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  Abstract   The human amniotic membrane (HAM) is the innermost membrane sur-
rounding the fetus. HAM is a highly abundant and readily available tissue that is 
becoming appreciated as an alternative to adult bone marrow mesenchymal stem 
cells (BM-MSCs) useful for cell therapy and regenerative medicine. This tissue 
provides high ef fi ciency in noninvasive and safe MSC recovery with no intrusive 
procedures. HAM contains two cell types from different embryological origins: 
human amnion epithelial cells (hAECs), derived from the embryonic ectoderm, and 
human amnion mesenchymal stromal cells (hAMSCs), derived from the embryonic 
mesoderm. hAMSCs and hAECs are immune-privileged cells that can be isolated 
without the sacri fi ce of human embryos, avoiding immunological rejection prob-
lems and the ethical con fl ict of using human embryonic stem cells (hESCs). 
Regarding their immunophenotype, both cell types demonstrate the expression of 
the common well-de fi ned human mesenchymal and embryonic stem cell markers 
and the absence of hematopoietic markers. Moreover, both cell populations have 
similar multipotential for in vitro differentiation into all three germ layers: ectoderm, 
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mesoderm, and endoderm lineages. Indeed, the potential application of amnion-
derived cells in a variety of diseases, in particular those associated with degenera-
tive processes, is under clinical or preclinical investigation. The HAM has other 
biological properties important for tissue engineering, including anti- fi brosis, anti-
in fl ammatory, anti-scarring, antimicrobial, as well as adequate mechanical proper-
ties and low immunogenicity. Therefore, amnion allografts are widely applied in 
ophthalmology, plastic surgery, dermatology, and gynecology. In this chapter, the 
localization, isolation, characterization, and differentiation potential of amnion-
derived cells are discussed. Moreover, the potential clinical applications of either 
amnion-derived cells or the whole HAM are also reviewed.  

  Keywords   Human amniotic membrane  •  Adult bone marrow mesenchymal stem 
cells  •  Human amnion mesenchymal stromal cells  •  Cell therapy  •  Regenerative 
medicine      

    3.1   Mesenchymal Stem Cell Concept 

 Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitors 
located within the stroma of the bone marrow and other organs that are phenotypi-
cally characterized by the expression of several markers (e.g., CD73, CD90, and 
CD105) and the lack of expression of CD14 or CD11b, CD19 or CD79 a , CD34, 
CD45, and HLA-DR surface molecules  [  1,   2  ] . According to a proposal of the 
International Society for Cellular Therapy  [  3  ] , three criteria de fi ne all types of stem 
cells: self-renewal, multipotency, and the ability to reconstitute a tissue in vivo. 
Since there are no speci fi c markers for MSCs, the main criteria for their identi fi cation 
are adherence to the plastic of the tissue culture  fl ask,  fi broblast-like morphology, 
prolonged capacity for proliferation, and the capacity to differentiate into cells of 
mesodermal lineage in vitro. MSCs are classi fi ed, according to the developmental 
stage from which they are obtained, into embryonic, fetal, or adult stem cells. hESCs 
are pluripotent and could give rise to all specialized cell types of the organism. 
However, the tumorigenicity of these cells and technical and ethical considerations 
limit their availability. In contrast, adult stem cells are rare cells thought to be pres-
ent in all tissues and responsible for maintaining the homeostasis of the speci fi c 
tissue  [  4  ] . These cells, previously thought to be limited in potential, have been 
shown to differentiate into multiple mesoderm-type lineages, including chondro-
cytes, osteoblasts, adipocytes, tenocytes, myotubes, astrocytes, and hematopoietic-
supporting stroma  [  5–  7  ] , and also into cell types of ectodermal (e.g., neurons) and 
endodermal (e.g., hepatocytes) origin  [  8  ] . 

 These cells have been isolated from several tissues such as bone marrow  [  2,   9  ] , 
articular cartilage  [  10  ] , synovial membrane  [  11,   12  ] , perichondrium  [  13  ] , perios-
teum  [  14  ] , connective tissue of dermis and skeletal muscle  [  15  ] , adipose tissue  [  16, 
  17  ] , peripheral blood  [  18–  20  ] , liver  [  21  ] , lung  [  22  ] , placenta  [  5,   23–  25  ] , umbilical 
cord  [  26–  28  ] , umbilical cord blood  [  29  ] , amniotic  fl uid  [  23,   25,   30  ] , and amniotic 
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membrane  [  31–  33  ] . Moreover, the list of tissues with the potential for tissue engi-
neering is increasing because of recent progress in stem cell biology  [  34  ] . 

 Cell therapy using MSCs is a new clinical approach for the treatment of a large 
number of genetic and degenerative human diseases, including hematopoietic and 
immune system disorders, diabetes, heart failures, chronic liver injuries, and neuro-
degenerative disorders. The recent use of autologous or allogenic stem cells has 
been suggested as an alternative therapeutic approach for cartilage treatment  [  35, 
  36  ] . Human MSCs are probably responsible for normal tissue renewal as well as for 
response to injury  [  37–  39  ] . Stem cell transplantation uses cells isolated from small 
tissue samples, proliferated in culture, to obtain the appropriate number for clinical 
applications. The use of autologous MSCs avoids immunological rejection prob-
lems and the ethical con fl ict of using hESCs. For these reasons, MSCs are a promis-
ing cell resource for tissue engineering and cell-based therapies  [  38  ] . The interest in 
MSCs and their possible application in cell therapy have resulted in a better under-
standing of the basic biology of these cells. Due to the low number of MSCs that can 
be isolated from a tissue sample, culture expansion is necessary to obtain adequate 
cell numbers for clinical purposes and for the analysis of molecular mechanisms. 

 The bone marrow is the traditional tissue source used for obtaining adult MSCs, 
but it has a number of disadvantages. The most important limitations are the acces-
sibility and that the procedure required for obtaining this type of tissue is invasive, 
painful, and associated with morbidity. In addition, the number of cells obtained is 
low and the potential for proliferation and differentiation declines with donor age 
 [  40,   41  ] . Therefore, the identi fi cation of alternative sources of MSCs for both thera-
peutic and research purposes would be bene fi cial. 

 The HAM or amnion has recently emerged as another novel and alternative 
source of stem cell populations. The HAM is the innermost membrane surrounding 
the fetus. Because it arises from embryonic epiblast cells prior to gastrulation, it 
has been suggested that it may retain a reservoir of stem cells throughout preg-
nancy  [  42  ] .  

    3.2   Human Amniotic Membrane or Amnion 

 The placenta is a structure of fetal-maternal origin with a round shape, 15–20 cm 
in diameter, and 2–3 cm in thickness  [  43  ] . The thickness of the full-term amnion 
varies between humans and depends on the location of the sample. HAM functions 
as a  fi lter and preventive shock absorber that protects against infections, traumas, 
and toxins. This organ is involved in the maintaining fetal tolerance and allows 
nutrient uptake and gas exchange with the mother but also contains a high number 
of progenitor cells or stem cells. Moreover, the volume of term placenta makes it 
an attractive source of stem cells, since as an average human term placenta weighs 
more than 590 g  [  44  ] . HAM develops from extraembryonic tissue and consists of 
both a fetal component (the chorionic plate) and a maternal component (the decid-
uas) that are comprised of an epithelial monolayer, a thick basement membrane, 
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and an avascular stroma  [  45,   46  ]  (Fig.  3.1 ). The amnion is a thin (up to 2 mm), 
avascular, strong, elastic, translucent, and semipermeable fetal membrane attached 
to the chorionic membrane. Both the amnion and chorion form the amniotic sac 
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  Fig. 3.1    Structure of the fetal membrane at term stained with hematoxylin and eosin (HE). 
Original magni fi cation: 40× ( a ) and 200× ( b )       
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 fi lled with amniotic  fl uid, providing and protecting the fetal environment. The 
outer layer, the chorion, consists of trophoblastic chorionic and mesenchymal tis-
sues. The inner layer, the amnion, consists of a single layer of ectodermally derived 
epithelium uniformly arranged on the basement membrane, which is one of the 
thickest membranes found in any human tissue, and a collagen-rich mesenchymal 
layer  [  47  ] . This mesenchymal layer can be subdivided into the compact layer, 
forming the main  fi brous skeleton of the HAM, the  fi broblast layer, and an inter-
mediate layer, which is also called the spongy layer or  zona spongiosa   [  45  ] . 
Resistance to rupture of HAM is provided by the collagen present in the basement 
membrane of the amnion. Spontaneous premature rupture of the fetal membranes 
complicates 1–4 % of the pregnancies. This is due to multiple factors such as infec-
tion and genetic predisposition. These premature ruptures are associated with ele-
vated expression levels of relaxins, low expression levels of extracellular matrix 
(ECM) proteins synthesized by the fetal membranes, or to degradation of these 
proteins by induced matrix metalloproteinases (MMPs) and subsequent ECM 
remodeling  [  48  ] .  

 The two layers of the amniotic membrane originate at day 8–9 after fertilization, 
when implantation of the blastocyst has occurred. The inner cell mass of the blasto-
cyst differentiates into two layers, the epiblast and the hypoblast; both layers form 
the bilaminar embryonic disc. The epiblast gives rise to the three germ layers (ecto-
derm, mesoderm, and endoderm) and the amniotic epithelium  [  49  ] .  

    3.3   Localization of Human Amniotic Membrane-Derived Cells 

 The localization of HAM-derived cells was examined by our group  [  31,   32  ] . We 
assessed the co-localization of different stem cell markers in histological sections of 
amniotic membrane by means of immuno fl uorescence assays. In particular, we 
studied the co-localization of the CD44, CD90, CD105, and CD271 markers. 

 Our group did not observe any cells in which co-localization of three and/or 
four stem cell markers occurred. However, we frequently observed co-localiza-
tion of double markers, for example, we found CD105 co-located with CD90, 
CD44 co-located with CD90, and CD271 co-localized with CD44 (Fig.  3.2 ). 
Most cells labeled with the different stem cell markers were hAMSCs from the 
thick basement membrane, although in some membranes we observed hAECs, 
derived from the embryonic ectoderm, that were labeled only for the CD105 
marker. hAMSCs are derived from embryonic mesoderm  [  50  ]  and are sparsely 
distributed in the stroma underlying the amnion epithelium  [  51  ] . On the other 
hand, hAECs form a continuous monolayer of embryonic ectodermally derived 
epithelium uniformly arranged on the basement membrane in contact with the 
amniotic  fl uid.  

 The immuno fl uorescence results of our group  [  31,   32  ]  indicated that the HAM 
contains at least two different cell types having stem cell characteristics and that 
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these cells are located in the basement membrane and in the single layer of ectoder-
mally derived epithelium. These common and well-de fi ned human MSCs markers 
were previously described for bone marrow MSCs. Moreover, we showed that 
hAECs are positive for the epithelial marker cytokeratin 7, which con fi rms its epi-
thelial nature (Fig.  3.3 ).   
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  Fig. 3.2    Localization of 
HAM-derived cells, hAMSCs 
and hAECs, in healthy 
HAMs. Representative 
section of the HAM stained 
with HE ( a ), indicating the 
epithelial cells from the 
extraembryonic ectoderm 
( EC ) and the thick basement 
membrane ( BM ). 
Immuno fl uorescence analysis 
of stem cell marker 
expression of human amnion 
cells, nuclei were 
counterstained with 
4 ¢ ,6-diamidino-2-
phenylindole (DAPI) ( b – d ). 
Representative images of 
hAECs, positive for CD105, 
and hAMSCs, positive for 
CD44 ( b ). Representative 
photos of hAMSCs positive 
for CD105-CD90 ( c ) and 
CD44-90 ( d ). Original 
magni fi cations: 200× (Images 
taken from Díaz-Prado et al. 
 [  32  ] )       
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    3.4   Human Amniotic Membrane as a Source of Stem Cells 

 HAM expresses only moderate levels of major histocompatibility complex (MHC) 
class I antigens and MHC class II antigens on its surface. HAM-isolated cells have 
anti-in fl ammatory properties. Moreover, there was no evidence of tumorigenicity 
when isolated human amniotic cells were transplanted into human volunteers or 
into patients in an attempt to correct lysosomal storage diseases  [  52–  54  ] . Therefore, 
hAECs and hAMSCs seem to be immune-privileged cells and suitable for allotrans-
plantation and regenerative medicine  [  40,   55  ] . 

 Because fetal tissues are routinely discarded postpartum, HAMs have proved to 
be abundant, inexpensive, and easily obtained with a virtually limitless availability 
 [  45,   47,   56–  58  ] . Therefore, the HAM represents a very useful source of progenitor 
cells for a variety of applications. Because human embryos are not sacri fi ced for the 
isolation of progenitor cells from HAMs, the current controversies associated with 
the use of hESCs can be avoided  [  43,   55,   56,   58  ] . Given the minimal ethical and 
legal issues associated with HAM cell usage, further investigation into their func-
tional potentials in vivo is warranted. 

 HAM is becoming appreciated as an alternative to bone marrow for adult MSCs 
for regenerative medicine. This tissue provides high ef fi ciency in MSC recovery 
with no intrusive procedures  [  33  ] . Moreover, harvesting cells from the HAM is 
noninvasive and safe. A major advantage of cells isolated from the HAM is that they 
are harvested after birth and can be cryogenically stored to be available in a timely 
manner for patient therapy after being thawed and expanded for use in tissue engi-
neering, cell transplantation, and gene therapy. 

 MSCs from  fi rst-, second- and third-trimester placental compartments, including 
the amnion, chorion, decidua parietalis, and decidua basalis, were isolated and rep-
resent less than 1 % of the cells present in the human placenta  [  22,   33,   59,   60  ] . 

hAECs

a b
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  Fig. 3.3    hAECs ( a ) and hAMSCs ( b ) were stained with CK7 antibody by means of 
immunohistochemistry       
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HAM contains two different cell types from different embryological origin  [  33,   61  ] : 
hAECs, derived from embryonic ectoderm  [  50  ]  which form a continuous mono-
layer that contacts the amniotic  fl uid, and hAMSCs, derived from embryonic meso-
derm  [  50  ]  which are sparsely distributed in the stroma that underlies the amnion 
epithelium  [  51  ] . Both hAECs and hAMSCs secrete various antiangiogenic and anti-
in fl ammatory proteins such as interleukin (IL)-1 receptor antagonist; activin A; tis-
sue inhibitors of metalloproteinases (TIMP-1, TIMP-2, TIMP-3, and TIMP-4); and 
IL-10 which are deposited within the amniotic membrane stroma  [  62  ] . Hyaluronic 
acid may act as a ligand for CD44 and may entrap in fl ammatory cells in the 
stroma. 

 Some papers reported the isolation of HAM-derived cells, from the mesenchy-
mal and epithelial regions of the amnion, from the full-term amnion after its manual 
separation from the chorion. Bailo et al.  [  63  ]  isolated and characterized amnion and 
chorion cells from human term placenta suggesting that both kinds of cells may 
represent an advantageous source of progenitor cells with potential applications in 
a variety of cell therapy and transplantation procedures. For this purpose, different 
methods to isolate HAM-derived cells have been published  [  33,   59,   63–  67  ] . 

 All these protocols start with a mechanical separation of the amniotic membrane 
from the underlying chorion through the spongy layer  [  43  ] . This step is followed by 
a digestion with trypsin, dispase, or other digestive enzymes, in different concentra-
tions and for different periods of time, to release the hAECs from the basal mem-
brane. hAMSCs can be subsequently released through subsequent digestion with 
collagenase  [  49  ] , alone or combined with DNAase  [  23  ] . 

 Regardless of the morphological features of human amnion-derived cells, hAM-
SCs show plastic adherence and  fi broblast-like growth usually observed with MSCs 
from bone marrow (Fig.  3.4 ). After 3–4 weeks of hAMSCs culture, it is possible to 
obtain a population of adherent mesenchymal cells morphologically identical to 
MSCs isolated from bone marrow. These stromal cells are easy to expand in vitro 
for at least 9 passages without morphological changes. Furthermore, their immuno-
phenotypic characterization demonstrates the presence of common well-de fi ned 
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  Fig. 3.4    Morphology of cultured hAMSCs ( a ) and hAECs ( b ) isolated from healthy HAM. 
Original magni fi cations: 100×       
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human MSC markers previously described for bone marrow (CD90, CD44, CD73, 
CD166, CD105, CD29) with the absence of the hematopoietic markers CD34 and 
CD45 and the concomitant lack of  fi broblast marker  [  68,   69  ] . The absence of 
hematopoietic or monocytic marker gene expression excludes the possibility that 
the observed plasticity of these cells is due to contamination with stem cells from 
fetal or cord blood or with embryonic  fi broblasts. This antigen expression pattern is 
consistent with the data previously published in cells isolated from the amnion and 
other regions of the term placenta  [  5,   51,   63  ] . hAMSCs are also positive for pluri-
potency markers such as Oct4 (octamer-binding protein 4), NANOG, SOX2 (SRY-
related HMG-box gene 2), and REX-1  [  49  ] , but positivity for embryonic stem cell 
markers, SSEA-3 or SSEA-4, remains debated  [  49  ] . hAMSCs may be considered as 
superior to adult MSCs in their differentiation and proliferation capacity due to their 
higher OCT4 mRNA levels  [  33  ] . Moreover, hAMSCs also express low levels of 
HLA-A, HLA-B, and HLA-C, but do not express HLA-DR, indicating that these 
stromal cells may be useful in clinical transplantation procedures  [  49  ] .  

 On the other hand, isolated hAECs are small-size cells that are easy to expand 
in vitro for at least three passages without morphological changes; they display 
epithelial morphologies and grow into a tightly packed, cobblestone monolayer in 
culture  [  70  ]  (Fig.  3.4 ). These cells generally have a central or eccentric nucleus, one 
or two nucleoli, and abundant cytoplasm, usually vacuolated  [  66  ] . hAECs are posi-
tive for desmin and vimentin  [  58  ] . These epithelial cells also reveal an antigen 
expression pro fi le characteristic of culture-expanded MSCs  [  51  ] , since they are 
positive for the same markers as for hAMSCs. Primary hAECs seem to contain 
class IA and class II HLAs, consistent with a low risk of tissue rejection  [  42  ] . They 
do not express HLA-A, HLA-B, and HLA-C belonging to class I of the MHC and 
HLA-DR and HLA-DQ belonging to the class II MHC  [  45,   65  ] .    When these cells 
follow pancreatic or hepatic differentiation, but not cardiogenic differentiation, 
express a signi fi cant percentage of class IA but not class II HLAs  [  71  ] . In addition, 
hAECs secrete a number of immunosuppressive factors that target the innate and 
adaptive immune systems, which may support survival following transplantation 
 [  70  ] . Evidence for long-term self-renewal is not still available for hAECs, probably 
may be due to the absence of telomerase that limits their ability to divide in 
culture. 

 Phenotypes of the two cell populations (Fig.  3.5 ), hAMSCs and hAECs, are 
maintained from passage 0 to passage 9  [  32  ] . It is important to notice that although 
both populations show similar signature regarding cell surface receptor expression 
pattern, they show many differences with regard to cell shape and cell arrangement 
 [  32,   51  ] . These same  fi ndings were previously described by Bilic et al.  [  51  ] . These 
investigators isolated these two populations and concluded that hAECs and hAM-
SCs in culture exhibited and maintained a similar marker pro fi le of mesenchymal 
progenitors. hAECs also express surface markers of undifferentiation normally 
present on embryonic stem and germ cells such as SSEA-4 and STRO-1. Both 
embryonic stem cell markers are present in more quantity in hAECs than in hAM-
SCs  [  32,   42,   51  ] , possibly indicating that hAECs could be at a more early state of 
undifferentiation. In this regard, Ilancheran et al.  [  42  ]  also showed that hAECs 
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expressed SSEA-3 (stage-speci fi c embryonic antigen 3), SSEA-4, TRA-1–60 
(tumor rejection antigen) and TRA-1–81, and other antigens such as the ABCG 2/
BCRP (a member of the ATP-binding cassette superfamily), CD9, CD24, CD90, 
CD117, E-cadherin, integrin  a 6 and  b 1, and c-met (receptor growth factor of the 
hepatocyte)  [  43,   45  ] . It has to be noted that initially isolated, hAECs are not homog-
enously positive for all these antibodies. Some surface markers such as CCR4- and 
CD117-positive cells are very rare, while others such as CD9 and integrin  a 6 and 
 b 1 are expressed on virtually 100 % of the cells, indicating that hAECs are a hetero-
geneous cell population with respect to cell surface pro fi ling  [  67  ] . These epithelial 
cells also express Oct4, NANOG, SOX2, REX-1, FGF4, Lefty-A, and TDGF-1gene 
products associated with pluripotent embryonic stem cells  [  49,   67,   72,   73  ] . When 
hAECs are cultured as an adherent monolayer for several weeks, small spheroids 
are evidenced over the cobblestone pavement of epithelial cells. These cell clusters 
express SSEA-3, SSEA-4, TRA 1–60, and TRA 1–80 stem cell-speci fi c cell surface 
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antigens. Moreover, the stem cell molecular marker genes Oct4 and NANOG are 
also expressed in the small cell clusters, suggesting that hAECs form embryonic 
body-like structures that maintain their stem cell nature in culture  [  73  ] .  

 hAECs and hAMSCs can be grown in Dulbecco’s modi fi ed Eagle’s medium 
(DMEM) supplemented with 20 % fetal bovine serum (FBS) and 1 % penicillin-
streptomycin (P/E) and seeded into culture  fl asks. Moreover, hAECs could be cul-
tured with or without the addition of growth factors such as epidermal growth 
factor (EGF) or basic  fi broblast growth factor (bFGF) and mostly in the absence of 
leukemia inhibitor factor (LIF)  [  48  ] . Both populations should be expanded in a 
humidi fi ed 5 % CO 

2
  atm at 37 °C. After the isolation of both cell types, it is advis-

able to perform immunohistochemical stainings (e.g., for cytokeratin 7, CK7) to 
demonstrate the purity of both populations. In this regard, only hAECs may be 
positive for this or other epithelial markers. In monolayer cultures, these hAECs 
are positive for low molecular weight cytokeratins, con fi rming their epithelial 
nature. Moreover, although initially they are vimentin-negative, hAECs become 
vimentin-positive during cell culture. Vimentin-positive hAECs remain positive 
for cytokeratins, indicating that in vitro culture may induce dedifferentiation of 
these epithelial cells  [  67  ] . 

 Recently, Parolini et al.  [  49  ]  published a comparison of key features of HAM-
derived cells and human BM-MSCs. These authors postulated that BM-MSCs have 
a higher cell doubling time than hAECs, while for the hAMSC this time was not 
reported yet. Regarding the maximum number of passages, it ranges from 5 to 10 
for hAMSCs, 10–20 for BM-MSCs, and 30 for hAECs. But there is a contradiction 
with the passage number at which HAM-derived cells stop proliferation. Based on 
the literature, proliferation slows down with every passage and cells settle into 
senescence until proliferation ceases. For example, Miki et al.  [  66  ]  and Parolini 
et al.  [  65  ]  state that hAECs grow normally for 2–6 passages before proliferation 
ceases. On the contrary, Bilic et al.  [  51  ]  con fi rmed that hAECs and hAMSCs prolif-
eration almost stops beyond passage 5, whereas Toda et al.  [  58  ]  postulated that 
hAECs senescence is reached at lower passages, P3 or P4. However, Alviano et al. 
 [  33  ]  and Soncini et al.  [  59  ]  indicated that hAMSCs are easily expanded in vitro for 
at least 15 passages without any visible morphological alterations, but they used 
cells not exceeding P4 for cell characterization and multilineage differentiation 
potential studies. 

 Another comparison between placental cells and BM-MSCs was the aim of the 
paper published by Barlow et al.  [  5  ] . These authors compared human placenta-de-
rived MSCs (the placental tissue included amnion, chorion, and decidua) and human 
bone marrow-derived MSC in terms of cell characteristics, optimal growth condi-
tions, mesodermal lineage differentiation, and in vivo safety speci fi cally to deter-
mine if human placenta-derived MSCs could represent a source of human MSC for 
clinical trials. They demonstrated that both populations were similar in terms of 
growth condition requirements and in terms of subsequent biological characteriza-
tion. However, both populations differed with respect to their proliferation capabili-
ties at different seeding densities. In this regard, human bone marrow-derived MSCs 
proliferated more slowly than human placenta-derived MSCs in every experiment. 
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Also the latter had greater long-term growth ability than the former. Moreover, 
MSCs from both sources exhibited similar morphology, size, and cell surface phe-
notype, and mesodermal differentiation ability with the exception that human pla-
centa-derived MSC consistently appeared less able to differentiate to the adipogenic 
lineage. In line with the results obtained, these authors suggested that human pla-
centa is an acceptable alternative source for human MSC. 

 All published protocols to obtain HAM-derived cells yield hAMSCs, but no 
studies have compared their ef fi cacy in the isolation. Our group  [  31  ]  compared two 
protocols, described in the literature by Alviano et al.  [  33  ]  and Soncini et al.  [  59  ] , 
for the isolation of hAMSCs from the HAM. Alviano’s protocol involved three 
digestions (one mechanical and two enzymatic), whereas Soncini’s protocol used 
only two enzymatic digestions. This study included the comparison of hAMSCs, 
isolated using both methodologies, in terms of their phenotypic characterization and 
their in vitro potential for differentiation toward osteogenic, adipogenic, and chon-
drogenic mesodermal lineages. Both protocols allowed the successful isolation and 
culture of cells attached to the culture  fl ask with  fi broblast-like cell morphology 
from full-term placenta. These cells showed similar immunophenotype but with 
differences in cell yield and in the in vitro differentiation potential into the main 
mesodermal lineages. In particular, quantitative studies showed that Soncini’s pro-
tocol typically showed an increase in the hAMSCs isolation yield of almost tenfold 
with regard to Alviano’s protocol. Also, the former protocol allowed the isolation 
and expansion of a larger number of cells in a very short time period. This ready and 
rapid availability of cells is one criterion required of a source of MSCs for it to be 
considered for cell transplantation. Therefore, the differences found using both pro-
tocols should be taken into account when using these cells for cell therapy.  

    3.5   Differentiation Potential of Human Amniotic 
Membrane-Derived Cells 

 Placental MSCs have been shown to differentiate into chondrogenic, osteogenic, 
endothelial, hepatocytic, myogenic, and neurogenic lineages, with some differences 
among cell types depending on the placental tissue sources  [  8,   33,   40,   43,   50,   56,   68, 
  69,   74,   75  ]  (Figs.  3.6  and  3.7 ).   

 hAMSCs differentiation to neuronal lineage has been demonstrated by the fact 
that these cells express neuronal markers (nestin, Musashi 1, neuron-speci fi c eno-
lase, neuro fi lament medium, microtubule-associated protein [MAP]-2 and Neu-N) 
and glial (GFAP) markers, after their culture in speci fi c neural-induction media  [  50, 
  60,   75,   76  ] . 

 Tamagawa et al.  [  74  ]  showed that hAMSCs were able to differentiate into cells 
with characteristics of hepatocytes. In this regard, native cells expressed typical 
hepatocytic mRNA such as albumin, CK (cytokeratin) 18,  a -fetoprotein,  a 1-antit-
rypsin, and HNF-4 a , but only glucose-6-phosphatase and ornithine transcarbamy-
lase expression and glycogen storage were observed after in vitro hepatic induction. 
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 Regarding hAMSC differentiation toward mesodermal lineage, In’t Anker et al. 
 [  22  ]  demonstrated the potential of hAMSCs to differentiate into osteogenic and 
adipogenic cells. After osteogenic differentiation, hAMSCs suffered morphologic 
changes and showed calcium deposits when they were stained with von Kossa’s 
dye. On the other hand, and after adipogenic differentiation, hAMSCs become 
multi-vacuolated cells that were stained with Oil Red O stain. Later, Portmann-Lanz 
et al.  [  60  ]  showed the capacity of these stromal cells for differentiation to chondro-
genic and myogenic lineages. Chondrogenic differentiation of these cells was dem-
onstrated by the presence of abundant collagen in the ECM by means of Alcino’s 
blue dye. Myogenic differentiation of hAMSCs has been determined by RT-PCR 
since Portmann-Lanz et al.  [  60  ]  demonstrated the mRNA expression of myogenic 
transcription factors such as MyoD and myogenin and the protein expression of 
desmin in hAMSCs cultured in differentiation media. Alviano et al.  [  33  ]  con fi rmed 
these results and also were the  fi rst to demonstrate the angiogenic differentiation 
potential of these cells. This latter study revealed that hAMSCs, after culture in 
induction media with VEGF, expressed endothelial-speci fi c markers such as the 
receptors of the vascular endothelial growth factor 1 and 2 (FLT-1, KDR), ICAM-1, 
as well as the appearance of CD34 and von Willebrand Factor (vWF)-positive 
cells. 

 Regarding cardiomyogenic potential, it has been demonstrated that hAMSCs 
expressed cardiac-speci fi c genes such as GATA4, MLC-2a (myosin light chain), 
MLC-2v, cTnI, and cTnT  [  77,   78  ]  after cardiomyogenic induction. Zhao et al.  [  77  ]  
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DMEM 21 DMEM 21DIF Osteo DIF Osteo
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  Fig. 3.6    Adipogenic ( DIF Adipo ) and osteogenic ( DIF Osteo ) differentiation of human amnion 
mesenchymal stromal cells ( hAMSCs ) and human amnion epithelial cells ( hAECs ) with their 
respective controls ( C hAMSC  and  C hAEC ) grown for 21 days in Dulbecco’s Modi fi ed Eagle 
Medium ( DMEM 21 ). The presence of adipocytes was assessed by detection of lipid drops using 
Oil Red O ( OR - O ) stain ( a ). The presence of the calcium deposits characteristic of osteoblasts was 
detected using Alizarin Red ( AR ) stain ( b ). Original magni fi cations: 200× ( a ) and 100× ( b ) (Images 
taken from Díaz-Prado et al.  [  32  ] )       
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  Fig. 3.7    Chondrogenic differentiation ( DIF Chondro ) of human amnion mesenchymal stromal 
cells ( hAMSCs ) and human amnion epithelial cells ( hAECs ) and their respective controls ( C hAMSC  
and  hAEC ) grown for 21 days in Dulbecco’s Modi fi ed Eagle Medium ( DMEM ). Micropellets were 
stained with HE, Masson’s trichrome ( MM ), and toluidine blue ( AT ) for proteoglycans. 
Immunodetection of Agg ( Ag-C20 ) and collagen type II ( Col II ) was performed to detect mole-
cules characteristic of hyaline cartilage. Immunodetection for collagen type I ( Col I ) was also 
assessed. Original magni fi cations: 100× and 200× (Images taken from Díaz-Prado et al.  [  32  ] )       
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showed that after hAMSCs transplantation into the myocardial infarcts in rat hearts, 
these cells survived in the scar tissue for at least 2 months and differentiated into 
cardiomyocyte-like cells. On the other hand, spontaneous differentiation of hAM-
SCs toward myo fi broblasts has also been observed after their culture in standard 
medium (DMEM/FBS) within 2 passages  [  79  ] . 

 The ability of hAECs to differentiate into cardiomyocytic, myocytic, osteocytic, 
adipocytic (mesodermal), pancreatic, hepatic (endodermal), neural, and astrocytic 
(neuroectodermal) cells in vitro has been established  [  42,   43,   73,   80  ] . However, in 
contrast with embryonic stem cells, hAECs did not form tumors up to 7 months 
posttransplantation in SCID/Beige mice  [  42,   73  ] . The capacity of hAECs to differ-
entiate into cell types from all three germ layers may be associated with the fact that 
the hAECs are directly derived from the epiblast and thus may retain the plasticity 
of pregastrulation embryonic stem cells. 

 The pluripotency of hAECs was supported by the study of Tamagawa et al.  [  81  ] . 
The ultimate approach to determine the pluripotency of amniotic epithelium-derived 
stem cells is to generate chimeric animals by injecting the single stem cell into a 
blastocyst. If the stem cell contributes all germ layer cells in the chimeric animal, 
pluripotency will be con fi rmed  [  67  ] . Tamagawa et al.  [  81  ]  created a xenogeneic 
chimera with hAECs and mouse embryonic stem cells in vitro. This chimera gives 
rise to cells of all germ layers, con fi rming the in vitro pluripotency of hAECs. Later 
studies have corroborated the ability of hAECs to in vitro differentiate into cells 
from the three germ layers  [  42,   43,   73,   80  ] . 

 hAECs have characteristics of neural progenitor cells since freshly epithelial 
cells constitutively express a number of neural genes, including neuron-speci fi c 
enolase (NSE), NF-M, and myelin basic protein (MBP), perhaps suggesting a pre-
dilection for neural differentiation  [  70  ] . Exposure of hAECs to all-trans-retinoic 
acid and FGF4 resulted in adoption of an elongated, neural morphology and 
enhanced expression of some differentiation markers for neural stem such as nestin 
and GAD (glutamate decarboxylase). Differentiation to astrocyte-like and oligo-
dendrocyte-like cells was also evidenced by expression of glial  fi brillary acidic 
protein (GFAP) and cyclic nucleotide phosphodiesterase (CNP), respectively  [  73  ] . 
Kakishita et al.  [  82  ]  and Elwan and Sakuragawa  [  83  ]  demonstrated the differentia-
tion of the epithelial cells to neural cells (ectodermal lineage) with capacity to 
synthesize and release acetylcholine, catecholamines, neurotrophic factors, activin, 
noggin, and dopamine, suggesting their possible utility in the treatment of neural 
degenerative diseases. In this regard, several studies have already been published 
showing promising results in animal models with Parkinson’s disease and muco-
polysaccaridosis type VII. Studies of intracerebral grafting of hAECs for the treat-
ment of a mouse model of Parkinson’s disease showed that these epithelial cells 
can synthesize and release catecholamine and neurotrophic factors such as nerve 
growth factor, neurotrophin-3, and brain-derived neurotrophic factor  [  82,   84,   85  ] . 
Kosuga et al.  [  86  ]  suggested that transplantation of hAECs transduced with adeno-
viral vectors can be employed for the treatment of congenital lysosomal storage 
disorders. 
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 Hepatic differentiation (endodermal lineage) of hAECs was reported by 
Sakuragawa et al.  [  87  ] . They demonstrated albumin and  a -fetoprotein production 
from cultured hAECs, and when LacZ-labeled human hAECs were transplanted 
into the liver of an immunode fi cient mouse, the transplanted cells were found to 
integrate into the hepatic plate. Some reports demonstrated that these epithelial cells 
also displayed other functional properties associated with hepatocytes, such as gly-
cogen storage and expression liver-enriched transcription factors, such as hepato-
cyte nuclear factor (HNF)-3 g  and HNF4 a , CCAAT/enhancer-binding protein (C/
EBP- a  and C/EBP- b ), and several of the drug-metabolizing genes (cytochrome 
P450)  [  73,   88,   89  ] . Some papers showed albumin production and induction of early 
markers of hepatic differentiation of hAECs after the addition of speci fi c growth 
factors to the culture media such as FGF-2, hepatocyte growth factor, oncostatin M, 
and heparin sodium salt  [  88  ] . These  fi ndings suggest the potential utility of hAECs 
to restore hepatic tissues that have been diseased or injured. 

 Differentiation of hAECs to another endodermal lineage, pancreatic, was reported. 
Wei et al.  [  90  ]  cultured these epithelial cells in the presence of nicotinamide to induce 
pancreatic differentiation, and they observed that the treated cells initiated the expres-
sion of multiple pancreatic genes, including the transcription factor Pax-6 and the 
hormones glucagon and insulin. Subsequent transplantation of these insulin-express-
ing cells in the spleen of diabetic SCID mice normalized the levels of serum glucose 
for several months after the transplant, indicating the therapeutic potential of hAECs 
to treat diabetes mellitus type I. Later, Miki et al.  [  73  ]  showed by RT-PCR analysis 
that, after pancreatic differentiation, hAECs express pancreatic  a - and  b -cell mark-
ers such as the transcription factors PDX-1 (pancreatic duodenum homeobox 1), 
PAX-6 (paired box homeotic gene 6), and NKX2.2 (NK2 transcription factor-related 
locus 2) and the mature hormones insulin and glucagon. 

 The differentiation of hAECs to cardiac cells (mesodermal lineage) was  fi rst 
evaluated by Miki et al.  [  73  ] . They demonstrated by RT-PCR that cardiac-speci fi c 
genes atrial and ventricular myosin light chain 2 (MLC-2A and MLC-2V, respec-
tively) and the transcription factors GATA-4 and Nkx 2.5 are expressed or induced 
in hAECs cultured in media supplemented with ascorbic acid 2-phosphate for 
14 days. The immunohistochemical analysis of alpha-actinin expression showed a 
staining pattern very similar to the one reported for hESC-derived cardiomyocytes. 

 Differentiation of hAECs to another mesodermal lineages was reported by 
Ilancheran et al.  [  42  ] , who showed that native hAECs can differentiate into cells 
with a phenotype and marker characteristic of mesodermal-derived myocytes, 
osteocytes, and adipocytes.  

    3.6   Preclinical Studies of Amnion-Derived Cells Applications 

 There are a limited number of studies showing results of preclinical investigations 
using amnion-derived cells  [  91  ] . New research focusing on alternative therapeutic 
applications is currently in progress. 
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 Some reports suggested the bene fi cial effects of primary hECs in lung  fi brosis 
when they were transplanted into a mouse model. After the transplantation, these 
cells expressed surfactant proteins and displayed lamellar bodies indicating their 
differentiation into type II pneumocytes in vivo. hECS transplantation reduced col-
lagen deposition, induced its degradation, and overall reduced  fi brosis in the injured 
lungs  [  92  ] . Regarding liver  fi brosis, hECs transplantation also showed a signi fi cant 
reduction in the number of hepatic cells producing collagen  [  93  ] . 

 Cell therapy using hAECs was assessed for the treatment of pancreatic diseases. 
In rat models of insulin-dependent diabetes mellitus, transplanted hAECs were able 
to normalize blood glucose level, since they were able to differentiate into pancreatic 
 b -cells in vivo  [  90  ] . On the other hand, and for the treatment of muscle diseases, 
when hAMSCs were transplanted into a mouse model of Duchenne muscular dystro-
phy, they underwent myogenic differentiation or fusion with host muscle cells  [  94  ] . 

 Moreover, the differentiation potential of hAECs into neurons and glial cells was 
investigated by several groups for the treatment of neurological disorders which 
affect both the spinal cord and the brain. For example, for the treatment of Parkinson’s 
disease, hAECs transplanted into an immunosuppressed rat model of Parkinson’s 
disease produced dopaminergic and other diffusible molecules with trophic and 
bene fi cial activities on dopaminergic neurons  [  82,   84  ] . In case of ischemic stroke, 
hAECs transplanted into ischemic rats resulted in an improvement of behavioral 
dysfunction and reduction of infarct volume. These bene fi cial effects probably 
could be due to the hECs differentiation toward neurogenic lineage in vivo and to 
the paracrine actions of the neurotrophic factors secreted by these amnion epithelial 
cells  [  95  ] . Moreover, hAECs have been investigated to treat spinal cord injury. 
When these cells were transplanted into a monkey or rat models, hAECs prevented 
degeneration of axotomized neurons and exerted neurotrophic effects, in part due to 
the release of neurotrophic factors by hAECs  [  96  ] .  

    3.7   Clinical Application of Human Amniotic 
Membrane as Scaffold 

 HAM has been reported for the  fi rst time as a biological dressing to heal skin wounds 
a century ago  [  97  ] . Davis was the  fi rst to report the use of fetal membranes as surgical 
materials in skin transplantations. Later, other surgery applications for HAM have 
been reported, such as its use as a biological dressing for skin wound treatment, 
chronic leg ulcers, and burn injuries. Since the 1940s, the use of de-epithelialized 
HAM has been well documented in ophthalmology for the treatment of Stevens-
Johnson syndrome, cicatricial pemphigoid, acute thermal and alkali burns, pterygium 
surgery, and limbal stem cell transplantation among others  [  98–  102  ] . HAMs have 
also been used as biologic dressings for plastic surgery, dermatology, and gynecology 
procedures  [  103–  107  ] . In management of open wounds, HAM provides a clean and 
closed wound in the shortest time possible; it avoids  fl uid, nutrient, and heat loss; 
prevents wound infection and pain; and reduces mobility. The amnion adheres  fi rmly 
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to an exposed surface. Moreover, HAM can provide a healthy new substrate suitable 
for reepithelization and epithelial healing  [  47  ] . These properties enable surgeons to 
apply the graft on various tissue surfaces without need for suturing or application of 
secondary dressings. Immediately after grafting, the process of biodegradation begins 
and the membrane self-dissolves over a period of time from days to 3–4 weeks 
depending on the characteristics of the wound, the presence or absence of coexisting 
pathogens, the polarization of the applied graft, and the type of graft applied. 

 Importantly, full-term placentas are evaluated after the birth of the baby and are 
discarded at the hospital as medical waste. Therefore, HAMs are inexpensive and 
easily obtained with an availability that is virtually limitless, negating the need for 
mass tissue banking  [  45,   47,   57,   58  ] . The HAM possesses clinical considerable 
advantages to make it potentially attractive as a biomaterial. It is antimicrobial, anti-
 fi brosis, antiangiogenic, and antitumorigenic and has acceptable mechanical prop-
erties. It also reduces pain and in fl ammation, inhibits scarring, enhances wound 
healing and epithelialization, has analgesic properties, acts as an anatomical and 
vapor barrier, and modulates angiogenesis, all important requirements for tissue 
engineering  [  45  ] . Several growth factors, such as TGF- b ,  b FGF, EGF, TGF- a , kera-
tinocyte growth factor, and hepatocyte growth factor, produced from amniotic mem-
brane, are involved in some of these processes  [  4  ] . All these characteristics are not 
shared by other natural or synthetic polymers, highlighting the clinical advantages 
of HAM as a scaffold compared to other biocompatible products. Also, amnion 
shows little or no immunogenicity, and the immune response against the graft, if 
there is, is slight and ineffective, so it does not represent transplantation risks. On 
the contrary, chorion shows high immunogenicity, and for this reason, it is not used 
as biomaterial for transplantation purposes. It is important to note that HAM has 
been approved as a medical material by the Food and Drug Administration  [  67  ] . 

 Nowadays, HAMs are used as allograft in general surgery for reconstructions, as 
an autograft in neonatal reconstruction surgery and as a scaffold in tissue engineer-
ing research  [  48  ] . The low cost of amnion graft preparation and the very good clini-
cal results in multipurpose applications have made it a viable alternative to other 
natural (i.e., preserved human skin) and synthetic wound dressings  [  108  ] . Moreover, 
for all the clinical applications, HAM is usually preserved and stored using different 
methods such as cryopreservation, irradiation, air drying, lyophilization, or glycerol 
preservation.  

    3.8   Summary 

 The HAM, an abundant, inexpensive, and readily obtained tissue that is discarded 
postpartum, represents a valuable cell and tissue source of great interest in the  fi eld 
of cell therapy and regenerative medicine. Both cell populations isolated from 
HAM, hAMSCs and hAECs, show an antigen expression pro fi le characteristic of 
culture-expanded MSCs and differentiation potential into ectodermal, mesodermal, 
and endodermal lineages. hAMSCs, hAECs, and HAM fragments were used in 
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 preclinical studies to treat pancreatic, muscle, vascular, lung, and liver diseases. 
However, more studies are needed to demonstrate the potential effects of either 
amnion-derived cells or amnion allografts in animal models of different diseases in 
the hope of increasing their future clinical applications.      
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