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     Abbreviations 

   H 4 MPT    Tetrahydromethanopterin   
  C1    Single carbon atom as in C1 compound, organic compound 

containing a single carbon atom   
  MtdB    NAD(P)-linked methylene-H 4 MPT dehydrogenase   
  MFR    Methanofuran   
  H 4 MPT    Tetrahydromethanopterin   
  F 420     Coenzyme F 420    
  CoM    Coenzyme M   
  CoB    Coenzyme B. Fae formaldehyde-activating enzyme   
  MtdB MtdC    Methylene-H 4 MPT dehydrogenases   
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  Mch    Methenyl-H 4 MPT cyclohydrolase   
  FhcABCD    Formyltransferase/hydrolase complex   
  FdwD    Is homologous to the D subunit of formyl-MFR dehydrogenase   
  LUCA    Last universal common ancestor   

8.1           Introduction: History and Signifi cance of the Question 

 Since their discovery, Planctomycetes have continued to be a fascinating group of 
organisms as they possess properties not typical of other bacteria, such as a cell wall 
lacking peptidoglycan reminiscent of Archaea, intricate cell compartmentalization 
reminiscent of Eukaryotes, division by budding reminiscent of yeasts, and unique 
metabolites such as sterols produced by the  Gemmata  species and ladderane lipids 
produced by autotrophic ammonia-oxidizing planctomycetes (Fuerst and Sagulenko 
 2011 ). When the fi rst genomic sequence of a Planctomycete, of  Pirellula  sp. strain 1 
(since renamed as  Rhodopirellula baltica ; Schlesner et al.  2004 ) was sequenced in 
2003, it revealed another unusual feature, the presence of genes for C1 metabolism  
and more specifi cally genes encoding tetrahydromethanopterin  (H 4 MPT )-linked reac-
tions for C1 transfers  (Glöckner et al.  2003 ). Why was this discovery so signifi cant? 
It was signifi cant because it identifi ed Planctomycetes as the third major phylum to 
possess genes for reactions requiring H 4 MPT as a cofactor and a second phylum 
within the bacterial domain. Only a few years before, such genes were serendipitously 
discovered in a methylotrophic bacterium,  Methylobacterium extorquens  , and dem-
onstrated to be indispensable for growth on C1 substrates such as methanol 
(Chistoserdova et al.  1998 ), which was followed by the identifi cation of these genes 
in a number of other methylotrophic Proteobacteria  (Vorholt et al.  1999 ), for the fi rst 
time suggesting that functions thought to be unique to a limited group of Archaea , 
specifi cally methanogenic and sulfate-reducing Archaea, all classed within the king-
dom Euryarchaeotes, may be in fact more widespread. However, gene/protein homo-
logs from the Archaea and the Proteobacteria were only distantly related. In addition, 
the pathways they encoded were parts of distinctly different biochemical processes, 
i.e., methanogenesis  (reducing CO 2  to methyl) and methylotrophy  (oxidizing methyl 
to CO 2 ; Fig.  8.1 ). As the involvement of the H 4 MPT-linked functions in methanogen-
esis and methylotrophy established the common root of the two bioconversions, the 
question arose of their evolutionary history. Which pathway evolved fi rst? Did the 
methanogenesis precede the methylotrophy or vice versa? The possibility of lateral 
gene transfer between Euryarchaea  and Proteobacteria has been discussed in this con-
text, and the most probable direction of the transfer was assumed to be from Archaea 
into Bacteria (Chistoserdova et al.  1998 ; Vorholt et al.  1999 ; DeLong  2000 ; Gogarten 
et al.  2002 ; Boucher et al.  2003 ; Martin and Russell  2003 ). A scenario of lateral trans-
fer of these genes from a (aerobic) proteobacterial methylotroph into a euryarchaeon 
was also suggested (Cavalier-Smith  2002 ), but this scenario would necessitate aerobic 
methylotrophy preceding anaerobic methanogenesis, which contradicts the current 
understanding of the history  of Earth ’s atmosphere (Kasting and Siefert  2002 ). The 
discovery of the H 4 MPT-linked C1 transfer function in the Planctomycetes, a deeply 
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branching division of Bacteria (Brochier and Philippe  2002 ; Di Giulio  2003 ), pro-
vided a missing link in understanding the history of metabolism and offered an oppor-
tunity for refi ning the picture of the evolution of methanogenesis and methylotrophy, 
as well as for a better understanding of the evolution of C1 metabolism on Earth.

8.2        Phylogenetic Analysis of C1 Transfer Enzymes 
in Planctomycetes 

 One of the major outcomes of discovering the third deeply branching microbial 
group possessing H 4 MPT-linked functions was the potential to obtain new insights 
into the possible scenarios for the evolution of these functions and to test the then 
currently prevalent hypothesis of lateral transfer  of these genes from Euryarchaeota 
to Proteobacteria (Gogarten et al.  2002 ; Boucher et al.  2003 ; Martin and Russell 
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 2003 ). Two groups independently carried out phylogenetic analysis of the polypep-
tides translated from the C1 genes shared between Planctomycetes (at the time rep-
resented by two genera,  Rhodopirellula   and  Gemmata  ), Proteobacteria (both 
methylotrophs and non-methylotroph species), and Archaea (both methanogens and 
sulfate-reducing species). Chistoserdova and colleagues analyzed a total 16 poly-
peptides (Chistoserdova et al.  2004 ), and Bauer and colleagues analyzed a total of 
seven polypeptides (Bauer et al.  2004 ). In both cases, phylogenetic analyses showed 
that, in general, the polypeptide counterparts from Planctomycetes appeared to be 
distant from both their archaeal homologs and from their proteobacterial homologs, 
in most cases forming a distinct third group on phylogenetic trees, with signifi cant 
bootstrap confi dence for the node defi ning the group’s monophyly (Fig.  8.2 ). 
Notably, this pattern was revealed by the methenyl-H 4 MPT cyclohydrolase  (Mch) 
polypeptides  that were previously assumed to be some of the most reliable enzymes 
for following the evolutionary history of methanogenesis (and likely of C1 transfers 
in bacteria) based on the criteria of its essential function, the lack of duplication in 
any known organism (at least at that time), and the absence of substitution by func-
tionally equivalent enzymes (Reeve et al.  1997 ). Mch phylogeny also seemed to 
agree with the 16S rRNA phylogeny in both Euryarchaeota (Reeve et al.  1997 ) and 
Proteobacteria (Vorholt et al.  1999 ). The data from the phylogenetic analyses sug-
gested that a single event was responsible for the emergence of the functions in 
question for each major phylum possessing them. However, some of the trees built 
in these studies showed deviations from this common pattern. In some cases, tree 
topologies were complicated by the presence of multiple gene homologs, potentially 
refl ecting a more complex evolution of these genes, which suggested early duplica-
tions, as well as early and recent gene transfers for some of the genes (Chistoserdova 
et al.  2004 ). Another deviation from the common pattern was noted for some of the 
genes/enzymes in  Rhodopirellula baltica , specifi cally for the polypeptides involved 
in the formyltransferase/hydrolase  (Fhc) complex, which tended to cluster within 
the proteobacterial branch instead of clustering with the  Gemmata  sequences 
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  Fig. 8.2    A cartoon depicting 
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phylogenetic trees resolving 
positions of Planctomycete 
C1 transfer pathway peptides 
with respect to the 
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(Chistoserdova et al.  2004 ; Bauer et al.  2004 ), such clustering potentially refl ecting 
either specifi c selective pressures or results of lateral transfers from Proteobacteria.

   As many as seven alternative scenarios were invoked to explain the presence of 
the H 4 MPT-linked C1 transfer genes and their evolution in the three phylogeneti-
cally separated prokaryotic divisions: Euryarchaeota, Planctomycetes, and 
Proteobacteria. These included (a) their presence in the last universal common 
ancestor (LUCA) followed by gene loss in most of the divisions, as well as most of 
the Proteobacteria (Chistoserdova et al.  2004 ; Bauer et al.  2004 ); (b) lateral transfer 
from Euryarchaeota into the bacterial domain before the separation of Planctomycetes 
and Proteobacteria (Chistoserdova et al.  2004 ; Bauer et al.  2004 ); (c) independent 
transfers from Euryarchaeota into Planctomycetes and into Proteobacteria after the 
latter groups separated (Chistoserdova et al.  2004 ; Bauer et al.  2004 ); (d) transfer 
from Euryarchaeota into Proteobacteria and later from Proteobacteria into 
Planctomycetes; (e) transfer into Planctomycetes and later from Planctomycetes 
into Proteobacteria (Bauer et al.  2004 ); (f) emergence of the genes in Proteobacteria 
with subsequent independent lateral transfers into Euryarchaeota and 
Planctomycetes; and (g) emergence in Planctomycetes followed by independent 
transfers into Proteobacteria and Euryarchaeota (Chistoserdova et al.  2004 ). While 
Bauer et al. ( 2004 ) have postulated that in all scenarios Euryarchaeotes had to be the 
ancestral carrier of the H 4 MPT-linked C1 transfer genes, Chistoserdova et al. ( 2004 ) 
favored scenarios in which the genes in question were either present in the LUCA  
or have emerged in Planctomycetes, the conclusion mainly based on the topology of 
the phylogenetic trees and based on the presumed antiquity of the Planctomycetes 
(Brochier and Philippe  2002 ; Di Giulio  2003 ). It was concluded that, in both sce-
narios, a selective pressure would be required to prevent the loss of the entire com-
plement of the genes. Thus, for early life on Earth , a fi tness advantage corresponded 
by this pathway could be predicted. Formaldehyde is thought to have been abundant 
on early Earth  (Arrhenius et al.  1994 ). Therefore, it was argued that early cells could 
benefi t from a system to reduce the toxic effect of formaldehyde  , the role that could 
have been carried out by the H 4 MPT-linked C1 transfer pathway in the early 
Planctomycetes. At later stages, an additional fi tness could be derived from the abil-
ity to draw energy from these reactions. Whichever scenario was true, it appeared 
that the H 4 MPT-linked C1 transfer pathway between the oxidation levels of formal-
dehyde  and formate  was likely an early, important function for life, which provided 
the essential building block in the formation of both methanogenesis and methylot-
rophy pathways (Chistoserdova et al.  2004 ).  

8.3     MtdC  : A Novel Methylene-H 4 MPT Dehydrogenase  
Found in Planctomycetes 

 While most of the enzymes involved in the H 4 MPT-linked C1 transfer pathway are 
shared between Bacteria and Archaea, some are Bacteria specifi c. One of these 
enzymes, the NAD(P)-linked methylene-H 4 MPT dehydrogenase  (MtdB ), that is 
unique to Bacteria operates in the pathway in place of its functional counterparts, 
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that are linked to H 2  or cofactor F 420  (Fig.  8.1 ). Based on the lack of sequence simi-
larity, MtdB must have evolved independently of the archaeal functional counter-
parts. Enzyme properties and mutant analyses demonstrated that MtdB fulfi lls a 
dual physiological role in methylotrophic metabolism, in energy generation (in the 
form of NADH), and in formaldehyde  detoxifi cation (Hagemeier et al.  2000 ). In 
some methylotrophs, a paralog of MtdB is present, named MtdA , and this has been 
characterized as a bifunctional methylene-H 4 MPT/methylene-tetrahydrofolate 
(H 4 F) dehydrogenase  (Vorholt et al.  1998 ). While their specifi cities overlap and both 
can oxidize methylene-H 4 MPT, the main function of MtdA is believed to be in 
reducing methenyl-H 4 F to methylene-H 4 F (Chistoserdova  2011 ). In addition, MtdA 
has a function in general metabolism (e.g., purine biosynthesis) in organisms that do 
not possess the traditional enzyme, FolD , which is an enzyme that fulfi lls this 
 function in most bacteria and eukaryotes (Chistoserdova  2011 ). The origin and 
 evolutionary history of MtdA and MtdB remained poorly understood. While MtdA 
reveals low levels of sequence similarity to FolD enzymes (15 % identity at the 
amino acid level), MtdB shares no similarity with FolD (Hagemeier et al.  2000 ). 
However, the two paralogs reveal a signifi cant level of similarity to each other (about 
30 % at the amino acid level), pointing to their common origin (Vorholt et al.  1998 ). 
In the Planctomycete genomes, a single ortholog was identifi ed through BLASTP 
analysis using either MtdA or MtdB sequences as queries, and these revealed higher 
similarity to the former (43–53 %) than to the latter (28–32 % at the amino acid 
level; Vorholt et al.  2005 ). This fi nding was unexpected considering the established 
functions for MtdA and MtdB (i.e., reduction of methenyl-H 4 F and oxidation of 
methylene-H 4 MPT, respectively), especially given the fact that Planctomycetes 
encode FolD (Vorholt et al.  2005 ). These considerations suggested that the function 
of Mtd protein orthologs in Planctomycetes could be more similar to the function of 
MtdB than to the function of MtdA. This hypothesis was tested by expressing the 
 mtd  gene homolog from  Gemmata  sp. in the mutants of  M. extorquens  containing 
lesions in either  mtdA  or  mtdB , which are both negative for growth on methanol 
(Chistoserdova  2011 ). Neither of the mutants could be complemented by the  mtd  
gene from  Gemmata  sp., suggesting that its product may possess substrate specifi ci-
ties differing from the ones of MtdA or MtdB. Indeed, the purifi ed enzyme, while 
highly active in catalyzing the methylene-H 4 MPT dehydrogenase reaction using 
NADP as a cofactor, revealed low effi ciency in catalyzing the dehydrogenation of 
either methylene-H 4 MPT using NAD as a cofactor, in contrast to the characterized 
MtdB (Hagemeier et al.  2000 ), or methylene-H 4 F with NADP as a cofactor, in con-
trast to the characterized MtdA (Vorholt et al.  1998 ). However, compared to MtdA 
and MtdB, the new enzyme, named MtdC, was shown to possess a broader substrate 
range, revealing affi nities for NAD, NADP, H 4 F, and H 4 MPT, with the highest affi n-
ity for the H 4 MPT/NADP couple. This substrate combination likely represents the 
physiological activity of this enzyme. Thus, while phylogenetically more related to 
MtdA, MtdC must be a functional homolog of MtdB, which acts as a part of the 
oxidative pathway linked to H 4 MPT (Fig.  8.1 ). This conclusion is also supported by 
the chromosomal location of  mtdC  genes in physical proximity of other genes 
involved in the pathway (Vorholt et al.  2005 ), which is also the case with the  mtdB  
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gene (Kalyuzhnaya et al.  2005 ). Both the substrate “promiscuity” of MtdC and its 
phylogenetic separation from its homologs (Fig.  8.3 ) were used as arguments for its 
ancestral role with respect to MtdA and MtdB (Vorholt et al.  2005 ).

8.4        Recent Genomic Insights into the Distribution of the 
H 4 MPT-Linked C1 Transfer Functions 

 Over the past few years, microbial genomic databases expanded substantially, 
including novel and phylogenetically divergent organisms (Wu et al.  2009 ; Pagani 
et al.  2012 ). The Planctomycete genomic database remains very limited, with a 
total count of 11 publically available genomes, providing genetic blueprints for 
 Blastopirellula marina  (5.7 Mb;   http://genome.jgi.doe.gov/    ),  Candidatus  Kuenenia 
stuttgartiensis (4.2 Mb; Strous et al.  2006 ),  Gemmata obscuriglobus  (9.1 Mb; 
  http://genome.jgi.doe.gov/    ),  Isosphaera pallida  (5.5 Mb; Göker et al.  2011 ), 
 Pirellula staleyi  (6.2 Mb; Clum et al.  2009 ),  Planctomyces brasiliensis  (6.0 Mb; 
  http://genome.jgi.doe.gov/    ),  Planctomyces limnophilus  (5.5 Mb; LaButti et al. 
 2010 ),  Planctomyces maris  (7.8 Mb;   http://genome.jgi.doe.gov/    ),  Rhodopirellula 
baltica  (7.1 Mb; Glöckner et al.  2003 ),  Singulisphaera acidiphila  (9.7 Mb;   http://
genome.jgi.doe.gov/    ), and an unclassifi ed strain, an endophyte of  Porphyra umbil-
icalis  that is most closely related to  R. baltica  (7.3 Mb;   http://genome.jgi.doe.
gov/    ). Analysis of these genomes reconfi rms that genes for the H 4 MPT-linked C1 
transfer reactions are some of the most conserved genes among the diverse 
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  Fig. 8.3    Phylogeny of relevant Mtd proteins, Mtd protein affi liations with specifi c phyla, and 
substrate/cofactor specifi cities       
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Planctomycetes, one exception being the metabolic specialist  Candidatus  Kuenenia 
stuttgartiensis, an anaerobic ammonia oxidizer (anammox) that lacks these genes 
(Strous et al.  2006 ). As this organism possesses a genome of signifi cantly smaller 
size compared to other Planctomycetes, it is not unlikely that these genes were lost 
through genome reduction, which is typical of organisms evolved to specialize in 
a specifi c mode of metabolism, and the anammox Planctomycetes are an example 
of such specialization (Strous et al.  2006 ). The remaining ten genomes encode 
complete or nearly complete complements of genes implicated in the C1 transfer 
pathway. Single exceptions, such as no recognizable homolog for  fhcB  gene in  R. 
baltica  or  I.  pallida  (Glöckner et al.  2003 ; Göker et al.  2011 ) or no recognizable 
 orf21  in  P. limnophilus  (LaButti et al.  2010 ) in BLAST analyses, are likely results 
of gene divergence beyond recognition by the BLAST tool or of functional gene 
replacement. Indeed, extreme divergence of C1 transfer genes in Planctomycetes 
is one insight resulting from the availability of new genomes, as well as from the 
growing databases of genes belonging to yet uncultivated Planctomycete species 
(Kalyuzhnaya and Chistoserdova  2005 ; Elshahed et al.  2007 ; Woebken et al. 
 2007 ). Despite such sequence divergence (e.g., some proteins involved in C1 
transfer functions are less than 30 % identical among different Planctomycetes), 
phylogenetic analyses typically result in the outcomes similar to the ones pre-
sented in Fig.  8.2 . The Planctomycete sequences tend to cluster together on phylo-
genetic trees , forming branches separated from the branches representing other 
phyla, which reinforces the notion of a monophyletic origin for most of the C1 
genes in Planctomycetes. The degree of divergence for these genes, obvious even 
from the analysis of a very limited set of data, must further support the notion of a 
long history of the Planctomycetes after their separation from other lineages. In 
terms of gene clustering, a trend previously noted for the early genomes 
(Chistoserdova et al.  2004 ; Kalyuzhnaya et al.  2005 ; Woebken et al.  2007 ) main-
tains: the C1 genes are less clustered in the Planctomycetes than in other Bacteria 
but more clustered than in Archaea. However, many Planctomycete gene cluster-
ing signatures are shared with the signatures found in other phyla. For example, 
cluster  orf19-mptG  that is conserved in the Planctomycete genomes is not typical 
of Proteobacteria but is found in the genomes of Synergistetes, Firmicutes, and 
Division NC10 (Fig.  8.4 ), cluster  fae-mtdC  is shared between the Planctomycetes 
and Division NC10, cluster  orf17-orf1- orf9-orf21  is shared with Beta- and 
Gamma- but not Alphaproteobacteria (Kalyuzhnaya et al.  2005 ), and cluster  mch-
orf5-orf7  is typical (so far) of all Bacteria. The fact that the H 4 MPT-linked C1 
transfer pathway genes were maintained in the majority of the extant 
Planctomycetes, likely through vertical inheritance, must further suggest that, 
despite its enigmatic role, this pathway must be of great physiological and envi-
ronmental importance to the Planctomycetes. The role proposed originally was the 
detoxifi cation of formaldehyde  (Chistoserdova et al.  2004 ; Fig.  8.1 ). The argument 
for this role is the persistent presence of the (true)  fae   gene (i.e., encoding formal-
dehyde-activating enzyme that condenses formaldehyde with H 4 MPT; Vorholt 
et al.  2000 ) for all the Planctomycetes possessing the pathway. Interestingly,  fae  
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genes are missing (likely through gene loss; Fig.  8.4 ) from the genomes of 
Firmicutes and Synergistetes. The lack of Fae potentially suggests that these 
organisms may employ the pathway as part of a metabolic scheme not involving 
free formaldehyde. Instead, they would employ (unknown) reactions that would 
transfer a methyl group directly onto H 4 MPT. However, the nature and the meta-
bolic purpose of such variants remain unknown. In contrast to the  true fae  genes, 
for the ones that are phylogenetically Planctomycete specifi c (Chistoserdova et al. 
 2004 ), some Planctomycetes (6 out of 9) encode distant homologs named Fae3 
(Kalyuzhnaya et al.  2005 ; Chistoserdova  2011 ). These do not follow the typical 
Planctomycete phylogenetic pattern (shown in Fig.  8.2 ). Instead, they cluster 
together with the proteobacterial sequences, all the known sequences revealing 
over 80 % identity at the amino acid level, suggesting that recent evolution for 
these genes involved both intra- and inter-domain transfers  . The function of Fae3 
remains unknown (Chistoserdova  2011 ).

   Overall, comparisons of genes/enzymes involved in H 4 MPT-linked C1 transfers 
in Planctomycetes with their counterparts in other phyla, in terms of both sequence 
conservation/divergence and gene clustering, suggest a long evolutionary history 
for each lineage. While the genes from the newly identifi ed lineages such as 
Synergistetes, Firmicutes, and Division NC10 show a high degree of divergence 
with any previously described C1 transfer genes/proteins (Ettwig et al.  2010  and 
unpublished observations by the author), conservation in gene clustering between 
different lineages (Fig.  8.4 ) suggests a common origin.  
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  Fig. 8.4    Clustering of the C1 genes on the chromosomes of major phyla. Proteobacteria are rep-
resented by  Methylibium petroleiphilum   (Kane et al.  2007 ); Planctomycetes are represented by 
 Singulisphaera acidiphila   (note that this organism reveals more clustering than other 
Planctomycetes;   http://genome.jgi.doe.gov/    ); Division NC10 is represented by  Candidatus  
Methylomirabilis oxyfera  (Ettwig et al.  2010 ); Firmicutes are represented by  Halanaerobium 
hydrogeniformans  (Brown et al.  2011 ); and Synergistetes are represented by  Anaerobaculum 
hydrogeniformans  (  http://genome.jgi.doe.gov/    ). Genes for H 4 MPT-linked C1 transfer enzymes are 
in  red ; genes for cofactor biosynthesis/regulation are in  orange  (genes without designation are not 
conserved among clusters);  fae  genes are in  green  (note their absence on the chromosomes of 
Firmicutes and Synergistetes); genes not relevant to discussion are  colorless .  orfY  is not part of a 
cluster and is not shown for NC10.  Parallel lines  indicate that clusters are not contiguous on the 
chromosomes       
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8.5     New Insights into the Evolution of Microbial 
C1 Metabolism 

 Alternative scenarios for the evolution of C1 transfer pathways in the microbial 
world that remained unresolved due to the limited distribution of the pathway 
(Chistoserdova et al.  2004 ; Bauer et al.  2004 ) can now be revisited. Based on the 
analysis of recently sequenced genomes, the pathway appears to be much more 
widespread in both bacterial and archaeal phyla than previously thought. Complete 
or partial sets of genes have now been identifi ed, besides methanogenic and sulfate- 
reducing Archaea, Proteobacteria, and Planctomycetes, in the genomes of anaerobic 
methane oxidizers (which are related to the methanogens; Knittel and Boetius 
 2009 ), genomes representing Crenarchaeota (e.g.,  Ignisphaera ; incomplete path-
way, no confi rmed metabolic function); the yet unclassifi ed Division NC10 (com-
plete pathway and confi rmed methylotrophy metabolism); phylum Synergistetes 
(complete pathway with no confi rmed metabolic function); Firmicutes (complete 
pathway, no confi rmed metabolic function); and in Actinobacteria (incomplete 
pathway, no confi rmed metabolic function). This broad distribution of the pathway 
and further expansion of the phylogenetic diversity of the respective genes/enzymes 
clearly point to the likelihood of the presence of this pathway in the last universal 
common ancestor (LUCA). Remarkably, some of the new members of the bacterial 
domain possessing this pathway are obligate anaerobes (e.g., members of the NC10 
division , Synergitetes , Firmicutes ), supporting the hypothesis of the early emer-
gence of the pathway (Chistoserdova et al.  2004 ), possibly prior to the emergence 
of oxygenic photosynthesis. Likely, this pathway, potentially in its formaldehyde- 
oxidizing capacity, has evolved before any of the primary C1 oxidation (such as 
methane monooxygenase  and methanol dehydrogenase) or C1 reduction modules 
(such as methyl-CoM reductase ) have emerged. 

 While the existence of the deeply diverging genes in the major microbial lin-
eages refl ect the long history of this pathway, it is certain that more recent lateral 
transfers played a role, which is demonstrated by the  fae3  genes that are shared 
among Planctomycetes and Alpha-, Beta-, and Gammaproteobacteria (Chistoserdova 
et al.  2004 ; Chistoserdova  2011 ). At least in Betaproteobacteria, genes encoding the 
H 4 MPT-linked pathway appear to be of polyphyletic origin with the sequences of 
 Burkholderiaceae  separating from the sequences of  Methylophilaceae  (Kalyuzhnaya 
et al.  2005 ; Chistoserdova et al.  2007 ), with both types emerging from a common 
ancestor of Proteobacteria. 

 The recent genomic data also argue against the previous assumption that the 
pathway could not have been lost in many lineages of the Prokaryotes. To the con-
trary, the pathway in question appears to be a currency easily gained and lost. For 
example, recent deletion events could be noted by comparing genomes of two 
closely related  Nitrosococcus   species: while gene synteny  and high gene identity 
are maintained between the C1 transfer gene clusters in  Nitrosococcus halophilus  
and  Nitrosococcus oceani,  in the latter, key genes are missing from the cluster 
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(and from the genome), suggesting that the pathway is no longer operational in this 
species (Chistoserdova  2011 ). Another example is the (extensively sampled) 
Burkholderiales  species, many of which encode the entire pathway, but many lack 
the entire pathway, and some possess multiple (phylogenetically distinct) gene clus-
ters, suggesting that both gene losses and lateral transfers must be taking place 
(Chistoserdova  2011 ). More ancient, lineage-specifi c gene loss is also apparent 
based on comparisons of the gene complements present. One example is the  fwdD   
gene homolog (that would likely be a subunit of the formyltransferase/hydrolase 
complex) that is maintained in Archaea, Synergistetes, Firmicutes, and Division 
NC10 (Fig.  8.4 ) but is missing from most of the known genomes of Planctomycetes 
or Proteobacteria. Another example is the Afp  protein that is encoded in the genomes 
of Archaea, Synergistetes, Firmicutes, and most Proteobacteria. However, the 
respective gene is not recognized in the Planctomycete genomes and was shown to 
be substituted by a nonhomologous gene in the  Methylobacterium  species of 
Alphaproteobacteria (Marx et al.  2003 ; Vuilleumier et al.  2009 ).  

8.6     Conclusions: Changing Trees 

 While the Planctomycetes are ubiquitous in the environment, their lifestyles and 
their environmental functions remain enigmatic, except for the established function 
of the anammox Planctomycetes (Strous et al.  2006 ). Excluding those species, from 
genomics of the cultivated species and based on culture-independent detection in a 
variety of environments (Kalyuzhnaya and Chistoserdova  2005 ; Elshahed et al. 
 2007 ; Woebken et al.  2007 ), the C1 transfer genes appear to be persistently present 
in diverse Planctomycetes, both aerobes and anaerobes, suggesting their importance 
for species survival/fi tness. Currently, no methylotrophy capability has been docu-
mented for a Planctomycete, and no obvious source of formaldehyde in their habi-
tats has been established. Thus, the selective pressure for maintaining C1 metabolism 
functions, as well as the exact nature of the metabolism involving these functions, 
remains a mystery. However, Planctomycetes are often detected in environments 
with high rates of C1 metabolism (Lösekann et al.  2007 ; Kalyuzhnaya et al.  2008 ; 
Webster et al.  2011 ; Sauter et al.  2012 ), suggesting that they may be somehow 
involved, potentially through synergistic relationships in which C1 transfer capa-
bilities provide an advantage. At the same time, as the tree of life is becoming better 
sampled through genomic approaches, the tree of the organisms encoding H 4 MPT- 
linked C1 transfer functions is also expanding. Based on the genomic information 
available in 2004, we favored two alternative hypotheses for the evolution of these 
genes: their emergence in the LUCA with subsequent losses from most microbes or 
their emergence in the Planctomycetes with subsequent transfers into Euryarchaeota 
and Proteobacteria (Fig.  8.5a, b ). At this time, based on the newly established pres-
ence of these genes in a number of deeply branching phyla, such as Firmicutes, 
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Synergistetes, Division NC10, and based on the remarkable divergence of the genes 
within both Bacteria and Archaea, the former scenario appears to be more plausible 
(Fig.  8.5c ), which further suggests that the pathway indeed must be very ancient. 
Currently, the involvement of the pathway has been established in four physiologi-
cal processes: methanogenesis and anaerobic methane oxidation , both in 
Euryarchaeota, aerobic methylotrophy /formaldehyde detoxifi cation  in 
Proteobacteria, and anaerobic methane oxidation in Division NC10. It is entirely 
possible that the C1 transfer reactions encoded by Planctomycetes and by other 
phyla may be involved in or linked to metabolic processes that are neither methano-
genesis nor methylotrophy. Further sampling of the diversity of the Planctomycetes 
and delineation of their relationships with other members of microbial communities 
will be instrumental in exploring such an intriguing possibility.
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  Fig. 8.5    A cartoon depicting the probable scenarios of the evolution of H 4 MPT-linked C1 transfer 
genes in the microbial world.  Red branches  indicate (partial) presence,  black branches  indicate 
absence, and  dotted lines  indicate lateral transfers. ( a ,  b ) Scenarios proposed in 2004 (Chistoserdova 
et al.), based on limited sets of genomic data. ( c ) A scenario proposed here based on the newly 
available genomic data       
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