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         INTRODUCTION 

 Androgens exert strong anabolic effects on skeletal muscle protein synthesis  (  1,   2  ) , 
satellite cell number  (  3  ) , and skeletal muscle growth  (  4,   5  ) . Because these changes are 
of great importance to muscle strength, androgens have been recognized as important 
hormones that in fl uence sports performance  (  6  ) . Exercise-induced changes in testoster-
one concentrations can moderate or support neuromuscular performance through vari-
ous short-term mechanisms (e.g. second messengers, lipid/protein pathways, neuronal 
activity, behaviour, cognition, motor-system function, muscle properties, and energy 
metabolism)  (  7  ) . 

 On the other hand, the gonadal axis function is strongly affected by physical exer-
cise depending on the intensity and duration of the activity, the  fi tness level, and the 
nutritional-metabolic status of the individual  (  8,   9  ) . Moreover, circulating testosterone 
and its bioavailable fractions are affected by weight and age. They are also changed by 
different kinds of stress which may appear as physical stress (i.e. endurance training, 
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sleep deprivation in extreme sports, changes of air pressure in altitude training) or 
 mental stress in relation to sport events and training  (  9  ) . 

 In this chapter, the effects of physical exercise on testicular steroidogenesis and on 
spermatogenesis will be revised.  

   PHYSIOLOGY OF THE MALE GONADAL AXIS 

 The male gonadal axis consists of the testes and the hypothalamus–pituitary unit that 
controls their function. The testes posses a dual function, i.e. the production of andro-
gens and of sperm. 

 Figure  1  depicts an outline of the male gonadal axis and of the hormonal regulation 
of the testicular function.  

 The pituitary gland is the central structure controlling gonadal function: it releases 
the gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 
and is regulated by the hypothalamic gonadotropin-releasing hormone (GnRH), 
which is secreted in a pulsatile fashion with peaks every 90–120 min. In man, the 
major hormone controlling GnRH secretion is testosterone, which inhibits gonado-
tropin secretion via negative feedback both at the hypothalamic and pituitary level. 
Dihydrotestosterone (DHT) and estradiol also modulate gonadotropin secretion act-
ing at the hypothalamic and/or pituitary level  (  10,   11  ) . In addition, several neuro-
transmitters and neuromodulators might in fl uence GnRH secretion: the noradrenergic 
system and neuropeptide Y (NPY) show stimulatory activity, whereas interleukin-1, 
opioid peptides, dopamine, serotonine, and gamma-aminobutyric acid (GABA) are 
inhibitory. Leptin, which is produced by the fat cells, has been shown to stimulate 
GnRH and gonadotropin secretions  (  11  ) . Ghrelin, a peptide hormone with growth 
hormone-releasing action, exerts multiple endocrine and non-endocrine effects 
including inhibition of the gonadal axis at both the central and peripheral level 
 (  12,   13  ) . Furthermore, the adverse effect of stress on reproductive function is well 
known. Several factors are involved: corticotropin-releasing hormone (CRH) inhibits 
GnRH secretion, prolactin further reduces the GnRH pulse rate  (  10  ) , and cortisol 
inhibits both the hypothalamus–pituitary and gonadal functions. 

 LH and FSH are produced and secreted by the gonadotropic cells of the anterior 
pituitary. LH regulates testicular androgenesis whereas FSH, together with locally pro-
duced testosterone, is responsible for spermatogenesis. LH binds to speci fi c receptors 
on the surface of Leydig cells in the testis and regulates the biosynthesis of testosterone. 
FSH binds to receptors on the Sertoli cells and promotes spermatogenesis: in addition 
to a number of other proteins, the hormones inhibin B and activins are formed in the 
Sertoli cells under the in fl uence of FSH. Inhibin B plays an important role in the feed-
back regulation of FSH secretion, whereas the physiological role of activins has not 
been conclusively clari fi ed  (  10  ) . 

 Testosterone is the most important steroid produced by the testis and is responsible 
for the development and maintenance of male sex characteristics as well as a number of 
other anabolic and metabolic effects (e.g. muscle and bone metabolism). Normal testo-
sterone concentrations in adult males range between 12 and 30 nmol/L: testosterone 
concentrations in blood follow a circadian rhythm with higher levels in the morning 
hours and about 25% lower levels in the evening  (  11  ) .  
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   EFFECTS OF PHYSICAL EXERCISE ON TESTICULAR 
STEROIDOGENESIS 

   Short, Intense Exercise Increases Circulating Testosterone 
 The effects of physical activity on the male gonadal axis vary with the intensity and 

duration of the activity, the  fi tness level of the individual, and his nutritional-metabolic 
status. Relatively short, intense exercise usually increases while more prolonged exercise 
usually decreases serum testosterone levels  (  8,   9,   14  ) . Increased serum testosterone levels 
have been reported during relatively strenuous free and treadmill running, weight training, 
rock climbing, and ergometer cycling  (  15–  17  ) . Short-term sprints can be seen as strength 
outburst and are comparable to strength training rather than endurance training: sprint 
exercise increased plasma testosterone concentrations in adolescent boys  (  18  ) . 

 The testosterone response increases with increased exercise load  (  19  ) . Similar workloads 
produce similar responses, regardless of whether the load is aerobic or anaerobic  (  20  ) . 

  Fig. 1.    Schematic diagram of the male gonadal axis.  CRH  corticotropin releasing hormone;  DA  
dopamine;  DHT  dihydrotestosterone;  FSH  follicle-stimulating hormone;  GABA  gamma-aminobutyric 
acid;  GnRH  gonadotropin-releasing hormone;  IL-1  interleukin-1;  LH  luteinizing hormone;  NE  nore-
pinephrine;  NPY  neuropeptide Y;  PRL  prolactin;  ROS  reactive oxygen species.       
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 Immediate and 5 min post-exercise measurements showed an increase in testosterone 
levels both in men and women  (  21  ) . Acute exercise-induced testosterone increments are 
also seen in older men  (  22  ) . This acute hormone response was con fi rmed and described 
to be markedly stronger in young men compared to old in a study involving ten men 
with mean age 26.5 years and ten men with mean age 70.0 years  (  23  ) . 

 As muscle mass increases with strength training  (  4  )  and is correlated with testoster-
one levels, it could be expected that the testosterone response to acute exercise is 
higher in persons constantly involved in strength training. Consistently, a 6-month 
sprint training programme increased plasma testosterone concentrations in response to 
sprint exercise in adolescent boys  (  18  ) . Experienced weight lifters compared to begin-
ners showed similar basal levels of testosterone but were able to evoke a stronger tes-
tosterone response during exercise  (  15  ) . Contrary to these  fi ndings, a long-term 
training period of 12 weeks involving younger (mean 23 years) and older men (mean 
63 years) showed no signi fi cant changes concerning testosterone levels before or 
immediately after exercise  (  24  ) . 

 Ronnestad et al.  (  25  )  have recently investigated the effects of testosterone and 
growth hormone (GH) transient increase during exercise, indicating that performing 
leg exercises prior to arm exercises, thereby increasing the levels of testosterone 
and GH, induced superior strength training adaptations compared to arm training 
without acute elevation of hormones. It has been found that acute elevation in 
endogenous testosterone (by strength training) potentiates the androgen receptor 
(AR) response to a strength training session compared to no acute elevation of 
endogenous testosterone  (  26  ) . It may thus be speculated that the results by 
Ronnestad et al. are due to an increased AR expression and, through an improved 
testosterone-receptor interaction, an increased protein synthesis, leading to superior 
strength training adaptations. This hypothesis has also been evaluated by Ahtiainen 
et al.  (  27  ) , who have described a correlation of individual pre- to post-training 
changes in resting AR protein concentration with the changes in cross-sectional 
area of muscle  fi bres in a combined group of young and elderly subjects who per-
formed heavy resistance exercise bouts before and after a training period. Overall, 
these  fi ndings suggested that the individual changes of AR protein concentration in 
skeletal muscle following resistance training may have an impact on training-induced 
muscular adaptations.  

   Mechanisms Underlying Increases in Circulating Testosterone 
Following Short, Intense Exercise 

 No conclusive evidence about gonadotropin response to an acute exercise bout is 
available. In fact, LH and FSH levels have been reported to be increased, decreased, or 
unchanged by short-term strenuous exercise  (  28–  31  ) . 

 The exercise-associated increment in circulating testosterone is considered not to be 
mediated by LH, due to the inconsistent LH response and to the evidence that testoster-
one levels increase more quickly than LH in response to exercise. Possible mechanisms 
such as hemoconcentration, reduced clearance and/or increased testosterone synthesis 
may be involved  (  29,   31–  33  ) . However, the timing of testosterone response differs from 
that of other circulating steroids (e.g. androstenedione and dehydroepiandrosterone 
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increase simultaneously with cortisol) thus suggesting that speci fi c testicular mechanisms 
are involved  (  31  ) . These mechanisms may include the activation of the sympathetic 
system, which stimulates testicular testosterone production during exercise via a direct 
neural pathway in some species  (  34  ) . Catecholamine levels also increase signi fi cantly 
during exercise. Beta-adrenergic blockade inhibits testosterone responses to exercise, 
whereas l-dopa, phentolamine, and clonidine had no effect  (  35  ) . An anticipatory eleva-
tion in resting testosterone levels has also been described pre-exercise and seems to be 
independent of hepatic perfusion or hemoconcentration  (  28,   31  ) . Ultimately, the exact 
mechanisms involved in increasing testosterone concentrations in speci fi c exercise pro-
tocols are yet to be de fi ned.  

   Prolonged, Submaximal Exercise and Chronic Exercise Training 
Decrease Circulating Testosterone 

 In contrast to the short-term testosterone increment during and immediately after 
short, intense exercise, a suppression of serum testosterone levels occurs during and 
subsequent to prolonged exercise, in the hours following intense exercise, as well as 
during chronic exercise training. 

 During the last decades, an increasing number of investigative research studies have 
pointed to how chronic exposure to endurance exercise training can result in the devel-
opment of a dysfunction within the reproductive components of the neuroendocrine 
system. The majority of these studies have concentrated upon women. However, the 
effects of endurance exercise training on the male reproductive neuroendocrine system 
have been investigated beginning in the 1980s  (  36  ) . Most studies observed athletes dur-
ing training and competition, giving the impression of generally lowered androgen 
levels, but lack the comparison with a control group  (  9  ) . 

 A controlled study examining the effects of endurance training on the hypothala-
mus–pituitary–testis axis in males involved 53 men undergoing endurance training for 
at least 5 years and a control group of 35 age-matched, sedentary men. Baseline serum 
testosterone levels of the exercising men were signi fi cantly lower than in the control 
group. Differences in gonadotropins were not seen. Normal regulation would require 
LH levels to rise with falling testosterone levels, as these have a positive feedback on 
pituitary gonadotropin release. A suppression in the regulatory axis could explain this 
 fi nding  (  37  ) . 

 Contrary to these observations, basal testosterone levels in trained weight lifters were 
not altered, nor did an increase in the daily training volume change these levels  (  38  ) . 
Similarly, basal testosterone, free testosterone, bioavailable testosterone, and sex 
hormone-binding globulin concentrations were not signi fi cantly different in high 
top-class athletes (sprinters and jumpers) vs. untrained subjects  (  17  ) . 

 Endurance training can be seen as a factor of exposure not only to physical but also 
to psychological stress. It has been demonstrated in a controlled study that the reactivity 
patterns of mental/psychological and physical stress response of the hypothalamus–
pituitary–adrenal axis are the same in a speci fi c individual. Differential reactivity is 
rather seen between the so-called high and low responders. Each group has a speci fi c 
endocrine reactivity pattern concerning the hypothalamus–pituitary–adrenal axis  (  39  ) . 
It seems that the decrease of testosterone levels under the stressful situations of endurance 
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sport is not suf fi ciently answered by the pituitary. There is no adequate rise in LH levels, 
which seem to be unaltered or even show a tendency to decrease with the growing 
amount of stress impact. Nevertheless, age-dependent effects seem to exist in this 
regard, and the ratio of androgen to estradiol is shifted by physical activity to a more 
favourable pattern (higher androgen and lower estradiol levels) in older men compared 
to younger men performing regular mild physical activity  (  40  ) .  

   The “Exercise-Hypogonadal Male”: Clinical Issues 
 It has recently been demonstrated that among subjects engaged in chronic exercise 

training, a selected group of men develop alterations in their reproductive hormonal 
pro fi le, i.e. persistently low basal resting testosterone concentrations  (  41  ) . In particular, 
the majority of these men exhibit clinically “normal” testosterone concentrations, but 
these concentrations are at the low end of normal range or even reach subclinical status. 

 The health consequences of such hormonal changes are increased risk of abnormal 
spermatogenesis, male infertility problems, and compromised bone mineralisation 
 (  41–  43  ) . The prevalence of such health problems seems low, but investigative studies 
examining this condition and its consequences are few in number  (  41,   42  ) . The speci fi c 
terminology used to refer to this condition has not been universally agreed upon. In 
2005, Hackney and associates proposed the use of “the Exercise-Hypogonadal Male” as 
a label for this condition  (  44  ) .  

   The “Exercise-Hypogonadal Male”: Pathophysiological Mechanisms 
 Exercise-hypogonadal men frequently display a lack of signi fi cant elevation in basal 

LH in correspondence with the reduced testosterone concentration, re fl ecting hypogo-
nadotropic-hypogonadism characteristics  (  36,   41,   45  ) . These LH abnormalities may 
involve disparities in luteinizing pulsatility (i.e. pulse frequency and amplitude), 
although evidence for altered LH pulsatile release is con fl icting  (  46,   47  ) . Moreover, 
gonadotropin response to GnRH has been reported both reduced and increased follow-
ing prolonged, exhaustive exercise  (  48,   49  ) . 

 Exercise-hypogonadal men have been shown to have altered basal prolactin  (  41  ) . At 
either excessively low or high circulating levels, PRL can result in suppression of tes-
tosterone levels in men  (  50  ) . It has been speculated that the absence of prolactin at the 
testicle alters the effectiveness of LH to stimulate testosterone production. This theory 
is based upon the proposed synergistic effects of prolactin upon testicular LH receptors 
 (  36  ) . However, not all investigators reporting low resting testosterone in endurance-
trained men have reported the concomitant existence of low resting prolactin levels  (  50  ) . 
Some investigations have looked at a potential relationship between high prolactin lev-
els and low testosterone, speculating that any “stressful” situation might provoke dis-
proportionate prolactin responses in exercise-hypogonadal men, and this ultimately 
promotes a reproductive axis disruption  (  51  ) . 

 Leptin is an adipocyte-released hormone associated in part with communicating to 
the hypothalamus satiety and energy reserves status  (  52  ) . It is also linked to reproduc-
tive function both in women and in men. Acute and chronic exercise can impact upon 
resting leptin concentrations, independent of changes in body adiposity  (  53  ) . However, 
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to date no research studies have examined whether leptin concentrations are altered in 
exercise-hypogonadal men. 

 Ghrelin is another hormone associated with appetite regulation. Newly emerging 
experimental evidence in animals and in humans suggests that ghrelin may function as 
a metabolic modulator of the gonadal axis, with predominant inhibitory effects in line 
with its role as signal of energy de fi cit  (  12,   13  ) . Acute and chronic exercise has been 
shown to in fl uence ghrelin concentration levels  (  54  ) . However, no research has yet 
examined whether ghrelin levels in exercise-hypogonadal men are normal. 

 Other research investigations have focused on alterations in testicular ability to pro-
duce and secrete testosterone and to respond to exogenous stimuli (i.e. LH or hCG). 
Whereas animal studies have demonstrated that exercise training compromises testicu-
lar enzymatic activity  (  55  ) , data in exercise-hypogonadal men are contradictory. In fact, 
some investigations suggest testicular steroidogenesis is normal, while some indicate it 
is marginally impaired when challenged with exogenous stimuli  (  41  ) . 

 Another potential disruptive hormone to the gonadal axis is cortisol. Studies in a 
wide range of sports (e.g. cycling, marathon running, football, handball, rugby, tennis, 
swimming, and wrestling) have almost all shown increased cortisol concentrations dur-
ing exercise  (  56,   57  ) . Cortisol secretion increases in response to exercise intensity and 
duration, as well as to the training level of subjects  (  58–  61  ) , at least in part to mobilize 
energy stores. An inhibitory effect of the hypothalamus–pituitary–adrenal axis on the 
reproductive system has been demonstrated in both sexes  (  62,   63  ) . In fact, glucocorti-
coids suppress gonadal axis function at the hypothalamic–pituitary level  (  62  ) . Moreover, 
Inder et al.  (  64  )  have demonstrated that dexamethasone administration in humans 
reduces circulating testosterone and downregulates the muscular expression of the AR. 
Finally, CRH and its receptors have been identi fi ed in the Leydig cells of the testis, 
where CRH exerts inhibitory actions on testosterone biosynthesis  (  65  ) . 

 Interestingly, a sport event and also training for such represent both a physical and a 
mental stress  (  9  ) . The release of cortisol by activation of the hypothalamic–pituitary–
adrenal axis as reaction to mental stress is well documented  (  39,   66  ) . Stress responses 
by the hypothalamic–pituitary–gonadal axis are constantly found as well. 

 Along this line, anticipatory stress was measured in 50 males before a one-day 
experimental stress event (participation in stressful clinical research protocol). Cortisol 
levels rose signi fi cantly, while both testosterone and LH secretion were decreased  (  67  ) . 
Psychological stress markers as measured by scales for anxiety, hostility, and depres-
sion were correlated with serum levels of testosterone in a group of males aged 30–55 
years. Those classi fi ed as highly stressed had signi fi cantly lower testosterone levels 
than their counterparts  (  68  ) . A cross-sectional study involving 439 males all aged 
51 years showed those with low levels of testosterone (adjusted for body mass index) 
to exhibit a cluster of psychosocial stress indicators  (  69  ) . Nevertheless, other hormonal 
pro fi le studies reporting the existence of low testosterone in trained men did not show 
elevated resting cortisol levels  (  36,   70,   71  ) . However, resting cortisol levels do not 
necessarily re fl ect a hyperactivity of the hypothalamus–pituitary–adrenal axis, which 
can be better de fi ned either by serial blood or salivary sampling  (  72  )  or by assay of 
urinary free cortisol. 

 Thus, at this time the role of cortisol to the changes found in the gonadal axis of 
trained men is in need of further study.   
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   EFFECTS OF PHYSICAL EXERCISE ON SPERMATOGENESIS 

 Clinical expression of impaired reproductive function in men engaged in chronic 
exercise training seems uncommon  (  42,   47,   73  ) . However, chronic physical exercise 
may induce a state of oligospermia, a reduction of the total number of motile sperm and 
an increase in abnormal or immature spermatozoa. 

 Vaamonde et al.  (  74  )  have analysed the semen pro fi les of three male populations with 
different types and levels of physical activity (physically active non-professional sub-
jects, water polo players, and triathletes) and found that sperm concentration, velocity, 
and morphology were signi fi cantly different among the practitioners of the three differ-
ent training modalities. The differences were more marked as intensity and volume of 
exercise increased, especially for morphology which was the parameter showing the 
greatest difference  (  74  ) . 

 Safarinejad et al.  (  49  )  performed a longitudinal study on the effects of intensive, 
long-term treadmill running on reproductive hormones and semen quality. A total of 286 
subjects were randomly assigned to moderate-intensity exercise (~60% VO 

2 max
 ) and 

high-intensity exercise (~80% VO 
2 max

 ) groups. The two groups exercised for 60 weeks 
in  fi ve sessions per week. This was followed by a 36-week low-intensity exercise recov-
ery period. After 24 weeks of exercise, the subjects exercising with high intensity dem-
onstrated signi fi cantly declined semen parameters (sperm density, motility, and 
morphology) compared with those exercising with moderate intensity. At 36 and 48 
weeks, these differences were more signi fi cant. A signi fi cant correlation was found 
between high-intensity exercise, its duration, and sperm count, as well as mean sperm 
motility and sperm morphology. Serum testosterone and free testosterone began to 
decrease, and serum SHBG began to increase at the end of 12 weeks with both moder-
ate- and high-intensity exercises. Both semen and hormone parameters improved to 
their pre-exercise level during the recovery period  (  49  ) . 

 In a recent study, Wise et al.  (  75  )  have examined the association between regular 
physical activity and semen quality in a large cohort of 2,261 men attending an infer-
tility clinic. They found that none of the semen parameters (semen volume, sperm 
concentration, sperm motility, sperm morphology, and total motile sperm) were mate-
rially associated with regular exercise. However, in the subgroup of men who reported 
bicycling as their primary form of exercise, bicycling at levels of >5 h/week was 
associated with low sperm concentration and total motile sperm. These  fi ndings gen-
erally agree with earlier studies that have shown deleterious effects of bicycling on 
semen parameters among competitive cyclists  (  73,   76  ) . It remains unclear as to 
whether the changes associated with bicycling are due to mechanical trauma (i.e. 
caused by compression of scrotum on the bicycle saddle), to a prolonged increase 
in core scrotal temperature (i.e. related to exercise itself or wearing of constrictive 
clothing), or some other factors  (  77  ) . 

   Oxidative Stress as a Putative Mechanism Underlying Impaired 
Spermatogenesis in Exercise-Hypogonadal Men 

 Several mechanisms have been reported to affect the male reproductive function in 
exercising subjects. Alterations in the hormonal milieu, as discussed in the previous para-
graph, may well play a role, since qualitatively and quantitatively normal spermatogenesis 
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is critically dependent on an intact hypothalamus–pituitary–testis axis. On the other hand, 
it has been reported that endurance exercise is associated with oxidative stress  (  78  ) . 
During endurance exercise, there is a 10- to 20-fold increase in whole-body oxygen (O 

2
 ) 

consumption, and O 
2
  uptake in the active skeletal muscle increases 100- to 200-fold  (  79  ) . 

This increase in O 
2
  utilization may result in the production of reactive oxygen species 

(ROS) at the rates that exceed the body’s capacity to detoxify them  (  80  ) . An increase in 
the formation of ROS decreases fertility, as the ROS will attack the membranes of the 
spermatozoa, decreasing their viability  (  81  ) . However, some studies have suggested that 
exercise training enhances antioxidant capacity  (  82,   83  ) . Indeed, the machinery eliminat-
ing ROS adapts after regular exercise and actually lowers the amount of ROS that is 
produced, especially in the major organs (muscles) of oxygen consumption and ROS 
production. Exercise training tends to decrease ROS also in body  fl uids, although no data 
concerning seminal  fl uid seem to be available. 

 Regardless of the exercise protocol studied, increases in DNA damage in peripheral 
human white cells have been reported, generating the consensus that exercise does 
indeed induce DNA damage  (  84  ) . After an exercise bout, DNA damage persists for up 
to 7 days  (  85  ) . The presence of high ROS levels has been reported in the semen of 
between 25 and 40% of infertile men  (  86  ) . This is because ROS, at high levels, are 
potentially toxic to sperm quality and function  (  87  ) . Therefore, persistent ROS forma-
tion during continuous strenuous exercise might be harmful for normal spermatogenesis. 
However, the participation of other maybe unknown factors affecting sperm quality 
seems plausible  (  49  ) .       
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