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    Chapter 8   

 Computational Analysis of Virus–Host Interactomes 

           Caroline     C.     Friedel    

    Abstract 

   High-throughput methods for screening of physical and functional interactions now provide the means to 
study virus–host interactions on a genome scale. The limited coverage of these methods and the large size 
and uncertain quality of the identifi ed interaction sets, however, require sophisticated computational 
approaches to obtain novel insights and hypotheses on virus infection processes from these interactions. 
Here, we describe the central steps of bioinformatics methods applied most commonly for this task and 
highlight important aspects that need to be considered and potential pitfalls that should be avoided.  
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1       Introduction 

 Large-scale screens of virus–host interactions using either yeast 
two-hybrid (Y2H) or RNA interference (RNAi) now provide 
substantial resources for the computational analysis and modeling 
of processes involved in virus infection and proliferation [ 1 ,  2 ]. 
Following the fi rst genome-wide Y2H screen of virus–host interac-
tions in EBV [ 3 ], similar screens have been performed for hepatitis 
C virus (HCV) [ 4 ], vaccinia virus [ 5 ], H1N1 and H3N2 infl uenza 
virus [ 6 ], and HIV-1 [ 7 ]. An overview of these studies is provided 
in our recently published review [ 1 ]. Since then, numerous addi-
tional virus–host Y2H screens have been published including den-
gue virus [ 8 ], infl uenza virus polymerase [ 9 ], fl avivirus NS3 and 
NS5 proteins [ 10 ], murine γ-herpesvirus 68 [ 11 ], SARS [ 12 ], chi-
kungunya virus [ 13 ], papaya ringspot virus NIa-Pro protein [ 14 ] 
and human T-cell leukemia virus type 1 and type 2 [ 15 ]. 

 In contrast to Y2H, which detects binary physical virus–host 
interactions, RNAi can also identify functional interactions of the 
virus with so-called host factors (HF), which are involved in 
protein complexes, signaling pathways, or cellular processes 
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relevant for infection, as well as HFs binding to viral nonprotein 
components (e.g., nucleic acids) [ 16 ,  17 ]. Genome-wide RNAi 
screens of viral HFs were fi rst performed in  Drosophila  systems for 
an insect picornavirus [ 18 ] and dengue [ 19 ] and infl uenza viruses 
[ 20 ]. Subsequently, genome-scale screens in human cells were 
published for HIV-1 [ 7 ,  21 – 23 ], West Nile virus (WNV) [ 24 ], 
HCV [ 25 – 27 ], and infl uenza virus [ 28 – 31 ] (see Table 2 in [ 1 ]). 
Most recently, a genome-scale study was published performing 
RNAi for 17 different viruses [ 32 ]. 

 Not surprising for high-throughput methods, reproducibility 
of both Y2H and RNAi large-scale screens is extremely low result-
ing in very small overlaps between independent screens of virus–
host interactions. This can be best assessed for RNAi screens as 
here several independent screens of the same viruses have been 
performed including HIV-1, HCV, and infl uenza virus [ 7 ,  21 ,  23 , 
 25 ,  27 ,  28 ,  30 ,  31 ]. In all cases, overlaps were modest ranging 
from 3 to 6 % for HIV-1 [ 33 ], 3–16 % for HCV and 1–12 % for 
infl uenza virus. Overlaps are similarly low when comparing differ-
ent Y2H screens of the same virus or between Y2H and RNAi 
screens as is exemplifi ed by the case of dengue virus. In the most 
recent dengue-human Y2H screen by Khadka et al. [ 8 ], 188 inter-
actions were identifi ed involving 105 proteins. Only three of these 
had been identifi ed as HFs in previous RNAi screens (<3 %) and 
only 1 of 20 (5 %) previously published interactions was detected. 
Reasons that have been suggested for these discrepancies are dif-
ferences in the experimental setup, such as differences in cell cul-
ture systems, virus isolates, or siRNA pools, as well as different 
criteria to determine the fi nal set of published interactions. These 
differences may lead to different subsets of targets and HFs identi-
fi ed such that a large number of interactions is missed in each screen 
(false negatives). In addition, many of the detected interactions may 
be false positives, i.e., wrongly detected, due to unspecifi c interac-
tions of “sticky” proteins in case of Y2H and off-target effects in 
case of RNAi. 

 Both the large size and varying quality of the high-throughput 
screens make it diffi cult to directly obtain insights on virus infec-
tion processes from the screening results. Accordingly, computa-
tional and systems biology approaches are necessary to integrate 
results from different screens and additional data sources as well as 
identify general trends and connections among the targeted 
proteins such as common pathways and biological processes they 
are involved in. An overview of computational approaches used for 
these purposes was recently published [ 1 ]. In this chapter, the 
corresponding methods are described in more detail and potential 
pitfalls are highlighted.  
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2     Resources and Databases 

 The fi rst step in the analysis of virus–host interactions generally is 
the compilation of both virus–host and cellular interactions from 
previously published studies. Although for large-scale screens these 
data are commonly provided as supplementary material, it is cum-
bersome to trawl the available literature and download all required 
supplementary tables. Furthermore, for small-scale studies, inter-
action data is mostly provided within the main text. To alleviate 
this problem, many interaction databases have been developed that 
collect and store interaction data. A number of such databases 
focus specifi cally on virus–host interactions, notably the HIV-1, 
human protein interaction database at NCBI [ 34 ], VirHostNet 
[ 35 ], VirusMINT [ 36 ], HPIDB [ 37 ], and ViPR[ 38 ]. In most of 
these cases, interactions were obtained based on extensive litera-
ture curation. While this increases the quality of the data, it requires 
a continuous curation effort to keep the data up-to-date. 
Unfortunately, most of these databases are no longer actively 
updated and currently none of them can be considered as a stan-
dard repository for virus–host interactions. 

 Alternatively, virus–host interactions can be obtained from 
protein interaction repositories with a more general focus, such as 
BioGRID [ 39 ] and BIND [ 40 ]. Both rely on a combination of 
manual curation and high-throughput submission. However, only 
BioGRID is still actively maintained as the most recent updates to 
BIND occurred in mid-2006. Despite its active status, BioGRID 
by far does not provide a complete picture of either viral or cellular 
interactomes as it depends on authors submitting their interaction 
data to BioGRID or the availability and the area of interest of 
manual curators. Unfortunately, virus–host interactions appear to 
be included only to a limited degree in BioGRID with many of the 
most recent studies not covered. In contrast, cellular interactions, 
in particular human interactions, are much better covered by 
BioGRID and other actively maintained protein interaction data-
bases such as MINT [ 41 ], IntAct [ 42 ], or DIP [ 43 ]. Furthermore, 
the human protein reference database (HPRD) provides a large 
collection of manually curated human interactions but no new 
release has been published since 2010 [ 44 ]. 

 In summary, none of the resources available on viral and cel-
lular protein interactions likely covers all known interactions. Thus, 
the best strategy to capture as much information as possible is to 
combine data from all of these resources as they are often to a large 
degree complementary. For virus–host interactions an additional 
literature screen is generally necessary as little up-to-date informa-
tion is contained in available databases. Furthermore, when compiling 
virus–host and cellular interaction networks, annotations with 
regard to the type of interaction—which are generally  available in 
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all discussed databases—should be taken into account. In particular, 
protein–gene interactions should be distinguished from protein–
protein interactions and for the latter type of interactions, binary 
and indirect (via other proteins) physical interactions should be 
treated separately from functional interactions. In most cases, this 
is best done based on the annotated experimental methods as the 
interaction type annotation of most databases is not suffi ciently 
fi ne-grained.  

3     Virus–Host Interactions in the Context of the Cellular Interactome 

 One of the most commonly used approaches for the analysis of 
virus–host interactomes focuses on evaluating general characteristics 
of viral targets or HFs within the host networks. Despite their 
incompleteness and uncertain quality, networks of cellular interac-
tions compiled from public databases as described in the previous 
section are generally used as an approximation of the true host 
interactome. Many previous studies have found interesting trends 
for viral (and also bacterial) targets and HFs mostly with regard to 
centrality and interconnectedness of these proteins [ 3 ,  4 ,  6 ,  28 , 
 45 – 47 ]. Centrality measures aim to quantify the importance of a 
protein within the host interactome (Fig.  1a ). The most well- 
known and most easily computable centrality measure is the degree 
of a protein, i.e., the number of its interactions. The motivation 
behind this centrality concept is that high-degree proteins (so- 
called hubs) likely interact with and infl uence many different path-
ways and processes and, thus, are important for the cellular system. 
Indeed, degree has been reported to be correlated to essentiality of 
a protein for cell survival [ 48 ,  49 ]. Several studies on virus–host 
interactions indicated a tendency for viruses to interact with or 
depend on highly connected host proteins [ 3 ,  4 ,  28 ,  45 – 47 ], sug-
gesting that virus tend to target essential proteins or proteins 
involved in many different pathways.

   Alternative centrality measures include distance and between-
ness centrality, which focus on more global aspects. Both were 
found to be signifi cantly increased for viral targets and HFs, mostly 
independent of the correlation between degree and distance or 
betweenness centrality [ 4 ,  45 ]. In case of distance centrality, pro-
teins are considered central if the average distance, i.e., the length 
of the shortest path, to any other protein in the network is small. 
Distance centrality of a protein is then calculated as the sum of the 
reciprocals of the distances to the other proteins. For this purpose, 
shortest path lengths between any pair of proteins have to be 
calculated. In case of unweighted interaction networks, this can be 
done most easily using breadth-fi rst searches starting from each 
protein in the network (Fig.  1b ). Betweenness centrality of a 
protein  P , on the other hand, sums up the fraction of shortest 
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paths between any pair of proteins that pass  P . Thus, proteins are 
central if most shortest paths between many pairs of proteins go 
through them. Such proteins are called bottlenecks and the most 
extreme case of a bottleneck would be a protein whose removal 
disconnects the network (Fig.  1a ). Betweenness centrality for 
unweighted interaction networks can be calculated most effi ciently 
using Brandes’ algorithm [ 50 ]. Unfortunately, no software is 
available so far for performing centrality analysis specifi cally for 
viral targets or HFs. However, existing tools for network analysis, 
e.g., the Cytoscape plugin cytoHubba (  http://hub.iis.sinica.edu.
tw/cytoHubba/    ), can be adapted to this task by fi rst calculating 
centrality values for all proteins in the cellular network and then 
mapping them to the viral targets and HFs (Fig.  1c ). 

 Although these trends are mostly confi rmed with each new 
large-scale screen, the conclusions that can be drawn from these 
observations are limited and correlation is often mistaken for 
causation. Likely targeting of hubs and bottlenecks is not an end in 
itself but rather a consequence of the targeting of central pathways 
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  Fig. 1    Network centrality measures and network randomization. ( a ) Various network centrality measures were 
calculated for an example network (degree, betweenness, and distance centrality, annotated next to the 
proteins). The most central protein in terms of degree and distance is F, whereas betweenness centrality is 
highest for protein E, which has only two interactions. The reason for this is that any shortest path from one 
protein on the left (A–D) to any protein on the right (F–I), has to pass E. In contrast, proteins G–I have between-
ness 0, as there is no shortest path going through them. Removal of any of the high betweenness-proteins 
(C–F) disconnects the networks, but not removal of the other proteins. ( b ) Calculation of distances ( d  ) in an 
unweighted network using breadth-fi rst search. In this example, all distances from A to any of the other 
proteins are calculated. The  gray arrows  indicate the order in which the interactions are traversed. In a 
breadth-fi rst search, all interaction partners of a protein are visited before their interactions are traversed. ( c ) 
To determine centrality measures for viral targets and HFs, fi rst centrality measures of all proteins in the 
cellular network are determined using existing tools (e.g., cytoHubba) and then values for the relevant proteins 
are selected. ( d ) Randomization of networks by rewiring of interactions. Afterwards, each protein has the same 
number of interactions as in the original network       
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and biological processes that contain many highly interactive 
proteins due to their importance for the host. That viruses tend to 
target such important processes is certainly not surprising. 
Although it is tempting to speculate that the particular selection of 
hubs and bottlenecks allows targeting of these pathways and pro-
cesses more effi ciently with fewer interactions, scarcity of current 
data does not really allow confi dent conclusions in this respect. 
Nevertheless, knowledge of this trend—whatever its reason—is 
relevant for subsequent analyses performed on virus–host interac-
tions as it serves to avoid some pitfalls. For instance, several groups 
have noted that viral interaction partners and HFs tend to be 
densely interconnected [ 3 ,  4 ,  6 ,  46 ]. This observation would not 
be remarkable if the density of the subnetwork were compared to 
any random subnetwork with the same number of proteins, as 
high-degree proteins tend to have a larger number of interactions 
between them by default. Instead, subnetwork density has to be 
compared against the random background of networks with the 
same number of interactions per protein. These random networks 
can be obtained by repeatedly switching end-points of two random 
edges (Fig.  1d ). p-Values are obtained by repeating the random 
permutation several times (>100) and calculating the fraction of 
subnetworks among the viral targets or HFs in the random networks 
that have at least the same number of interactions as the true 
subnetwork. Similar strategies have to be applied whenever a 
pursued analysis approach might be biased by the increased degree 
and betweenness centrality of viral targets and HFs.  

4     Evaluation of Targeted Pathways and Biological Processes 

 In order to better describe the mechanisms of virus infection and 
proliferation, it is crucial to understand which pathways and bio-
logical processes are specifi cally targeted by the virus. This is com-
plicated by the following problems. First, the defi nition of pathways 
or processes is often ambiguous and may differ largely between 
experts or annotation resources. Second, many genes are involved 
in several processes or pathways and, thus, it may not always be 
possible to ascertain which of their functions is relevant for virus 
infection. Finally, for many proteins only some or even none of 
their functions may be known and, consequently, many pathways 
or processes have not been described at all or only incompletely. 
Essentially, there are two general approaches pursued for uncover-
ing the involved pathways and processes in the context of virus 
infection. The fi rst one focuses on identifying enriched pathways or 
processes based on existing functional annotations from public 
databases and statistical methods. The second one—which will be 
discussed in the next section—aims to identify novel functional 
modules based on protein interaction networks. 
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 Several resources on protein function annotation are currently 
available. The most commonly used resource is the Gene Ontology 
(GO) which provides three hierarchically structured vocabularies 
(called ontologies) to describe biological processes, molecular 
functions, and cellular components, respectively [ 51 ] (Fig.  2a ). 
Pathway annotation can be obtained from the KEGG [ 52 ] and 
BioCarta (  http://www.biocarta.com    ) databases which also provide 
interactions between proteins/genes. In principle, any type of anno-
tation can be used for enrichment analysis, including also protein 
domains from Pfam [ 53 ], keywords from Uniprot [ 54 ] or disease 
annotations from OMIM (  http://www.omim.org    ). The main 
distinction between annotation resources is whether they are hier-
archically structured or not. In the fi rst case, proteins will generally 

a Biological
process

Cellular
process Death

Cell death

b

Protein P
Cell 
death 
…
…

Protein P
Cell death 
Cellular process
Death
Biological Process
…
…

dc

A

B

C

D

E

F

Virus

Functional annotations

Counts in study and 
background

Protein X
Apoptosi
s
…
…

Protein Z

Cell cycle
…
…

Protein P
Cell death 
…
…

Cell cycle   4/100,  150/20000
Apoptosis 30/100, 500/20000
…..

P-values
Cell cycle   p=0.007357
Apoptosis  p=3.8 ·10-8

…..

Corrected P-values
Cell cycle   p=1
Apoptosis  p=7.6 ·10-3

…..

Multiple testing 
correction

Significance tests

  Fig. 2    Outline of functional enrichment analysis. ( a ) The most commonly used annotation resource for 
functional enrichment analysis is the Gene Ontology (GO), which is structured as a directed acyclic graph. 
Thus, a term may have more than one parent, e.g.,  cell death  has the parents  cellular process  and  death . Here, 
only the part of the  biological process  ontology above the term  cell death  is shown. ( b ) As only the most spe-
cifi c GO term is usually annotated directly to a protein, the annotation has to be extended for functional enrich-
ment analysis by any superterm of the annotated terms. ( c ) Workfl ow for performing functional enrichment 
analysis. For this example, we assume 100 proteins identifi ed as viral interactors or HFs and 20,000 proteins 
in the background population, e.g., all human proteins. p-Values were calculated with Fisher’s exact test and 
multiple testing correction performed using the Bonferroni method. ( d ) Exemplary case illustrating the rele-
vance of interactions when evaluating targeted pathways. The pathway consisting of proteins A–F is targeted 
by the virus at two proteins, either D and C ( solid  and  dashed line ) or C and E ( solid  and  dotted line ). In the fi rst 
case, the complete pathway is infl uenced; in the second case, only the right-hand path from A to E but not the 
one on the left side. In functional enrichment analysis, however, the pathway is simply represented as a set of 
proteins and the two situations cannot be distinguished       
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be annotated with the most specifi c term in the hierarchy but any 
superterm higher up in the hierarchy also applies to the protein. To 
address this problem, annotations are extended during enrichment 
analysis such that for any specifi c annotation term all superterms 
are also presumed to be annotated to the respective protein 
(Fig.  2b ). Generally, this results in a large degree of redundancy in 
the results as superterms of signifi cantly enriched terms often also 
tend to be enriched.

   The most commonly used approach for identifying the relevant 
functional categories among the large list of annotated functions is 
based on assessing the statistical difference between the observed 
frequency of a function among the targets or HFs and the fre-
quency in the background (Fig.  2c ). The reason for using statistical 
testing is that neither the absolute counts nor the ratios of frequen-
cies are informative on their own. For functional categories that are 
very frequent in the overall protein population, large counts among 
the targets are expected. In contrast, for a very infrequent category, 
a few hits among the targets may be suffi cient for statistical signifi -
cance. The most commonly used statistical tests for this purpose 
are Fisher’s exact test and the hypergeometric test, which are both 
based on the hypergeometric null distribution and thus equivalent 
[ 55 ]. As these tests are applied individually to each functional cat-
egory, one additional aspect becomes important, namely multiple 
testing correction. Essentially, a p-value quantifi es the probability 
that a specifi c value of the test statistic is expected at random 
according to the null distribution. Thus, the standard cut-off of 
0.05 for signifi cance tests indicates that the probability of seeing 
this result at random is about 1 in 20 if only one signifi cance test is 
performed. However, if thousands of tests are performed as in the 
case of functional enrichment analysis, this means that we can 
expect a lot of random results with this value. To address this prob-
lem multiple testing correction is applied. Here, the most rigorous 
and straightforward correction method is the Bonferroni method 
which simply multiplies all p-values by the number of signifi cance 
tests. As this method is very stringent and discards many truly sig-
nifi cant results, several other multiple testing correction methods 
have been developed. The most commonly used one is the method 
by Benjamini and Hochberg [ 56 ] for control of the false discovery 
rate (FDR), i.e., the number of results erroneously called signifi -
cant. Most multiple testing correction methods are available in the 
statistical programming language  R , for instance in the  multtest  
package [ 57 ]. 

 A large number of software tools and Web servers have been 
published so far for functional enrichment analysis (see, e.g., [ 55 ] 
for an overview), in most cases focused on the GO. Among these 
the DAVID Web server should be noted especially for its ease of 
use as it allows enrichment analysis for a wide range of annotation 
resources as well as protein identifi er types (e.g., gene symbols, 
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Affymetrix IDs, Entrez Gene IDs). In addition to the classical view 
of enriched functional categories sorted by associated p-values, a 
clustering of categories based on the overlap of annotated proteins 
can be performed, which in light of the inherent redundancy within 
and between annotation resources provides a better overview of 
the relevant categories. One important feature generally provided 
by all tools is that a list of genes can be provided as background 
population by the user instead of the complete genome. This is 
important if only a nonrandom subset of the genome was selected 
for screening, such as the druggable genome. In this case, an enrich-
ment analysis against the genome would generally pick up any 
functional category already enriched in the background population. 

 The advantage of functional enrichment analysis is that it is 
easy to perform using existing tools even without programming 
skills and provides a fi rst “quick-and-dirty” overview which pro-
cesses may be involved in virus infection. For instance, in our 
recently published study on SARS-host interactions [ 12 ], GO 
enrichment analysis provided the fi rst clue that immunophilins 
might be suitable drug targets for coronavirus treatment. However, 
there are also several problems associated with enrichment analysis 
as it is standardly performed. First, it is based on gene lists, requiring 
a cut-off in case the readout from the experiment is continuous, as, 
e.g., for RNAi screens. This problem can be addressed by using 
statistical tests to compare distributions instead of frequencies, 
such as the Kolmogorov-Smirnov test, and some tools provide this 
option, e.g., GeneTrail [ 58 ]. Second, functional categories are 
assumed to be independent of each other, which is a very simplify-
ing assumption as categories can overlap in many genes. This does 
not only result in a large redundancy in the output and affects its 
interpretability, but may also violate the assumptions behind the 
statistical tests and multiple correction methods. Despite this 
problem, more statistically sound approaches as discussed by 
Goeman and Bühlmann [ 59 ] have not gained wide-spread accep-
tance. Finally, when focusing on functional categories as gene sets 
only, interactions between genes and proteins are ignored and con-
sistency of the results is not evaluated (Fig.  2d ). As a consequence, 
results from the functional enrichment analysis should always be 
taken with a grain of salt and not be considered as an important 
fi nding by itself but rather be used to derive hypotheses that are 
followed up and validated by other means.  

5     Identifi cation of Novel Functional Modules Involved in Virus Infection 

 The approaches described in the previous section rely on existing 
knowledge of pathways and biological processes and predefi ned 
functional categories. As this knowledge is likely incomplete, several 
methods have been developed to identify previously  undescribed 
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processes associated with virus infection. In general, these are 
based on identifying functional modules of virus targets or HFs 
from the network of cellular interactions using network clustering 
approaches. The clustering method most commonly used for this 
purpose is MCODE [ 60 ], which aims to detect densely connected 
subnetworks within large cellular networks (Fig.  3a ). Density of a 
subnetwork is defi ned as the number of edges in the subnetwork 
divided by the maximum possible number of interactions among 
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the involved proteins and ranges between 0 and 1. MCODE uses 
three steps, including protein weighting, determination of dense 
modules, and optional postprocessing of the detected modules. In 
the fi rst step of MCODE, proteins are weighted based on the den-
sity of interactions among their neighbors in the network. In the 
second step, modules are extended starting from the highest 
weighted protein not yet contained in a cluster until the density in 
the module falls below a density threshold. This threshold is 
defi ned as a percentage of the weight of the seed protein. Using 
this percentage parameter, the number and density of the predicted 
modules can be adjusted. As MCODE is available as a Cytoscape 
plugin, it can be easily applied to the network of host interactions 
among the viral targets and HFs and the results can be immediately 
inspected visually. It is likely this ease of use that led to its predomi-
nance for the analysis of virus–host interactions (e.g., in [ 7 ,  28 , 
 33 ]) and not necessarily a better performance in identifying func-
tional modules. At least for the application of protein complex 
detection, other network clustering approaches have shown supe-
rior performance compared to MCODE [ 61 ], e.g., Markov 
Clustering (MCL) [ 62 ], but have yet to be applied for the analysis 
of virus–host interactomes.

   The major challenge in the  de novo  detection of functional 
modules involved in virus infection is not the detection of these 
modules. Depending on the parameters, MCODE or other graph 
clustering algorithms will always identify some densely connected 
subnetworks among the viral targets and HFs. Accordingly, the 
diffi culty consists in the assessment of the signifi cance of the results 
and the biological interpretation of the modules. So far, the prob-
lem of module signifi cance has been mostly ignored for this appli-
cation and all focus has been put on the biological interpretation of 
the results. This is unfortunate as signifi cance analysis not only 
serves to distinguish truly relevant results from mere random 
observations. It can also help to limit the list of identifi ed modules 
to the most interesting ones for which more in-depth analysis is 
performed. As the number of identifi ed modules can be large (e.g., 
152 in case of the König et al. study on infl uenza virus HFs [ 28 ]), 
such detailed analysis is often omitted. Instead modules are com-
monly mapped to known processes and pathways, e.g., from the 
GO or KEGG, and only considered further if they are signifi cantly 
enriched in at least one functional category. As a consequence, a 
large fraction of detected modules are often discarded (e.g., almost 
50 % in the König et al. study mentioned above [ 28 ]), most nota-
bly the so far undescribed and likely novel functional modules. 
Accordingly, in most studies on virus–host interactions, network 
clustering so far provided only little incremental insights compared 
to a simple enrichment analysis. Thus, the advantage lies mostly in 
the extension of known processes by additional proteins as well as 
interactions between the proteins. 
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 Apart from network clustering based only on the interactions 
between viral targets and HFs, additional approaches have been 
developed to identify modules which are not only connected by 
many interactions but also similar with regard to other properties, 
such as phenotype after RNAi knockdown (Fig.  3b ). One straight-
forward way to do this is to assign edge weights to the interaction 
networks based on the other properties considered. This allows 
applying state-of-the-art weighted graph clustering approaches 
such as MCL or even standard distance-based clustering approaches 
such as average linkage clustering. The latter approach was used by 
Gonzalez and Zimmer [ 63 ] to identify clusters of interacting 
proteins that also show a similar phenotype in an RNAi screen. In 
this case, the challenging aspect is the defi nition of an appropriate 
weight function/distance metric to quantify different types of 
similarities between proteins. Given the edge weights, existing 
implementations of clustering algorithms for instance in  R  or 
 Matlab  can then be easily applied.  

6     Prediction of Virus–Host Interactions 

 The small overlaps between screens of viral targets or HFs for the 
same species indicate that a large number of interactions are missed 
in each screen and, thus, a substantial number of interactions still 
remain to be detected. Accordingly, several methods have been 
developed to identify novel virus–host interactions or HFs. Just as 
for the large-scale screening methods, two objectives can be distin-
guished here: (1) the identifi cation of proteins either interacting 
functionally with the virus (similar to RNAi) or (2) the identifi ca-
tion of binary physical interactions between a viral and a host 
protein (similar to Y2H). Most approaches for the fi rst application 
can be roughly subsumed by the term “guilt-by-association” 
(Fig.  3c ). Accordingly, proteins are predicted as HFs if they are 
closely associated either functionally or physically with other HFs. 
What distinguishes the individual methods is the defi nition of the 
associations and the prediction of the HFs based on these associa-
tions. Usually, associations and confi dence scores for these associa-
tions are calculated by integrating several types of evidence, such as 
co-expression, and domain co-occurrence, for instance using 
Bayesian methods [ 64 ]. Alternatively, functional associations 
including confi dence scores for each type of evidence are also 
readily available from the STRING database, which integrates 
evidence from genomic context, high-throughput experiments, 
co- expression, and literature mining [ 65 ]. 

 Using the association scores and information on known HFs, 
the likelihood of a protein to be an HF can be scored. The most 
straightforward way to do this involves a summing up of the 
association scores of this protein to known HFs, either with or 
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without normalization to the total sum of association scores of this 
protein [ 64 ,  66 ]. A number of more sophisticated methods are 
described in a recent article by Murali et al. [ 66 ], including their 
novel SinkSource algorithm. As all of these methods only provide 
likelihood scores for a protein being an HF, a cut-off has to be 
applied to obtain the fi nal predictions and the quality of the predic-
tions depends strongly on the choice of the cut-off. Thus, to 
compare different methods, evaluation procedures should be used 
that are independent of a particular choice of cut-off, such as 
receiver operating characteristic (ROC) curves or precision-recall 
curves. In both cases, proteins are sorted by their confi dence scores 
calculated based on all other proteins and all possible cut-offs are 
evaluated. For each cut-off, true positive rate ( = fraction of HFs 
correctly predicted = recall) and false positive rate ( = fraction of 
non-HFs wrongly predicted as HF), in case of ROC curves, or 
recall and precision ( = fraction of predictions that are HFs), in case 
of recall-precision curves, are calculated and plotted against each 
other. If the curve for one method is always above the curve for 
another method, the fi rst method is clearly superior. If no such 
clear trends are observed, the area under the curve (AUC) can be 
calculated which provides one single measure of performance. For 
ROC curves, the AUC quantifi es the probability that a true HF is 
ranked before a random non-HF. 

 For the prediction of physical binding between a virus and a 
host protein, in principle the same methods can be used that have 
been developed for the prediction of intraspecies interactions. 
Generally, these approaches exploit similarities of a protein pair to 
known interacting protein pairs either from the same or a different 
species. These similarities may be quantifi ed in terms of sequence 
or structural similarities between the proteins (e.g., [ 67 ,  68 ]) or 
other evidence as used for scoring associations for the prediction of 
HFs (e.g., [ 69 ,  70 ]). In the latter case, so-called supervised machine 
learning approaches are generally applied to learn a classifi cation 
model that identifi es true interactions based on certain features of 
the interaction. To learn the model, both known true interactions 
are required (positive examples) as well as protein pairs that do not 
interact (negative examples). Here, the challenging aspect is the 
selection and calculation of the interaction features and the collec-
tion of positive and negative examples (training data). Given this 
training data, any out-of-the-box supervised learning algorithm 
can be used, for instance support vector machines (SVM) or any 
other algorithm included in the WEKA software library [ 71 ]. 

 The limitation of these approaches for the prediction of direct 
virus–host protein interactions consists in the scarcity of training 
data. For most viruses, the number of known interactions to the host 
is very small even when including closely related species. Accordingly, 
sequence and structure similarity to known  interacting pairs is in 
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most cases not large enough to confi dently transfer interactions. 
Furthermore, other types of experimental evidence commonly used 
to infer interactions, such as gene expression studies, are also gen-
erally not available. Despite these diffi culties efforts have been 
undertaken with some success to predict virus–host interactions 
mostly based on sequence homology and other sequence features 
but also protein centrality measures and GO annotations [ 66 ,  72 , 
 73 ]. In all of these cases, however, predictions were focused on 
HIV-1–human interactions for which the largest amount of data is 
available. It remains to be seen how successful these approaches 
can be for less well-studied virus–host interactomes.  

7     Conclusions 

 In summary, a large number of methods have been developed for 
the computational analysis of virus–host screens focusing either on 
the role of the viral targets and HFs within the host network or 
biological processes and pathways targeted by the virus. Mostly, 
however, these approaches are not readily available as software 
tools, thus limiting their applicability for biological users. 
Fortunately, at least in some cases the methods can be replicated 
using existing implementations for individual steps such that only 
little programming skills are required.     
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