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  Abstract   RNA interference (RNAi) is a process of sequence-speci fi c posttran-
scriptional gene silencing induced by double-strand RNA, and this phenomenon has 
been shown to function in higher organisms including mammals, and methods that 
exploit RNAi mechanisms have been developing. Recently, RNAi induced by short 
interfering siRNAs has been experimentally introduced as a cancer therapy and is 
expected to be developed as a nucleic acid-based medicine. Moreover, RNAi    tech-
nology is used in biomarker-based screening, which is a new screening method 
based on transcriptional pro fi ling to identify the speci fi c transcriptional activities 
altered by the compounds of interest. In this chapter, we brie fl y review the mecha-
nism of RNAi and discuss in detail some of the most recent  fi ndings concerning the 
administration of potential nucleic acid-based drugs. We next discuss several cur-
rent clinical trials of RNAi therapies against cancers. Finally, we introduce a new 
high-throughput screening method based on transcriptional pro fi ling for drug dis-
covery. Current studies and clinical trials demonstrate that RNAi technology could 
establish a novel and promising therapeutic tool against cancers.  
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    13.1   Introduction 

 RNA interference (RNAi) is a process of sequence-speci fi c posttranscriptional gene 
silencing induced by double-strand RNA (dsRNA), and this phenomenon was dis-
covered in  Caenorhabditis elegans  ( C .  elegans )  [  1  ] . RNAi has been shown to func-
tion in higher organisms including mammals, and methods that exploit RNAi 
mechanisms have been developing. Aberrant expression of endogenous normal or 
mutant genes occurs in pathological conditions, resulting in alterations in signal 
pathways, cellular proliferation, and apoptosis. Posttranscriptional gene regulation 
by RNAi controls these alterations positively or negatively, and consequently RNAi 
has now been well established as a method for experimental analyses of gene func-
tion in vitro. Recently, short interfering RNA (siRNA), which induces RNAi, has 
been experimentally introduced as a cancer therapy and is expected to be developed 
as a nucleic acid-based medicine, and several clinical trials of RNAi therapies 
against cancers are ongoing. To develop nuclear medicine against cancers, we have 
two important issues to overcome: one is to select suitable gene targets and another 
is to develop effective drug delivery systems (DDSs). DDSs are divided into two 
categories: viral vector-based carriers and nonviral-based carriers. Although viral 
vectors are the most powerful tools for transfection so far, especially retroviral and 
lentiviral vectors randomly integrate into host cells’ DNA and those might induce 
insertional mutagenesis  [  2–  4  ] . The use of nonviral DDSs including cationic lipo-
somes  [  5,   6  ]  and atelocollagen  [  7,   8  ]  is preferred because it offers greater safety for 
clinical application than does the use of viral DDSs. 

 In addition to the development of a nucleic acid-based medicine, RNAi is put to 
practical use for a high-throughput screening for development of molecular target-
ing agents. The alternation of the related gene transcripts which are investigated 
after the knockdown of the targeted gene transcript by RNAi is compared with that 
of gene transcripts treated by compounds with unknown functions. The compounds 
which demonstrate the resemble alternation are recognized as molecular target 
compounds for the interested gene  [  9–  11  ] . In this chapter, we discuss the applica-
tion of RNAi for the development of medicine against cancers.  

    13.2   Mechanisms of RNAi 

 RNAi processes can be roughly divided into the initiation phase and the effector 
phase. In the initiation phase, following introduction of dsRNA into a target cell, 
dsRNA encounters a dsDNA-speci fi c RNAse III family ribonuclease Dicer. Dicer is 
a modular enzyme and is composed of an N-terminal helicase domain, an RNA-
binding Piwi/Argonaute/Zwille (PAZ) domain, two tandem RNAse III domains, 
and a dsRNA-binding domain  [  12  ] . Dicer acts to produce both siRNAs and microR-
NAs (miRNAs)  [  13–  16  ] . dsRNA is processed into shorter lengths of 21–23 nucle-
otides (nts) dsRNAs, termed siRNAs by the ribonuclease activity of Dicer. dsRNA 
precursors are sequentially processed by the two RNAse III domains of Dicer and 
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cleaved into smaller dsRNAs with 3 ¢  dinucleotide overhangs  [  12  ] . In the biogenesis 
of miRNA, pre-miRNA is also processed into a miRNA duplex (Biogenesis of 
miRNA is discussed below). 

 In the second effector phase, smaller dsRNAs enter into an RNA-induced silenc-
ing complex (RISC) assembly pathway  [  17  ] . RISC is ribonucleoprotein complex 
that contains Argonaute (Ago) proteins, siRNAs or miRNAs, and complementary 
mRNAs. Ago is a family of proteins characterized by the presence of a PAZ domain 
and a PIWI domain  [  18  ] . The PAZ domain of Ago protein is likely to engage siRNA 
or miRNA, and the PIWI domain adopts an RNAse H-like structure that can cata-
lyze the cleavage of the guide strand. The dsRNA is unwound by ATP-dependent 
RNA helicase activity to form two single strands of RNA. dsRNA is unwounded by 
ATP-dependent RNA helicase activity to form two single strands of RNA. The 
guide (antisense) strand directs silencing targeted mRNA, and the other strand is 
called the passenger (sense) strand. Ago2 protein binds the guide strand and cleaves 
its targeted RNA at the phosphodiester bond which is positioned between nucle-
otides 10 and 11. The cleaved products are rapidly degraded because of its unpro-
tected ends, and the passenger strand is also degraded. After dissociation of cleaved 
mRNAs from siRNA, the RISC encounters and cleaves mRNA, resulting in decrease 
of expression of the target gene (Fig.  13.1 ).   

Synthesized siRNA Double-strand RNA

DicerInitiation phase

RISC

Cytoplasm

Effector phase

Target mRNA

Cleavage of
passenger strand

Cleavage of
target mRNA

RISC assembly

RNAi delivery

  Fig. 13.1    Mechanisms of 
RNA interference. 
Synthesized short 
interference RNA ( siRNA ) or 
double-strand (ds) RNA is 
introduced into a target cell. 
The dsRNA is processed into 
siRNA length of 21–23 
nucleotides by Dicer 
(initiation phase). siRNA then 
enters an RNA-induced 
silencing complex ( RISC ) 
assembly pathway. The 
dsRNA unwinds to form two 
single strands of RNA. The 
passenger strand rapidly 
degrades and the guide strand 
binds and cleaves the target 
mRNA, resulting in mRNA 
degradation (effector phase)       
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    13.3   Target Genes for Cancer Therapy 

 The RNAi technology in the clinical setting has relied on localized drug delivery 
 fi rst. This reason is that the localized administration could maintain higher concen-
trations of siRNAs in the targeted diseases. However, thanks to the development of 
DDSs (see Refs.  [  19,   20  ] ), RNAi has recently been evaluated as a therapeutic strat-
egy for cancer treatment. To develop nuclear medicine against cancers, suitable gene 
targets should be selected (Table  13.1 ). The de fi nition of cancers is cell proliferation 
without normal regulation, and one of the most important characteristics of cancers 
is to bereave the host’s life with their malignant behaviors. Such targets include anti-
apoptotic proteins, cell cycle regulators, transcription factors, signal transduction 
proteins, and factors associated with malignant biological behaviors of cancer cells, 
all of these genes are associated with the poor prognosis of cancer patients.  

   Table 13.1    Target genes for experimental RNA interference cancer therapies   

 Target genes  Cancers 

 1. Proliferation/anti-apoptosis 
  BCL-2  Lung cancer, prostate cancer,  fi brosarcoma 
  VEGF  Ewing’s sarcoma, prostate cancer 
  PLK-1  Urinary bladder cancer, lung cancer (liver 

metastasis) 
  Survivin  Glioblastoma, rhabdomyosarcoma 
  CDC25B  Hepatocellular carcinoma 
  EGFR  Glioblastoma 
  Telomerase  Malignant melanoma 
  EZH2  Prostate cancer (bone metastasis) 
  FGF-4  Germinoma 
 2. Signal transduction 
  ERK1/2  Hepatocellular carcinoma 
  STAT3  Colon cancer, prostate cancer, breast cancer 
   b -catenin  Colon cancer, multiple myeloma 
  BCR-ABL  Chronic myelogenous leukemia 
  LYN  Chronic myelogenous leukemia 
 3. Drug resistance 
  MDR1  Colon cancer 
  MRP7/ABCC10  Non-small cell lung cancer 
  RPN2  Breast cancer 
  ABCG10  Gastric cancer 
  FGFR1  Breast cancer 
 4. Metastasis/angiogenesis 
  VEGF/VEGFR  Ewing’s sarcoma, breast cancer, colon cancer, 

prostate cancer 
  u-PA/u-PAR  Squamous carcinoma 
  CCR7  Colon cancer 
  LYN  Ewing’s sarcoma 
  RhoC  Hepatocellular carcinoma 
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 Among such suitable genes, BCL2 protein is one of the anti-apoptotic members 
of BCL family proteins and contributes to resistance to apoptosis against external 
stimuli, including cytotoxic agents. BCL2 participates in tumorigenesis and pro-
gression and its overexpression in tumor cells correlates with the poor prognosis of 
the cancer patients  [  21–  24  ] . Many studies have demonstrated that siRNA treatment 
against BCL2 inhibited the proliferation of tumor cells  [  5,   25–  27  ] . Intravenous 
administration of synthetic BCL2 siRNA, using a cationic or pegylated cationic 
liposome, suppressed tumor progression in a xenograft mouse model, and BCL2 
siRNA treatment signi fi cantly elongated the survival of cancer-bearing mice  [  5,   27  ] . 
Oblimersen sodium is a 18-mer phosphorothioate antisense oligonucleotide 
designed to bind to the  fi rst six codons of the human BCL2 mRNA  [  28  ] . Though 
this nucleic acid medicine is an antisense oligonucleotide, it has been also used in a 
substantial number of clinical trials against several types of cancers  [  29–  33  ] . These 
observations indicate that BCL2 is a suitable target for cancer therapy. 

 Signal transduction molecules are other candidates for RNAi. Member of the 
signal transduces and activator of transcription (STAT) family act as key compo-
nents of cytokine signaling pathways that regulate gene expression. Among STAT 
family, STAT3 is most strongly implicated in carcinogenesis. Its constitutively 
active form is detected in variety of cancers and dysregulates the downstream target 
genes of cell proliferation  [  34  ]  and survival  [  35,   36  ] . RNAi therapy against STAT3 
demonstrates the inhibition of tumor progression as well as invasion  [  37–  40  ] . 

 Bcr-Abl fusion protein, which is created by the molecular consequence of the 
 t (9; 22) translocation, is a constitutively active tyrosine kinase that causes 
Philadelphia (Ph)-positive leukemias  [  41  ] . Imatinib mesylate (IM; Gleevec™, 
Glivec™) was developed as a  fi rst-generation tyrosine kinase inhibitor (TKI), and 
its emergence has dramatically changed the outcomes of therapies against 
Ph-positive leukemia, especially chronic myelogenous leukemia (CML)  [  42–  45  ] . 
Moreover, several second generation TKIs developed to overcome resistance to 
IM have yielded excellent outcomes  [  46–  49  ] . These clinical observations demon-
strated that targeting Bcr-Abl protein is a promising strategy to eliminate Bcr-
Abl-positive leukemic cells. The approach to downregulate the expression of 
Bcr-Abl mRNA by RNAi was investigated in vitro  [  50–  53  ] . Koldehoff et al. 
reported the in vivo administration of synthetic Bcr-Abl siRNA with cationic lipo-
somes in a patient with recurrent Ph-positive CML resistant to IM  [  54  ] . This 
patient had a high level of Bcr-Abl transcripts and subcutaneous nodule, and she 
was treated with 10  m g/kg of Bcr-Abl siRNA intravenously by a bolus injection 
and 300  m g iRNA was directly injected into CML node. The level of Bcr-Abl 
mRNA transcript was drastically decreased; however, no obvious effects were 
observed after the second and third courses. Although this report was not con-
structed as a clinical trial, these observations are worth noting for developing 
nuclear medicine against CML. 

  b -catenin is a downstream protein of the canonical Wnt signaling pathway that 
has been shown to play an important role in the process of development, prolifera-
tion, and differentiation  [  55  ] . In the absence of Wnt signals, adenomatous polyposis 
coli (APC), Axin, glycogen synthase kinase-3 b  (GSK3 b ), and casein kinase 1 a  
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(CK1 a ) form a complex called the “ b -catenin destruction complex.” GSK3 b  and 
CK1 a  target serine/threonine residues at the N terminus of  b -catenin for phospho-
rylation  [  56  ] . Phosphorylated  b -catenin is recognized and polyubiquitinated by 
 b -transducin repeat-containing protein ( b -TrCP), a component of a ubiquitin ligase 
complex, targeting  b -catenin for degradation by the 26S proteasome  [  57,   58  ] . On 
the other hand, the binding of Wnt ligands to Frizzled (Fz) receptors and the low-
density lipoprotein receptor-related protein 5/6 (LRP5/6) co-receptors induces the 
phosphorylation of Disheveled (Dvl) and prevents GSK3 b -dependent phosphoryla-
tion of  b -catenin. Stabilized  b -catenin translocates into the nucleus and interacts 
with T cell factor (TCF)/lymphocyte enhancer factor (LEF). In the absence of 
 b -catenin, TCF/LEF, which interacts with Groucho and histone deacetylase (HDAC), 
acts as a repressor of the transcription  [  59  ] . The  b -catenin/TCF complex regulates 
the transcription of a number of genes associated with cell proliferation and apopto-
sis, as well as the expression of growth factors. Typical  b -catenin/TCF target genes 
that are associated with cell proliferation are c-myc and cyclin D1. The c-myc onco-
gene regulates cell cycle progression and apoptosis. Cyclin D1 activates cyclin-de-
pendent kinases leading to cell cycle progression. Recently, this pathway has been 
focused on as it is involved in cancer development. Aberrant activation of Wnt/ b -
catenin signaling is observed in many human cancers. Genetic mutations of Wnt 
signaling pathway components are primarily responsible for this aberrant activation 
and cause  b -catenin to escape the degradation process and lead to nuclear stabilized 
 b -catenin accumulation  [  60  ] . Treatment of siRNAs against  b -catenin successfully 
suppressed the proliferation of colon cancer cells and myeloma cells by inducing 
caspase-dependent apoptosis  [  61–  63  ] . Thus,  b -catenin represents a suitable target 
for RNAi therapy. 

 Molecules controlling cell division are also useful targets for cancer therapy. 
Polo-like kinases (PLKs) belong to the family of serine/threonine kinases. PLK 
family has identi fi ed PLK-1, PLK-2 (SNK), PLK-3 (FNK), and PLK-4 (SAK) in 
mammalians so far and PLKs function as regulators of both cell cycle progression 
and cellular response to DNA damage. PLK-1 is the best characterized among them 
to date. PLK-1 regulates cell division at several points in the mitotic phase: mitotic 
entry through CDK1 activation, bipolar spindle formation, chromosome alignment, 
segregation of chromosomes, and cytokinesis  [  64  ] . Whereas PLK-1 is scarcely 
detectable in most adult tissues  [  65,   66  ] , PLK-1 is overexpressed in cancerous tis-
sues  [  65  ] , and many reports have described that PLK-1 is overexpressed in cancer-
ous tissues and that PLK-1 expression levels were tightly correlated with histological 
grades of tumors, clinical stages, and prognosis of the patients. 

 Inhibition of PLK-1 activity in cancer cells induces mitotic arrest and tumor cell 
apoptosis. Depletion of PLK-1 mRNA also inhibits the functions of PLK-1 protein 
in DNA damages and spindle formation and causes the inhibition of the cell prolif-
eration in a time- and a dose-dependent manner. PLK-1 siRNA    treatment induces an 
arrest at the G2/M phase in the cell cycle with the increase of CDC2/Cyclin B1 and 
the transfected cells had dumbbell-like and misaligned nuclei. Moreover, the cas-
pase activation was induced in these cells  [  6,   67,   68  ] . These observations indicate 
that PLK-1 could be an excellent target for cancer therapy. 
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 Other candidate siRNA targets are molecules that de fi ne the malignant behavior 
of cancerous cells. The vascular endothelial growth factor (VEGF)/VEGF receptor 
(VEGFR) axis plays an important role in angio- and lymphangiogenesis. VEGF 
family has seven members. Among them, VEGF-A stimulates angiogenesis in 
tumor masses, enhances the permeability of the blood vessels, and promotes the 
motility of cancer cells, which results in metastases  [  69,   70  ] . The previous investi-
gations reveal that VEGF-A depletion successfully prevents metastasis of cancers 
 [  71,   72  ] . In contrast to VEGF-A, VEGF-C and VEGF-D are associated with tumor 
lymphangiogenesis and lymph node metastasis. Depletion of VEGF-C/D inhibits 
metastasis of cancers  [  73,   74  ] . Another example of the molecule associated with 
metastasis is the urokinase-type plasminogen activator (u-PA). u-PA binds to u-PA 
receptor (u-PAR), and this molecule activates plasminogen and matrix metallopro-
teases, which enhances the degradation of basement membranes and extracellular 
matrices and promotes metastases  [  75,   76  ] . Data using a mouse model demonstrated 
that the administration of u-PAR inhibited metastasis and progression of oral 
squamous cell carcinoma  [  77  ] . These molecules associated with metastasis will also 
be attractive targets of RNAi therapy.  

    13.4   microRNAs 

 microRNAs (miRNAs), as the name suggests, are very short RNAs consisted of 21 
nts. Those short RNAs regulate target gene expression through translation repres-
sion or mRNA degradation, and consequently miRNAs involve diverse biological 
processes in eukaryocytes. miRNAs are derived from stem-loop-structured primary 
miRNAs (pri-miRNAs) by the cleavage activity of Drocha, a nuclear-localized 
member of the RNAse III family, to yield short precursor miRNAs called pre-miR-
NAs. Pre-miRNAs comprising 70–90 nts exhibit a hairpin structure with a 5 ¢ -
phosphate and a 3 ¢ -2 nts overhang. After translocation from the nucleus to the 
cytoplasm by Exprtin-5 pre-miRNAs are processed by Dicer into miRNAs of 21 
nts. miRNAs as well as siRNAs enter into RISC assembly pathway. Unlike siRNAs, 
the mature miRNAs often have a partially complementary sequence to the target 
mRNAs, and a single miRNA might bind to numerous target genes. Therefore, 
a single miRNA has diverse functions including proliferation, differentiation, and 
apoptosis  [  78  ] . 

 One of the mechanisms of carcinogenesis is the imbalance of oncogenes and 
tumor suppressor genes caused by several factors including carcinogen. miRNAs 
affect gene expression by regulating the translation of mRNAs into proteins. In 
many cancers, some kinds of miRNAs negatively regulate tumor suppressor. miRs-
15/16 are downregulated in chronic lymphocytic leukemia (CLL). miR-15a and 
mir16-2 recognize target sites on the 3 ¢ UTR of BCL-2, an anti-apoptotic oncogene 
 [  79  ] . These miRNAs regulate BCL-2 expression in normal cells. However, these 
are deleted in patients with CLL. On the contrary, other kinds of miRNAs regulate 
carcinogenesis and tumor progression. Mir-17-92 cluster is overexpressed in lung 
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cancer tissues  [  80  ]  and its target genes are PTEN and RB2  [  81  ] . These observations 
indicate that the overexpression of this miR-17-93 cluster induces the carcinogen-
esis in lung tissues. Anti-miRNA oligonucleotides (AMOs) can suppress the miRNA 
activity  [  82  ] , and recently MAOs are developed as nucleic acid medicines  [  83–  86  ] . 
miRNAs regulating anti-apoptosis and cell proliferation are also suitable target 
molecules against cancers.  

    13.5   Preclinical Application of RNAi 

 Before the clinical trials for RNAi therapy, preclinical studies are performed. We 
introduce two applications of PLK-1 siRNA for cancer therapy. One application is 
an intravesical treatment against urinary bladder cancers. PLK-1 protein is overex-
pressed in urinary bladder tumors, and moreover PLK-1 expression levels are cor-
related with histological grades of tumors, clinical stages, and prognosis of the 
patients  [  6  ] . Super fi cial urinary bladder cancers are approximately 70 % of urinary 
bladder cancers at initial diagnosis. After resected transurethrally, Bacillus Calmette-
Guerin (BCG), mitomycin C, and Adriamycin are administered intravesically to 
prevent the recurrence of or diminish the residual cancers  [  87  ] . However, half of 
super fi cial cancers recur, and consequently novel intravesical treatment should be 
developed. Clinical trials of RNAi therapy often rely on localized drug delivery 
because maintenance of higher siRNAs concentrations is necessary for ef fi cacy 
against the targeted diseases. The urinary bladder which is closed to the urethra is 
considered as a “putative” in vitro space. In accordance with the unique idea, the 
ef fi cacy of intravesical therapy of PLK-1 siRNA against urinary bladder cancers 
was investigated. Bladder cancer-bearing mice were established by the implantation 
of luciferase (Luc)-labeled UM-UC-3 bladder cancer cells into the murine bladder 
cavity through the urethra. After the engraftment of cancer cells in the bladder was 
evaluated by using the in vivo imaging system (IVIS) of bioluminescence imaging 
(BLI)  [  88  ] , cancer-bearing mice were treated with PLK-1 siRNA/cationic liposome 
complexes. Tumor progression was signi fi cantly suppressed by the intravesical 
treatment of PLK-1 siRNA  [  6  ] . 

 Another application is a systemic administration of siRNAs against liver meta-
static tumors of lung cancers. Distant metastasis is one of the life-threatening fac-
tors in lung cancer patients. Despite the development of new molecular targeting 
agents  [  89,   90  ] , current therapies are not suf fi cient to cure or manage the patients 
with distant metastasis  [  91,   92  ] . Therefore, novel therapies should be developed. 
Kawata et al. investigated the effects of PLK-1 siRNA on the liver metastasis of 
lung cancers in an orthotopic liver metastatic mouse model. Spleens were exposed 
to allow direct intrasplenic injections of Luc-labeled A549 non-small cell lung can-
cer cells. After the removal of spleens, the Luc-labeled A549 cell engraftment was 
con fi rmed by using IVIS, and then PLK-1 siRNA/atelocollagen complexes were 
administered by intravenous injection for 10 days. On day 35, mice treated with 
PLK-1 siRNA/atelocollagen complex showed the signi fi cant suppression of tumor 
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growth compared to mice treated with nonsense siRNA/atelocollagen complex or 
PBS/atelocollagen complex which showed extensive metastases in the livers. These 
 fi ndings indicate that PLK-1 siRNA/atelocollagen complex is an attractive thera-
peutic tool for further development as a treatment against liver metastasis of lung 
cancer  [  8  ] .  

    13.6   Adverse Effects of RNAi 

 Although RNAi shows excellent speci fi city in gene silencing, several adverse effects 
are brought in in vivo application. One probable adverse effect is activation of immune 
reaction. Mammalian immune cells express family of Toll-like receptors (TLRs), 
which play an essential role in innate immune responses. TLRs recognize microbial 
ligands including bacterial lipopolysaccharide, lipopeptides, or viral and bacterial 
RNA and DNA. Among 13 TLRs, TLR7 and TLR8 recognize ssRNA sequence-
dependently and produce interferons (IFNs) and in fl ammatory cytokines such as 
IL-12 and TNF- a  through the activation of NF- k B and IFN regulatory factor (IRF)-7. 
For this immune response   , the length of single-strand RNA (ssRNA) is important and 
16–19 nt ssRNA induces IFN production although 12 nt ssRNAs contains the immu-
nostimulatory motif (GUCCUUAA)  [  93  ] . The administration of siRNAs into mam-
malian cells activates the immune systems also sequence-independently. siRNAs 
induce dsRNA-activated protein kinase (PKR) autophosphorylation and PKR pro-
duces IFNs through the activation of NK- k B and IRF-3. TLR3 recognizes unmethy-
lated CpG DNA but not ssRNA. dsRNA directly binds to TLR3 and this signaling 
pathway is activated sequence-independently  [  94  ] . Interestingly,    although the recep-
tors recognizing a ssRNA containing a CpG motif and a 6 nt poly-(G) run at the 3 ¢  end 
are still unknown, a ssRNA activates monocytes  [  95  ] . TLR 9, which expresses in 
endosomes, recognizes CpG oligodeoxynucleotides (ODNs). Puri fi ed recombinant 
TLR 9 binds CpG ODNs directly in a sequence- and pH-dependent manner  [  96  ] . 
Thus, the activation of immune response by siRNAs is dependent on their sequence 
and chemical nature, implying that chemical modi fi cations of siRNAs might prevent 
the immune activation. The 2 ¢  position of nucleotides is within TLR-7-interacting 
sequences and 2 ¢  O-methyl or 2 ¢   fl uoro modi fi cation abrogate immune response. 
Furthermore, the uridine or guanosine modi fi cation is most effective  [  97  ] . Locked 
nucleic acid modi fi cations of the 3 ¢  of 5 ¢  termini of the sense strand of siRNAs can 
reduce the immunostimulatory effects  [  93  ] . siRNAs conjugated to cholesterol have no 
signi fi cant activation of immune system and improve the distribution of siRNA to the 
targeted organ including the liver. Systemic administration of cholesterol-conjugated 
apolipoprotein B siRNAs induces a decrease of apolipoprotein B expression in liver 
and jejunum of mice, resulting in a decrease in cholesterol levels without the activa-
tion of immune systems  [  98  ] . 

 Besides perfect complementarity of siRNAs in target RNA sequence, partially 
complementary sequences in unintended RNAs induce gene silencing (off-target 
effect). This effect is induced by the sequence complementarity in the seed region 
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of siRNAs or short-hairpin RNAs (shRNAs)  [  99  ] . Moreover, the 7 nt motif comple-
mentary to 2–8 nt at the 5 ¢  end of antisense strands of siRNAs has been shown to be 
a key determinant in directing off-target effects  [  100  ] . There are several ways to 
control the off-target effects. The in silico screening of siRNA constructs are useful 
for optimization to prevent the off-target effects, and several groups have been 
developing algorithm  [  101,   102  ] . Chemical modi fi cation is also useful. For exam-
ple, the O-methyl modi fi cation of the 2 ¢ -position of the ribose within the seed region 
of siRNAs reduces the off-target effect  [  103  ] . Asymmetrically designed siRNAs 
reduce off-target effects compared to symmetric siRNAs. Sun et al. designed asym-
metric RNA duplexes of various lengths with overhangs at the 3 ¢  and 5 ¢  ends of the 
antisense strand to target genes. All siRNAs against target genes were designed to 
match the same 19 nt sequence. The asymmetric siRNAs effectively induced gene 
silencing of targeted genes without silencing of nontargeted genes  [  104  ] . 

 shRNAs can also induce stable gene silencing. Consequently, it is possible that 
long-term silencing by shRAN overexpression causes fatal adverse effects. Because 
shRNA is processed through the miRNA pathway, the miRNA maturation is blocked 
in response to shRNA concentration. Grimm et al. demonstrated that the sustained 
high-level shRNA expression in the liver of mice by AAV vector downregulated 
liver-derived miRNAs, resulting in hepatic injury and death. Morbidity was associ-
ated with the downregulation of liver-derived miRNAs  [  105  ] . They speculated that 
saturation of Exportin-5 whose function is nuclear transport inhibited the miRNA 
maturation pathway. On the contrary, Constein et al. demonstrated that the adminis-
tration of synthesized siRNAs induced acute and long-term gene silencing without 
interrupting the endogenous miRNA biogenesis  [  106  ] . As mentioned by Grimm 
et al.  [  105  ] , higher expression of shRNAs by viral vector might in fl uence the miRNA 
biogenesis. Considering these  fi ndings, careful modi fi cation and formulation of 
siRNAs could avoid the competition between siRNA and miRNA.  

    13.7   Clinical Trials of RNAi Towards Cancer Therapies 

 siRNA cancer therapies have been conducted in clinical settings, but few clinical 
trials for cancer therapy are ongoing (Table  13.2 ). Alnylam Pharmaceuticals is 
developing ALN-VSP01 targeting kinase spindle protein and VEGF, and conduct-
ing a Phase I study in patients with advanced tumors with liver involvement. Calando 
Pharmaceuticals is conducting a Phase I study of CALAA-01 in patients with solid 
tumors refractory to standard-of-care therapies. CALAA-01 is composed of RRM2 
siRNA and CDP nanoparticles called Rondel™, and CALAA-01 has been proven 
safe and effective in mice and nonhuman primates’ studies. Clinical studies using 
LNAs are also ongoing. Santaris Pharma has developed LNA against Bcl-2, 
SPC2996, for use in an ongoing Phase I/II study in patients with relapsed or refrac-
tory chronic lymphocytic leukemia is ongoing. Enzon Pharmaceuticals has devel-
oped a LNA against hypoxia-inducible factor-1 a  and a Phase I/II study in patients 
with advanced solid tumors or lymphoma is ongoing. National Cancer Institute and 



29713 RNA Interference for Oncology: Clinical Prospects Beyond the Hype

   Ta
bl

e 
13

.2
  

  C
lin

ic
al

 tr
ia

ls
 o

f 
R

N
A

i t
ow

ar
ds

 c
an

ce
r 

th
er

ap
ie

s   

 Sp
on

so
r 

 si
R

N
A

 
 Ta

rg
et

 g
en

es
 

 D
is

ea
se

 
 R

oo
t 

 Ph
as

e 
 Y

ea
r 

 Sa
nt

ar
is

 
 SP

C
29

96
 a   

 B
cl

-2
 

 C
hr

on
ic

 ly
m

ph
oc

yt
ic

 le
uk

em
ia

 
 i.v

. 
 Ph

as
e 

I/
II

 
 20

05
 

 Sa
nt

ar
is

&
E

nz
on

 
 E

N
Z

-2
96

8 a   
 H

IF
-1

 a
  

 M
et

as
ta

tic
 li

ve
r 

tu
m

or
s 

 i.v
. 

 Ph
as

e 
I/

II
 

 20
07

 
 C

al
an

do
 

 C
A

L
L

A
-0

1 
 R

R
M

2 
 R

el
ap

se
d 

or
 r

ef
ra

ct
or

y 
so

lid
 c

an
ce

rs
 

 i.v
. 

 Ph
as

e 
I 

 20
08

 
 A

ln
yl

am
 

 A
L

N
-V

SP
01

 
 K

SP
 +

 V
E

G
F 

 M
et

as
ta

tic
 li

ve
r 

tu
m

or
s 

 i.v
. 

 Ph
as

e 
I 

 20
09

 
 Si

le
nc

e 
 A

tu
02

7 
 PK

N
-3

 
 A

dv
an

ce
d 

so
lid

 c
an

ce
rs

 
 i.v

. 
 Ph

as
e 

I 
 20

09
 

 T
he

ra
pe

ut
ic

s 
 Si

le
ns

ee
d 

 si
G

12
D

 L
O

D
E

R
 

 K
R

A
S b   

 L
oc

al
ly

 a
dv

an
ce

d 
ad

en
oc

ar
ci

no
m

a 
of

 p
an

cr
ea

s 
 L

oc
al

 c   
 Ph

as
e 

0 
 20

10
 

 N
at

io
na

l C
an

ce
r 

In
st

itu
te

 
 T

K
M

08
03

01
 

 PL
K

-1
 

 M
et

as
ta

tic
 li

ve
r 

tu
m

or
s 

 i.v
. 

 Ph
as

e 
I 

 20
12

 
 Te

km
ir

a 
Ph

ar
m

ac
eu

tic
al

s 
 T

K
M

08
03

01
 

 PL
K

-1
 

 So
lid

 tu
m

or
s 

or
 ly

m
ph

om
as

 
 i.v

. 
 Ph

as
e 

I 
 20

12
 

   H
IF

-1
 a   

hy
po

xi
a-

in
du

ci
bl

e 
fa

ct
or

-1
  a

 , 
 R

R
M

2  
ri

bo
nu

cl
eo

tid
e 

re
du

ct
as

e 
M

2 
su

bu
ni

t, 
 K

SP
  k

in
as

e 
sp

in
dl

e 
pr

ot
ei

n,
  P

K
N

-3
  p

ro
te

in
 k

in
as

e 
N

3,
  P

L
K

-1
  p

ol
o-

lik
e 

ki
na

se
 1

 
  a  E

N
Z

-2
96

8 
is

 L
N

A
 (

lo
ck

ed
 n

uc
le

ic
 a

ci
d)

, K
R

A
S    

  b  K
R

A
S 

w
ith

 G
12

D
 m

ut
at

io
n 

  c  s
iR

N
A

 is
 a

dm
in

is
te

re
d 

us
in

g 
an

 e
nd

os
co

pi
c 

ul
tr

as
ou

nd
 b

io
ps

y 
ne

ed
le

  



298 E. Ashihara and T. Maekawa

Tekmira Pharmaceuticals are conducting clinical trials on PLK-1 RNA interference 
against solid tumor or lymphoma. As clinical trials of cancer therapies have just 
started, their outcomes are expected.   

    13.8   Biomarker-Based Screening 

 RNA interference technology is also used in the  fi eld of drug discovery. The bio-
marker-based screening is a new high-throughput screening method based on tran-
scriptional pro fi ling and identi fi es the speci fi c transcriptional activities altered by 
the compounds of interest. PGX Health, A division of Clinical Data Inc. (formerly 
Avalon Pharmaceuticals, MD, USA) assessed the transcriptional response of a colon 
cancer cell line to treatment with  b -catenin siRNA using full-genome microarray 
analysis  [  9  ] . Nine biomarkers were selected for their potential as indicators for can-
cer therapy. A library of 90,000 individual compounds was screened to identify 
compounds that showed a similar expression pattern to the siRNA (Fig.  13.2 ). 
Finally, the compound LC-363 was detected based on its ability to mimic the effect 
of  b -catenin knockdown. The effect of AV-65, one of LC-363 compound series, on 
MM cells and CML cells was investigated. AV-65 inhibited the proliferation of MM 

4

2
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–2

–4

Add siRNA against
target gene

Define signatures with full-
genome microarray analysis

Validate the expression
pattern signatures

Analyze expression pattern
treated with siRNA

4

Add small molecule
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Identify hit compounds with
similar expression pattern

Screen expression pattern
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  Fig. 13.2    Biomarker-based screening using RNA interference. This assay proceeds in two steps: 
the  fi rst step consists of setting up the signature of siRNA against target gene. The second step 
involves screening for compounds with the similar expression patterns. Consequently, hit com-
pounds that inhibit the downstream signal of the target gene       
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and CML cells by promoting the degradation of  b -catenin and inhibiting  b -catenin/
TCF transcriptional activity. AV-65 decreased the expression of c-myc, cyclin D1, 
and survivin, which resulted in the inhibition of tumor cell proliferation through the 
apoptotic pathway  [  10,   11  ] . Moreover, AV-65 treatment prolonged the survival of 
orthotopic MM-bearing mice  [  11  ] . A clinical study with this compound series in 
solid and hematopoietic malignancies will be carried out in the future.   

    13.9   Conclusion 

 RNAi therapy against cancers has just started and the outcomes are expected. 
However, it should be warranted to establish the pharmacokinetics and pharma-
codynamics of siRNAs on the administration for the potential approval of siRNA 
as a tool for cancer therapy. Moreover, to maximize ef fi cacy and to minimize 
adverse effects of RNAi, it should be determined whether siRNAs are best 
administered alone or in combination with chemotherapeutic agents  [  107  ] , and 
whether it is better to administer a single speci fi c siRNA or multiple speci fi c 
siRNAs  [  108–  110  ] . 

 In conclusion, RNAi therapy represents a powerful strategy against cancers and 
may offer a novel and attractive therapeutic option. The success of RNAi depends 
on the suitable selection of target genes. Besides developing nucleic acid-based 
medicine, RNAi technology is applied into the  fi eld of drug discovery. We antici-
pate that RNAi technology could establish a novel and promising therapeutic tool 
against cancers.      
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