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          21.1   Introduction 

 Borreliae are classi fi ed in the order Spirochaetales. All members of the genus 
 Borrelia  are highly motile, spiral-shaped organisms. The cells are comprised of a 
protoplasmic cylinder enclosed by an inner and outer membrane  [  1  ] . The periplas-
mic compartment contains a number of endo fl agella which are responsible for both 
cellular motility and helical cell shape  [  2  ] . The outer membrane is devoid of 
lipopolysaccharides, but contains a large number of lipoproteins  [  3,   4  ] . Common 
features of members of this genus are (1) vertebrate host association, (2) transmis-
sion to new hosts by hematophagous arthropod vectors parasitized with borreliae, 
and (3) relatively low mol% G + C content (27–32%) in their DNA  [  1  ] . All borreliae 
cultured to date are microaerophilic, slow growing, and require complex culture 
media for propagation  [  1  ] . The genus  Borrelia  is divided into two major pathogenic 
groups—the Lyme disease (LD) borreliae and relapsing fever (RF) borreliae. The 
Lyme disease group of  Borrelia  consists of at least 14 different species and some 
members of this group are the agents of Lyme disease. The relapsing fever group 
includes more than 20  Borrelia  species  [  5  ]  that are agents of tick-borne (TBRF) or 
louse-borne (LBRF) relapsing fever (27–32%)  [  6  ] . LD borreliae in nature are main-
tained in enzootic cycles involving a variety of mammalian and avian hosts and hard 
ticks of the genus  Ixodes  as vectors. The primary bridging vectors to humans are 
 Ixodes scapularis and I. paci fi cus  in North America,  I. ricinus  in Europe, and 
 I. persulcatus  in Asia  [  7,   8  ] . Vectors of the RF  Borrelia  agents are soft-bodied ticks 
(family Argasidae), mainly of the genus  Ornithodoros ; the one notable exception is 
 Borrelia recurrentis,  which is transmitted by the human louse ( Pediculus humanus 
humanus )  [  9  ] . 
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 Many aspects of  Borrelia  spp. biology, epidemiology, and pathogenesis have 
been thoroughly covered in previous reviews  [  1,   9–  11  ] . In this chapter, we focus on 
the different molecular methods employed in species identi fi cation, typing and sub-
typing of LD and RF borreliae .  The contribution of these typing methods to taxon-
omy, epidemiology, and diagnostics will be discussed. 

    21.1.1   Molecular Typing of Borreliae 

  B. burgdorferi  was identi fi ed as a new human pathogen in 1983  [  12–  14  ] . Since then, 
hundreds of isolates have been cultured worldwide from  Ixodes  ticks, small mam-
mals and birds and from Lyme disease patients. Molecular characterization of these 
isolates has shown that they are genetically diverse  [  15–  22  ] . Taxonomic classi fi cation 
of LD spirochetes has been revised in the last two decades based on information 
obtained from molecular typing methods with increasing discriminatory power  [  10, 
  23,   24  ] . Presently, 14 species comprise the cluster of genetically related isolates  [  10, 
  23,   25–  27  ] . Five species ( B. burgdorferi ,  B. andersonii, B. bissettii, B. californien-
sis,  and  B. carolinensis ) have been detected in the United States and only  B. burg-
dorferi  has been associated with human disease. The remaining nine species ( B. 
afzelii, B. garinii, B. japonica, B. lusitaniae, B. sinica, B. spielmanii, B. tanukii, B. 
turdii,  and  B. valaisiana ) have been identi fi ed exclusively in Eurasia. In this latter 
group, only  B. afzelii and B. garinii  have been de fi nitively associated with human 
Lyme disease, although limited human cases of infection with  B. bissettii ,  B. valai-
siana,  and  B. spielmanii  have been reported  [  28–  31  ] . Human infection by these 
 Borrelia  species usually results in a characteristic skin rash, erythema migrans (EM) 
 [  32,   33  ] . Dissemination of the spirochetes from the initial site of infection in skin 
can result in extracutaneous manifestations that may be dependent on the infecting 
species  [  15,   34  ] .  B. burgdorferi  infection more frequently causes Lyme arthritis, 
whereas infection with  B. garinii  and  B. afzelii  is more frequently associated with 
neuroborreliosis and a chronic skin condition (acrodermatitis chronica atrophicans), 
respectively. 

 Classi fi cation of RF borreliae has been traditionally based on geography, e.g., the 
Afro-tropical species of  B. duttonii  and  B. crocidurae  as Old-World TBRF and 
 B. hermsii  and  B. turicatae  found in the western and south-central US as New-
World TBRF species  [  35  ] . The speci fi c relationship between spirochetes and their 
arthropod vectors has been used as a means of speciation of RF borreliae  [  5,   36,   37  ] . 
Speci fi cally,  B. hermsii  and  B. turicata  are exclusively transmitted by  O. hermsii  
and  O. turicata  ticks  [  38  ] . Several new species of RF agents collectively named 
 B. miyamotoyi  sensu lato have been recently reported  [  9  ] . These include  B. miyamo-
toyi ,  B. miyamotoyi -like, and  B. lonestari  transmitted by the hard ticks  I. persulca-
tus ,  I. scapularis,  and  Amblyomma americanum , respectively  [  39–  41  ] . The disease 
potential of these species is currently unknown.  B. miyamotoyi  has not been isolated 
from humans and only a single case of human infection with  B. lonestari  has been 
reported  [  42  ] .  
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    21.1.2   Phenotypic Typing 

 Conventional bacterial phenotyping approaches such as biotyping, antibiotic 
susceptibility pro fi ling, and bacteriophage typing cannot be applied to the genus 
 Borrelia  due to the extreme fastidiousness of the organisms and the inability to form 
con fl uent lawns on solid media. Although a phage has been reported for  B. burgdorferi  
 [  43–  45  ] , its utility for strain typing is unknown. Typing of  Borrelia  by fatty acid 
content and total protein pro fi ling by SDS-PAGE are unreliable since both methods 
require de fi ned growth media and speci fi c metabolic states of the cells being typed  [  10  ] . 
Multi-locus enzyme electrophoresis (MLEE) typing, which involves comparison of 
the mobility of metabolic enzymes on gel electrophoresis, has been employed in a 
limited number of studies, but its utility for  B. burgdorferi  is limited because it is 
labor intensive and requires large amounts of cultured organism  [  10,   46,   47  ] . 
Serotyping of LD spirochetes based on two outer surface proteins, outer surface 
protein A (OspA) and outer surface protein C (OspC), has provided some important 
insights into vaccine development and clinical outcome, but this approach has been 
supplanted by genetic typing methods  [  48–  51  ] . 

 Phenotyping of RF borreliae has been hampered by the inability to cultivate 
many of these species and is not in common use. Biotyping has been largely based 
on vector speci fi city and geographic location. Biological assays, such as guinea pig 
resistance to  B. duttonii   [  52  ] , primate susceptibility to  B. recurrentis   [  53  ] , and bird 
susceptibility to  B. anserina   [  54  ] , have also been employed. In addition, for culti-
vable species, variations in sugar fermentation  [  55  ]  and in structural traits, such as 
the number of  fl agella  [  56  ] , have been reported. Serotyping of RF borreliae has been 
reported, but its applicability for typing is questionable since these species undergo 
continuous antigenic variation in mammals  [  35  ] .  

    21.1.3   Genetic Typing 

 A variety of genetic typing methods, targeting both chromosomal and plasmid loci, 
have been applied to  Borrelia  species. These include DNA–DNA relatedness analy-
sis, rRNA ribotyping, pulse- fi eld gel electrophoresis (PFGE), plasmid  fi ngerprinting, 
species-speci fi c PCR, PCR-based restriction fragment length polymorphism (PCR-
RFLP) analysis, single-strand conformational polymorphism (SSCP) typing, DNA 
sequence analysis of species-speci fi c genes, variable-number tandem repeat (VNTR) 
analysis, and multi-locus sequence typing (MLST). In general, these approaches 
can be divided into those that require puri fi ed DNA (DNA–DNA hybridization, 
ribotyping, PFGE, plasmid  fi ngerprinting) and those that can be accomplished by 
PCR with less puri fi ed material. The former methods are cumbersome and require 
in vitro cultivation of the spirochetes. Information gathered from these analyses is 
often used for bacterial species identi fi cation and taxonomy. In contrast, PCR-based 
typing schemes are relatively simple, rapid, and can be performed directly on 
large numbers of environmental or patient samples without the necessity of prior 
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 cultivation. Results obtained from these latter analyses can be employed for both 
species/strain differentiation and elucidation of population dynamics of  Borrelia  
species in nature. Furthermore, the potential problem of clonal selection of isolates 
by in vitro cultivation is avoided  [  21,   57  ] . In the following sections, each of these 
methods and their applications are discussed. 

 It should be noted, of course, that the ultimate typing approach is complete genome 
sequencing. The genome of  B. burgdorferi  strain B31 was among the  fi rst bacterial 
genomes to be completely sequenced. This revealed a unique genetic structure among 
prokaryotes, as the complete genome was comprised of a single, large linear molecule 
(referred to as the chromosome) of 910 kb and a collection of 12 linear and 9 circular 
plasmids with a combined size of approximately 600 kb  [  58,   59  ] . Although the 
genomic sequences of other  Borrelia  species are deposited in GenBank, that for strain 
B31 remains the only  fully  sequenced genome; the remaining genome sequences lack 
information on varying numbers of plasmids. The genomic features described for the 
 B. burgdorferi  B31 genome are also characteristic of other LD and RF  Borrelia  spe-
cies sequenced to date in that they are comprised of a large linear chromosome and 
multiple linear and circular plasmids  [  60,   61  ] . The complete genomes of the RF bor-
reliae,  B. reccurentis, and B. duttoni  have been reported  [  62  ]  and those of  B. hermsii  
and  B. turicatae  have been deposited in the NCBI genome database. 

    21.1.3.1   Genetic Typing Methods Employing Puri fi ed Genomic DNA 

      DNA–DNA Hybridization 

 The reference method for measurement of DNA relatedness between two organisms 
is DNA–DNA hybridization. This approach was employed for speciation of LD 
borreliae  [  63,   64  ] . The strength of this method is based on the fact that classi fi cation 
relies on comparison of total genomic sequences for the organisms under investiga-
tion. A DNA relatedness of 70% is the cut-off for de fi ning members of a given spe-
cies  [  65  ] . DNA homology among LD  Borrelia  species ranges from 48 to 70%, 
whereas that between LD and RF borreliae range from 30 to 44%  [  14,   63  ] . 

 For North American RF spirochetes,  B. hermsii  shows 86 and 77% homology to 
 B. turicatae  and  B. parkeri , respectively; DNA relatedness between  B. hermsii  and 
other RF agents is much lower (17–63%)  [  1  ] . A confounding factor is the variable 
plasmid content observed among  Borrelia  species and isolates. DNA–DNA hybrid-
ization of  B. turicatae  and  B. parkeri  suggests that they are members of a single 
species but the absence of circular plasmids in the latter and transmission of each 
species by a unique vector tick species suggests that they are distinct species  [  38  ] .  

      Plasmid Typing 

 All members of the genus  Borrelia  contain multiple linear and circular plasmids. 
The number of plasmids and their molecular size vary among isolates of LD borre-
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liae  [  66–  69  ] . This variation has been the basis of plasmid  fi ngerprinting as a typing 
method. For example, among 40 LD isolates from different sources and geographi-
cal locations, plasmid  fi ngerprinting data correlated with  Borrelia  species designa-
tions by other typing methods, but no species-speci fi c plasmids were identi fi ed  [  70  ] . 
The reported loss of both linear and circular plasmids during in vitro propagation 
and the possibility of plasmid recombination limit the usefulness of this method for 
LD agent typing  [  71–  73  ] . This may be less of a problem for RF  Borrelia  species 
 [  74  ] . However, no comprehensive plasmid  fi ngerprinting studies have been yet 
described for RF borreliae. The reported absence of circular plasmids from the 
genomes of  B. parkeri ,  B. anserina,  and  B. recurrentis  may be useful for differenti-
ating these RF species from other RF borreliae  [  38  ] .  

      Ribotyping 

 Ribosomal RNA genes are highly conserved and are universally present in bacteria. 
This facilitates the use of  E. coli- based probes for identi fi cation of restriction frag-
ments containing rRNA genes for many bacteria. The technique involves digestion 
of total genomic DNA with one or more restriction enzymes, electrophoretic sepa-
ration of restriction fragments and Southern blotting with a probe for conserved 
regions of rRNA  [  75  ] . Individual species of  B. burgdorferi ,  B. garinii , and  B. afzelii  
can be identi fi ed by speci fi c  Hin dIII DNA fragments  [  15  ] . A study of 51 LD isolates 
demonstrated that all 18  B. burgdorferi  strains belonged to a single ribotype, while 
23  B. garinii  and 10  B. afzelii  isolates were distributed into nine and three ribotypes, 
respectively  [  76  ] . The method is relatively simple and highly reproducible, but has 
been superseded by PCR-based methods targeting rRNA genes (see below).  

      Pulsed-Field Gel Electrophoresis (PFGE) 

 A second typing method based on restriction enzyme digestion of total genomic 
DNA is pulsed- fi eld gel electrophoresis. This approach employs restriction enzymes 
whose recognition sequences rarely appear in the  Borrelia  genome such that diges-
tion of total genomic DNA produces a relatively small number of large restriction 
fragments.  Mlu I has been the most useful enzyme for PFGE analysis of LD spiro-
chetes. Most species can be identi fi ed by characteristic species-speci fi c digestion 
fragments (e.g., 135 kb for  B. burgdorferi , 220 kb and 80 kb for  B. garinii,  and 460, 
320, and 90 kb for  B. afzelii )  [  77,   78  ] . Strain differentiation within a species can also 
be accomplished by PFGE. Among 20  B. burgdorferi  strains there were 10  Mlu  I 
types and among 24  B. garinii  strains there were 4  Mlu  I types; interestingly, no 
variation was observed among 20  B. afzelii  isolates  [  77  ] .  Mlu I-based PFGE analysis 
of 186 North American  B. burgdorferi  isolates revealed 19 different patterns, 
although just a few of these predominated  [  18  ] . Six different PFGE types were 
identi fi ed in 48  B. burgdorferi  clinical isolates from early Lyme disease patients 
 [  79  ] . In general, there is excellent correspondence between PFGE and other typing 
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methods  [  18,   79  ] . PFGE has also been bene fi cial for constructing physical maps of 
the  B. burgdorferi  chromosome  [  80,   81  ] . PFGE analysis remains a valuable tool for 
 B. burgdorferi  typing, but a drawback is the requirement for culture and large 
amounts of puri fi ed DNA.   

    21.1.3.2   PCR-Based Typing Methods 

      DNA Sequencing of PCR-Ampli fi ed Loci 

 Genetic typing methods involving PCR ampli fi cation of various genomic targets of 
LD borreliae are relatively simple, fast, and discriminative at the species and, in 
some instances, at the isolate level  [  17,   24,   82–  84  ] . Analysis of PCR-ampli fi ed 16S 
rRNA products by either RFLP analysis  [  85  ]  or by direct DNA sequencing results 
in species-level differentiation among LD borreliae  [  86  ] . DNA sequence homology 
among  B. burgdorferi ,  B. garinii ,  B. afzelii ,  B. lusitaniae,  and  B. valaisiana  at the 
 rrs  (16S rRNA) locus varies from 95.3 to 99.6%  [  86  ] . The GenBank database con-
tains over 100  rrs  sequences for LD  Borrelia  species. While these sequences are 
useful for species identi fi cation, they are less suitable in discriminating between 
strains of the same species. Numerous other genetic loci have been employed to 
identify LD  Borrelia  species and to investigate the taxonomic and evolutionary rela-
tionships among these spirochetes. These include the genes encoding  fl agellin (  fl aB ) 
 [  87–  89  ] , outer surface protein A ( ospA )  [  18,   87,   90  ] , outer surface protein C ( ospC ) 
 [  88,   91  ] , P66 ( p66 )  [  84,   92  ] , histone-like protein ( hbb )  [  93  ] , P39 ( bmpA )  [  94  ] , and 
heat-shock proteins ( hsp60  and  hsp70 )  [  87  ] . Dykhuizen and co-workers have char-
acterized over 20 different  ospC  genotypes in North America and Europe and  ospC  
sequence analysis has become a primary tool for  B. burgdorferi  genotyping. Several 
studies have correlated  ospC  genotype with disseminated infection in LD patients 
 [  95–  102  ] . Despite the substantial utility of  ospC  for genotyping, however, evidence 
of  osp C intragenic recombination and lateral transfer between strains makes  ospC  
unsuitable for phylogenetic studies  [  103–  105  ] . 

 DNA sequence variation at the   fl a B locus allow for discrimination between LD 
and RF  Borrelia  species  [  41,   89  ] .  glpQ,  a gene encoding glycerophosphodiester 
phosphokinase, is found in all RF borreliae, but not in LD species and thus can be 
employed for identi fi cation of RF agents  [  106  ] . Sequence variation in  glpQ  was 
used to differentiate between  B. lonestari  and  B. miyamotoi   [  107  ] . Sequence varia-
tion at the  vtp  locus of  B. hermsii  (an ortholog of  ospC ) has been described; how-
ever, the utility of this target for RF species typing is unknown  [  108   ].  

      Ribosomal RNA Spacer RFLP Analysis 

 Genome analyses have shown that all LD  Borrelia  species possess a unique rRNA 
gene organization that is different from that of other prokaryotes, including RF 
 Borrelia  species  [  109  ] . The region consists of a single 16S rRNA gene ( rrs ) followed 
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by a large intergenic spacer (IGS); 3.2 kb in  B. burgdorferi  and 5.0 kb in  B. garinii  
and  B. afzelii . This is followed by a tandem repeat of 23S rRNA-5S rRNA genes 
( rrlA - rrfA — rrlB - rrfB ); the tandem copies are separated by a short spacer of 225–
266 bp  [  58,   110–  112  ] . It is assumed that the rRNA IGS accumulate higher levels of 
sequence variation between related species than do coding regions because IGS 
regions do not encode functional gene products. 

 rRNA spacer restriction fragment length polymorphism (PCR-RFLP) typing has 
been extensively applied to study LD  Borrelia  species. PCR ampli fi cation of either 
 rrs - rrlA  or  rrfA - rrlB  intergenic spacers, followed by RFLP analysis with  Mse  I, 
allowed differentiation of LD species  [  16,   17,   113–  116  ] . Postic et al. employed 
 Mse I digestion of PCR ampli fi ed  rrfA - rrlB  IGS for differentiation of eight LD 
 Borrelia  species  [  16  ] . A modi fi cation of this typing method based on reverse line 
blotting of the  rrfA - rrlB  PCR product followed by hybridization with species-
speci fi c DNA probes enabled investigators to directly assess presence of different 
LD species in ticks  [  113  ] . Use of single strand conformational polymorphism 
(SSCP) in conjunction with PCR ampli fi cation of the  rrfA - rrlB  IGS has also been 
reported  [  117  ] . This facilitated identi fi cation of a new variant isolate of  B. burgdor-
feri  previously undetectable with RFLP analysis. The relatively small size of the 
 rrf A– rrl B IGS (225–266 bp) limits the amount of information that can be obtained 
by RFLP analysis for typing of individual isolates. 

 PCR ampli fi cation of the 941 proximal base pairs of the  rrs - rrlA  spacer, encom-
passing the region immediately downstream of  rrs  and terminating at the conserved 
 ileT  locus, followed by RFLP analysis with either  Mse I and  Hinf  I restriction 
enzymes, was able to distinguish LD borreliae at the species level and, more impor-
tantly,  B. burgdorferi  at the strain level  [  17,   21,   115,   116  ] . Isolates with different 
RFLP pro fi les were designated as ribosomal spacer types RST1, RST2, and RST3. 
Studies using this typing method with uncultivated  B. burgdorferi  in human tissues 
and  fi eld-collected ticks have shown that both LD patients and ticks may be simul-
taneously infected with one or more distinct genotypes of  B. burgdorferi   [  21,   118  ] . 
Numerous studies have demonstrated that RST genotype correlates with pathogenic 
potential in humans and mice  [  17,   21,   102,   115,   116,   119–  122  ] . A recent study of 
more than 400  B. burgdorferi  clinical isolates showed that a combination of RST 
and  ospC  genotyping permitted the identi fi cation of  B. burgdorferi  genotypes that 
pose the greatest risk of hematogenous dissemination in humans  [  102  ] . 

 Bunikis et al. modi fi ed this method by direct sequence analysis of the IGS PCR 
products  [  84  ] . They concluded that polymorphism in the  fi rst 250 nucleotides of the 
 rrs - rrlA  IGS was suf fi cient to discriminate between genotypes; 68  B. burgdorferi  
isolates could be classi fi ed into 10 distinct IGS genotypes and the 107 isolates of  B. 
afzelii  tested were classi fi ed into 11 IGS types  [  84  ] . By sequencing the entire IGS, 
Hanincova et al. were able to identify 16 IGS alleles among 127  B. burgdorferi  
clinical isolates  [  123  ] . The results of these studies also demonstrated linkage dis-
equlibrium between the  rrs - rrlA  IGS and  ospC  loci  [  84,   102,   123  ] . A correlation 
between RFLP-generated RST types and sequence-generated IGS types concluded 
that IGS typing of the  rrs - rrlA  partial spacer was suf fi cient for strain typing of 
 B. burgdorferi   [  84  ] . 
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 IGS typing has also been applied to New World and African RF  Borrelia  species 
 [  124,   125  ] . This facilitated differentiation of  B. hermsii ,  B. turicatae ,  B. miyamotoi,  
and  B. lonestari  in North America  [  124  ] .  B. crocidurae  could be distinguished from 
 B. recurrentis  and  B. duttonii , but this approach did not permit differentiation 
between the latter two African species  [  125  ] .  

      Real-Time PCR 

 Differentiation of LD  Borrelia  species using real-time quantitative PCR target-
ing  p66  or  recA , followed by melting curve analysis, has been described  [  126  ] . 
A simpli fi ed method of speciation and quantitation of  B. burgdorferi ,  B. garinii,  and 
 B. afzelii  has been developed and successfully applied to  I. ricinus  ticks in Germany. 
This typing method involved a single-run real-time PCR reaction targeting  ospA  and 
melting curve analysis of the ampli fi ed products to distinguish the  Borrelia  species 
 [  127  ] . Of the 1,055  I. ricinus  ticks tested, 35% were infected; 53% with  B. afzelii , 
18% with  B. garinii  and 11% with  B. burgdorferi , 0.8% could not be identi fi ed and 
18% with mixed infections  [  127  ] . This approach has diagnostic value, but as yet has 
not been applied to strain typing.  

      Multi-Locus Sequence Typing 

 Differential distribution of 10 variable-number tandem repeat (VNTR) loci was uti-
lized for both species and strain identi fi cation in a group of 41 globally diverse LD 
isolates  [  128  ] . This analysis was able to identify  B. burgdorferi ,  B. garinii,  and  B. 
afzelii , and to discriminate between strains of  B. burgdorferi   [  128  ] . However, the 
inability to detect VNTR loci in all  Borrelia  samples is problematic. 

 Multi-locus sequence typing (MLST) was proposed in 1998 as a highly discrimi-
natory technique that generates accurate data for epidemiological, evolutionary, and 
population studies of bacterial pathogens  [  129  ] . This technique uses a concept simi-
lar to multi-locus enzyme electrophoresis, but instead of electrophoretic mobility 
of metabolic enzymes, the alleles at each locus are de fi ned by nucleotide sequence. 
A number of studies employed a combination of DNA sequence analyses at multiple 
genetic loci to characterize the genus  Borrelia  and to elucidate its population struc-
ture  [  23,   26,   84,   130,   131  ] . These multi-locus sequence analysis methods, however, 
differ from classic MLST since the analyzed loci included not only housekeeping 
genes, but other non-coding and plasmid-borne polymorphic loci. In contrast, classic 
MLST schemes use only housekeeping genes that slowly diversify by random accu-
mulation of nearly neutral mutations and retain signatures of longer term evolution. 
To ensure highly discriminatory power of relatively uniform housekeeping genes, the 
combined sequences of multiple housekeeping gene loci are analyzed  [  132  ] . 

 An MLST scheme for  B. burgdorferi  has been described that is based on a set of 
eight different housekeeping loci. The method was employed to evaluate 64  B. burg-
dorferi  cultured isolates from North America and Europe  [  24  ] . Results indicated that 
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the North American and European populations of  B. burgdorferi  are genetically 
distinct and further suggest that  B. burgdorferi  may likely have originated in Europe 
and not in North America as has been previously thought  [  133  ] . In addition, it was 
demonstrated that the previously used genetic markers of  B. burgdorferi  such as the 
 rrs-rrl A intergenic spacer and the  ospC  locus evolve differently, as compared to the 
eight housekeeping genes  [  24  ] . In a separate study, the MLST scheme was applied 
to a phylogeographical study of 16 specimens of  B. lusitaniae  isolated from ticks 
in two climatically different regions of Portugal  [  134  ] . MLST analysis was able to 
demonstrate that the  B. lusitaniae  populations from these two regions constituted 
genetically distinct subpopulations, which appeared monophyletic based on  ospC  
and  ospA  phylogenetic analyses  [  134  ] . More recently, this MLST approach has 
been employed to demonstrate that the distribution of  B. burgdorferi  genotypes in 
ticks varies between the Northeastern and Midwestern United States  [  135  ] , to study 
the phylogeography of  B. burgdorferi  in the United States  [  136  ]  and to de fi ne a 
new  Borrelia  species  [  137  ] . Based on these recent studies, it is reasonable to expect 
that MLST will gain wider use for typing and phylogenetic analyses of  Borrelia  
species.     

    21.2   Conclusion 

 Application of any typing method to borreliae depends on the objectives of the par-
ticular study, the level of resolution desired (species vs. strain), and the laboratory 
conditions and technical expertise available. The most speci fi c information is pro-
vided by complete genome sequencing and DNA–DNA hybridization, but these 
methods require cultivation of the species of interest. Similarly, PFGE has been very 
useful for strain typing, but relatively large amounts of DNA are required. Since 
most  Borrelia  species are dif fi cult to cultivate and grow very slowly (especially 
newly isolated species), typing methods involving PCR ampli fi cation are currently 
most commonly used. Among these approaches, sequencing of speci fi c genes fol-
lowing PCR ampli fi cation and PCR-RFLP or rRNA spacer regions has been most 
widely used. The recently developed MLST method is likely to become the method 
of choice in the future.      
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