
385

          23.1   Introduction 

 The staphylococci are Gram-positive cocci that normally live on the skin and 
mucous membranes of mammals and birds. There are over 30 species described, but 
the major pathogen is  Staphylococcus aureus . There is rarely reason to type the 
other species of staphylococci, so this chapter will focus primarily on  S. aureus  and 
brie fl y discuss other species at the end. 

  S. aureus  is carried in the nares of the nose in about a quarter of the healthy human 
population. It can also be found in the throat, axillae, groin, and intestinal tract.  S. aureus  
can also survive on skin for short periods and can survive desiccation on inanimate sur-
faces for months. It does not normally penetrate skin on its own, but if delivered into a 
breach of the skin such as wound or catheter site, it is capable of causing minor through 
to fatal infections. Patients who are already immunocompromised, elderly, and diabetic 
are at higher risk of infection.  S. aureus  can seed to other tissues and therefore cause 
bacteraemia, pneumonia, abscess, arthritis, osteomyelitis, endocarditis, meningitis, con-
junctivitis, etc. In hospitals, antibiotic-resistant strains, notably MRSA, are more preva-
lent. New strains of MRSA are increasingly found in the community (CA-MRSA) that 
cause invasive skin infection in young and healthy populations  [  1  ] .  

    23.2   Why Type? 

  S. aureus  strains are typed for two main reasons. Firstly, at the local level, to identify 
clones that have unique pathogenic or epidemiological characteristics. Identi fi cation 
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of these isolates can help to predict disease prognosis and optimise management, as 
well as identify epidemiological patterns and strain spread in a local environment. 
An example is the rapid identi fi cation of typical USA300 CA-MRSA clones that 
cause unique types of infection in some geographical areas and may require differ-
ent patient management  [  2  ] . Local typing can also be useful for the identi fi cation of 
the scale and scope of a local outbreak, its likely source, and behaviours that con-
tribute to spread, so that infection control strategies can be targeted to prevent fur-
ther disease. An example may be the investigation of an outbreak of an epidemic 
MRSA in a hospital intensive care unit, where typing can help identify which 
patients were part of the outbreak, con fi rmation of likely sources of the outbreak, 
and supporting evidence that the outbreak has been stopped  [  3,   4  ] . 

 The second reason to type is usually performed by a national or international 
reference laboratory, investigating large-scale evolution and spread of clonal types 
over large geographical areas and time. These studies are particularly useful if addi-
tional data, such as antibiotic resistance, disease, and patient details, are also col-
lected as it can help identify shifts in key pathogenic behaviour. Examples include 
the emergence and spread of new epidemic MRSA clones, their spread across 
national borders or from unique sources such as livestock (LA-MRSA), the associa-
tion of PVL toxin with necrotic pneumonia, and TSST-1 toxin with toxic shock 
syndrome  [  5–  9  ] . This greater understanding of how  S. aureus  cause disease, evolve, 
and spread contributes to preventative strategies, such as screening or optimised 
antibiotic prescribing, and may also contribute to future diagnostics and thera-
peutics. 

 Historically, phenotypic methods were used to type  S. aureus , most notably 
phage typing. Molecular methods became common from the mid- to late-1990s, 
particularly pulsed- fi eld gel electrophoresis (PFGE), although these methods rely 
on the generation of band patterns that can be dif fi cult to reproduce. More recently, 
typing methods have been dominated by sequence-based analysis, including MLST 
and spa typing, which are easy to compare between laboratories internationally. 
At the time of writing, there are new technologies and discoveries being made that 
are likely to have a major impact on  S. aureus  typing in the near future, including 
the introduction of methods that identify multiple clone-speci fi c genes, perhaps as 
early as during diagnosis. 

 Each method has advantages and disadvantages, which will be discussed, and are 
brie fl y summarised in Table  23.1 . The ideal typing method is discriminatory enough 
to identify isolates that are truly different, but not liable to suggesting isolates are 
different due to minor genome instabilities. The data generated should be accurate 
and reproducible and available in a format that is easily compared between remote 
laboratories. It should be inexpensive so that enough strains can be typed to draw 
useful conclusions without having to justify cost. Similarly, it should use equipment 
that is inexpensive or can be rented for a reasonable fee. The test should be simple 
to perform so as to reduce human errors and to ensure that the widest number of 
users have access to the method. Rapid tests are useful for investigating outbreaks, 
where only timely results can in fl uence outbreak management—this depends not only 
on the speed of test but also on logistics of transporting specimens and reporting 
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results, and this is more likely if the test is simple enough to perform in-house rather 
than at specialist reference laboratories. The method you choose will depend on 
why you wish to type the isolates, as well as logistical factors such as cost, speed, 
and skill involved.  

 To interpret the data generated by  S. aureus  typing methods, it is essential to 
understand how  S. aureus  genomes vary, how  S. aureus  populations are structured, 
how they are evolving, and how stable genomes are. This has become possible in the 
last few years because of whole genome sequencing projects, large epidemiological 
studies with molecular typing methods, and whole genome comparative studies 
with multi-strain microarrays.  

    23.3   How Do  S. aureus  Isolates and Their Genomes Vary? 

  S. aureus  populations are continually evolving in response to antibiotics, various 
hosts, and immune attack.  S. aureus  isolates can be grouped into dominant lineages 
and some minor lineages. In humans, approximately 10 lineages predominate; they 
are clonal complexes (CC1, CC5, CC8, CC12, CC15, CC22, CC25, CC30, CC45, 
and CC51  [  10  ] ). Each lineage is very different from the others and is evolving inde-
pendently. Each lineage has a unique and stable combination of hundreds of genes, 
notably the genes encoding surface proteins  [  11  ] . 

 Within each lineage, minor variations in the core genome can occur. Single-
nucleotide polymorphisms (SNPs) can occur, and this is the basis of MLST typing 
into ST rather than CC/lineage groups (see below). One whole genome sequencing 
study has estimated that in hospitals SNPs may occur on average once every 6 weeks 

   Table 23.1    Simpli fi ed comparison of the advantages of each  S. aureus  typing method   

 Detect 
lineage  Detect MGE 

 Simple to 
perform  Reproducible  Low cost 

 Low-cost 
equipment  Rapid 

 MLST a   +++  −  ++  +++  +  ++  + 
 Spa typing a   +++  −  ++  +++  ++  ++  + 
 Microarray 

(whole 
genome) 

 +++  +++  −  +++  −  −  − 

 Mini-microarray  +++  ++  ++  +++  ++  +  + 
 RM test  ++  −  +++  +++  +++  +++  ++ 
 PFGE  +  +  −  +  +  +  − 
 Phage  +  +  ++  −  +++  +++  ++ 
  SCCmec  PCR  −  +  ++  +++  +++  +++  ++ 
 Antibiotic 

resistance 
 −  ++  +++  ++  +++  +++  ++ 

 Toxin PCR  −  ++  ++  ++  +++  +++  ++ 

  +++ an important advantage, ++ competitive, + acceptable, − disadvantage 
  a If MLST or spa typing is to be used for hundreds of strains, the cost per test can be lowered by 
purchasing or renting your own sequencer  
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 [  12  ] . Other studies in patients have identi fi ed dozens of SNPs developing in the 
infecting isolate during the course of chronic infection; often they are selected 
because they enhance resistance to antibiotic therapy  [  13,   14  ] . 

 The second major way that  S. aureus  strains vary is their carriage of MGEs. MGEs 
include bacteriophage,  S. aureus  pathogenicity islands (SaPI), plasmids, transpo-
sons, and staphylococcal cassette chromosomes (SCCs). These elements often 
encode important toxins, virulence factors, and antibiotic resistance genes  [  15  ] . 
Based on sequencing and microarray studies, most strains carry between 3 and 12 
MGEs. MGEs are highly variable, each being composed of a mosaic of gene frag-
ments found in other MGEs, but they can be grouped into families based on their 
major replicative machinery  [  16  ] . Each MGE has unique properties, but many are 
highly unstable and move into and out of bacteria at extremely high frequency  [  17, 
  18  ] . MGE movement can also be documented during the course of infection within 
a single patient  [  19–  21  ] . Examples of the genes found on bacteriophage and SaPI are 
toxic shock syndrome toxin, enterotoxins A, B, C, K, and Q, chemotaxis inhibitory 
protein, staphylokinase, staphylococcal complement inhibitor, exfoliative toxins, and 
Panton–Valentine leukocidin (PVL)  [  15  ] . Plasmids and transposons can carry genes 
encoding resistance to antibiotics such as tetracyclines, aminoglycosides, macrolides, 
fusidic acid, mupirocin,  b -lactams, and, more recently, glycopeptides  [  22  ] . 

 The SSC element that encodes the mecA gene for resistance to  b -lactamase-
resistant b-lactams (such as methicillin) is an exception. Although it is mobile, it is 
transferred inef fi ciently and is generally stably integrated into the  orfX  gene. There 
are several types that are widespread, and the acquisition of each  SCCmec  type has 
been used as evidence of independent evolution of particular MRSA clones  [  23  ] . 

 Since the  S. aureus  genome varies in distinct ways, it is very important to con-
sider whether the typing method you wish to use can actually detect the variation 
you should be looking for and therefore that you are interpreting the results cor-
rectly. In fact, most typing methods are best at proving two isolates are unrelated. 
Proving two isolates are identical or closely related is impossible without whole 
genome sequencing and testing the stability of any changes, which is obviously not 
feasible for routine typing. Therefore, compromises must be made when choosing a 
method. Knowing your local  S. aureus  epidemiology can help enormously to iden-
tify which is the most suitable method.  

    23.4   Global Epidemiology 

 In humans, about 10 lineages of MSSA predominate, and all carriage strains seem 
capable of causing disease  [  15  ] . Increasingly, studies from outside of the UK sug-
gest that there are geographical differences in the predominant  S. aureus  lineages 
 [  24–  28  ] . Animals can also be carriers of  S. aureus  and can be infected. Companion 
animals such as dogs and cats are often affected by human lineages  [  29  ] , while cows 
and other ruminants, and pigs have their own lineages, and chickens carry a variant 
of the CC5 lineage  [  30–  32  ]  .  
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 The biggest epidemiological shift in the last 50 years has been the acquisition of 
methicillin resistance due to the mecA gene carried on  SCCmec  elements  [  1  ] . 
 SCCmec  have moved into the lineages CC5, CC8, CC22, CC30, and CC45 and 
become successful in hospitals  [  23  ] . An interesting study of CC5 MRSA in Germany 
proved that the  SCCmec  element was moving into local CC5 MSSA isolates gener-
ating multiple new clones  [  33  ] , although this may not be true for other lineages. 
There is a marked geographical difference in the distribution of lineages in different 
geographical areas, and in most hospitals, only one or two clones dominate  [  8,   34  ] . 
Some countries have reported shifts in the dominant lineages over time  [  35–  37  ] . 

 CA-MRSA emerged outside of hospitals and predominantly in the lineages CC1 
and CC8. However, some less common lineages have acquired both the  SCCmec IV 
and PVL toxin on a bacteriophage and spread rapidly, including ST80 and ST59 
 [  38  ] . More recently, an MRSA clone associated with pig farming has emerged to 
cause infection in humans (CC398)  [  39  ] . 

 The important message here is that there is substantial variation in  S. aureus  and 
MRSA types depending on geography, clinical setting, and time. It is therefore vital 
to understand your local epidemiology before choosing a method for typing and 
interpreting your results. For example, the major MRSA clones in UK hospitals are 
CC22 (MRSA-15) and CC30 (ST36, MRSA-16). When investigating an outbreak 
of MRSA in a UK hospital, a typing method that detects only lineage is not going 
to be very useful on its own, and methods that target MGEs (or SNPs) are also 
required.  

    23.5   Typing Methods 

  S. aureus  typing methods are now all molecular and based on DNA sequence varia-
tion. They usually rely on the generation of a pure culture of  S. aureus  as the  fi rst 
step. In the clinical setting, this usually means that a specimen is plated onto a pri-
mary plate and then a single colony is chosen and plated again onto a fresh agar 
plate or is grown in broth. These two steps usually take 1 day each. The pure culture 
then has its DNA extracted—a relatively simple and rapid method suitable for PCR 
steps (see MLST) or the commercially available automated magnetic bead methods 
(e.g. MagNA Pure)  [  40  ] . Alternatively, if good-quality DNA is required for microar-
rays or if the DNA is to be stored, then Qiagen columns or the Edge system is rec-
ommended  [  19,   34  ] . In the clinical lab, if a rapid MRSA detection system using 
PCR is used (such as BD GeneOhm MRSA or Cephaid Xpert™ MRSA)  [  41  ] , then 
the DNA extracted may be suitable—however, this DNA is not necessarily from a 
single bacterial isolate that can complicate data interpretation. Many typing meth-
ods rely on PCR to generate bands for sizing on agarose gels or for subsequent 
sequencing, and most standard methods are suitable. A step-by-step example is pro-
vided in Lindsay and Sung  [  42  ] . 

 Ideally, typing methods should identify both lineage and carriage of a range of 
MGE. Most methods listed below achieve only one of these, and so they may be 
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used combined with another method. Microarrays and whole genome sequencing 
have the potential to do both, but microarrays have only recently been developed for 
routine typing and are still improving. Note that for local typing of an MRSA out-
break, such as in the hospital setting, there may be only one or two dominant clones 
of MRSA in the hospital, so a lineage method alone will not be suf fi cient to dis-
criminate between variants. 

    23.5.1   Detection of Lineages 

 Lineage detection uses methods that target variation in the relatively stable genes 
that are conserved within lineages but vary signi fi cantly between lineages. MLST is 
the gold standard, but spa typing is almost as useful and uses only one-seventh of 
the sequencing reactions and is therefore easier and cheaper to perform. A simple 
PCR test has also been developed, and microarrays are also useful. 

    23.5.1.1   Multi-Locus Sequence Typing 

 MLST involves the PCR ampli fi cation and sequencing of seven “housekeeping” 
genes; these genes are found in all isolates, and the sequences are relatively con-
served because these genes are involved in basic metabolism. However, point muta-
tions and minor variations are found, and they correspond closely with lineage. For 
typing, the sequence of each gene is compared using a Web database (  www.mlst.
net    ), and each sequence variant has a unique number assigned  [  43  ] . Each strain is 
then de fi ned by a series of seven numbers, which is then assigned a sequence type 
(ST) number. There are thousands of strains that have been sequence typed. If two 
isolates share at least  fi ve out of seven numbers, they are assigned to the same clonal 
complex (CC), and CC is essentially the same as lineage. This can be visualised 
using free software called eBURST  [  44  ] . 

 MLST is an excellent method for assigning lineage. The signi fi cance of ST types 
within a lineage/CC is less clear. There are some cases where an ST type correlates 
strongly with a unique phenotype, such as the ST36 variant of CC30, which is 
unique to epidemic MRSA strains found in the UK that have spread to other parts 
of Europe and around the world  [  23  ] . In other cases, ST variants within a lineage do 
not seem to represent true evolutionary branches  [  11  ] . Possibly, this is because a 
single point mutation is suf fi cient to generate a different “ST type”, which is not 
truly a new evolutionary branch, or because isolates within a lineage frequently 
exchange DNA  [  45  ] . 

 MLST uses pure DNA, seven PCR reactions, and sequencing of each PCR prod-
uct in both directions  [  43  ] . PCR is simple and cheap. If you are only typing a small 
number of strains and do not have your own sequencer, the sequencing reactions are 
outsourced and rapidly become expensive. Alternatively, if large numbers of strains 
are routinely MLST typed, a sequencing machine can be purchased or hired, and 

http://www.mlst.net
http://www.mlst.net
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bulk reagents used so the cost per strain is modest. The data are reproducible, but 
can be severely affected by sequencing errors leading to incorrect ST assignment, 
although lineage assignment would remain correct. The data are in a format that is 
easily reported and comparable with other laboratories. MLST is widely used by 
research laboratories and reference laboratories as the gold standard when publish-
ing epidemiological data.  

    23.5.1.2   spa Typing 

 The  spa  gene encodes protein A, a protein anchored to the cell wall that binds non-
speci fi cally to the F 

c
  portion of antibodies, and is found in all isolates of  S. aureus . 

The “X” region in the C terminal end of the  spa  gene varies according to lineage, 
and isolates from different lineages have different amino acid combinations in mul-
tiple repeat patterns  [  46–  48  ] . Speci fi cally, most strains have an X region of between 
2 and 18 different short sequence repeat regions (SSRRs), and each SSRR is around 
24 bp each. For typing purposes, each unique SSRR sequence has been assigned an 
“r” number, e.g. r01, r02. Each  S. aureus  isolate is assigned a series of 2–18 “r” 
numbers in order, and then this de fi nes the  spa  type number  [  48  ] .  spa  type numbers 
are reported in the format “t001,” “t002”, etc., and several thousands have been 
described so far. The  spa  typing method requires pure DNA, PCR ampli fi cation of 
a region of the  spa  gene, sequencing of the region in both directions, and compari-
son of the sequence to a public database, which contains all the SSRR type numbers 
and  spa  type numbers (  www.spaserver.ridom.de    )  [  48  ] . Software called BURP can 
be used to show the relatedness of each  spa  type  [  49  ] . 

  spa  typing is a reliable way to assign lineage. When assigning a  spa  type to a 
lineage, the matching MLST CC- or ST-type numbers are used, and for practical 
purposes tables of matching  spa  and MLST types are available (  www.spaserver.
ridom.de    ). Isolates of the same lineage have related  spa  types; for example,  spa  
types of t001, t002, t003, and t010 all belong to lineage CC5 and have similar 
sequences of SSRR “r” numbers, varying only in minor deletions of an SSRR, 
duplications of an SSRR, or point mutations causing a change in an SSRR “r” num-
ber.  spa  type variation between isolates within the same lineage can be used for 
typing purposes, especially when investigating outbreaks. However, it cannot be 
assumed that two isolates within the same lineage with slightly different SSRR “r” 
numbers are epidemiologically unrelated. The stability of the  spa  region during 
outbreaks is relatively unknown, and  spa  variants do not always match variants 
identi fi ed using MLST  [  50,   51  ]  or whole genome sequencing  [  52  ] . However, there 
are examples where lineage variants correlate well with epidemiological spread, 
suggesting there are occasions when variations of the gene are stable. Therefore, 
care should be taken when interpreting lineage “variants” to ensure that they are 
only considered signi fi cant when backed up with robust epidemiological data. 

  spa  typing is reproducible  [  8  ] , although sequencing errors are possible. The 
results are easily compared between laboratories using standard  spa  type numbers 
from the database. The cost of PCR is inexpensive, the equipment required is widely 

http://www.spaserver.ridom.de
http://www.spaserver.ridom.de
http://www.spaserver.ridom.de
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available and inexpensive, and the reaction takes only a few hours. The equipment 
for sequencing is not standard, and as for MLST, if a lot of strains are to be typed, a 
sequencer should be purchased. Alternatively, for those typing a small number of 
isolates, commercial companies will sequence puri fi ed PCR products for a modest 
fee, and the results will be available within a week. Technically, this is not a dif fi cult 
test, and only some experience interpreting the  spa  types is necessary. 

  spa  typing is rapidly becoming the typing method of choice for reference and 
research laboratories as it is cheaper and simpler than MLST, equally discrimina-
tory, reproducible, and easily reportable  [  51,   53  ] . Although  spa  typing relies on only 
one gene, which may be unstable, MLST typing also relies on variation in one of 
seven genes to assign a unique ST.  Spa  typing is most valuable when combined with 
other methods, especially those that can detect MGE variation  [  50,   51  ] .  

    23.5.1.3   Microarray 

 Microarrays are solid supports (usually glass slides) with different DNA spots 
printed or synthesised onto the support in known order. Microarrays can carry only 
a few hundred spots or up to hundreds of thousands. They are used to interrogate 
complex mixtures of nucleic acid, including DNA from a pure culture for typing 
purposes. The bacterial DNA is labelled and hybridised to the slide so that unwound 
DNA strands with complementary base pairs will bind speci fi cally to their matching 
spots, such that only those DNA spots representing genes found in the bacterial 
DNA will become labelled. The slide is then scanned to see which spots are labelled 
and the data analysed and compared to control strains and known populations. There 
are an in fi nite variety of microarrays depending on the number and types of DNA 
spots on the array, the solid support, labelling system, controls for the spots, hybridi-
sation conditions, detection system, and data analysis methods  [  54  ] . For this reason, 
only microarrays that have been thoroughly validated for typing purposes using 
well-characterised (sequenced) strains of  S. aureus  should be used. For this discus-
sion, there are two main types of microarrays to consider—comprehensive multi-
strain  S. aureus  microarrays and those speci fi cally designed for  S. aureus  typing. 

 Comprehensive multi-strain microarrays are excellent for assigning strains to 
lineage based on the presence or absence of hundreds of lineage-de fi ning genes, 
such as surface proteins, regulators, hsdS variants, and exotoxins  [  11,   55  ] . In addi-
tion, they are an excellent method for identifying the presence and absence of a 
wide variety of MGE (see below). However, such microarrays are relatively expen-
sive—arrays have to be purchased or printed, and the expense of labelling methods, 
especially the Cy dyes, restrict this technology to the research environment. Scanners 
are modestly expensive and so is software for analysing data. Microarray data are 
reproducible and take 1–2 days, but are very technically demanding, particularly to 
interpret the data. A large volume of data is generated so it is dif fi cult to report, 
although it can be simpli fi ed to lineage and presence or absence of major toxins and 
resistance genes. For publication purposes, data should be MIAME compliant and 
deposited in a public database, which is a substantial amount of work  [  4,   56–  60  ] . 
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Such microarrays are invaluable for asking important epidemiological and biological 
questions about evolution, pathogenicity, host interactions, and the role of key genes 
in infection. 

 Several microarrays speci fi cally designed for  S. aureus  typing have been devel-
oped  [  61–  70  ] . A   t present, only one of them is designed speci fi cally to identify 
lineage directly  [  71  ] , but this should require only minor modi fi cations to other 
microarrays, such as incorporating hsdS probes  [  34  ] . These microarrays currently 
focus on the presence or absence of putative virulence genes although the typing 
signi fi cance of these genes is often not clear. Companies also make it possible to 
design your own microarray to your own speci fi cations, and this should be consid-
ered by reference laboratories who specialise in discriminating between  S. aureus  
types in their local area. This is feasible now that so many  S. aureus  isolates have 
been fully sequenced  [  72  ] . Speci fi c equipment for scanning microarrays and soft-
ware for interpreting data are necessary, but these can be used for bacteria other than 
 S. aureus . The cost of individual microarrays or “strips” of microarrays is low com-
pared to other typing methods. The technique requires some expertise particularly 
in interpreting the data.  S. aureus  typing microarrays have the potential to be highly 
reproducible and reportable. There is likely to be a rapid improvement in technol-
ogy and usefulness of these types of tests in the near future.  

    23.5.1.4   Restriction–Modi fi cation Test 

 The restriction–modi fi cation (RM) test is a simple PCR test to identify variants of 
the hsdS gene, which de fi ne the major MRSA lineages. All  S. aureus  isolates 
carry a type I restriction modi fi cation system called Sau1, and this consists of  fi ve 
genes, hsdR (restriction), two hsdM (modi fi cation), and two hsdS (speci fi city) 
 [  45  ] . RM systems identify foreign DNA at speci fi c sequences, digest the DNA, 
and protect the host bacterium from bacteriophage. To protect the bacterium’s 
own DNA, the same speci fi c sequences are recognised and modi fi ed.  S. aureus  
isolates belonging to the same lineage have the same hsdS sequences, but isolates 
from different lineages have different hsdS sequences. This means that DNA from 
different lineages is recognised as foreign and therefore exchanged between 
strains at lower frequency than within the same lineage. This controls the inde-
pendent evolution of lineages and the spread of MGE  [  45,   73  ] . The test involves 
isolating DNA, up to three multiplex PCR reactions, which are separated on a 
standard agarose gel, and assigning a lineage based on a very simple test for band 
presence or absence. 

 The RM test is currently designed only to identify the major MRSA lineages, 
CC1, CC5, CC8/ST239, CC22, CC30, and CC45  [  34,   73  ] . CC8 and ST239 can be 
distinguished by capsule-type PCR ( [  19  ] , Cock fi eld and Lindsay unpublished) or by 
a PCR test based on the junction of the large recombination of a CC8 and CC30 
strain that leads to the emergence of ST239  [  74  ] . A new RM test that identi fi es 
ST398, the prevalent livestock-associated MRSA, has recently been validated  [  75  ] . 
The RM test will be expanded to include more lineages in the future. 
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 RM typing is designed to be simple, rapid, and inexpensive. The results are 
reproducible and easily reported. It is particularly useful for typing very large num-
bers of isolates for epidemiological studies and can be easily automated or scaled 
up. It is a relatively new test, but its use is becoming more popular.  

    23.5.1.5   Pulsed-Field Gel Electrophoresis 

 PFGE was developed in the mid-1990s and was the  fi rst useful molecular test for 
typing  S. aureus . It became popular with typing laboratories all over the world and 
is still widely used. PFGE patterns in experienced hands can provide useful infor-
mation about dominant clones. PFGE cannot be used to de fi ne a lineage, but can 
provide clues if your local epidemiology is known, as well as some information 
about MGE distribution. 

 PFGE involves extraction of pure DNA using a speci fi c process that catches the 
DNA in a plug of agarose, digestion of the DNA with SmaI, a site-speci fi c restric-
tion enzyme that cuts the  S. aureus  genome infrequently, and separation of the DNA 
fragments on an agarose gel in a specialised gel apparatus that applies electrical 
current in two or three directions in changing pulses and allows separation of much 
larger fragments than standard agarose gels. The gel is then stained, and the pattern 
of bands is photographed and compared using digital software. 

 PFGE identi fi es “patterns” of DNA fragments based on their size but does not 
identify what any of the fragments are. The insertion or deletion of an MGE is 
suf fi cient to cause a change to a PFGE band pro fi le. For example, if a strain picks 
up a bacteriophage that integrates into the chromosome, and the phage contains two 
copies of the SmaI recognition site, the pattern will have two bands that differ in 
size and one extra band. Alternatively, a point mutation in a SmaI site can lead to 
changes in band size or number. In practice, it is acknowledged that during an out-
break situation, strains that vary in up to four bands are probably related  [  76  ] , so 
interpretation of data is complicated. PFGE does not actually identify lineage and 
bene fi ts from being combined with a method that determines lineage accurately 
 [  51  ] . However, in highly experience hands and when the local epidemiology is 
known, standard pattern types can be recognised as belonging to major clones, 
which in turn belong to known lineages. For example, the CDC in Atlanta uses 
PFGE to identify about 10 dominant clonal types of MRSA in the USA  [  77  ] . In the 
local typing situation (see below), where only one or two MRSA clones dominate, 
small variations in patterns can be useful. However, care should be taken to interpret 
the data, since relatively minor acquisition or loss of MGE can lead to signi fi cant 
band variation, yet this can occur in a single patient during the course of infection 
 [  20  ] . Furthermore, unrelated strains can have quite similar PFGE pro fi les  [  59  ] . 

 PFGE requires investment in speci fi c equipment, including a CHEF electropho-
resis system, data documentation system, and software for comparing pro fi les. The 
reagents for each test are then modestly priced. However, the major drawback to 
PFGE is that the band patterns are dif fi cult to reproduce unless the user is highly 
experienced. Therefore, standard protocols that carefully de fi ne every component 
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reagent and step have been developed in order to ensure that the data are reproducible 
and comparable between laboratories  [  78  ] . In cases where two strains from different 
gels are being compared, it may be necessary to run a further gel to compare them 
to each other. The patterns are not easily described without pictures and therefore 
it is dif fi cult to compare results from different laboratories. The method itself is 
relatively labour intensive compared to other typing methods.  

    23.5.1.6   Other Methods 

 Prior to genetic tests such as PFGE, the major  S. aureus  typing method was bacte-
riophage typing  [  79  ] . Phage typing has not been formally compared to the newest 
typing methods, but it clearly provides clues to lineage and phage distribution with-
out de fi ning either. A set of bacteriophage, each grown on a speci fi c  S. aureus  host 
strain, was spotted onto the strain to be tested and the pattern of phage lysis versus 
non-lysis to each phage used to discriminate between strains. Strains were typically 
classi fi ed into three or four major groups with the “international” typing set, and 
these groups probably correlate well with lineage, although this method cannot be 
used to de fi ne the lineage. In addition, signi fi cant variation within each group is 
seen, and this is probably correlated with the presence or absence of other bacterio-
phage in the host strain’s genome that prevent lysis with a related phage. There is 
still a lot that is not understood about how phage patterns are generated. 

 Phage typing is very inexpensive, rapid (overnight), and simple to perform and 
interpret. Only a few laboratories in the world still use phage typing and keep sets 
of phage. It is interesting that many modern MRSA are poorly lysed by the old 
phage sets  [  80,   81  ] , making them less useful today. 

 Several other typing methods have been developed that have potential to rapidly 
and inexpensively identify lineage. Multiple locus variable tandem repeat analysis 
or variable number tandem repeats involves PCR of several surface protein genes 
that are then digested with restriction enzymes and the band sizes compared as 
patterns. It can detect lineages without de fi ning them, but the correlation is not 
exact and comparing patterns between laboratories is dif fi cult  [  82–  84  ] . A similar 
method, staphylococcal interspersed repeat units, involves the sequencing of 
seven repeat regions scattered throughout the  S. aureus  chromosome. It is a useful 
method of separating strains of different lineage, but is not widely used and 
there are no support tools to assign lineages  [  85  ] . Ampli fi ed fragment length 
polymorphism involves the use of random primers to PCR random fragments of 
DNA and the patterns generated are compared. Although useful for rapid screen-
ing of large populations, it can identify only some of the lineages reliably  [  86  ] . 
A rapid version of MLST using mass spectrometry to detect variants has also been 
developed  [  87  ] . 

 Other PCR tests are sometimes reported. The accessory gene regulator (agr) is 
the major regulator of toxin production in vitro, and there are four different types 
that can be discriminated by PCR: I, II, III, and IV  [  88  ] . However, their distribution 
correlates exactly with lineage  [  11  ] , so the method is less sensitive than other 
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 lineage-typing methods. Similarly, capsule type also correlates exactly with lineage 
 [  11,   89  ] , and there are only two types: 5 and 8.   

    23.5.2   Detection of MGE 

    23.5.2.1    SCCmec  

  SCCmec  typing is very popular as the  SCCmec  element is generally stable, and 
combined with a lineage detection method, it is useful for the identi fi cation of well-
known epidemic MRSA types  [  23  ] . There are eight major types of  SCCmec , types 
I–VIII, although new types and variants are increasingly being described. Within 
each type, there is variation, suggesting recombination and movement of elements 
such as transposons and plasmids embedded into the  SCCmec  element. Note that 
SCC elements without  mecA  genes exist, but are rare in methicillin-susceptible  S. 
aureus   [  90  ] . Typing is dependent on PCR reactions that detect variation in the ccr 
recombinase genes and the  mecA  region, and use a potentially large number of 
primer pairs, but the methods are relatively straight forward, simple to perform, and 
inexpensive ( [  91,   92  ] ,   www.staphylococcus.net/    ). This method is useful if you wish 
to assign an MRSA isolate to a major MRSA clonal type. However, it can be less 
useful in investigating local outbreaks, as the  SCCmec  elements are generally 
stable.  

    23.5.2.2   Microarray 

 Microarrays were described above for their ability to detect lineage. However, they 
are also particularly useful in detecting MGE variation because multiple MGE types 
and variants can be detected in a single experiment  [  93  ] . It is important to keep in 
mind that genes can be detected only if they are spotted on the microarray. Simple 
microarrays with a limited number of MGE spots are easier to interpret but less 
comprehensive than complex whole genome microarrays. 

 In general, there is no standard way to interpret microarray data. The presence 
or absence of a range of toxin and virulence genes, as well as antibiotic resis-
tance genes found on MGE, is a logical place to start. Tables of various MGE 
types and their distribution into families based on integration genes and replica-
tion loci can also be very useful  [  16  ] . In practice, if two isolates have the same 
lineage and nearly identical combinations of MGE genes, as well as a strong 
epidemiological link, then they are likely to be the “same” strain. Two isolates 
that vary in genes likely found on only one MGE (e.g. one plasmid or one bacte-
riophage) and are also likely to be related but can be distinguished. Those with 
more variable MGE content are less likely to be epidemiologically related  [  4, 
  57–  60  ] .  

http://www.staphylococcus.net/
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    23.5.2.3   PCR for Toxins and Other MGE Genes 

 There is currently no standard method for reporting the presence or absence of toxin 
genes encoded on MGE by PCR for typing purposes. However, increasingly, papers 
reference these reactions to justify their assignment of a strain to a particular clone 
or to investigate associations with particular diseases  [  94  ] . The most common 
example is the PVL toxin. PVL is relatively rare in  S. aureus , but CA-MRSA nearly 
always carries it, and it is a useful marker for these strains  [  95  ] . Its role in CA-MRSA 
disease is controversial  [  96  ] . Other toxins with a potential role in pathogenicity can 
be useful to identify, especially if their detection has bene fi ts for the patient or for 
understanding an outbreak, such as the food poisoning toxins  [  97  ] , exfoliative tox-
ins  [  98  ] , and toxic shock syndrome toxin  [  95  ] . Such toxins may be unstable as they 
are found on MGE, and this should be considered when interpreting data, especially 
if only a few PCRs are used.  

    23.5.2.4   Antibiotic Resistance 

 Phenotypic antibiotic susceptibility testing is routinely performed in diagnostic 
laboratories on all  S. aureus  considered to be clinically signi fi cant. The results are 
generally available within 2 days of  S. aureus  diagnosis and are used to support the 
choice of antibiotic prescribed. There are highly standardised methods for identify-
ing resistance using phenotypic methods, such as disc testing, automated broth test-
ing, and E-tests, and published by organisations such as BSAC (  http://www.bsac.
org.uk/    ) and CLSI (formerly NCCLS). There is no standard method used by all 
diagnostic laboratories. Whichever method is chosen, it is very simple, inexpensive, 
and rapid. 

 Antibiotic testing played a part in the older typing methods prior to genetic tests. 
However, interpretation was dif fi cult and unhelpful. Recently, we have been revisit-
ing these tests in combination with lineage tests and  fi nd the combination much 
more useful. There is generally a wide range of resistance patterns to the major 
antibiotics, even within epidemic MRSA clones. It is therefore a potentially useful 
method for discriminating isolates during an outbreak (Budd and Lindsay, 
unpublished).    

    23.6   Other Staphylococcal Species 

 About 12 other species of staphylococci are found colonising the skin and mucous 
membranes of humans. They are all less virulent than  S. aureus , but all are capable 
of causing disease, particularly in immunocompromised patients with prosthetic 
implants. They are often termed coagulase-negative staphylococci, and the most 
common skin coloniser and pathogen is  S. epidermidis . Antibiotic resistance in all 
human staphylococcal species is common, especially methicillin resistance. 

http://www.bsac.org.uk/
http://www.bsac.org.uk/
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However, there is rarely a clinical reason to type  S. epidermidis  or other staphylococci 
in the hospital setting, as outbreaks are rare and disease is generally due to host 
immune factors. Large-scale epidemiological studies have been described recently, 
and an MLST typing method described for  S. epidermidis   [  99  ] .  SCCmec  typing is 
also applied as many of these elements likely arose in coagulase-negative species 
 [  100  ] . Interestingly, disease isolates of  S. epidermidis  are predominantly from one 
particular lineage and have the ability to produce slime  [  101  ] . 

 In dogs, the major species that causes disease is  S. pseudintermedius . Multi-
drug-resistant isolates are increasingly being described, and MLST,  spa  typing, 
PFGE, and  SCCmec  typing have also been developed  [  102  ] .  

    23.7   Future 

 In the future, we are likely to see technologies developed that allow rapid and inex-
pensive typing of  S. aureus  in real time in the clinic. Already there are technologies 
that can identify pathogen species directly from clinical specimens using microar-
ray detection  [  103–  106  ] . While mixed populations of bacteria in specimens can 
make direct typing troublesome to interpret, these technologies are ideal for inves-
tigating isolated colonies on selective agar, even after minimal growth. 

 We are also likely to see improvement of mini-microarrays, particularly in 
designs that are adapted for different geographical regions. When investigating an 
MRSA outbreak in a hospital where only one or two MRSA predominate, the array 
needs to be focused on the MGE present in those clones. Hopefully, more commer-
cial suppliers will enter the marketplace in the near future, automating methods and 
bringing down costs. 

 With rapid progress made in the DNA sequencing arena, there is also the possi-
bility that  S. aureus  strain typing in the future will routinely involve whole genome 
sequencing  [  12  ] . This will be the ultimate typing tool and will require substantial 
progress in cost reduction and developing software able to rapidly compare and 
contrast the whole sequences of individual bacteria. 

 When typing can be performed in real time and the results fed back to the clinician, 
we are likely to see improved management of infections, better recognition of out-
breaks, and faster responses to them. We will also recognise more correlations between 
types of strains and their associations with symptoms, prognosis, susceptible hosts, 
ability to spread, and geography. This is when we are likely to make the most progress 
in understanding  S. aureus  genome stability and evolutionary pressures.  

    23.8   Conclusions 

 At present, we are in a time of  fl ux, with new typing technologies for  S. aureus  
being developed but not fully taken up, and improved technologies on the hori-
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zon. In the meantime, the choice of typing method is dependent on the question 
that is being asked. In general, a comprehensive typing of a strain requires the 
correct identi fi cation of lineage and some understanding of MGE variation. 
When typing to compare strains in an outbreak setting, such as MRSA in a hos-
pital where only one or two clones dominate, a method that accentuates minor 
differences is preferred, and microarrays are becoming the method of choice. 
In the near future, these microarrays will be re fi ned, and the technology will 
become less expensive and more rapid as the commercial market develops. In the 
future, the development of bench-top sequencing options, whole genome sequencing 
combined with customised data analysis software, will become the typing method 
of choice.      
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