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         Introduction 

 Cutaneous T-cell lymphoma (CTCL) is challenging 
to treat. Patients with advanced disease typically 
only enjoy brief responses to conventional chemo-
therapeutics, and are at particularly high risk of 
infectious complications during the treatment with 
chemotherapy. Combination and intensi fi cation of 
conventional chemotherapeutics fails to cure the 
vast majority of patients of patients with CTCL or 
other forms of peripheral T-cell lymphoma (PTCL). 
In this context, biological agents, and in particular 
the histone deacetylase inhibitors (HDACis), pres-
ent an attractive alternative because they lack many 
of the side effects of conventional chemotherapy 
and appear to overcome chemotherapy resistance. 

 The HDACis target not only the epigenome 
but also numerous nucleic and cytoplasmic non-
histone proteins and are powerful and selective 
inducers of cancer cell apoptosis and modi fi ers of 
the tumour microenvironment. To date, the best 
data for their use comes from trials in the 
lymphoid malignancies and CTCL is the only 
condition for which HDACis are currently 
registered. The FDA has approved romidepsin 
and vorinostat for use in relapsed/refractory 
CTCL and these agents provide patients with a 
new opportunity for durable clinical response. 
Similarly, romidepsin has potent activity in nodal 
PTCLs, with emerging data supporting a future 
role in clinical practice, either alone or in combi-
nation with conventional therapies. 

 Here we discuss the concept of epigenetic 
modifying agents, brie fl y review the putative 
targets for the HDACis and discuss key clinical 
trials supporting their use in T-cell lymphoma.  

   Epigenetics and Epigenetic Therapies 

 The term “epigenetics” refers to changes in gene 
expression that are not coded in the DNA 
sequence itself, which are heritable in the prog-
eny of cells after mitosis  [  1  ] . Epigenetic thera-
pies, therefore, target the dysregulated gene 
expression of neoplasia by altering the structure 
of chromatin or DNA promoter regions, rather 
than by addressing defects in the primary DNA 
code of conventional oncogenes or tumour sup-
pressor genes. 
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 Drugs in clinical use today target two epigenetic 
mechanisms. Methylation of the CpG dinucle-
otides in the promoter regions of genes is heritable 
and suppresses gene expression. This mechanism 
is targeted by the DNA-methyltransferase inhibi-
tors azacitidine and decitabine. The DNA dem-
ethylating agents are predominantly used in 
myeloid malignancies although trials continue in 
the lymphoid malignancies, particularly in combi-
nation with other agents. The HDACis are a broad 
and novel class of agents that target one aspect of 
the “histone code,” lysine-acetylation. Histones 
are octomeric proteins largely responsible for the 
structure of chromatin and the packaging of DNA 
within the cell. Condensed chromatin results in 
tightly packaged DNA, limiting access to tran-
scription factors. A variety of modi fi cations to the 

histone tail, including acetylation, methylation, 
ubiquitination, phosphorylation and sumoylation, 
alter histone charge and subsequently chromatin 
structure and gene expression  [  2  ] . The archetypal 
and most successfully druggable example apply-
ing to all of the agents in this chapter is histone 
acetylation. The key enzymes involved are his-
tone acetyltransferases (HATs) and histone 
deacetylases (HDACs), which have contradic-
tory effects on the acetylation status of histones 
and on chromatin structure  [  1  ] . Histone acetyla-
tion by HATs results in neutralisation of charge, 
decreased af fi nity for DNA, loosening of the 
histone–DNA interaction and open chromatin 
structure—making it more accessible to tran-
scription factors and enhanced gene expression. 
( fi gure  16.1 , and  16.2 )  [  3  ]  Conversely, histone 

  Figure 16.1    HDACs remove acetyl groups from the lysine tails of histones. Conversely HATs result in histone hyper-
acetylation, open chromatin formation and increased accessibility of target genes to transcription factors.       

  Figure 16.2    Relaxation of chromatin leads to increased gene expression       
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deacetylation by HDACs leads to a more compact 
chromatin structure and gene repression. Following 
this logic, the HDACi could be considered de-
repressors of gene expression, although in truth 
they have a far more complex set of effects and are 
probably best considered  modulators  of gene 
expression.    

   Targets of HDACi 

   Histone Targets 

 HDACs can be grouped according to their struc-
ture and homology to yeast enzymes. Classes I, II 
and IV are the zinc-dependent. Class III HDACs 
are the NAD-dependent deacetylases, sirtuins, 
which are not targets of the HDACis in current 
clinical use. Class I enzymes (HDAC 1,2,3,8) are 
found primarily in the nucleus, as is the single 
member of class IV, HDAC 11. Class II can be 
divided into two subgroups, IIa (HDAC 4,5,7,9) 

which can shuttle between the nucleus and 
cytoplasm, and IIb (HDAC 6,10) which is pre-
dominantly cytoplasmic  [  4  ] . Knowledge of the 
speci fi c function of each HDAC isoenzyme (and 
therefore the effect of inhibition) continues to 
accumulate, but distinguishing the individual 
properties can be a dif fi cult undertaking given 
the complexity of the cellular pathways involved. 
(Figure  16.3 ) One useful property of HDAC inhi-
bition is that transformed cells are more sensitive 
to their pro-apoptotic effect than normal cells  [  4  ] . 
This is probably due to the dependence of 
malignant cells on HDACs for tumour cell 
growth, differentiation and apoptosis that provide 
a differential survival advantage  [  5  ] .  

 HDACis share a common mechanism of action 
in binding a zinc ion critical to HDAC function. 
At present, the simplest method of grouping 
HDACi is based on speci fi city. HDACis which 
inhibit most or all zinc-dependent HDACs (pan-
HDAC inhibitors) include the hydroxamic acid 
derivatives (trichostatin A, vorinostat [SAHA], 

  Figure 16.3    Exposure to HDACi leads a wide spectrum 
of biological effects including induction of apoptosis, 
inhibition of angiogenesis, induction of cellular senes-

cence and disruption of the aggresome/Proteasome and 
endoplasmic reticulum.       
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panobinostat [LBH589]). Class I-speci fi c HDACis 
include benzamide derivatives (entinostat, moce-
tinostat) and cyclic tetrapeptides (romidepsin 
[previously called depsipeptide])  [  6  ] . These are 
summarised in Table  16.1 . Cytoplasmic HDAC6 
has effects on cell motility and proteasome and 
aggresome pathways which, along with inhibition 
of HDACs 1 and 2, is considered to be responsible 
for much of the anti-cancer effects of these drugs 
 [  6  ] . A key difference between the pan-HDACs 
and the class 1-speci fi c HDACis is thought to be 
the inhibition of cytoplasmic HDAC6.  

 In cancer cells, HDACis induce caspase-
dependent cell death, apparently through 
increased expression and activation of pro- 
apoptotic members of the intrinsic pathway (bax, 
bim, bak, etc.) and down-regulation of BCL-2 
pro-survival proteins  [  7–  12  ] . HDACi may induce 
sensitivity of cells to death-receptor pathway-
induced apoptosis; this appears to occur either 
through increased expression of death receptors 
 [  13,   14  ]  or thorough mechanisms independent of 
death receptor expression  [  15–  17  ] . 

 In addition to apoptosis, HDACis induce cell 
cycle arrest at G1/S or G2/M through a number of 
mechanisms including, in particular, the induc-
tion of p21.  [  18–  21  ]  They also induce reactive 
oxygen species.  [  22–  24  ]   

   Non-Histone Targets of HDACs 

 The effects of HDACi on non-histone targets may 
be more important than direct changes in chro-
matin modi fi cation for anti-tumour effect  [  25  ] . 
Putative non-histone targets of HDACs include 
the STAT proteins, alpha-tubulin, HSP90, NF-KB 
and more controversially, p53.  [  6,   26  ]  

 An important way in which inhibition of 
HDAC6 may induce cell death is through disrup-
tion of the misfolded protein response (MPR). 
The MPR is a three pronged pathway which pro-
tects the cell from the accumulation of misfolded 
proteins that arise from defective protein synthe-
sis  [  27  ] . Protein folding occurs in the endoplas-
mic reticulum, and requires the chaperone 
function of HSP90.  [  28,   29  ]  Misfolded proteins 
accumulate into aggresomes by means of an 

HDAC6-dependent microtubule, and are then 
earmarked for destruction by the autophagosome. 
 [  30  ]  This system thereby serves as a homeostatic 
mechanism which protects the cell from prote-
osomal dysfunction  [  6  ]  and suggests the appeal 
of synergistic anti-cancer activity between pro-
teasome inhibitors and HDACis.  [  31  ]  HDACis 
induce both acetylation and dysfunction of 
HSP90, and disruption of the aggresome through 
acetylation of the tubulin. This is part of the ratio-
nale for the use of HDACi in myeloma; however, 
despite the evidence for HDACi causing dysfunc-
tion of the aggresome–proteasome pathway  [  32  ]  
clinical studies of HDACi have shown the class 
I-selective HDACi romidepsin can rescue patients 
with bortezomib-refractory myeloma.  [  33  ]  
Moreover, there is no suggestion that this poten-
tial mechanistic difference between the pan-
HDACi and the isotype-selective HDACi effects 
the response rates in other cancers: as we shall 
show, response rates to the pan-DAC inhibitor 
vorinostat in CTCL are similar to those of 
romidepsin.  [  34  ]  Key pharmacokinetic properties 
of the approved agents are listed in table  16.2 .    

   Mechanism of Action in T-Cell 
Lymphoma—Biomarkers and 
Hypotheses 

 It is probable that the importance of these various 
mechanisms of action differs by disease being 
treated, and remarkable that the diseases most 
responsive to HDACis bare profound immuno-
logical and cytokine-signalling perturbation. The 
accessibility of the skin for biopsy means that 
CTCL provides an opportunity for the study of 
the effects of HDACis on tumour cells, in vivo ,  
giving us more insights than other types of malig-
nancy allow. 

 In CTCL, STAT3 phosphorylation is increased 
in a cytokine-independent manner, possibly as a 
consequence of defective T-cell receptor signal-
ling  [  35–  40  ] . Duvic and colleagues explored the 
mechanisms of action of HDACi using immuno-
histochemistry on primary patient samples in the 
phase II study of vorinostat  [  11,   41  ] . They showed 
that phospho-STAT3 was increased in the 
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cytoplasm and the nucleus of lymphocytes and 
keratinocytes at baseline in all patients in whom 
biopsies were performed. Repeat immunohis-
tochemistry after 4 weeks of treatment showed 
reduced levels of phospho-STAT3 in the nucleus 
in 9 of 11 patients with clinical improvement and 
in only 3 of 16 who did not show a clinical 
improvement. Interestingly, overall pSTAT-3 was 
 increased  in the cytoplasmic compartment, sug-
gesting that vorinostat does not alter expression 
of pSTAT3, but rather it impedes its ability to 
translocate to the nucleus and function as a tran-
scription factor. Fantin  [  11  ]  went on to examine 
more baseline samples and suggested that patients 
with higher baseline nuclear p-STAT3, and base-
line nuclear p-STAT1 were likely to be resistant 
to vorinostat. Researchers investigating the 
mechanism of panobinostat using in vitro and 
in vivo models, have suggested that vorinostat 
resistance in particular CTCL cell lines could be 
overcome by panobinostat, via reduction in the 
overall quantity of activated p-STAT3 in cells 
 [  42,   43  ] . These  fi ndings have not been replicated 
by other investigators and the differences in 
methodology make it dif fi cult to make de fi nitive 
statements about the precise effect of HDACi on 
STAT3 signalling; however, it is reasonable to 
conclude that reduced STAT3 signalling repre-
sents both a potential mechanism of action and 
resistance for HDACi in CTCL and further inves-
tigation is required. 

 In addition to the observations on STAT3, the 
immunohistochemical work of Duvic et al .  showed 
that thrombospondin 1, an inhibitor of angiogen-
esis, is upregulated after exposure to vorinostat, 
supporting the hypothesis anti-angiogenic effects 
are important to HDACi activity in CTCL.  [  41  ]  
Work from  Ellis  et al.  [  44  ]  has provided further 
support for the anti-angiogenesis hypothesis. 

They performed serial gene-expression pro fi ling 
on samples from ten patients with CTCL treated 
with panobinostat and showed consistent changes 
in expression in a set of 23 genes, including 
down-regulation of expression the angiogenic 
genes GUCY1A3 and ANGPT1. 

 Following a genome-wide loss of function 
screen on cell lines which suggested that cells 
with higher expression of RAD23B/HR23B  [  45  ] , 
Khan and colleagues went on to show that patients 
whose tumours had higher levels of expression 
HR23B by immunohistochemistry at baseline 
were more likely to have responsive disease. 
HR23B has a ubiquitin-like domain and shuttles 
proteins to the proteasome for degradation. The 
 fi nding supported the concept that disruption of 
the proteasome is important in CTCL, and the 
authors suggested that it could be a useful bio-
marker. Further studies elucidating the precise 
mechanism and whether romidepsin exerts a 
similar effect are required.  

   Clinical Studies 

   Cutaneous T-Cell Lymphoma 

 The selection of CTCL and PTCL as a candidate 
diseases for the HDACi came through results 
from conventionally designed, broadly inclusive 
clinical phase I trials as opposed to a clear pre-
clinical rationale.  [  46  ]  HDACi therapy induces 
objective responses in a signi fi cant minority of 
patients, in the order of 25–30% across studies. 
The responses take a median of 8 weeks and up to 
2 years to occur, and appear to last somewhere 
between 6 months and a year in responding 
patients; however, median treatment duration 
was in only about 3 months across the studies. 

   Table 16.2    Pharmacokinetic properties of registered HDACis   

 Vorinostat PO  [  71–  73  ]   Romidepsin IV  [  74,   75  ]  

 t1/2  1.5–2 h  3 h 
 Protein binding (%)  71  >90 
 Metabolism  Hepatic (glucoronidation)  CYP3A4, 5 (minor) 
 Excretion  <1% intact drug excreted renally  66% excreted in bile in pre-clinical models 
 Bioavailability  43%  N/A 
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A proportion of patients bene fi t from protracted 
clinical responses as well as signi fi cant improve-
ments in more subjective symptomatic end-points 
such as erythema and pruritis. This comes at the 
cost of other symptoms such as asthenia and gas-
trointestinal side effects, as well as reversible 
thrombocytopenia, which appear to vary between 
the various HDACis and doses administered.   

   Response Criteria 

 Consensus response criteria for CTCL have only 
recently been published, but warrant discussion 
here because variations in response criteria affect 
interpretation of studies of CTCL  [  47  ] . The new 
consensus criteria incorporate a composite assess-
ment of responses in the skin, blood, nodes and 
viscera. Cutaneous response criteria utilise 
changes in the mSWAT tool (Table  16.3 )  [  48  ]  in 
which overall body surface area involvement and 
disease type is incorporate in the overall score. 
Unfortunately all CTCL response criteria are 
somewhat subject to inter-observer variability. 
An important aspect of the consensus criteria is 

that responses, including progression, require 
con fi rmation at least 4 weeks after the initial 
observation. This stipulation prevents patients 
coming off-study due to a temporary disease  fl are 
or the typical minor clinical  fl uctuations charac-
teristic of CTCL.  

 The studies presented here all precede the 
release of the consensus criteria and so the trials of 
HDACi in CTCL are dif fi cult both to interpret, 
and to compare with each other. (Table  16.4 ) 
Interestingly, some do not incorporate visceral 
responses, and others do not include the mSWAT. 
For example, criteria for progression in the 
panobinostat study mandated patients come off 
study after minor progression (25% increase in 
mSWAT) which after a deep response might still 
represent a signi fi cant improvement over the 
patient’s baseline condition. The authors of the 
conventional response criteria do not provide a 
single agreed measure of the pruritis that accom-
panies Sézary syndrome. Choice of that endpoint 
varies across the studies presented here but most 
commonly a 30 mm or 30% reduction in a 100 mm 
visual/analogue scale was considered as consistent 
with a signi fi cant clinical symptomatic response.   

   Table 16.3     The mSWAT (modi fi ed severity weight assessment tool).  Patch = any size lesion without induration or 
signi fi cant elevation above the surrounding uninvolved skin; plaque = any size lesion that is elevated or indurated; crust-
ing, ulceration or poikiloderma may be present tumour = any solid or nodular lesion  ³  1 cm in diameter with evidence of 
deep; Tumour = in fi ltration in the skin and/or vertical growth.  [  47,   48  ]    

 Body region (%BSA)  Patch*     Plaque*  Tumour* 

 Head (7) 
 Neck (2) 
 Anterior trunk (13) 
 Arms (8) 
 Forearms (6) 
 Hands (5) 
 Posterior trunk (13) 
 Buttocks (5) 
 Thighs (19) 
 Legs (14) 
 Feet (7) 
 Groin (1) 
 Subtotal of lesion BSA 
 Weighting factor  X 1  X 2  X 4 
 Subtotal lesion BSA x weighting factor 
 mSWAT score = summation of each column line above 
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   Table 16.4    Response assessment methods varied considerably in studies of all patients in studies of CTCL   

 Drug  First author  Notes on response assessments 

 Vorinostat  Olsen  [  50  ]   Skin: mSWAT  [  48  ]  
 PR: 50% reduction in mSWAT 
 CR:100% clearing of skin disease 

 PD: 25% worsening of mSWAT from baseline or  ³ 50% increase in SPD of nodal 
disease 
 Date of relapse: mSWAT score from nadir to a more than 50% difference between 
the baseline and the nadir 

 Con fi rmation of CR/PR:  ³ 4 weeks 
 Con fi rmation of SD: not de fi ned 
 Pruritis: VAS with 30 mm reduction for at least 4 weeks considered signi fi cant, 
with no increase in use of anti-pruritis medications 
 Separate reporting of nodal response, not reported in overall response 
results— ³ 50% reduction in nodal disease or  ³ 25% reduction in blood tumour 
burden 

 Duvic  [  41  ]   Physician’s Global Assessment of Clinical Condition (PGA)  [  76  ]  

 PR:  ³ 50% improvement in either BSA or skin score with reduction of lymph 
nodes or blood when involved 

 PD:  ³ 25% increase in the number or area of clinically abnormal nodes, or % of 
BSA or new visceral disease or increase in circulating Sézary cells 
 Pruritis: 30% reduction of VAS for 4 weeks 
 Con fi rmation of CR/PR: 4 weeks 
 Con fi rmation of SD: 8 weeks 
 Con fi rmation of PD: 4 weeks 

 Romidepsin  Whitakker  [  52  ]   LN: RECIST  [  77  ]  
 Skin: Composite of SWAT  [  48  ]  score and erythroderma scores.  [  78  ]  
 PR: 50% improvement in the  sum of  Cheson, SWAT and erythroderma scores but 
with  ³ 30% improvement in skin, and no worsening at any site 
 PD: new cutaneous or non-cutaneous tumour or >25% improvement in the sum of 
the three assessments or  ³ 15% worsening of skin 
 CR: response at all sites 
 Pruritis: VAS with 30 mm reduction for at least two cycles considered signi fi cant. 

 Piekarz  [  51  ]   Skin or Viscera: RECIST  [  77  ]  
 LN: IWG/Cheson  [  56  ]  
 Erythroderma: present or absent 
 Flow presence: present or absent 
 PR: either a response in the skin or lymph nodes 
 CR: a response in all sites of disease 

 Panobinostat  Duvic  [  53  ]   Skin: mSWAT, PGA 
 Lymph nodes: Con fi rmatory CTs were performed to excluded disease progression 
in the nodes at the time of response in the skin 

 PD:  ³ 25% increase in mSWAT compared to nadir 
 Con fi rmation of progression not required 

  Abbreviations: PGA Physician’s global assessment of clinical condition, mSWAT-modi fi ed severity weighted assess-
ment tool  
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   Ef fi cacy 

   Vorinostat 

 Vorinostat (suberoylanilide hydroxamic acid, 
SAHA) was the  fi rst HDACi approved by the 
FDA, in 2006, for patients with CTCL who had 
failed two prior systemic therapies.  [  49  ]  Clinical 
response data came from two phase II studies: a 
pivotal, single-arm study of 74 patients  [  50  ]  and a 
smaller 3-arm, sequential, non-randomised study 
that recruited 33 patients to treatment on one of 
the three treatment schedules of vorinostat.  [  41  ]  

 In the pivotal study by Olsen et al . , subjects 
received 400 mg/day, now the FDA-recommended 
dose. 61 of the 74 patients (82%) had clinically 
advanced disease, 30 (40.5%) had Sézary syn-
drome and all had been exposed to two (median 
3) prior systemic therapies: 96% to oral bexaro-
tene; 64% to interferon and 60.8% to systemic 
chemotherapeutics. Reported response rates were 
limited to cutaneous responses, and based on 
reductions in the mSWAT. Although baseline 
computed tomography scans were performed, 
and visceral disease monitored during the study, 
formal response criteria and response data did 
not include visceral disease. (Table  16.4 ) The 

overall response rate was 29.7% (95% CI 19.7–
41.5) and a response was seen in a third of patients 
with Sézary syndrome; however, only 1 patient 
experienced a complete remission. (Figure  16.4 ) 
An additional 48% had a measurable disease 
improvement (See diagram). Pruritis improve-
ment (rather then resolution) was experienced by 
a third of the 65 patients who recorded a score of 
3 or above at baseline. Responses occurred after 
a median of 8 weeks and lasted a median of 
6.1 months.  

 Duvic et al .  simultaneously conducted a sec-
ond study, exploring 3 dose levels of vorinostat. 
Patient characteristics were similar to the pivotal 
study by Olsen. Patients were sequentially 
enrolled into the open dose level: 400 mg daily 
( n  = 13), 300 mg bd 3,4 or 5 days a week ( n  = 11) 
and 300 mg bd x 14 days, with 7 days rest, with 
200 mg bd maintenance ( n  = 9). Each of these 
doses had been established as MTDs in previous 
phase I studies. The overall response rate was 
comparable between the three dose levels, 
although was perhaps poorer for the intermittent 
dosing schedule (group 2). The overall response 
rate was 24%. The authors described a “clinical 
bene fi t”, as determined by stable disease, pruritis 
relief, or both in an additional 19 (58%) of the 
study patients. In common with the study by 

  Figure 16.4    Percentage change in mSWAT in the pivotal 
study of vorinotsat, 47 of 61 patients had a reduced 
MSWAT score. [Reprinted from Olsen EA, Kim YH, 
Kuzel TM, et al. Phase IIb multi-centre trial of vorinostat 

in patients with persistent, progressive or treatment 
refractory cutaneous T-cell lymphoma. J Clin Oncol 
2007;25:3109–15. With permission from American 
Society of Clinical Oncology.]       
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Olsen, was the observation that a broad range of 
clinical CTCL presentations, with responses seen 
in patients with and without Sézary syndrome 
and of clinical symptoms such as pruritis. 
Although statistical comparisons were not possi-
ble, it was argued that the intermittent dosing 
schedule was probably less effective due to a 
relative, albeit unproven, reduction in drug-
induced histone hyperacetylation. The onset of 
response was similar in tempo to the study by 
Olsen, as was the time to progression. Those who 
achieved an objective response were able to 
maintain it for 9.4–19.6 months (median of 15.1). 
In both studies, the median duration of treatment 
was 8 months (range, 1–67).  

   Romidepsin 

 The cyclic peptide romidepsin (depsipeptide, 
FK228, FR901228) is, by contrast to vorinostat, a 
more speci fi c inhibitor of class-I histone deacety-
lases. However this does not appear to have been 
detrimental to clinical effect. To its potential dis-
advantage, romidepsin is only available as an 
intravenous formulation. Data is available from 
two large phase II studies, an international study 
based at the NCI in the United States  [  51  ] , the 
other, European  [  52  ] . The treatment schedule 
was identical across both studies, 14 mg/m 2  intra-
venously, days 1, 8 and 15 of a 28-day cycle. 

 The NCI study by Piekarz  [  51  ]  included patients 
with both CTCL and PTCL and utilised the RECIST 
criteria which is typically reserved for studies of 
non-haematological solid tumours. These criteria 
stipulate the selection of a limited number of mea-
surable lesions at baseline (minimum 10 mm by 
calliper), and a partial response requires a 30% 
reduction in the maximal diameter of all target 
lesions. The system is perhaps not well suited to the 
patches and plaques of CTCL, nor to the potential 
for multiple lesions below the measurable length 
required for the baseline assessment. Nodal assess-
ment used the Cheson/IWG criteria, in which a 
partial response requires a 50% reduction in the 
sum of the product of the diameters of the target 
lesions. Symptomatic responses, such as improve-
ment in pruritis, were not reported. 

 The study design was the Simon 2-stage, with 
the initial cohort of patients not having received 
more than two systemic therapies. The 44 patients 
recruited in the second stage of the study had 
been more heavily treated and in the overall 
study, patients had received a median of four 
prior regimens. The severity of disease was simi-
lar to the other studies of HDACi in CTCL 
(Table  16.5 ). The overall response rate of 34% 
included four complete remissions. Three of 
these occurred in the relatively treatment naïve 
 fi rst-stage study. Of the 20 patients that experi-
enced a partial response, 13 had involvement of 
blood, nodes or viscera. The response duration 
was 13.7 months for the 24 patients achieving a 
CR or PR, and 4 months for those with stable dis-
ease. As with the vorinostat studies, responses 
occurred at a median of 8 weeks.  

 The pivotal 33-centre phase II study of 
romidepsin by Whittaker et al.  [  52  ] . con fi rmed 
the observations by Piekarz et al. 96 patients were 
treated. Response criteria were more rigorous in 
regard to the skin, using the mSWAT tool 
(Table  16.3 ,  16.4 ) but were more inclusive for 
lymph nodes, using the RECIST criteria. The 
authors had an umbrella response score that 
incorporated all domains of disease (skin, blood 
and nodes). Nevertheless, they were able to dem-
onstrate an identical response rate of 34%; time-
to-response of 8 weeks and response duration of 
15 (0–19.8) months. (Fig.  16.5 , Table  16.6 ) This 
study included assessment of pruritis by a visual 
scale, as used in the vorinostat studies, and 
 ³ 30 mm reduction was seen in 43% of the 65 
patients with pruritis, including those without 
objective disease responses.    

   Panobinostat 

 Like vorinostat, panobinostat is also available in 
oral formulation. Of the studies presented here, 
the response criteria used in the study for panobin-
ostat were the most comprehensive; however, the 
criteria used did not require a second con fi rmation 
of progression prior withdrawal of patients from 
the study. In an attempt to adjust for this differ-
ence the authors presented multiple post hoc 
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analyses of patient outcomes, adjusting for the 
variation in criteria for progression. Patients enter-
ing this study were strati fi ed by whether they had 
received systemic bexarotene as it was hypothe-
sised that the response rate would be less in those 
who had. That hypothesised difference was not 
born out in the crude number of responses; how-
ever, bexarotene naive patients appeared to enjoy 

a (statistically insigni fi cant) longer response. 
Taken together, the lower RR in this study is 
dif fi cult to place into context of the results reported 
with vorinostat or romidepsin and at this time it is 
not possible to determine whether this drug has 
inferior ef fi cacy (Table  16.6 ). 

 Speci fi cally, 139 patients were treated in the 
study (see Table  16.5 ). 79 patients (59%) had 

   Table 16.5    Patient characteristics in clinical studies of HDAC inhibitors for cutaneous T-cell lymphoma   

 Vorinostat  Romidepsin  Panobinostat 

 First Author  Olsen  [  50  ]   Duvic  [  41  ]   Whitakker  [  52  ]   Piekarz  [  51  ]   Duvic  [  53  ]  
 Total number  74  33  96  71  139 
 Age; Median (range)  60 (39–83)  67 (26–82)  57 (mean)  57 (28–84) 
 CTCL stage ( n,  %) 
 IA  0  1 (3)  0  1 (1.4)  36 (25.9) 
 IB  11 (14.9)  3 (9)  15 (16)  6 (8.5) 
 IIA  2 (2.7)  1 (3)  13 (14)  2 (2.8) 
 IIB  19 (25.7)  5 (15)  21 (22)  15 (2.1)  70 (50.4) 
 III  20 (27)  5 (15)  23 (24)  6 (8.5) 
 IVA  18 (24.3)  10 (30)  25 (25)  28 (3.9)  0 
 IVB  4 (5.4)  8 (24)  0  13 (18.3)  33 (23.7) 
 Number of prior therapies;  n  (range)  3 (1–12)  5 (1–15)  4 (1–11)  4 (0–14)  4 (1–15) 
 Time from original diagnosis 
years (range) 

 2.9 (0.7–27.3)  3.3 (0.2–27.2)  3 (1–26)  –  2.8 (0.1–42) 

 Sézary syndrome  30 (40.5)  11 (33)  37 (39)  –  38(23.7) 
 Prior oral bexarotene  71 (95.9)  22 (67)  32 (33)  45 (63.4)  79 (57) 
 Prior chemotherapy  45 (60.8)  29 (88)  74 (77)  65 (91.5)  – 

  Figure 16.5    Sézary cell counts for 6 of 13 patients with 
higher blood tumour burden in the study of romidepsin by 
Whittaker et al.  [  52  ]  [Reprinted from Whittaker SJ, 
Demierre M-F, Kim EJ, et al. Final Results From a 

Multicenter, International, Pivotal Study of Romidepsin in 
Refractory Cutaneous T-Cell Lymphoma. Journal of clini-
cal oncology. 2010;28(29):4485–4491. With permission 
from American Society of Clinical Oncology.]       
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previously been treated with oral bexarotene 
 [  53  ] . Patients had similar characteristics to those 
included in other HDACi studies. The overall 
response rate was 17.3%; 15.2% in those previ-
ously exposed to bexarotene and 20% in those 
who were not. Conversely, the crude response 
rate was higher in bexarotene-exposed patients 
with Sézary syndrome (6 of 21, 28.6%) than bex-
arotene-naïve Sézary patients (2 of 12, 16.7%). 
The median duration of response in bexarotene-
exposed patients was 5.6 months, and was not 
reached at a median follow up of months 
(Table  16.6 ). By applying alternative response 
criteria similar to those used in the other studies, 
where con fi rmation of progression at least 
4 weeks after  fi rst documentation was required, 
the adjusted duration of response was reported as 
9.2 months in the bexarotene-exposed group. 
A quarter of the 97 patients with pruritis experi-
enced relief, somewhat less impressive than the 
results for vorinostat and romidepsin. 

 The authors attributed the lower response rate 
of CTCL to panobinostat to two possible causes: 
insuf fi cient dose and premature withdrawal of 
patients due to progression that was not con fi rmed 
with a period of observation. After re-analysis of 
the data, only 7 of the 84 patients who progressed 
during the study period would not have been con-
sidered to have progressed if a second conforma-

tion was required. This analysis raised the overall 
response to 19.4%.Whether attempts to develop 
panobinostat at higher doses for CTCL will pro-
ceed, remains to be seen. Selected phase II dose 
was based on phase I data from other indications, 
and experience in Hodgkin lymphoma suggests 
that higher doses of panobinostat are likely to be 
more effective. At the time of writing, panobinos-
tat is being developed primarily for use in 
myeloma in combination with other agents. 
Overall the clinical  fi ndings from studies of 
HDACi with CTCL are consistent, demonstrat-
ing responses in about a third of patients lasting 
from 6 months to beyond 18 months in a 
signi fi cant minority. This class of agent also 
offers some symptomatic pruritis relief and 
appears to be safe.  

   Romidepsin in PTCL 

 Presently, no HDACis are approved for the treat-
ment of PTCL. The majority of the clinical data 
come from the studies of romidepsin. The NCI-
led study of romidepsin by Piekarz et al. ,  referred 
to above, reported the outcomes of patients with 
PTCL separately from that of CTCL  [  54  ] . 
Response assessment for nodal disease in this 
and in the other major study in PTCL was by 

   Table 16.6    Results from key studies of HDAC inhibitors for CTCL . Abbreviations: TTP: time to progression   

 Vorinostat  Romidepsin  Panobinostat 

 First Author  Olsen  [  50  ]   Duvic  [  41  ]   Whitakker  [  52  ]   Piekarz  [  51  ]   Duvic  [  53  ]  
 Total number  74  33  96  71  139 
 Overall response (%)  29.7  24.2  34  34  17.3 
 Complete responses;  n  (%)  1 (1.4)  0  6 (6)  4 (7)  2 (1.4) 
 Median weeks to 
response (range) 

 7.9 (4–24.4)  11.9 
(3.6–21.9) 

 8 (3.6–19.2)  8 (4–24)  10.8 (range not 
available) 

 Median duration of 
response; months (range) 

 NR but estimated 
 ³ 6.16 (1–14.7) 

 15.1 
(9.4–19.6) 

 15 (0–19.8)  13.7 (1–76)  5.6 months in 
bexarotene exposed 
and not reached in 
the bexarotene naïve 
group. 

 TTP (months)  4.9 ( ³ 9.8 for stage 
IIb or greater) 

 2.82  8 (0–21.7)  15.1 for those 
responding 

 ?? 

 5.9 for SD 
 1.9 for the rest 

 Duration of treatment; 
median months (range) 

 8 (4–67)  8 (1–67)  –  4 (1–72)  3 (0.2–29.6) 
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standard lymphoma IWG guidelines  [  55,   56  ] . All 
patients with PTCL had been exposed to systemic 
chemotherapy and 38% to stem cell transplanta-
tion; 40% of patients had previously received 
radiation. The dose and administration was the 
same as for patients with CTCL; 14 mg days 1,8 
and 15 of a 28-day cycle. Responses are listed in 
Table  16.7 . The overall response rate was 38%, 
with complete responses observed in eight 
patients (18%). The time to response was compa-
rable to that seen in CTCL—approximately 
2 months. Those with only stable disease ( n  = 5) 
had a median time to progression of 6 (range 
3–12) months, with those with PR (9,20%) had a 
median response of 5.2 months, with some expe-
riencing protracted periods of time on treatment. 
Overall, the median number of cycles delivered 
was three (1–57), with 22 of 47 patients receiving 
less than or equal to two cycles. Toxicities are 
discussed below.  

 A multi-centre, international study of 131 
patients from 48 centres has recently been com-
pleted and reported by Coif fi er et al.  [  55  ] . The 
mean age of patients was 59, and a median of 2 
prior systemic therapies had been given. 16% of 

patients had received autologous stem cell 
transplantation, and all but one systemic chemo-
therapy. 38% were refractory to the immediate 
prior therapy. The overall response rate was 30%, 
which included 21 patients (16%) with a CRu or 
better. 17% of patients withdrew because of 
adverse events. The authors noted that the 
response rate was similarly high in patients who 
had been refractory to their most recent therapy, 
reassuring evidence that the HDACis are target-
ing genuinely novel molecular pathways from 
those of conventional chemotherapy. 

 There does not appear to be a particular dif-
ference in ef fi cacy across the PTCL subtypes; 
however, the frequency of speci fi c entities other 
than PTCL-NOS is low in both trials. The larg-
est subtype of PTCL studied in the romidepsin 
trials other than PTCL, NOS was angioimmu-
noblastic lymphoma. While only one of six 
patients (16%, 95% CI 0.04–64%) with angio-
immunoblastic lymphoma responded in the 
NCI study,  [  54  ]  8 of 27 (29%, 95%CI 13.75–
50.18%) patients responded in the study by 
Coif fi er et al., similar to the overall response 
rate for PTCL, NOS. The numbers of patients 

   Table 16.7    Patient characteristics in studies with PTCL. Central review a    

 First Author  Piekarz  [  54  ]   Coif fi er  [  55  ]  

 Total patient number  47  130 
 Median Age (range)  59 (27–84)  61 (20–83) 
 Stage III/IV (%)  45 (96%)  70 
 Marrow involvement (%)  14 (28%)  36 (28%) 
 Elevated LDH  26 (55%) 
 PTCL NOS  27 (57%)  27 (21%) 
 Angioimmunoblastic  7 (15%)  27 (21%) 
 ALCL ALK Positive  2 (4%)  1 (0.7%) 
 ALCL ALK negative  2 (4%)  21 (16%) 
 Cutaneous ALCL  2 (4%)  – 
 Other  4 (8%)  12 (9.2%) 
 DLBCLa  1(2%) 
 Overall response  16 (38%)  38 (39%)b 
 Complete response  8 (18%)  18 (14) 
 Median response duration, months (range)  8.9 (2–74)  3 (<1–28+) 
 Median time to response, months  1.8  1.8 
 Response duration in complete responders, months (range)  29.4 (3–74)  14 (1.2–26.7+) 
 Response duration in partial responders, months (range)  5.2 (2–23, ongoing)  17 (0.5–34, ongoing) a  
 Response duration in patients with stable disease  6 (3–12)  Not provided 
 Median duration of treatment, months (range)  3 (1–57)  1.4 (mean 4.2) 
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with other subtypes of PTCL are fewer, thus no 
clear conclusions about differential responses 
can be made.  

   Safety and toxicities 

 As a class of agents, the HDACis share common 
toxicities, which, with the exception of diarrhoea, 
do not seem to differ by the HDAC speci fi city of 
the agent. Key toxicities in the studies in CTCL 
are summarised in (Table  16.8 ). While they 
appear dose-dependent, they are on the whole 
across the  fi ve studies and the three agents dis-
cussed here. In practical use, the most consistent 
and troublesome toxicities are the mild fatigue 
and asthenia experienced by approximately half 
of patients. Similarly common are disorders of 
taste. Nausea is frequent but more easily treated 
with standard antiemetics. Thrombocytopenia 
occurred in up to 40% and was severe (grade III/
IV) in up to 20%. The thrombocytopenia of 
HDACis is rapidly reversible upon withdrawal of 
the drug and does not appear to relate to cumula-
tive drug exposure.  [  57  ]  While megakaryocyte 
numbers increase in response to HDACi, platelet 
budding is defective, owing to drug-induced 
phosphorylation of the myosin light chain.  [  58  ]   

 Readers familiar with the treatment of 
advanced CTCL with systemic chemotherapy 

will immediately notice the low rates of grade III/
IV neutropenia, sepsis or febrile neutropenia 
associated with the use of HDACis (see 
Table  16.8 ). This difference is one of the key 
advantages of the HDACi, in that they can induce 
systemic responses without requiring the aggres-
sive prophylaxis against infection or hospitalisa-
tion frequently required in patients receiving 
myelosuppressive combination therapy (espe-
cially those with Sézary syndrome). 

 As consequence of rare episodes of cardiac 
dysrhythmia in the phase I studies, ECG assess-
ments were systematically performed in the 
larger HDACi studies. ECG changes have been 
observed in each of the HDACi discussed here 
but only rarely have they been of clinical 
signi fi cance. Clinically insigni fi cant QTc prolon-
gation was recorded in 3 patients in the study of 
vorinostat by Olsen  [  50  ]  and was not reported in 
the study by Duvic.  [  41  ]  T wave  fl attening was 
seen in 71% of patients in on the NCI romidepsin 
study, and ST depression in 9%. Clinically 
signi fi cant QTc prolongation was reported in two 
patients on the European romidepsin study, which 
also reported an average prolongation of the QTc 
interval of 4.6 ms.  [  51,   59  ]  More detailed study 
of the initial 42 patients in that trial, which 
included Holter monitoring in nine patients, 
showed that the changes in QTc were not associ-
ated with elevated cardiac troponin or to changes 
in left ventricular ejection fraction.  [  60  ]  One 
patient had a QTc of >500 ms; however, this 
occurred in association with abnormal potassium 
and magnesium levels. Panobinostat and vorinos-
tat also have reports of prolongation of the QTc, 
rarely as long as 60 ms in the case of panobinos-
tat  [  61  ]  or 30 ms after a single supratherapeutic 
dose of vorinostat  [  62  ] . QTc prolongation may 
well be dose and schedule dependent  [  63  ] . 
Despite prolongation of the QTc less than what 
would usually be considered as signi fi cant by 
regulators, regular ECG monitoring remains a 
component of the ongoing prospective trials. 
Replenishment of potassium and magnesium 
(which may be especially lowered in CTCL)  [  64  ]  
to within normal limits prior to therapy is recom-
mended, particularly prior to administration of 
intravenous romidepsin. In addition, drugs which 

   Table 16.8    Common toxicities from studies of HDAC 
inhibitors in CTCL. Approximate ranges are given and 
rates of toxicities are generally similar between the agents, 
with the probable exception of diarrhoea which appears to 
be less common for romidepsin   

 Most frequent 
toxicities (all grades) 

 Diarrhoea ~50% for 
pan-HDACi and ~10% 
for romidepsin 
 Fatigue ~40% 
 Nausea ~20–40% 
 Anorexia ~20% 
 Thrombocytopenia ~11–50% 
 Taste disturbance ~10–50% 

 Grade III/IV toxicities  Fatigue/aesthenia ~5–7% 
 Thrombocytopenia 5–20% 
 Anaemia 2–8% 
 Neutropenia ~10% 
 Sepsis 1–5% 
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are known to cause prolongation of the QTc 
should be avoided. 

 All HDACis should be considered contraindi-
cated in pregnancy. Romidepsin competes with 
oestrogen for its receptor and therefore, and as is 
usually the case with other anti-cancer agents, it 
cannot be assumed that the oral contraceptive pill 
provides suf fi cient protection against conception.  

   Placing HDACi in the overall therapy 
of T-cell lymphoma, future directions 

 Based on the evidence and label restrictions, we 
reserve HDACi for second or subsequent-line 
therapy of CTCL, and a future role for HDACi in 
other forms of PTCL seems likely  [  65  ] . The pos-
sibility of protracted responses makes HDACi an 
attractive option for patients with advanced and 
symptomatic CTCL. HDACis are also effective in 
earlier stages of disease. These agents are gener-
ally well tolerated; however, the later onset of 
response makes HDACi a poor choice if rapid 
control of symptoms is desired. We frequently 
 fi nd that palliative doses of corticosteroids are 
needed to ease symptoms in CTCL while a 
response to the HDACi is anticipated. 
Combinations with other agents to improve 
response rates present an attractive concept, with 
a strong rationale existing for combinations with 
proteasome inhibitors and other biological thera-
pies  [  66  ] . HDACi may also be useful as a chemo- 
or radiotherapy-sensitising agent.  [  67  ]  
Combination with conventional chemotherapeu-
tics is being tested in Groupe d’Etude des 
Lymphomes de l’Adulte-led dose escalation study 
of romidepsin in combination with CHOP chemo-
therapy (Ro-CHOP, NCT01280526) for PTCL. 
The results of these trials are eagerly awaited.       
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