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Keypoints 

1.	 Tinnitus pathophysiology should explain both tin-
nitus distress and tinnitus intensity.

2.	 Distress in tinnitus is most likely generated by an 
aspecific distress network consisting of the 
amygdala–anterior cingulate and anterior insula.

3.	 Tinnitus intensity might be encoded by gamma 
band activity in the contralateral auditory cortex.

4.	 This gamma band activity might result from thal-
amocortical dysrhythmia.

5.	 Tinnitus distress can be seen as phase-synchro-
nized co-activation of the auditory cortex activity 
and the aspecific distress network.

6.	 For tinnitus to be perceived consciously, it requires 
the auditory cortex activity be embedded in a 
larger network.

7.	 This larger network could be the global work-
space, the self-perception network.

8.	 The tinnitus network changes in time, hypotheti-
cally via an allostatic mechanism.

9.	 In chronic tinnitus, the parahippocampus, insula, and 
dorsolateral prefrontal cortex networks are critical.

	10.	 The parahippocampus is involved via its auditory 
sensory gating mechanism, suppressing redundant 
auditory information.
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Abbreviations

AC	 Auditory cortex
ACC	 Anterior cingulate cortex
BA	 Brodman area
BOLD	 Blood oxygen level dependent
BPS	 Band pass small
BPW	 Band pass wide
BRAI²N	 Brain research center antwerp for innova-

tive & interdisciplinary neuromodulation
CAS	 Complex adaptive systems
DACC	 Dorsal part of ACC
DLPFC	 Dorsolateral prefrontal cortex
EEG	 Electroencephalography
ERP	 Event related potential
FMRI	 Functional magnetic resonance imaging
Hz	 Hertz
IC	 Inferior colliculus
ICA	 Independent component analysis
IPS	 Intraparietal sulcus
IEEG	 Intracranial EEG
LORETA	 Low resolution electro tomography
LTP	 Long term potentiation
MCS	 Minimally conscious state
MD	 Mediodorsal
MEG	 Magnetoencephalography
MGB	 Medial geniculate body
NB	 Nucleus basalis
OF	 Other frequency
PET	 Positron emission tomography
PCC	 Posterior cingulate cortex
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PVS	 Persistent vegetative state
RTMS	 Repetitive transcranial magnetic stimulation
SMA	 Supplementary motor area
SPL	 Superior parietal lobule
STG	 Superior temporal gyrus
STS	 Superior temporal sulcus
TF	 Tinnitus frequency
TQ	 Tinnitus questionnaire
TPJ	 Temporoparietal junction
TRI	 Tinnitus research initiative
VMPFC	 Ventromedial prefrontal cortex
VTA	 Ventral tegmental area

Introduction

If rational treatments for tinnitus are to be developed, 
its pathophysiology needs to be understood. However, 
current knowledge of auditory system physiology is 
largely insufficient for this purpose. Available data on 
auditory physiology and the neural correlate of tinnitus 
can be supplemented by translating physiological data 
from other systems studied more extensively, such as 
the visual and somatosensory systems, and by extrapo-
lating from pathophysiological mechanisms known in 
potentially analogous symptoms such as pain. Being 
aware of the limitations and the potential risks of such 
an approach, the proposed model has to be considered 
as a heuristic approach that results in the generation of 
testable hypotheses and needs to be corrected and 
improved accordingly.

Pathophysiology of Tinnitus

The pathophysiological working model of tinnitus has 
to include the mechanisms involved in the generation 
of the auditory percept and the intensity of a phantom 
sound as well as the mechanisms causing the tinnitus-
related distress.

Tinnitus Intensity

The auditory system consists of two main parallel path-
ways supplying auditory information to the cerebral 
cortex; the same two ascending systems also have a 

descending counterpart, the tonotopically organized 
parvalbumin staining lemniscal system and the non-
tonotopic calbindin staining extralemniscal system [1–
4]. The lemniscal pathways use the ventral part of the 
medial geniculate body, the neurons of which project to 
the primary auditory cortex, whereas the extralemnis-
cal pathways use the dorsal part of the medial genicu-
late body that projects to the secondary auditory cortex 
and association cortices, thus bypassing the primary 
cortex [5], Table 21.1. While neurons in the lemniscal 
pathways only respond to auditory stimulation, many 
neurons in the extralemniscal pathway are multimodal. 
Neurons in the ventral thalamus fire in a tonic or semi-
tonic mode while neurons in the dorsal thalamus fire in 
bursts [6, 7]. Burst firing consists of dense packets of 
action potentials followed by periods of quiescence [8]. 
Information theory suggests that, in general, both tonic 
and burst firing efficiently transmit information about 
the stimulus. Burst and tonic firing might therefore be 
parallel computations in the auditory and other sensory 
systems [8, 9] (Table 21.1).

Based on the differences between the two parallel 
auditory pathways – the lemniscal being tonotopic and 
the extralemniscal being less tonotopic – it has been 
hypothesized that white-noise tinnitus may be caused by 
synchronous hyperactivity of burst firing in the non-
tonotopic extralemniscal system, whereas pure-tone 
tinnitus may be the result of increased synchronous tonic 
firing in the tonotopic (lemniscal) system [43]. Narrow 
band tinnitus could be the result of a co-activation of the 
lemniscal and extralemniscal pathways.

Tinnitus Distress Matrix

The same subjectively reported tinnitus intensity can be 
related with severe distress in some people but may well 
be tolerated in others. The emotional component involved 
in tinnitus is most likely generated in the emotional cir-
cuit imbedded in our brain. Components of the emotional 
system are the amygdala, the subgenual and dorsal ante-
rior cingulate cortex (ACC), the anterior insula, the ven-
tromedial prefrontal cortex (VMPFC), and the 
orbitofrontal cortex [44–47]. Some of these areas such as 
the amygdala [48], the ACC [49], and the orbitofrontal 
cortex [50] are also involved in the reward system, 
together with the ventral tegmental area, nucleus accum-
bens, and mediodorsal nucleus of the thalamus [51].
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The brain resolves perceptual ambiguity by anticipating 
the forthcoming sensory environment, generating a 
template against which to match observed sensory evi-
dence. The ventromedial prefrontal cortex has been 
implicated as the source of this template [52]. Positive 
feedback results when sensory evidence is indeed as 
predicted and raises hemodynamic activity in the ventral 
striatum (nucleus accumbens) and the posterior cingu-
lated cortex, related to a reward and storing the received 
information, respectively; negative feedback activates 
the dACC and the anterior insula, mediated via the 
habenula [53]. Thus, when the brain has not obtained 
the information, it needs to guide subsequent behavior, 

it activates the dACC–insula network to get more 
information.

Whenever new information is presented, the brain 
cannot compare this to a template, and therefore activity 
levels of the dorsal ACC (dACC) might also reflect the 
salience of the new information for predicting future 
outcomes [54, 55], guiding optimal decision making in 
an uncertain world [56].

Functional connectivity studies reveal that the 
dACC is functionally connected to the anterior insula 
[57] as well as the thalamus and brainstem [58]. The 
combined dACC–anterior insula activity possibly sub-
serves intrinsic alertness [58], as the dACC and ante-
rior insula are co-activated during states of arousal [55, 
59, 60] and anticipatory arousal [61]. It has been shown 
that the amount of baseline activity in the dACC and 
insula predicts how intense a subsequent pain stimulus 
is being perceived [62]. The combined anterior insula 
and dACC activation has been suggested to act as a 
switch from the interoceptive default state to an extero-
ceptive executive brain state [63].

The human dACC has developed a parallel special-
ization for motivational drive via a thalamocortical path-
way relaying in the mediodorsal thalamus [49]. The 
direct activation of both the interoceptive cortex and the 
dACC by the distinct homeostatic modalities corre-
sponds with the simultaneous generation of both a sensa-
tion and a motivation [49, 64]. Thus, the function of the 
dACC might be to integrate motivationally important 
information with appropriate autonomic and motor 
responses [61] related to the survival needs of the body 
[64]. This might be based on the reward learning system, 
which uses dopamine as one of its major neurotransmit-
ters. Dopamine neurons emit an alerting message about 
the surprising presence or absence of rewards [65, 66]. 
Dopamine neurons in the ventral tegmental area (VTA) 
are activated by rewarding events that are better than pre-
dicted, remain uninfluenced by events that are as good as 
predicted, and are depressed by events that are worse 
than predicted.

The right anterior insula has been implicated in 
interoceptive awareness [64, 67] related to the auto-
nomic nervous system, the amygdala could be a rele-
vance detector [68], and the ventromedial prefrontal 
cortex could be a major link between the autonomic ner-
vous system, regulation of emotion, and stress reactivity 
[69]. Imaging studies on distress in posttraumatic stress 
disorder (PTSD) demonstrate activation of the amygdala, 
insula, medial prefrontal cortex, and anterior cingulate 

Table 21.1  Differences between the lemniscal and extralemniscal 
systems [10]

The extralemniscal system – aka the non-specific system, the 
non-tonotopic system, or the non-classical system – has the 
following characteristics

Phylogenetically old [•	 11, 12]
Unconscious reflexes [•	 13, 14]
To secondary cortex [•	 1, 2, 15, 16]
Less tonotopic [•	 1, 7, 17, 18]
Slow spontaneous firing rate [•	 19] [20]
Variable latency response [•	 18, 21, 22]
Rapid habituation to repetitive stimuli [•	 17, 18, 22]
Fires predominantly in burst mode [•	 6, 7]
Stimulus detector [•	 23, 24]
Non-linear [•	 24–26]
Overrides tonic mode [•	 24–26]
Processes changes in auditory environment [•	 24, 27]
Calbindin positive [•	 1, 16, 28]
CB increases after deafferentation [•	 29–32]
Multimodal [•	 17, 33–36]

The lemniscal system – aka the specific system, the tonotopic 
system, or classical system – has the following 
characteristics

Phylogenetically recent [•	 11, 12]
Conscious perception [•	 13, 14]
To primary sensory area [•	 1, 2, 15, 16]
Tonotopic [•	 1, 7, 17, 18]
Higher spontaneous firing rate [•	 37, 38] [39–41]
Short latency response [•	 18, 21, 22]
Slower habituation to repetitive stimuli [•	 17, 18, 22]
Fires in tonic mode [•	 6, 7]
Feature detector [•	 23, 24]
Linear [•	 24–26]
Weaker than burst mode [•	 24–26]
Processes the content of change in the auditory environ-•	
ment [24, 27]
Parvalbumin positive [•	 1, 16, 28]
PV decreases after deafferentation [•	 42]
Unimodal [•	 34]



174 D. De Ridder

cortex [70], which overlaps with the distress network 
noted in pain and tinnitus. In anxiety disorders (such as 
social phobia, specific phobia, or PTSD) during emo-
tional processing, the amygdalae and insulae are hyper-
active; in PTSD specifically, the dACC and medial 
prefrontal cortex are hypoactive [71]. This could hypo-
thetically reflect the brain’s suppression of the salience 
(dACC [54]) of the traumatic template (VMPFC [52]). 
Thus, even though the same network is active, its com-
posing structures might be differentially activated 
depending on the task and pathology involved.

In tinnitus, using whole head magnetoencephalog-
raphy (MEG) phase synchronization analysis has 
shown that functional connectivity between ACC and 
the right frontal lobe and ACC and right parietal lobe 
is correlated to tinnitus intrusiveness, a measure of tin-
nitus distress. The phase synchronization between 
ACC and right frontal lobe was inversely correlated 
with tinnitus intrusiveness, whereas the phase synchro-
nization between ACC and right parietal lobe was 
positively correlated with tinnitus intrusiveness [72]. 
Even though no specific studies have looked at the tin-
nitus distress, Positron Emission Tomography (PET) 
studies have demonstrated activation of this distress 
network as well. Tinnitus distress, as measured by the 
Tinnitus Questionnaire (TQ) [73], is correlated with 
anterior cingulate activity [74], and the anterior insula 
is activated in tinnitus [75].

It has been suggested that there is a lateralization of 
the two components of the autonomic system, with the 
right insula controlling the sympathetic system and the 
left insula the parasympathetic system [59, 76, 77]. The 
same lateralization has been found in the ventromedial 
prefrontal cortex [78, 79], consistent with earlier data 
on hemispheric lateralization of parasympathetic and 
sympathetic control [80]. This could explain why the 
difference between severe but compensating and severe 
but decompensating tinnitus distress is related to acti-
vation of the right anterior insula (Vanneste submitted), 
confirmed by heart rate variability data correlated to 
anterior insula spontaneous activity (van der Loo, 
unpublished data). Both studies are based on Low 
Resolution brain Electric Tomography (LORETA) 
EEGs [81] (Fig. 21.1).

Based on the clinical analogies between tinnitus dis-
tress and pain distress and based on neuroimaging data, it 
is tempting to speculate that the tinnitus distress network 
and the pain matrix are identical [82]: unpleasantness of 

pain activates the anterior cingulate [83] and orbitofrontal 
cortices, amygdala, hypothalamus, posterior insula, primary 
motor cortex, and frontal pole [84]. One may further spec-
ulate that the perception of tinnitus and pain intensity 
could be related to auditory and somatosensory cortex 
activation, respectively, but that the distress associated 
with its perception might be related to activation of a com-
mon general non-specific “distress network.” This notion 
is supported by a recent study that demonstrates activation 
of this distress network during unpleasant symptoms in a 
somatoform disorder, even in the absence of a real physical 
stimulus [85].

Furthermore, the emotional network involved in 
pain and dyspnea [86] is similar, suggesting that the 
distress network might be a non-specific system that 
can be activated by many different kinds of external 
and internal stimuli.

The conscious perception of tinnitus distress and 
pain distress could be due to a co-activation of the thal-
amocortical auditory and somatosensory activity and 
distress network activity, possibly through synchroni-
zation of neuronal activity [72]. This heuristic model 
can also explain the clinical observation that tinnitus 
distress is frequently related to the development of 
tinnitus in stressful periods. Thus, a person in which 
the distress network is already sensitized, for whatever 
reason (divorce, work-related problems, etc.), would 
be more vulnerable to develop distressing tinnitus by 
increased activation of the auditory system. Once 
established, the co-activation between the auditory 
pathways and the distress network might stabilize and 
become self-sustaining.

Developmental and Adult Plasticity

Plasticity refers to the capacity of the nervous system 
to modify its organization [87]. The response of the 
nervous system to environmental changes can involve 
functional and structural changes. These changes can 
be induced not only by normal sensory input but also 
by abnormal sensory input, adaptation to damage of 
the nervous system, or sensory deprivation [87]. There 
seems to be a greater potential for plastic changes during 
development than during adulthood, even though similar 
mechanisms seem to govern both developmental and 
adulthood plasticity.
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Any alteration of auditory input during the develop-
ment of the tonotopy will result in reorganization of the 
tonotopic map according to the altered pattern of incom-
ing neural activity. Thus, the Lamarckian and Darwinian 
(pangenesis) principle of “use it or lose it” guides both 
development and subsequent changes in the tonotopy. 
The auditory system develops in two stages [88, 89]. 
A first stage of synapse formation or auditory tract for-
mation is genetically determined [90] and requires the 
release of a chemotropic factor [89, 91]. This is fol-
lowed by fine-tuning of the synapses, leading to the for-
mation of a tonotopic structure [92]. The development 
of tonotopy requires electrical activity resulting from 
auditory input during a critical period [93, 94]. It is the 
result of self-organization [95] via apoptotic resorption 
of surplus synapses and neurons [91, 96].

The mature auditory system still demonstrates an 
important capacity for reorganization, adjusting itself 
to any change in the auditory environment [97, 98]. 
The tonotopic maps are not rigid and may alter or reor-
ganize under influence of normal physiological stimuli, 
as in learning, adjusting the tonotopic map to relevant 
environmental stimuli [97, 99, 100]. However, the 
plastic changes also occur in pathological situations 

such as sound overexposure [101], partial unilateral 
hearing loss [93, 102], or tinnitus [103].

In addition, the tonotopic map can also reorganize 
via direct cortical stimulation, as demonstrated in the 
big brown bat. Electrical auditory cortex stimulation 
can change the tonotopic map at a cortical [104], thal-
amic [105], or inferior colliculus level [97, 105], sug-
gesting that the corticofugal pathway is involved in 
this tonotopical reorganization [98]. This corticofugal 
system acts as a positive feedback system, which in 
combination with lateral inhibition sharpens and 
adjusts tuning of neurons in the thalamus and inferior 
colliculus [98, 106]. In other words, the corticofugal 
system acts as a mechanism for reorganization of the 
thalamus and the inferior colliculus [105], adjusting 
the tonotopy to auditory experience [97].

Focal electrical stimulation of the cortex activates 
this corticofugal system resulting in reorganization of 
the thalamus and inferior colliculus [107], all the way 
to the cochlea [108], as well as the auditory cortex 
itself [104]. It induces tonotopic changes by decreasing 
best frequencies slightly higher than those electrically 
stimulated, and increasing best frequencies slightly 
lower than those electrically stimulated [104].
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Auditory cortex plasticity is under the influence of 
the major neuromodulatory systems, such as the cho-
linergic nucleus basalis [99, 109], the dopaminergic 
ventral tegmental area [110], the serotoninergic dor-
sal raphe [111], and the noradrenergic locus coer-
uleus. The effects on the auditory cortex are 
understandably not identical for all these neuromodu-
latory systems. For example, the effect of the nucleus 
basalis [109] and the VTA [110] can be summarized 
as follows:

Stimulation of NB VTA

Size of functional  
auditory cortex

Increased Increased

Size of functional AI No change Increased
Stimulus frequency  

representation
Increased Increased

Adjacent frequency  
representation

Decreased Increased

Spectral selectivity Increased No change

Non-monotonic  
responses

Increased No change

Frequency specificity  
of the effects

Sharper Broader

Tuning of secondary  
auditory cortex

Yes No

Temporal asymmetry  
of the effects

Yes No

Modulation of  
stimulus-following  
rate

Undetermined Yes

Cross-area  
synchronization

Yes Does not  
apply

The differential effects of these neuromodulatory 
systems on auditory cortex plasticity might benefit 
future tinnitus treatments.

Plasticity and Reorganization in Tinnitus

After noise trauma, tonotopic organization in the cor-
tex is changed such that cortical neurons with charac-
teristic frequencies in the frequency region of the 
hearing loss no longer respond according to their 
place in the tonotopic map but reflect instead the fre-
quency tuning of their less affected neighbors [112, 
113]. Providing an acoustically enriched environment, 
spectrally matching the hearing loss prevents this 
reorganization [114]. Neurons in the reorganized 
region also demonstrate spontaneous hyperactivity 

and increased neural synchrony [115–117], which can 
also be abolished by providing a spectrally matched 
and enriched acoustic environment. Magnetic source 
imaging studies [103] confirm this reorganization in 
humans: the auditory cortex is reorganized such that 
the frequency area corresponding to the tinnitus pitch 
is represented adjacent to where magnetic activity is 
expected on the tonotopic axis. Furthermore, in this 
study, the amount of reorganization was correlated 
with the perceived strength of the tinnitus, similarly to 
what is found in phantom pain [118]. In tinnitus 
patients, this reorganization is not correlated with the 
amount of hearing loss [103], which is the primary 
activator of changes in tonotopic maps [119]. This 
suggests that reorganization of the cortical tonotopic 
map, changes in neuron response properties, and tin-
nitus are correlated.

Deafferentation, Tinnitus, and 
Synchronized Auditory Hyperactivity

In tinnitus, firing rate and synchrony of firing are 
increased both in the extralemniscal and in the lemnis-
cal systems. In the extralemniscal system, increased 
firing is observed [120–122] in the dorsal and external 
inferior colliculus [120], the thalamus [123], and the 
secondary auditory cortex [121, 122]. Furthermore, 
quinine, known to generate tinnitus, induces an 
increased regularity in burst firing, at the level of the 
auditory cortex, inferior colliculus, and frontal cortex 
[124]. This fits with the fact that in tinnitus an increased 
synchrony is found in the cochlear nerve [125–127] 
and auditory cortex [128, 129]. In tinnitus, an increased 
tonic firing rate is present in the lemniscal system as 
demonstrated in the lemniscal dorsal cochlear nucleus 
[130–135], inferior colliculus [136–139], and primary 
auditory cortex [140]. Interestingly, in the primary 
auditory cortex, not only tonic firing is increased, gen-
erating the phantom sound, but also the burst firing 
[129] at a regular basis.

Repetitive stimulus presentation results in 
decreased neuronal response to that stimulus, known 
as auditory habituation at the single cell level [141], 
also known as auditory-mismatch negativity at mul-
tiple cell level [141, 142]. Tinnitus is usually con-
stantly present, i.e., there is no auditory habituation 
to this specific activation at this specific frequency. 
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This corresponds, to some extent, to habituation 
deficits described in chronic pain.

The Neural Correlate of Tinnitus: Gamma 
Band Thalamocortical Firing

The EEG power spectrum (of the oscillation rate) and the 
level of consciousness are correlated [143]. Slow delta 
frequencies (0.5–4  Hz) are recorded in patients under 
deep sleep, anaesthesia, and coma. Somewhat higher fre-
quencies, called theta waves (4–7 Hz), are noted in light 
sleep, and alpha waves (8–13 Hz) are recorded from all 
sensory areas in a resting state. Frontal beta waves (13–
30  Hz) are recorded predominantly when people pay 
attention to external or internal stimuli. Synchronization 
of separate gamma band activities (30–80 Hz), present in 
different thalamocortical columns [144], is proposed to 
bind [145, 146] distributed neural gamma activity into 
one coherent auditory percept [147–152]. In general, 
coherent gamma band activity is present only in locally 
restricted areas of the cortex for short periods of time 
[152–156]. Thus, persisting gamma activity localized in 
one brain area can be considered pathological.

Recent data from the visual system suggest stimuli 
that reach consciousness and those that do not reach 
consciousness are characterized by a similar increase 
of local gamma oscillations in the EEG [157, 158]. 
Thus, gamma band activity, per se, is not related to 
conscious perception. Data from the olfactory bulb, as 
homologue for the thalamus, indicate that percept of 
odor could be related to amplitude modulation of the 
gamma band, suggesting that the gamma band is no 
more than a carrier wave [159, 160]. This idea is based 
on the fact that a signal (information) must sometimes 
be attached or superimposed on other voltages at fre-
quencies that move easier in the transmission medium. 
Attaching signals to other carrier signals is called 
modulation. Carrier waves are known frequencies that 
can be readily detected (using a narrow bandwidth 
receiver tuned to transmitted signal). Retrieving the 
tinnitus-related information from the gamma carrier 
wave might therefore be attempted by different meth-
ods: by amplitude modulation analysis, frequency 
modulation analysis, pulse modulation analysis, or 
by completely different methods such as principal or 
independent component analysis (ICA) of the spectrally 
filtered gamma band or raw EEG.

In clinical practice, source analysis of the gamma 
band activity in tinnitus patients can be performed 
with LORETA EEGs [81]. If gamma band activity is 
localized in the auditory cortex, an ICA of the raw 
EEG filtered for gamma band activity can be per-
formed, and the independent component that co-local-
izes with the gamma band activity could be considered 
to contain the tinnitus-related information. Intracranial 
recordings (iEEG) give a unique way to measure brain 
activity directly at the site of the electrode, bypassing 
skin and skull resistance. Comparing these intracranial 
recordings to simultaneously recorded scalp EEG 
activity, validation of the independent components 
measured at scalp level has been given at the site of the 
intracranial electrode [161]. According to our data, 
the ICA of scalp EEG could indeed serve as a tool to 
detect the neural correlate of tinnitus, similarly to 
what has been suggested for contralateral auditory 
cortex gamma band activity [162, 163]. Incorporating 
this concept into the thalamocortical dysrythmia 
model of Llinas (see below for further information), 
40 Hz is a carrier wave, carrying the tinnitus-related 
information, which could potentially be represented 
by a co-localized gamma band filtered independent 
component (Fig. 21.2).

Fig.  21.2  Independent component analysis performed on a 
19-channel EEG recording in a patient with right-sided pure-
tone tinnitus. The 16th independent component co-localizes 
with 40 Hz activity. Note that this component is not based on 
gamma band filtered EEG, which would be essential for if looking 
for the tinnitus information carried on the gamma wave
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Thalamocortical Dysrhythmia

Tinnitus correlates with gamma band activity, and 
Llinas has developed this hypothesis further in this 
thalamocortical dysrhythmia model [163]. This model 
can be summarized as follows: the thalamus and cortex 
are interconnected and act in a coherent way. In the 
sleeping state, the thalamus fires at 4–7 Hz (1–3 Hz 
during slow wave sleep); in the resting awake state the 
thalamus fires around 10 Hz, driving the cortex to fire 
at the same rate [164]. When auditory stimuli are pre-
sented, the thalamocortical rhythm becomes activated 
and increases its firing rate to gamma band activity 
(>30 Hz). However, in a deafferented state, the thal-
amocortical columns fire in a burst mode with a fre-
quency of 4–7 Hz. This leads to a decrease of lateral 
inhibition in the adjacent areas and results in a halo of 
gamma band activity, called the edge effect. It is 
hypothesized that this spontaneous and constant 
gamma band hyperactivity causes tinnitus [156].

Tinnitus is usually constantly present, which sug-
gests that tinnitus-related gamma activity is continu-
ously present, in contrast to normal physiological 
gamma activity, which waxes and wanes [152–156]. 
Therefore, it should be possible to retrieve this gamma 
band activity from the auditory cortex by analyzing 
short-term recordings of spontaneous electrical activ-
ity from the brain. Magnetoencephalography studies 
demonstrate that indeed gamma band activity is 
increased in the auditory cortex contralaterally to the 
side of tinnitus perception [162]. Whether the gamma 
band activity in the auditory cortex is related to the 
percept per se or is just an intensity coding mechanism 
is not clear. The first LORETA EEG data suggest that 
the spontaneous gamma band activity might be encod-
ing tinnitus intensity [165].

Using data from implanted electrodes overlying the 
secondary auditory cortex, power versus frequency 
plots can be made of spontaneous electrical activity. 
The normal power versus frequency plots demonstrate 
the typical individual alpha peak of the sensory corti-
ces. In thalamocortical dysrhythmia tinnitus, a theta 
peak can sometimes be found on iEEG recordings 
(De Ridder, submitted) similarly to what has been 
described for MEG. When recording during a period 
of residual inhibition, after electrical stimulation at the 
area of the theta peak when no more tinnitus is present, 
the theta peak disappears, suggesting that the theta 
peak is causally related to the tinnitus, either the theta 

itself or, hypothetically, via the decrease of nested 
gamma [166]. This seems to confirm Llinas’ model, at 
least at a cortical level.

When analyzing four implanted patients, in whom 
stimulation results in a decrease of tinnitus intensity, 
iEEG recordings can be performed with tinnitus at two 
different tinnitus intensities: one performed while the 
tinnitus is at rest and another performed during a period 
of residual inhibition. Theta band activity is higher on 
all poles of the electrodes when tinnitus intensity is 
high in comparison with low (Z = −1.826, p = 0.068), a 
nearly significant result with only four patients.

Using co-registration of the preoperative functional 
Magnetic Resonance Imaging (fMRI) and the postop-
erative CT, it can be shown that gamma band activity is 
highest at the area of Blood Oxygen-Dependent Level 
(BOLD) activation in all patients. These data give 
some support at a group level for the idea of thalamo-
cortical dysrhythmia.

Tinnitus is usually constantly present, indicating 
that no habituation occurs for the tinnitus-related neu-
ronal activity. Using EEG-mismatch negativity, abnor-
malities have been demonstrated in tinnitus sufferers 
who are specific to frequencies located at the audio-
metrically normal lesion edge as compared to normal 
hearing controls [167], which is compatible with 
Llinas’ thalamocortical dysrhythmia model [163].

Thalamocortical Dysrhythmia  
and Reorganization Go Hand in Hand

Increased “synchrony” in theta and gamma band firing 
in thalamocortical dysrhythmic tinnitus may induce 
cortical reorganization by simple Hebbian plasticity 
mechanisms [168]: cells that fire together, wire 
together. This model would predict that over time the 
tinnitus-related neuronal changes become more and 
more stabilized and the tinnitus more difficult to treat. 
Hebbian learning in the adult requires that the event 
is behaviorally relevant, i.e., input from nucleus basa-
lis (NB) and VTA in addition to the firing of cortical 
cells or thalamocortical circuits in parallel. Therefore, 
the model would emphasize appraisal of the tinnitus, 
only predicting long-term changes when the tinnitus is 
given significant attention. The central nucleus of the 
amygdala and midbrain–striatal dopamine systems are 
critically involved in the alteration of attentional and 
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emotional processing of initially neutral stimuli by 
associative learning [169–171], via its influence on the 
VTA [169]and nucleus basalis [170]. The insula and 
anterior cingulate receive the most pronounced inner-
vations from the VTA [172]. It has been demonstrated 
that 10–50 Hz stimulation at the VTA (in contrast to 
the MD nucleus of the thalamus) activates the anterior 
cingulate via a dopaminergic pathway in a frequency-
dependent manner [173].

Thus, co-activation of the dorsal ACC with the 
anterior insulae could result in attaching salience 
[54, 174, 175] to the tinnitus sound, resulting in 
reward-based Hebbian long-term plasticity as a (clini-
cally negative) consequence. The dACC exerts a top–
down influence on secondary auditory cortex (BA22) 
gamma band responses [176]. Cortical gamma band 
activity with associated attentive behavior is under 
control of the dopaminergic VTA [177]. Stimulating 
the VTA together with an auditory stimulus of a 
particular tone increases the cortical area and selectivity 
of the neural responses to that sound stimulus in AI 
and via coherent activity in A2 as well [110].

The anterior insula is not only involved in sound 
detection and in the entry of the sound into awareness 
but also in allocating auditory attention and in process-
ing of novel versus familiar auditory stimuli [178]. 
Lesions in the anterior insula lead to contralateral audi-
tory agnosia [179–181].

Under physiological situations, the hippocampus 
detects new information, which is not already stored in 
its long-term memory as it arrives. The resulting nov-
elty signal is conveyed through the subiculum, accum-
bens, and ventral pallidum to the VTA where it 
contributes (along with salience and goal information) 
to the novelty-dependent firing of these cells. This 
results in dopamine release within the hippocampus 
producing an enhancement of Long-Term Potentiation 
(LTP) and learning [182]. In the auditory system, the 
auditory input enters the hippocampus via the parahip-
pocampus [183, 184]. Complex novel sounds in 
humans activate the left and right superior temporal 
gyrus and the left inferior and middle frontal gyrus 
as well as the left parahippocampal gyrus [185]. In a 
similar fashion, the left superior temporal and left 
parahippocampal gyrus, along with left inferior frontal 
regions, are associated with listening to meaningful 
sounds [186]. The parahippocampal area is involved in 
sensory gating of irrelevant or redundant auditory 
information after both 100 ms and 400 ms [183]. This 

area is activated with the dACC, which peaks at 120 ms 
and after 240 ms [187]. It is of interest that onset of 
auditory hallucinations is related to activation of the 
left anterior insula and right middle temporal gyrus 
[188, 189], associated with deactivation of the parahip-
pocampal area and anterior cingulate [188].

Thus, in summary, the amygdala might perceive a 
sound as salient or not [190], which activates the VTA 
[169] to mobilize the dACC and insulae [173], switch-
ing the default state to an executive brain state [63]. 
The dACC exerts a top–down influence on A2 [191], 
from where the left parahippocampal area is also acti-
vated if the sound is novel [185] or meaningful [186]. 
The VTA and the (tinnitus) sound result in plastic 
changes in the primary auditory cortex and from there 
in the secondary auditory cortex [110]. The posterior 
parahippocampus is the main node of entry for audi-
tory information from A2 to the medial temporal lobe 
memory system, where salient information is encoded 
into long-term memory [184]. The parahippocampus 
also has an auditory gating function, suppressing irrel-
evant or redundant auditory information [183], as the 
dACC does somewhat earlier [187, 192]. Thus, when 
the dACC and parahippocampus are deactivated, as in 
the onset of complex auditory phantom percepts (hal-
lucinations), the irrelevant and redundant information 
is not suppressed anymore, and the activation of the 
anterior insula and temporal cortex permits the inter-
nally generated auditory information to be perceived 
consciously and attended to [178]. Thus, it can be 
hypothesized that tinnitus onset could be characterized 
by deactivation of the dACC and parahippocampus, 
with activation of the insula and superior temporal 
gyrus.

Extending Thalamocortical Dysrhythmia 
to Darwinian Plasticity: Reverse 
Thalamocortical Dysrhythmia

Thalamocortical dysrhythmia predicts that the hyper-
active symptoms related to gamma band activity are 
expressed at the lesion edge, thus adjacent to the missing 
sensory input. However, both in the auditory system 
[193] and in the somatosensory system [194], phantom 
perceptions are those coming from the missing input 
and not from the edge. This could be explained by 
including Darwinian plasticity to the thalamocortical 
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dysrhythmia model. Sensory deafferentation results in 
expansion of the adjacent non-deafferented region into 
the vacated area, both in the somatosensory and in the 
auditory cortex. It has been suggested that a reverse 
form of plasticity could also exist: deafferented sen-
sory cortex neurons seek information elsewhere in an 
attempt to survive (hence the name Darwinian plastic-
ity). Neurophysiological and neuroanatomical data, 
functional imaging, clinical and human electrical 
brain stimulation data suggest a Darwinian model of 
brain plasticity. This model is capable of explaining 
deafferentation-induced symptomatology, which was 
not well explained by classical plasticity [195]. 
Whereas the lemniscal thalamocortical dysrhythmia 
model predicts a reduction of the oscillation frequency 
in deafferentiated thalamocortical columns, the pro-
posed reverse thalamocortical dysrhythmia model can 
explain that the deafferented thalamocortical units 
also oscillate at gamma frequencies and thus can gen-
erate phantom percepts that fit the clinical data. Due 
to increased lateral inhibition related to gamma activity, 
a halo of low-frequency activity will develop at the 
lesion edge. This could be called reverse thalamocor-
tical dysrhythmia, which explains that the perceived 
tinnitus pitch matches the deafferented frequencies 
(Fig. 21.3).

Cortical reorganization in tinnitus can be visualized 
using MSI (Magnetic Source Imaging, a fusion of 

MEG and MRI; Muhlnickel, Elbert et  al. [103]). 
However, MEG is an expensive technique, restricted to 
a very limited amount of research centers. Therefore, 
using fMRI as a means of visualizing tinnitus would be 
advantageous in routine clinical practice, as this tech-
nique is available at many clinics and can provide 
images at high resolution.

fMRI measures a relative difference in oxygen con-
sumption between a resting state and activated state. 
BOLD contrast takes advantage of the fact that the 
magnetic properties of haemoglobin depend on its oxy-
genation. The blood oxygenation in turn reflects 
changes in neuronal activity. As such, BOLD contrast 
can be used to provide in vivo real-time maps of blood 
oxygenation in the brain under normal physiological 
conditions [196]. Thus, a focal area of increased oxy-
gen consumption can be depicted by subtraction of two 
MRI images, one at rest and one with increased oxygen 
consumption due to a specific task. As increased oxygen 
consumption is correlated to increasing metabolic 
demands, the BOLD effect is related to event-related 
synchronization of gamma band activity [197], and 
BOLD is highly coupled to gamma local field poten-
tials (EEG) in the auditory cortex [198, 199]. This 
strongly suggests that fMRI can visualize the gamma 
band-synchronized activity associated with tinnitus.

A scanning paradigm, using music as a stimulus, 
adequately visualizes the auditory pathways in tinnitus 

Normal activity
at rest

Thalamocortical
dysrhythmia

Darwinian plasticityReverse
thalamocortical

dysrhythmia

1-7 Hz 8-12 Hz 30-80 Hz

Deafferented cells
process info from
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Firing rate goes up

Higher firing rate results
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Fig. 21.3  Heuristic 
pathophysiological model of 
tinnitus intensity generation 
(Figure by Jan Ost, RN)
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patients [200]. fMRI activation is symmetrical in 
patients with bilateral tinnitus at all investigated areas 
of the auditory pathways (auditory cortex, thalamus, 
and inferior colliculus). fMRI activation is signifi-
cantly decreased in patients with right-sided tinnitus in 
the left primary auditory cortex (AC) and in the left 
inferior colliculli (IC). In patients with left-sided tin-
nitus, fMRI activation is significantly decreased in the 
right medial geniculate body (MGB). In summary, the 
contralateral auditory pathways seem to be involved in 
patients with unilateral tinnitus. fMRI activation 
always represents a difference in neural activity instead 
of absolute neural activity. An increase of spontaneous 
neural activity, such as postulated in tinnitus patients, 
would mean that the affected brain area during the rest 
condition is more active than the unaffected side, and 
that the active condition (sound presentation) will only 
give rise to a limited increase in activity due to a ceil-
ing effect (known as the saturation model) in compari-
son to the non-affected side. This can explain the fact 
that constant pathological neuronal hyperactivity can 
be correlated to hypoactivation in fMRI [200].

A similar study for tinnitus using tinnitus pitch and 
character-specific stimuli is currently being conducted. 
In this study, we compare BOLD activation for tinni-
tus-specific sound presentation to non-tinnitus sounds 
presented in the scanner. Only tinnitus-specific sounds 
induce a significant BOLD change, as demonstrated 
by a lateralization effect, in contrast to non-tinnitus 
sounds, which generate a bilateral symmetrical BOLD 
activation.

Even for tinnitus-specific frequencies, the exact 
representation might be important. For patients suffer-
ing from pure-tone tinnitus, auditory presentation of a 
pure tone generates a marked asymmetrical BOLD 
activation, whereas presentation of a narrow band 
noise creates less BOLD activation, and a white noise 
generates almost no asymmetry (Kovacs, unpublished 
data) (Fig.  21.4). However, as mentioned before, 
auditory tract activation is insufficient to objectively 
diagnose tinnitus solely based on functional imaging.

A disadvantage of fMRI studies is that a contrast is 
needed, e.g. by presenting a sound and comparing this 
to a resting state or other conditions (e.g. other sound). 
The active condition may include different unspecific 
components, e.g., different arousal and differences in a 
patient’s understanding of verbal instruction. Therefore, 
fMRI studies might suffer from various confounds. 
The fact that the fMRI-related activation changes are 

specific for the perceived phantom sound (Fig. 21.4) 
does, however, suggest that fMRI can indeed be used 
to study tinnitus.

Isolated Thalamocortical Dysrhythmia 
and the Global Workspace Model 
(Electrophysiologically Explored)

As tinnitus is a persistent conscious auditory percept, 
it is important to understand the neural correlates 
of auditory consciousness, defined as the minimal 

Fig.  21.4  Tinnitus frequency-specific BOLD changes on 
fMRI in a patient with left-sided pure-tone tinnitus. Auditory 
presentation of non-tinnitus sound (OF other frequency) gen-
erates a bilateral BOLD activity on white noise (BPW band 
pass wide), narrow band noise (BPS band pass small), and 
pure tones. In contrast, for the tinnitus frequency (TF), a pure 
tone generates a marked asymmetrical BOLD activation, a 
narrow band noise less so, and a white noise creates almost no 
asymmetry
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neuronal mechanisms jointly sufficient for any 
auditory conscious percept [201]. This understanding 
is an essential requirement for defining neurostimula-
tion targets to suppress this auditory phenomenon. It 
has been suggested by Crick and Koch that in the 
visual system V1 activation is necessary but insuffi-
cient for visual awareness [202, 203]. Thus, isolated 
thalamocortical dysrhythmia in the primary auditory 
cortex is most likely not enough to generate the con-
scious percept of tinnitus. Studies in patients in persis-
tent vegetative state (PVS), who are awake but without 
awareness – without conscious percepts [204] – dem-
onstrate that these patients have a decreased metabo-
lism in a network of areas consisting of midline areas, 
such as the anterior cingulate (ACC), which extends 
into the ventromedial prefrontal cortex (VMPFC), and 
the posterior cingulate (PCC), which extends into the 
precuneus. However, the lateral cortical regions also 
have less metabolic activity, more specifically the pari-
etal and dorsolateral prefrontal cortex areas [205]. 
Not only is metabolism decreased in these patients, but 
functional connectivity is also decreased between the 
intralaminar nuclei of the thalamus and ACC/VMPFC 
and PCC/precuneus regions, and between ACC/
VMPFC and PCC/precuneus [204, 205]. Recovery 
from PVS is associated with normalization of metabo-
lism and connectivity, suggesting this decreased 
metabolism and loss of connectivity is critically 
involved and causally related to the neural correlate of 
consciousness [206, 207]. Extending these studies to 
auditory processing of patients in PVS, it was shown 
that the activation associated with auditory stimuli was 
restricted to the primary auditory cortex bilaterally in 
patients in a PVS without functional connectivity 
between the secondary auditory cortex and temporal 
and prefrontal association cortices [208], similarly to 
what has been shown for pain processing [209]. Based 
on these data, it can be proposed that activity restricted 
to the primary auditory cortex does not lead to auditory 
conscious perception, similarly to the somatosensory 
and visual system, but that this auditory activity becomes 
conscious when functionally connected to the ACC/
VMPFC and prefrontal cortex (BA10) [206].

Baars has proposed the global workspace theory 
[210], which was extended and electrophysiologically 
refined for the visual system by Dehaene [211, 212]. 
The global workspace model, as perfected by Dehaene, 
can be translated to the auditory system as follows [213]: 
in (unconscious) preconscious processing, auditory 

stimulus processing is blocked at the level of the global 
neuronal workspace, i.e., it remains limited to the pri-
mary auditory cortex, while the global workspace is 
temporarily occupied by another task or is non-active, 
such as in PVS. A preconscious auditory stimulus may 
be temporarily buffered within the primary auditory 
cortex (discussed below) and later accessed by the 
frontoparietal system, once it is released by its present 
distracting task. In this case, information switches 
from unconscious to conscious. Conscious processing 
occurs when the accumulated stimulus-evoked activa-
tion exceeds a threshold and evokes a dynamic state of 
global reverberation [214] (“ignition”) across multiple 
high-level cortical areas forming a “global neuronal 
workspace,” particularly involving prefrontal, cingu-
late, and parietal cortices, the same areas that are 
decreased in metabolism and functional connectivity 
in PVS. These areas can maintain the information on-
line and broadcast it to a variety of other processors, 
thus serving as a central hub for global access to infor-
mation – a key property of conscious states.

Subliminal processing corresponds to a data-limited 
situation where the auditory stimulus reaches only spe-
cialized cerebral sensory networks (i.e., secondary and 
auditory association areas), without reaching a thresh-
old for global ignition and, thus, without global report-
ability. The orientation and depth of subliminal 
processing may nevertheless depend on the top–down 
state of attention.

So, when an auditory stimulus is presented, it will 
activate the primary auditory cortex after about 17 to 
30  ms [215, 216] and the primary auditory cortex 
(A1) remains activated up to 300 ms generating a Pa 
(P50), Nb, Na, P1 en N100 ERP [217]. This persis-
tent A1 activation is characterized by an early (85 ms) 
posterior and a late (115 ms) anterior N1 component 
[218, 219]. In other words, the primary auditory cor-
tex neurons synchronize multiple times to generate 
positive and negative ERP peaks. At 50 ms, the infor-
mation is not only processed in the primary, secondary, 
and association auditory cortex [220] but also in the 
frontal cortex [183, 221], more specifically, in 
Brodmann’s areas 6 and 24 [192, 221, 222]. There 
might be a parallel signal transmission to the ACC 
and auditory cortex analogous to what has been 
shown for the somatosensory system. Somatosensory 
stimuli arrive at the ACC and somatosensory cortex 
simultaneously, as evidenced by intracranial record-
ings of evoked potentials [223]. This might reflect 
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simultaneous processing of sensory and affective 
components of the stimulus. Auditory information 
processing is dependent on sensory gating, a mecha-
nism of suppression of irrelevant auditory input or 
auditory habituation. Sensory gating seems to depend 
both on frontal and on auditory cortex activity [192, 
221, 222, 224], and predominantly on gamma band 
activity [225]. At 100  ms, the auditory information 
also arrives in the posterior parahippocampus [183] 
and is still present frontally at the dorsal anterior cin-
gulate extending into the insula, electrophysiologi-
cally recorded as N100 [226–228]. At the same time, 
information is processed in the PCC [227]. After 
200 ms, the information will still be processed in the 
auditory cortices, ACC in VMPFC, extending to 
frontopolar cortex (BA10), and posteriorly in the pre-
cuneus (coming from PCC), altogether generating a 
N200 ERP [220, 229]. The anterior circuit, which is 
activated earlier, is most likely related to attentive 
processes, whereas the posterior activity is more 
related to sensory memory updating. After 300 ms, 
the information also extends into the temporoparietal 
junction and inferior and superior parietal area [230, 
231], which is required for conscious perception (in 
the visual system). It has to be mentioned that a P300 
is different from a P600 in its neural generators (P600 
has generator in basal ganglia) [232], suggesting that 
any positive peak between 250 and 900 ms should not 
be called a P300 as is commonly done [233]. After 
400 ms, the signal (if semantic) reaches the parahip-
pocampus again [183], mediating sensory gating 
(presenting repetitious stimuli and measuring the 
degree of neural inhibition that occurs) [234] of irrel-
evant or redundant auditory input [183].

The Functional Networks of the Brain

The brain is organized into multiple systems that have 
distinct and potentially competing functional roles 
[235]; at least four functional systems have been 
described by functional connectivity analysis:

	1.	 The dorsal attention system, which is associated 
with externally directed cognition, includes regions 
in the frontal eye fields, ventral premotor cortex, 
superior parietal lobule, intraparietal sulcus, and 
motion-sensitive middle temporal area [236–238].

	2.	 The hippocampal-cortical memory system, a network 
of regions that are active during passive mental 
states linked to internally directed cognition (the 
default network) [239, 240], includes regions in 
ventral medial prefrontal cortex, posterior inferior 
parietal lobule, retrosplenial cortex, posterior cin-
gulate, and the lateral temporal lobe [235, 236, 239, 
241, 242].

	3.	 The frontoparietal control system is an executive 
control system guiding decision making by integrat-
ing information from the external environment with 
stored internal representations [243]. It includes 
many regions identified as supporting cognitive con-
trol and decision-making processes including lateral 
prefrontal cortex, anterior cingulate cortex, and infe-
rior parietal lobule [235].

	4.	 The emotional system is a network based on func-
tional connectivity with the amygdala and includes 
subgenual and dorsal anterior cingulate, orbitofron-
tal, insular, and dorsolateral prefrontal cortex, as 
well as strong interactions between amygdala and 
parahippocampal gyrus [244].

The global workspace has not been delineated ana-
tomically. It can be hypothesized that the areas involved 
in the global workspace overlap with regions of these 
four networks.

However, that is still more than the minimal require-
ment for conscious perception [201].

Sleep studies have shown that the inferior and mid-
frontal gyrus, inferior parietal area, and medial parietal 
area are less active in Rapid Eye Movement (REM) 
sleep in comparison to wakefulness [245], suggesting 
that these areas are important for wakefulness and pro-
cessing of external input but less important for aware-
ness. The superior frontal and superior parietal areas 
with the intraparietal sulcus are equally active during 
wakefulness and REM sleep, as well as the VMPFC 
[245], suggesting that these areas are important for 
awareness/consciousness and could potentially be the 
minimal network required for awareness. It is striking 
that the dorsal attentional network, which selects and 
links stimuli and responses and hereby influences 
subsequent processing of stimuli in sensory cortex, is 
located in exactly the same areas: intraparietal sulcus 
(IPS) and superior parietal lobule (SPL), and dorsal 
frontal cortex along the precentral sulcus [237, 246], 
except for the VMPFC. The ventral attentional net-
work, which interrupts and resets ongoing activity, 
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consists of the temporoparietal junction (including the 
STS and gyrus), the inferior parietal lobule, and the 
mid and inferior frontal gyrus as well as the frontal 
operculum, and anterior insula [237, 246]. Thus, the 
inferior parietal and mid- and inferior frontal area, 
which are less active in REM compared to wakefulness 
[245] and are part of a resetting network [246], might 
be critically involved in updating current conscious 
information processing with novel external input.

Thus, based on both PVS and sleep studies, it can 
be proposed that the network consisting of the superior 
frontal–superior parietal–VMPFC–intralaminar nuclei 
has to be functionally connected for internally or exter-
nally generated auditory stimuli to be consciously per-
ceived. These areas are activated after 200–300 ms and 
are involved in the generation of the P300, which is 
one of the requirements for stimuli to be perceived 
consciously (in the visual system).

Subliminal stimuli can be deeply processed and 
activate similar brain areas as consciously perceived 
stimuli [158]. Both perceived and non-perceived visual 
stimuli cause a similar increase of local (gamma) oscil-
lations in the EEG, but only perceived words induce a 
transient long-distance synchronization of gamma 
oscillations across widely separated regions of the 
brain [157, 158], compatible with the global work-
space model. Furthermore, only visual stimuli that are 
consciously perceived induce enhanced theta oscilla-
tions over frontal regions and demonstrate an increase 
of the P300 component of the event-related potential 
and an increase in power and phase synchrony of 
gamma oscillations [158].

As previously mentioned, the neural generators of 
the auditory P300 are the inferior parietal lobe/tem-
poroparietal junction (TPJ), the supplementary motor 
cortex (SMA), the dorsal anterior cingulate cortex 
(dACC), the superior temporal gyrus (STG), the insula, 
and the dorsolateral prefrontal cortex [231] (in other 
words, the ventral attentional network plus dorsolateral 
prefrontal cortex). Thus, the P300 seems to interrupt 
and reset ongoing activity to what is being processed in 
the DLPFC, or in working memory [247]. This is very 
similar to the frontoparietal control system [235].

It has been suggested that the P300 is the electro-
physiological correlate of global workspace activation, 
implying that the global workspace consists of the dor-
solateral prefrontal cortex, dACC, SMA, and inferior 
parietal area extending into the STS [248].

If auditory cortex activation is essential but not 
sufficient for auditory conscious perception, where is 
the percept being transformed into a conscious per-
cept? Data from monkey studies in the somatosensory 
system suggest it could be the prefrontal cortex [249]. 
Activity of primary somatosensory cortex neurons co-
varies with the stimulus strength but not with the ani-
mal’s perceptual reports. This is similar in tinnitus: 
tinnitus intensity correlates with gamma band activity 
in the contralateral auditory cortex [165]. In contrast, 
the activity of the medial premotor cortex (MPC) neu-
rons does not co-vary with the stimulus strength but 
does so with the animal’s perceptual reports [249]. In 
further agreement with the global workspace model, it 
has been demonstrated in the somatosensory system 
that the neural correlate of subjective sensory experi-
ence gradually builds up across cortical areas starting 
at the somatosensory cortex and ending in the premo-
tor areas of the frontal lobe [250], which might have a 
hidden sensory function [251]. This idea of premotor 
cortex activity related to conscious sensory perception 
fits with the sensorimotor contingency philosophy of 
consciousness [252] described in the book Action in 
Perception [253], which suggests that seeing is a way 
of acting, a way of exploring the environment. This 
intentionality driven sensation dates back to Aristotle 
and Thomas Aquinas [254] and has been proposed to 
be a working mechanism in olfaction as well [255]. 
Thus, neural activity alone is not sufficient to produce 
vision, but neural activity contributes to experience 
only as enabling mastery and exercise of laws of sen-
sorimotor contingency [252].

It is of interest that it was shown that N1, P2, and P3 
are attenuated in chronic tinnitus patients [256, 257]. 
However, no source analysis was performed, and N1 
attenuation is not found all the time [258]. One expla-
nation can be that N1 is only attenuated in patients 
with low distress [259]. Another study found a differ-
ence in N1-P2 in unilateral tinnitus sufferers on the 
basis of N1-P2 intensity dependence and N1-P2 ampli-
tude. A bilateral tinnitus group differed from controls 
by greater intensity dependence of the N1-P2 component 
and shorter N1 latency [260]. Using MEG, it was also 
shown that amplitude ratio M200/M100 represents a 
clear-cut criterion to distinguish between tinnitus 
patients and individuals without tinnitus [261], and 
the abnormal M200/M100 normalized when the tinnitus 
disappeared [262].
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However, this M200/M100 abnormality in tinnitus 
patients could not be confirmed by another study [263].

Based on the above-mentioned heuristic model, it 
can be hypothesized that the ERPs should be per-
formed with tinnitus-matched sound and non-tinnitus–
matched sound. Obtaining a LORETA ICA of N100 
should correlate to two aspects of tinnitus: one compo-
nent relating to tinnitus distress (the ACC component) 
and one component to tinnitus intensity (auditory cor-
tex component). In a similar way, the P/N 200 should 
be analyzed by ICA to make the distinction between 
distress and intensity. Similarly, the P300 should be 
analyzed for the presence of tinnitus, with P3a gamma 
band activity examined for the presence of distress and 
P3b for the presence of the sound.

It can be further hypothesized that the P50 (and 
N400) might be abnormal in tinnitus, as there is no 
sensory gating involved for the tinnitus-matched 
sound, whereas the P50 and N400 could be normal for 
non-tinnitus–matched sound.

PET studies have shown which areas of the brain are 
involved in the tinnitus global workspace network 
(Fig. 21.5): primary [75, 264–267] and secondary audi-
tory cortex, extending into the temporoparietal junction 
(the auditory association area) [265, 268], (para)hip-
pocampus [75], medial geniculate body, [75], anterior 
[74] and posterior cingulate cortex [269, 270], and pre-
cuneus and inferior lateral parietal cortex [271]. Voxel-
based morphometry adds the subgenual ACC extending 
into the nucleus accumbens area [272], the hippocampus, 
and the inferior colliculus [273], which is confirmed by 
fMRI [274, 275]. Magnetoencephalography also finds 
abnormal spontaneous activity as well in the prefrontal 
cortex (BA10) [276]. Most of the tinnitus network over-
laps with an aversive sound-processing network con-
sisting of the primary and secondary auditory cortex, 
parahippocampus, amygdala, and right superior, middle, 

and inferior dorsolateral prefrontal cortex [277]. Later 
studies extended the aversive sound network to the 
auditory association, nucleus accumbens, and insula 
area [278].

The Tinnitus Network Changes in Time

Clinical data suggest that the longer tinnitus lasts the 
more difficult it becomes to treat. This has been shown 
for microvascular decompressions [279–285] and tran-
scranial magnetic stimulations [269, 286–288]. Even 
though it is most likely a gradual continuous change, 
tinnitus duration of 4 years might be a practical point 
for clinicians to differentiate acute from chronic tinni-
tus (De Ridder, in press, Neurosurgery). This was first 
noted in microvascular decompressions by Møller, 
later by others performing the same surgery [279–285], 
and most recently was extended to rTMS investiga-
tions [286, 287]. A MEG study looking at phase-locked 
connectivity in the tinnitus network found that in 
patients with a tinnitus history of less than 4 years, the 
left temporal cortex was predominant in the gamma 
network, whereas in patients with tinnitus duration of 
more than 4 years, the gamma network was more widely 
distributed including more frontal and parietal regions 
[289]. Thus, even though the areas involved might still 
be the same, the functional connectivity and weight of 
the hubs between the involved areas might change.

In a recent EEG study, these network changes were 
also analyzed spectrally. Results indicate that the gen-
erators involved in tinnitus of recent onset (<4 years) 
seem to change in time with increased synchronized 
activity contralaterally in the auditory cortex, DLPFC/
premotor cortex, dACC, and inusla. This is associated 
with an increase in gamma band connectivity between 

Fig. 21.5  The tinnitus 
global workspace network, as 
summarized from functional 
neuroimaging studies. Red: 
anterior distress network. 
Blue: posterior tinnitus 
intensity network
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the parahippocampal cortex, auditory cortex, and the 
insula ipsilaterally to the tinnitus side and DLPFC con-
tralaterally to the tinnitus side. All other connections 
seem to decrease in time (vanneste, submitted).

It is interesting to note that in chronic tinnitus, the 
degree of response to auditory cortex rTMS on TQ dis-
tress was correlated with tinnitus-associated activation 
of the anterior cingulate cortex [74].

Recently, the idea of allostasis, defined as the adap-
tive process for actively maintaining stability (homeo-
stasis) through change [290], has been introduced in 
medicine [290]. It has been shown that allostasis is con-
trolled by the brain [291, 292]. Homeostasis relates to 
the mechanisms that maintain stability within the 
physiological systems and hold all the parameters of 
the organisms internal milieu within limits that allow 
an organism to survive [290, 293, 294]. Allostasis, on 
the other hand, relates to the maintenance of stability 
outside of the normal homeostatic range, where an 
organism must vary all the parameters of its physiolog-
ical systems to match them appropriately to chronic 
demands, for example, by resetting the system param-
eters at a new set point [290, 295, 296]. An allostatic 
state has been defined as a state of chronic deviation of 
the regulatory systems from their normal state of oper-
ation with establishment of a new set point [296]. It 
has been especially investigated with regard to the 
Darwinian [297] adaptive nature of stress and its pos-
sible maladaptive consequences, called allostatic load. 
The allostatic load then leads to pathology [291, 292, 
298]. Drug addiction is hypothesized to involve a 
change in drug reward set point and reflects an allo-
static, rather than a homeostatic, adaptation (i.e., out-
side the normal set point) [295, 296].

The brain areas controlling allostasis in stress are 
suggested to be the amygdala and the prefrontal cortex 
[291, 292, 297], as well as the ACC and insula [175]. 
Based on parallels between addiction and pain, it has 
been suggested that in chronic pain the concomitant 
tolerance (adaptive decreases of the drug’s efficacy) 
and hyperalgesia might be the result of the develop-
ment of a new allostatic equilibrium [299]. 
Conceptually, in chronic tinnitus, a new allostatic equi-
librium could develop, resulting in hyperacusis and 
persistence of the phantom sound. The dorsal ACC is 
involved in adaptive decision making and value evalu-
ation [300] by adapting its activity when a new piece 
of information is witnessed, reflecting its salience for 
predicting future outcomes [54] by utilizing dopamine 

reward prediction error signals, but only when some-
thing can be learned [301]. Thus, the dorsal ACC might 
be involved in resetting this equilibrium. Metaphorically 
speaking, the dorsal ACC attributes salience to the 
phantom sound and resets its equilibrium allostaticly, 
so that the sound remains consciously perceived via 
resetting the parahippocampal auditory gating.

The allostatic equilibrium resetting can be located in 
the dACC and parahippocampus, as both regions are 
involved in auditory sensory gating [183, 192], i.e. 
suppression of irrelevant or redundant auditory informa-
tion. Thus, if there is an allostatic reset of what auditory 
information is important or not, the dACC will be impor-
tant as well as the parahippocampal area.

The parahippocampus is functionally connected to the 
inferior lateral parietal cortex regions along the midline 
including posterior cingulate and retrosplenial cortex 
extending into the precuneus, and subgenual ACC extend-
ing into the ventral medial prefrontal cortex [241].

The posterior parahippocampus is the main node of 
entry for auditory information to the medial temporal 
lobe memory system, where salient information is 
encoded into long-term memory [184]. The left parahip-
pocampal gyrus along with left inferior frontal and left 
superior temporal regions are specifically associated 
with listening to meaningful sounds [186]. The parahip-
pocampal area has also been linked to the unpleasant-
ness of the auditory information [302], in contrast to the 
left amygdale, which is related to the salience of the 
aversive auditory (verbal) information [190].

Based on visual system data, it has been suggested 
that the parahippocampal cortex may play a broad role 
in contextual association [303, 304]. If complex audi-
tory phantom phenomena (such as auditory hallucina-
tions) and simple auditory phantom phenomena (such 
as tinnitus) share common pathophysiological mecha-
nisms, it is of interest to note that at onset of auditory 
hallucinations, the parahippocampus becomes deacti-
vated as well as the anterior cingulate [188]. 
Furthermore, when analyzing the difference between 
responders and non-responders to auditory cortex 
stimulation by means of LORETA EEG, non-responders 
demonstrate increased theta activity in the left para-
hippocampus, whereas responders have increased 
gamma band (30–40 Hz) activity in the (left) parahip-
pocampal area t(9) = 1.98; p < 0.05 (van der Loo, 
unpublished data). Perception involves the processing 
of sensory stimuli and their translation into conscious 
experience. A novel percept can, once synthesized, be 
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maintained or discarded from awareness. Visual 
perception is associated with distributed bilateral acti-
vation in the posterior thalamus and regions in the 
occipito-temporal, parietal, and frontal cortices. In 
contrast, sustained perception is associated with acti-
vation of the left prefrontal cortex and left (para)
hippocampus [305]. Thus, if tinnitus is considered a 
sustained auditory perception, it could explain why 
amytal tests of the amygdalohippocampal area are 
capable of suppressing tinnitus in chronic unilateral 
tinnitus [306].

The Tinnitus Network: A Summary

A stimulus only makes sense if it is related to and 
incorporated the person’s self-percept. Therefore, the 
self-perception network, consisting of the ACC-vmPFC, 
PCC–precuneus, superior frontal-parietal, and STS, 
has to be activated for the tinnitus to be consciously 
perceived (Fig.  21.6). This is supported by the data 
from PVS patients.

The tinnitus intensity is related to auditory cortex 
activity, which might be controlled by dACC–insula 
baseline activity, expressing that the tinnitus is salient.

The tinnitus percept, per se, might not be encoded 
in the auditory cortex but be represented by DLPFC–
premotor activity, connected to the self-perception net-
work via the PCC–precuneus activity. This could be 
analogous to the somatosensory processing, where 

stimulus intensity is encoded by somatosensory cortex 
activity and the conscious percept in the frontal cortex. 
The parahippocampus might serve as an entry to auditory 
memory, pulling the missing information due to deaf-
ferentation from memory (Fig. 21.6).

The Tinnitus Network: Future 
Perspectives

Since the recent development of network science [307–
311] to study complex adaptive systems (CAS), these 
analyses have been introduced in brain science [312–
318] as well. The underlying idea is that CAS, whether 
it is the internet, ant societies, social interactions, the 
weather, or economy, are structured by similar universal 
rules [319].

Network topology describes how different nodes in 
a network are connected or linked. It was initially 
assumed that networks predominantly form randomly, 
in which each node is connected to another node 
randomly, characterized by a Poisson distribution of 
its connectivity [307]. All nodes are equal in this net-
work. More recently, scale-free networks have been 
described [311], in which some nodes are more con-
nected and more clustered (i.e., have a shorter path 
length, turning them into hubs). This suggests that 
some nodes are clearly more critical with regard to the 
robustness of the network. Both random and scale-free 

Fig. 21.6  Heuristic tinnitus 
network interactions
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networks are very robust to random errors, but scale-free 
networks are more sensitive to attacks on hubs. Eighty 
percent of nodes can be removed in scale-free networks 
without failure, but if some critically important hubs 
are removed, the network system fails. Most likely, 
these scale-free networks become incorporated into 
hierarchical networks [320], permitting incorporation 
of modularity and scale-free behavior of the network.

The approach to studying complex adaptive sys-
tems has recently been extended to the human brain, as 
the brain clearly fulfils the criteria of a complex adap-
tive system [312, 313, 315]. The topological network 
approach can be applied to brain anatomy [318, 321], 
electrical [317, 322] and magnetic brain activity [314], 
and blood oxygenation changes (fMRI) [312, 313].

The entire brain is not ruled by one network, but 
most likely different topologies exist depending on the 
brain area and functional state of the brain. The brain-
stem is organized like a small world, but is not scale 
free [323]. The cerebellum seems to be structured like 
a regular or strictly local network [324], the hippocam-
pus more like a random [324] and small world net-
work, and the cortex has both small world [312, 325] 
and scale-free [326, 327] properties. These different 
network systems might be integrated in a hierarchical 
system of functional modules [320].

This network approach to studying the brain of 
patients with tinnitus could benefit the future neuro-
modulation management for individuals with this con-
dition. Based on this short introduction to network 
analysis, it becomes clear that if tinnitus is related to 
scale-free hub disability, neuromodulation makes 
sense, as with limited targeting the persistent tinnitus 
network might be normalized again. This will, however, 
be impossible in random networks and will not be useful 
in regular networks. A recent study demonstrates that 
the hubs in tinnitus might consist of the PCC, dACC, 
and sgACC, extending into the OFC and parahip-
pocampal area [328]. More similar studies with higher 
resolution will permit future pathophysiologically-based 
hub targeting in tinnitus.

Conclusion

There is insufficient literature to develop an evidence-
based neuropathophysiological model of tinnitus, but 
a heuristic model can be conceived when available 

tinnitus data are supplemented by knowledge from 
other sensory systems, as well as the limbic, auto-
nomic, and motor systems. Since it has been suggested 
that plasticity uses similar mechanisms in all sensory 
areas, extrapolating information from other sensory 
systems seems acceptable.

Tinnitus intensity is correlated with increased 
gamma activity in the contralateral auditory cortex, 
possibly as a reaction on reduced auditory input via 
thalamocortical or reverse thalamocortical dysrhyth-
mia, resulting in lack of inhibition and increased syn-
chrony, which in turn may lead to topographic map 
reorganization in the auditory cortex.

The tinnitus percept, per se, is almost certainly not 
related to isolated synchronous gamma band activity 
in the auditory cortex, but requires co-activation of the 
ill-defined global workspace or a self-perception 
network.

The distress some tinnitus patients perceive seems 
to be correlated to increased activity in the amygdala, 
anterior cingulate, and right anterior insula. Tinnitus 
distress might also be the result of synchronization of 
auditory thalamocortical dysrhythmia and distress net-
work activation.

In time, the neural generators of tinnitus might 
change, possibly only by spectral modifications within 
the tinnitus global space network, hypothetically based 
on an allostatic mechanism.

Future studies, applying techniques from network 
science might demonstrate which hubs are critical for 
maintaining the tinnitus percept and therefore could be 
good targets for tinnitus neuromodulation treatments.
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