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Abstract  Cells of diverse origin utilize shifts in cytosolic calcium concentrations as 
intracellular signals to elicit physiological responses. In endothelium, inflammatory 
first messengers increase cytosolic calcium as a signal to disrupt cell-cell borders 
and produce inter-cellular gaps. Calcium influx across the plasma membrane is 
required to initiate barrier disruption, although the calcium entry mechanism respon-
sible for this effect remains poorly understood. This chapter highlights recent efforts 
to define the molecular anatomy of the ion channel responsible for triggering 
endothelial cell gap formation. Resolving the identity and function of this calcium 
channel will pave the way for new anti-inflammatory therapeutic targets.

Keywords  Acute lung injury • Vascular barrier dysfunction • Endothelial cells  
• transient receptor potential channel • lung microvascular endothelium

1 � Introduction

Lung endothelium forms a semipermeable barrier that restricts water, solute, and 
macromolecular access to the interstitium, which is important in optimizing gas 
exchange. Inflammation disrupts this barrier function, causing accumulation of a 
protein-rich fluid in interstitial and alveolar compartments that compromises gas 
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exchange and contributes to the genesis of acute respiratory distress syndrome. A 
unifying finding is that multiple different inflammatory agents promote calcium 
influx across the endothelial cell plasma membrane. This calcium influx triggers 
cytoskeletal reorganization that initiates intercellular gap formation and increases 
permeability. However, endothelial cells express many different ion channels, 
bringing into question exactly which channel provides the calcium source that reor-
ganizes the cytoskeleton and induces gap formation necessary to increase permea-
bility. Findings indicate that transient receptor proteins (TRPs) within the canonical 
family (TRPC) contribute subunits of an ion channel that provides the calcium 
source needed to disrupt cell-cell adhesion and induce endothelial cell gaps. Indeed, 
we have found that endothelial cells, both in vitro and in vivo, express an endoge-
nous channel that possesses TRPC1, TRPC3, and TRPC4 subunits, a so-called 
TRPC1/3/4 channel, which importantly regulates endothelial cell barrier function. 
This chapter reviews the calcium channels that are expressed in lung endothelium 
and addresses regulation and function of the TRPC1/3/4 channel.

2 � Fidelity of Calcium Signals in Endothelium

Many neurohumoral inflammatory mediators bind membrane receptors and promote 
calcium influx across the plasma membrane, resulting in increased endothelial 
cell permeability.1–3 However, the molecular composition of the calcium channels 
responsible for increased endothelial cell permeability is poorly understood. It is 
remarkable to consider that as recently as 1990, not a single endothelial cell cal-
cium channel was known.4 We presently know of at least six different endothelial 
cell calcium channels, including the TRPC1/3/4 channel that is the focus of this 
chapter, an Orai1-containing channel,5 a TRPC3/6-containing channel,6–11 a 
T-type calcium channel,12–14 a TRPV4 (TRP channel of the vanilloid subfamily)-
containing channel,6,15–21 and a cyclic nucleotide gated channel.22–27 While we 
recognize that endothelial cells express a diversity of calcium channels, the 
molecular anatomy, regulation, and physiological function of these channels rep-
resent important areas of ongoing investigation.

Study of calcium channel diversity has led to new and unexpected insight regarding 
the unique behaviors of endothelium along the pulmonary vascular tree. For example, 
the T-type calcium channel is expressed only in lung capillary endothelium and is not 
found in extraalveolar pulmonary artery or vein endothelium.14 Activation of this chan-
nel is essential for P-selectin surface expression but does not increase endothelial cell 
permeability (Songwei Wu, personal communication). The TRPV4 channel is also 
expressed predominantly in lung capillary endothelium,17 but in contrast to the T-type 
calcium channel, its activation increases capillary endothelial cell permeability and 
does not influence P-selectin surface expression 90. Thus, T-type and TRPV4 calcium 
channels are expressed in the same vascular segment, and while activation of each of 
these channels increases endothelial cell calcium, the T channel calcium signal trans-
locates P-selectin from the cytosol to the plasma membrane, whereas the TRPV4 
calcium signal increases endothelial cell permeability.
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Like the TRPV4 channel, activation of the TRPC1/3/4 channel increases 
endothelial cell permeability.28–32 However, two critical differences have been noted 
regarding the activation and function of these channels. First, the TRPC1/3/4 channel 
is expressed in pulmonary artery, capillary, and vein endothelium; when the 
TRPC1/3/4 channel is activated, it increases permeability in all three vascular 
segments,28–32 whereas TRPV4 increases permeability primarily in the capillary 
segment.17 Second, TRPC1/3/4 activation induces interendothelial cell gaps, both 
in vivo and in vitro, resulting in a paracellular pathway for fluid and macromolecu-
lar permeability,31,32 as originally described by Majno and Palade in 1961.33,34 In 
contrast, TRPV4 activation does not induce interendothelial cell gap formation; 
rather, calcium influx through TRPV4 decreases cell-matrix tethering and results in 
endothelial cell sluffing.17 Thus, TRPC1/3/4 and TRPV4 channels provide calcium 
influx pathways that regulate quite different cell functions.

3 � Activation of Store-Operated Calcium Entry Increases 
Endothelial Cell Permeability

Formation of interendothelial cell gaps is now a well-recognized cause of tissue 
edema. Pioneering studies by Majno and Palade33,34 first revealed that neurohumoral 
inflammatory mediators induce interendothelial cell gaps in postcapillary venules 
of the systemic circulation, although the cellular basis of this observation was not 
known. Since the time of these original observations, many G

q
-linked calcium ago-

nists, such as bradykinin, histamine, thrombin, and platelet-activating factor, have 
been shown to activate membrane calcium channels and promote calcium influx 
that induces gap formation in both systemic and pulmonary endothelium.1 G

q
-

linked agonists hydrolyze phosphatidyl inositol 4,5-bisphosphate into inositol 
1,4,5-trisphosphate (IP

3
)  and diacylglycerol, both of which are important intracel-

lular signals. InsP
3
 releases calcium from the endoplasmic reticulum, and the tran-

siently depleted calcium store triggers calcium entry across the cell membrane 
through so-called store-operated calcium entry channels, as originally described by 
Putney.35 The activation of store-operated calcium entry serves two functions; it 
initiates physiologically important intracellular responses, and it replenishes the 
depleted calcium store. The endoplasmic reticulum calcium-filling state is therefore 
inversely related to how much calcium enters the cell from across the plasma mem-
brane. In contrast to this mechanism of calcium entry, diacylglycerol activates 
another calcium entry pathway, generally referred to as receptor-operated calcium 
entry. Our specific focus has been to resolve the molecular anatomy of store-oper-
ated calcium entry pathways and not receptor-operated calcium entry pathways as 
considerable evidence demonstrated that activation of store-operated calcium entry 
induces interendothelial cell gaps and increases endothelial cell permeability.

Store-operated calcium entry channels can be directly activated by agents that 
deplete endoplasmic reticulum calcium.35 Endoplasmic reticulum calcium can be 
reduced by chelating intracellular calcium, using the calcium chelators N,N,N¢,N¢-
tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) and 1,2-bis(o-aminophenoxy)
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ethane-N,N,N¢,N¢-tetraacetic acid (BAPTA), by photoactivation of caged InsP
3
 or 

by inhibiting the sarcoplasmic, endoplasmic reticulum calcium adenosine triphos-
phatase (ATPase) with either thapsigargin or cyclopiazonic acid. Both in vitro and 
in vivo, thapsigargin (and cyclopiazonic acid) induces pulmonary endothelial cell 
gaps and increases lung permeability; this increase in permeability is abolished 
when calcium entry through store-operated calcium entry channels is inhibited.36,37 
Moreover, photoactivation of caged InsP

3
 is sufficient to induce interendothelial 

cell gap formation in cultured endothelial cells. Thus, activation of store-operated 
calcium entry, using physiologically relevant agonists (e.g., thrombin, platelet-
activating factor), thapsigargin, or photoactivation of caged InsP

3
, induces endothe-

lial cell gap formation and increases permeability.
Thapsigargin promotes a slowly developing and sustained increase in endothelial 

cell cytosolic calcium (Fig. 9.1). To better understand whether thapsigargin activates 
one or more calcium influx pathways, we examined the cationic permeation 
characteristics of store-operated calcium channels in live cells. Thapsigargin activated 
at least two separate pathways in endothelial cells. One store-operated calcium entry 
mechanism was calcium nonselective, meaning that both monovalent and divalent 
cations permeated the channel pore.27 A second store-operated calcium entry mecha-
nism was calcium selective, meaning that calcium permeated the channel pore with 
preference over other divalent cations.28–32 As we examined the biophysical nature of 
these two distinct store-operated calcium entry pathways and their physiological 
function, we came to learn that it was the calcium-selective channel that provides the 
calcium source necessary to induce interendothelial cell gaps.31,32

Calcium nonselective and selective store-operated calcium entry pathways can be 
systematically studied using whole-cell electrophysiology approaches. Endothelial 
cells possess a store-operated nonselective current that is activated by thapsigargin.27,30 
This current is a large, linear current that possesses a reversal potential of 0 mV and 
conducts various mono- and divalent cations. Endothelial cells also possess a store-
operated calcium-selective current that is activated by thapsigargin, cyclopiazonic 
acid, InsP

3
, intracellular BAPTA, and TPEN; this calcium-selective current is acti-

vated when cytosolic calcium is buffered by ethylene glycol-bis (b-aminoethyl ether)-
N,N,N¢N¢-tetraacetic acid (EGTA), indicating it is calcium store depletion, and not a 
rise in cytosolic calcium, that is responsible for current activation.28–32 This current is 
small (1–1.5 pA/pF) and inwardly rectifying, with a reversal potential of approxi-
mately -40 mV (Fig. 9.2). The fundamental biophysical properties of this current, 
called I

SOC
, are similar in pulmonary artery and capillary endothelial cells, although 

mechanisms controlling channel activation differ among cell types.31,32

We were curious to know whether the store-operated nonselective and calcium-
selective currents represent different ion channels with unique activation properties or 
whether they reflect the same ion channel with different permeation characteristics. 
As we sought experimental approaches to distinguish nonselective from calcium-
selective store-operated calcium entry pathways, we became intrigued by studies in 
platelets incriminating the actin cytoskeleton in the activation of store-operated cal-
cium entry.38–40 Actin is not thought to directly interact with transmembrane proteins, 
such as ion channels. Rather, the spectrin membrane skeleton cross-links actin imme-
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Fig. 9.1  Thapsigargin activates store-operated calcium entry channels and increases cytosolic 
calcium. (a) Confluent monolayers of pulmonary artery endothelial cells (PAEC) and pulmonary 
microvascular endothelial cells (PMVEC) endothelial cells were loaded with the calcium indicator 
fura-2. Thapsigargin (1 mM) was applied at the indicated time, and cytosolic calcium concentra-
tions were monitored. Thapsigargin induces a slowly developing and sustained rise in cytosolic 
calcium in endothelial cells, although the calcium rise is greater in PAECs than it is in PMVECs. 
(b) Thapsigargin inhibits the sarcoplasmic, endoplasmic calcium ATPase, causing depletion of 
stored calcium. Such depletion of endoplasmic reticulum calcium opens store-operated calcium 
entry channels on the plasma membrane, resulting in calcium influx into the cell. These separate 
phases can be distinguished using a recalcification protocol in which thapsigargin is first applied 
to fura-2-loaded cells in low extracellular calcium. A transient rise in cytosolic calcium is 
observed as calcium is released from the endoplasmic reticulum. As extracellular calcium is 
replenished, it enters the cell through open store-operated calcium entry channels. For experimen-
tal details, see Ref. 31
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diately adjacent to the inner leaflet of the phospholipid bilayer.20,41,42 Spectrin binds to 
protein 4.1 and ankyrin, and it is these spectrin-bound proteins that directly interact 
with transmembrane proteins.43 We selectively disrupted the spectrin-actin and the 
spectrin-protein 4.1 interactions, and observed that only disruption of spectrin from 
protein 4.1 inhibited I

SOC
 activation.30 Indeed, disrupting the spectrin-protein 4.1 inter-

action had no effect on the thapsigargin-activated nonselective current, and disrupting 
the spectrin-actin association had no impact on activation of either the I

SOC
 or the 

nonselective current. These findings provided evidence that channels with different 
molecular compositions account for the calcium-selective (e.g., I

SOC
) and nonselective 

currents. We were interested in resolving the molecular composition of the I
SOC

 chan-
nel as functional studies indicated that activation of this current is essential for inter-
endothelial cell gap formation.

4 � TRPC Proteins Form the ISOC Channel

Evidence that the I
SOC

 channel, and not the nonselective channel, interacts with 
protein 4.1 suggested that protein 4.1 could be used as “bait” to resolve the chan-
nel’s molecular identity. We therefore began to screen for channel proteins that 
interact with protein 4.1. There was precedence for this idea in the spectrin field as 
the spectrin-binding protein ankyrin was known to interact with spectrin and fast 

Fig. 9.2  Thapsigargin activates a calcium-selective store-operated current in endothelial cells, 
referred to as I

SOC
. Macroscopic currents were resolved in single pulmonary artery endothelial 

cells. Thapsigargin (1 mM) was applied in the patch pipet in the whole-cell configuration. The 
holding potential was 0 mV, and a ramp protocol was performed from –100 to +100 mV. 
Thapsigargin activates a small inward calcium current at negative voltages, with a reversal poten-
tial that ranges between +30 and +40 mV. This current is abolished by lanthanum perfusion. For 
experimental details, see Refs. 28–32
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sodium channels in nodes of Ranvier.44–51 Discovery of TRPC proteins revealed 
potential candidates for store-operated calcium entry pathways.35 However, not all 
TRPC proteins are store operated; in some instances, these proteins form receptor-
operated channels. Store-operated channels must be activated by depletion of endo-
plasmic reticulum calcium, must not require increased cytosolic calcium for their 
activation, and must not require diacylglycerol or its analogue OAG (1-oleoyl-2-
acetyl-sn-glycerol) for activation. Based on these criteria, TRPC1, TRPC4, and 
TRPC5 proteins can form store-operated calcium entry channels. Interestingly, 
sequence alignment of all TRPC isoforms revealed that TRPC4 possesses a putative 
protein 4.1-binding domain (Fig. 9.3). We were excited to find that the protein 
4.1-binding domain on TRPC4 was adjacent to the channel pore,28 suggesting that 
a protein 4.1-TRPC4 interaction may be critical for channel activation.

Work from the Flockerzi and Nilius groups indicated that TRPC4 contributes to 
the molecular identity of the I

SOC
 channel.52 Indeed, TRPC4 knockdown using small-

interfering RNA (siRNA) prevented thapsigargin from activating I
SOC

, and in endothe-
lial cells isolated from TRPC4 deficient mice, I

SOC
 similarly could not be activated. 

We examined whether protein 4.1 binds to TRPC4 and regulates channel activation 
using two related approaches (Fig. 9.3).28 In the first approach, the protein 4.1-binding 
domain was deleted from TRPC4 and the chimera expressed in endothelium. The 
chimeric protein was appropriately expressed and targeted to the membrane. The 
chimeric TRPC4 protein did not interact with protein 4.1, and in cells expressing this 
chimera, thapsigargin was unable to activate I

SOC
. In the second approach, a competi-

tive peptide was generated to target the protein 4.1-binding domain on TRPC4. 
Introduction of the competitive peptide into endothelium inhibited protein 4.1 binding 
to the endogenously expressed channel and prevented thapsigargin from activating 
I

SOC
. These data, taken together with those of the Flockerzi and Nilius groups,52 indi-

cated that the protein 4.1-TRPC4 interaction is essential for I
SOC

 activation.
Studies establishing the pivotal role for TRPC4 in store-operated calcium entry, 

and in I
SOC

 activation more specifically, represented an exciting advance. Yet, 
molecular cloning studies and hydropathy plots faithfully projected that functional 
channels would be comprised of four TRPC subunits.53 Thus, it was not clear 
whether the I

SOC
 channel was encoded by four TRPC4 subunits or by TRPC4 and 

some combination of other TRPC proteins. Indeed, siRNA inhibition of TRPC1 
reduced the magnitude of the I

SOC
, suggesting it may contribute a subunit,29 and in 

heterologous expression studies, TRPC1 was shown to interact with TRPC4 as an 
essential step in channel membrane insertion.54 Moreover, biochemical approaches 
documented interaction between TRPC1 and TRPC4.55,56 These collective findings 
were taken as evidence that TRPC1 and TRPC4 interact and together contribute to 
the molecular basis of the I

SOC
 channel.

Physiological studies further supported the assertion that TRPC1 and TRPC4 
interact as each protein has been implicated in control of endothelial cell permeabil-
ity. In key studies published by the Malik and Tiruppathi groups, TRPC4-deficient 
mice were protected from thrombin (or protease-activated receptor ligand)-induced 
permeability.57,58 Moreover, inflammatory mediators increase TRPC1 expression, 
and the upregulated expression of TRPC1 potentiates store-operated calcium entry 
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responses.59 Perhaps most compelling for our work, however, were studies under-
taken by the Townsley group, in which an aortocaval fistula was placed in rats to 
generate a model of congestive heart failure.60–62 In their studies, thapsigargin was 
applied to wild-type, sham-operated, and heart failure animals to determine how 
development of heart failure has an impact on pulmonary endothelial cell barrier 
function. Whereas thapsigargin increased permeability in wild-type and sham-
operated animals, it was without effect in heart failure animals. Immunohistochemical 
analysis revealed that development of heart failure was accompanied by downregu-
lation of three TRPC proteins (TRPC1, TRPC3, and TRPC4) (Fig. 9.4).

Fig. 9.3  TRPC4 possesses a conserved protein 4.1-binding sequence that is critical for I
SOC

 acti-
vation. (a) Consensus protein 4.1-binding sequences have been identified in MAGUKs (mem-
brane-associated guanylate kinases), glycophorin C, and other transmembrane proteins.88,89 A 
conserved protein 4.1-binding sequence was identified on TRPC4 between amino acids 675 and 
685. (b) A peptide with sequence corresponding to the protein 4.1-binding domain was generated. 
(c) This peptide, which encompassed the proline-rich region and adjacent protein 4.1-binding 
domain, was introduced into endothelial cells, and the thapsigargin-induced I

SOC
 was measured. 

Introduction of the competitive peptide abolished I
SOC

 activation. For experimental details, see 
Ref. 28
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We were struck by the significance of this observation and wondered whether 
the downregulation of TRPC1, TRPC3, and TRPC4 was coincidental, representing 
the simultaneous downregulation of multiple channels, or whether all three proteins 
were a part of a common channel, perhaps the I

SOC
 channel. It was clear that deter-

mining the oligomeric state (number of subunits in an endogenous channel) and 
stoichiometry (how many of each subunit is in the channel) of the endogenously 
expressed I

SOC
 channel would be essential if we were to identify how inflammatory 

agonists induce endothelial cell gap formation and increase permeability.

Fig. 9.4  Animals with heart failure do not respond to thapsigargin with an increase in lung 
endothelial cell permeability. (a) Aortocaval fistulas were placed in rats to induce heart failure. 
Heart and lungs were isolated en bloc, and permeability responses to thapsigargin were mea-
sured. Whereas thapsigargin increased permeability in sham-operated animals, animals with 
heart failure failed to respond to thapsigargin with an increase in permeability. (b) This absence 
of permeability response was accompanied by the selective downregulation of TRPC1, TRPC3, 
and TRPC4 proteins in lung endothelium. Arrowheads denote endothelium. For experimental 
details, see Ref. 62
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Our group has spent considerable effort resolving both the oligomeric state and 
stoichiometry of the endogenous I

SOC
 channel in pulmonary endothelium. We have 

discovered that the observation by Townsley and colleagues that TRPC1, TRPC3, 
and TRPC4 are each downregulated in endothelium following heart failure is not 
coincidental. We utilized protein 4.1 as bait to enrich for the endogenously 
expressed channel and then developed a novel Förster resonance energy transfer 
(FRET) approach in collaboration with Drs. Claudette St. Croix and Bruce Pitt 
(at the Center for Biologic Imaging, University of Pittsburgh) to resolve subunit 
stoichiometry (D.L. Cioffi and T. Stevens, unpublished data). Our findings indicated 
that each of these proteins contributes subunits to the endogenous I

SOC
 channel; the 

I
SOC

 channel is comprised of one TRPC1, one TRPC3, and two TRPC4 subunits. 
Moreover, in these studies we utilized membranes derived from pulmonary artery 
endothelial cells, pulmonary microvascular endothelial cells, and caveolin-rich 
fractions isolated from the intact pulmonary circulation. In each case, both in vitro 
and in vivo, the channel’s oligomeric state and stoichiometry were the same. These 
findings represent the first evidence for an endogenously expressed TRPC channel 
stoichiometry, the I

SOC
 channel, which is directly incriminated in endothelial cell 

gap formation and increased permeability.

5 � Orai Proteins and Their Relationship to TRPC Channels

Our emerging data indicate that TRPC1/3/4 proteins coalesce to form a channel in 
which four proteins, each with six transmembrane domains, are required to generate 
an ion pore. This heterotetramer complex resembles the voltage-gated T-type calcium 
channel, with the exception that in the latter case, the four repeats of six transmem-
brane-spanning domains are all contained within a single gene product, the a

1
 sub-

unit.63,64 Indeed, we were struck by the anatomic similarity between TRPC1/3/4 and 
T-type calcium channel topologies (Fig. 9.5). A more detailed examination of volt-
age-gated calcium channel organization revealed that its channel complex includes an 
associated subunit, the g subunit, that interacts with the pore-forming a

1
 subunit and 

contributes to channel activation and ionic permeation. If such an ancillary protein is 
critical to channel ionic permeation and if TRPC1/3/4 and voltage-gated channels 
possess a conserved anatomy, then it is likely that the TRPC1/3/4 channel interacts 
with another subunit that influences its calcium selectivity as well. Indeed, Orai1 may 
fulfill the role of a regulatory subunit of the TRPC1/3/4 channel.

The T-type calcium channel’s g subunit is a four-transmembrane-spanning 
domain protein with amino and carboxy termini that reside in the cytosol.63,64 
Functional interaction between the a

1
 pore-forming subunit and the g subunit 

requires a conserved sequence [(G/A/S) XXX (G/A/S)] in the g subunit’s first 
transmembrane-spanning domain (Fig. 9.5). This sequence is not required for a

1
–g 

subunit binding but is required for the g subunit to control calcium permeation 
through the a

1
 pore. We therefore screened for protein domains with homology to 

this sequence and were intrigued to find that a protein incriminated in store-operated 
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Fig. 9.5  The TRPC1/3/4 channel topology is reminiscent of the voltage-gated T-type calcium 
channel. (a) Schematic of the T-type calcium channel (top) and TRPC1/3/4 channel (bottom) 
illustrating a pore-forming unit formed from four cassettes of six transmembrane-spanning 
domains.64 Similar to the g subunit of the T-type calcium channel, Orai1 is a four-transmembrane-
spanning domain protein that may interact with the pore-forming unit. (b) Schematic is shown of 
the three-dimensional T-type calcium channel and TRPC1/3/4 channel arrangements.63 Channel 
interaction with the g subunit (for the T-type calcium channel – top) and Orai1 (for the TRPC1/3/4 
channel – bottom) is highlighted. (c) Functional interaction between the g and a1 subunits occurs 
through a conserved sequence in the first transmembrane-spanning domain of the g subunit. A similar 
interaction domain is resolved in Orai1 (see underlined regions)
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calcium entry, orai1, was enriched with this conserved motif (Fig. 9.5). Orai1 is a 
four-transmembrane-spanning domain protein with amino and carboxy termini 
residing in the cytosol, just like the g subunit. Thus, these findings suggest that Orai1 
could interact with the TRPC1/3/4 channel and influence its calcium permeation.

The role that Orai1 plays in store-operated calcium entry is debated, with some 
evidence that it forms a channel pore and with other evidence that it interacts with 
channel proteins, such as TRPCs. Orai1 was first identified in 2006 using unbiased 
genetic approaches to identify putative channels that contribute to store-operated 
calcium entry.65–67 In one approach, a modified linkage analysis with single-nucle-
otide polymorphism arrays was used to screen genes in patients with hereditary 
severe combined immunodeficiency (SCID) syndrome.67 Whereas thapsigargin 
typically activates a highly calcium-selective current in T cells, referred to as the 
calcium release-activated calcium current, or I

CRAC
, T cells from SCID patients lack 

the thapsigargin-activated I
CRAC

. Genetic analysis revealed a missense mutation in 
exon 1 of the human ORAI1 coding sequence that resulted in mutation of a con-
served arginine residue to tryptophan, a R91W mutation. Expression of wild-type 
Orai1 in T cells derived from SCID patients rescued the thapsigargin-activated 
I

CRAC
, providing direct evidence that Orai1 fulfills an essential role in the I

CRAC
. In a 

second approach, a genomewide RNA interference screen in cells from Drosophila 
was used to detect proteins that inhibit store-operated calcium influx.65,66 Using this 
approach, separate groups identified Orai1 as a protein necessary for activation of 
the I

CRAC
, again providing strong evidence that Orai1 is an essential component of 

the store-operated calcium entry channel.
From this pioneering work came a series of studies specifically addressing 

whether Orai1, and its related proteins Orai2 and Orai3, form a channel pore.68,69 
The I

CRAC
 is highly calcium selective, as are voltage-gated calcium channels, which 

utilize glutamate residues in the pore region to coordinate calcium binding. 
Analysis of the putative Orai1 pore revealed glutamate residues on the extracellular 
surface, at E106 in the first transmembrane domain, and at E190 in the third trans-
membrane domain. Several negatively charged aspartate residues were also found 
in the second transmembrane domain that may bind and sieve calcium as it passes 
through the pore. Replacing the conserved glutamate in the first transmembrane 
domain with glutamine (E106Q; substitution that cannot bind calcium) prevented 
thapsigargin from activating the I

CRAC
. Replacing either the glutamate in the third 

transmembrane-spanning domain with glutamine (E190Q) or substituting aspartate 
to alanine (D110A and D112A) changed calcium selectivity and allowed for the 
channel to nonselectively conduct cations, including monovalent cations such as 
sodium and divalent cations such as barium and strontium. Thus, Orai1 may form 
an ion pore responsible for the I

CRAC
.

While these studies suggested that Orai1 contributes to a calcium channel pore, 
channel oligomeric state and stoichiometry had not been determined. To address 
whether Orai1 forms a tetramer in living cells, it was expressed as a fusion protein 
in tandem with reporter fluorophores.70 Once expression and membrane localiza-
tion were confirmed, FRET was performed. FRET studies revealed that Orai1 
organizes into tetramers in the plasma membrane. To assess whether four Orai1 
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subunits can generate a functional channel, four individual subunits were preas-
sembled and expressed in cells typically deficient of the I

CRAC
.71 Expression of this 

entire tetrameric channel complex reconstituted the thapsigargin-activated I
CRAC

, 
providing evidence not only that a functional channel is comprised of orai1 but also 
that four such subunits in tandem generate a pore-forming channel.

Despite evidence that Orai1 can form a channel, it remains unclear regarding 
whether it comprises the pore-forming channel accounting for the I

CRAC
 in vivo. For 

example, thapsigargin does not activate I
CRAC

 in all cells that express Orai1,72–75 as 
discussed by Ambudkar and colleagues.76 Moreover, the Birnbaumer77,78 and 
Ambudkar76,79 groups have independently noted that the anatomy of Orai1 is 
unusual for a calcium channel and, as discussed, recognized that it is more reminis-
cent of channel ancillary proteins, such as the g subunit of the T channel. Both 
Birnbaumer77,78,80 and Ambudkar76,79,81 groups have proposed that Orai1 is an essen-
tial subunit of TRPC channels and is required for TRPC proteins to sense calcium 
store depletion and hence to be “store operated.” At present, this central issue 
remains unresolved. It is not inconceivable that Orai1 forms the channel responsi-
ble for the I

CRAC
 and associates with TRPC channels to confer their sensitivity to 

store depletion. Indeed, Trebak and colleagues5 suggested that thapsigargin acti-
vates both I

CRAC
 and I

SOC
 in endothelial cells, and that Orai1 is responsible for the 

I
CRAC

 in these cells, while TRPC4 contributes to I
SOC

. Our preliminary evidence sup-
ports the idea that Orai1 interacts with the TPRC1/3/4 channel. Further work is 
therefore required to rigorously vet the role that Orai1 plays in calcium signaling, 
both as a channel and as a putative TRPC channel subunit.

6 � Protein 4.1 Is an Essential Determinant of TRPC1/3/4 
Activation

It is important to consider whether Orai1 contributes to activation of the TRPC1/3/4 
channel. For many years, the mechanisms responsible for sensing a decrease in 
endoplasmic reticulum calcium were poorly understood. Identification of stromal 
interacting molecule-1 (STIM1) provided insight into this mechanism as STIM1 is 
a transmembrane protein possessing an EF hand, which is a calcium binding motif, 
on the luminal side of the endoplasmic reticulum.82–85 Thus, as endoplasmic reticu-
lum calcium decreases, it is sensed by STIM1, resulting in the punctate colocaliza-
tion of STIM1 with Orai1. STIM1 and Orai1 coexpression potentiates thapsigargin 
activation of store-operated calcium entry.86,87 These findings are taken to suggest 
that calcium store depletion results in association between the endoplasmic reticu-
lum and calcium entry channels, necessary for channel activation.

If TRPC proteins function as store-operated calcium entry channels, and if 
STIM1 is necessary for activation of store-operated calcium entry, then STIM1 may 
interact with TRPC proteins following depletion of endoplasmic reticulum calcium. 
Several groups have now confirmed that this is true as STIM1 reportedly interacts 
with TRPC1 following thapsigargin treatment.76–81 Interestingly, it appears that the 
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interaction between STIM1 and TRPC1 is not direct but requires the coassociation 
of Orai1 with TRPC1. Indeed, Orai1 may be necessary for TRPC1 proteins to fulfill 
the criteria of a “store-operated” channel, again suggesting that Orai1 is an ancil-
lary protein to the pore-forming TRPC channel.

While we know from preliminary work in our lab that the TRPC1/3/4 channel 
interacts with Orai1, we also know that TRPC1/3/4 activation requires a constitu-
tive interaction between this channel complex and protein 4.1 and between protein 
4.1 and spectrin; indeed, disruption of either of these protein-protein interactions 
prevents thapsigargin from activating the I

SOC
. We began to question whether there 

is a relationship between the requirement for protein 4.1 to interact with the channel 
complex and Orai1. Remarkably, sequence alignment revealed that the Orai1 amino 
terminus possesses a conserved protein 4.1-binding domain immediately upstream 
of a proline-rich region (Fig. 9.6). It is not presently clear whether this protein 
4.1-binding domain is important for the orai1-TRPC1/3/4 channel association, 
whether it contributes to TRPC1/3/4 channel activation, or whether it is necessary 
for the channel to be store operated. Thus, a principal goal of future studies must 
be to determine how the protein 4.1-binding domain on Orai1 contributes to 
TRPC1/3/4 channel activation.

7 � Summary

It is an exciting time to study calcium-dependent signal transduction in endothelium. 
Since the mid-1990’s, great strides have been made, with new protein candidates 
rapidly emerging as putative calcium channels. In most cases, molecular anatomy of 
calcium channel architecture is lacking and represents an essential goal for future 
work. Moreover, establishing the physiological role of calcium channels in endothe-
lium is critically important. The TRPC1/3/4 channel provides a calcium source that 
disrupts cell-cell adhesion and increases endothelial cell permeability. Studies seek-
ing to better resolve the molecular anatomy of this channel, its associated subunits, 
and its mode of activation will be critically important steps in refining our under-
standing of how the vasculature responds to inflammatory cues.

Fig. 9.6  Orai1 possesses a conserved protein 4.1-binding domain and proline-rich region in its 
amino-terminal domain. Similar to TRPC4, Orai1 possesses a conserved protein 4.1-binding 
domain and proline-rich region. At present, the function of these domains, and their relation to 
TRPC4-protein 4.1 binding, is unknown
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