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   Introduction 

 The pituitary gland is formed of anterior (adeno-
hypophysis) and posterior (neurohypophysis) 
parts, which are embryologically derived from 
two different sources  [  1  ] . The primordium of the 

anterior pituitary, Rathke’s pouch, forms by the 
upward invagination of the stomodeal ectoderm 
in the region of contact with the neuroectoderm 
of the primordium of the ventral hypothalamus 
 [  2  ] . Rathke’s pouch can be identi fi ed by the third 
week of pregnancy  [  3  ] . The posterior pituitary 
arises from the neural ectoderm of the forebrain. 

 The anterior pituitary is formed of three parts, 
namely the pars distalis (pars anterior or anterior 
lobe), the pars intermedia (intermediate lobe), and 
the pars tuberalis (pars infundibularis or pars 
proximalis), and forms 80% of the pituitary gland. 
In humans, the pars distalis is the largest part of 
the anterior pituitary and where most of the ante-
rior pituitary hormones are produced  [  3  ] . The 
intermediate lobe is poorly developed in humans, 
and although it is only a rudimentary vestige in 
adults, it is relatively obvious in pregnant women 
and in the fetus  [  4  ] . The upward extension of the 
pars distalis onto the pituitary stalk forms the pars 
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tuberalis, which may contain a small number of 
gonadotropin-producing cells  [  3  ] . 

 Peptides produced in neurons of the hypothala-
mus are transported via a capillary plexus in the 
pituitary stalk to the anterior pituitary, where they 
regulate the release of several hormones that are 
synthesized there  [  5  ] . These hormones are soma-
totropin or growth hormone (GH), prolactin 
(PRL), thyrotropin or thyroid stimulating hormone 
(TSH), follicle stimulating hormone (FSH), 
luteinizing hormone (LH), and adrenocorticotro-
pin (ACTH). Posterior pituitary hormones are 
synthesized in cell bodies of neurons in the hypo-
thalamus and transported along their axons through 
the neurohypophyseal tract of the pituitary stalk. 
These hormones, arginine vasopressin or antidi-
uretic hormone (ADH) and oxytocin, are stored in 
and secreted from the posterior pituitary  [  6  ] . 

 Hypopituitarism is the de fi ciency in varying 
degrees of one or multiple pituitary hormones. In 
this chapter, GH de fi ciency (GHD) will be dis-
cussed, while other hormonal de fi ciencies are 
presented elsewhere in this book. To understand 
GHD, an understanding of the GH axis is impor-
tant and follows below.  

   GH Physiology 

   GH Gene 

 GH, which has a molecular weight of 22 kDa, is a 
single-chain  a -helical non-glycosylated polypep-
tide with 191 amino acids and two intramolecular 
disul fi de bonds. This mature hormone accounts 
for 75% of the GH produced in the pituitary gland 
 [  3  ] . There exists a 20-kDa variant form, which 
arises from alternative splicing during the pro-
cessing of human GH (hGH) pre-mRNA and con-
stitutes 5–10% of the total pituitary hGH  [  7,   8  ] . 
The remainder of the GH produced by the pitu-
itary is in the  N -acetylated and desaminated 
forms and oligomers  [  3  ] . Secreted GH circulates 
both unbound and bound to binding proteins, 
which are portions of the extracellular domain of 
the GH receptor (GH-R)  [  9  ] . 

 The  GH1  gene encodes for GH and is part of a 
50-kb cluster of  fi ve genes located on human 

chromosome 17q22-24: They include  GH1 ,  cho-
rionic somatomammotropin  ( CS ) -like  ( L ),  CS-A , 
 GH-2 , and  CS-B   [  10  ] . The CS-L translated pro-
tein appears nonfunctional, while CS-A and 
CS-B encode human chorionic somatomam-
motropin (hCS) or human placental lactogen. 
The syncytiotrophoblastic cells produce hCS, 
which has 85% homology to GH. hCS also con-
tains two disul fi de bonds that occur at the same 
positions as in GH-N, but it only has 0.5% 
af fi nity for the GH-R. Interestingly, hCS does not 
appear necessary for fetal or extrauterine growth 
nor does it appear essential for maintenance of 
pregnancy or lactation  [  11  ] . The  GH-2  gene prod-
uct, which is known as GH variant (GH-V), dif-
fers from GH-N by 13 amino acids. It is expressed 
as at least four alternatively spliced mRNAs in 
the placenta and is continuously secreted during 
the second half of pregnancy, suppressing mater-
nal pituitary  GH-1  gene function  [  12,   13  ] .  

   GH Secretion (Fig.  1.1 )    

 GH secretion follows a pulsatile pattern, second-
ary to the antagonistic in fl uences of growth hor-
mone-releasing hormone (GHRH) and 
somatotropin release-inhibiting factor (SRIF), 
also known as somatostatin (sst). 

 GHRH, a 44-amino-acid protein, binds to the 
GHRH receptor (GHRH-R), which is a G-protein-
coupled receptor with seven-transmembrane-
spanning domains with three extracellular and 
three cytoplasmic loops  [  14  ] . Activation of the 
GHRH-R results in an increase in cyclic adenos-
ine monophosphate (cAMP) and intracellular 
calcium, leading to the activation of protein 
kinase A (PKA)  [  15,   16  ] . PKA phosphorylates 
and activates cAMP response element-binding 
protein (CREB), which binds to cyclic AMP 
(cAMP) response elements in the  GH  promoter 
to enhance  GH-1  gene transcription  [  17,   18  ] . 
There is also a PKA-dependent, CREB-
independent mechanism of  hGH  gene activation 
by POU1F1 (also known as Pit-1) and CREB-
binding protein (CBP)  [  19  ] . 

 SRIF, a 14-amino-acid neuropeptide, nega-
tively regulates GH release primarily via the 
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SRIF receptor subtype 2 (sstr2)  [  20  ] . SRIF acti-
vates a G 

i
 -coupled protein  [  21,   22  ] , which 

decreases cAMP and reduces calcium in fl ux, 
resulting in inhibition of GH secretion  [  23  ] . SRIF 
controls the pulse frequency of GH  [  24,   25  ] . 

 Infants have nonpulsatile GH secretion. There 
is a gradual increase in 24-h integrated GH secre-
tion during childhood. The amplitudes of GH 
pulses are increased during puberty, which is 
probably secondary to the effect of gonadal ste-
roids on GHRH  [  26–  28  ] . Although hGH produc-
tion continues throughout life, the levels decline 
in the elderly  [  29,   30  ] . 

 Synthetic hexapeptides capable of stimulating 
GH secretion are termed GH secretagogues 
(GHS) or GH-releasing peptides (GHRP); these 
compounds can stimulate GH release but do not 
act through the GHRH or SRIF receptors  [  31, 
  32  ] . These peptides can initiate and amplify pul-
satile GH release; however, this is accomplished 
via the GHS receptor (GHS-R), which is distinct 
from the GHRH-R  [  33  ] . The GHS-R is a seven-
transmembrane G-protein-coupled receptor that 

acts via protein kinase C activation and is 
expressed in the hypothalamus and in pituitary 
somatotrophs  [  34  ] . 

 An endogenous ligand for the GHS-R named 
ghrelin has been identi fi ed and has been shown to 
stimulate GH release in a dose-related manner, as 
well as potentiate GHRH-dependent secretion of 
GH  [  35,   36  ] . It is produced mainly by the oxyntic 
cells of the stomach but is also found throughout 
the gastrointestinal tract, as well as in the hypo-
thalamus, heart, lung, and adipose tissue  [  37  ] . 
Several studies have demonstrated that ghrelin 
has a wide range of effects, including acting as a 
physiological mediator of feeding  [  38,   39  ] . Thus, 
it is dif fi cult to separate the direct effects of ghre-
lin from those related to GH secretion.  

   GH Action (Fig.  1.2 )    

 Approximately 50% of circulating GH is 
bound to GH-binding protein (GHBP). GHBP 
is produced in multiple tissues, with liver the 
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  Fig. 1.1    Simpli fi ed model of  growth hormone  ( GH )  g ene 
activation. GH synthesis and release from somatotrophs 
is regulated by growth hormone-releasing hormone 
(GHRH) stimulation and somatostatin (SRIF) inhibition. 
GHRH activation of its Gs-protein-coupled receptor 
leads to an increase in cyclic adenosine monophosphate 
(cAMP) and intracellular calcium, resulting in activation 
of protein kinase A (PKA). PKA phosphorylates and 

activates cAMP response element-binding protein 
(CREB), which binds to cAMP response elements in the 
 GH  promoter to enhance  GH1  gene transcription. There 
is also a PKA-dependent, CREB-independent mecha-
nism of human  GH  gene activation by Pit-1 and CREB-
binding protein (CBP). SRIF activation of its Gi-coupled 
protein leads to a decrease in cAMP and a reduction in 
calcium in fl ux       

 



6 C.J. Romero et al.

 predominant source. GHBP acts as a circulating 
buffer or reservoir for GH, prolonging the half-
life of plasma GH and competing with the GHR 
for GH, probably forming an unproductive 
heterodimer. 

 In general, GHBP levels re fl ect GH-R levels 
and activity, yet its source or mechanism of gen-
eration is not entirely known. In rodents, it 
appears to be synthesized de novo from alterna-
tive splicing of  GH-R  mRNA. In humans, rabbits, 
and others, it may be shed from membrane-bound 
GH-R by proteolytic cleavage  [  9,   40  ] . 

 The GH-R is a 620-amino-acid protein that 
belongs to the cytokine family of receptors  [  41  ] . 
It consists of a large extracellular domain, a sin-
gle transmembrane helix, and an intracellular 
domain  [  42  ] . The highest level of  GHR  expres-
sion is in the liver, followed by muscle, fat, kid-
ney, and heart. GH binds to a homodimer complex 
of the GHR in order to activate its intracellular 

signaling pathways. Although dimerization of 
the GHR was thought to occur after GH binding, 
recent data demonstrate that the subunits of the 
GH-R are constitutively dimerized in an unbound 
or inactive state  [  43,   44  ] . The GH-binding sites 
on the extracellular domains of the two subunits 
are placed asymmetrically; GH binding to the 
constitutive dimer induces rotation of the two 
subunits that is transmitted via the transmem-
brane domain to the intracellular domain, allow-
ing downstream kinase activation by 
phosphorylation of Janus kinase 2 (Jak2)  [  44  ] . 
Subsequently, the JAK2 molecule causes phos-
phorylation of critical tyrosines on the intracel-
lular portion of the GH-R, which then provide 
docking sites for critical intermediary signal 
transducers and activators of transcription (STAT) 
proteins  [  45–  47  ] . After phosphorylation, STATs 
dimerize and move to the nucleus, where they 
activate gene transcription  [  48,   49  ] . 

 Many of the actions of GH, both metabolic 
and mitogenic, are mediated by insulin-like 
growth factors (IGFs) or somatomedins, initially 
identi fi ed by their ability to incorporate sulfate 
into rat cartilage  [  50  ] . IGF-1, which is a basic 
70-amino-acid peptide, is produced under the 
direction of GH predominantly in the liver  [  51  ] . 
It plays an important role in both embryonic and 
postnatal growth. Both systemic and local IGF-1 
have been shown to stimulate longitudinal bone 
growth by increased osteoblast activity and 
increased synthesis of collagen  [  52–  56  ] . 

 Human fetal serum IGF-1 levels, which are 
approximately 30–50% of adult levels, have been 
positively correlated with gestational age  [  57,   58  ] . 
The levels of IGF-1 gradually increase during 
childhood and peak during pubertal development, 
achieving 2–3 times the normal adult values  [  59, 
  60  ] . IGF-1 production is also augmented by the 
rise in gonadal steroids, which contribute to the 
pubertal growth spurt. After adolescence, serum 
IGF-1 concentrations decline gradually with age 
 [  61,   62  ] . IGFs circulate within the plasma com-
plexed to high-af fi nity binding proteins or IGF-
binding proteins (IGFBPs). IGFBPs extend the 
serum half-life of IGFs, transport IGFs into target 
cells, and modulate the interaction of IGFs with 
their receptors  [  63,   64  ] . Six distinct human and rat 
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  Fig. 1.2    Schematic model of growth hormone receptor 
(GH-R) binding and signaling. A single GH molecule 
binds asymmetrically to the extracellular domain of two 
receptor molecules, causing a conformational change. 
This leads to interaction of the GH-R with Janus kinase 
(Jak 2) and tyrosine phosphorylation of both Jak2 and 
GH-R, followed by phosphorylation of cytoplasmic tran-
scription factors known as signal transducers and activa-
tors of transcription (STATS). After phosphorylation, 
STATs dimerize and move to the nucleus, where they acti-
vate gene transcription       
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IGFBPs have been cloned and sequenced  [  65, 
  66  ] . IGFBP-3, which is GH dependent, is the 
major IGFBP in human serum and transports over 
90% of the circulating IGF-1  [  3  ] . 

 The IGF-I receptor (IGF-1R), which is struc-
turally related to the insulin receptor, is a hetero-
tetramer comprised of two-membrane-spanning 
 a  (alpha) subunits and two intracellular  b  (beta) 
subunits  [  67,   68  ] . The   subunits are linked by 
disul fi de bonds and contain binding sites for IGF-
I. The   subunits are composed of a transmembrane 
domain, an adenosine triphosphate (ATP)-binding 
site, and a tyrosine kinase domain that mediates 
the presumed signal transduction mechanism for 
the receptor  [  3,   69  ] .   

   Growth Hormone De fi ciency 

 Hypopituitarism can be caused by anything that 
damages the hypothalamus, pituitary stalk, or 
pituitary gland. The incidence of congenital GH 
de fi ciency has been reported as between 1:4,000 
and 1:10,000 live births  [  70,   71  ] . Growth failure 
presenting in infancy and childhood is the most 
common sign of GH de fi ciency. Children with 
mild GH de fi ciency usually present after 6 months 
of age when the in fl uences of maternal hormones 
wane  [  72  ] . They generally have normal birth 
weights and lengths slightly below average  [  73  ] . 
The growth rate of a child with GH de fi ciency 
will progressively decline, and typically the bone 
age will be delayed. They develop increased peri-
abdominal fat  [  74  ]  and decreased muscle mass 
and may also have delayed dentition, thin hair, 
poor nail growth, and high-pitched voice  [  72  ] . 
Severe GH de fi ciency in the newborn period may 
be characterized by hypoglycemia and conju-
gated hyperbilirubinemia, as well as a small phal-
lus in boys, consistent with multiple anterior 
pituitary hormone de fi ciencies  [  72  ] . 

   Congenital Forms of Hypopituitarism 
(Table  1.1 )    

 Congenital cranial malformations, including hol-
oprosencephaly, septo-optic dysplasia (SOD), 

and midline craniocerebral or midfacial abnor-
malities, can be associated with anomalies of the 
pituitary gland. These embryonic defects also 
include pituitary hypoplasia, pituitary aplasia, 
and congenital absence of the pituitary gland  [  6  ] . 
Clinically, they may be associated with pituitary 
hormone de fi ciencies or the risk for developing 
future hormone de fi ciencies. Although these con-
ditions often have no identi fi able etiology, ongo-
ing advances in understanding pituitary 
development have provided a genetic basis to 
account for pituitary pathology. Mutations have 
been found in genes necessary for pituitary devel-
opment and function. The following presents a 
summary of reported genetic defects associated 
with pituitary pathology. 

  GHRH receptor  ( GHRH-R )  mutations : Mutations 
reported in the GHRH-R are often classi fi ed as a 
type of isolated GH de fi ciency. The little mouse 
( lit / lit ), which demonstrates dwar fi sm and 
decreased number of somatotrophs, has a reces-
sively inherited missense mutation in the extra-

   Table 1.1    Congenital causes of or associations with 
growth hormone de fi ciency   

 Cranial and central nervous system abnormalities 
 Septo-optic dysplasia 
 Cleft lip ± palate 
 Empty sella syndrome 
 Holoprosencephaly, anencephaly 
 Pituitary aplasia or hypoplasia 
 Thin or absent pituitary stalk 
 Hydrocephalus 

 Genetic (mutations, deletions) 
 GRHR receptor 
 Pituitary transcription factors 

 Hesx1 (Rpx) 
 Ptx2 (Pitx2, P-OTX2, Rieg) 
 Lhx3 (Lim-3, P-LIM) 
 Prop1 
 POU1F1 (Pit-1, GHF-1) 

 GH-1 
 Types Ia, Ib, II, and III 
 Multiple GH family gene deletions 
 Bioinactive GH 

 GH receptor 
 IGF-1 
 IGF-1 receptor 
 Stat 5b mutations 

 Idiopathic 
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cellular domain of the gene for  Ghrhr   [  75,   76, 
  77  ] . In addition to GH de fi ciency, these mice 
exhibit postnatal growth failure and delayed 
pubertal maturation  [  77  ] . In humans, two cousins 
presented clinically with the typical phenotype of 
severe GHD and were found to have a nonsense 
mutation in the human  GHRH-R  gene that intro-
duced a stop codon at position 72 (E72X)  [  78  ] . A 
similar mutation is found in codon 50 in 
“Dwar fi sm of Sindh”  [  79  ] . 

  Pituitary transcription factor mutations : Normal 
development of the pituitary is a complex cas-
cade of events that has been shown to be depen-
dent on several pituitary-speci fi c transcription 
factors, which are expressed in a speci fi c spatial 
and temporal pattern. The coordination of expres-
sion of these factors ultimately leads to the devel-
opment of the pituitary-speci fi c cell types 
(Fig.  1.3 ). Although mutations in these factors 

are often rare, it is important for the clinician to 
recognize the genetic basis for the pathology of 
idiopathic hypopituitarism. The genetic evalua-
tion of patients diagnosed with idiopathic hypop-
ituitarism has identi fi ed mutations in these factors 
accounting for pituitary dysfunction.  

  HESX1  ( Rpx ): HESX1, a member of the paired-
like class of homeobox genes originally described 
in  Drosophila melanogaster , is one of the earliest 
known speci fi c markers for the pituitary primor-
dium  [  80,   81  ] , although no target genes for Rpx 
have yet been identi fi ed  [  82  ] . Hesx1 null mutant 
mice demonstrate abnormalities in the corpus 
callosum, anterior and hippocampal commis-
sures, and septum pellucidum, presenting a simi-
lar phenotype to defects seen in humans with 
SOD  [  80  ] . Two siblings with agenesis of the cor-
pus callosum, optic nerve hypoplasia, and panhy-
popituitarism were found to have a homozygous 
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  Fig. 1.3    Anterior pituitary development. The develop-
ment of the mature pituitary gland initiates with the con-
tact of the oral ectoderm with the neural ectoderm followed 
by a cascade of events consisting of both signaling mole-
cules and transcription factors expressed in a speci fi c tem-
poral and spatial fashion. This  fi gure presents a modi fi ed 
overview of pituitary development adapted from previous 
embryological studies performed in murine species by 
illustrating the temporal expression of various develop-
mental factors. Early on, bone morphogenic protein 4 
(BMP-4) and Nkx2.1 are expressed along with sonic 
hedgehog (Shh) in order to form the primordial Rathke’s 
pouch, which will become the mature pituitary. Also 
expressed are Gli1 and 2, Lhx3, and Pitx1 and 2, which all 

play a role in the development of progenitor pituitary cell 
types. Subsequently, the expression of Hesx1, Isl1, paired 
box gene 6 (Pax6), and Six3 assists in appropriate cellular 
development, proliferation, and migration. The  hashed 
arrows  denote the attenuation of an expressed factor, such 
as seen with Hesx1, and are often required for the expres-
sion of another factor. The attenuation of Hesx1, for 
example, is required for the expression of Prop1. Similarly, 
POU1F1 (Pit-1), which is required for somatotroph, lac-
totroph, and thyrotroph development, is expressed upon 
the attenuation of Prop1 expression. Ultimately, the 
mature pituitary gland is marked by the differentiated cell 
types: somatotrophs, lactotrophs, thyrotrophs, gonadotro-
phs, and corticotrophs  [  121,   267,   268  ]        
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mutation at codon 53 (arginine to cysteine) in the 
homeodomain (DNA-binding domain) of  HESX1 , 
resulting in a drastic reduction in DNA binding 
 [  80  ] . More recently, a novel I26T mutation 
in exon 1 was reported in a patient with early 
GHD, FSH/LH de fi ciency, and evolving TSH 
and cortisol de fi ciency, along with pituitary struc-
tural abnormalities but normal optic nerves  [  83  ] . 

 Several investigators have organized screen-
ings to assist in identifying mutations in  HESX1 . 
Thomas et al., for example, scanned 228 patients 
with a wide spectrum of congenital hypopituitar-
ism phenotypes: 85 with isolated pituitary hyp-
oplasia [including isolated GH de fi ciency and 
combined pituitary hormone de fi ciency (CPHD)], 
105 with SOD, and 38 with holoprosencephaly or 
related phenotypes. In this cohort, three missense 
mutations were identi fi ed  [  84  ] . More recently, 
approximately 850 patients were studied for muta-
tions in  HESX1  (300 with SOD; 410 with isolated 
pituitary dysfunction, optic nerve hypoplasia, or 
midline brain anomalies; and 126 patients with 
familial inheritance). Only 1% of the group was 
found to have coding region mutations, suggest-
ing that mutations in  HESX1  are a rare cause of 
hypopituitarism and SOD  [  85  ] . 

  Ptx2  ( Pitx2   ): Ptx2 is a paired-like homeodomain 
transcription factor closely related to the mam-
malian  Otx  genes that are expressed in the rostral 
brain during development and are homologous to 
the  Drosophila orthodenticle  ( otd ) gene, which is 
essential for the development of the head in 
 Drosophila melanogaster   [  86  ] . Ptx2 null mice 
showed embryonic lethality; however, a hypo-
morphic allele model of Ptx2 demonstrated pitu-
itary hypoplasia and cellular differentiation 
defects in proportion to the reduced dosage of 
Ptx2. The gonadotrophs were most severely 
affected, followed by somatotrophs and thyrotro-
phs  [  87–  89  ] . 

 RIEG is the human homologue of Ptx2, and 
clinical mutations of PTX2 have been described 
in patients with Axenfeld-Rieger syndrome. This 
syndrome is an autosomal dominant condition 
with variable manifestations including anomalies 
of the anterior chamber of the eye, dental hyp-
oplasia, a protuberant umbilicus, mental retarda-

tion, and pituitary alterations  [  90  ] . One group of 
investigators described mutations in six out of ten 
families with autosomal dominant Rieger syn-
drome  [  91,   92  ] . Five of the six mutations reported 
were in the homeobox region, and several show 
loss of DNA-binding capacity. 

  Lhx3  ( Lim-3 ,  P-Lim ): Lhx3 is a LIM-type home-
odomain protein expressed in the anterior and 
intermediate lobes of the pituitary gland, the ven-
tral hindbrain, and the spinal cord  [  93–  95  ] . Lhx3 
expression persists in the adult pituitary, suggest-
ing a maintenance function in one or more of the 
anterior pituitary cell types  [  93  ] . In addition, its 
expression is associated with cells that secrete 
GH and PRL, as well as the expression of the 
 a -glycoprotein subunit ( a  -GSU), suggesting a 
common cell precursor for gonadotrophs, thy-
rotrophs, somatotrophs, and lactotrophs  [  93,   96  ] . 

 In humans, homozygous loss-of-function 
mutations in LHX3 have been identi fi ed in 
patients with hypopituitarism including GH, 
TSH, PRL, LH, and FSH de fi ciencies, anterior 
pituitary defects, and cervical abnormalities with 
or without restricted neck rotation  [  97–  99  ] . 
Among 366 studied patients with IGHD or 
CPHD, only 7 patients from 4 families were 
found to have LHX3 mutations, suggesting  LHX3  
mutations are a rare cause of CPHD  [  99  ] . 

  Prop1 : Prop1 is a paired-like homeodomain tran-
scription factor with expression restricted to the 
anterior pituitary during development  [  2,   100  ] . 
During pituitary development, Prop1 acts as a 
repressor in downregulating Hesx1 and as an acti-
vator of POU1F1  [  101  ] . A considerable variation 
in clinical phenotypes of patients with PROP1 
mutations has been demonstrated, even in patients 
bearing identical genotypes  [  100,   102,   103  ] . 
Several reports have shown that hormone de fi ciency 
may be variable and dynamic; some patients may 
develop cortisol de fi ciency over time or hypogo-
nadotrophic hypogonadism despite the progres-
sion into spontaneous puberty  [  100,   104–  106  ] . 

 Multiple nonconsanguineous patients from at 
least eight different countries have a documented 
recurring homozygous autosomal recessive muta-
tion of PROP1, delA301,G302 (also known as 
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296delGA) in exon 2, which changes a serine to a 
stop codon at codon 109 in the homeodomain, 
resulting in a truncated gene product  [  107–  109  ] . 
In one family, progressive ACTH de fi ciency was 
noted with age  [  110  ] . In another consanguineous 
Indian pedigree, a 112-124del mutation resulting 
in a premature stop codon at position 480 was 
identi fi ed, and in addition to GH, PRL, TSH, and 
gonadotropin de fi ciencies, affected individuals 
were also noted to have an impaired pituitary-
adrenal axis  [  111  ] . Several other mutations in 
PROP1 have been described  [  100,   107,   112–  114  ] . 

  Pou1f1 : Pou1f1 ( PIT-1 , GHF-1) is a member of 
a family of transcription factors, POU, which 
are responsible for mammalian development 
and its expression is restricted to the anterior 
pituitary lobe  [  115,   116  ] . Pit-1 has been shown 
to be essential for the development of soma-
totrophs, lactotrophs, and thyrotrophs, as well 
as for their cell-speci fi c gene expression and 
 regulation  [  116  ] . 

 Mutations in  POU1F1  in humans were 
described in 1992 by four different groups in 
patients with CPHD consisting of GHD, TSH, 
and PRL de fi ciencies and variable hypoplastic 
anterior pituitaries on MRI  [  117–  120  ] . At least 
28 different mutations have been described, with 
23 demonstrating autosomal recessive inheri-
tance and  fi ve demonstrating dominant inheri-
tance  [  121  ] . The most common mutation is an 
R271W substitution affecting the POU home-
odomain; this leads to a mutant protein that binds 
normally to DNA but acts as a dominant inhibitor 
of transcription and may act by impairing 
dimerization  [  118,   120,   122–  129  ] . 

 In another single allele mutation, K216E, the 
mutant Pit-1 is able to bind DNA, but unable to 
support retinoic acid induction of the  Pit-1  gene 
distal enhancer either alone or in combination 
with wild-type Pit-1. This ability to selectively 
impair the interaction with the superfamily of 
nuclear hormone receptors is another mechanism 
responsible for CPHD  [  130  ] . Several other point 
mutations in the Pit-1 gene resulting in CPHD 
have been described. Some alter residues impor-
tant for DNA binding and/or alter the predicted 
 a -helical nature of the Pit-1, while others have 

been shown to or postulated to impair transacti-
vation of target genes  [  121,   131  ] . 

  Isolated GHD  ( IGHD ): Four forms of IGHD have 
been described, and its classi fi cation is based 
upon the clinical presentation, inheritance pat-
tern, and GH secretion. 

  IGHD Type IA  results primarily from large 
deletions along with microdeletions and single 
base pair substitutions of the  GH1  gene, which 
ultimately prevents synthesis or secretion of the 
hormone. This condition is associated with growth 
retardation in infancy and subsequent severe 
dwar fi sm. Heterogeneous deletions of both alleles 
ranging from 6.7 to 45 kb have been described 
 [  132–  135  ] . These patients frequently develop 
antibodies to exogenous GH therapy, which is 
attributed to the lack of immune tolerance because 
of prenatal GHD  [  136,   137  ] . Some patients may 
eventually become insensitive to GH replacement 
therapy demonstrating a decreased clinical 
response; subsequently, recombinant IGF-1 ther-
apy may be an alternative option. 

  IGHD Type IB  is a less severe autosomal 
recessive form of GHD resulting from mutations 
or rearrangements of the  GH1  gene, such as 
splice site mutations that lead to partial GH 
de fi ciency  [  133,   138,   139  ] . In one study, a 
homozygous splice site G to C transversion in 
intron 4 of the  GH-1  gene was identi fi ed, causing 
a splice deletion of half of exon 4 as well as a 
frame shift within exon 5. These changes ulti-
mately affected the stability and biological activ-
ity of the mutant GH protein  [  140  ] . Several other 
deletions or frame shift mutations have been 
described by others  [  141–  143  ] . 

  IGHD Type II  is an autosomal dominant condi-
tion considered the most common genetic form of 
IGHD. Several patients have been found to have 
intronic transitions in intron 3, inactivating the 
donor splice site of intron 3 and deleting exon 3 
 [  139,   140,   144–  148  ] . 

  IGHD Type III  is a partial GH de fi ciency with 
X-linked inheritance due to interstitial 
Xq13.3-Xq21.1 deletions or microduplications 
of certain X regions. Patients may also have 
hypogammaglobulinemia, suggesting a contigu-
ous Xq21.2-Xq22 deletion  [  149,   150  ] . 
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  Bioinactive GH  has been reported in patients 
with short stature demonstrating normal GH 
immunoreactivity but reduced biopotency. A 
child, with an autosomal arginine to cysteine 
mutation at codon 77, was described with severe 
growth retardation, high serum GH levels, ele-
vated GHBP, low IGF-1 levels, and increased GH 
levels after provocative testing. The child 
expressed both mutant and wild-type GH; how-
ever, the mutant GH had a higher af fi nity for 
GHBP, a lower phosphorylating activity, and an 
inhibitory or dominant negative effect on wild-
type GH activity  [  151  ] . In another patient, an 
aspartic acid to lysine mutation at codon 112 was 
identi fi ed and suggested to prevent appropriate 
GH-R dimerization  [  152  ] . 

 There are also patients with the phenotype of 
growth hormone insensitivity who do not demon-
strate mutations of the GH-R gene, but have 
identi fi ed mutations in downstream GH-R signal-
ing molecules. Homozygous mutations in the 
Stat5b gene, a major GH-dependent mediator of 
IGF-I gene transcription, have been identi fi ed as a 
cause of GH insensitivity  [  153,   154  ] . The  fi rst 
mutation characterized was a point mutation 
resulting in a marked decrease in phosphorylation 
of tyrosine  [  153  ] , a critical step in the pathway to 
STAT activation of IGF-1 gene transcription; 
while the second characterized mutation was an 
insertion in exon 10, leading to early protein ter-
mination  [  154–  156  ] . In addition to growth retar-
dation, both patients had evidence of immune 
dysfunction presumably because Stat5b is involved 
in downstream signaling for multiple cytokines. 

  GH-R mutations : Laron dwar fi sm is an autosomal 
recessive disorder characterized by clinical fea-
tures of severe GH de fi ciency along with low 
IGF-1 levels but with normal to high levels of GH 
after provocative testing  [  157  ] . Several deletions 
and point mutations of several GH-R exons have 
been described  [  158–  167  ] . Many of these muta-
tions affect the extracellular domain and, there-
fore, lead to absent or decreased levels of GHBP 
 [  168  ] . Recombinant IGF-1 therapy has been 
demonstrated to effectively treat these patients 
 [  169,   170  ] . It has also been hypothesized that 
some patients with idiopathic short stature, nor-

mal GH secretion, and low serum concentrations 
of GHBP may have partial insensitivity to GH 
due to mutations in the  GH-R  gene  [  162  ] . 

  IGF-1 and IGF-1R mutations : A patient noted to 
have a homozygous partial IGF-1 gene deletion 
with undetectable levels of IGF-1 presented with 
severe prenatal and postnatal growth failure, 
bilateral sensorineural deafness, mental retarda-
tion, moderately delayed motor development, 
and behavioral dif fi culties. His evaluation did not 
demonstrate a signi fi cant delay in his bone age, 
and an IGFBP-3 level was normal  [  171  ] . 

 Studies with African pygmies demonstrate 
normal levels of hGH, but decreased IGF-1 levels 
and unresponsiveness to exogenous hGH. 
Although IGF-1 de fi ciency has been hypothe-
sized, Bowcock et al. found no differences in 
restriction fragment length polymorphisms in the 
IGF-1 gene in Pygmy versus non-Pygmy black 
Africans  [  172  ] . Furthermore, Pygmy T cell lines 
show IGF-1 resistance at the receptor level with 
secondary GH resistance  [  173,   174  ] . In a recent 
study, it was demonstrated that adult Pygmies 
demonstrate a reduction in both GH gene expres-
sion (1.8-fold) and GH-R gene expression 
(8-fold). This decrease of the GH-R expression in 
Pygmies was associated with reduced serum lev-
els of IGF-I and GHBP  [  175  ] . 

 Abnormalities in the IGF-1R gene have also 
been reported and are often associated with intra-
uterine growth retardation (IUGR). Several 
heterozygous mutations of the IGF-1R gene, as 
well as an association with deletions in chromo-
some 15q, have been reported in patients with 
growth retardation  [  176–  181  ] . The majority of 
these reported patients carried the diagnosis of 
IUGR along with progressive postnatal growth 
retardation; however, other phenotypic character-
istics not universal in these patients included 
 fi ndings of developmental delay, microcephaly, 
or skeletal abnormalities. In addition, IGF-1 lev-
els were found to be either normal or high, 
whether at baseline or after provocative testing. 

 Other patients are suspected to have IGF-1 
resistance, as they have elevated GH levels 
and elevated IGF-1 levels  [  182–  184  ] . In one 
patient, cultured  fi broblasts had a 50% reduction 
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in IGF-1 binding capacity  [  183  ] . Another patient 
had a markedly diminished ability of IGF-1 to 
stimulate  fi broblast  a  (alpha)-aminoisobutyric 
acid uptake compared to control subjects  [  184  ] . 
Their birth lengths, which were less than the  fi fth 
percentile, suggest the importance of IGF-1 in 
fetal growth. 

 Other post-signal transduction defects and 
mutations in IGF-binding proteins may occur but 
have not been demonstrated as of yet.  

   Acquired Forms of Hypopituitarism 
(Table  1.2 )    

 Head trauma can damage the pituitary stalk and 
infundibulum and lead to the development of 
transient and permanent diabetes insipidus, as 
well as other hormonal de fi ciencies  [  185,   186  ] . 
There are a number of reports suggesting an asso-
ciation between hypopituitarism and a compli-
cated perinatal course, especially breech delivery 
 [  70,   187,   188  ] . It is not clear if a complicated 
perinatal course causes hypopituitarism or if a 
brain anomaly leads to both a complicated deliv-
ery and hypopituitarism. The  fi nding that some of 
these patients have a microphallus at birth sug-
gests that pituitary dysfunction may precede the 
birth trauma  [  6  ] . 

 In fi ltrative conditions can also disrupt the 
pituitary stalk. Diabetes insipidus can be the  fi rst 
manifestation of Langerhans cell histiocytosis 
 [  189–  191  ]  or sarcoidosis  [  192  ] . Lymphocytic 
hypophysitis, usually in adult women in late 
pregnancy or the postpartum period, can result in 
hypopituitarism  [  193  ] . 

 Metabolic disorders can cause hypopituitar-
ism through destruction of the hypothalamus, 
pituitary stalk, or pituitary. Hemochromatosis is 
characterized by iron deposition in various tis-
sues, including the pituitary. It may be idiopathic 
or secondary to multiple transfusions (e.g., for 
thalassemia major); gonadotropin de fi ciency is 
the most common hormonal de fi ciency, but GHD 
has also been described  [  194,   195  ] . 

 Hypothalamic or pituitary tissue can also be 
destroyed by the mass effect of suprasellar tumors 
or by their surgical resection. These tumors 
include craniopharyngiomas, low-grade gliomas/
hypothalamic astrocytomas, germ-cell tumors, 
and pituitary adenomas  [  196  ] . Treatment of brain 
tumors or acute lymphoblastic leukemia (ALL) 
with cranial irradiation may also result in GHD. 
Lower radiation doses preserve pharmacologic 
response of GH to stimulation, but spontaneous 
GH secretion may be lost  [  197  ] . Discordancy 
between failure to provoke an adequate GH 
response to insulin-induced hypoglycemia but 
normal response to exogenous GHRH stimula-
tion suggested that the hypothalamus is more 
vulnerable than the anterior pituitary  [  198  ] . More 
recent data, however, from Darzy et al. show that 
spontaneous GH secretion is maintained in adults 
after low-dose cranial RT, suggesting there is not 
GHRH de fi ciency. There is a normal but decreased 
peak GH response to stimulation testing indicat-
ing decreased somatotroph reserve. They postu-
late that there is compensatory increase in 
hypothalamic stimulatory input (GHRH) and 
suggested that “neurosecretory dysfunction” after 
low-dose cranial RT may only be seen in puberty 
during time of increased GH demand  [  199  ] . 

 The higher the radiation dose, the more likely 
and the earlier GHD will occur after treatment 
 [  200,   201  ] . Clayton et al. reported that 84% of 
children who received greater than 30 Gy to the 
hypothalamic-pituitary area had evidence of GH 
de fi ciency more than 5 years after irradiation 

   Table 1.2    Etiologies of acquired growth hormone 
de fi ciency   

 Trauma 
 Head injury 
 Perinatal events 

 In fi ltrative and autoimmune diseases 
 Langerhans histiocytosis 
 Sarcoidosis 
 Lymphocytic hypophysitis 

 Infections 
 Meningitis 
 Granulomatous diseases 

 Metabolic 
 Hemachromatosis 
 Cerebral edema 

 Neoplasms 
 Craniopharyngioma 
 Germinoma 
 Hypothalamic astrocytoma/optic glioma 

 Cranial irradiation 
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 [  200  ] . Higher doses also increase the likelihood 
of the development of other anterior pituitary 
hormone de fi ciencies as well  [  201  ] . Cranial radi-
ation can also be associated with precocious 
puberty, leading to premature epiphyseal fusion 
 [  197  ] , and spinal irradiation can lead to skeletal 
impaired spinal growth  [  202  ] , both of which will 
further compromise adult height.   

   Diagnosis of Growth Hormone 
De fi ciency 

 There is much debate as to the proper methods to 
diagnose GHD in childhood. It is clear that there 
is a spectrum of GHD and the clinical presenta-
tion varies with the degree of hormonal de fi ciency. 
In 2000, the Growth Hormone Research Society 
published its consensus guidelines on the diagno-
sis and treatment of GHD in childhood and ado-
lescence  [  203  ] . In considering who should 
undergo evaluation for GHD, they stress the 
importance of  fi rst excluding other causes of 
growth failure and then assessing the patients for 
clinical features that can coexist with GHD. 
These features include hypoglycemia, prolonged 
jaundice, microphallus, and traumatic delivery in 
the neonate, as well as a history of cranial irradia-
tion, head trauma, and central nervous system 
infection; family history of GHD and craniofa-
cial midline abnormalities; and presence of other 
pituitary hormone de fi ciencies. When present, 
the majority of these features are seen in patients 
on the severe end of the spectrum of GHD. These 
patients are typically easy to diagnose and have 
low growth velocity and biochemical markers of 
GHD, including low IGF-1 levels  [  204  ]  and low 
peak GH levels after stimulation tests  [  205  ] . 

 The majority of patients with GHD will pres-
ent with short stature without any of these other 
features. Some suggested guidelines for further 
evaluation include height more than 3 SD below 
the population mean, height more than 2 SD 
below the population mean with a growth veloc-
ity more than 1 SD below the mean, or a very low 
growth velocity (less than minus 2 SD) irrespec-
tive of current height  [  203  ] . Conventionally, the 
gold standard for the diagnosis of GHD has been 
a peak serum GH <10 ng/mL after two different 

GH stimulation tests. This cutoff is completely 
arbitrary and has increased from <3 to <10 ng/ml 
as the supply of GH has increased with the pro-
duction of recombinant hGH (rhGH). However, 
the sensitivity and speci fi city of these tests are 
limited due to their dependence on physiological 
parameters such as age, gender, and body weight; 
the implementation of different pharmacological 
stimuli; the arbitrary cutoff values; the poorly 
reproducible results; and the use of different lab-
oratory techniques for the measurement of GH. 
Assessment of serum levels of IGF-I and its bind-
ing protein IGFBP-3 is a major advance in the 
diagnosis of GH de fi ciency. Ultimately, the diag-
nosis is based on the integration of auxological, 
biochemical, and radiographic criteria. 

   Growth Hormone Stimulation Tests 

 GH is secreted episodically, mostly during 
slow-wave sleep. Between the pulses of pitu-
itary GH secretion, serum concentrations are 
typically low, even in GH suf fi cient children. 
Radioimmunoassays (RIAs) and immunometric 
assays are the most commonly used laboratory 
techniques for determination of GH levels. 
Estimations performed by RIA use polyclonal 
antibodies, which render low speci fi city and 
higher GH levels when compared with the 
more speci fi c immunoradiometric assays using 
two highly speci fi c monoclonal antibodies. 
Discrepancies up to two- to fourfold have been 
reported among different assays  [  206  ] . 

 A variety of pharmacological tests have been 
implemented to assess the GH secretory capacity 
of the pituitary gland  [  207  ] . They are expensive, 
not free of side effects, and require fasting condi-
tions as high glucose levels inhibit GH secretion. 
GH provocative tests have been divided into two 
groups: screening tests including exercise, 
levodopa, and clonidine, and de fi nitive tests includ-
ing arginine, insulin, and glucagon. Due to their 
low speci fi city and sensitivity, and to exclude nor-
mal children who might fail a single stimulation 
test, the performance of two different provocative 
tests, sequentially or in combination, has been 
implemented  [  208,   209  ] . An inappropriate low 
secretory response in the second test supposedly is 
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con fi rmatory of GH de fi ciency. However, multiple 
studies have shown that children diagnosed with 
isolated GHD based on peak GH levels <10 ng/mL 
will have normal GH secretion on retesting both in 
childhood  [  210  ]  and as adults  [  211,   212  ] . 

 Furthermore, in normal children, serum levels 
of GH are age and sex dependent and show a 
sharp pubertal increase. Immediately before 
puberty, GH secretion may normally be very low, 
making the discrimination between GHD and 
constitutional delay of growth and puberty 
dif fi cult. Sex steroid priming with estrogen  [  213  ]  
or androgen  [  214  ]  to Tanner stage I or II children 
has been recommended to distinguish between 
GHD and constitutional delay in growth and 
puberty  [  215  ] , although there is no consensus on 
this recommendation. While children with GHD 
might have an attenuated response, those with 
constitutional growth delay will have a normal 
secretory pattern. In a study by Marin et al.  [  215  ] , 
61% of normal-stature prepubertal children who 
were not primed with sex steroids failed to raise 
their peak serum GH concentration above 7 ng/
mL following a provocative test. 

 In summary, the threshold to de fi ne GH 
de fi ciency to various provocative stimuli is arbi-
trary and based on no physiological data. 
Pharmacological tests involve the use of potent 
GH secretagogues, which may not re fl ect GH 
secretion under physiological circumstances, 
masking the child with partial GH de fi ciency. GH 
stimulation tests are reliable only in the diagnosis 
of severe or complete GH de fi ciency. In addition 
to their low reproducibility  [  216  ] , a “normal” 
secretory response does not exclude the possibil-
ity of various forms of GH insensitivity or partial 
GH de fi ciency. Caution must be taken in obese 
children who undergo provocative testing for GH 
secretion, due to a negative impact of adipose tis-
sue on GH secretion  [  217,   218  ] .  

   Physiologic Assessment of Growth 
Hormone Secretion 

 In addition to pharmacological tests of growth 
hormone secretion, exercise testing has been 
implemented as a screening test for GHD, as 

exercise induces an increase in GH levels. 
Although it is simple, safe, and inexpensive, up 
to one-third of normal children have an absent 
GH response  [  219  ] . Additionally, frequent blood 
sampling can be performed overnight to test for 
spontaneous GH secretion. The term GH neuro-
secretory dysfunction refers to patients with an 
abnormally slow growth rate and low integrated 
GH concentration (mean serum 24-h GH con-
centration) but appropriate GH response to pro-
vocative tests  [  220,   221  ] . The pathophysiology 
and the incidence of this condition remain 
unknown. Although the integrated GH concen-
tration has better reproducibility compared to 
the standard provocative tests, there is still 
signi fi cant intraindividual variation and over-
lapping with the values found in normal short 
children  [  222  ] . Lanes et al. reported decreased 
overnight GH concentrations in 25% of nor-
mally growing children  [  223  ] . As sampling is 
required every 20 min for a minimum of 
12–24 h, this test is not practical for routine 
clinical care. 

 GH induces the expression of IGF-I in liver 
and cartilage. The use of age and puberty-cor-
rected IGF-1 levels has become a major tool in 
the diagnosis of GHD  [  224  ] . Because of little 
diurnal variation, their quanti fi cation in random 
samples is useful. However, sensitivity is still 
limited due to a signi fi cant overlap with normal 
values. Low levels of IGF-I may be found in nor-
mal children, especially in those less than 5 years 
of age. Similarly, low levels are reported in chil-
dren with malnutrition, hypothyroidism, renal 
failure, hepatic disease, and diabetes mellitus. 
Serum levels of IGF-I do not correlate perfectly 
with GH status as determined by provocative GH 
testing  [  225,   226  ] . 

 IGFBP-3 is the major carrier of IGF-1  [  227  ] . 
It is GH dependent but has less age variation and 
is less affected by the nutritional status compared 
to IGF-I and, thus, may correlate more accurately 
with GH status  [  228  ] . Although low levels of 
IGFBP-3 are suggestive of GH de fi ciency, up to 
43% of normal short children have been reported 
to have low concentrations  [  229  ] . Similarly, 
normal values have been reported in children 
with partial GHD  [  225,   230  ] . 
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 Determinations of IGF-I and IGFBP-3 are 
reliable tests in the diagnosis of severe GH 
de fi ciency and have better reproducibility when 
compared with GH provocative tests. However, 
their sensitivity and speci fi city are still subopti-
mal  [  205  ] . The combination of a low growth 
velocity and IGF-I level is quite sensitive and 
speci fi c for the diagnosis of GHD and may 
remove the need for provocative testing in patients 
 [  231  ]  where other causes for growth failure, espe-
cially malnutrition and gastrointestinal illness, 
have been excluded.  

   Bone Age Evaluation 

 The evaluation of skeletal maturation is crucial in 
the assessment of growth disorders, as osseous 
growth and maturation is in fl uenced by nutri-
tional, genetic, environmental, and endocrine 
factors. Skeletal maturation is signi fi cantly 
delayed in patients with GHD, hypothyroidism, 
hypercortisolism, and chronic diseases. Children 
with constitutional growth delay will show a 
delayed bone age, which corresponds with the 
height age. 

 In children over 1 year of age, the radiograph 
of the left hand is commonly used to evaluate the 
skeletal maturation. The skeletal age or bone age 
(BA) is determined by comparing the epiphyseal 
ossi fi cation centers with chronological standards 
from normal children. Comparison of the distal 
phalanges renders better accuracy. Several meth-
ods to determine the BA are available, with the 
Greulich and Pyle  [  232  ]  and Tanner-Whitehouse 
2 (TW2)  [  233  ]  methods most widely used. For 
the Greulich and Pyle method, a radiograph of 
the left hand and wrist is compared with the stan-
dards of the Brush Foundation Study of skeletal 
maturation in normal boys and girls  [  232  ] . The 
standards correspond to a cohort of white chil-
dren, so its applicability to other racial groups 
may be less accurate. The TW2 method assigns a 
score to each one of the epiphyses. It is more 
accurate but also more time consuming. BA esti-
mation has technical dif fi culties due to inter- and 
intraobserver variations as well as ethnic and 
gender differences among children.  

   Prediction of Adult Height 

 The growth potential of an individual must be 
evaluated according to the parents’ and siblings’ 
heights, as genetic in fl uences play a crucial role 
in determining the adult height. An approxima-
tion of the ultimate adult height is obtained by 
calculating the midparental height. For girls, 
midparental height is (mother’s height + father’s 
height—13 cm)/2 and for boys (mother’s 
height + father’s height + 13 cm)/2. The child’s 
target height is the midparental height ± 2 S.D. 
(10 cm or 4 in)  [  234  ] . When the growth pattern 
deviates from the parental target height, an under-
lying pathology must be ruled out. 

 Four methods to predict adult height are avail-
able: (1) Bayley-Pinneau is based on current stat-
ure, chronological age, and BA obtained by the 
Greulich and Pyle method  [  235  ] . This method 
probably underpredicts growth potential  [  236  ] . 
(2) The TW2 method considers current height, 
chronologic age, TW2 assessment of BA, midpa-
rental stature, and pubertal status  [  233  ] . (3) The 
Roche-Wainer-Thissen method requires recum-
bent length, weight, chronological age, midpar-
ental stature, and Greulich and Pyle BA 
assessment  [  237  ] . (4) The Khamis-Roche algo-
rithm (KR) directly calculates predicted adult 
height from a linear combination of child’s height 
and weight, together with midparental height. 
Sex- and age-speci fi c coef fi cients for both sexes 
are provided  [  238  ] . However, there is wide varia-
tion in predicted adult heights using height pre-
diction algorithms, and different methods are 
useful under certain circumstances, with accu-
racy varying according to subjects’ age, gender, 
and BA  [  239  ] . In addition, predictions of adult 
height may be of limited value in patients with 
underlying pathology.  

   MR Imaging 

 Magnetic resonance imaging (MRI) of the brain 
is a sensitive and speci fi c indicator of hypopitu-
itarism: A high proportion of children with IGHD 
with normal or small pituitary glands showed 
normalization of GH secretion at the completion 
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of GH treatment, whereas GHD was permanent 
in all patients with congenital anatomical abnor-
malities, such as pituitary hypoplasia, pituitary 
stalk agenesis, and posterior pituitary ectopia 
 [  211  ] . Structural abnormalities are more common 
in patients with CPHD or panhypopituitarism 
(93%) and in those with severe GH de fi ciency 
compared to those with isolated GH de fi ciency 
(80%)  [  240  ] . Mass lesions such as suprasellar 
tumors or thickening of the pituitary stalk due to 
in fi ltrative disorders such as histiocytosis may be 
found in patients with acquired GHD.   

   GH Therapy 

 There is wide variability in the dose of rhGH 
used to treat GHD. Traditionally, rhGH dosage 
has been based on weight, and consensus guide-
lines recommend doses of 25–50  m g/kg/day given 
6–7 days per week in children with the consider-
ation of doses up to 100  m g/kg/day during puberty 
 [  203,   241  ] . High-dose therapy during puberty has 
been shown to increase near-adult height mod-
estly without apparent adverse effects or increased 
rate of skeletal maturation  [  242  ] . There is great 
variability in response to rhGH therapy. 

 In order to decrease variability and improve 
adult height outcomes, two strategies have 
evolved to help re fi ne rhGH dosing. The  fi rst 
strategy employs prediction models which calcu-
late expected growth velocity based on baseline 
parameters  [  243  ] . These prediction models are 
derived from large pharmaceutical company GH 
registries and provide important insights into GH 
responsiveness. Peak GH levels during stimula-
tion testing, age at onset of rhGH therapy, and 
height de fi cit from midparental target height have 
been found to be the most signi fi cant predictors 
of  fi rst-year growth velocity  [  244  ] . This indicates 
that individuals with more severe GHD, younger 
age at therapy start, and greater genetic potential 
will have the greatest response to therapy. Growth 
velocity in subsequent years is highly dependent 
on growth response in the prior year. One study 
has shown that using individualized rhGH doses 
based on a prediction model decreased variability 
in response without compromising ef fi cacy  [  97  ] . 

 The second strategy for re fi ning rhGH dosing 
involves using IGF-I levels to target therapy. One 
study showed that targeting higher IGF-I levels 
leads to an increase in height gain without appar-
ent adverse effects  [  245  ] . With this strategy, there 
is still a range of responses which depend on the 
individual patient’s GH sensitivity. 

 Regardless of strategy used to select a dose for 
initiation of rhGH therapy, one must assess 
response to therapy and make further decisions 
about dose adjustments or discontinuation of 
therapy. Typically, response is assessed after a 
year of therapy, and the most important parame-
ters are height velocity and change in height stan-
dard deviation score (SDS). Height velocity varies 
by age and gender, while change in height SDS 
intrinsically corrects for these factors  [  246,   247  ] . 
In patients with severe GHD de fi ned as a peak 
GH level <5 ng/mL on stimulation testing, a 
change in height SDS less than 0.4 in the  fi rst year 
of therapy is a poor response, while in those with 
less severe GHD, the corresponding value is 0.3 
 [  247  ] . A suboptimal response may be indicative 
of an incorrect diagnosis of GH de fi ciency, lack 
of compliance, improper preparation and/or 
administration, associated hypothyroidism, con-
current chronic disease, complete osseous matu-
ration, and, rarely, anti-GH antibodies. 
Development of antibodies to exogenous GH has 
been reported in 10–30% of recipients of rhGH. 
This  fi nding is more common in children lacking 
the  GH  gene. However, the presence of GH anti-
bodies does not usually attenuate the hormonal 
effect, as growth failure has been reported in less 
than 0.1%  [  248  ] . Additionally, one can compare 
actual growth response to predicted growth 
response based on the aforementioned growth 
prediction models. As rhGH dose is included in 
the models, a poor actual versus predicted 
response indicates either decreased growth hor-
mone sensitivity or noncompliance  [  247  ] . Finally, 
there is mounting evidence that underlying genetic 
variants in the GH-R in fl uence response to ther-
apy  [  249  ] , but this area requires further research. 

 There have been attempts to further increase 
height gains in individuals with GHD who have 
a low predicted adult height through the use 
of gonadotropin-releasing hormone analogs to 



171 Childhood Growth Hormone De fi ciency and Hypopituitarism

suppress puberty. The data on this topic is 
con fl icting, and recent consensus guidelines state 
that this practice cannot be suggested  [  250  ] . 

 Monitoring of IGF-I and IGFBP-3 levels has 
gained wide acceptance to assess safety and com-
pliance; however, their serum levels do not always 
correlate with the obtained increment in growth 
velocity. Although recommended by some  [  251  ] , 
regular monitoring of the BA in children under 
GH therapy is questionable. Interobserver differ-
ences in bone age interpretation and erratic 
changes over time in osseous maturation make 
the estimation of adult height inaccurate. 
Similarly, predictions of adult height may be arti-
factually overestimated, as GH may accelerate 
the bone maturation in advance to any radio-
graphic evidence  [  252  ] . 

   Side Effects 

  Diabetes and insulin resistance : Despite the con-
cerns of diabetes mellitus (DM) developing in 
patients under rhGH therapy due to its anti-insu-
lin effect, a higher incidence of type I insulin-
dependent diabetes mellitus (IDDM) in children 
and adults has not been reported  [  253  ] . Type II 
DM has been reported by some at a higher inci-
dence in children receiving GH; however, others 
found no increased incidence of type 2 DM in 
rhGH-treated patients with a normal BMI  [  253  ] . 
Nevertheless, a high BMI is a risk factor for 
developing diabetes in GHD patients, and rhGH 
therapy may potentially accelerate the develop-
ment of diabetes in predisposed patients  [  254  ] . 

  Leukemia : Concerns regarding the development 
of de novo leukemia arose after a cluster of leuke-
mia in patients under rhGH therapy was reported 
in Japan in 1988  [  255  ] . A subsequent study, how-
ever, which looked at 32,000 rhGH recipients did 
not  fi nd signi fi cantly higher incidence compared 
to the general population  [  256  ] . Initially, three 
cases of leukemia in the United States were 
reported in 59,736 patient-years of follow-up, 
which was not signi fi cantly higher when matched 
by US age, race, and gender, yet three additional 
cases found in an extended follow-up suggested 

an increased minimum rate of leukemia (2.26 
cases expected,  p  = 0.028). Five of these six sub-
jects, however, had antecedent cranial tumors and 
four had received radiotherapy. More recently, 
the National Cooperative Growth Study (NCGS) 
published data to help address concerns about 
de novo leukemia in recipients without risk fac-
tors and report the safety issue has not been 
con fi rmed  [  257  ] . In patients with idiopathic 
GHD, there was no increase in leukemia  [  258  ] . 

  Recurrence of central nervous   system tumors : GH 
and IGF-1, which both have anabolic and mito-
genic effects, have been suggested to cause prolif-
eration of normal and malignant cells. Therefore, 
several possible mechanisms regarding rhGH’s 
potential role in tumor growth have been investi-
gated  [  259  ] . Initial data from the Kabi International 
Growth Study (KIGS)  [  260  ]  and the NCGS  [  261  ]  
did not support an increased risk of brain tumor 
recurrence. Follow-up data by the NCGS in 2010, 
which essentially comprises 20 years of GH ther-
apy and 192,345 patient-years, continued to report 
no increase in new malignancies or recurrences of 
CNS tumors in rhGH-treated patients without risk 
factors  [  257  ] . The development of second neo-
plasms (SN) in children treated with rhGH ther-
apy, however, does appear to be increased 
especially in those with prior exposure to radia-
tion  [  257  ] . Ergun-Longmire et al. reported that 
cancer survivors treated with rhGH appeared to 
have an increased risk of developing SN com-
pared to survivors not treated (relative risk 2.15), 
although the elevation of risk appeared to dimin-
ish with increasing length of follow-up  [  262  ] . 

  Skin cancer : The statistics of the NCGS have not 
shown a higher incidence of melanocyte nevi or 
skin cancer in individuals treated with rhGH  [  263  ] . 

  Benign intracranial hypertension : This neuro-
logical complication has been described in 
patients receiving rhGH but with a low incidence. 
A prospective study collecting data on 3,332 chil-
dren in Australia and New Zealand found a low 
incidence of 1.2 cases per 1,000 patients  [  264  ] . 
More recently, data from the KIGS further dem-
onstrate the incidence is lower than previously 
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reported  [  265  ] . Nevertheless, an ophthalmologic 
evaluation is mandatory in rhGH recipients in the 
event of persistent headaches, nausea, visual 
symptoms, and dizziness. 

  Slipped capital femoral epiphysis  ( SCFE ): The 
NCGS reported that children with GH de fi ciency 
were signi fi cantly more likely to develop SCFE 
while on rhGH (91.0/100,000 patient-years) than 
the general population. Typically, these children 
were older, heavier, and grew more slowly during 
the  fi rst year of GH treatment than those who did 
not  [  266  ] . Children with idiopathic short stature 
on GH treatment did not show an increased inci-
dence (9.5/100,000 patient-years). More recently, 
data from the KIGS analysis demonstrated that 
the incidence of SCFE was comparable and even 
lower than previously reported, except for those 
in the congenital GH-de fi cient and Turner syn-
drome groups  [  265  ] . SCFE, however, can be asso-
ciated with not only obesity but also untreated 
endocrine conditions (e.g., hypothyroidism) that 
affect growth, trauma, and radiation exposure. 
Although the incidence of SCFE in all databases 
appears to remain greater than for the general 
population, it is dif fi cult to assess the risk of SCFE 
in the general population because of several vari-
ables (age, sex, race, geography)  [  257,   265  ] .   

   Conclusions 

 Congenital anomalies or anything that damages 
the hypothalamus, pituitary stalk, or pituitary 
gland can result in GHD. It is now recognized 
that there are molecular defects at multiple levels 
of the GH axis that can also result in GHD. 
Diagnosis of GHD, however, remains problem-
atic. Once it is diagnosed, rhGH therapy is an 
effective treatment.      
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