

∫
ϕ

[p(X)q(X)]
1
2 dX (9.4)

where ϕ is the feature space containing all samples.
Between two Gaussian distributions, p(X) = N(X; µp, Σp), q(X) = N(X; µq, Σq), it

is

DBN (µp, Σp; µq, Σq) =
1

8
(µp − µq)

T [
Σp + Σq

2
]−1(µp − µq) +

1

2
ln

|Σp+Σq

2
|√|Σp||Σq|

(9.5)

The Kullback-Leibler (KL) divergence for two distributions p(X) and q(X) is

KL(p(X); q(X)) =

∫
ϕ

p(X) ln
p(X)

q(X)
dX (9.6)

and for two Gaussian distributions, p(X) = N(X; µp, Σp), q(X) = N(X; µq, Σq), it is

KLN (µp, Σp; µq, Σq) =
1

2
ln

|Σq|
|Σp| +

1

2
Tr(Σ−1

q Σp) +
1

2
(µp − µq)

T Σ−1
q (µp − µq) − d

2
(9.7)

Table 9.5 shows the KL and Bhattacharyya distances (computed from the sample means
and sample covariance matrices) between class-conditional distributions of selected sets of
features for both hand-printed and machine-printed data. Comparing the low values of the
distances in the top part of the table to the high values in the two bottom parts, it appears
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Table 9.5. Divergence by class and by feature set.

Machine-print Hand-print
Configration Feature KL Bhatt KL Bhatt

pairs divergence divergence divergence divergence
mean std dev mean std dev mean std dev mean std dev

Different class 1-8 8.30 7.72 1.00 0.25 4.60 2.40 0.70 0.22
Same features 9-16 3.80 2.38 0.60 0.19 2.30 1.30 0.40 0.13

17-24 3.20 2.12 0.50 0.15 1.60 0.91 0.30 0.10
43-50 1.20 0.82 0.20 0.12 0.60 0.39 0.10 0.07

Same class 1-8 9-16 35.70 10.99 1.80 0.22 10.50 5.51 0.90 0.26
Different features 1-8 17-24 50.20 18.22 2.10 0.30 10.50 4.26 1.00 0.21

1-8 43-50 54.20 23.10 2.20 0.25 10.80 3.72 0.10 0.20
Different class 1-8 9-16 43.50 26.13 1.90 0.45 10.10 6.02 0.90 0.29

Different features 1-8 17-24 56.90 35.28 2.10 0.50 11.80 7.82 1.00 0.36
1-8 43-50 57.50 36.21 2.20 0.55 12.30 7.29 1.00 0.37

that the covariance matrix depends more on the feature set than on the class. With a given
feature set, all of the classes will have similar covariance matrices. Therefore, a good estimate
of the covariances can be obtained by pooling samples from all classes, while estimating the
variances separately for each class. This may explain the relative success of classifiers based
on an average covariance matrix and on covariance matrix regularization [13].

Fig. 9.12. The co-occurrence of two shapes, which leads to positive correlation between
the corresponding features, depends more on the nature of the features than of the
classes.

Figure 9.12 suggests why the covariance matrices depend more on the feature set than on
the individual classes. Two features are shown, both responses to directional edge detectors.
Such complementary gradients are likely to be present or absent at the same time, regardless
of the class. Similar arguments can be made for many other types of features.
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9.4 Departures from the Gaussian Model

The patterns are not distributed symmetrically about their class means. The usual measure of
asymmetry is the coefficient of skew of the distribution. It is zero for a Gaussian. We project
the patterns of each class onto the vector from the grand centroid (origin) to the class centroid.
Figure 9.13 shows the distribution of these projected patterns in each class. Table 9.6 lists the
coefficient of skew of these patterns. The negative values indicate a long tail towards the grand
centroid. The machine-printed data also exhibit negative, though smaller, coefficients of skew.

Table 9.6. Coefficients of skew for hand-printed data.

Class 0 1 2 3 4 5 6 7 8 9 Features
Skew −0.46 −0.91 0.03 −0.83 −0.27 0.18 −0.47 −0.55 −0.76 −0.38 2

−0.66 −0.67 −0.09 −0.56 −0.43 −0.58 −1.03 −0.80 −0.45 −1.08 8
−0.78 −0.95 −0.29 −0.46 −0.65 −0.72 −0.59 −0.13 −0.30 −0.80 16
−0.93 −0.79 −0.36 −0.28 −0.48 −0.68 −0.40 −0.19 −0.29 −0.89 24
−0.87 −1.08 −0.32 −0.46 −0.45 −0.84 −0.53 −0.55 −0.32 −0.68 50

Figure 9.14 shows some samples near the median and at the extreme values of the class
distribution projected onto the vector from the origin to the class centroid. The variability of
the patterns closer to the grand centroid is greater than that of the patterns far away. We have
observed earlier that the error rate of a quadratic discriminant varies by a factor of five de-
pending on which half of the patterns of each class is used for estimating the class-conditional
covariance matrices [11]. These observations may eventually also lead to improved methods
of regularization for estimating covariance matrices.

9.5 Single-Class Style

We now consider patterns labeled by source as well as by class. Instead of the distribution
of all the samples of a class, we observe class- and source-conditional properties. We have
already observed in section 9.3 that the volume occupied by samples partitioned either by
clustering or by font is much less than the volume spanned by all the samples.

In this section we use entropy as a more precise measure of source consistency. Single-
class style is the shape consistency of a single class among the samples from each source.
For handwriting, sources usually correspond to writers, so in the rest of this section we refer
specifically to writers rather than to generic sources. Our handwritten data sets contain about
100 isolated digits from each of 500 writers. They were partitioned, as mentioned, into three
clusters for each class. How consistent are the writers? Do most of the digits of each writer
tend to fall into a single cluster, indicating strong single-class style?

Note that style is not a property of a single writer, but of a whole group of writers. Even if a
single writer always wrote a particular digit in the same way, without looking at the other writ-
ers we could not know whether it was the only way of writing this digit. If 90% of the writers
always cross their sevens, then there is less style than if each writer is completely consistent,
but half cross their sevens and half don’t. The proposed measure reflects this consideration.

Quantification of Single-Class Style

To quantify single-class style, we first cluster the N feature vectors of M writers of a sin-
gle digit class c into K clusters. (We do not use a subscript to denote the class, because all
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Fig. 9.13. Histogram of the distribution of the patterns of each class projected onto the
vector from the grand centroid to the class centroid in 50-dimension feature space. The
horizontal axes are labeled in units of standard deviation of the overall standardized sample
distribution.



9 Simple Statistics for Complex Feature Spaces 187

Fig. 9.14. For each class, from top to bottom: patterns nearest the grand centroid, near
the class median sample, and farthest from the grand centroid. The patterns on the “out-
side” appear much more consistent. The patterns near the origin, and therefore near other
classes, are more likely to be confused.
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of the calculations are performed separately for each class.) We record Nm,k, the number of
samples for each writer and cluster. For writer m with Nm samples of the digit class under
consideration, the writer-class-style probability vector is

pm = (pm,1, pm,2, . . . , pm,K) (9.8)

where pm,k = Nm,k/Nm, for m = 1, 2, . . . , M , k = 1, 2, . . . , K .
We can now calculate the writer-class entropy for each writer:

Hm = −
K∑

k=1

pm,k log pm,k (9.9)

If all the samples of a digit class for a specific writer are assigned to the same cluster, then
this writer’s entropy is zero. That means that this writer has maximal single-class consistency.
In contrast, the writer entropy reaches the maximum value of log2 K for a writer who has
K equally probable variations in writing the same digit. Such a writer does not have a stable
single-class style for the observed digit. The average writer-class entropy is defined as

Haverage =
1

M

M∑
m=1

Hm (9.10)

Both the writer-class entropy Hm and its average value Haverage over all writers depend on
the underlying source probability distribution (i.e., the number of samples from all writers
in each cluster), as well as on the amount of style. To eliminate the effects of the source
distributions, we compute as a normalizing factor the class entropy Hc:

Hc = −
K∑

k=1

pk log2 pk for k = 1, 2, . . . , K (9.11)

where pk = N(k)/N . The class-style membership N(k) is the sum of the class-style as-
signments Nm,k over all writers, and N is the number of samples of this digit class from all
writers. Since the entropy function is convex, Haverage is less than or equal to Hc.

For an infinite number of samples per class per writer, the amount of single-class style is
indicated by the difference between the average writer-class entropy and the class entropy. A
large difference indicates strong single-class style for most writers.

Suppose that we cluster the samples of 100 writers into three clusters corresponding to
their styles. The class-style probability vector p = (p1, p2, p3) = (0.5, 0.3, 0.2), and the
class entropy is

Hc = −(0.5 log2 0.5 + 0.3 log2 0.3 + 0.2 log2 0.2) = 1.49 (9.12)

If each writer were perfectly consistent, then there would be 50 writers with every sample in
cluster 1, 30 writers with every sample in cluster 2, and 20 writers with every sample in cluster
3. The average writer-class entropy would be zero. In contrast, with no style, every writer
would have a mixture of samples in the ratio 5:3:2, and Haverage = Hc. We will compare the
empirically computed average entropy Haverage with its maximum possible value, the class
entropy Hc, as a measure of single-class consistency.

However, first we must compensate for small-sample effects. With a finite number of
samples, even if the writers did not exhibit single-class style, the cluster assignments would
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not all be exactly proportional to the elements of the class-style probability vector because
of sampling fluctuations. These sampling fluctuations decrease the average entropy and may
result in a significant difference between the average entropy and the class entropy even in the
complete absence of single-class style. To account for the finite sample size (10 samples per
class per writer), we compute the expected class entropy E[H] under the multinomial sampling
distribution P [n1, n2, . . . , nK ; p1, p2, . . . , pK ]:

P [n1, n2, . . . , nK ; p1, p2, . . . , pK ] =
n!∏K

k=1 nk!

K∏
k=1

p
nk
k pk =

N(k)

N
, n =

∑
nk =

N

M

(9.13)
where N(k) and N are the cluster and class memberships defined earlier.

We consider all the cases of the partitioning of n samples among K clusters and obtain
the class entropy for each case:

H[n1, n2, . . . , nK ] = −
K∑

k=1

nk

n
log2

nk

n
(9.14)

The expected class entropy is then obtained by summing the product of the multinomial
probability and the class entropy for every possible cluster assignment vector:

E[H] =
n∑

n1=0

n−n1∑
n2=0

. . .

n−n1−...−nK−1∑
nK=0

P [n1, n2, , nK ; p1, p2, . . . , pK ]H[n1, n2, . . . , nK ]

(9.15)

Table 9.7. Expected and average entropy for all classes of hand-printed digits. If there
were no single-class style, the ratio of the average entropy to the expected entropy would be
near 1. (The entropies are normalized by dividing them by log23, but this does not affect their
ratio.)

Cluster Membership Haverage

Class c N(1) N(2) N(3) E[H] Haverage E[H]
0 1179 1874 1391 0.89 0.52 0.58
1 2818 1393 625 0.77 0.39 0.51
2 1088 1459 1723 0.89 0.60 0.67
3 1100 1699 1701 0.89 0.58 0.65
4 1512 1822 769 0.85 0.45 0.54
5 912 1488 1312 0.87 0.48 0.55
6 950 1706 1547 0.88 0.47 0.54
7 811 1960 1710 0.85 0.49 0.57
8 1548 1344 1345 0.91 0.50 0.56
9 843 1672 1668 0.86 0.49 0.57

The expected entropy predicts the average entropy when there is no single-class style.
We can judge how much single-class style is present in a data set according to the ratio of
the average entropy to the expected entropy. If there were no single-class style, we would
expect the average entropy to be close to the expected entropy. We have verified that when the
writer identities of the samples are shuffled randomly, their ratio is over 0.98 for all classes.
In contrast, the actual ratios are between 0.5 and 0.7, as seen from Table 9.7, which lists the
average and expected entropy for K = 3 and 400 writers in the NIST SD3 data set. We also
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see from the table that “1” has least entropy while “2” has most. This means that individual
writers exhibit more variability in writing the digit “2” than “1.” We summarize this section
with a diagram:

                           Writer statistics   Cluster statistics

[ ]

1 amount of single-pattern style
[ ]

m C

average

average

H H

H E H

H

E H
− =

9.6 Multiclass Style

Multiclass style derives from the correlation between the features of different samples, of the
same or different class, from the same source. For now, consider only two patterns at a time,
although the concept of multiclass style can be extended to an arbitrary number of patterns.
We assume that all the samples have been clustered, as in the previous section. Now observe
the cluster assignments of pairs of samples from the same writers. If the cluster assignments
for samples of class i and class j of the same writer are statistically independent, then we can
affirm that there is no multiclass style for class-pair (i, j).

Table 9.8 shows a toy example for the digits 5 and 6 with only ten writers and three
clusters. There are exactly ten samples per class per writer. It is clear that writers who favor
cluster 2 for digit 5 tend to favor cluster 3 for digit 6, while writers whose 5 usually falls into
cluster 3 tend to write a 6 that often falls into cluster 1. Finally, fives of cluster 1 often happen
to be associated with sixes of cluster 2. The numbering of the clusters is completely arbitrary.

A convenient measure of nonlinear statistical dependence is the mutual information (MI)
between two variables X and Y with joint discrete probability distribution PX,Y (x, y). (Con-
sider X the cluster assignment for the digit 5, and Y the cluster assignment for digit 6. For
each writer, X and Y can each take on one of three possible values.) The marginal distribu-
tions PX(x) and PY (y) can be computed by summation. Then

MIX,Y =
∑
x,y

PX,Y (x, y) log2

PX,Y (x, y)

PX(x)PY (y)
(9.16)

We assign to every writer a cluster assignment vector (X, Y ), X = 1, 2, or 3; Y = 1, 2, or
3, according to where (in which cluster) most of that writer’s digits 5 and digits 6 fall. We
count the number of each of the nine possible (x, y) combinations. Dividing these sums by
the number of writers yields estimates of the probabilities PX,Y (x, y) required to compute the
mutual information. Note that here again we have dropped the class subscripts, because the
mutual information for every pair of classes is computed independently.
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Table 9.8 shows cluster probabilities for each writer and the resulting style assignments.
As mentioned, in this example, the cluster assignments are based simply on the dominant
cluster of each writer and class, i.e., the cluster with the largest number of samples. Ties are
broken randomly. The marginal and joint probabilities of X and Y , and the terms of the MI ,
are displayed below. The value 0.97 for the MI in this example is the sum of the individual
terms. The minimum value of MI , when X and Y are independent, is 0. The maximum value
of MI is min[HX , HY ], which is log2 3 = 1.6 when all the cluster assignments are equally
probable.

Table 9.8. An example of two-pattern style for digits 5 and 6.

Writer specific cluster membership, probability, and assignment
Number of samples Writer-specific Writer-specific

falling in each cluster cluster probability cluster assignments
Class 5 6 5 6 5 6

Cluster 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Writer 1 1 8 1 2 0 8 0.1 0.8 0.1 0.2 0.0 0.8 0 1 0 0 0 1
Writer 2 7 2 1 1 6 3 0.7 0.2 0.1 0.1 0.6 0.3 1 0 0 0 1 0
Writer 3 0 1 9 8 1 1 0.0 0.1 0.9 0.8 0.1 0.1 0 0 1 1 0 0
Writer 4 2 1 7 7 3 0 0.2 0.1 0.7 0.7 0.3 0.0 0 0 1 1 0 0
Writer 5 1 9 0 1 2 7 0.1 0.9 0.0 0.1 0.2 0.7 0 1 0 0 0 1
Writer 6 6 3 1 0 10 0 0.6 0.3 0.1 0.0 1.0 0.0 1 0 0 0 1 0
Writer 7 3 7 0 1 0 9 0.3 0.7 0.0 0.1 0.0 0.9 0 1 0 0 0 1
Writer 8 8 1 1 2 8 0 0.8 0.1 0.1 0.2 0.8 0.0 1 0 0 0 1 0
Writer 9 1 0 9 0 10 0 0.1 0.0 0.9 0.0 1.0 0.0 0 0 1 0 1 0
Writer 10 10 0 0 9 1 0 1.0 0.0 0.0 0.9 0.1 0.0 1 0 0 1 0 0

39 32 29 31 41 28 0.39 0.32 0.29 0.31 0.41 0.28 4 3 3 3 4 3

Marginal probability P(x), P(y) and joint probabilities P(x,y)
Joint probability P(x,y) P(y)-Class 6 P(x) (Class 5)

X-Class 5 1 2 3
1 0.1 0.3 0.0 0.4
2 0.0 0.0 0.3 0.3
3 0.2 0.1 0.0 0.3

P(y) (Class 6) 0.3 0.4 0.3 1.0

Mutual Information MI = 0.97
P(x,y)logP(x,y)/[P(x)P(y)] 1 2 3

1 −0.02 0.27 0
2 0 0 0.52
3 0.23 −0.03 0

It is possible to quantize the cluster assignments more finely. Even for only pairs of sam-
ples, the number of combinations of the values of X and Y grows quadratically. One soon
reaches the point where there are not enough samples for accurate estimates of the joint prob-
abilities.
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Table 9.9. Observed MI for hand-printed class pairs.

    Class 
MI 0 1 2 3 4 5 6 7 8 9

0 2.29 0.49 0.26 0.34 0.41 0.26 0.52 0.49 0.34 0.49 
1  1.93 0.31 0.44 0.63 0.29 0.52 0.60 0.44 0.69 
2   2.31 0.25 0.21 0.13 0.24 0.30 0.18 0.24 
3    2.31 0.37 0.17 0.30 0.44 0.28 0.39 
4     2.21 0.24 0.42 0.50 0.37 0.61 
5      2.32 0.24 0.25 0.23 0.22 
6       2.25 0.53 0.34 0.50 
7        2.19 0.33 0.65 
8         2.37 0.35 
9          2.24 

Table 9.9 shows the observed values of the MI for every pair of classes in SD3. We gener-
ated 64 possible cluster assignments for each digit-pair by quantizing the cluster probabilities
at two levels each, resulting in eight assignments per writer per class. Many of these assign-
ments never occur in our data. The quantization threshold was the corresponding cluster prob-
ability. More than one style can be assigned to a writer if he is inconsistent. We observe that
the values on the diagonal, i.e., for same class pairs, deviate from their maximum possible
value of log2 8 = 3.0 because the clusters don’t contain the same number of samples. We have
verified that when the data is shuffled to eliminate multiclass style, the values of the MI are
always less than 0.1.

9.7 Conclusion

We discussed the configuration of symbolic patterns in feature space. Our conjectures are
based on relatively broad assumptions about sets of independent samples of several classes
generated by multiple sources (i.e., source-conditional independence between the observable
attributes of the patterns). They are supported only by statistics collected on specific features
extracted from scanned printed and hand-printed numerals. We now summarize our findings,
subject to this caveat.

1. Standardizing the pattern vectors to zero mean, identity covariance variables facilitate
comparing data sets, within or across domains, with different patterns, features, and dimen-
sionality.

2. In a standardized feature space, the average radius (distance from the origin) of the
patterns depends only on the number of features. The mean of the radius can be predicted
accurately based on the dimensionality alone. The mean increases faster with dimensionality
than the standard deviation. Therefore, in any standardized high-dimensional feature space,
most of the samples will be contained in a thin spherical shell even if the sample density is
highest at the origin. This phenomenon is a direct consequence of well-known statistical facts.
The optimal decision boundaries, therefore, intersect at the origin of the standardized feature
space.

3. When the feature dimensionality exceeds the number of classes, the centroids of sym-
bolic patterns are located at the vertices of a regular simplex. The observed distribution of
pairwise distances is very peaked and its average value can be predicted accurately from the
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average radius of the class centroids. This can be explained only by the evolution of sym-
bolic patterns toward maximum discriminability, and may not hold for natural patterns. The
equidistance of class centroids may serve as an indication of the merit of a feature set, without
resorting to actual classification.

4. The pairwise distances between subclass centroids obtained by clustering the feature
vectors of each class, or by typeface designations, are not approximately equal, even in high
dimensions, nor could one expect it. Some pairs of styles are likely to be more similar than
others if style labels reflect shape.

5. The average distance of the samples from their own class centroids is about 50% higher
than predicted from the determinants of their covariance matrices under a spherical (identity
covariance matrix) assumption. The class distributions, therefore, are somewhat “flattened.”
However, the ratio of the predicted distances to observed distances is fairly uniform across
classes, suggesting that the distributions may be similar, except for scale.

6. The divergence between pattern distributions of the same class with different feature
sets is significantly larger than between different classes with the same feature set. We ex-
pect the class-conditional correlation matrices to be quite similar in any given feature space,
because they are determined more by the feature set than by the class. This holds for both
Kullback-Leibler and Bhattacharyya distance, although these two measures of the similarity
of two pdfs are not highly correlated. These observations bear on the regularization of covari-
ance matrices in small-sample conditions.

7. The class-conditional distributions of symbolic features are asymmetric. In training
a classifier, one may safely ignore samples on the “far” side of their class centroids, which
exhibit less variation. Support vector machines, of course, do just that.

8. The amount of single-class style in a data set, i.e., within-source consistency, can be
quantified by comparing the observed average entropy of style assignments to the expected
entropy of an appropriate multinomial distribution. Single-class style can be exploited for
classification through adaptation [14, 15, 16].

9. The amount of multiclass style, i.e., the statistical dependence between features ex-
tracted from samples of different classes from the same source, can be quantified by the mutual
entropy of the style assignments. Multiclass style can be exploited through style-consistent
classification [17, 18].

We intend to conduct similar measurements on natural patterns. We hope that a growing
collection of such measurements on diverse multisource collections of samples will provide
insight into the intrinsic complexity of classification tasks.
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List of Symbols

C The number of classes
DB(·) Bhattacharyya distance between two distributions p(X) and q(X)
DBN (·) Bhattacharyya distance between two Gaussian distributions
E[H] Expected class entropy for samples of a class sampled from

multinomial distribution
Haverage Average writer-class entropy
Hc Class entropy
Hm Writer-class entropy for writer m
H[n1, n2, . . . , nK ] Class entropy for a cluster assignment vector [n1, n2, . . . , nK ]
K Number of styles
KL(·) Kullback-Leibler divergence for two distributions p(X) and q(X)
KLN (·) Kullback-Leibler divergence for two Gaussian distributions
M Number of writers
MIX,Y Mutual information between two variables x and y
N Number of patterns of a class from all writers
N(X; µ, Σ) Normal distribution with mean µ and covariance matrix Σ
Nm Number of patterns within a class for writer m
Nm,k Number of patterns within a class for writer m and class-style k
N(k) Class-style membership for class-style k
P Class-style probability vector
PX(x) Marginal probability for variable X
PX,Y (x, y) Joint discrete probability distribution between variable X and Y
Ri Distance of pattern Xi from the origin
Rc Radius of centroid of class c
Xi Instance of the ith random d-dimensional singlet-pattern feature vector
c Instance of a class label
d Dimensionality of the singlet-pattern feature space
ed Length of edges of c-dimensional regular tetrahedron
k Instance of a style label
m Instance of a writer
n Average number of patterns within a class for each writer
nk Number of patterns of class-style k for each writer
[n1, n2, . . . , nK ] Class-cluster assignment vector
p(·) Distribution of samples
pk Probability for class-style k
pm Writer-class-style probability vector for writer m
pm,k Writer-class-style probability for writer m and class-style k
rc Radius of samples of class c from class centroid
r2

c Square radius of samples of class c from class centroid
xi,j The jth feature component of a feature vector Xi

Σc Class covariance matrix
Σc,k Class-style covariance matrix
Σg Grand covariance matrix
ϕ The feature space of all samples
µ Mean
σ Standard deviation
<> Average operation
| · | Determinant of a matrix
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Polynomial Time Complexity Graph Distance
Computation for Web Content Mining

Adam Schenker, Horst Bunke, Mark Last, and Abraham Kandel

Summary. Utilizing graphs with unique node labels reduces the complexity of the maximum
common subgraph problem, which is generally NP-complete, to that of a polynomial time
problem. Calculating the maximum common subgraph is useful for creating a graph distance
measure, since we observe that graphs become more similar (and thus have less distance) as
their maximum common subgraphs become larger and vice versa. With a computationally
practical method of determining distances between graphs, we are no longer limited to using
simpler vector representations for machine learning applications. We can perform well-known
algorithms, such as k-means clustering and k-nearest neighbors classification, directly on data
represented by graphs, losing none of the inherent structural information. We demonstrate the
benefits of the additional information retained in a graph-based data model for web content
mining applications. We introduce several graph representations for capturing web document
information and present some examples of our experimental results, which compare favorably
with traditional vector methods.

10.1 Introduction

In this chapter we consider applying data mining algorithms, such as the k-nearest neighbors
classification algorithm and k-means clustering algorithm, to web document content; this is
known as web content mining. Content-based classification of web documents is useful be-
cause it allows users to more easily navigate and browse collections of documents [1, 2]. Such
classifications are often costly to perform manually, as it requires a human expert to examine
the content of each web document. Due to the large number of documents available on the
Internet in general, or even when we consider smaller collections of web documents, such as
those associated with corporate or university web sites, an automated system that performs
web document classification is desirable in order to reduce costs and increase the speed with
which new documents are classified. Clustering is an unsupervised method that attempts to
organize data items into similar groups, while classification is a supervised learning technique
that aims to assign a specific label to each data item. In web content mining, clustering is
performed in order to arrange web documents into related groups, such as by the topic of
the documents. This has benefits when the classes are not known a priori, such as in web
search engines [3], since it allows systems to display results grouped by clusters (topics), in
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comparison to the usual “endless” ranked list, making browsing easier for the user. Using clas-
sification techniques with these types of systems is difficult due to the highly dynamic nature
of the Internet; creating and maintaining a training set would be challenging and costly. Simi-
larly, for clustering methods, cluster centers, or other representatives used for the clusters, are
required to change over time to reflect the Internet’s constant and rapid influence on language
and emerging new concepts. This process occurs, for example, because the topic associated
with a cluster representative takes on new meanings (e.g., “Java”), or because new concepts
are created that previously had no clusters related to them (e.g., “blogs”). With the arrival of
new training examples, we can create new clusters or update existing ones using methods of
incremental clustering (see [4]).

Traditionally, data mining methods have represented document content with a vector
model, which utilizes a series of numeric values associated with each document. Each value is
associated with a specific term (word) that may appear on a document, and the set of possible
terms is shared across all documents. The values may be binary, indicating the presence or
absence of the corresponding term. The values may also be nonnegative integers, which rep-
resent the number of times a term appears on a document (i.e., term frequency). Nonnegative
real numbers can also be used, in this case indicating the importance or weight of each term.
These values are derived through a method such as the popular inverse document frequency
model [5], which reduces the importance of terms that appear on many documents. Regardless
of the method used, each series of values represents a document and corresponds to a point
(i.e., vector) in a Euclidean feature space; this is called the vector-space model of information
retrieval. This model is often used when applying data mining techniques to documents, as
there is a strong mathematical foundation for performing distance measure and centroid cal-
culations using vectors. However, this method of document representation does not capture
important structural information, such as the order and proximity of term occurrence, or the
location of term occurrence within the document.

To overcome this limitation, we have introduced several methods of representing web
document content using graphs instead of vectors, and have extended existing data mining
methods to work with these graphs. Graphs are important and effective mathematical con-
structs for modeling relationships and structural information. Graphs (and their more restric-
tive form, trees) are used in many different problems, including sorting, compression, traf-
fic/flow analysis, resource allocation, etc. [6] Utilizing graphs allows us to keep the inherent
structural information of the original web document without having to discard information as
we do with a vector model representation. However, until recently, we have not had available
to us mathematical techniques for determining distance between graphs as we have had with
vectors. Thus data mining techniques such as clustering and classification could not be applied
to graphs without creating new mathematical frameworks for dealing with the graphs.

In this chapter we show how the determination of the maximum common subgraph be-
tween a pair of graphs can lead to a numerical distance measure between the graphs [7].
A problem with computing the maximum common subgraph is that this is an NP-complete
problem in the general case. However, it has been shown that when the nodes in the graphs
have unique labels associated with them, the time complexity of finding the maximum com-
mon subgraph becomes polynomial [8]. We introduce several methods of representing web
document content by graphs with unique node labels. We then proceed to describe how these
graphs may be clustered or classified by straightforward extensions to well-known machine
learning algorithms such as k-means or k-nearest neighbors when utilizing graph distance
measures. We also show some examples of some experimental results obtained from using
our graph-based methods.
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The remainder of the chapter is organized as follows. In section 10.2 we discuss the com-
plexity issues related to using graphs in machine learning. We show how the maximum com-
mon subgraph of a pair of graphs can be used to derive a distance measure between the graphs,
and how this computation of the maximum common subgraph can be performed in polynomial
time when the graphs have unique node labels. We describe our graph representations of web
document content, which make use of the unique node label property, in section 10.3. Ver-
sions of the k-means clustering and k-nearest neighbors classification algorithms that utilize
graphs and graph distance measures are presented in Section 10.4. Section 10.5 presents some
examples of results obtained when using these algorithms to perform web content mining on
graph-based data. Conclusions are presented in section 10.6.

10.2 Graph Complexity

10.2.1 Basic Definitions

In this subsection we present some basic definitions related to graph theory. Practically speak-
ing, graphs are used to model some system of entities such that the entities are represented by
nodes in the graph and the relationships present between the entities are reflected in the edges
connecting the nodes. Formally, we define a graph as follows:

Definition 1. A graph G is a 4-tuple: G = (V, E, α, β), where V is a set of nodes (also
called vertices), E ⊆ V × V is a set of edges connecting the nodes, α : V → ΣV is a
function labeling the nodes, and β : V × V → ΣE is a function labeling the edges (ΣV and
ΣE being the sets of labels that can appear on the nodes and edges, respectively). For brevity,
we may abbreviate G as G = (V, E) by omitting the labeling functions.

A graph that is contained within another graph is called a subgraph. Conversely, a graph
that contains another graph is also called a supergraph. Formally, subgraphs and supergraphs
are defined as follows:

Definition 2. A graph G1 = (V1, E1, α1, β1) is a subgraph of a graph G2 = (V2, E2, α2, β2),
denoted G1 ⊆ G2, if V1 ⊆ V2, E1 ⊆ E2 ∩ (V1 × V1), α1(x) = α2(x) ∀x ∈ V1, and
β1((x, y)) = β2((x, y)) ∀(x, y) ∈ E1. Conversely, graph G2 is also called a supergraph of
G1.

When we say that two graphs are isomorphic, we mean that the graphs contain the same
number of nodes and there is a direct 1-to-1 correspondence between the nodes in the two
graphs such that the edges between nodes and all labels are preserved.

Definition 3. Formally, a graph G1 = (V1, E1, α1, β1) and a graph G2 = (V2, E2, α2, β2)
are said to be isomorphic, denoted G1

∼= G2, if there exists a bijective function f : V1 → V2

such that the following conditions are met:

1. ∀x ∈ V1 : α1(x) = α2(f(x))
2. ∀(x, y) ∈ E1 : (f(x), f(y)) ∈ E2 and β1((x, y)) = β2((f(x), f(y)))
3. ∀(f(x), f(y)) ∈ E2 : (x, y) ∈ E1 and β2((f(x), f(y))) = β1((x, y))

Such a function f is also called a graph isomorphism between G1 and G2.

There is also the notion of subgraph isomorphism, meaning that a graph is isomorphic to
a part of (i.e., a subgraph of) another graph:
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Definition 4. Given a graph isomorphism f between graphs G1 and G2 as defined above and
another graph G3, if G2 ⊆ G3, then f is a subgraph isomorphism between G1 and G3.

Graph isomorphism was one of the earliest approaches to graph matching, the procedure
of determining if two graphs are identical to each other. It is not known whether graph iso-
morphism is an NP-complete problem; however, subgraph isomorphism is NP-complete [9].
Clearly, as the number of nodes in the graphs increase, the number of possible matchings to
be checked increases combinatorally. A general procedure for determining subgraph isomor-
phism is given in Ullman [10]. The naive algorithm for graph isomorphism is to maintain a
matrix that indicates which nodes in each graph are compatible; it can require all possible
permutations of matchings to determine if there is an isomorphism. The procedure in Ullman
[10] improves the complexity by pruning the search space.

Graph isomorphism tells us only that there exists an exact match between two graphs
(i.e., that they are identical). It does not give us any indication of similarity between graphs,
only whether they are isomorphic or not. Subgraph isomorphism tells us if one graph appears
as part of another graph. More relaxed approaches to graph matching, inexact graph matching
and graph distance, have been proposed [11, 12]. Inexact graph matching attempts not to
find if two graphs are identical, but rather attempts to find a mapping between the nodes of
two graphs that achieves maximum similarity (a “best” matching). Graph distance approaches
provide a numerical value that approximates the dissimilarity (distance) between two graphs.

Such new methods have become very important for pattern recognition and machine learn-
ing, as they allow us to deal with more robust graph-based data in a manner similar to those
used for simpler vector models. Specifically, they permit algorithms to better tolerate noise
and imperfect data in the graphs. For example, a missing node or edge caused by noise is
not acceptable under graph isomorphism, but may still achieve good results using an inexact
matching approach.

10.2.2 Maximum Common Subgraph

A popular method for determining graph distance is the graph edit distance approach. Edit
distance is a method that is used to measure the difference between symbolic data structures
such as trees [13] and strings [14]. It is also known as the Levenshtein distance, from early
work in error-correcting/detecting codes that allowed insertion and deletion of symbols [15].
The concept is straightforward. Various operations are defined on the structures, such as dele-
tion, insertion, and renaming of elements. A cost function is associated with each operation,
and the minimum cost needed to transform one structure into the other using the operations
is the distance between them. Edit distance has also been applied to graphs, as graph edit dis-
tance [16, 17]. The operations in graph edit distance are insertion, deletion, and relabeling of
nodes and edges. The distance between two graphs is thus the minimum cost needed to edit
one graph into the other by adding, deleting, and renaming nodes and edges.

It has been shown that there is a direct relationship between graph edit distance and the
maximum common subgraph between two graphs [7]. Specifically, the two are equivalent
under certain restrictions on the cost functions. The maximum common subgraph of two graphs
is the largest graph the two graphs have in common, and is defined as follows:

Definition 5. A graph g is a maximum common subgraph (mcs) of graphs G1 and G2, de-
noted mcs(G1, G2), if: (1) g ⊆ G1 (2) g ⊆ G2 and (3) there is no other subgraph g′

(g′ ⊆ G1, g′ ⊆ G2) such that |g′| > |g|.
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In definition 5 above, |g| is usually taken to mean |V |, i.e., the number of nodes in the
graph; it is used to indicate the “size” of a graph. However, in this chapter we use a different
definition of graph size that also takes into account the contribution of the edges in the graphs
(see equation (10.5)). Otherwise, with the traditional definition, a sparsely connected graph
with many nodes is considered larger than a graph with a few nodes but many edges.

Similar to the maximum common subgraph, there is the complementary idea of minimum
common supergraph:

Definition 6. A graph g is a minimum common supergraph (MCS) of graphs G1 and G2,
denoted MCS(G1, G2), if: (1) G1 ⊆ g (2) G2 ⊆ g and (3) there is no other supergraph g′

(G1 ⊆ g′, G2 ⊆ g′) such that |g′| < |g|.
One method for determining the maximum common subgraph is given in Levi [18]; this

approach is to create a compatibility graph for the two given graphs, and then find the largest
clique within it. Another approach involves backtracking search [19].

Following the observation that the size of the maximum common subgraph is related to
the similarity between two graphs, a graph distance measure based on the maximum common
subgraph has been introduced [20]:

dMCS(G1, G2) = 1 − |mcs(G1, G2)|
max(|G1|, |G2|) , (10.1)

where max(x, y) is the usual maximum of two numbers x and y, and | . . . | indicates the size
of a graph (see above). The concept behind this distance measure is that as the size of the max-
imum common subgraph of a pair of graphs becomes larger, the more similar the two graphs
are (i.e., they have more in common). The larger the maximum common subgraph, the smaller
dMCS(G1, G2) becomes, indicating more similarity and less distance. If the two graphs are
in fact identical, their maximum common subgraph is the same as the graphs themselves, and
thus the size of all three graphs is equal: |G1| = |G2| = |mcs(G1, G2)|. This leads to the
distance, dMCS(G1, G2), becoming 0. Conversely, if no maximum common subgraph exists,
then |mcs(G1, G2)| = 0 and dMCS(G1, G2) = 1. This distance measure has been shown
to be a metric [20], and produces a value in [0, 1]. This distance measure has four important
properties. First, it is restricted to producing a number in the interval [0, 1]. Second, the dis-
tance is 0 only when the two graphs are identical. Third, the distance between two graphs is
symmetric. Fourth, it obeys the triangle inequality, which ensures that the distance measure
behaves in an intuitive way. For example, if we have two dissimilar objects (i.e., there is a
large distance between them) the triangle inequality implies that a third object that is similar
(i.e., has a small distance) to one of those objects must be dissimilar to the other. The ad-
vantage of this approach over the graph edit distance method is that it does not require the
determination of any cost coefficients or other parameters. However, the metric as it is defined
in (10.1) may not be appropriate for all applications; for example, the size of the smaller graph
in dMCS makes no contribution to the value of the distance measure, which may be useful to
consider in some instances. Thus other distance measures based on the size of the maximum
common subgraph or minimum common supergraph have been proposed.

A second distance measure that has been proposed by Wallis et al. [21], based on the idea
of graph union, is

dWGU (G1, G2) = 1 − |mcs(G1, G2)|
|G1| + |G2| − |mcs(G1, G2)| . (10.2)

By “graph union” we mean that the denominator represents the size of the union of the two
graphs in the set theoretic sense; specifically adding the size of each graph (|G1| + |G2|)
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and then subtracting the size of their intersection (|mcs(G1, G2)|) leads to the size of the
union (the reader may easily verify this using a Venn diagram). This distance measure behaves
similarly to dMCS . The motivation for using graph union in the denominator is to allow for
changes in the smaller graph to exert some influence over the distance measure, which does
not happen with dMCS , as mentioned above. This measure was also demonstrated to be a
metric, and creates distance values in [0, 1].

Fernández and Valiente [22] have proposed a distance measure based on both the maxi-
mum common subgraph and the minimum common supergraph:

dMMCS(G1, G2) = |MCS(G1, G2)| − |mcs(G1, G2)|, (10.3)

where MCS(G1, G2) is the minimum common supergraph of graphs G1 and G2. The con-
cept that drives this distance measure is that the maximum common subgraph provides a
“lower bound” on the similarity of two graphs, while the minimum common supergraph is
an “upper bound.” If two graphs are identical, then both their maximum common subgraph
and minimum common supergraph are the same as the original graphs and |G1| = |G2| =
|MCS(G1, G2)| = |mcs(G1, G2)|, which leads to dMMCS(G1, G2) = 0. As the graphs
become more dissimilar, the size of the maximum common subgraph decreases, while the
size of the minimum common supergraph increases. This in turn leads to increasing values
of dMMCS(G1, G2). For two graphs with no maximum common subgraph, the distance will
become |MCS(G1, G2)| = |G1| + |G2|. dMMCS has also been shown to be a metric, but
it does not produce values normalized to the interval [0, 1], unlike dMCS or dWGU . Note that
if it holds that |MCS(G1, G2)| = |G1| + |G2| − |mcs(G1, G2)| ∀G1, G2, we can com-
pute dMMCS(G1, G2) as |G1|+ |G2| − 2|mcs(G1, G2)|. This is much less computationally
intensive than computing the minimum common supergraph.

10.2.3 Graphs with Unique Node Labels

As mentioned above, the subgraph isomorphism problem is NP-complete. As finding the
maximum common subgraph requires determining subgraph isomorphism, it is also an NP-
complete problem [8]. However, recently it has become known that for certain classes of
graphs the maximum common subgraph, and thus the graph distance, can be determined in
polynomial time. Specifically, graphs whose node labels are unique can have their maximum
common subgraphs computed in O(n2) time, where n is the number of nodes in the graph [8].
Formally, a graph has unique node labels according to the following definition:

Definition 7. A graph G = (V, E, α, β) has unique node labels if for ∀v1, v2 ∈ V, α(v1) �=
α(v2) unless v1 = v2.

Note that the elements of set V , i.e., the nodes, are always uniquely defined. However,
in the general case, i.e., in a graph without any restrictions, different nodes may carry the
same label. For example, the field of chemistry uses graphs to represent molecules; nodes
correspond to atoms and edges to bonds formed between atoms. A water molecule (H2O)
would have a graph with three nodes: one for oxygen (labeled “O”) and two for hydrogen
(both labeled “H”).

The above result follows from the fact that determining the nodes of the maximum com-
mon subgraphs between two graphs, G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2), each
with unique node labels, reduces to the problem of finding the intersection of two sets, namely
GL1 = {α1(v)|∀v ∈ V1} and GL2 = {α2(v)|∀v ∈ V2}. Similarly the minimum common
supergraph can be computed by taking the union of these two sets. The actual procedure can
be performed as follows:
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1. Determine the set of labels that each of the two original graphs have in common, GLmcs,
by computing the intersection of sets GL1 and GL2 (see above), i.e., GLmcs = GL1 ∩
GL2.

2. For each label L ∈ GLmcs, create a new node N in Vmcs labeled such that αmcs(N) =
L.

3. Determine the edges of the maximum common subgraph Emcs by examining all pairs of
nodes in Vmcs and add edges to Emcs that connect pairs of nodes in both of the original
graphs and that have matching edge labels; the added edge in the maximum common
subgraph will have the same label.

We see that the complexity of this method is O(|V1| · |V2|) for step 1, since we need
only compare each node label from one graph to each node label of the other and determine
whether there is a match or not. Thus the maximum number of comparisons is |V1| · |V2|,
and since each node has a unique label we need to consider each combination only once. For
step 2, the complexity is O(|Vmcs|). The complexity is O(|Vmcs|2) for step 3, since we have
|Vmcs| nodes and we look at all combinations of pairs of nodes to determine if an edge should
be added between them or not:(

|Vmcs|
2

)
=

|Vmcs|!
(|Vmcs| − 2)! · 2!

=
|Vmcs| · (|Vmcs| − 1)

2
< |Vmcs|2. (10.4)

Thus the overall complexity is O(|V1| · |V2| + |Vmcs| + |Vmcs|2) ≤ O(|V |2 + |Vmcs|2) =
O(|V |2) if we substitute V = max(|V1|, |V2|). Note that the case of the minimum common
supergraph is the same, except we change the intersection in step 1 to a union.

Given this result, we introduce graph representations of data that utilize unique node labels
to take advantage of the improved time complexity for determining the maximum common
subgraph, which, in turn, allows for graph distance to be calculated in polynomial time. Our
application domain is web content mining, and our graph representations of web documents
are given in the next section.

10.3 Graph Representations for Web Document Content

In this section we describe methods for representing web document content using graphs with
unique node labels instead of the vector representations that are traditionally used. All rep-
resentations are based on the adjacency of terms in a web document. These representations
are named standard, simple, n-distance, n-simple distance, raw frequency, and normalized
frequency.

Under the standard method each unique term (word) appearing in the document, except
for stop words such as “the,” “of,” and “and,” which convey little information, becomes a node
in the graph representing that document. Each node is labeled with the term it represents.
Note that we create only a single node for each word even if a word appears more than once
in the text. Also, if word a immediately precedes word b somewhere in a “section” s of the
document, then there is a directed edge from the node corresponding to term a to the node
corresponding to term b with an edge label s. We take into account certain punctuation (such
as periods) and do not create an edge when these are present between two words. Sections
we have defined for the standard representation are title, which contains the text related to the
document’s title and any provided keywords (meta-data); link, which is text that appears in
hyperlinks on the document; and text, which comprises any of the visible text in the document
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(this includes text in links, but not text in the document’s title and keywords). Next we remove
the most infrequently occurring words in each document, leaving at most m nodes per graph
(m being a user-provided parameter). This is similar to the dimensionality reduction process
for vector representations [5]. For the final step in our graph creation process, we perform
a simple stemming method and conflate words (an information-retrieval term for merging
multiple word forms so they are represented by a single entity) to the most frequently occurring
form by relabeling nodes and updating edges as needed.

An example of this type of graph representation is given in Figure 10.1. The ovals indicate
nodes and their corresponding term labels. The edges are labeled according to title (TI), link
(L), or text (TX). The document represented by the example has the title “YAHOO NEWS,”
a link whose text reads “MORE NEWS,” and text containing “REUTERS NEWS SERVICE
REPORTS.” A brief point of clarification is necessary concerning the link section. We do not
examine the URLs of the hyperlinks to create the graphs; instead we are examining the text
that labels the hyperlink itself and appears on the web document for the user to click. Note
that there is no restriction on the form of the graph, and that cycles are allowed. If pairs of
terms appear adjacent in more than one section, we add an edge for each occurrence, labeled
appropriately.

While this approach to document representation appears superficially similar to the bi-
gram, trigram, or N-gram methods, those are statistically oriented approaches based on word
occurrence probability models [23]. The methods presented here, with the exception of the
frequency representations described below, do not require or use the computation of term
probability relationships.

YAHOO NEWS

SERVICE

MORE

REPORTS REUTERS

TI L

TX

TX

TX

Fig. 10.1. Example of a standard graph representation of a document.

The second type of graph representation we will look at is what we call the simple repre-
sentation. It is basically the same as the standard representation, except that we look at only
the visible text on the page, and do not include title and meta-data information (the title sec-
tion). Further, we do not label the edges between nodes, so there is no distinction between link
and text sections. An example of this type of representation is given in Figure 10.2.

The third type of representation is called the n-distance representation. Under this model,
there is a user-provided parameter, n. Instead of considering only terms immediately following
a given term in a web document, we look up to n terms ahead and connect the succeeding terms
with an edge that is labeled with the distance between them (unless the words are separated by
certain punctuation marks). For example, if we had the following text on a web page, “AAA
BBB CCC DDD,” then we would have an edge from term AAA to term BBB labeled with a
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Fig. 10.2. Example of a simple graph representation of a document.

1, an edge from term AAA to term CCC labeled 2, and so on. The complete graph for this
example is shown in Figure 10.3.

AAA BBB

CCC DDD

1

1

1

2 2

3

Fig. 10.3. Example of an n-distance graph representation of a document.

Similar to n-distance, we also have the fourth graph representation, n-simple distance.
This is identical to n-distance, but the edges are not labeled, which means we only know that
the distance between two connected terms is not more than n.

The fifth graph representation is what we call the raw frequency representation. This is
similar to the simple representation (adjacent words, no section-related information), but each
node and edge is labeled with an additional frequency measure. For nodes this indicates how
many times the associated term appeared in the web document; for edges, this indicates the
number of times the two connected terms appeared adjacent to each other in the specified
order. The raw frequency representation uses the total number of term occurrences (on the
nodes) and co-occurrences (edges).

A problem with this representation is that large differences in document size could lead to
skewed comparisons, similar to the problem encountered when using Euclidean distance with
vector representations of documents. Under the normalized frequency representation, instead
of associating each node with the total number of times the corresponding term appears in the
document, a normalized value in [0, 1] is assigned by dividing each node frequency value by
the maximum node frequency value that occurs in the graph; a similar procedure is performed
for the edges. Thus each node and edge has a value in [0, 1] associated with it, which indicates
the normalized frequency of the term (for nodes) or co-occurrence of terms (for edges).

NEWS

SERVICE

MORE

REPORTS REUTERS
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Previously we stated that the “size” of a graph, |G|, is usually defined as the number
of nodes in the graph. However, for our particular representations of web documents it is
detrimental to ignore the contribution of the edges, which indicate the number of phrases (term
adjacencies) identified in the document content. Further, it is possible to have more than one
edge between two nodes for certain representations. Thus we will use the following definition
of graph size for all representations except the frequency representations (the size of a graph
under the frequency representations will be described below). Formally, the size of a graph
G = (V, E, α, β), denoted |G|, is defined as

|G| = |V | + |E|. (10.5)

Thus we will take the size to be the sum of the number of vertices and edges in the graph for
the standard, simple, n-distance, and n-simple distance representations.

However, under the raw frequency and normalized frequency representations the graph
size is defined as the total of the node frequencies added to the total of the edge frequencies. We
need this modification to reflect the frequency information in the graph size. As an example,
consider two raw frequency graphs each with a node “A”; however, term “A” appears two times
in one document and 300 in the other. This difference in frequency information is not captured
under equation (10.5). Further, when we compute the maximum common subgraph for these
representations, we take the minimum frequency element (either node or edge) as the value for
the maximum common subgraph. To continue the above example, node “A” in the maximum
common subgraph would have a frequency of 2, which is min(2, 300).

10.4 Graph-Based Web Mining Algorithms

Now that we have graph representations of web documents with unique node labels, we can
compute the distance between two web documents in polynomial time. This allows us to retain
the graph representations for use in various machine learning methods. The main benefit of
this approach is that the additional structural information captured in the graphs is maintained,
unlike other methods where we need to discard the structural information to arrive at a vector
representation.

In this section we describe two classical machine learning algorithms, k-means and k-
nearest neighbors, and show how they can be extended in a straightforward manner to utilize
graphs and graph distance.

10.4.1 k-Means Clustering with Graphs

The k-means clustering algorithm is a simple and straightforward method for clustering data
[24]. The basic algorithm is given in Figure 10.4. Traditionally, each item to be clustered is
represented as a vector in the Euclidean space �m, and a vector distance measure such as
Jaccard is used [5]:

distJAC(x,y) = 1 −
∑n

i=1 xiyi∑n
i=1 x2

i +
∑n

i=1 y2
i −∑n

i=1 xiyi
, (10.6)

where xi and yi are the ith components of vectors x and y, respectively.
For our graph-based approach, instead of vectors we will represent web document content

using graphs, as discussed in section 10.3. To compute distances, we simply use one of the
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Inputs: the set of n data items and a parameter, k, defining the number of clusters to create
Outputs: the centroids of the clusters and for each data item the cluster (an integer in [1,k]) it

belongs to

Step�1. Assign each data item randomly to a cluster (from 1 to k).
Step�2. Using the initial assignment, determine the centroids of each cluster.
Step�3. Given the new centroids, assign each data item to be in the cluster of its closest centroid.
Step�4. Re-compute the centroids as in Step 2. Repeat Steps 3 and 4 until the centroids do not

change.

Fig. 10.4. The basic k-means clustering algorithm.

methods described in section 10.2.2. However, note that the k-means algorithm, like many
clustering algorithms, requires not only the computation of distances, but also of cluster rep-
resentatives. In the case of k-means, these representatives are called centroids. Thus we need
a graph-theoretic version of the centroid, which itself must be a graph, if we are to extend this
algorithm to work with graph representations of web documents. Our solution is to compute
the representatives (centroids) of the clusters using median graphs [25]. Formally, the median
of a set of graphs S is a graph g ∈ S (S = {G1, G2, . . . , Gn}) such that g has the lowest
average distance to all graphs in S:

g = arg min
∀s∈S

(
1

|S|
|S|∑
i=1

dist(s, Gi)

)
. (10.7)

The median of a set of graphs is the graph from the set that has the minimum average distance
to all the other graphs in the set. Here the distance is computed with the graph-theoretic dis-
tance measures mentioned in section 10.2.2. The procedure is fairly straightforward, though
the equation may seem complex at first. We start by selecting some specific graph, let us call it
s, and then compute the distances between s and all other graphs in a pair-wise fashion. These
distances are summed and then divided by the total number of graphs to calculate an average
distance between s and all the other graphs. This number is saved and associated with graph s;
we repeat the above process with all the graphs, taking each one in turn to be “s.” The median
graph is then selected by finding the graph that has the minimum distance.

We wish to clarify here a point that may cause some confusion. Clustering with graphs is
well established in the literature. However, with those methods the entire clustering problem
is treated as a graph, where nodes represent the items to be clustered and the weights on the
edges connecting the nodes indicate the distance between the objects the nodes represent.
The goal is to partition this graph, breaking it up into several connected components that
represent clusters. The usual procedure is to create a minimal spanning tree of the graph and
then remove the remaining edges with the largest weight until the number of desired clusters
is achieved [26]. This is very different from the technique we described in this section, since
it is the data (in this case, the web documents) themselves that are represented by graphs, not
the overall clustering problem.

10.4.2 k-Nearest Neighbors Classification with Graphs

In this section we describe the k-nearest neighbors (k-NN) classification algorithm and how
we can easily extend it to work with the graph-based representations of web documents de-
scribed above. The basic k-NN algorithm [24] begins with a set of training examples; in the
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traditional k-NN approach these are numerical feature vectors. Each of these training exam-
ples is associated with a label that indicates to what class the example belongs. Given a new,
previously unseen input instance, we attempt to estimate which class it belongs to. Under the
k-NN method this is accomplished by looking at the k training examples closest (i.e., with
least distance) to the input instance. Here k is a user-provided parameter and distance is com-
puted with a vector distance measure, such as equation (10.6).

Once we have found the k nearest training examples using some distance measure, we
estimate the class by the majority among the k training examples. This class is then assigned
as the predicted class for the input instance. If there are ties due to more than one class having
equal numbers of representatives among the nearest neighbors, we can either choose one class
randomly or break the tie with some other method, such as selecting the tied class that has the
minimum distance neighbor. For the experiments in this chapter we will use the latter method,
which in our experiments has shown a slight improvement over random tie breaking.

To extend the k-NN method to work with graph representations of web documents instead
of vector representations, we need only utilize one of the graph distance measures presented
in section 10.2.2 in place of the traditional vector distance measures. Then we may use graphs
in place of vectors with no further changes to the algorithm.

10.5 Experimental Results

10.5.1 Data Sets

To evaluate the performance of the graph-based k-means and k-NN algorithms as compared
with the traditional vector methods, we performed experiments on two different collections
of web documents, called the F-series and the J-series [27]. The data sets are available under
these names at ftp://ftp.cs.umn.edu/dept/users/boley/PDDPdata/. These
two data sets were selected because of two major reasons. First, all of the original HTML
documents are available, which is necessary if we are to represent the documents as graphs;
many other document collections provide only a preprocessed vector representation, which
is unsuitable for use with our method. Second, ground truth assignments are provided for
each data set, and there are multiple classes representing easily understandable groupings that
relate to the content of the documents. Some web document collections are not labeled or
are presented with some task in mind other than content-related classification (e.g., building a
predictive model based on user preferences).

The F-series originally contained 98 documents belonging to one or more of 17 sub-
categories of four major category areas: manufacturing, labor, business and finance, and elec-
tronic communication and networking. Because there are multiple subcategory classifications
from the same category area for many of these documents, we have reduced the categories
to just the four major categories mentioned above in order to simplify the problem. There
were five documents that had conflicting classifications (i.e., they were classified to belong
to two or more of the four major categories) that we removed in order to create a single
class classification problem, which allows for a more straightforward way of assessing clas-
sification accuracy. The J-series contains 185 documents and ten classes: affirmative action,
business capital, information systems, electronic commerce, intellectual property, employee
rights, materials processing, personnel management, manufacturing systems, and industrial
partnership. We have not modified this data set. Additional results on a third, larger data set
can be found elsewhere [28, 29, 30].
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For the vector representation experiments, which are presented as a baseline for compari-
son purposes, there were already several precreated term–document matrices available for our
experiments at the same location where we obtained the two document collections. We se-
lected the matrices with the smallest number of dimensions. For the F-series documents there
are 332 dimensions (terms) used, while the J-series has 474 dimensions. We performed some
preliminary experiments and observed that other term-weighting schemes (i.e., inverse docu-
ment frequency, see [5]) improved the accuracy of the vector-model representation for these
data sets either only very slightly or in many cases not at all. Thus we have left the data in its
original format.

10.5.2 Experimental Details

For our experiments we use a maximum graph size of 30 nodes per graph, which corresponds
to setting m = 30 (see section 10.3). This parameter value was selected based on previous
experimental results, and has been shown to work adequately for both data sets (further results
with other graph sizes are omitted for brevity). We select a single value for m to be used by
all graphs for experimental consistency. However, the value of m could be different for each
graph, which would allow for more flexibility than vector-space models, since they require
a fixed number of dimensions for every document. The graph model can allow for a differ-
ent representation size for each document, which would require some method of selecting a
“good” value of m for each document. This is part of the more general keyphrase extraction
problem [31], which does not have a trivial solution; describing methods for dealing with it is
beyond the scope of this chapter. Note that it is also possible to reduce the size of the graphs
by examination of graph-theoretic features, such as focusing on large connected components,
nodes with high edge degrees, or components with certain topologies.

The dMCS distance measure (10.1) was used to compute graph distance for both algo-
rithms. For the “distance” related graph representations, n-distance and n-simple distance, we
used n = 5 (i.e., 5-distance and 5-simple distance). The vector representation results reported
for comparison reflect using a distance measure based on Jaccard similarity, equation (10.6).
We used Jaccard distance because this was consistently the best performing vector distance
measure in our experimental results. Euclidean distance is generally not used for informa-
tion retrieval tasks and performs poorly because it lacks a length-invariance property. With
Euclidean distance, large variations in overall document size cause large distances between
their representative vectors, even though the two documents may be about identical topics; the
document content is ideally described by vector direction, not length. (For further discussion
of this topic, see [5, 32].)

Clustering performance is measured using two performance indices that indicate the sim-
ilarity of obtained clusters to the “ground truth” clusters. The first performance index is the
Rand index [33], which is computed by examining the produced clustering and checking how
closely it matches the ground truth clustering. It produces a value in the interval [0, 1], with
1 representing a clustering that perfectly matches ground truth. The second performance in-
dex we use for measuring clustering performance is mutual information [34], which is an
information-theoretic measure that evaluates the overall degree of agreement between the
clustering under consideration and ground truth, with a preference for clusters that have high
purity. Higher values of mutual information indicate better performance. The clustering ex-
periments were repeated ten times to account for the random initialization of the k-means
algorithm, and the average of these experiments is reported. Classification accuracy was as-
sessed by the leave-one-out method, where we use all but one of the instances in the data
set as training examples and attempt to classify the remaining input instance. The procedure
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is carried out using each instance in the data set as the input instance once, and the overall
accuracy is reported.

10.5.3 Examples of Results

The performance of clustering the F and J data sets, as measured by the Rand index when
compared with ground truth, after applying k-means clustering, is given in Figure 10.5. Simi-
larly, the performance as measured by mutual information is given in Figure 10.6. The figures
compare the performance obtained when using the different graph representations presented
in section 10.3. These are, from left to right, standard, simple, 5-distance, 5-simple distance,
raw frequency, and normalized frequency. The final column is the accuracy of the vector rep-
resentation approach using a distance based on the Jaccard similarity [5], which is the best
performing vector distance measure we have worked with. The white bars correspond to the
F-series data set, whereas the black bars are the J-series. On our system, a 2.6 GHz Pentium 4
with 1 gigabyte of memory, the average time to create clusters for the F-series using the graph-
based method and the standard representation was 22.7 seconds, whereas it took 59.5 seconds
on average for the J-series.

Clustering Performance of k-means (Rand Index)
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Fig. 10.5. Performance of k-means clustering on F and J data sets as measured by the Rand
index.

The results for the k-nearest neighbors classification experiments are given in Figures 10.7
and 10.8 for the F and J data sets, respectively. Similar to the clustering results, the various
representations are compared. The different bars in each group correspond to different values
of k (the number of nearest neighbors). The white bars correspond to k = 1, the gray bars are
for k = 3, the striped bars indicate k = 5, and the black bars are k = 10. The graph-based
k-NN method took an average of 0.2 seconds to classify a document for the F-series, and
0.45 seconds for the J-series, both when using k = 1 and the standard representation.
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Clustering Performance of k-means (Mutual Information)

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

Standard Simple 5-Distance 5-Simple Distance Raw Frequency Normalized

Frequency

Vector (Jaccard)

Representation

M
u

tu
a

l 
In

fo
rm

a
ti

o
n

F-series J-series

Fig. 10.6. Performance of k-means clustering on F and J data sets as measured by mutual
information.
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Fig. 10.7. Performance of k-nearest neighbors classification for the F-series data set with
accuracy measured using leave-one-out.
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Classification Accuracy of k-NN (J-series)
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Fig. 10.8. Performance of k-nearest neighbors classification for the J-series data set with ac-
curacy measured using leave-one-out.

The standard representation, in all experiments, exceeded the equivalent vector procedure.
In 11 out of 12 experiments, the simple representation outperformed the vector model. The
5-distance representation was better in eight out of 12 experiments. The 5-simple distance
representation was an improvement in nine out of 12 cases. Raw frequency was better in eight
of 12 cases, while normalized frequency was an improvement in 11 of 12 cases.

For the clustering experiments, the best F-series results were attained by the standard rep-
resentation (0.7202 for Rand index; 0.1604 for mutual information). The performance of the
vector approach was 0.6899 and 0.1020 for Rand and mutual information, respectively. For the
J-series, the best Rand index was obtained for standard (0.8741) while the best mutual infor-
mation value was attained for normalized frequency (0.2516). In comparison, the vector-based
clustering for the J-series achieved 0.8717 for Rand index and 0.2316 for mutual information.

For the classification experiments, the best accuracy for the F-series was 97.85%, which
was achieved by both the simple representation (for k = 3) and the normalized frequency
representation (for k = 1). In contrast, the best accuracy using a vector representation was
94.62% (for k = 3). For the J-series, the best graph-based accuracy was 85.95% (for simple,
k = 5); the best vector-based accuracy was 77.30%.

Additional experimental results comparing the performance of different graph distance
measures (section 10.2.2) can be found in [28, 35]. Evaluations of other clustering algorithms
when utilizing graphs are reported in [30, 36]. Creation of classifier ensembles using random
node selection for graphs is described in [37].
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10.6 Conclusion

We have demonstrated how using graphs with unique node labels reduces the complexity of
the maximum common subgraph problem to polynomial time, and how utilizing the maximum
common subgraph allows us to calculate a graph distance measure. Such graph distance mea-
sures are useful for allowing clustering and classification algorithms to work with graph rep-
resentations of data, which contain additional structural information when compared to their
vector counterparts. We introduced several methods of representing web document content
using graphs with unique node labels. We also presented graph-based versions of the k-means
and k-nearest neighbors algorithms, and showed some examples of experimental results when
applying these methods to web document collections. The results show our graph-based ap-
proach can outperform traditional vector models for both clustering and classification.
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Data Complexity in Clustering Analysis of Gene
Microarray Expression Profiles

Feng Luo and Latifur Khan

Summary. The increasing application of microarray technology is generating large amounts
of high dimensional gene expression data. Genes participating in the same biological process
tend to have similar expression patterns, and clustering is one of the most useful and efficient
methods for identifying these patterns. Due to the complexity of microarray profiles, there are
some limitations in directly applying traditional clustering techniques to the microarray data.
Recently, researchers have proposed clustering algorithms custom tailored to overcome their
limitations for microarray analysis. In this chapter, we first introduce the microarray tech-
nique. Next, we review seven representative clustering algorithms: K-means, quality-based
clustering, hierarchical agglomerative clustering, self-organizing neural network-based clus-
tering, graph-theory-based clustering, model-based clustering, and subspace clustering. All
these algorithms have shown their applicability to the microarray profiles. We also survey sev-
eral criteria for evaluating clustering results. Biology plays an important role in the evaluation
of clustering results. We discuss possible research directions to equip clustering techniques
with underlying biological interpretations for better microarray profile analysis.

11.1 Introduction

Understanding the system-level characteristics of biological organization is a key issue in the
post-genome era. In every living organism, subsets of its gene expressions differ across types,
stages, and conditions. Given a specific condition and stage, there are particular genes that
are expressed. Measuring these gene expression levels across different stages in different tis-
sues or cells, or under different conditions, is very important and useful for understanding
and interpreting biological processes. For a long time, biologists dreamed of getting informa-
tion about all genes in a genome and the ability to study the complex interplay of all genes
simultaneously. The emergence of the microarray technique [26, 35] has brought this to real-
ization. The microarray technology enables the massively parallel measurement of expressions
of thousands of genes simultaneously. There are many potential applications for the microar-
ray technique, such as identification of genetic diseases [32], discovery of new drugs [10],
toxicology studies [31], etc.

The application of microarray technology now generates very large amounts of gene ex-
pression data. One microarray chip has anywhere from thousands to tens of thousands of
genes on it. Thus a series of microarray experiments will generate ten thousand to a million
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data points. As a result, there is an increasing need for technologies that can extract useful and
rational fundamental knowledge of gene expression from the microarray data.

The biological system, like many other engineering synthetic systems, is modular [19].
The expression patterns of genes inside the same module are similar to each other. Thus, the
genes can be grouped according to their gene expressions. Clustering analysis is one of the
most useful methods for grouping data in large data sets. It has been shown that the clustering
techniques can identify biologically meaningful gene groups from microarray profiles.

However, due to the complexity of biological systems, the microarray data are also very
involved. Conventional clustering algorithms may have some limitation to deal with such in-
tricacies and need modifications. First, the size of the data is large. A typical microarray data
set will have thousands to ten thousands of data series and up to millions of data points. So the
computation time for clustering is definitely an important issue. Second, although the exper-
iments in a microarray profile may relate to each other, like a time series experiments of cell
cycle or stress response, the degree of expression in different experiments can be dramatically
different. Furthermore, in many cases, there is seldom a correlation between the experiments
in a microarray data set, like microarray experiments of a set of mutants or microarray ex-
periments of tumor cell and normal cell in cancer research; or there are even several kinds
of experiments in one microarray profile. Usually, microarray profiles by nature are multidi-
mensional. Third, for one specific experimental condition, not every gene is expressed. The
microarray expression data of these genes are more like random outliers. Either some pre-
processing of the microarray data set is needed to remove the outliers as much as possible or
the clustering algorithms themselves need to have some mechanism to handle these outliers.
All these characteristics of microarray data need to be considered for successful clustering.

In this chapter, we review clustering analysis for microarray profiles. First, we introduce
the microarray technology. Second, we present some traditional and newly developed cluster-
ing algorithms that have been applied to microarray profile analysis. Third, we describe some
methods to evaluate the clustering results. Finally, we provide some discussions.

11.2 Microarray technology

The microarray technology refers to the use of the microarray chips to measure gene expres-
sions. Microarray chips are commonly small slides that are made of chemically coated glass,
nylon membrane, or silicon, onto which a matrix of spots are printed. Each spot on a microar-
ray chip is less than 250 µm in diameter and contains millions of identical DNA molecules
(probes). The number of spots on a single microarray chip ranges from thousands to tens of
thousands, which depends on the size of the chip and the spotting technique used. In each
spot there are only specific kinds of DNA sequences that correspond to a specific gene. The
hybridization between the DNA sequence and the complement DNA (cDNA) that represent
the messenger RNA (mRNA) from test samples (targets) is quantified by the signal of label-
ing molecules bound to cDNA, which is the essential principle employed by the microarray
technology to measure the gene expression level of the targets.

There are two major types of microarray technology. One is the cDNA microarray [35];
the other is the oligonucleotide microarray [26]. Although there are some differences in the
details of experiment protocols, the gene expressions measured by the cDNA microarray and
the oligonucleotide microarray have the same biological meanings. A typical microarray ex-
periment consists of four basic steps [40]:

Target preparation: Extract mRNA from both the test and the control samples. Then
transcribe the mRNA to cDNA in the presence of nucleotides that are labeled with fluorescent
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dyes or radioactive isotopes. For cDNA microarray, the test and reference cDNA are labeled
differently. For oligonucleotide microarray, this differential labeling is not necessary.

Hybridization: The labeled test and control cDNA samples are mixed in equal amounts
and incubated with a microarray slide for hybridization for a given time. Then the microarray
slide is washed to get rid of the surplus cDNA.

Scanning: Once the hybridized microarray is ready, the expression level of genes is de-
tected by monitoring the intensity of the labeling fluorescent or radioactive molecules. For
fluorescence labeling, a laser beam is used to excite the fluorescent dyes and the degree of flu-
orescence correlates with the abundance of target molecules at a specific spot. The fluorescent
emission is monitored by a scanner, which also produces a digital image file to store signals.

Normalization: To correct the differences in overall array intensity, such as background
noise and different efficiency in detection, the raw signal intensity, either from cDNA or from
oligonucleotide microarray, must be normalized to a common standard. The normalization can
make the gene expression profile from different experiments comparable. After normalization,
the final gene expression levels are presented as an expression ratio of test versus control
sample and are ready for further analysis.

A typical microarray gene expression profile is represented by a real matrix E, the expres-
sion matrix. Each cell eij of the expression matrix E represents an expression value of a gene
(row) in a certain experiment (column). Generally, there is no biological difference between
the expression profiles measured by cDNA microarray and those measured by oligonucleotide
microarray. In this chapter, the term microarray means both cDNA and oligonucleotide mi-
croarray.

11.3 Introduction to Clustering

Clustering is defined as a process of partitioning a set of data S = {D1, D2. . . Dn} into a
number of subclusters C1, C2. . . Cm based on a measure of similarity between the data (dis-
tance based) or based on the probability of data following certain distribution (model-based).
For a survey of clustering analysis techniques, see Jain et al. [23]. The distance-based cluster-
ing techniques are broadly divided into hierarchical clustering and partitioning clustering. As
opposed to partitioning clustering algorithms, the hierarchical clustering can discover trends
and subtle common characteristics, and thus can provide more useful information for biolo-
gists. Hierarchical clustering algorithms are further subdivided into agglomerative algorithms
and divisive algorithms. Recently, as more and more high-dimensional microarray expressions
data become available, subspace clustering algorithms have been developed to find clusters in
the subdimension of the whole space.

11.3.1 Similarity Measurements of Microarray Profiles

The similarity measurement is essential for the clustering analysis, which controls the defin-
ition of a cluster. Different similarity measurement may generate widely different values for
the same set of data. Most commonly used similarity measurements for microarray profiles
are Euclidean distance and Pearson correlation coefficient.

The Euclidean distance actually measures the geometric distance between data points. The
distance between expression Ei of gene gi and expression (Ej) of gene gj in D-dimensions
is defined as
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Euclidean(Ei, Ej) =

√√√√ D∑
d=1

(Eid − Ejd)2 (11.1)

The Euclidean distance is simple and works well when a data set has “compact” or “isolated”
clusters. However, the distances can be greatly affected by differences in scale among the
dimensions from which the distances are computed. To make the distance insensitive to the
absolute level of expression and sensitive to the degree of change [14], the microarray expres-
sion profiles are always standardized by z-score normalization (zero mean and unit variance)
[39] before the distance is computed.

The Pearson correlation coefficient measures the strength and direction of a linear rela-
tionship between two data. It assumes that both data are approximately normally distributed
and their joint distribution is bivariate normal. The Pearson correlation coefficient between
expression (Ei) of gene gi and expression (Ej) of gene gj in D-dimensions is defined as

Pearson(Ei, Ej) =
1

D

∑
d=1,D

(
Eid − MEi

σEi

)(
Ejd − MEj

σEj

) (11.2)

where MEi , MEj are the average gene expression level of gene gi and gene gj , respectively,
and σE1 , σEj are the standard deviation of the gene expression level of gene gi and gene
gj , respectively. The Pearson correlation ranges from +1 to −1. A correlation of +1 means a
perfect positive linear relationship between two expressions.

Although the Pearson correlation coefficient is an effective similarity measure, it is sensi-
tive to outlier expression data. Especially if the number of data of two data series is limited,
the effects of outlier points become more significant. Heyer et al. [22] observed that if the ex-
pression of two genes has a high peak or valley in one of the experiments but is unrelated in all
others, the Pearson correlation coefficient still will be very high, which results as a false pos-
itive. To remove the effect of a single outlier, Heyer et al. proposed a similarity measurement
called the Jackknife correlation, which is based on the Jackknife sampling procedure from
computational statistics [13]. The Jackknife correlation between expression (Ei ) of gene gi

and expression (Ej) of gene gj in D-dimensions is defined as

Jackknife(Ei, Ej) = min{P 1
ij , . . . P

d
ij , . . . , P

D
ij } (11.3)

where P d
ij is the Pearson correlation coefficient between expression Ei and expression Ej

with d th experiment value deleted. More general Jackknife correlation by deleting every sub-
set of size n will be robust to n outliers, but they become computationally unrealistic to im-
plement.

11.3.2 Missing Values in Microarray Profiles

There may be some missing expression values in the microarray expression profiles. These
missing values may have been caused by various kinds of experimental errors. When calculat-
ing the similarity between two gene expressions with missing values, one way is to consider
only the expressions present in both genes. The other way is to replace the missing value with
estimated values. Troyanskaya et al. [43] evaluated three estimation methods: singular value
decomposition based method, weighted K-nearest neighbors, and row average. Based on the
robust and sensitive test, they demonstrated that the weighted K-nearest neighbors method is
the best one for missing value estimation in microarray expression profiles.
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11.4 Clustering Algorithms

In this section, we present several representative clustering algorithms that have been applied
to gene expression analysis.

11.4.1 K-Means Algorithms

The K-means algorithm [30] is one of the most popular partitioning clustering methods. The
K-means partition the data set into predefined K clusters by minimizing the average dissimi-
larity of each cluster, which is defined as

E =
K∑

k=1

∑
C(i)=k

||xik − x̄k||2 where x̄k =
1

Nk

N∑
i=1

xik (11.4)

x̄k is the mean of all data belonging to the k th cluster, which represents the centroid of the
cluster. Thus, the K-means algorithm tries to minimize the average distance of data within
each cluster from the cluster mean. The general K-means algorithm is as follows [23]:

1. Initialization: Choose K cluster centroids (e.g., randomly chosen K data points).
2. Assign each data-point to the closest cluster centroid.
3. Recompute the cluster centroid using the current cluster memberships.
4. If the convergence criterion is not met, go to step 2.

The K-means algorithm converges if every data-point is assigned to the same cluster during
iteration, or the decrease in squared error is less than a predefined threshold. In addition, to
avoid the local suboptimal minimum, one should run the K-means algorithm with different
random initializing values for the centroids, and then choose the one with the best clustering
result (smallest average dissimilarity). Furthermore, since the number of clusters inside the
data set is unknown, to find the proper number of clusters, one needs to run the K-means
algorithm with different values of K to determine the best K value.

Tavazoie et al. [39] selected the most highly expressed 3000 yeast genes from the yeast
cell cycle microarray profiles and applied the K-means algorithm to cluster them into 30 clus-
ters. They successfully found that some of the clusters were significantly enriched with homo
functional genes, but not all clusters showed the presence of functionally meaningful genes.
This is because some clusters of genes participate in multiple functional processes, or some
clusters of genes are not significantly expressed, and the number of clusters (30) may also not
be the optimal one.

The K-means algorithm is most widely used because of its simplicity. However, it has
several weak points when it is used to cluster gene expression profiles. First, it is sensitive to
outliers. As there are a lot of noise and experimental errors among the gene expression data,
the clustering result produced by K-means algorithms may be difficult to explain. Second,
since not every gene expresses significantly under certain conditions, the expressions of this
kind of genes do not have a clear pattern but are more likely to have random patterns. This
kind of gene must be considered as noisy and should not be assigned to any cluster. However,
the K-means algorithm forces each gene into a cluster, which decreases the accuracy of the
clusters and renders some of the clusters meaningless and not suitable for further analysis.
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11.4.2 Quality-Based Clustering

Recently, several quality-based clustering algorithms have been proposed to overcome the
drawbacks of K-means. These kinds of algorithms attempt to find quality-controlled clusters
from the gene expression profiles. The number of clusters does not have to be predefined and
is automatically determined during the clustering procedure. Genes whose expressions are not
similar to the expressions of other genes will not be assigned to any of the clusters.

Heyer et al. [22] proposed a new quality clustering algorithm called QT Clust. They used
the QT Clust to cluster 4169 yeast gene cell cycle microarray expression profiles and dis-
covered 24 large quality clusters. The QT Clust algorithm uses two steps to produce quality
clusters: (1) For each gene, a cluster seeded by this gene is formed. This is done by iteratively
adding genes to the cluster. During each iteration, the gene that minimizes the increase in clus-
ter diameter is added. The process continues until no gene can be added without surpassing
the predefined cluster diameter threshold. After the first step, a set of candidate clusters is cre-
ated. (2) Quality clusters are selected one by one from the candidates. Each time, the largest
cluster is selected and retained. Then the genes that belong to this cluster are removed from
the other clusters. This procedure continues until a certain termination criterion is satisfied.
One criterion suggested by Heyer et al. is the minimum number of clusters. The total number
of clusters is controlled by the termination criterion and is not required to be predefined like
K-means algorithm. The quality of the clusters in QT Clust is controlled by the cluster diam-
eter, which is a user-defined parameter. However, determination of this parameter is not an
easy task. It may need either the biological knowledge of the data set to evaluate the clustering
result, or use of some cluster validation criterion to evaluate the clustering result. In either case
one may need to use the clustering algorithm several times to obtain a proper clustering result.
Furthermore, as pointed out by Smet et al. [37], the diameter threshold may also be different
for each cluster. Then, one cluster diameter cannot be proper for all clusters.

Smet et al. [37] proposed a new heuristic adaptive quality-based clustering algorithm
called Adap Cluster to improve the method proposed by Heyer et al. The Adap Cluster algo-
rithm constructs clusters sequentially with a two-step approach. In the first step (quality-based
step), the algorithm finds a cluster center CK using a preestimated radius (RK PRELIM) with
a method similar to the algorithm proposed by Heyer et al. If the size of the cluster is less than
a user-defined parameter MIN NR GENES, the clustering result is discarded. Otherwise, a
second step (adaptive step) is invoked. The adaptive step uses an expectation maximization
(EM) algorithm to optimize the radius RK of the cluster center CK for a certain significant
level S. The significant level is the probability that a gene belongs to a cluster. The default
value of the significant level is 95%, which means that a gene has less than a 5% probability
of being a false positive. The significant level can determine the number of genes that belong
to the cluster. Then, the significant level S is the quality-control criterion. All clusters have the
same significant level. However, the cluster radius may differ among the clusters. The advan-
tage of using a significant level as a quality-control criterion is that it has easy-to-understand
statistical meaning and is independent of the data set. Smet et al. applied the Adap Cluster to
3000 yeast gene cell cycle microarray expression profiles. Compared to the result of K-means,
the result of Adap Cluster has a higher degree of enrichment based on the P-value significant
measure (see section 11.5) and is more biologically consistent.
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11.4.3 Hierarchical Agglomerative Clustering (HAC) Algorithm

The HAC algorithm is a classical and most commonly used hierarchal clustering algorithm.
The HAC algorithm iteratively joins the closest subelements into a hierarchical tree. The gen-
eral HAC algorithm is as follows:

1. Put each data element into a singleton cluster; compute a list of intercluster distances for
all singleton cluster; then sort the list in ascending order.

2. Find a pair of clusters having the most similarity; merge them into one cluster and calcu-
late the similarity between the new cluster and the remaining clusters.

3. When there is more than one cluster remaining, go to step 2; otherwise stop.

Based on the calculation of similarity between the nonsingleton clusters, a variety of hierar-
chical agglomerative techniques have been proposed. Single-link, complete-link, and group-
average-link clustering are commonly used. In the single-link clustering the similarity between
two clusters is the maximum similarity of all pairs of data that are in different clusters. In the
complete-link clustering the similarity between two clusters is the minimum similarity of all
pairs of data that are in different clusters. In the group-average-link clustering the similarity
between two clusters is the mean similarity of all pairs of data that are in different clusters [45].
Lance and Williams [25] show that many HAC algorithms can be derived from the following
general combinatorial formula:

dk,i∪j = αi.dk,i + αj .dk,j + β.di,j + γ.|dk,i − dk,j | (11.5)

where i∪j is a cluster constructed by merging cluster i and cluster j and dk,i∪j is the distance
between cluster i∪j and an existing cluster k. The α, β, γ parameters characterize the different
HAC algorithms [25].

The single-link and complete-link clustering simply use the similarity information of min-
imum or maximum of a cluster; therefore, these methods perform less well than the group-
average-link clustering. But the simple-link algorithm is easier to implement, has some theo-
retical characteristic, and has been widely used. The single-link clustering tends to build a long
chaining cluster, which makes it suitable for delineating ellipsoidal clusters but not suitable
for poorly separated clusters.

The clustering result of HAC can be represented by a dendrogram, which provides a nat-
ural way to graphically represent the data set. Eisen et al. [14] used the average-link HAC
algorithm to analyze the human gene growth response and the yeast cell cycle microarray ex-
pression profiles. They also proposed using a colored matrix to visualize the clustering result.
Each row of the matrix represents expressions of a gene. Each column of the matrix represents
the expressions of an experiment. Each cell of the matrix is colored according to the expres-
sion ratio. Expressions of log ratio equal to 0 are colored black, increasingly positive ratios
are colored with increasing intensity of reds, and increasingly negative ratios are colored with
increasing intensity of greens. The rows in the matrix are ordered based on the dendrogram of
the clustering result, so that genes with similar expressions patterns are adjacent in the matrix.
This graphical view presents an intuitive understanding of the clustering result of the data set,
which is most favored by biologists. A program called TreeView is available on Eisen’s web
site [15].

Although the HAC algorithm has been widely used for clustering gene microarray expres-
sion profiles, it has several drawbacks. First, as Tamayo et al. [38] have noted, HAC suffers
from a lack of robustness when dealing with data containing noise, so that preprocessing data
to filter out noise is needed. Second, unlike the division hierarchical clustering algorithm (such
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as SOTA and DGSOT in section 11.4) that can stop the hierarchical tree construction in any
level, HAC needs to construct the hierarchical tree that includes the whole data set before ex-
tracting the patterns. This becomes very computationally expensive for a large data set when
only the brief upper level patterns of the data set are needed. Third, since HAC is unable to
reevaluate the results, some clusters of patterns are based on local decisions that will produce
difficult-to-interpret patterns when HAC is applied to a large array of data. Fourth, the number
of clusters is decided by cutting the tree structure at a certain level. Biological knowledge may
be needed to determine the cut.

11.4.4 Self-Organizing Neural Network-Based Clustering Algorithm

Self-Organizing Map (SOM)

The SOM is a self-organizing neural network introduced by Kohonen [24]. It maps the high-
dimensional input data into the low-dimensional output topology space, which usually is a
two-dimensional grid. Furthermore, the SOM can be thought of as a “nonlinear projection”
of probability density function p(x) of the high-dimensional input data vector x onto the two
dimensional display. This makes SOM optimally suitable for applying to the problem of the
visualization and clustering of complex data.

Each SOM node in the output map has a reference vector w. The reference vector has the
same dimension as the feature vector of input data. Initially the reference vector is assigned
random values. During the learning process an input data vector is randomly chosen from the
input data set and compared with all w. The best matching node c is the node that has the
minimum distance with the input data:

c : ||x − wc|| = min
i

{||x − wi||} (11.6)

Then, equation (11.7) is used to update the reference vectors of the best matching node and
its neighboring nodes, which are topologically close in the map. In this way, eventually neigh-
boring nodes will become more similar to the best match nodes. Therefore, the topologically
close regions of the output map gain an affinity for clusters of similar data vectors [24]:

∆wi = η(t) × Λ(i, c) × (x − wi) (11.7)

where i, t, and η(t) denote the neighboring node, discrete time coordinate, and learning rate
function, respectively. The convergence of the algorithm depends on the proper choice of η.
At the beginning of the learning process, η should be chosen close to 1. Thereafter, it should
decrease monotonically. One choice can be η(t) = 1/t. Note that in equation (11.7), the Λ(i, c)
is the neighborhood function. A Gaussian function can be used to define Λ(i, c):

Λ(i, c) = exp(−||ri − rc||2
2σ(t)2

) (11.8)

where || ri−rc || denotes the distance between the best match node and the neighboring
node i and σ(t) denotes the width of the neighbor. At the beginning of the learning process the
width of the neighborhood is fairly large, but it decreases during the learning process. There-
fore, σ(t) decreases monotonically with t. Thus the size of the neighborhood also monoton-
ically decreases. At the end of learning, only the best match node is updated. The learning
steps will stop when the weight update is insignificant.
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Finally, each data-point is assigned to its best match node to form final clusters. Further-
more, there is a geometrical relationship between the clusters. Clusters that are close to each
other in the output grid are more similar to each other than those that are further apart. This
makes it easy to find some cluster relationship during the visualization of the SOM. Tamayo
et al. [38] applied the SOM to analyze yeast gene cell cycle and different human cell cul-
ture microarray expression profiles. The SOM successfully identified the predominant gene
expression pattern in these microarray expression profiles.

Self-Organizing Tree Algorithm (SOTA)

Dopazo et al. [11] introduced a new unsupervised growing and tree-structured self-organizing
neural network called self-organizing tree algorithm (SOTA) for hierarchical clustering. SOTA
is based on Kohonen’s [24] self-organizing map (SOM) and Fritzke’s [16] growing cell struc-
tures. The topology of SOTA is a binary tree.

Initially the system is a binary tree with three nodes (Fig. 11.1a). The leaf of the tree is
called a cell and internal node of the tree is called a node. Each cell and node has a reference
vector w. The values of the reference vector are randomly initialized. In SOTA only cells
are used for comparison with the input data. The procedure that distribute all data into cells
is called a cycle. Each adaptation cycle contains a series of epochs. Each epoch consists of
presentation of all the input data, and each presentation has two steps. First, the best match
cell, which is known as the winning cell, is found. This is similar to the SOM. The cell that
has the minimum distance from the input data is the best match cell/winning cell. The distance
between the cell and data is the distance between the data vector and the reference vector of
the cell. Once the winning cell of a data is found, the data is assigned to the cell. Second,
update the reference vector wi of the winning cell and its neighborhood using the following
function:

∆wi = ϕ(t) × (x − wi) (11.9)

where ϕ(t) is the learning function:

ϕ(t) = α × η(t) (11.10)

where η(t) is the function similar in SOM and α is a learning constant. For different neigh-
borhoods α has different values. Two different neighborhoods are here. If the sibling of the
winning cell is a cell, then the neighborhood includes the winning cell, the parent node, and
the sibling cell. Otherwise, it includes only the winning cell itself [11] (Fig. 11.1b). Further-
more, parameters αw,αm, and αs are used for the winning cell, the ancestor node, and the
sibling cell, respectively. For example, values of αw, αm, and αs can be set as 0.1, 0.05, and
0.01, respectively. Note that the parameter values are not equal. These nonequal values are
critical to partition the input data set into various cells. A cycle converges when the relative
increase in total error falls below a certain threshold.

After distributing all the input data into two cells, the cell that is most heterogeneous will
be changed to a node and two descendent cells will be created. To determine heterogeneity,
the resource of a cell is introduced. The resource of a cell i is the average of the distances
between the input data assigned to the cell and the cell:

Resourcei =
D∑

i=1

d(xi, wi)

D
(11.11)
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Fig. 11.1. (a) Initial architecture of SOTA. (b) Two different reference vector updating
schemas.

where D is the total number of input data associated with the cell. A cell that has the maximum
resource will expand. Therefore, the algorithm proceeds through the cycle until each input
data-point is associated with a single cell or it reaches the desired level of heterogeneity.

SOTA uses a neural network mechanism and it is robust to noisy data. The time complex-
ity of SOTA is O(N log N ), where N is the number of genes. If only upper-level patterns
are needed, the heterogeneity threshold can be set to a larger value and the SOTA can stop
in the early stages. Then, the time complexity of SOTA can be reduced to O(N), namely
approximately linear. Herrero et al. [20] applied SOTA to cluster 800 yeast gene microarray
expression profiles. An online web site tool is also available [21].

DGSOT Algorithm

Nearly all hierarchical clustering techniques that include the tree structure have two shortcom-
ings: (1) they do not properly represent hierarchical relationships, and (2) once the data are
assigned improperly to a given cluster, they cannot later be reevaluated and placed in another
cluster. Recently, Luo et al. [27, 28] proposed a new tree-structured self-organizing neural net-
work, called the dynamically growing self-organizing tree (DGSOT) algorithm, to overcome
these two drawbacks of hierarchical clustering.

DGSOT is a tree-structured self-organizing neural network designed to discover the proper
hierarchical structure of the underlying data. DGSOT grows vertically and horizontally. In
each vertical growth, DGSOT adds two children to the leaf whose heterogeneity is greater than
a threshold and turns it into a node. In each horizontal growth, DGSOT dynamically finds the
proper number of children (subclusters) of the lowest-level nodes. Each vertical growth step
is followed by a horizontal growth step. This process continues until the heterogeneity of all
leaves is less than a threshold TR. During vertical and horizontal growth, a learning process
similar to SOTA is adopted. Figure 11.2 shows an example of DGSOT algorithm in action.
Initially there is only one root node (Fig. 11.2a). All the input data are associated with the
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Fig. 11.2. Illustration of the DGSOT algorithm.

root, and the reference vector of the root node is initialized with the centroid of the data. When
vertical growth is invoked, two children are added to the root node. All input data associated
with the root node are distributed between these children by employing a learning process
(Fig. 11.2b). Following vertical growth, horizontal growth is invoked to determine the proper
number of children for the root. In this example, three leaves are used (Fig. 11.2c). After this,
the heterogeneities of the leaves are checked to determine whether or not to expand to another
level. The answer is yes in this example, and a new vertical growth step is invoked. Two
children are added to the leaves (L1, L3) whose heterogeneity are greater than the threshold
(Fig. 11.2d) and are turned to nodes (N1, N3). All the input data are distributed again with
the learning process, and a new horizontal growth begins (Fig. 11.2e). This process continues
until the heterogeneity of all the leaves (indicated by the empty cycle in Fig. 11.2) are less
than the threshold.

The DGSOT algorithm combines the horizontal growth and vertical growth to construct
a mutltifurcating hierarchical tree from top to bottom to cluster the data. If the number or the
size of the clusters and subclusters of the data set are not even, for example, there is a very
large cluster in the data set, the combination of horizontal growth and vertical growth lets
the DGSOT algorithm find the proper hierarchical structure of the underlying data set, and
then find a more reasonable final clustering result. The harmonization of the vertical growth
and the horizontal growth is important in the DGSOT algorithm to find the proper structure
of the underlying data set. The balance of vertical and horizontal growth is controlled by the
clustering validation criterion, which determines the number of horizontal growth. Therefore,
the cluster validation criterion is critical in the DGSOT algorithm. In DGSOT, the cluster
validation criterion is used to determine the proper number of clusters in each hierarchical level
rather than in the whole data set. For a data set containing an even number of clusters along
with similar size, a proper cluster validation criterion must not allow the horizontal growth to
continue forever without the vertical growth. On the other hand, for a data set containing an
uneven number of clusters or an uneven size of clusters, a proper cluster validation criterion
must be able to detect that uneven behavior and find the best representation in each hierarchical
level.
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To improve the clustering accuracy, Luo et al. [27, 28] proposed a K-level up distribution
(KLD) mechanism. For KLD, data associated with a parent node will be distributed among its
children leaves and also among its neighboring leaves. The following is the KLD strategy:

• For a selected node, its K level up ancestor node is determined.
• The subtree rooted by the ancestor node is determined.
• Data associated with the selected node is distributed among all leaves of the subtree.

The KLD scheme increases the scope in the hierarchy for data distribution, which will give
the data mis-clustered at an early stage a chance to be reevaluated. The DGSOT algorithm
combined with the KLD mechanism overcomes the drawbacks of the traditional neural tree-
based hierarchical clustering algorithms.

In DGSOT, each leaf represents a cluster that includes all data associated with it. The
reference vector of a leaf is the centroid of all data associated with it. Therefore, all refer-
ence vectors of the leaves form a Voronoi set of the original data set, and each internal node
represents a cluster that includes all data associated with its leaf descendants. The reference
vector of an internal node is the centroid of all data associated with its leaf descendants. The
internal nodes of each hierarchical level also form a Voronoi set of the data set with a different
resolution.

The DGSOT algorithm is applied to cluster the same 3000 yeast gene cell cycle microar-
ray expression data that Tavazoie et al. [39] used. The clustering results of DGSOT are com-
pared with SOTA when both have 25 clusters. For these low-level resolution clustering results,
DGSOT, with the multipartition strategy, can successfully establish the hierarchical structure
of these data, and then get more reasonable results than those obtained by SOTA, which is
a pure bipartitions method. This is more drastic if the structure and substructure of the data
contains an uneven number of clusters and subclusters or contains dramatically different sizes
of clusters and subclusters [28]. Furthermore, the biological functionality enrichment in the
clustering result of DGSOT is considerably higher in the degree of enrichment based on the
P-value significant measure (see section 11.5) than the clustering result of SOTA and the K-
means [28].

11.4.5 Graph-Based Clustering Algorithm

Given a set of gene expression data profiles D = {di}, we can define a weighted undirected
complete graph G = (V , E) to represent it. Each vertex in graph represents a gene. And each
edge (u, v) ∈ E has a weight that represents the similarity (or distance) between u and v. The
graph-based clustering algorithms solve the problem of clustering a data set based on some
graph theoretical problems, such as finding the minimum cut and finding the maximal cliques,
or according the properties of the graph, such as the minimum spanning tree of graph G.

CLICK (CLuster Identification via Connectivity Kernels)

The CLICK algorithm [36] recursively partitions the graph G into highly connected sub-
graphs, which represent clusters. The partition that removes a subset of edges in the graph
to disconnect the graph is called a cut, C. Shamir and Sharan [36] defined the weight of the
edge (v, u) as the probability that vertices u and v are in the same cluster. Then, the weight
of C is the sum of the weights of its edges. And a minimum weight cut in G is a cut with the
minimum weight. The CLICK algorithm recursively finds the minimum cut in the graph and
partitions the current graph into two subgraphs. After each cut, a stopping criterion is used
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to check the subgraph. If the subgraph satisfies the stopping criterion, then it is a kernel, and
no more split is needed. Otherwise, the partitioning procedure is continued. The full CLICK
algorithm also has two postprocessing steps to improve the clustering results. The adoption
step adds the singletons into the cluster if the similarity between the singleton and the cluster
is beyond a predefined threshold. The merging step merges two cluster that are similar. Shamir
and Sharan [36] applied the CLICK to two gene expression profiles. The clustering results of
CLICK are shown to perform better in homogeneity and separation than the result of SOM
and HAC on two expression profiles, respectively.

CAST (Cluster Affinity Search Technique)

Ben-Dor et al. [4] proposed a corrupted clique graph model. In this model, a cluster can be
represented by a clique graph, which is a disjoint union of complete graphs. The true clusters of
genes are denoted by the clique graph H . Then, the input graph G of gene expression profiles
can be obtained from H by flipping each edge/non-edge with probability α. Therefore, the
clustering procedure can be translated into obtaining a clique graph as good as true clique
graph H with high probability from the input graph G.

Based on the corrupted graph model, Ben-Dor et al. [4] proposed a theoretical algorithm
that can discover the clusters with high probability and practical heuristic algorithm called
CAST that can run in polynomial time. The input of CAST is a complete graph G. The weight
of the edge is the similarity between two gene expressions. Ben-Dor et al. defined the affinity
value a(v) of a vertex v with respect to a cluster C as a(v) =

∑
u∈C

S(u, v). The CAST

constructs one cluster at a time. When data have not been clustered, the CAST algorithm
randomly picks up a data-point and starts a new cluster. Then, a free data-point whose affinity
is greater than a predefined affinity threshold t is added to the cluster, and a data-point in
the cluster whose affinity is less than t is removed from the cluster. This process continues
until it is stabilized, and one cluster is created. Ben-Dor et al. applied CAST to several gene
expression profiles and showed very promising results.

Minimum Spanning Tree (MST)-Based Clustering Algorithm

A spanning tree, T , of a weighted undirected graph G is a minimal subgraph of G, which
connects all vertices. A MST is the spanning tree with the smallest total weight. The MST can
represent the binary relationship of vertices in the graph. Xu et al. [46] observed that the tree
edges connecting data of the same cluster are short whereas the tree edges linking different
cluster are long. Based on this observation, Xu et al. defined the separation condition of a
cluster as follows: “Let D be a data set and s represent the distance between two data in D.
Then, C ⊆ D forms a cluster in D only if for any partition C = C1 ∪ C2, the closest data
point d to C1, d ∈ D − C1, is from C2.” Then any cluster C corresponds to a subtree of its
MST. That is, “if d1 and d2 are two points of a cluster C, then all data points in the tree path
P , connecting d1 and d2 in the MST, must be from C.”

Based on above cluster definition of the MST framework, Xu et al. [46] proposed three
clustering algorithms according to different objective functions. The first objective function is
to minimize the total edge weight of all K subtrees when partitioning MST into K subtrees.
This can be easily realized by finding the K − 1 longest MST-edges and by cutting them.
If there is an outlier data-point that is far away from any cluster, this simple algorithm will
identify the outlier data-point as a cluster and fail to identify real clusters when the number K
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is chosen improperly. The second objective function minimizes the total distance between the
data in each cluster and its center:

K∑
i=1

∑
d∈Ci

dist(d, center(Ci)) (11.12)

Xu et al. proposed an iterative algorithm for this objective function. Initially, the MST is
randomly partitioned into K subtrees. Then two adjacent clusters are selected and merged into
one cluster. Through all the edges in the merged cluster, the edge that is cut will optimize the
objective function and the merged cluster is partitioned into two clusters again. This process
continues until it converges.

The third objective function i minimizes the distance between the data in a cluster and its
representative points.

K∑
i=1

∑
d∈Ci

dist(d, represent(Ci)) (11.13)

A dynamic programming approach is used by Xu et al. [46] to find the optimal K clusters
and their K representative data. All these algorithms are implemented in a software package
called EXCAVATOR and tested for three microarray expression profiles.

11.4.6 Model-Based Clustering Algorithm

Unlike the distance (similarity)-based algorithm, the model-based algorithms assume a strong
structure of the underlying data set, provided that each cluster of the underlying data set is
generated from a probability distribution. In the mixture model, the likelihood that data in the
set x belong to these K distributions is defined as

LMiIX(θ1, . . . θK |x) =

n∏
i=1

K∑
k=1

τkfk(xi, θk) (11.14)

where τk is the probability that data xi belong to the kth cluster; fk(xi, θk)is the probability
density function (PDF) of the kth cluster in the data. θk is the parameter of the probability
density function. The model-based algorithms try to maximize the likelihood function over
the model parameter θk and the hidden parameter τk. Generally, the parameters θk and τk are
estimated by the EM algorithm.

Usually, multivariate Gaussian distribution with mean vector uk and covariance matrix
Σk:

fk(xi|uk, Σk) =
exp{− 1

2
(xi − uk)T ∑−1

k (xi − uk)√
det(2πΣk)

(11.15)

The covariance matrix Σk controls the geometric feature of the underlying cluster. Banfield
and Raftery [2] proposed a general representation of the covariance matrix through the eigen-
value decomposition:

Σk = λkDkAkDT
k (11.16)

where Dk is the orthogonal matrix of eigenvectors, and Ak is a diagonal matrix whose el-
ements are proportional to the eigenvalue of λk. The matrix Dk determines the orientation
of the cluster, Ak determines its shape, and λk determines its volume. The variation of pa-
rameters in equation 11.16 will lead to various models with different characteristics. For the
equal volume spherical model, in which each cluster in the data set is spherically symmetric,
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the covariance matrix can be simplified to Σk = λI , where I is an identity matrix. If each
spherical cluster has different volume, the covariance matrix is Σk = λkI . A different λk is
used to control each cluster. The variation of parameters of general covariance matrix provides
the flexibility to generate different models for different kinds of data set.

Yeung et al. [47] applied different models to cluster ovarian cancer microarray profiles
and yeast cell cycle microarray profiles. The clustering results were shown to be comparable
to the result of heuristic graph-based algorithm CAST. The advantage of model-based algo-
rithms is that they provide a statistical framework to understand the underlying structure of
the gene expression profiles. However, the assumption of model-based clustering that data fit
in a specific distribution may not be true in some cases. For example, Yeung et al. [47] found
that gene expression data fit the Gaussian model poorly. Finding a more proper model for gene
expression data is still an ongoing effort.

11.4.7 Subspace Clustering

As the increased application of microarray technologies is generating a huge amount of data, it
is easy to collect hundreds or even thousands microarray gene expression experiment data for
one genome. For these kinds of high-dimensional gene expression profiles, all the above clus-
tering algorithms that group data based on all dimensions become extremely difficult to im-
plement. First, as the dimensions increase, the irrelevance between dimensions also increases,
which will mask the true cluster in noise and eliminate the clustering tendency. Second, there
is the curse of dimensionality. In high dimensions, the similarity measures become increas-
ingly meaningless. Beyer et al. [6] showed that the distance to the nearest neighbor becomes
indistinguishable from the distance to the majority of the points. Then, to find useful clusters,
the clustering algorithm must work only on the relevant dimensions. At the same time, it is
well known in biology that only a small subset of the genes participates in a certain cellular
process. Then, even for a subset of the experiments, only parts of expressions are meaningful.
Furthermore, one single gene may participate in multiple processes and can be related to dif-
ferent genes at different process. Thus, it can join different clusters at different processes. So,
clustering on all dimensions of high-dimension microarray expression profiles is not mean-
ingful. Recently, several subspace clustering algorithms [33] have been proposed to fit the
requirement of mining high-dimensional gene expression profiles.

The subspace clustering concept was first introduced by Agrawal et al. [1] in a general data
mining area. In their CLIQUE algorithm, each dimension is divided into a number of equal-
length intervals ξ, and a unit in subspaces is the intersection of intervals in each dimension of
sub spaces. A unit is dense if the number of points in it is above a certain threshold τ . The
CLIQUE discovers the dense units in k-dimension subspaces from the dense units in k − 1
dimensional subspaces. Next, a cluster is defined as a maximal set of connected dense units.
The results of CLIQUE are a series of clusters in different subspaces. The CLIQUE is the first
algorithm that combined the clustering with the attribute selection and provides a different
view of the data.

A number of subspace clustering algorithms have been proposed to discover subclusters
(high coherence submatrix) within high-dimensional gene expression profiles. Here, we only
introduce two pioneering works. For more subspace clustering algorithms on gene expression
profiles, a detail review is available in [29].
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Coupled Two-Way Clustering (CTWC)

For a microarray expression profile with features F and objects O, where F and O can be
both genes and experiments, Getz et al. [17] proposed a coupled two-way clustering (CTWC)
algorithm to find a stable subset (F i and Oj) of these profiles. A stable subset means that the
Oj will be significant according to some predefined threshold when using only the features
F i to clustering objects Oj . The CTWC algorithm iteratively processes two-way clustering
to find the stable subset. A clustering algorithm based on the Pott model of statistical physics
called the superparamagnetic clustering algorithm (SPC) [7] is used for two-way clustering.
Initially, two-way clustering is applied to the full gene expression matrix and generates a set of
gene clusters (g1

i ) and a set of sample clusters (e1
j ). Then, the two-way clustering is applied to

submatrices defined by the combination of one of the previously generated gene clusters with
one of the previously generated sample clusters. This iteration continues until no new clusters
satisfy some predefined criterion.

Getz et al. [17] applied the CTWC algorithm to an acute leukemia microarray profile and
a colon caner microarray profile. For the first data set, the CTWC discovered 49 stable gene
clusters and 35 stable sample clusters in two iterations. For the second data set, 76 stable
sample clusters and 97 stable gene clusters were generated. Several conditionally related gene
clusters have been identified, which cannot be identified when all of the samples are used to
cluster genes. However, the CTWC also generated some meaningless clusters.

Biclustering

Given a gene expression profile A with a set of X genes and a set of Y samples, Cheng and
Church [8] defined a submatrix AI,J (I ⊂ X , J ⊂ Y ) in A with a high similarity score as
a bicluster. Cheng and Church introduce the residue to measure the coherence of the gene
expression. For each element aij in the submatrix AI,J , its mean-squared residue (MSR) is
defined as:

r aij = aij − aiJ − aIj + aIJ (11.17)

where aiJ is the mean of the ith row in the AI,J , aIj is the mean of the jth column of
AI,J, and aIJ is the mean of all elements in the AI,J . The value of the MSR indicates the
coherence of an expression relative to the remaining expressions in the bicluster AI,J given
the biases of the relevant rows and the relevant columns. The lower the residue is, the stronger
the coherence will be. Next, the MSR of the submatrix AI,J can be defined as:

MSR AIJ =
1

|I||J |
∑

i∈I,j∈J

(MSR aij)
2 (11.18)

A submatrix AI,J is called a δ-bicluster if MSR AIJ ≤ δ for some δ ≥ 0.
Cheng and Church [8] showed that finding the largest square δ-bicluster is NP-hard and

proposed several heuristic greedy row/column removal/addition algorithms to reduce the com-
plexity to polynomial time. The single node deletion algorithm iteratively removes the row or
column that gives the most decrease in mean-squared residue. The multiple node deletion al-
gorithm iteratively removes the rows and columns whose mean-squared residues are greater
than α×msr AIJ , where α> 1 is a predefined threshold. After the deletion algorithm termi-
nates, a node addition algorithm adds rows and columns that do not increase the mean-squared
residue of the bicluster. The algorithm finds one bicluster at a time. After a bicluster is found,
the elements of the bicluster are replaced by random values in the original expression matrix.
Each iteration bicluster is processed on the full expression matrix. The process will continue
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until K prerequired biclusters are found. Masking elements of already-identified biclusters by
random noise will let the biclusters that are already discovered not be reported again. However,
highly overlapping biclusters may also not be discovered.

Cheng and Church [8] demonstrated the biclustering algorithm on yeast microarray pro-
files and a human gene microarray profiles. For each data set, 100 biclusters were discovered.

11.5 Cluster Evaluation

The cluster validation evaluates the quality of the clustering result, and then finds the best
partition of the underlying data set. A detail review of cluster validation algorithms appears in
[18]. An optimal clustering result can be evaluated by two criteria [5]. One is compactness; the
data inside the same cluster should be close to each other. The other is separation; different
clusters should be separated as wide as possible. Generally, three kinds of approaches have
been used to validate the clustering result [41]: the approach based on external criteria, the
approach based on internal criteria, and the approach based on relative criteria.

The clustering validation using external criteria is based on the null hypothesis, which
represents a random structure of a data set. It evaluates the resulting clustering structure by
comparing it to an independent partition of the data built according to the null hypothesis of
the data set. This kind of test leads to high computation costs. Generally, the Monte Carlo
techniques are suitable for the high computation problem and generate the needed probability
density function. The clustering validation using internal criteria is to evaluate the clustering
result of an algorithm using only quantities and features inherent to the data set [18]. Internal
criteria can be applied to two cases when the cluster validity depends on the clustering struc-
ture: one is the hierarchy of clustering schemes, and the other is the single clustering scheme
[18].

Because of their low computational cost, the clustering validation using relative criteria
is more commonly used. Usually the procedure of identifying the best clustering scheme is
based on a validity index. In the plotting of validity index versus the number of clusters Nc,
if the validity index does not exhibit an increasing or decreasing trend as Nc increases, the
maximum (minimum) of the plot indicates the best clustering. On the other hand, for indices
that increase or decrease as Nc increases, the value of Nc at which a significant local change
takes place indicates the best clustering. This change appears as a “knee” in the plot, and it
is an indication of the number of clusters underlying the data set. Moreover, the absence of a
knee may be an indication that the data set has no cluster type structure.

For gene expression profile clustering, there is a fourth clustering validation approach
that is based on the biological significance of the clustering results. Several clustering validity
indices are presented here.

11.5.1 Dunn Indices

Dunn [12] proposed a cluster validity index to identify clusters. The index for a specific num-
ber of clusters is defined as

DNc = min
i=1,...Nc

⎧⎨
⎩ min

j=1,..Nc

⎧⎨
⎩ d(ci, cj)

max
k=1,..Nc

diam(ck)

⎫⎬
⎭
⎫⎬
⎭ (11.19)

where d(ci, cj) is the dissimilarity function between two clusters ci and cj defined as
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d(ci, cj) = min
x∈ci,y∈cj

d(x, y) (11.20)

and diam(c) is the diameter of a cluster c, which measures the dispersion of clusters. The
diameter of cluster c can be defined as

diam(c) = max
x,y∈c

d(x, y) (11.21)

For compact and well-separated clusters, the distance between the clusters will be large and
the diameter of the clusters will be small. Then, the value of the Dunn index will be large.
However, the Dunn index does not exhibit any trend with respect to the number of clusters.
Thus, the maximum value in the plot of the DNc versus the number of clusters indicate the
number of compact and well-separated clusters in the data set.

11.5.2 The Davies-Bouldin (DB) Index

Davies and Bouldin proposed a similarity measure Rij between clusters Ci and Cj based on a
dispersion measure si of a cluster and a dissimilarity measure, dij, between two clusters. The
Rij index is defined to satisfy the following conditions [9]:

• Rij ≥ 0
• Rij = Rji

• If si = 0 and sj = 0 then Rij = 0
• If sj > sk and dij = dik then Rij > Rik

• If sj = sk and dij< dik then Rij > Rik

A Rij that statisifes the above condition is nonnegative and symmetric. A simple choice for
Rij can be [9]

DBNc =
1

Nc

Nc∑
i=1

Ri Ri = max
i,j=1,...Nc,i	=j

Rij (11.22)

The above definition of DBNc is the average similarity between each cluster Ci, i = 1, . . .,
Nc and its most similar one. Similar to Dunn index, the DBNc index exhibits no trends with
respect to the number of clusters. The minimum value of DBNc in its plot versus the number
of clusters indicates the best clustering.

11.5.3 Gap Statistics

Tibshirani et al. [42] proposed estimating the number of clusters in a data set via the gap
statistic, which compares the change in within-cluster dispersion with that expected under an
appropriate null distribution. The complete description of the gap statistic is as follows:

• Cluster the observed data, calculate the within-dispersion measure Wk for varying number
of clusters k = 1, 2, . . .K .

The Wk is defined as

Wk =

K∑
k=1

1

2 |Ck|
∑

i,j∈Ck

dij (11.23)
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• Generate B reference data sets, using the uniform prescription, and cluster each one giv-
ing within-dispersion measures W ∗

kb, b = 1, 2, . . .B, k = 1, 2, . . .K . Compute the
(estimated) gap statistic:

Gap(k) = (1/B)
∑

b

log(W ∗
kb) − log(Wk) (11.24)

• Let l̄ = (1/B)
∑
b

log(W ∗
kb), compute the standard deviation

sdk =

[
(1/B)

∑
b

(log(W ∗
kb) − l̄)2

] 1
2

,

and define sk = sdk

√
1 + 1/B. Finally, choose the number of clusters via:

k̂ = smallest k such that Gap(k) ≥ Gap(k + 1) − sk+1 (11.25)

Average Silhouette

It has been proposed (see [34, 44]), using average silhouette as a composite index to reflect
the compactness and separation of the clusters. A silhouette value s(i) of data i that belong to
cluster A is defined as follows

s(i) =
b(i) − a(i)

max{a(i), b(i)} (11.26)

The a(i) is the average distance between data i and other data in the same cluster A:

a(i) =
1

|A| − 1

∑
j∈A,j 	=i

d(i, j) (11.27)

where d(i, j) is the distance between data i and j and |A| is the number of data in cluster A.
The b(i) is the minimum value of average distance of data i to data in any cluster C other

than cluster A.
b(i) = min

C 	=A
{d(i, C)} (11.28)

and

d(i, C) =
1

|C|
∑
j∈C

d(i, j) (11.29)

The average silhouette is the average of the silhouette value of all data in the cluster. The
value of the average silhouette lies between -1 and 1. If the average silhouette is great than 0,
the cluster is valid. If it is less than 0, the data in this cluster on average are closer to members
of some other clusters, making this cluster invalid.

11.5.4 Biological Significance-Based on P -Value

Tavazoie et al. [39] proposed evaluating the clustering result based on the biological signifi-
cance of each category. First, genes are assigned categories based on gene ontology or based
on the categories of some public database. Then, for each cluster, a P -value can be calculated,
which is the probability of observing the frequency of genes in a particular functional cate-
gory in a certain cluster, using the cumulative hypergeometric probability distribution [39].
The P -value of observing k genes from a function category within a cluster of size n is
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P = 1 −
k−1∑
i=0

(
f
i

)(
g − f
n − i

)
(

g
n

) (11.30)

where f is the total number of genes within that functional category and g is the total number
of genes within the genome (for yeast, n equals to 6220). The lower the P -value is, the higher
the biological significance of a cluster.

11.6 Discussion

In this chapter, we reviewed clustering analysis for the gene expression profiles. The list of
clustering algorithms presented is very limited but representative. Because of the fact that
the research in this area is very active, a list of all algorithms developed for clustering gene
expression profiles will be prohibitively long.

For biologists, clustering analysis is only the first step. Biologists want the results from
the clustering to provide clues for the further biological research. Because false information
will cost a lot of time and money for wet experiments, more accurate results are an absolute
necessity. Since only a portion of the genes are expressed under most experimental conditions,
to obtain a biologically meaningful result the clustering algorithms need to artificially assign
a threshold for controlling the quality of the clusters. To determine the threshold, biological
knowledge is needed. For some biological organisms, like yeast, E coli, and Caenorhabditis
elegans, knowledge of the genes may be enough to determine the threshold. But for most bio-
logical organisms knowledge of the genes is limited, so the threshold is determined artificially.
The threshold may be either too spurious, which may produce false information, or too strict,
which may cause the loss of true information. Moreover, the changing of the threshold will
result in different clusters of modules [3]. Finding an objective criterion for deciding what is
a biologically meaningful cluster is certainly one of the most important open problems.

With the wide application of the microarray technology, more genome-size gene ex-
pression experimental data for an organism are becoming available. Because of the curse
of dimensionality, traditional clustering algorithms are not suitable for analyzing these high-
dimensional data sets. Subspace clustering, which tries to find density sub-“blocks” in the
high-dimensional data, is not only appropriate for the purpose of mining high-dimensional
large gene expression profiles but also consistent with the knowledge from biology that only
part of the genes is expressed at certain experimental conditions. Designing an efficient sub-
space clustering algorithm that can discover biologically meaningful clusters still is an impor-
tant research direction.

One other important issue in clustering analysis is how to visualize the clustering result.
A good clustering algorithm without a good method to visualize the result will limit its usage.
The reason that hierarchical agglomerative clustering is most commonly used in biological
data analysis is that it can be visualized by dendrography, which is easily understood by biol-
ogists. Developing new methods and tools for visualization of clustering result of biological
data can lead to widespread application of the clustering algorithms.
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Complexity of Magnetic Resonance Spectrum
Classification

Richard Baumgartner, Tin Kam Ho, Ray Somorjai, Uwe Himmelreich, Tania Sorrell

Summary. We use several data complexity measures to explain the differences in classifi-
cation accuracy using various sets of features selected from samples of magnetic resonance
spectra for two-class discrimination. Results suggest that for this typical problem with sparse
samples in a high-dimensional space, even robust classifiers like random decision forests can
benefit from sophisticated feature selection procedures, and the improvement can be explained
by the more favorable characteristics in the class geometry given by the resultant feature sets.

12.1 Introduction

Biomedical spectra obtained by magnetic resonance (MR) spectroscopy are characterized by
(a) high dimensionality and (b) a typically small number of available samples. A statistically
meaningful analysis of a limited number of high-dimensional data points presents a serious
challenge, due to the extreme sparsity of samples in high-dimensional spaces [13]. Dimen-
sionality reduction techniques using feature selection and extraction provide a natural way
to address this problem [10, 11, 14]. Interpretable feature selection is especially desirable in
disease profiling applications when using biomedical data such as spectra or gene microarrays
[8, 9, 14], because they provide hypotheses for the domain experts for further corroboration.
The main goal of this chapter is to explore the utility of data complexity measures [6] in assess-
ing several feature selection and extraction procedures in a real-world two-class discrimination
problem using MR spectra.

Robust classifiers are needed to generalize the class boundary from severely limited train-
ing samples in a high-dimensional problem. Questions remain on how such classifiers interact
with dimensionality reduction techniques. Recently, in the application of handwritten word
recognition it has been demonstrated that feature selection and extraction can be beneficial
for the random subspace method (RSM) [2]. In addition, a successful, standard application of
RSM has been reported in disease profiling applications using high-dimensional gene microar-
ray data, where the combination of feature selection and extraction with RSM was proposed
as a topic for further research [1]. Motivated by the observations in [1] and [2], we use RSM
classification accuracy as a guide for comparing features extracted by our algorithms.
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12.2 Materials, Methods, and Data

Conventional biochemical techniques frequently have difficulty identifying closely related
species or subspecies of fungi or yeasts. At best, the procedures are time-consuming. In con-
trast, MR spectroscopy, combined with multivariate classification methods, has proven to be
very powerful. As a typical application of the methodology, we have used MR spectra of
isolates of two pathogenic yeast species, Candida albicans and Candida parapsilosis [3].

The yeast colonies were suspended in phosphate-buffered saline made up with deuterated
water. The suspension was immediately transferred to a 5-mm NMR tube (Wilmad Glass Co.,
Buena, NJ). The 1H MR spectra were acquired at 37degC on a Bruker Avance 360-MHz MR
spectrometer using a 5-mm 1H, 13C inverse-detection dual-frequency probe. The following
acquisition parameters were used: frequency 360.13 MHz, pulse angle 90deg, repetition time
2.3 s, spectral width 3600 Hz. For a more specific description of the technical details of the
acquisition procedure, see [3]. Spectra were processed using the Xprep software (IBD, Win-
nipeg, Manitoba). The feature extraction and classification methods were carried out on the
magnitude spectra. The dimensionality of the spectra was 1500, corresponding to intensity
values in the range of 0.35 to 4.00 ppm. A typical spectrum is shown in Figure 12.1. The
training set contained 124 spectra (62 in each class). The independent test set not used for
classifier development contained 73 spectra (35 in class 1, Candida albicans, and 38 in class
2, Candida parapsilosis).

Fig. 12.1. A example of a magnetic resonance spectrum.

12.3 Dimensionality Reduction Techniques

Components of the raw spectral feature vectors are ordered by the channel frequencies. Be-
cause many spectral peaks and valleys have a naturally occurring width, intensity values in
neighboring channels are expected to be correlated to some extent. To quantify this, we com-
puted the 1500×1500 correlation coefficient matrix using the training set. Figure 12.2 shows
the heat-map representation of this correlation matrix. We can clearly recognize the bands or
clusters of highly correlated intervals of adjacent-neighboring features formed along the main
diagonal. The motivation for the dimensionality reduction techniques under investigation is to
take advantage of this structure in both an unsupervised and a supervised manner.
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Fig. 12.2. Heat-map representation of the correlation matrix computed from the training set.
The bands of highly correlated neighboring features are clearly recognizable.

In particular, let a sample in the original 1500-dim (pdim = 1500) feature space be rep-
resented by a 1 × pdim row vector soriginal. The dimensionality reduction is achieved using
a pdim × nfeat matrix B so that the sample in the reduced nfeat-dimensional space is given
by the row vector sreduced, where

sreduced = soriginalB.

The columns of the matrix B represent the basis functions onto which the data are pro-
jected. In the two feature extraction procedures we used, the new features are averages over
intervals of neighboring features in the original spectrum. Thus, each column in the matrix
B represents a basis function with nonzero values in some of the pdim positions where the
orignial features are to be averaged.

Averaging highly redundant features also has a smoothing effect and improves the signal-
to-noise ratio. An example of a column of the matrix B is shown in Figure 12.3, where the
feature interval 200 to 300 is averaged.

Fig. 12.3. An example of a basis function that averages the intensity values in the spectral
interval 200 to 300.
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12.3.1 Unsupervised Feature Extraction

In unsupervised feature selection, we determine the set of features to be averaged from the
training set using a sequential clustering algorithm. Clusters of features are defined as inter-
vals of neighboring frequency channels for which the pairwise correlation coefficient is not
lower than a specific threshold. We start with the feature at position 1 and keep adding the
neighboring features to the current feature cluster, as long as their correlation coefficients with
the first feature are at or above the chosen threshold. If the criterion is violated, the current
feature cluster is assumed to be complete. The (last) feature that caused the violation of the
cluster criterion is declared the first feature of a new cluster and the procedure is repeated.
The procedure ends with the last feature (at position pdim). The number of feature clusters
identified gives the dimensionality of the reduced space.

12.3.2 Supervised, Genetic-Algorithm-Driven Feature Extraction

Alternatively, features can be selected with some regard to their discriminating power for the
two classes. The feature selection algorithm we have used for supervised feature extraction is
the near-optimal region selector (ORS) [8, 10]. ORS searches for intervals of neighboring fea-
tures that are maximally discriminatory. ORS is guided by a genetic algorithm (GA), explicitly
optimized for preprocessing spectra. GA is particularly appropriate for spectra, since the latter
are naturally representable as “chromosomes,” vectors of length pdim, with 1’s indicating the
presence and 0’s the absence of features. The GA’s input includes (1) nfeat, the maximum
number of features, which is the number of distinct spectral subregions required in the type of
dimensionality reduction operation/transformation to be carried out (averaging of the spectral
windows); (2) the population size; (3) the number of generations; and (4) two random seeds.
The operations comprise the standard GA options: mutation and crossover. To achieve robust
classification, the number of desired features is typically kept much smaller than the sample
size. GA ORS begins by searching the entire feature space, i.e., the complete spectrum. The
output is the set of (averaged) feature intervals that optimally separate the classes. GA ORS is
applied as a wrapper, for which the search of the feature space is guided by the leave-one-out
accuracy of a linear discriminant analysis (LDA). Once nfeat (� pdim) good features have
been found, the results are validated using an independent test set that was not used in the
feature extraction procedure.

12.4 Random Subspace Method and Decision Forests

The random subspace method (RSM)[4] is known to produce robust classifiers for many high-
dimensional problems. The method combines the decision of a large number of classifiers with
sufficient differences in the generalization power [7]. Each classifier is trained to perfection,
but uses only a randomly selected subset of features. If the classes are unambiguous in the
chosen subspace, the classifier is perfect and at the same time is insensitive to differences in the
unselected features. As a result, it has some built-in generalization power to avoid overtraining.

RSM often performs better than any individual classifier in its collection. The individual
classifiers are best taken to be decision trees, but success has been reported on nearest neigh-
bor classifiers [5], pseudo-Fisher linear discriminants [12], and support vector machines [1].
The built-in defense against overtraining has made RSM useful in problems involving a large
number of features where some may be redundant. Thus RSM appears to be promising in
classifying MR spectra that typify such problems.
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In RSM the degree of improvement over individuals varies with the specifics of the indi-
vidual classifiers. There are variations between different fractions of features chosen to use,
or between different realizations of the random projections. In the case of decision trees, vari-
ations are also observed between different types of splitting hyperplanes used in the trees.
Such variations have not been thoroughly analyzed, but a large range usually means that the
discriminating power is concentrated in a small number of features, so that their presence in
the chosen set is important.

In our experiments we use RSM with decision trees that use oblique or axis-parallel splits.
In oblique trees, at each internal node the tree splits the data set using a linear function of
the features obtained by a simplified Fisher’s procedure, central axis projection [4]. In axis-
parallel trees, each node splits the data set using the feature that maximizes information gain.
The classifier that uses RSM on decision trees is also called a random decision forest.

In Table 12.1 we report the test set accuracies when the random decision forest is applied
to several feature sets resulting from variations of the two feature extraction procedures. For
comparison, we also show the accuracies of a nearest-neighbor classifier using Euclidean dis-
tance, and the two types of decision trees applied individually without participating in an RSM
ensemble. The feature sets are
• original: the 1500 dimensional vector containing the raw spectrum;
• GA averaged: the three features that are average intensities in three spectral regions se-

lected by the genetic algorithm;
• GA regions: the concatenation of the intensity values in the three spectral regions selected

by the genetic algorithm (channel 82–96, 908–933, and 1080–1242);
• corr 0.90: averages of 90 spectral windows selected by correlation coefficient clustering

with a threshold at 0.9;
• corr 0.99: averages of 330 spectral windows selected by correlation coefficient clustering

with a threshold at 0.99;
• corr 0.998: averages of 849 spectral windows selected by correlation coefficient clustering

with a threshold at 0.998.

Table 12.1. Nearest neighbor, single decision trees, and random decision forest accuracies (%
correct on the test set) using different sets of selected features.

Feature set Original GA averaged GA regions corr 0.90 corr 0.99 corr 0.998
Dimensionality 1500 3 204 90 330 849
1-nearest neighbor 91.78 91.78 79.45 86.30 87.67 91.78
1 oblique tree 82.19 87.67 75.34 78.08 84.93 82.19
1 axis-pl. tree 73.97 86.30 83.56 78.08 83.56 75.34
Random decision forest 94.52 95.89 90.41 90.41 94.52 91.78

This problem demonstrates an extreme case where only a few of a large number of fea-
tures are relevant for discrimination, and the number of available training samples is very small
compared to the feature space dimensionality. In such a space, many single classifiers would
suffer from overtraining, as we can see from single tree accuracies in Table 12.1. But the RSM
ensembles are robust and are able to take advantage of the large number of features. Never-
theless, applying sophisticated feature selection techniques is still important, as evidenced by
the accuracy improvement achieved by the feature set GA-averaged on the RSM ensemble,
as well as on the single tree classifiers. Moreover, with better features to train on, RSM also
shows less performance variation among different training options.
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12.5 Evaluation of the Feature Set Complexity

To find explanations for the differences in classification accuracies using these feature sets, we
computed the values of several measures of classification complexity as described in [6]. More
details about these measures can be found in other chapters in this volume. The measures used
in this experiment are

1. boundary: length of the class boundary estimated by the fraction of points on a class-
crossing edge in a minimal spanning tree

2. intra-inter: ratio of average intra-class nearest-neighbor distance to average inter-
class nearest-neighbor distance

3. pretop: fraction of points with the maximal within-class covering ball not fully con-
tained in other balls

4. overlap: overlap volume of the class bounding boxes
5. maxfeaeff: maximum feature efficiency, or the largest fraction of points classified by

a single feature
6. nonlin-NN: nonlinearity of nearest neighbor classifier
7. nonlin-LP: nonlinearity of linear classifier minimizing error distance

Table 12.2 lists the values of these measures computed from the training samples (TR)
and the test samples (TE) represented by each feature set. There are some indications that the
GA-averaged feature set makes the classification problem easier in at least three ways: (1) it
puts fewer points on boundary, (2) the classes have less spread (lower intra-inter ratio),
and (3) the classes are more spherical (smaller pretop value). Two of the metrics, volume
of overlap and maximum feature efficiency, are heavily affected by the orientation angle of
the class gap, and are thus not too revealing in this problem. The nonlinearity of the nearest
neighbor classifier is relatively low for the GA-averaged feature set, suggesting that with this
feature set, the nearest neighbor boundary can largely avoid cutting off part of the convex hulls
of the two classes to the wrong side of the decision surface. On the other hand, the nonlinearity
of the linear classifier is actually higher for the GA-averaged feature set while being zero for
all others. This suggests that linear separability by itself does not necessarily give an easily
learnable problem; sparse samples in a high-dimensional space have a higher chance to be
linearly separable, but severe overtraining may prevent the learning algorithms from yielding
a satisfactory classifier.

12.6 Conclusion

We described a study of MR spectra classification where two feature selection and extraction
procedures were used to derive several feature sets representing the problem. We applied de-
cision forests constructed with the random subspace method to each feature set, and observed
that the averaged intensity values in three frequency windows selected by a genetic algorithm
yielded the most accurate classifier. We further attempted to explain the superiority of this
feature set using several measures of data complexity, and observed that its higher utility in
classification is consistent with favorable values with three measures most relevant to the class
geometry.

We expect that more studies along this line will lead to a way of using the data complexity
measures to guide feature selection for classification. In this methodology, feature selection
procedures may be designed for minimizing classification complexity, as measured by the
most useful descriptors of the class geometry.
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Table 12.2. Complexity measures of the feature sets on the training sample (TR) or test sample
(TE).

Original GA averaged GA regions corr 0.90 corr 0.99 corr 0.998
boundary TR 0.25 0.16 0.40 0.26 0.27 0.27

TE 0.27 0.22 0.40 0.32 0.37 0.33
intra-inter TR 0.59 0.41 0.69 0.64 0.62 0.61

TE 0.58 0.46 0.66 0.64 0.63 0.60
pretop TR 0.98 0.91 1.00 1.00 1.00 0.99

TE 1.00 0.93 0.99 0.99 1.00 1.00
overlap TR 0.00 0.38 0.00 0.00 0.00 0.00

TE 0.00 0.29 0.00 0.00 0.00 0.00
maxfeaeff TR 0.27 0.14 0.19 0.23 0.26 0.27

TE 0.52 0.23 0.40 0.49 0.52 0.52
nonlin-NN TR 0.05 0.02 0.11 0.07 0.06 0.06

TE 0.05 0.08 0.14 0.07 0.06 0.05
nonlin-LP TR 0.00 0.01 0.00 0.00 0.00 0.00

TE 0.00 0.03 0.00 0.00 0.00 0.00
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Data Complexity in Tropical Cyclone
Positioning and Classification

Chi Lap Yip, Ka Yan Wong, and Ping Wah Li

Summary. Tropical cyclones (TCs), life-threatening and destructive, warrant analysis and
forecast by meteorologists so that early warnings can be issued. To do that, the position of
a TC should be located and its intensity classified. In this chapter, we briefly introduce the
problem of TC positioning and classification, discuss its associated data complexity issues,
and suggest future research directions in the field.

13.1 Introduction

A tropical cyclone (TC) is a synoptic-scale1 to mesoscale2 low-pressure system over trop-
ical or subtropical waters with organized convection and definite cyclonic (anticyclonic in
Southern Hemisphere) surface wind circulation [18, 25]. Figures 13.1(a) and 13.1(b) show the
structure of a typical tropical cyclone. In appearance, a TC resembles a huge whirlpool — a
gigantic mass of revolving moist air. It has a disk-like shape with a vertical scale of tens of
kilometers against horizontal dimensions of hundreds of kilometers [35]. The center of circu-
lation, or the “eye,” of a TC is the low-pressure center around which organized convection
occurs and low-level cloud lines spiral. It is also the warmest part of a TC. An eye is bounded
by the “eye wall,” a ring-shaped region where maximum winds are found. The eye is typi-
cally of the order of tens of kilometers in diameter, and most of the heavy rain occurs near
it and along the spiral rain bands [44]. A dramatic fall and rise in wind strength and pressure
occur during the passage of TC eye, which is shown in Figure 13.1(c). According to the Na-
tional Oceanic and Atmospheric Administration (NOAA) [6], the average annual frequency of
named TCs over the globe from 1968 to 2003 is 87.7, and 30.4% of them occur in the Western
North Pacific Ocean basin [26]. Figures 13.2(a) and 13.2(b) show tracks of TCs that occurred
over the Western North Pacific and the South China Sea in 2003 and the distribution (average
number and percentage)3 of TCs over the globe from 1986 to 2003, respectively.

Since TCs often cause significant damage and loss of lives in affected areas, to reduce the
loss, weather warning centers normally issue early warnings based on the forecasted TC track

1 Synoptic-scale systems are continental or oceanic in scale, such as fronts and tropical high
pressure areas [7].

2 Mesoscale weather systems are phenomena of 2 to 2000 km, such as thunderstorms.
3 Since some TC tracks stride more than one basin, the total percentage is larger than 100%.
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(a) (b) (c)

Fig. 13.1. Tropical cyclone (TC) structure. (a) Typhoon York, 1999-09-16 0300 Hong Kong
Time (HKT), Radar reflectivity data. (b) Typhoon York, 1999-09-16 0200 HKT, GMS-5 visi-
ble light data. (c) Typical variations of pressure and wind speed during the passage of TC eye.

Data sources: (a, b): Tai Mo Shan Doppler weather radar of the Hong Kong Observatory (HKO) [4].
(c): The Geostationary Meteorological Satellite (GMS-5) of the Japan Meteorological Agency (JMA) [5].

Figure 13.2(c). Two steps, namely positioning and classification, are required for TC analysis
before a TC forecast can be done. In the positioning step, an accurate location of the eye of the
TC is found by applying eye fix techniques. This allows the movement of the TC to be tracked,
and is normally done by the analysis of data from remote sensors or numerical models. In the
classification step, the intensity of a TC is determined. Depending on its intensity, a TC can
normally be categorized as a tropical depression, tropical storm, severe tropical storm, and
typhoon or hurricane. The classification step allows forecasters to know whether the TC is
strengthening or dissipating. In this chapter, we focus on the analysis steps of positioning and
classification. The forecasting issues will only be touched briefly when we discuss numerical
weather prediction (NWP).

Traditionally, a TC eye is fixed manually by a forecaster. This is done by identifying the
center of rotation from a sequence of radar or satellite images, or overlaying templates onto
a printed image. Since these traditional methods require human recognition of cloud shapes
or eye location, they are not totally objective. The results from the same set of data may not
be consistent when they are analyzed by different forecasters. With the availability of more
powerful computers in recent years, computer-assisted analysis becomes possible. Algorithms
have been designed for positioning the TC eye and classifying its intensity in a more objective
and efficient way.

In the following sections, we first introduce the data sources that are often used for the
positioning and classification problems. Then, a brief survey of the developments in the field
is given, highlighting the issues associated with these seemingly simple problems. After that,
a discussion of data complexity issues associated with the problem is given, followed by a
discussion of the future direction of research and development, and conclusions.

13.2 Data Sources

There are four major types of weather data used for automated TC eye fix: radar reflectivity
data, Doppler velocity data, satellite images, and numerical weather prediction (NWP) data.
Since these data are collected or generated by different sensors, each of which focuses on
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different aspects of the atmosphere, specialized algorithms for processing and analysis are
needed to handle each of these data types. Indeed, the results of an eye fix of the same TC
at the same time period using different data or by different people could be different. A brief
description of each type of data is provided in this section.

Radar reflectivity and Doppler velocity data are obtained from weather radars, most of
which are fixed on earth. Weather radars send out microwave signals to the atmosphere and
collect the reflected signals. Radar reflectivity values show the intensity of the echos reflected
from rain, snow, ice, or hail aloft. Doppler velocity data show the radial velocities of these wa-
ter species with respect to the radar. The reflected signals are processed to extract the relevant
slices suitable for analysis. Radar data at 3 km from sea level, called the 3-km constant altitude
plan position indicator (CAPPI), is often used for the TC eye fix. The range of weather radars
are normally limited to a few hundred kilometers, and their data are updated at intervals of
a few minutes. With a high resolution of a few hundred meters, they are ideal for observing
precipitation near the station. Figures 13.3(a) and 13.3(b) show two radar images.

Meteorological satellites carry sensors that point to the ground to obtain a bird’s view of
the earth. Images of the earth at different wavelengths from infrared (IR) to visible light (VIS)
are captured in different channels. Satellites can be polar-orbiting or geostationary. Polar-
orbiting satellites are relatively low-flying (400–900 km) and take images of the portion of the
earth below it when it orbits from pole to pole. In contrast, geostationary satellites usually
take much higher orbits (35,800 km) and fly above the equator at the same angular velocity as
the earth’s rotation, and thus appear stationary to the ground. They normally transmit data in
intervals ranging from 1 to 12 hours. The resolutions of weather satellites typically range from
1 to 5 km. Figure 13.3(c) shows an IR image of Southeast Asia from NOAA’s Geostationary
Operational Environmental Satellite-9 (GOES-9).

In contrast to radars and satellites, NWP data are obtained from a model of the physics
of the atmosphere. NWP models can be based on grid point values or spectral representations
of the atmosphere. Gas laws, energy conservation laws, laws of motion, laws of thermody-
namics, water vapor equations, and continuity equations are used to model the atmosphere.
Given an initial condition, the atmospheric parameters at particular time instances in the fu-
ture can be computed numerically. In NWP, the initial conditions are seeded by observed and
interpolated values of atmospheric parameters. Elements such as temperature, pressure, and
wind components are used. Resolutions of NWP models range from a few to tens of kilo-
meters, usually in time steps of minutes. Though data intensive and computationally expen-
sive, numerical modeling allows future values of the atmospheric parameters to be simulated,
and is thus adopted by many weather centers in forecasting operations. NWP models can be
categorized as global or regional. The former covers the whole globe and the latter a geo-
graphical region. An example of regional NWP model is the Operational Regional Spectral
Model (ORSM) [20] used at the Hong Kong Observatory. Figure 13.4 shows two visualiza-
tions of NWP results, the model domains and grids for ORSM. Other examples of NWP mod-
els include Japan Meteorological Agency (JMA) Global Spectral Model [8], European Cen-
tre for Medium-Range Weather Forecast (ECMWF) global atmospheric model [2], the Fifth-
Generation National Center for Atmospheric Research (NCAR)/Penn State Mesoscale Model
(MM5) [3], and Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) [1].
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13.3 TC Eye-Fix Algorithms

13.3.1 Traditional Eye Fix Techniques

As mentioned in section 13.1, a TC is a low-pressure system that has a rain-free circulation
center where spiral rain bands whirl. TC eye-fix methods mainly focus on locating the low-
pressure center, wind center, or rain-free center. The traditional manual eye-fix process is still
important. It can be categorized into identification of the low pressure or wind center, template
matching, remote sensing sequence analysis, and the extrapolation method.

Tsui [48] discusses the methods for locating the low-pressure center and wind center. To
locate the low-pressure center, one can examine the pressure profile of a TC and pick the local
minimum point with acute rise in pressure on the sides. To determine the wind center, one can
assume a symmetrical wind profile and the constant inflow angle of 20 degrees. Figure 13.5(a)
illustrates the method. With the wind directions (arrows in Fig. 13.5(a)) obtained from differ-
ent observations, straight lines are drawn from these points at an angle of 110 degrees plus
the angle of wind direction. The centroid of the polygon formed by these straight lines is then
regarded as the TC center. To use these methods, information about pressure and wind direc-
tions are needed. However, this information depends on the reports by ships or land stations.
Unless the TC comes close to these stations, this information may not be available.

Manual eye-fix methods that make use of remote sensing data are also used in practice.
Since the rainband of a TC is of spiral shape, one can overlay spiral templates onto a re-
mote sensing image for the best match to determine the position of the rain-free center on
the radar [46]. Alternatively, by playing back a sequence of remote sensing images in a loop,
forecasters can trace the movement of spiral rain bands by identifying the cyclonic rotations.
Extrapolation eye-fix methods that make use of previous eye-fix results are also used. Linear,
spline, or cycloid extrapolation can be applied [21].

Though time-honored, the techniques just mentioned often require subjective and fuzzy
matching by experienced meteorologists. Thus, they are error-prone, especially for weaker
TCs such as tropical depressions and even some tropical storms. Automated eye-fix tech-
niques, in contrast, employ objective measures, and in theory could give unbiased results.

13.3.2 Automated Eye-Fix Techniques

Two main approaches of automated TC eye fix are wind field analysis and pattern matching.
For wind field analysis, the TC center is fixed by analyzing the motion field constructed from a
sequence of remote sensing images. Since the quality of the motion field determines the quality
of the result, a motion field construction algorithm, image preprocessing, and vector field
postprocessing are all critical in this approach. For pattern matching, which can be applied
on a single image as well as a sequence, a TC eye is fixed by finding the best match between
predefined TC models and the observed atmospheric data. Research issues in this paradigm
include model design, image preprocessing and transformation, and efficiency of matching
algorithms.

Motion Field Construction

A number of methods have been developed to construct motion fields from a sequence of
remote sensing images. Schemetz et al. [43] derived cloud motion winds (CMW) by finding
cross-correlation values on three successive infrared (IR) satellite images. With the use of
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three successive images, a symmetry check of the two corresponding vectors can be done so
that they agree within certain limits with respect to speed and direction. The same idea is
also applied on satellite images on the visible spectrum (VIS) to derive cloud motion winds
(VIS-CMW) [36].

In another study, cloud features are tracked using massively parallel semifluid motion
analysis (MPSMA) [17]. The dynamic cloud motion is represented by a semifluid motion
model. Non-rigid motion vectors are estimated using satellite images [37, 38], which can then
be used for the analysis of wind fields within the inner core and the eye of TCs.

To construct motion fields from radar data, the tracking radar echoes by correlation
(TREC) algorithm is developed [42]. In TREC, two scans of plan position indicator (PPI)
reflectivity data measured at the same elevation angle, a few minutes apart, are used. The
analysis proceeds by dividing the first scan into a number of equal-sized two dimensional ar-
rays of pixels. Each array is correlated with the possible arrays of the same size in the second
scan to find the best matching (the one with highest correlation) second array. The location of
the second array determines the end point of motion vector. As the radar reflectivity echo pat-
terns circulate about the eye, the motion field built using TREC is considered as the horizontal
winds of a tropical cyclone [49]. The TREC algorithm has been adopted in weather analysis
and forecasting systems such as SWIRLS [33] for tropical cyclone observation [23], short-
range precipitation forecasting [32], and other applications. Figure 13.5(c) shows the motion
field constructed using the TREC algorithm of the SWIRLS system used by the Hong Kong
Observatory.

Motion Field Analysis

A TC center can be fixed by analyzing the motion fields. One possibility is to extract and
characterize critical points such as swirls, vortices, sinks, or sources by analyzing the field
mathematically [10, 11]. The idea is to represent a vector field as the sum of a solenoidal and
an irrotational field, which can be obtained by techniques such as two-dimensional Fourier
transform. The stream function and velocity potential are then found from these fields, and a
complex potential function of the flow is constructed. An assumption that the field follows the
Rankine model is then made [11]. The model approximates the velocity field of a vortex as
a vector field with constant curl value and zero vorticity inside a circular area around it. The
velocity is also modeled to decrease inverse squarely with the radius. With this model, the field
can be analyzed mathematically and the critical points located by finding the local extrema
of the complex potential function. Alternatively, as in [45], critical points are classified by
examining the linear phase portrait matrix [63]. Vortex centers can then be regarded as TC
centers.

Besides TC eye-fix, motion field analysis is also used in other meteorological applications,
such as cloud structure and height estimation [60, 61, 62]. Yet these techniques mandate the
use of a sequence of images for the construction of the vector field. Hence, they may not be
suitable if the image is sampled infrequently, partly missing, of low quality, or when the TC
moves fast. Pattern matching, in contrast, can be performed using only a single image and
even on partially available data.

Pattern Matching

To fix the eye of an ideal TC, Wood [56] uses an axisymmetric hurricane vortex flow model.
Using Doppler velocity data, a TC is found by locating areas with cyclonic shear, and its center
located by the identification of extreme Doppler velocity values.
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Recently, the idea of automatic spiral template matching has been used in a number of
works. In Wang et al. [51], a rain band of a TC is modeled as a logarithmic helix (spiral) with
the equation ρ = ea(θ+θ′), where a is the obliquity parameter and θ′ is the initial rotary angle
of the helix. The method of least squares is applied to find the parameters of the equation from
cloud features extracted from satellite images. The center of the helix thus gives the initial
center of the TC. An extrapolation method is then applied to improve the precision of the
located centers by adjusting the center location obtained using past results.

The automatic spiral template matching method is also used in microwave and IR satellite
images for eye fix [53]. A 10-degree log spiral is matched against the curve bands of a TC.
The image gradient and a spiral-shaped unit vector field are used in the process. To increase
the precision, the Hough transform is applied to determine the optimal position and the size of
circle that fits the gradient map of the region around the eye.

A more recent work based on pattern matching focuses on the processing of radar
data [55]. In this work, a spiral model of a TC is designed based on the requirement that the eye
should be relatively cloud-free, and the rain bands follow a spiral equation r = aeθ cot α. The
parameters a and α are estimated from the radar data by a number of image processing and
transformation operations at different coordinates (lon, lat). The eye-fix results are smoothed
using Kalman filter [34, 52] to reduce sensitivies due to intrinsic errors and noise.

To assess the performance of an eye-fix algorithm, it is customary to compare the results
with best-track data [18]. Best track is the track of the center of a TC determined after the
event with the benefit of all available data and the wisdom of hindsight. This postanalysis
data is often used for verification since no real-time ground truth is available. This verification
enables easy comparison with subjective forecast for evaluation of the accuracy of an eye-fix
algorithm. Using the algorithm suggested in [55], an average error of about 0.16 degrees on a
Mercator projected map with respect to best-track data was reported. The authors subsequently
modified the model to a six-parameter one by limiting the extent of rain bands, allowing the
eye to vary in size during the TC’s lifetime, and modeling the eye wall as well [57, 58]. Figure
13.5(b) shows the TC model. Genetic algorithm is used to speed up the convergence process of
the searching algorithm. With different parameter settings, errors ranges from 0.139 to 0.257
degrees were obtained with a tenfold improvement in speed. This pattern matching method
can fix the TC center using only a single image as soon as the data is available. Results from
individual images are then smoothed to form the estimated track. Figure 13.6(a) shows the
five best templates overlaid on a preprocessed radar image. A comparison between the best
track and estimated track for Typhoon Yutu (2001-07-24 2000 HKT to 2001-07-25 1954 HKT,
240 radar images at 6-minute intervals) found by the above-mentioned algorithm is shown in
Figure 13.6(b).

Pattern matching requires only a single image and thus could be effectively applied even
if the image is sampled infrequently, or when the TC moves fast. However, the TC must have
the features (e.g., rain band or eye wall) that resemble those defined in the TC model. Motion
field analysis, in contrast, requires at least two images for the analysis, and exploits both spatial
and temporal information. It could be used even if the TC is dissipating or partially out of the
image. These two approaches in a certain sense are complementary to each other and thus
could be used to handle different types and stages of TCs.

13.3.3 Dvorak Analysis

One of the most important use of the eye-fix results is intensity classification, or the estima-
tion of TC intensity. This is traditionally done by Dvorak analysis [13, 14, 15], which employs
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pattern-matching techniques and empirically derived rules to obtain an estimation of TC in-
tensity in terms of T-numbers. The parameter T-number is used to represent a simple model of
TC evolution such that T-number increments correspond to a change in intensity. The initial
step of Dvorak analysis is a manual TC eye fix using satellite images. Forecasters then observe
the cloud shapes shown on satellite images and search for the most similar pattern against a
swatch of more than 60 templates. Figures 13.7(a) and 13.7(b) show some of the templates
and example satellite images used in Dvorak analysis. An initial estimation of TC intensity is
then made according to the best matched pattern. An intricate process of adjustments to the
estimated intensity is then done by examining measurements such as satellite readings and
cloud features, after which a final intensity value is determined and the TC classified.

The Dvorak analysis is not completely objective. For example, different forecasters may
give different answers according to their own judgments. To eliminate the subjectiveness, the
objective Dvorak technique (ODT) is designed to automate some of the steps [59]. Infrared
(IR) satellite data, which provide information of temperatures of cloud top, sea surface, and
land, are used. In ODT, once the eye is fixed, a search is done to find the warmest pixel temper-
ature within a 40-km radius of the chosen storm center on the IR image. This eye temperature,
which is the warmest part of the TC, together with the surrounding temperature readings, are
used to estimate the TC intensity through a table lookup. In a later work, the techniques were
modified so that cloud patterns can be categorized [50]. The relationship between cloud pat-
tern, temperature at the storm center, and temperature of the convective cloud environment are
used for cloud pattern classification. The cloud categories include eye, central dense overcast
(CDO), embedded center, and shear. The eye is the warmest part of a TC. CDO occurs when a
dense, solid-looking mass of clouds with cold cloud tops occluding the warm eye is observed
in a visible satellite image. The embedded center pattern, on the other hand, occurs when the
cloud system center is within a cold overcast and is observable in IR satellite images. A shear
pattern is observed when the cold clouds move to one side of the cyclone, developing a sharp
edge. By examining the histogram of cloud top temperature of the IR image, together with a
Fourier analysis for eye and surrounding cloud region, cloud patterns are classified.

Attempts to completely automate Dvorak analysis on satellite images can be found in [27]
and [29], where an elastic graph dynamic link model, based on elastic contour matching, is
used. The method integrated traditional dynamic link architecture for neural dynamics and the
active contour model for contour extraction of TC patterns. By elastic graph matching between
the query pattern and all the Dvorak templates in the database, the best match template is
found, and its eye position is taken as the closest approximation of the center location of
the query pattern. An overall recognition rate of 97% for eye positions with respect to the
template-defined center was reported with the use of enhanced infrared (EIR) satellite images.
The authors also proposed a method that uses a neural oscillatory elastic graph matching
model [28] and reported an eye position recognition rate of 99%.

Researchers have also designed some algorithms, such as Fourier-based contour analy-
sis [12], different cloud classifiers [39], or the use of fuzzy mathematical morphological op-
erators [40], to automate the process of TC extraction from satellite images. Such automation
could allow the TC eye fix to be done more easily. The TC pattern-matching approaches were
also used in a typhoon image database for content-based image retrieval [21, 22].

13.4 Data Complexity Issues

The seemingly simple TC positioning and classification problems are practically difficult for
a number of reasons. Besides the technical ones mentioned in the previous sections, such as
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the lack of objective best-match measures, some of the complexities are due to the specific
nature of the data used. The complexity manifests itself as incomplete and noisy data, indirect
measurements, and spatially and temporally scarce observations. Moreover, there is a lack of a
“universal truth” for evaluation. Also, the best tracks from different weather centers are given
at different intervals, which often do not concur. These problems are discussed in this section.

As discussed in section 13.2, meteorological data are often collected by remote sensing in-
struments. Data for the cloud top (satellite data) or a few kilometers from sea level (radar data
at a certain CAPPI) are often used for the TC eye fix. For radar data, the low altitude radar mea-
surements are often affected by sea clutter (Fig. 13.8(a)), terrains, and man-made structures,
which cause difficulties in analysis. Moreover, TC data may be out of range (Fig. 13.8(b)) or
incomplete (Fig. 13.8(c) and 13.8(d)). In contrast to weather radars, which provide volume
data of the atmosphere, satellites view the earth from above and provide data for the cloud
top. However, in practice, we are more concerned about finding the eye location of the TC at
sea level, as it is where we inhabit. The TC eye location a few kilometers above sea level may
not be the same as that at sea level. This would not be a problem for TCs with little vertical
wind shear. For weak TCs and those with significant vertical wind shear, the TC eye may be
obscured by high-level clouds and the eye-fix results may not be usable.

For practical TC eye fix, observations from sources other than remote sensing are often
used as well. These sources include observations from ships and aircrafts, as well as weather
stations on ground or on islands. However, these are not easily obtained, as reports from ships
and aircrafts are incidental, and weather stations based at sea or on islands are few. Weather
centers mostly have to rely on remote sensing measurements or aircrafts and ships passing by
for observation over the ocean. This is one of the reasons that even for the same TC, different
weather centers give different results.

The use of remote sensing data also means that measurements such as wind speed and
precipitation are indirect. Besides, these data are available only at particular intervals in time,
for example, minutes for radars and hours for satellites. For data that are available only a
few times a day, such as those from polar-orbiting satellites, automated techniques that track
objects, such as motion estimation, may not be applicable because of the low correlation be-
tween frames of data. Not many methods beyond simple extrapolation could be used in these
situations.

Automated TC eye-fix systems are often evaluated against best track results. Best tracks
are the (usually hourly) TC locations issued by a TC warning center. They are determined after
the event by forecasters using all the observations available. Although the error calculations
tend to be straightforward, for reasons discussed above, different weather centers could give
best tracks of the same TC that differ in the order of 0.3 degrees on a Mercator projected
map [24]. Besides, different weather centers often also give best track locations at different
time intervals. Some would give hourly values, and some give values every 3 or 6 hours. For
radar-based automated TC methods where an eye location is given every few minutes (e.g.,
six for the Hong Kong Observatory), the use of these relatively infrequent best track locations
for evaluation means that these values have to be interpolated before use. This introduces
another layer of uncertainly since the use of different interpolation algorithms may affect the
evaluation results.

Since the goal of NWP is to predict the state of the atmosphere given an initial condition,
problems related to data density and acquisition do not seem to apply. With NWP data, the
location of a TC center could be relatively easily located by finding local pressure minima.
However, the use of NWP has its own set of problems. First, as initial conditions of the models
are seeded by actual observed values, interpolation is inevitable. This is because most earth-
bound weather stations are scattered over the ground. Interpolation introduces error that may
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propagate into the prediction. Second, the set of equations and boundary conditions used in
the model could affect the accuracy of the prediction. We can never describe all the intricacies
of the atmosphere in a model. Complex models require a lot of computational power to be
practical, but simple models could be inaccurate when the forecast time is long. Third, the
resolution of grid points or spectral representations of the atmosphere also affect the results.
Models with a fine resolution capture more local atmospheric phenomena, but they require
more detailed topographical information and smaller time steps in calculations, and would
often make the model run much slower. Fourth, the values at the boundaries of regional models
have to be treated with special care. Errors are often generated there because of a lack of
data beyond these boundaries. To avoid this problem in practice, a regional model covering
areas larger than required is commonly used, and values near the boundaries are discarded in
operational environments.

13.5 Future Directions

In this section, we identify a number of issues related to the TC eye-fix problem that are
worthy of further studies. They include algorithmic improvements, ensemble forecasting, and
application of data mining in meteorology.

13.5.1 Algorithmic Improvements

In the techniques described in section 13.3.2, a TC eye is fixed by locating the low pressure
center, wind center, or rain-free center. Most of these algorithms focus on finding or matching
features such as the rain band or the eye wall without regard to historical data. For example,
in Dvorak analysis, previous results are not considered even if a sequence of images is given.
To improve and automate these algorithms, continuous features such as the eye size, rain-
band influx angle, or TC movement speed can be taken into account so that the search space
can be further restricted, resulting in potentially faster algorithms and more accurate results.
Smoothing algorithms that make use of past data, such as Kalman filtering, can also be used.

Many algorithms for constructing vector fields are based on block matching, a technique
that has been widely adopted in video and multimedia processing. These algorithms often use
the rigid body model that only approximates the real structure of a TC. To construct better
motion fields, nonrigid fluid motion models could be used (e.g., as in [37]). Postprocessing
algorithms to remove noises in the vector fields (e.g., that in [33]) found by these algorithms
are also needed.

13.5.2 Ensemble Forecasting

To forecast the track of a TC, two common approaches adopted by weather centers are extrap-
olating from past eye-fix results, and approximating the future atmospheric situations using
NWP models. As could be expected, different results are obtained when different extrapola-
tion methods are used, or when the initial condition of NWP models are different. The effect
is especially apparent in NWP models, as these complex models often exhibit chaotic behav-
ior. Since the initial conditions are seeded by observed and interpolated values from measured
ones, a slight error in measurements or difference in interpolation algorithm could affect the
output a lot even if the same model is used. Hence, it is not reliable to make a forecast by just
relying on the output of a model under one initial condition. To solve this problem practically,
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a forecaster refers to the results of multiple models under slightly different initial conditions.
Knowledge of the pros and cons of each of the models and methods, statistics on the accuracy
of past results, as well as the experience with conditions to pay attention to guide the forecaster
to make a decision. This could be achieved by using ensemble forecast technique [30, 31]. The
input to the ensemble forecast can be forecasts from an NWP model initialized differently, or
forecasts from different NWP models.

As an example of ensemble forecast, an NWP model is run many times with slightly
different initial conditions representing the uncertainties or errors in measurements. If the
model outputs are similar, the forecaster could have higher confidence in the model results.
Forecasting decisions can then be made by, for example, taking a majority vote. The same
technique can be used on multiple models under multiple sets of initial conditions. An example
of ensemble forecasting on TC track is shown in Figure 13.9. TC tracks of multiple models
are shown and the line with crosses (En F/C) indicates the results of ensemble forecast. The
technique can be applied in other areas such as precipitation, temperature, humidity forecast,
onset and movement of fronts and troughs or other weather systems.

13.5.3 Data Mining Applications

All the approaches for TC eye fix introduced so far are goal-driven in the sense that there is
a clear objective function to maximize that would give the location of an eye. For example,
in template matching, the eye is where the correlation value between the template and target
image is maximum. In wind field analysis, the eye is where the local extrema value of certain
mathematical properties (e.g., curl, divergence, vorticity) is found. While these approaches
often work well, a model that establishes the relationship between eye position and physical
measurements is needed. All other relationships, if they exist, are hidden or ignored if not mod-
eled. To unravel these hidden relationships, techniques in data mining [16, 54] could be used.
For example, association rule mining can be used to establish meteorological events that hap-
pen together, spatial mining can link up events that occur in different locations, outlier analysis
can help detecting abnormal phenomena, and temporal mining can help relating events that oc-
cur at different times. A wide variety of applications is possible. Recently, researchers have
started to apply data mining in meteorology [19, 41] such as precipitation forecast [9, 47].

13.6 Conclusions

In this chapter, we have discussed the practical problems of tropical cyclone (TC) positioning
and classification. Solving these problems require meteorological data. Four data sources have
been identified: radar reflectivity data, Doppler velocity data from weather radars, satellite im-
ages, and numerical weather prediction (NWP) data. Each data source has its own characteris-
tics, making consistent eye fix and classification difficult, as different sensors or models focus
on different aspects of the atmosphere. This also means that there is no single indisputable
solution to the problem, making verification difficult. Indeed, the best tracks on the same TC
issued by different weather centers could differ by 0.3 degrees on the Mercator projected map.

Classification of a TC involves fixing its eye and applying methods to estimate its in-
tensity. For eye fix, most algorithms focus on locating the low-pressure center, wind center,
or rain-free center. These can be done by wind field analysis and pattern-matching methods.
The former works by analyzing a vector field of wind intensities or cloud motion directions
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constructed from meteorological data taken close in time. The latter work on preprocessed me-
teorological data to find the best match to a model of TC. Wind or cloud motion field analysis
methods require vector fields to work. Vector fields can be constructed using motion compen-
sated prediction techniques used in multimedia video processing, or techniques to find cloud
motion winds (CMW) from IR or VIS satellite channels. On the other hand, when the input is
radar reflectivity data, the TREC method is often used to build the vector field. Though most
vector field construction techniques use the rigid-body assumption on clouds, some, such as
MPSMA, use the semifluid motion model. After the vector fields are constructed, motion field
analysis techniques can be applied to find the TC center.

Pattern-matching methods often require a model of TC. These models include an axisym-
metric hurricane vortex flow model, a simple logarithmic helix model, a fixed 10 degree log
spiral rain band model, a model describing a TC with fixed eye size and spiral rain band with
fixed extent, and a six-parameter model that describes a TC with variable eye size and spiral
rain bands with variable extent. To optimize the accuracy and speed, methods such as ex-
trapolation, Kalman filtering, and the use of genetic algorithms have been applied to various
pattern-matching methods.

The use of eye-fix results includes forecasting the future path of a TC, and estimation
of TC intensities, among others. For intensity analysis, the standard procedure is a pattern-
matching method called Dvorak analysis. Attempts to partly or fully automate the process
can be found in the literature. The objective Dvorak technique and the use of an elastic graph
dynamic link model to match predefined templates are two examples.

In TC positioning and classification, we face a number of data complexity issues. For
example, the location of the eye on the ground could be very different from that of a few
kilometers above sea level. This means only a small part of the meteorological data collected
is useful to solve the problem. Meteorological data near sea level are difficult to obtain by
remote sensing. This is because satellites give only cloud-top data, and low-altitude radar
measurements are often affected by sea clutter, terrains, and man-made structures. Also, there
is a spatial bias in meteorological data sources. Weather stations on land are often clustered
together, reports from ships and aircrafts are incidental, and weather stations based at sea or
on islands are few. Besides, remote sensing data are often updated in intervals of minutes to
hours. Successive sets of data thus may not correlate very well. This inherently limits the set
of algorithms usable on them.

There are also data complexity issues regarding NWP data. The difficulties lie in the fact
that the atmosphere is hard to model completely by a set of equations. To give an accurate
forecast, NWP models need to be fed by the right initial boundary conditions. This is not
always easy. Also, though high-resolution NWP models are desired, as they are expected to
give better results, they usually run slowly and are therefore not practical. This limits their use
for medium-to-long term forecasting. Nonetheless, the lack of well-defined patterns on weak
TCs also compounds the problem.

In the future, we believe that algorithmic improvements and the use of new techniques
could help us position and classify TCs better. For example, the use of continuous features of
TCs, such as the variation of eye size, could help improving the speed and accuracy of analysis.
More realistic models with better postprocessing methods can be used for vector field-based
methods. Meanwhile, since some weather systems exhibit certain chaotic behavior, ensemble
forecasting could be used to reduce the error due to inaccurate measurements. Finally, hidden
relationships between meteorological events could be discovered by data mining techniques.
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Fig. 13.2. Tropical Cyclones (TC) tracks. (a) TCs occurred over the Western North Pacific and
the South China Sea in 2003. (b) Distribution (average number and percentage) of TCs over
the globe. (c) TC track of Typhoon York (1999-09-16).
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(a) (b) (c)

Fig. 13.3. Remote sensing data for eye fix. (a) Radar reflectivity data. (b) Doppler velocity
data. (c) GOES-9 satellite data (IR).

Data sources: (a, b): Tai Mo Shan Doppler weather radar of the Hong Kong Observatory.
(c): GOES-9 of National Oceanic and Atmospheric Administration (NOAA).
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(a) (b)

(c)

(d)

Fig. 13.4. Operational Regional Spectral Model (ORSM). (a) Surface wind field from ORSM.
(b) Temperature field from ORSM. (c) Model domains for 60 km ORSM (outer) and 20 km
ORSM (inner). (d) 20 km× 20 km ORSM grids.

Data sources: (a, b): Operational Regional Spectral Model (ORSM) of the Hong Kong Observatory.
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(a) (b)

(c)

Fig. 13.5. Determining the wind center. (a) Illustration of the eye fix method discussed in [48].
(b) TC model discussed in [57]. (c) TREC analysis for Typhoon Maria, 2000-08-31 2200 HKT.
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(a) (b)

Fig. 13.6. Pattern matching results of reference [57]. (a) Results of pattern matching using
genetic algorithm. (b) Comparison between best track and estimated track for Typhoon Yutu
(2001-07-24 2000 HKT to 2001-07-25 1954 HKT, 240 radar images at 6-minute intervals).

(a) (b)

Fig. 13.7. Part of the templates used in Dvorak analysis. (a) Part of the TC templates for
the Dvorak analysis. (b) Example of TC patterns (satellite images) that match with the set of
templates. (Image source: “TC Intensity Analysis and Forecast for Satellite Imagery,” Monthly
Weather Review, American Meteorological Society [14]).
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(a) (b) (c)

(d)

Fig. 13.8. Radar data affected by sea clutter, incomplete radar data, and typhoon data out
of radar range. (a) Radar data affected by sea clutter, Typhoon Imbudo, 2003-07-24 0617
HKT. (b) Out of range radar reflectivity data, Typhoon Dujuan, 2003-09-02 1230 HKT. (c)
Incomplete radar reflectivity data (missing data at 5 o’clock position), Typhoon Utor, 2001-
07-05 1805 HKT. (d) Incomplete Doppler velocity data (missing data at 5 o’clock position),
Typhoon Utor, 2001-07-05 1805 HKT.
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Fig. 13.9. Ensemble TC track of Typhoon Conson, 2004-06-03 0000 UTC to 2004-06-08 1200
UTC.
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Human–Computer Interaction for Complex Pattern
Recognition Problems

Jie Zou and George Nagy

Summary. We review some applications of human–computer interaction that alleviate the
complexity of visual recognition by partitioning it into human and machine tasks to exploit
the differences between human and machine capabilities. Human involvement offers advan-
tages, both in the design of automated pattern classification systems, and at the operational
level of some image retrieval and classification tasks. Recent development of interactive sys-
tems has benefited from the convergence of computer vision and psychophysics in formulat-
ing visual tasks as computational processes. Computer-aided classifier design and exploratory
data analysis are already well established in pattern recognition and machine learning, but
interfaces and functionality are improving. On the operational side, earlier recognition sys-
tems made use of human talent only in preprocessing and in coping with rejects. Most current
content-based image retrieval systems make use of relevance feedback without direct image
interaction. In contrast, some visual object classification systems can exploit such interaction.
They require, however, a domain-specific visible model that makes sense to both human and
computer.

14.1 Introduction

The goal of visual pattern recognition during the past 50 years has been the development
of automated systems that rival or even surpass human accuracy, at higher speed and lower
cost. However, many practical pattern recognition applications involve random noise and
systematic variations in the patterns, inaccurate and incomplete prior information, limited
and unrepresentative training samples, the mostly invincible challenge of segmentation, non-
discriminating and unreliable features, many classes, as well as complex decision boundaries.
Therefore, automatic recognition systems often require years of research and development
in order to achieve fast and accurate classification. Some applications, e.g., optical character
recognition, fingerprint identification, and target recognition, have met with modest success af-
ter decades of research and development, but many theoretical and practical problems remain.
Face recognition has been intensively studied since 1960s, but is still considered unsolved
[43]. Automated recognition in many other domains, such as petroglyphs, shards, arrowheads,
flowers, birds, skin diseases, and so on, requires too much development for a limited market,
or is too complex to be accommodated by the current methodologies.
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A divide-and-conquer strategy for visual recognition should partition such domains into
components that are relatively easier for both human and machine. There are pronounced
differences between human and machine cognitive abilities. Humans excel in gestalt tasks,
like object-background separation. We apply to recognition a rich set of contextual constraints
and superior noise-filtering abilities. Computer vision systems, on the other hand, still have
difficulty in recognizing “obvious” differences and generalizing from limited training sets
[25]. We can also easily read degraded text on which the best optical character recognition
systems produce only gibberish [1, 15].

Computers, however, can perform many tasks faster and more accurately. Computers can
store thousands of images and the associations between them, and never forget a name or a
label. They can compute geometrical properties like higher-order moments, whereas a human
is challenged to determine even the centroid of a complex figure. Spatial frequency and other
kernel transforms can be easily computed to differentiate similar textures. Computers can
count thousands of connected components and sort them according to various criteria (size,
aspect ratio, convexity). They can quickly measure lengths and areas. They can flawlessly
evaluate multivariate conditional probabilities, decision functions, logic rules, and grammars.
On the other hand, the study of psychophysics revealed that humans have limited memory and
poor absolute judgment [30].

There is a growing consensus among experts to advocate interactive approaches to difficult
pattern recognition problems. As early as 1992, a workshop organized by the U.S. National
Science Foundation in Redwood, California, stated that “computer vision researchers should
identify features required for interactive image understanding, rather than their discipline’s
current emphasis on automatic techniques” [27]. A more recent panel discussion at the 27th
Applied Imagery Pattern Recognition (AIPR) workshop also emphasized “... the needs for
computer-assisted imagery recognition technology” [29].

We concur with the suggestions of combining human and computer cognitive abilities to
cope with the complexity of practical pattern recognition problems. To lay down some guide-
lines for integrating human–computer interaction with pattern recognition, we first briefly
review human and machine visual perception and selected findings in psychophysics. We then
discuss three human–computer interaction methodologies used in pattern recognition and im-
age retrieval: exploratory data analysis (EDA), relevance feedback for content-based image
retrieval, and Computer-Assisted Visual InterActive Recognition (CAVIAR) for visual pattern
classification.

Our conjectures on what aspects of visual pattern recognition are easy and difficult for
humans and computers are set forth in Table 14.1. The remainder of this chapter attempts
to justify some of these conjectures and explores their implications for the design of pattern
recognition systems.

14.2 Human and Machine Visual Perception

Visual perception is defined as: “the process of acquiring knowledge about environmental
objects and events by extracting information from the light they emit or reflect” [33].

Visual perception has been studied separately by psychologists, performing experiments
on sighted organisms; computer scientists, writing programs that extract and transform optical
information; and neuroscientists, studying the structure and function of the visual nervous
system. Recently, these three approaches converged to form a central idea of visual perception:
visual perception is a kind of computation. In living organisms, eyes and brains perform visual
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Table 14.1. Comparison of relative strength of human and machine in diverse aspects of
visual pattern recognition.

Human Machine

Dichotomies Multicategory classification
Figure–ground separation
Part–whole relationships
Salience

Nonlinear, high-dimensional classification boundaries
Extrapolation from
limited training samples
Broad context

Store and recall many labeled reference patterns
Accurate estimation of statistical parameters
Application of Markovian properties
Estimation of decision functions from training samples
Evaluation of complex sets of rules
Precise measurement of individual features
Enumeration

Gauging relative size and intensity
Detection of significant differences
between objects

Computation of geometric moments
Orthogonal spatial transforms (e.g., wavelets)
Connected component analysis
Sorting and searching
Rank-ordering items according to a criterion
Additive white noise
Salt & pepper noise

Colored noise, texture
Nonlinear feature dependence

Determination of local extrama in high-D spaces
Global optima in low dimensions

perception through complex neural information processing, and in principle, visual perception
can also be achieved by video cameras and programmed digital computers. This idea enables
psychologists, computer scientists, and neuroscientists to relate their findings to each other in
the common language of computation, and generates a new branch of cognitive science: vision
science [33].

14.2.1 Machine Visual Perception

After Alan Turing [42] defined the fundamental model of computation, he and many others
realized that it may be possible for Turing machines to simulate human intelligence. This idea
gave rise to the field of artificial intelligence.

The goal of the subfield of artificial intelligence called computer vision is to develop pro-
grammed computers, that can interpret the environment visually. The mathematical approach
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to creating working computer vision programs was most clearly and effectively articulated by
David Marr and his colleagues at the Massachusetts Institute of Technology [28]. Marr’s work
dominated computer vision research for the last two decades, and a great deal of progress has
been made. Nevertheless, machine perception still lags far behind human visual perception
with respect to the breadth of visual stimuli, perspective invariance, partial occlusion, track-
ing, learning, and uneven illumination (highlights and shadows).

14.2.2 Human Visual Perception

Classical psychological theories about human visual perception include structuralism,
gestaltism, ecological optics, and constructivism [33]. In the field of visual pattern recogni-
tion, there are two theories: recognition by components (RBC) [8] and view-based recognition
[40]. Unfortunately, they do not agree with each other. The debate centers on the form of the
representation mediating three-dimensional object recognition.

Recognition by components assumes that perceptual processes derive the constituent parts
of an object and represent each of those parts with a simple geometric volume, or geon. An
object representation, or geon structural description, consists of geons corresponding to the
two or three most salient parts of an object and the spatial configuration in which the geons are
connected. This structural description is represented without regard for the specific viewpoint
of the observer. Recognition is performed by recovering the 3D geon model from the input
image.

In contrast, the key idea of the theory of view-based, or sometimes called image-based,
recognition, is that object representations encode visual information as it appears to the ob-
server from a specific vantage point.

After several years of debate between proponents of the two theories [9][10, 40], most
researchers now agree that these theories can be considered as different points in a single
continuum. RBC, or viewpoint-invariant theory, does depend on viewpoint to some extent
because single representations normally encode only some viewpoints of an object. A number
of representations may be needed to cover all possible views of the object. Similarly, view-
based theory doesn’t propose that all viewpoints are needed for recognition. In any case, how
humans recognize objects is still not clearly understood.

14.2.3 Psychophysics

Image quality can be described in purely physical terms, but optimal image quality can be
described only with reference to the performance of an imaging task. The relation between
physical image quality and diagnostic performance is the borderland between physics and
psychology known as psychophysics. Psychophysics is the quantitative branch of the study of
perception, examining the relations between observed stimuli and responses and the reasons
for those relations. Psychophysics is based on the assumption that the human perceptual sys-
tem is a measuring instrument yielding results (experiences, judgments, responses) that may
be systematically analyzed [6].

The psychophysical aspects of visual pattern recognition, including color, shape, perspec-
tive, and illumination, have been the objectives of sustained study for centuries. These studies
revealed many facets of the amazing human capacity for visual perception, which are im-
portant guidelines for the design of systems that integrate human–computer interaction with
pattern recognition.
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Attneave [4] pointed out the importance of redundancy in visual stimulation. Visual per-
ception is a kind of economical abstraction of the redundant visual stimuli. He proposed ten
principles of abstraction in human visual perception, and mentioned that “information is con-
centrated along contours.”

In a celebrated article, George A. Miller [30] summarized many psychophysical experi-
ments and claimed that human absolute judgment is poor, limited to distinguishing only about
eight categories within any single dimension: tone, loudness, taste (saltiness), length, area,
hue, brightness, and curvature. He also noted that we can accommodate only about seven ob-
jects in our span of attention, and that our short-term memory is limited to about seven items.
Nevertheless, we can recognize hundreds or thousands objects because we can make relatively
coarse absolute judgments of several features simultaneously. We can also trick our short-term
memory by recoding (so we can memorize a string of 30 zeros and ones by recoding it as seven
letters).

Ashby and Perrin [3] argued that the perceptual effect of a stimulus is random, but that
on any single trial it can be represented as a point in a multidimensional space. The perceived
similarity is determined by distributional overlap. The perceptual space itself is fundamental.
The difference is in the nature of the response function of the subject. In a recognition task, the
decision process divides the space into response regions, one associated with each response.
On a particular trial, the subject’s response is determined by the region into which the per-
ceptual sample falls. This theory of human recognition is analogous to the theory of statistical
pattern classification.

14.3 Exploratory Data Analysis

Human–computer interaction was first exploited for pattern recognition under the term ex-
ploratory data analysis (EDA). The increasing use of graphical user interfaces in the 1970s
attracted much research to visual data analysis for designing pattern classification systems.

The seminal works in EDA are those of Ball and Hall [5], Sammon [37], Tukey and
Mosteller [31] and Tukey [41]. Chien [12] summarized early work on interactive techniques
in data acquisition, pattern analysis, and the design of pattern classification schemes in a
monograph, Interactive Pattern Recognition. Over the years, the techniques of EDA have been
steadily enhanced [38, 46].

Most EDA techniques are graphical in nature, with only a few quantitative techniques.
High-dimensional data is incomprehensible to humans, but we have superior ability to under-
stand configurations of data in 1D, 2D, and 3D, and the evolution of changes over time. The
primary goal of EDA is to maximize the analyst’s insight into the underlying structure of a
data set by projecting it into a 1D, 2D, or 3D subspace for ease of human visual assimila-
tion. Exploratory data analysis facilitates understanding the distribution of samples in a fixed
feature-space in order to design a classifier, but stops short of operational classification.

Recently, Mirage, an open source Java-based EDA software tool, was implemented at
Bell Laboratories [23, 24]. Besides supporting the basic EDA functions, i.e., projecting the
data into one, two, or higher dimensional subspace, and displaying them in tables, histograms,
scatter plots, parallel coordinate plots, graphs, and trees, Mirage facilitates the analysis and
visualization of the correlation of multiple proximity structures computed from the same data.
All functions are available through an elaborate graphical user interface (GUI), but a small
interpretive command language is provided for repetitive, large-scale data analysis. In Mirage,
the users can also configure several plots at the same time, and perform classification manually
or automatically.
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14.4 Relevance Feedback in Content-Based Image Retrieval

Content-based image retrieval (CBIR) has been the subject of widespread research interest.
Many prototype systems have been implemented, such as QBIC [18], Virage [7], Photobook
[34], MARS [26], PicToSeek [21], PicHunter [16], Blobworld [11], and so on. Several surveys
have also been published over the years [2, 32, 36, 39]. Content-based image retrieval attempts
to retrieve images similar to the query image from an image database. It is motivated by the
fast growth of image databases, which requires efficient search schemes.

Fully automatic content-based retrieval does not yet scale up to large heterogeneous data-
bases. Human–computer interaction is an important component of all content-based image
retrieval systems. Relevance feedback is broadly adopted in content-based retrieval systems
for human–computer interaction, and has been found effective [14, 35].

A typical CBIR system with relevance feedback operates as follows: the user submits a
query image, which is somewhat similar to the desired image (or a sketch of a desired image)
and specifies which properties, e.g., overall color, overall texture, and so on, are important to
the query. Upon seeing the query results, the user designates the retrieved images as acceptable
or unacceptable matches in order to provide more information to the retrieval algorithm. This
process is iterated until the user finds the desired image or gives up the task.

A major shortcoming of the above interface is that the user cannot share the computer’s
view of the image. Without knowing whether the query image was properly understood
(processed) by the machine, the user can only wonder what went wrong when the retrieval
result was unsatisfactory. The developers of Blobworld recognized this drawback, and sug-
gested that the CBIR systems should display its representation of the submitted and returned
images and should allow the user to specify which aspects of that representation are relevant
to the query. In the Blobworld image retrieval system, the user composes a query by submit-
ting an image, then views its Blobworld representation, selects the blobs to match, and finally
specifies the relative importance of the blob features.

14.5 Computer-Assisted Visual InterActive Recognition

Reject correction may be the most common example of interacting with a classifier. Almost
all classification algorithms admit some means of decreasing the error rate by avoiding clas-
sifying ambiguous samples. The samples that are not classified are called “rejects” and must,
in actual applications, be classified by humans. Reject criteria are difficult to formulate ac-
curately because they deal with the tails of the statistical feature distributions. Furthermore,
most classifiers generate only confidence, distance, or similarity measures rather than reliable
posterior class probabilities. Regardless of the nature of the classifier, at least two samples
must be rejected in order to avoid a single error, because any reject region must straddle the
classification boundary, near which there must be a 50-50 mixture of two classes1 [13].

The efficiency of handling rejects is important in operational character and speech recog-
nition systems, but does not receive much attention in the research literature. Keeping the
human in the loop was recently also demonstrated in the domains of face and sign recog-
nition (the extraction and recognition of text in natural scenes). However, it was confined

1 This is a lower bound under the assumption of uniform cost of errors, because some samples
may occur near the intersection of more than two regions. Therefore, error-reject curves
have an initial slope of at least −0.5, which increases further as the fraction of rejects is
increased to lower the error rate.
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to preprocessing, i.e., establishing the pupil-to-pupil baseline [45] or a text bounding box
[22, 47]. In these approaches, human intervention occurs only at the beginning or at the end
of the recognition process, i.e., segmenting objects or performing other kinds of preprocess-
ing before machine operations, or handling rejects after machine operations. There is little
communication between the human and the computer.

The motivation of our recently proposed methodology for interactive visual pattern recog-
nition, Computer-Assisted Visual InterActive Recognition (CAVIAR), is simply that it may be
more effective to establish a seamless human–computer communication channel to make par-
simonious use of human visual talent throughout the process, rather than only at the beginning
or end [48, 49]. The vehicle for human-machine communication is a visible model.

Unlike content-based image retrieval, which is usually on a broad domain, each CAVIAR
system addresses only a narrow domain. In the broad domain of content-based image retrieval,
no effective way has been found so far to interact with arbitrary images. In pattern classifica-
tion with CAVIAR, the domain-specific geometrical model, e.g., a set of contours and critical
feature points, plays the central role in facilitating the communication (interaction) between
the human and the computer. The key to effective interaction is the display of the automatically
fitted adjustable model that lets the human retain the initiative throughout the classification
process.

CAVIAR is designed to allow the human to quickly identify an object with a glimpse at
the candidate samples that were ranked near the top by the computer. Avoiding having to look
at many low-ranked classes is clearly most effective in a many-class classification problem.
Because of the nature of the human–computer interaction, CAVIAR is more appropriate for
low-throughput applications, where higher accuracy is required than is currently achievable by
automated systems, but where there is enough time for a limited amount of human interaction.

Traditionally, visual pattern recognition includes three subtasks: segmentation, feature ex-
traction, and classification. As mentioned, psychophysical studies suggest that the information
is concentrated along object contours [4]; therefore, the pattern contours are important for clas-
sification. Locating the precise object boundary (strong segmentation) is generally considered
too difficult and unreliable [39]. On the other hand, it may not even be necessary for visual
pattern recognition. Several content-based image retrieval systems circumvent strong segmen-
tation by locating only the approximate object boundary (weak segmentation). CAVIAR also
gives up strong segmentation for weak segmentation based on a family of rose curves specified
by six parameters. If the automatically constructed rose curve does not fit well, the user can
easily adjust the model parameters by dragging a few control points. In CAVIAR, this model
describes not only the object contour, but also some components of the object (petals).

In Blobworld, the Blobworld representation, which is an approximate segmentation of the
object, is displayed in order to avoid misunderstandings between the human and the computer.
This is much better than leaving the users to wonder what went wrong when a machine error
occurs. However, apprehending the machine errors without being able to correct them is also
frustrating. In CAVIAR, the user can not only view the machine’s understanding (processing)
of the image, but also correct the machine errors if necessary.

In CAVIAR, the first generic computer-vision task, segmentation, becomes model build-
ing. Therefore, a CAVIAR process has three subtasks: model building, i.e., generating a model
instance, which explains the image according to the domain model; feature extraction, i.e.,
measuring discriminative object properties according to the constraints provided by the model
instance; and classification, i.e., assigning a category label to the object.

Model building in CAVIAR-flower consists of fitting a rose curve to the flower. First a
circle is fitted to the foreground (the flower to be recognized) based on the expected difference
in color between flowers and background (leaves, dirt). The boundary propagates to high-
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gradient locations penalized according to their distance from the initial circle [50]. Finally, a
rose curve is fitted to the propagated boundary (Fig. 14.1). The area delineated by the rose
curve constrains feature extraction to the discriminative parts of the picture.

The model instances constructed in this manner are not always correct (Fig. 14.2). After
decades of extensive research on this topic, many researchers now agree that automatic image
segmentation is not likely to correspond consistently to human expectations except in narrow
domains. On the other hand, humans perform image segmentation smoothly, accurately, and
with little ambiguity. So we believe that model building should be, at least for now, subject to
human correction.

Most laypersons don’t understand computer vision features like moment invariants or
wavelets. Humans find it difficult to visualize computer vision feature vectors and the geome-
try and topology of high-dimensional feature spaces. Furthermore, lay users are seldom famil-
iar with all the distinguishing properties of the various classes, and therefore cannot judge the
adequacy of the machine-proposed decision boundary. As mentioned, psychophysical stud-
ies also point out that human absolute judgment is poor, effective only in an approximately
seven-interval scale [30]. Machines, on the other hand, can compute complicated features very
accurately and very fast. So, in CAVIAR, feature extraction should be performed primarily by
machine, without human intervention. However, indirect human refinement of feature values,
by adjusting the CAVIAR model instance throughout the process, does promote faster and
more accurate classification.

The whole CAVIAR process can be modeled as a finite state machine (Fig. 14.3). The
computer tries its best to estimate an initial model for the unknown sample and calculate its
similarity to the training samples that belong to each class. Representative training pictures are
displayed in the order of computer-calculated similarities. The current model is also displayed,
so that the user can correct it if necessary. Any correction leads to an update of the CAVIAR
state: the remaining unadjusted model parameters are reestimated, and all the candidates are
reordered. Figure 14.2 shows a difficult example, where the picture is blurred.

In summary, CAVIAR operates on four entities: (1) the unknown image, (2) the parame-
ters of a visible geometrical model instance, (3) the feature vector extracted from the image
according to the model, and (4) the list of class labels ranked according to the similarity of
the corresponding reference pictures to the query picture. Interaction takes place through the
model. The process terminates when the user assigns a label to the unknown image.

The image is a 2D color or gray-scale picture, as in the conventional visual pattern recog-
nition systems.

The geometrical model consists of critical points and parametric curves, which are both
abstract and visual descriptions of the contours of the pattern components and of the geo-
metrical relations among them. The model estimation algorithm can use any segmentation
algorithm (edge based, region based, hybrid optimization) to locate these critical points and
curves. The human’s understanding of the image can be communicated to the machine by ad-
justing a few critical points. The machine can then reestimate the remaining model parameters
in a lower-dimensional space for improved classification.

The feature vector is a set of features for classifying patterns. It is extracted from a picture
according to the model instance. The features, which may include shape (derived from the
model parameters), color, texture, and other attributes, exist only in a high-dimensional space
invisible to the user.

The class label list is a machine-ordered list of candidates based on the feature vector. It
governs the display of reference pictures. The user assigns a particular label to the unknown
object by clicking on one of the displayed reference pictures.
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Fig. 14.1. Automated model construction in CAVIAR. Initial circle, detailed segmentation,
and parametric rose curve segmentation of two flowers. The rose curve serves as a visible
model of the computer’s concept of the unknown flower. It guides the computer in the extrac-
tion of classification features.
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(a) (b)

(c) (d)

Fig. 14.2. An example of CAVIAR flower recognition. (a) The initial automatic rose curve
estimation and indexing are bad because the picture is blurred: the correct candidate does
not appear among the top three. (b) The user adjusts the center. (c) The user adjusts the petal
number. (d) After the user adjusts the inner radius, the computer displays the correct candidate.
(It is almost never necessary to make this many adjustments.)

The model parameters constitute a vector random variable. Human and machine obser-
vations of model parameters are also random variables, with human model estimates much
better than machine estimates. The feature vector is related to the model parameters through a
deterministic function. Human adjustments reduce the bias and variance of the feature vector
by reducing the bias and variance of the model parameters. More accurate features generally
improve classification.

The CAVIAR methodology has been applied to flower recognition on a database with 612
samples from 102 classes. Experiments with 36 naı̈ve subjects show the following properties
of CAVIAR systems [48, 49]:
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Fig. 14.3. CAVIAR Flowchart, showing transitions between automated modeling and human
modification of the model, followed by browsing and classification.

• Human–computer communication through a geometrical model is effective. Combining
human and machine can significantly reduce the recognition time compared to the unaided
human, and significantly increase the accuracy compared to the unaided machine.

• The CAVIAR system can be initialized with a single training sample per class, but still
achieve high accuracy (because there is a human in the loop).

• The CAVIAR system shows self-learning. The user classified samples, along with the
user-adjusted model instances, are added to the reference set of labeled samples to effect
unsupervised decision-directed approximation [17]. Although the samples may not be
100% correctly classified, automatic recognition still improves, which in turn helps users
to identify the patterns faster. The performance based on just-classified samples is almost
as good as with the same number of ground-truth training samples. Instead of initializing
the CAVIAR system with many training samples, we can trust the system’s self-learning
ability (although, of course, the initial users would need more time).

• Users remember the examples to become “connoisseurs” of the specific family. With
CAVIAR, laypersons need little practice to become faster than unaided “connoisseurs.”

CAVIAR methodology can be applied to many other tasks. Interactive face recognition
under head rotation, occlusion, and changes of illumination and facial expression is very chal-
lenging, but of great practical importance (Fig. 14.4). CAVIAR has also been ported to a
stand-alone PDA, and to a pocket PC with a wireless link to a host laptop. Interaction with the
visual model through a stylus is faster than with a mouse. We expect some applications, like
the identification of skin diseases and other medical diagnoses based on visual observations,
to be more appropriate for mobile versions of CAVIAR [51]. With mobile system, taking addi-
tional photos from a different perspective or distance, or under different illumination, could be
extremely useful. Whether the resulting information should be combined at the pixel, feature,
or classifier level is an unresolved research issue.

As do all classifiers, CAVIAR systems collect, in the course of operation, mostly-
correctly-labeled samples. As more and more samples are accumulated, they can be used to
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Fig. 14.4. CAVIAR-face GUI and model. The eye region is enlarged to allow accurate location
of the crucial characteristic points at the pupils.

improve the machine’s performance either directly, by machine learning, or by studying the
accumulated training samples and upgrading the classification and learning algorithms.

CAVIAR could offer suggestions to its users. For example, it could suggest which model
parameters to adjust, or request the operator to inspect further candidates because the top
candidates have low confidence values. We do not allow CAVIAR to make such suggestions,
because its judgment so far is worse than the human’s; therefore, most of its suggestions would
just annoy the user. Eventually machines may, of course, earn suggestion privileges.

14.6 Discussion

Fifty years of sustained research has increased our appreciation of the fundamental difficulty
of some visual recognition tasks and our admiration for the complex, multilevel biological
systems that accomplish these tasks with apparent ease. At the same time, technological de-
velopments have enabled human–computer interaction at a level that could be found earlier
only in science fiction. Within the 0.5-second response time that experts consider acceptable,
a laptop or a PDA can perform calculations that used to require hours or days on a main-
frame, and display the results instantly at high resolution, in color, and, if need be, in motion.
It is therefore now highly appropriate to seek joint human–computer solutions, at least as a
temporary expedient, to recognition problems that have so far eluded an entirely algorithmic
approach.

An interactive solution is not appropriate for all classification tasks. Character and speech
recognition require the rapid interpretation of long pattern sequences rather than isolated pat-
terns, while “real time” in many military applications is much less than human reaction time.
But there are also many applications, like face, fingerprint, or flower recognition and medical
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diagnosis, where isolated patterns are recognized only sporadically, and where image acqui-
sition takes long enough to dominate any real need for quasi-instantaneous classification. The
advent of PDAs and cell phones with Internet access and plug-in cameras increases the scope
for interactive personal recognition systems.

In many other fields of engineering, sophisticated and mature CAD software is widely
used to mock-up proposed solutions, prepare and access test data, simulate experiments, check
design constraints, perform routine calculations, and retrieve, modify, and incorporate previ-
ously designed modules. As such systems evolve, more and more intricate tasks are relegated
to the computer, but the design engineer always remains in charge. In pattern recognition and
machine learning, specialized computer-aided design tools have been slow to emerge. Never-
theless, interactive design and analysis tools have proved useful for improved understanding
of the data even in domains where no intervention can be admitted at run time.

Interactive data analysis can lead to the selection of better features for classification, the
identification of subsets of the data for which special provisions are necessary, the discovery
of correlations or redundancies between features or patterns, and the detection of mislabeled
items. Human–computer interaction is especially appropriate for discovering complex hidden
information, and for accumulating training samples, which, according to the no-free-lunch
theorem [44] and the bias-variance dilemma [19, 20], are the only two factors that can really
improve classification performance.

Computer-assisted labeling has always been used to prepare training sets for classifier
design, and often to classify rejects. It seems likely that with further advances in active and
semi-supervised learning, these labeling operations will be more closely integrated with the
algorithmic classification process itself. This may be most easily accomplished within the
existing systems for exploratory data analysis.

At the operational, “real-time” level, we have seen that there are two options. The more
common one, almost universally used in content-based image retrieval, is to let the computer
do the best it can, and tell it where it fails. The machine then can use the set of positive and
negative samples that it has just acquired to improve its next try. The information provided
by the user is limited to one bit per picture, because he or she has no knowledge of how the
computer made its decision and where it went wrong. Some research attempts to organize
postage-stamp displays of the retrieved images in a configuration that suggests their putative
relationships.

The other paradigm is CAVIAR, where users interact with the picture directly through
a parametric model. Such a model must be constructed for every new application domain.
For applications that justify the investment of effort, it is an effective approach to interactive
classification.

The differences between peripheral and in-the-loop human intervention exist in other
fields as well. In chess and checkers, relevance feedback would only tell the machine whether
it has won or lost the game (which of course it can deduce by itself), while a CAVIAR approach
could offer comment on every move. Although using some computer help is quite popular in
the current online format of postal chess competition, much AI research runs counter to our
philosophy of letting the machine help the user, rather than vice versa.

14.7 Conclusion

In some domains, the accuracy of automatic classification remains far below human perfor-
mance. Human and computer abilities differ, and we are making progress in understanding the
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differences. A good interactive visual recognition system capitalizes on the strengths of both.
It must establish effective two-way communication. In narrow domains simplified models of
the real world can bridge the semantic gap between human and machine. The human must be
able to exercise gestalt perception in his or her customary visual, domain which, in addition
to natural scenes, includes several well-established sets of symbols. The computer should take
full advantage of its almost unlimited memory and of its ability to solve huge but essentially
repetitive problems. Further research is needed on how to translate complex multidimensional
internal data to a form where any fallacies and failures of the current computer model can be
readily apprehended and corrected.
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Complex Image Recognition and Web Security

Henry S. Baird

Summary. Web services offered for human use are being abused by programs. Efforts to de-
fend against these abuses have, over the last 5 years, stimulated the development of a new
family of security protocols able to distinguish between human and machine users automati-
cally over graphical user interfaces (GUIs) and networks. AltaVista pioneered this technology
in 1997; by 2000, Yahoo! and PayPal were using similar methods. Researchers at Carnegie-
Mellon University [2] and then a collaboration between the University of California at Berke-
ley and the Palo Alto Research Center [9] developed such tests. By January 2002 the subject
was called human interactive proofs (HIPs), defined broadly as challenge/response protocols
that allow a human to authenticate herself as a member of a given group: e.g., human (vs.
machine), herself (vs. anyone else), etc. All commercial uses of HIPs exploit the gap in read-
ing ability between humans and machines. Thus, many technical issues studied by the image
recognition research community are relevant to HIPs. This chapter describes the evolution of
HIP R&D, applications of HIPs now and on the horizon, relevant legal issues, highlights of the
first two HIP workshops, and proposals for an image recognition research agenda to advance
the state of the art of HIPs.

15.1 Introduction

In 1997 Andrei Broder and his colleagues [19], then at the DEC Systems Research Center,
developed a scheme to block the abusive automatic submission of URLs [7] to the AltaVista
web site. Their approach was to present a potential user with an image of printed text formed
specially so that machine vision [optical character reading (OCR)] systems could not read it
but humans still could. In September 2000, Udi Manber, Chief Scientist at Yahoo!, challenged
Prof. Manuel Blum and his students [2] at the School for Computer Science at Carnegie Mel-
lon University (CMU) to design an easy-to-use reverse Turing test that would block bots (com-
puter programs) from registering for services including chat rooms, mail, briefcases, etc. In
October of that year, Prof. Blum asked me, at the time I was with the Palo Alto Research Cen-
ter (PARC), and Prof. Richard Fateman, of the Computer Science Division of the University of
California at Berkeley (UCB), whether systematically applied image degradations could form
the basis of such a filter, stimulating the development of PessimalPrint [9].

In January 2002, Prof. Blum and I ran a workshop at PARC on human interactive proofs
(HIPs), defined broadly as a class of challenge/response protocols that allow a human to be
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authenticated as a member of a given group — an adult (vs. a child), a human (vs. machine), a
particular individual (vs. everyone else), etc. All commercial uses of HIPs known to us exploit
the large gap in ability between human and machine vision systems in reading images of text.

The number of applications of vision-based HIPs to web security is large and growing.
HIPs have been used to block access to many services by machine users, but they could also,
in principle, be used as “anti-scraping” technologies to prevent the large-scale copying of
databases, prices, auction bids, etc. If HIPs — possibly not based on vision — could be devised
to discriminate reliably between adults and children, the commercial value of the resulting
applications would be large.

Many technical issues that have been systematically studied by the image recognition
community are relevant to the HIP research program. In an effort to stimulate interest in HIPs
within the document image analysis research community, this chapter details the evolution of
the HIP research field, the range of applications of HIPs appearing on the horizon, highlights
of the first HIP workshop, and proposals for an image recognition research agenda to advance
the state of the art of HIPs.

This chapter is an expanded and updated version of reference [5].

15.1.1 An Influential Precursor: Turing Tests

Alan Turing [33] proposed a methodology for testing whether or not a machine effectively
exhibits intelligence, by means of an “imitation game” conducted over teletype connections
in which a human judge asks questions of two interlocutors — one human and the other a
machine — and eventually decides which of them is human. If judges fail sufficiently often to
decide correctly, then that fact would be, Turing proposed, strong evidence that the machine
possessed artificial intelligence. His proposal has been widely influential in the computer sci-
ence, cognitive science, and philosophical communities [30] for over 50 years.

However, no machine has passed the Turing test in its original sense in spite of peren-
niel serious attempts. In fact it remains easy for human judges to distinguish machines from
humans under Turing-test-like conditions. Graphical user interfaces (GUIs) invite the use of
images as well as text in the dialogues.

15.1.2 Robot Exclusion Conventions

The Robot Exclusion Standard, an informal consensus reached in 1994 by the robots mailing
list (robots@nexor.co.uk), specifies the format of a file (http://.../robots.txt
file) which a web site or server may install to instruct all robots visiting the site which paths it
should not traverse in search of documents. The Robots META tag allows HTML authors to
indicate to visiting robots whether or not a document may be indexed or used to harvest more
links (cf. www.robotstxt.org/wc/meta-user.html).

Many web services (Yahoo!, Google, etc.) respect these conventions. Some abuses that
HIPs address are caused by deliberate disregard of these conventions. The legality of disre-
garding the conventions has been vigorously litigated but remains unsettled [3, 27]. Even if
remedies under civil or criminal law are finally allowed, there will certainly be many instances
where litigation is likely to be futile or not cost-effective. Thus there will probably remain
strong commercial incentives to use technical means to enforce the exclusion conventions.

The financial value of any service to be protected against “bots” cannot be very great, since
a human can be paid (or in some other way rewarded) to pass the CAPTCHA (an acronym
for Completely Automated Public Turing Test to Tell Computers and Humans Apart, coined
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by Prof. Manuel Blum, Luis A. von Ahn, and John Langford of CMU). Of course, minimum
human response times — of 5–10 seconds at least — may be almost always slower than a
automated attack, and this speed gap may force reengineering of the “bot” attack pattern.
Nevertheless, this may be simpler—and more stable—than actively engaging in an escalat-
ing arms race with CAPTCHA designers. There are widespread, but so far unsubstantiated,
reports of systematic “farming out” of CAPTCHAs, in which humans are encouraged and re-
warded (by, for example, according to an often-repeated rumor, access to porn sites) to pass
CAPTCHAs [32].

15.1.3 Primitive Means

For several years now web-page designers have chosen to render some apparent text as im-
age (e.g., GIF) rather than encoded text (e.g., ASCII), and sometimes in order to impede the
legibility of the text to screen scrapers and spammers. A frequent use of this is to hide email
addresses from automatic harvesting by potential spammers. To our knowledge the extent of
this practice has not been documented.

One of the earliest published attempts to automate the reading of imaged text on web
pages was by Lopresti and Zhou [12]. Kanungo et al. [17] reported that, in a sample of 862
sampled web pages, “42% of images contain text” and, of the images with text, “59% contain
at least one word that does not appear in the ... HMTL file.”

15.1.4 First Use: The Add-URL Problem

In 1997 AltaVista sought ways to block or discourage the automatic submission of URLs to
their search engine. This free “add-URL” service is important to AltaVista since it broadens its
search coverage and ensures that sites important to its most motivated customers are included.
However, some users were abusing the service by automating the submission of large numbers
of URLs, and certain URLs many times, in an effort to skew AltaVista’s importance ranking
algorithms.

Andrei Broder, chief scientist of AltaVista, and his colleagues developed a filter (now
visible at [7]). Their method is to generate an image of printed text randomly (in a “ransom
note” style using mixed typefaces) so that machine vision (OCR) systems cannot read it but
humans still can (Fig. 15.1). In January 2002 Broder told me that the system had been in
use for over a year and had reduced the number of spam add-URL by over 95%. (No details
concerning the residual 5% are mentioned.) A U.S. patent [19] was issued in April 2001.

These efforts do not seem to present a difficult challenge to modern machine vision meth-
ods. The black characters are widely separated against a background of a uniform gray, so
they can be easily isolated. Recognizing an isolated bilevel pattern (here, a single character)
that has undergone arbitrary affine spatial transformations is a well-studied problem in pat-
tern recognition, and several effective methods have been published [20, 31]. The variety of
typefaces used can be attacked by a brute-force enumeration.

15.1.5 The Chat-Room Problem

In September 2000, Udi Manber of Yahoo! described this “chat-room problem” to researchers
at CMU: “bots” were joining online chat rooms and irritating the people there, e.g., by pointing
them to advertising sites. How could all “bots” be refused entry to chat rooms?

CMU’s Manuel Blum, Luis A. von Ahn, and John Langford [2] articulated some desirable
properties of a test:
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Fig. 15.1. Example of an AltaVista challenge: letters are chosen at random, then each is
assigned to a typeface at random, then each letter is rotated and scaled, and finally (optionally,
not shown here) background clutter is added.

• The test’s challenges can be automatically generated and graded (i.e., the judge is a ma-
chine).

• The test can be taken quickly and easily by human users (i.e., the dialogue should not go
on long).

• The test will accept virtually all human users (even young or naive users) with high relia-
bility while rejecting very few.

• The test will reject virtually all machine users.
• The test will resist automatic attack for many years even as technology advances and even

if the test’s algorithms are known (e.g., published and/or released as open source).

Theoretical security issues underlying the design of CAPTCHAs have been addressed by Nick
Hopper and Manuel Blum [15].

The CMU team developed a hard GIMPY CAPTCHA, which picked English words at ran-
dom and rendered them as images of printed text under a wide variety of shape deformations
and image occlusions, the word images often overlapping. The user was asked to transcribe
some number of the words correctly. An example is shown in Figure 15.2.

Fig. 15.2. Example of a “hard” GIMPY image produced by the Carnegie-Mellon University
CAPTCHA.
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The nonlinear deformations of the words and the extensive overlapping of images are, in
our opinion, likely to pose serious challenges to existing machine-reading technology. How-
ever, it turned out to place too heavy a burden on human users, also. In trials on the Yahoo!
web site, users complained so much that this CAPTCHA was withdrawn.

As a result, a simplified version of GIMPY (“easy” or “EZ” GIMPY) , using only one
word-image at a time (Fig. 15.3), was installed by Yahoo!, and is in use at the time of writing
(visible at chat.yahoo.com after clicking on “Sign Up For Yahoo! Chat!”). It is used to
restrict access to chat rooms and other services to human users. According to Udi Manber,
Chief Scientist of Yahoo!, it serves up as many as a million challenges each day.

Fig. 15.3. Example of a simplified Yahoo! challenge (CMU’s “EZ GIMPY”): an English
word is selected at random, then the word (as a whole) is typeset using a typeface chosen at
random, and finally the word image is altered randomly by a variety of means including image
degradations, scoring with white lines (shown here), and nonlinear deformations.

The variety of deformations and confusing backgrounds (the full range of these is not
exhibited in the figure) poses a serious challenge to present machine-vision systems, which
typically lack versatility and are fragile outside of a narrow range of expected inputs. However,
the use of one English word may be a significant weakness, since even a small number of
partial recognition results can rapidly prune the number of word choices.

15.1.6 Screening Financial Accounts

PayPal (www.paypal.com) is screening applications for its financial payments accounts
using a text-image challenge (Fig. 15.4). We do not know any details about its motivation or
its technical basis.

This CAPTCHA appears to use a single typeface, which strikes us as a serious weakness
that the use of occluding grids does little to strengthen.

A similar CAPTCHA has recently appeared on the Overture web site (click on “Advertiser
Login” at www.overture.com).

15.1.7 PessimalPrint

A model of document image degradations [1]—approximating the physics of machine-
printing and imaging of text—was used to generate the “PessimalPrint” challenges illustrated
in Figure 15.5.

An experiment assisted by ten U.C. Berkeley graduate-student subjects and three commer-
cial OCR machines located a range of model parameters in which images could be generated
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Fig. 15.4. Example of a PayPal challenge: letters and numerals are chosen at random and then
typeset, spaced widely apart, and finally a grid of dashed lines is overprinted.

Fig. 15.5. Example of a PessimalPrint challenge: an English word is chosen at random, then
the word (as a whole) is typeset using a randomly chosen typeface, and finally the word-
image is degraded according to randomly selected parameters (with certain ranges) of the
image degradation model.

pseudorandomly that were always legible to the human subjects and never correctly recog-
nized by the OCR systems. In the current version of PessimalPrint, for each challenge a single
English word is chosen randomly from a set of 70 words commonly found on the Web; then
the word is rendered using one of a small set of typefaces and that ideal image is degraded
using the parameters selected randomly from the useful range. These images, being simpler
and less mentally challenging than the original GIMPY, would in our view almost certainly be
more readily accepted by human subjects.

15.1.8 BaffleText

Chew and Baird [8] noticed vulnerabilities of reading-based CAPTCHAs to dictionary and
computer-vision attacks, and also surveyed the literature on the psychophysics of human read-
ing, which suggested fresh defenses available to CAPTCHAs. Motivated by these considera-
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tions, they designed “BaffleText,” a CAPTCHA that uses non-English pronounceable words
to defend against dictionary attacks, and Gestalt-motivated image-masking degradations to
defend against image restoration attacks. An example is shown in Figure 15.6.

Fig. 15.6. Example of a BaffleText challenge: a nonsense (but English-like) word was gener-
ated pseudorandomly, the word (as a whole) was typeset using a randomly chosen typeface,
an mask was generated, and the word image was damaged using the mask.

Experiments on human subjects confirmed high human legibility and user acceptance of
BaffleText images. They also found an image-complexity measure that correlated well with
user acceptance and assisted the generation of challenges lying within the ability gap.

15.1.9 ScatterType

In response to reports (e.g., [10, 23]) that several CAPTCHAs in wide use could be broken by
segment-then-recognize attacks, Baird et al. [4, 6] developed ScatterType, whose challenges
are images of machine-print text whose characters have been pseudorandomly cut into pieces
that have then been forced to drift apart. An example is shown in Figure 15.7. This scattering is
designed to repel automatic segment-then-recognize computer vision attacks. Results from an
analysis of data from a human legibility trial with 57 volunteers that yielded 4275 CAPTCHA
challenges and responses show that it is possible to locate an operating regime—ranges of the
parameters that control cutting and scattering—within which human legibility is high (better
than 95% correct) even though the degradations due to scattering remain severe.

15.2 The First International HIP Workshop

The first National Science Foundation (NSF) sponsored workshop on human interactive proofs
(HIPs) was held January 9-11, 2002, at the Palo Alto Research Center. There were 38 invited
participants, with large representations from CMU, U.C. Berkeley, and PARC. The chief sci-
entists of Yahoo! and Altavista were present, along with researchers from IBM Research,
Lucent Bell Labs, Intertrust STAR Labs, RSA Security, and Document Recognition Tech-
nologies, Inc. Prof. John McCarthy of Stanford University presented an invited plenary talk,
”Frontiers of AI”.

As a starting point for discussion, HIPs were defined tentatively as

automatic protocols allowing a person to authenticate him/herself — as, e.g., human
(not a machine), an adult (not a child), himself (no one else) — over a network
without the burden of passwords, biometrics, special mechanical aids, or special
training.

Topics presented and discussed included:
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Fig. 15.7. Example of a ScatterType challenge: a nonsense (but English-like) word was gen-
erated pseudorandomly, the characters (separately) typeset using a randomly chosen typeface,
an mask was generated, the character images cut into pieces, and the pieces scattered pseudo-
randomly.

• Completely Automatic Public Turing tests to tell Computers and Humans Apart
(CAPTCHAs): criteria, proofs, and design;

• Secure authentication of individuals without using identifying or other devices;
• Catalogues of actual exploits and attacks by machines to commercial services intended

for human use;
• Audio-based CAPTCHAs;
• CAPTCHA design considerations specific to East-Asian languages;
• Authentication and forensics of video footage;
• Feasibility of text-only CAPTCHAs;
• Images, human visual ability, and computer vision in CAPTCHA technology;
• Human-fault tolerant approaches to cryptography and authentication;
• Robustly nontransferable authentication; and
• Protocols based on human ability to memorize through association and perform simple

mental calculations.

Some details of the HIP2002 workshop (program, participant’s list, etc.) are available
online at www.parc.com/istl/groups/did/HIP2002

15.3 The Second International HIP Workshop

The 2nd International Workshop on Human Interactive Proofs (HIP2005, May 19-20, Bethle-
hem, PA) brought together 26 researchers, engineers, and business people interested in tech-
nologies to protect networked services from abuse by programs (bots, spiders, phishers, etc.)
masquerading as legitimate human users.

Attendees participated in an intensive day and a half of plenary talks, panels, and group
discussions on the state of the art and identifying urgent open problems. Nine regular papers,
published in the refereed, on-site, 141-page hardcopy proceedings [BL2005], established the
framework of discussion, which embraced three broad topics:

• Performance analysis of HIPs and CAPTCHAs
• HIP architectures
• HIPs within security systems

Three working groups delved into the topics “Evaluation Methodologies for HIPs,” “Assuring
High Performance in HIPs,” and “Present and Future HIP Technologies.”

Dr. Patrice Simard of Microsoft Research presented an invited talk “HIP Design: Synthe-
sis, Analysis, and Usability.” At the workshop banquet, Dr. Andrei Broder of IBM Research
gave the keynote address “The Story Behind Patent No. 6,195,698 (the First CAPTCHA).”
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Complete lists of the participants and the regular papers, details of the program, and slides
of some of the talks are available at the web site http://www.cse.lehigh.edu/prr/hip2005. Sum-
maries of the working group discussions will be posted there.

The workshop was organized by Professors Henry Baird and Daniel Lopresti of the Com-
puter Science and Engineering Department at Lehigh University.

15.4 Implications for Image Recognition Research

The emergence of human interactive proofs as a research field offers a rare opportunity (per-
haps unprecedented since Turing’s day) for a substantive alliance between the image recogni-
tion and the theoretical computer science research communities, especially theorists interested
in cryptography and security.

At the heart of CAPTCHAs based on reading-ability gaps is the choice of the family of
challenges: that is, defining the technical conditions under which text images can be generated
that are reliably human-legible but machine-illegible. This triggers many image recognition
research questions:

• Historically, what do the fields of computer vision and pattern recognition suggest are the
most intractable obstacles to machine reading, e.g., segmentation problems (clutter, etc.);
gestalt-completion challenges (parts missing or obscured); severe image degradation?

• What are the conditions under which human reading is peculiarly (or even better, inex-
plicably) robust? What does the literature in cognitive science and the psychophysics of
human reading suggest, e.g., ideal size and image contrast; known linguistic context; style
consistency?

• Where, quantitatively as well as qualitatively, are the margins of good performance lo-
cated, for machines and for humans?

• Having chosen one or more of these “ability gaps,” how can we reliably generate an inex-
haustible supply of distinct challenges that lie strictly inside the gap?

It is well known in the image recognition field that low-quality images of printed-text
documents pose serious challenges to current image pattern recognition technologies [28, 29].
In an attempt to understand the nature and severity of the challenge, models of document
image degradations [1, 16] have been developed and used to explore the limitations [14] of
image pattern recognition algorithms. These methods should be extended theoretically and be
better characterized in an engineering sense, in order to make progress on the questions above.

The choice of image degradations for PessimalPrint was crucially guided by the thoughtful
discussion in [28] of cases that defeat modern OCR machines, especially

• thickened images, so that characters merge together;
• thinned images, so that characters fragment into unconnected components;
• noisy images, causing rough edges and salt-and-pepper noise;
• condensed fonts, with narrower aspect ratios than usual; and
• italic fonts, whose rectilinear bounding boxes overlap their neighbors’.

Does the rich collection of examples in this book suggest other effective means that should be
exploited?

To our knowledge, all image recognition research so far has been focused at applications
in nonadversarial environments. We should look closely at new security-sensitive questions,
such as:
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• How easily can image degradations be normalized away?
• Can machines exploit lexicons (and other linguistic context) more or less effectively than

can people?

Our familiarity with the state of the art of machine vision leads us to hypothesize that no
modern OCR machine will be able to cope with the image degradations of PessimalPrint. But
how can this informed intuition be supported with sufficient experimental data?

CMU’s Blum et al. [2] have experimented, on their web site www.captcha.net, with
degradations that not only are due to imperfect printing and imaging, but also include color,
overlapping of words, nonlinear distortions, and complex or random backgrounds. The relative
ease with which we have been able to generate PessimalPrint, and the diversity of other means
of bafflement at hand, suggest to us that the range of effective text-image challenges at our
disposal is usefully broad.

There are many results reported in the literature on the psychophysics of human reading
that appear to provide useful guidance in the engineering of PessimalPrint and similar reading-
based CAPTCHAs. Legge et al. [22] report on studies of the optimal reading rate and reading
conditions for people with normal vision. Legge et al. [21] compare an ideal observer model
quantitatively to human performance, shedding light on the advantage provided by lexical
context. Human reading ability is calibrated with respect to estimates of the intrinsic difficulty
of reading tasks in Pelli et al. [26], under a wide range of experimental conditions including
varying image size, white noise, and contrast; simple and complex alphabets; and subjects of
different ages and degrees of reading experience. These and other results may suggest which
image degradation parameters, linguistic contexts, style (in)consistencies, and so forth provide
the greatest advantage to human readers.

How long can a CAPTCHA such as PessimalPrint resist attack, given a serious effort
to advance machine-vision technology, and assuming that the principles — perhaps even the
source code — defining the test are known to attackers?

It may be easy to enumerate potential attacks on vision-based CAPTCHAs, but a close
reading of the history of image pattern recognition technology [25] and of OCR technology
[24] in particular support the view that the gap in ability between human and machine vi-
sion remains wide and is only slowly narrowing. We notice that few, if any, machine vision
technologies have simultaneously achieved all three of these desirable characteristics: high ac-
curacy, full automation, and versatility. Versatility — the ability to cope with a great variety of
types of images — is perhaps the most intractable of these, and so it may be the best long-term
basis for designing CAPTCHAs.

Ability gaps exist for other varieties of machine vision, of course, and in the recognition
of nontext images, such as line-drawings, faces, and various objects in natural scenes. One
might reasonably intuit that these would be harder and so decide to use them rather than
images of text. This intuition is not supported by the cognitive science literature on human
reading of words. There is no consensus on whether recognition occurs letter-by-letter or
by a word-template model [11, 18]; some theories stress the importance of contextual clues
[13] from natural language and pragmatic knowledge. Furthermore, many theories of human
reading assume perfectly formed images of text. However, we have not found in the literature
a theory of human reading that accounts for the robust human ability to read despite extreme
segmentation (merging, fragmentation) of images of characters.

The resistance of these problems to technical attack for four decades and the incomplete-
ness of our understanding of human reading abilities suggest that it is premature to decide that
the recognition of text under conditions of low quality, occlusion, fragmentation, and clutter
is intrinsically much easier — that is, a significantly weaker challenge to the machine vi-
sion state-of-the-art — than recognition of objects in natural scenes. There is another reason
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to use images of text: the correct answer to the challenge is unambiguously clear and, even
more helpful, it maps into a unique sequence of keystrokes. Can we put these arguments more
convincingly?
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k-NN, see k-nearest neighbors
k-means, 206
k-nearest neighbors, 207

CAST, 229
classification, 197, 207
CLICK, 228, 229
clustering, 197, 206, 207
complexity metrics, 116, 124, 126–130,

135–138, 145
conflate, 204
crossover, 115–117, 120–122

data complexity, 115, 116, 124, 126, 128,
132, 135, 151, 152

Davies-Bouldin (DB) Index, 234
decision forest, 129, 132, 135, 136, 140
decision tree, 129, 132, 135–137, 141, 143,

145, 148, 151
DGSOT, 224, 226–228
domain of competence, 115, 116, 129, 132,

135–138, 141, 145, 148, 150, 151
Dunn Indices, 233

edge, 199
edit distance, 200
Euclidean distance, 205, 209
evolutionary learning classifier systems, 116,

117, 130, 132

fitness, 116, 118–120
fractional correction rule, 79

GA, see genetic algorithms

genetic algorithms, 115–117, 119–121, 135,
137

graph, 198, 199
size, 201, 206

graph distance, 200, 201
graph edit distance, 200, 201
graph isomorphism, 199, 200

complexity, 200
graph matching, 200
graph partitioning, 207
graph representation, 203

n-distance, 204
example, 205

n-simple distance, 205
normalized frequency, 205
raw frequency, 205
simple, 204

example, 205
standard, 203

example, 204
graph union, 201
Graph-Based Clustering, 228

Hierarchical Agglomerative Clustering
(HAC), 223

Ho-Kashyap algorithm, 81
Hybridization, 219
hybridization, 218, 219
hyperrectangle representation, 116,

121–124, 126

inexact graph matching, 200
input instance, 208
inverse document frequency model, 198, 209
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isomorphic, 199
isomorphism, see graph isomorphism

Jaccard distance, 206, 209

K-Means, 221
K-means, 221
keyphrase extraction, 209

leave-one-out, 209
length-invariance, 209
Levenshtein distance, 200
linear classifier, 129, 132, 135–137, 140,

148, 150, 151
linear independence, 73
linear programming, 83
linearly separable, 72, 73

maximum common subgraph, 200–202
and graphs with unique node labels, 202
complexity, 202

median graphs, 207
Michigan approach, 117
microarray chips, 218
microarray data, 218
microarray technology, 217, 218, 236
minimum common supergraph, 201, 202
Model-Based Clustering, 230
mutation, 115–117, 120–122
mutual information, 209

N-gram, 204
nearest neighbor, 123, 124, 129, 130, 132,

135–138, 140, 141, 145, 148, 151
node, 199
NP-complete, 200, 202

perceptron cycling theorem:, 77
perceptron learning, 77, 79
Pittsburgh approach, 117, 132

Quality-Based Clustering, 222

Rand index, 209
reinforcement learning, 117, 130

selection, 115–117, 120
Self-Organizing Neural Network, 224
SOM, 224, 225
SOTA, 224–226, 228
stemming, 204
stop words, 203
subgraph, 199, 200
subgraph isomorphism, 199, 200, 202

complexity, 200
subsample decision forest, 129, 137, 141,

145, 146, 148, 151
Subspace Clustering, 231
subspace decision forest, 129, 137, 141, 144,

145, 148, 151
supergraph, 199, 201

Target preparation, 218
training examples, 207
triangle inequality, 201

vector-space model, 198, 209
vertex, 199

web content mining, 197
Widrow-Hoff delta rule, 81

XCS, 115–121, 123–132, 135–137, 140,
145, 148, 151
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