Chapter 7

Prenatal B,-Adrenergic Receptor Signaling
and Autism:

Dysmaturation and Retained Fetal Function

Susan L. Connors

Abstract The origins of idiopathic autism are prenatal. During fetal life, the
B,-adrenergic receptor (B2AR) is important for growth as well as terminal
differentiation of cells. Signaling from this receptor serves different purposes
at different times in virtually all tissues during prenatal development, and
provides modulation for most organ functions in postnatal life. Because the
B2AR is one of the earliest appearing receptors in brain development, inter-
ference with it over time during gestation can theoretically affect the develop-
ment of other neurotransmitter systems, as well as later functioning of the CNS
and peripheral organs. Prenatal overstimulation of the B2AR has been linked
to autism in dizygotic twins, and a higher prevalence of more active B2ZAR
polymorphisms has been found in autism families.

Animal studies in developmental neurotoxicology show abnormal outcomes
for brain and tissue function after prenatal administration of B2AR agonists.
These studies have also shown that the fetal B2AR normally does not desensi-
tize, and that several tissues can retain a fetal pattern of signaling after prenatal
B2AR overstimulation. This type of dysregulated signaling may also be respon-
sible for the differences in function noted in brain and other tissues of autistic
children compared to controls. Results from published studies in many areas of
autism research can be related to B2AR second messengers such as cCAMP levels
or to physiological patterns that are present during fetal life.

Prenatal interference with signaling from the B2AR is not likely to act alone
in the development of autism. Downstream pathways stimulated by the B2ZAR
can share components from signaling through other receptors, including those
for stress hormones and cytokines. Effects on these shared pathways during
gestation may lead to final common mechanisms for the development of autism,
and may be a reason that single genes and individual environmental factors
have not been identified to explain its causation.
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Introduction

Autism is included in a spectrum of neurodevelopmental syndromes with
heterogeneous presentation that are currently defined in behavioral terms.
The origins of autism are prenatal. Neuroanatomical studies show abnormal-
ities in structures that are well established before birth [1, 2, 3, 4]. Increased
levels of neuropeptides have been found at birth in archived blood of children
who later developed autism [5]. Both these findings suggest that the underlying
alterations in brain development and potential peripheral markers occur long
before symptoms become obvious in postnatal life. In fact, maternal risk factors
for autism during pregnancy have been published [6, 7]. It is highly likely that
the developmental cell programs leading to these disorders are established
during gestation.

Nearly every neurotransmitter system, as well as the immune system, has been
investigated in autism postmortem brain [8, 9, 10, 11, 12, 13], and data from many
studies of peripheral tissues such as the immune, gastrointestinal (GI), and
neuroendocrine systems have been published as well [5, 14, 15, 16]. A wide
range of results that overlap with normal controls, may change with time, and
may or may not correlate with patients’ functioning levels has been documented
in these studies. Although children with this disorder present with a specific set
of core characteristics (Diagnostic and Statistical Manual of Mental Disorders-
1V), each individual patient is different, one from another. As well, neuroana-
tomical studies of the brain show a wide range within each area of abnormality
such as the brainstem, cerebral cortex, amygdala, hippocampus, and cerebel-
lum. There have been few consistent or predictive results among these investi-
gations that could apply to all patients with autism, and taken together, the data
suggest widespread physiological dysregulation. In addition, the genes involved
in autism have been difficult to isolate, though considerable scientific research
has been devoted to doing so [17, 18, 19, 20, 21]. When considering the hetero-
geneity of behavior and genetic findings, as well as dysregulation shown in
research data, it is reasonable to conclude that etiologic mechanisms involved in
the pathogenesis of autism must occur during gestation and must have the
potential to affect and interact with many downstream developmental
pathways.

All neurotransmitter systems are important for fetal brain development
and interact with each other synchronously to result in normal maturation.
A significant abnormality in any of the earliest appearing neurotransmitter
systems would impact the development of other systems, could dysregulate
development, and lead to a cascade of abnormalities that evolve over time.
This chapter will present evidence in support of the theory that during gesta-
tion, abnormal signaling in an early appearing transmitter system, that of the
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catecholamines and especially including the B,-adrenergic receptor (B2AR),
contributes to the etiology of autism, and will relate published data to a
model of dysregulated B2AR downstream signaling factors and delayed devel-
opment of cellular physiology.

The B,-Adrenergic Receptor
Functions

The catecholamine system is one of the earliest appearing neurotransmitter
systems in the human fetal brain [22, 23]. The B2AR is part of this system and
is the most studied of the catecholamine cell surface receptors. Cell signaling
associated with B2AR stimulation results from the binding of norepinephrine
and epinephrine in peripheral tissues and norepinephrine in the CNS as ligands.
Although for the great majority of its functions the B2AR couples with the
stimulatory G protein, Gs, to activate adenylyl cyclase (AC) and generate cyclic
adenosine monophosphate ((AMP), protein kinase A (PKA), and an increase
in intracellular calcium levels as second messengers, its activation also stimu-
lates or inhibits MAP kinases to regulate fundamental cell processes such as
differentiation, growth, migration, and apoptosis [24, 25]. The cAMP generated
influences gene transcription through the cyclic AMP response element (CRE)
DNA sequence and its transcription factor or binding protein, CREB (Fig. 7.1).
The B2AR is transcribed from its gene on chromosome 5q31-32 as one peptide
of 413 amino acid residues [26]. Beta adrenergic receptors (BARs) are widely
expressed throughout mammalian fetal tissues including the brain, even in
cell types where meager numbers of the receptor will be found in adult life
[27]. The B2AR is expressed on mammalian oocytes and preimplantation
embryos [28], but whether or not the fetal receptor differs structurally (such
as in posttranslational modification) from the mature form is unknown.
Stimulation of the B2AR and the resulting signaling cascades serves different
purposes in various tissues and at different times during prenatal development
and postnatal life. For example, early in fetal life, B2ZAR stimulation is coupled
to cAMP generation through AC as shown in rat studies [27], and provides
signals for growth, but later it promotes differentiation in many tissues and
axonal outgrowth in neural cells; in certain tissues, activation can also result in
apoptosis or, depending on the degree and duration of stimulation, salvage
from apoptosis [27, 29, 30, 31, 32, 33, 34, 35]. In several tissues, stimulation of
the B2AR during development causes cells to exit from the cell cycle [36, 37, 38],
which is the initial step in the transition from growth by means of cell replica-
tion to differentiation and growth as a result of cell enlargement. For that
reason, the appearance of the B2AR in various brain regions at different
times during development is thought to signal terminal differentiation [39].
Both excesses and decrements in downstream signaling molecules (cAMP)
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Fig. 7.1 Signaling pathways activated by stimulation of the B,-adrenergic receptor (B2AR).
The B2AR couples with the stimulatory G protein (Gs), which stimulates adenylyl cyclase
(ACQ) to produce cyclic adenosine monophosphate ((AMP) and protein kinase A (PKA) as
second messengers. The cAMP and PK A generated activate or inhibit several mitogen-activated
protein kinase (MAPK) pathways involved in cell growth, differentiation, and apoptosis. Cyclic
AMP influences gene transcription through cAMP response element-binding protein (CREB).
An L-type calcium (Ca® ") channel is also part of this complex, and on B2AR stimulation, it is
activated so that intracellular calcium levels rise

cause abnormalities in growth cone formation and function in the developing
neurons of lower species such as Drosophila [40].

The B2AR system acts as a modulator for cellular signaling in postnatal
life. Stimulation of the B2AR facilitates long-term GABAergic transmission
to Purkinje cells in the cerebellum [41, 42] and modulates L-type calcium
channels in dendritic spines of pyramidal hippocampal neurons in the rat [43].
Presynaptic BAR stimulation results in long lasting increases in synaptic trans-
mission in rodent amygdala [44], and beta adrenergic activity is essential
for enabling glucocorticoid modulation of memory consolidation in the
human amygdala [45]. B,-Adrenergic receptor signaling activates rodent
astrocytes, provides neuroprotection [46], participates in the regulation of a
number of cytokines produced by microglia in different situations [47, 48], and
increases HLA-DR expression in glioblastoma cells [49]. Signaling through
the receptor has many effects on the circulating immune system, such as
regulating the amount of IgG1 antibody produced by B lymphocytes in the
peripheral blood [50, 51] and regulating immune responses [52, 53]. B2AR
second messengers and signaling pathways are also involved in numerous
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functions and responses in the GI tract and its immune system, an organ
system that, in addition to the brain, has been the subject of many investiga-
tions in autism research [15, 54, 55].

Regulation of By-Adrenergic Receptor Signaling

Postnatal signaling by the B2AR is regulated by desensitization (decreased
signaling), which can be homologous (involving just the B2AR) or heterologous
(involving other receptors that share the same signaling pathway). Homologous
desensitization involves two distinct processes: uncoupling of the B2ZAR from
its ability to activate the Gs and, with prolonged receptor stimulation, down-
regulation (decreased numbers of receptors on the cell surface). The primary
mechanism for homologous desensitization involves phosphorylation of the
receptor, followed by binding of arrestins to the phosphorylated receptor,
which uncouples it from its Gs, ending signal generation. Downregulation is
accomplished through events shared with desensitization (phosphorylation and
association with arrestins), followed by endocytosis and internalization of
receptors, and finally their degradation in lysosomes [56]. Decreasing receptor
synthesis and increasing the rate of degradation can also contribute to down-
regulation. Heterologous desensitization, which also occurs with prolonged
B2AR stimulation, involves phosphorylation and uncoupling of other recep-
tors that act through Gs, or loss of function of Gs and AC itself. Together,
both desensitization and downregulation terminate cell signaling in the face
of excessive input, an essential homeostatic mechanism designed to protect
the cell.

Polymorphisms of the B,-Adrenergic Receptor

Polymorphisms (single nucleotide substitutions) of the B2AR gene exist in
human populations, and three of these code for changes in the amino acid
sequence of the receptor that have physiological significance for receptor
signaling: glycine at codon 16 (Glyl6), glutamic acid at codon 27 (Glu27),
and isoleucine at codon 164 (Ile164). Although the Glyl6 and Glu27 poly-
morphisms are associated with enhanced signaling through the receptor, the
Ile164 polymorphism results in reduced affinity for ligand binding and lower
levels of second messenger formation [57]. Ligand stimulation of Glyl6 and
Glu27 receptors in vivo results in decreased desensitization and downregulation
compared to the wild-type variants Argl6 and GIn27 [58, 59].

Polymorphisms of the B2AR gene have been associated with susceptibility to
and prognosis in several disease states, including outcome in congestive heart
failure [60, 61], medication response in asthma [62], obesity [63], type 2 diabetes
[64], Graves’ disease [65], myasthenia gravis [66], rheumatoid arthritis [67],
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and psychological coping [68]. Because specific combinations of genetic
polymorphisms can change the physiology of receptor function and contribute
to predispositions for diverse disease states, and because the B2AR is important
for normal brain and organ development, it is probable that certain polym-
orphisms that increase or decrease signaling could become genetic risk factors
during gestation for neurodevelopmental disorders, in a similar way as those
linked to disease in peripheral organs.

Animal Studies

The functional characteristics of the B2AR have been extensively investigated
in the developing rat by Slotkin’s group at Duke University. Studies have
shown that protective regulatory mechanisms for B2AR signaling are not
intrinsic properties of cells, but are acquired during ontogenesis. In fact, the
arrival of innervation in target tissues provides a timing signal for the develop-
ment of receptor desensitization [69]. Fetal and newborn tissues not only are
resistant to BAR desensitization but actually show the opposite: agonist stimu-
lation of the fetal receptor enhances net physiological responses instead of
producing desensitization, as in adult tissues [70].

Work in rodents has clarified the mechanisms that underlie fetal sensitization
of continued B2AR signaling, and although the earliest studies utilized neonatal
cardiac tissue, further research resulted in similar findings in the central nervous
system in several mammalian species [71, 72, 73, 74]. Changes in signal trans-
duction after overstimulation of the fetal B2AR depend primarily on changes in
receptor coupling and response elements downstream from the receptor, rather
than on receptor numbers [75]. Enhanced fetal responses involve increased
expression of membrane-associated Gs (which is stimulatory for AC),
decreased expression of Gi (which is inhibitory for AC), increased concentra-
tion of a more active splice variant of the alpha subunit of Gs, and elevated
expression of AC molecules [76, 77, 78]. In addition, the expression of muscari-
nic type 2 cholinergic receptors (m2AChR) that couple with Gi, as well as their
ability to inhibit AC, is decreased, at least in the heart [79]. These differences in
fetal tissue promote signaling through AC and decrease its inhibition, resulting
in increased production of second messengers such as cAMP and PKA. Itis also
important to note that sensitization in the fetus is “heterologous,” meaning that
downstream signaling generated from activation of other receptors that, like
the B2AR, utilize Gs and AC (such as the glucagon and B;-adrenergic recep-
tors) is enhanced as well [70] (Fig. 7.2).

The signaling changes described above in rodent studies, resulting from
overstimulation of the B2ZAR, do not occur uniformly throughout all brain
regions at all ages. As in many other studies involving manipulation of gesta-
tional cell signaling [80, 81, 82], these responses depend upon the region inves-
tigated, gender, and maturational stage at exposure, and they change with age.
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Fig. 7.2 Cellular mechanisms for enhanced adenylyl cyclase (AC) signaling in the fetus.
Stimulatory G protein (Gs) function/expression is enhanced, as is the expression of AC
molecules, both of which increase AC function. Sensitization is heterologous: signaling
from stimulation of other receptors that couple with Gs (such as glucagon) is enhanced as
well. In addition, the expression/function of the inhibitory G protein (Gi) is reduced, as is its
ability to inhibit AC. The expression of at least one receptor that couples with Gi, the
muscarinic cholinergic receptor (m2AChR), is reduced (in cardiac tissue). Block arrows
indicate the direction of expression or function

Maturational stage is the predominant factor determining the net signaling
response to B2AR agonist exposure during brain development. For example,
fetal exposure to terbutaline, a selective B2AR agonist, during the develop-
mental period equivalent to the early-to-mid second trimester of human preg-
nancy (GD17-20) [83], results in nongender-dependent, enhanced AC
responses in whole brain during the immediate period after treatment, com-
pared to controls [71]. Later administration of terbutaline to neonatal rats
(PN 2-5), equivalent to the late second and ecarly third trimester in human
pregnancy, produces similar changes, but only in specific regions that follow a
maturational timetable of susceptibility [71]. After this neonatal exposure
schedule, by PN 45 (the end of adolescence in the rat), significant increases in
AC responses in males and reductions in females are found in the cerebellum,
the last brain structure to develop [71]. Other areas such as the brainstem and
striatum show decreases in both genders. Thus, in adolescence, components of
the pattern seen with fetal (GD17-20) administration of terbutaline, specifically
enhanced Gs and AC signaling, persist into the postnatal period in the devel-
oping rat according to a regional pattern that reflects the timetable for matura-
tion of each brain area. Other regions at different times show no effect or
decreased AC signaling. By adulthood (PN 60), decrements in AC signaling
were found in the cerebral cortex, an area that had shown no net changes in
adolescence [75]. To date, AC responses after prenatal or neonatal exposure to
B2AR overstimulation have not been measured in the rat brain at a time
equivalent in human development to young childhood, when behavioral symp-
toms of neurodevelopmental disorders often emerge.
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Excessive B2AR signaling during PN 2-5 in the rat results in abnormalities
in AC function that continue in adolescence and adulthood but with regional
and quantitative (over- or undersignaling) differences from those found at the
outset. Thus, it is probable that overstimulation of the B2AR or factors activat-
ing similar mechanisms alters the “program” for development of cell signaling
through G proteins and AC. Because AC and cAMP are involved in countless
cell processes that include gene expression through cAMP response element-
binding (CREB) protein and neuronal function, abnormalities in AC signaling,
such as those described, likely lead to alterations in neuronal cell differentia-
tion, cytoarchitecture, and synaptic signaling.

The fetus has little or no protective mechanism to decrease effects from
prolonged B2AR signaling, and exposures during pregnancy that increase
B2AR signaling, or overstimulate the receptor, could have widespread effects,
the severity of which may depend upon the dose, timing, and duration of
interference in the specific brain regions and organs affected. Although
decreases in receptor binding can occur in some regions of the CNS and in
peripheral tissues of the fetus with excessive B2AR stimulation, it is down-
stream signaling pathways that are upregulated and provide increased
responses [70, 71]. These functional changes occur without differences in
form; terbutaline treatment in rats does not affect brain or body weight or
rate of growth, characteristics that may be analogous to the situation in autism.

What is the Relationship to Autism?

Prenatal overstimulation of the B2AR, in combination with its more active
polymorphisms, likely contributes to the etiology and pathogenesis of autism.
Indeed, these two factors have been linked in human studies to this disorder.
Exposure for 2 weeks or longer to terbutaline, a selective B2ZAR agonist that was
originally developed for use in asthma and that has been used extensively to
arrest or prevent preterm labor [84], has been linked to concordance for autism
spectrum disorders (ASDs) in dizygotic twins (relative risk 4.4 in male twins
with no family history of ASDs) [85]. This study supports earlier work showing
poor cognitive and abnormal psychiatric outcomes in children exposed to
B2AR agonists for preterm labor [86, 87]. Terbutaline crosses the placenta
and blood-brain barrier and stimulates B2ARs in all tissues of the fetus
[27, 88, 89]. In addition, an increased prevalence of the B2AR polymorphisms
Glu27 and Gly16 has been found in dizygotic twin sets compared to the general
population [85], and the Glu27 homozygous variant has been linked to an
increased risk for autism in parent—child trios from the Autism Genetic
Resource Exchange (AGRE) population [90, 91].

Because signaling through the B2AR contributes to the shift from neural
cell proliferation to differentiation, and because the B2AR is part of one of the
earliest appearing chemical transmitter systems in brain and tissue development
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[23, 92], interference with its function over time during gestation can affect
developmental programming and can influence the maturation of other neuro-
transmitter systems, as well as the later functioning of the CNS and peripheral
organs. Rodent studies, in addition to the work cited above, have shown that
prenatal overstimulation of the B2ZAR by administration of terbutaline, on PN
2-5 and 11-14, results in several neuroanatomical abnormalities in the CNS
that are analogous to those noted in postmortem autism brain, such as loss of
cerebellar Purkinje cells, smaller cells in the sensory cortex, and neuroimmune
activation [2, 14, 93, 94]. In addition, prenatal administration of terbutaline has
not resulted in abnormalities in form (birth weight and rate of growth were
unaffected), but in abnormal function (measured by receptor signaling in
membrane preparations) of lungs, liver, heart, and kidneys in the developing
rat [72, 79, 95]. Administration of this drug to neonatal rats has also resulted in
microglial activation in brain areas that correlate with neuroinflammation in
postmortem autism brain, and in juvenile rats at PN 30, it has led to later
emerging hyperactivity and auditory sensitivity in preliminary behavioral stu-
dies [14, 96].

These results all point to a likely scenario for neurodevelopmental changes,
resulting in the pattern seen in autism. Stimulation of the B2AR can cause a
premature exit from the cell cycle, a mechanism by which the receptor’s signal-
ing decreases cellular proliferation in favor of differentiation [36, 37, 38]. In
humans, if excessive BAR stimulation is inappropriately timed and occurs in
neural pathways that have not yet completed full innervation of their target
tissues, abnormal connections would be formed, and, just as important, the
tissues awaiting final innervation and synapse formation might remain in a
response state similar to that seen in fetal life, with enhanced AC signaling and
decreased inhibition of that enzyme (Fig. 7.3). The net effect of cellular
responses at first would be excitatory in pathways that depend upon AC
signaling. Later, areas of increased or decreased AC signaling would become
region-, gender- and age-dependent, similar to those differences found in the
terbutaline animal model. More importantly, patterns of signaling abnormal-
ities would differ among individual patients, since they would depend upon the
maturational stage of the CNS at the time of exposure to factors that could
overstimulate the B2AR. Later responses and adaptations to the environment
that could affect programming of other neurotransmitter systems would be
influenced by these early signaling abnormalities, further adding to heteroge-
neity and disordered maturation.

With this model in mind, the behavioral disorder called autism can be viewed
as a biological one marked by dysregulation involving abnormalities in AC
function and cAMP formation. Signaling through AC leads to transduction
signals shared by numerous neuronal and hormonal pathways. Cyclic AMP is a
ubiquitous molecule that not only provides direct signaling within a cell, but
also effects gene transcription through the generation of CREB protein.
Abnormalities in the AC system, then, could be considered an epigenetic factor
that would influence gene expression and developmental trajectory. Autism
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may also be a disorder reflecting fetal physiology of the catecholamine system,
due to the possibility that the B2AR and its signaling molecules can effect an
exit from the cell cycle during the process of innervation. Upstream tissues
would then be inappropriately “mature,” while downstream elements might
retain fetal responses, and inappropriate, misplaced synapses would create
abnormal “wiring” of the CNS. Overall development and functioning would
certainly be disordered, as they are in autism.

Relating the Model to Autism Research

Many findings from autism research reflect increased or deceased AC signal-
ing, when parameters being studied are influenced by AC. Alternatively, the
findings may reflect a fetal pattern of functioning due to dysregulated AC
signaling over time, with some brain regions and other tissues exhibiting
sensitized, enhanced responses. Results from these investigations then take
on new significance. This section will correlate some of the more recent
findings (or those with the greatest impact) in autism literature with these
possibilities.
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Neuroglial Activation

It is unknown whether the neuroglial activation noted in postmortem autism
brain [13] is detrimental, reparative, developmental, or a mixture of all three.
Many of the cytokines reported as elevated in cerebrospinal fluid (CSF) and
brain tissue by Vargas et al. [13], such as MCP-1 and IL-6, act as growth and
differentiation factors during gestation [97, 98], and expression of these two
molecules is influenced by cAMP, the former being inhibited by it and the latter
being upregulated [99, 100]. When measured by HLA-DR staining, activated
and more numerous microglia (the immune cells of the brain) were a major
finding in the work by Vargas and colleagues. Microglial HLA-DR expression
is present in the human fetal brain from the second trimester and is involved in
normal development [101]. Transient overexpression of activated microglia
occurs normally in the cerebral white matter of the human fetus [102]; thus
the finding of increased expression of HLA-DR in autism brain may reflect
dysmaturation. HLA-DR expression in vitro is increased in glioblastoma cells
in response to cAMP [103], even though B2AR stimulation (and thus increased
cAMP) inhibits proliferation of microglia from adult rat brain in vitro [104].
Increased numbers of activated microglia may also be a reflection of low AC
responses in autism, part of dysregulated AC; norepinephrine (the ligand for the
B2AR) depletion in newborn rats results in activated microglia in the cerebel-
lum [105]. Activated microglia may reflect, in part, a developmentally delayed
process as well, since in the rodent cerebellum, microglia promote the death of
developing Purkinje cells [106], lower numbers of which have been repeatedly
noted in cerebellar tissue from autism brain [1, 107, 108].

Increased Cerebral White Matter

Increased white matter on magnetic resonance imaging (MRI) has been docu-
mented in children with autism [109]. Some of this increase has been attributed to
activated microglia noted in postmortem autism brain [13], since microglia pro-
mote myelin formation in cocultures with oligodendrocytes from developing rats
[110]. This finding of increased white matter can also be related to enhanced B2AR
stimulation and increased cAMP levels, since both processes induce expression of
myelin basic protein in immature rodent oligodendrocytes [111, 112]. At a devel-
opmental stage immediately preceding the beginning of the active period of myelin
synthesis in the rat, the cAMP-dependent pathway that leads to myelin produc-
tion is stimulated only by B2AR agonists. Thus, delayed or disordered oligoden-
drocyte maturation may be responsible for the findings by Herbert et al. [109].

Insulin-like Growth Factor-1

Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor that is important
in early brain development and axonal assembly at the growth cone [113, 114].
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Low levels of IGF-1 in CSF of autistic children [115] may be related to enhanced
cAMP signaling, since this molecule inhibits expression of IGF-1 in cultured
cells [116] (see Chapter 20 by Riikonen).

Glial Fibrillary Acidic Protein, Bcl-2, and GAD67

Glial fibrillary acidic protein (GFAP) is an astrocytic marker. Astrocytes play
important roles in neuronal function, synaptic plasticity, and detoxification
[117, 118]. Elevated levels of GFAP in postmortem autism brain [119] correlate
with astrogliosis noted by Vargas et al. [13]. They also may reflect increased
B2AR signaling, since BAR stimulation increases the expression of GFAP in
astrocytes [120]. In autism brain tissue, decreased expression of Bcl-2, a marker
for apoptosis, and GADG67, which catalyzes the conversion of glutamate to
GABA [121, 122], can also be related to cAMP signaling. Increased levels of
cAMP cause reductions in the expression of GAD67 in C6 glioma cells [123],
and levels of Bcl-2 are directly correlated with those of cAMP [124, 125].

Epilepsy

Up to 40% of children with autism develop epileptic seizures, the majority of
which have their onset by adolescence [126]. The catecholamines, specifically
norepinephrine, have long been known to have anticonvulsant effects in the
CNS in animal studies [127, 128]. Work done with the rodent model of prenatal
overstimulation of the B2AR described previously resulted in diverse areas of
over- and undersignaling through AC that change with age. By adulthood,
decrements in cortical AC signaling are apparent in rats after B2ZAR over-
stimulation by terbutaline during early development [75]. It is possible that
decreased AC signaling may contribute to a propensity to develop seizures in
patients with autism as they grow older.

Sulfation, Methylation, and Oxidative Stress

Abnormal sulfation, as it relates to glutathione synthesis and methyla-
tion, has been investigated in autism. Lower plasma levels of methionine,
S-adenosylmethionine (SAM), homocysteine, cystathionine, cysteine, and thus,
total glutathione have been found in children with autism compared to controls
[129] (see Chapter 10) (Fig. 7.4). Glutathione is a three amino acid molecule
that provides the major defense against reactive oxygen species. These values,
along with higher levels of S-adenosylhomocysteine (SAH), adenosine, and
oxidized glutathione, may certainly reflect increased oxidative stress in the
peripheral circulation and could reflect impaired methylation capacity. How-
ever, these results may also be consistent with additional abnormalities and
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Fig. 7.4 The methionine cycle and generation of glutathione. Homocysteine is remethylated
by either of two enzymatic reactions that are folate-vitamin B12-dependent (via methionine
synthase, MS) or -independent (via betaine homocysteine methyltransferase, BHMT). After a
series of steps involving methyl group transfer and donation for methyltransferase (MT)
reactions, methionine metabolites are converted back to homocysteine, which may be meta-
bolized to cysteine through two enzymatic steps involving cystathionine B-synthase (CBS) and
cystathionine lyase (CL). Cysteine is incorporated into the tripeptide glutathione, a major
defense against reactive oxygen species. Block arrows indicate the direction of plasma levels
reported in autistic children by James et al. [129] Other abbreviations: MAT, methionine
adenosyltransferase; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; SAHH,
SAH hydrolase; AK, adenosine kinase; ADA, adenosine deaminase; THF, tetrahydrofolate;
SCH3THF, 5-methyl THF

fluctuations in cAMP levels as well as dysmaturation. The expression of the
enzymes cystathionine B-synthase (CBS) and cystathionine lyase (CL), which
catalyze the conversion of homocysteine to cystathionine and cystathionine
to cysteine, respectively, are lower in fetal than in postnatal rodent brain and
liver, and their expression is cCAMP-dependent in human and rat fetal liver [130,
131]. High levels of SAH and low levels of homocysteine would, at first glance,
appear to be consistent with decreased S-adenosylhomocysteine hydrolase
(SAHH) activity due to high adenosine levels, since increases in adenosine
can reduce this enzyme’s activity. However, cCAMP competes with adenosine
to inhibit this enzyme as well, and fluctuations in cAMP (higher levels) could
result in similar findings [132, 133]. Finally, increased plasma levels of adeno-
sine found in autistic children [129], and hypothesized to be due to inhibition of
adenosine kinase (AK) by oxidative stress, may also reflect low levels of
expression of the enzyme, as is found in the fetus and newborn compared to
older infants and children [134].
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Although oxidative stress is most likely involved in the metabolic functioning
of individuals with autism [129, 135, 136, 137], the origin of these findings may
not be obvious at first glance. Low activities of antioxidant enzymes such as
superoxide dismutase, glutathione peroxidase, and catalase have also been
documented in red blood cells from autistic patients [138, 139, 140], as have
high levels of nitric oxide [139]. These data make sense when related to fetal
functioning since there is a developmental lag in the appearance of superoxide
dismutase compared to other antioxidant enzymes in the brain [141], and both
glutathione peroxidase and catalase are lower in fetal than in postnatal
fibroblasts [142]. In addition, nitric oxide is formed in response to B2AR
stimulation in some tissues, such as endothelial cells and platelets [143, 144].

Overstimulation of the B2AR by terbutaline in the fetal rat brain and during
the first and second postnatal weeks (equivalent to the second and third trime-
sters of human gestation) results in an increase in markers of lipid peroxidation
compared to nonexposed rats [145], the hallmark of oxidative stress. Similar
findings (though using different markers of lipid peroxidation) have been
documented in postmortem autism brain [146].

Porphyrins

Increased urinary coproporphyrins have been proposed as a sign of heavy
metal toxicity, specifically due to mercury, in children with autism. Geier and
Geier [147] and Nataf et al. [148] suggest that high levels of coproporphyrin in
both studies, and precoproporphyrin in the latter, are due to heavy metal
inhibition of two downstream enzymes in the heme pathway, uroporphyrino-
gen decarboxylase and coproporphyrinogen oxidase. The inhibitory actions of
heavy metals on the functions of these enzymes have been demonstrated in
previous literature [149, 150]. An alternate explanation, however, could include
a contribution from dysregulated levels of cAMP, since raising cellular levels of
this molecule in rodent hepatocyte cultures causes accumulation of copropor-
phyrins [151].

It is important to note that data from many studies in autism, including
those of urinary porphyrins, sulfation, and methylation, are reflections of
peripheral organ function, not that of the brain. Although Nataf et al. [148]
found that heavy metal chelation tended to normalize the urinary porphyrin
levels on paper, it is unknown whether chelation could change the CNS level of
mercury. Interestingly, though heavy metal sequestration is a function of the
metal carrier metallothionein (MT), and if future research documents heavy
metal sequestration in the autistic brain, liver, and bone marrow, this could be a
sign of increased levels of MT. Cyclic AMP increases MT levels [152] and
induces tissue-specific redistribution of heavy metals for sequestration [153].
The expression of MT in human liver is higher in the fetus than in children
over 6 months of age [154, 155]. Thus, increased levels of MT could be
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responsible for sequestration of heavy metals such as cadmium and mercury,
as a result of higher levels of cCAMP or a fetal pattern of physiological
functioning.

Plasma and Whole Blood Serotonin

Although whole blood serotonin (5HT) levels are increased in some patients
with autism [156, 157], low levels of plasma SHT that are available for receptor
binding have been documented in autistic adult patients compared to normal
controls [158], in a study using the platelet and its SHT transporter (SHTT) as a
reflection of serotonin’s actions at the synapse. Elevated whole blood serotonin
and low-plasma SHT could be the result of (1) increased SHT production, or
(2) increased expression of the transporter on the platelet surface, or both,
among other reasons. Circulating SHT is produced in, and released from,
enterochromaffin cells in the bowel, in a process regulated by neurotransmitter
systems that include BARs [159], and is then incorporated into the platelet by
the SHTT. If signaling elements downstream from BARs, such as AC and
cAMP, are dysregulated or enhanced, then release of SHT from the bowel
may be disordered or increased. Notably, Vered et al. [160] found a dysregu-
lated response of SHT levels in platelet-poor plasma from autistic adults after a
carbohydrate-rich meal: an initial increase followed by a deficit compared to
age-matched normal controls.

Ninety-nine percent of circulating serotonin is contained in platelets as a
result of the function of the SHT transporter [161]. The promoter region of the
human serotonin transporter gene contains a CRE motif, and the promoter is
inducible by cAMP signal transduction pathways [162, 163]. In addition, an
increased density of platelet SHTT expression has been documented in autism,
using paroxetine binding as a specific label [164]. This could be the result of
dysregulated AC functioning (leading to enhanced cAMP production) that
may have been part of cell programming in bone marrow megakaryocytes
before platelet fragmentation. This scenario would be expected after prenatal
overstimulation of the B2ZAR. Because of this, increased transport of SHT into
the platelet could occur, partly due to increased production of SHT in the bowel
as above, and partly because of the increased expression of the SHTT, both
resulting from increased BAR activation. This may therefore contribute to
increased platelet levels of serotonin and decreased levels of SHT in the plasma
of autistic patients.

Oxytocin
Oxytocin (OT) is a neuropeptide that mediates complex social and emotional

behaviors [165]. Several studies have proposed that excess OT or OT abnorm-
alities play a role in the etiology of autism [166, 167, 168]. Higher levels of
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the unprocessed, C-peptide-extended prohormone, OT-X, compared to the
completely processed OT have been found in plasma from autistic children
compared to age-matched normal controls [169]. A higher ratio of unprocessed:
processed OT is similar to that seen in studies of fetal animals [170, 171].
Increased levels of OT-X in autism may therefore reflect the persistence of fetal
physiology associated with B2AR dysregulation.

The Gastrointestinal Tract

The GI tract has been a subject of great research interest in autism. Findings
of reflux esophagitis and disaccharidase deficiency [55] can be correlated
with fluctuations or dysregulation in cAMP and fetal/neonatal functioning.
Gastroesophageal reflux is common in premature human infants and neonates,
and experimentally increased cAMP levels relax the lower esophageal sphincter
in animal models [172, 173]. Disaccharidase expression in the human fetus is
relatively low during midgestation and increases toward term [174]. Lactase
levels in preterm infants are very low, especially in those younger than 37-weeks
gestation [175], making it understandable that these enzymes might be deficient
in children with autism, if their intestinal physiology is developmentally delayed
and similar to that found in the fetus.

Abnormal motility contributes to diarrhea and constipation, symptoms
often reported by caregivers of young children with autism [176, 177]. Peristaltic
contractions of the GI tract begin in the stomach and are regulated by “pace-
maker” cells, the interstitial cells of Cajal (ICC) [178, 179]. The ICC produce
“slow waves,” or the basic electrical rhythm of the smooth muscle layers, upon
which electrical action potentials must be superimposed in order to generate
true contractions. Human ICC are present from the second trimester of gesta-
tion, though they are not well-networked, even at term [180]. If ICC were
delayed in their development in autism, peristalsis may be abnormal as a result.

Increased intestinal permeability to lactulose has been documented in 43%
of a small group (N = 21) of children with high-functioning autism compared
to controls [54]. D’Eufemia and colleagues point out that because lactulose is
absorbed through the paracellular pathway, its increased absorption may be
evidence of damage to intercellular tight junctions, as may be seen with inflam-
mation. However, none of the patients in this study had GI symptoms, such
as one might expect from the inflammation documented in later investigations
[55, 181], suggesting an alternative explanation for increased permeability. In
relating this research to delayed physiology or dysregulated AC signaling, it is
known that intestinal permeability to sugars is high in neonates [182], and that
intracellular cAMP levels are related to the integrity of intracellular tight
junctions [183, 184].

Inflammation in the GI tract has been well-documented in autism, though its
impact on the course of the disorder is unknown. The findings in the bowel [185]
and stomach [186] in autistic children can be explained only by the interaction
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of many factors since the inflammatory process involves the immune and GI
systems, both of which are constantly in a state of stimulus—response reactivity.
Explanations for this process in relationship to the B2AR theory are beyond the
scope of this chapter. A predisposition to inflammation, however, may be
inherent in bowel functions of autistic children, as it is in the premature intes-
tine; stimulated fetal enterocytes produce more interleukin-8 (IL-8), a proin-
flammatory cytokine, than those of older children [187], and transcription of
IL-8 is increased by stimulation of B2ARs [188]. DeFelice et al. [189] found no
increase in the basal production of IL-8 from endoscopic intestinal biopsies in
patients with pervasive developmental disorders, but the measurements were
performed with unstimulated enterocytes.

The Immune System

Dysregulated AC cell programming and signaling, along with delayed physiol-
ogy in the bowel and its immune system, would have far-reaching consequences,
because these two organ systems interact continuously to respond to exposures
from the external “environment” of the gut lumen. In this situation, an imma-
ture, disordered immune system would attempt to respond to stimuli along
with an equally dysregulated system of intestinal responses, the results of
which could become virtually impossible to predict as static measures, and
would change over time. It has become apparent that dysregulated immune
responses characterize the inflammation documented in the bowel in autism, as
well as the circulating immune system [15], at times reflecting tendencies to
T helper type 2 (TH2) responses [181, 190], both TH1 and TH2 activation [191],
innate-type immune responses [192], and, less often, normal results [193].
Although predicting one consistent “snapshot” of immune functioning is unat-
tainable given this theory, and indeed, seems impossible in general in autism
research, many parameters in the circulating immune system relate to fetal/
neonatal functioning or fluctuations in B2AR or AC signaling, and several will
be explained here.

Low levels of expression of the TH2 cytokine IL-2 on T lymphocytes [194],
“incomplete activation” of T cells, or increased DR + T cells without a corre-
sponding increase in IL-2 [195], and low intracellular levels of IL-2 and IFN-y
[196] may be explained by enhanced AC signaling, since cAMP inhibits 1L.-2
production and expression on T helper cells [197], and B2AR stimulation
inhibits the production of IFN-y by T lymphocytes [198]. In addition, cord
blood lymphocytes express lower levels of IL-2 receptors [199] and produce
lower amounts of IL-2 [200] and IFN-y than lymphocytes from older children
[201], supporting a relationship between these parameters in autism and
delayed physiological functioning.

Investigations of serum antibodies in children with autism have revealed
many targets for binding in rodent and human CNS tissue [202, 203, 204, 205,
206,207, 208, 209], suggesting that this disorder may be an autoimmune disease.
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However, none of these sera was tested against autism brain. In the more recent
work mentioned above, serum antibodies of autistic patients were produced at
higher levels than in controls. Interestingly, stimulation of the B2AR regulates
the production of immunoglobulin G1 (IgG1) and IgE from B lymphocytes, as
well as the number of B cells secreting IgM [210, 211, 212], so that an alternate
explanation for these findings might relate them to fluctuations in signaling
downstream from the B2AR. In addition, immature CD5+ (or B1) B cells may
contribute to increased antibody production in children with autism.
These lymphocytes are the predominant B cell during fetal and early neonatal
life, and are reactive against autoantigens [213]. They generally produce
low-affinity auto- and polyreactive antibodies (usually IgM), including those
directed against single-stranded DNA [214, 215], as has been found in children
with ASDs and Landau—Kleffner syndrome [204]. Higher levels of antibody
binding to proteins of specific molecular weight may be the result of these B-cell
effects, which in turn may have been “programmed” by prenatal B2ZAR
overstimulation.

If the immune system in young children with autism is physiologically
delayed, the T-cell receptor (TCR) may be immature as well. The CDR3 region
of the TCR provides fine antigen recognition and is shorter in length during
fetal life compared to that in neonates [216]. The enzyme necessary for length-
ening the CDR3 region (terminal deoxynucleotidal transferase) is ontogenically
expressed [217] and is cAMP-dependent [218]. In turn, deficient fine antigen
recognition may contribute to the formation of polyreactive autoantibodies
in autism.

The Autonomic Nervous System

Both published research [219, 220, 221, 222] and anecdotal reports (urinary
retention, sluggish pupillary response to light, and clammy extremities) have
noted differences in autonomic nervous system function in patients with autism
compared to controls. Ming et al. [223] measured baseline cardiovascular
autonomic function in children with autism (ages 4-14) and age-matched
healthy controls, using a device that can simultaneously measure heart rate
and blood pressure, derive a continuous index of cardiac vagal tone (CVT), and
monitor cardiac sensitivity to baroreflex (CSB), in real-time. Both CVT and
CSB parameters reflect parasympathetic activity. The CVT and CSB were
significantly lower in association with a significant elevation in heart rate,
mean arterial blood pressure, and diastolic blood pressure in children with
autism compared to controls. Levels of CVT and CSB were lower in autistic
children with symptoms of autonomic dysfunction compared to those without,
and were not related to age. These low levels suggest impaired cardiac para-
sympathetic activity, with unrestrained and perhaps hyperactivity of the
sympathetic nervous system.
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The findings of Ming et al. [223] can be correlated with results from
overstimulation of BARs in fetal (GD17-20) or newborn rats (PN 2-5; equiva-
lent to the second trimester of human gestation). Garofolo et al. [79] adminis-
tered isoproterenol, a combined B; and B3, agonist, and terbutaline, a selective
B2AR agonist, to rats during these two time periods. Both treatments caused
downregulation of m2 type acetylcholine receptors (m2AChRs) as well as a loss
of the ability of m2AChR stimulation to inhibit AC in the heart, which could
reduce effects from parasympathetic input. Premature exposure of the devel-
oping heart to BAR agonists also promotes the function and sensitization of
signaling through AC [70], enhancing sympathetic input. These effects may
parallel changes found in sympathetic and parasympathetic tone in autistic
children [223].

Differences in Signal Transduction

If autism is a biological disorder characterized, in part, by dysregulated AC
functioning that leads to disordered development, then markers of increased
AC signaling should be expressed at higher levels in some tissues in patients
with autism compared to those in controls. Examples are the enzymes involved
in the cAMP-dependent second messenger pathways such as PKA and cAMP.
Chauhan et al. [224] have studied signal transduction in children with autism
from the AGRE database and found increased expression of PK A in membrane
preparations of lymphoblasts from the autistic children compared to normal
sibling controls. This finding lends support to the B2AR/AC theory. Further
studies investigating levels of cAMP and AC in lymphoblasts are underway by
this group. It will be interesting and important to study the expression of other
molecules that could be predicted from Theodore Slotkin’s previously described
rat model, such as a decrement in Gi proteins and deficits in their ability to
inhibit AC [77, 78]. This would provide support for a hypothetical physiological
signaling imbalance due to prenatal overstimulation of the B2AR.

Different Mechanisms, Similar Result

No single prenatal insult, such as overstimulation of the B2AR during critical
periods of brain development, can be responsible in all cases for a complex
neurodevelopmental disorder with heterogeneous presentations such as autism.
Prenatal B2AR overstimulation in the previously described rat model leads to
enhanced signaling through AC early in development, and to gender-dependent
dysregulation (enhancement and deficit) of AC signaling as development pro-
gresses, in various regions of the brain. It is possible that this sort of down-
stream signaling abnormality that has the potential to affect numerous
processes and cell programming through CREB protein and other components
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is a “final common pathway” in the development of autism. Similar findings
have been documented in animal models that have been used to investigate
mechanisms of insults different from B, receptor overstimulation during
development.

Several of these mechanisms have been linked to autism in human studies,
such as maternal stress [225], or have been theoretically associated in animal
models such as the “stress” of infections during pregnancy [226, 227] (see
Patterson chapter). Stress itself elevates levels of epinephrine and norepinephr-
ine (B2AR ligands) in the pregnant mother, but these do not cross the placenta
effectively; Moreover, stress also causes increases in endogenous levels of
glucocorticoids, which do cross to the fetus. Glucocorticoid excess in maternal
stress can result from psychological, infectious, or physical causes. Prenatal
administration of the glucocorticoid, dexamethasone, to rats results in early,
enhanced AC activity in the developing brain and liver [228] that persists, at least
in the forebrain, as increased activity of the AC catalytic subunit in postnatal life
[229]. After pregnant guinea pigs are exposed to synthetic glucocorticoids, the
offspring exhibits alterations in pituitary—adrenal function and responses to
endogenous glucocorticoids throughout life, as well as differences in activity
levels compared to controls [230, 231]. Effects of maternal adversity (as opposed
to exposure to synthetic glucocorticoids) have been studied in the guinea pig
as well. Male offspring of stressed dams develops altered basal plasma cortisol
concentrations and exhibits increased anxiety compared to controls [232]. Inter-
estingly, the male offspring of glucocorticoid-exposed dams developed elevated
plasma testosterone levels [230], which could be analogous to the elevated
plasma testosterone levels reported in autistic children [233].

Subtoxic maternal exposure to organophosphate pesticides, which represent
half of all the insecticide use in the world, may be another factor in the devel-
opment of autism. The most used organophosphate, chlorpyrifos, though
prohibited now from use in the home in the United States, is still widely applied
in the chemical preparation of homesites and throughout agriculture, and thus
nearly the entire population is exposed to this agent. In a rodent model, prenatal
exposure to this pesticide results in enhanced AC signaling in the brain that
is region- and sex-dependent and persists into adulthood [82, 234], results
that converge with the outcomes after terbutaline treatment. It is possible
that the study of such prenatal disturbances that result in dysregulated AC
function will lead further to defining some of the mechanisms involved in the
etiology of autism.

Prenatal [3,-Adrenergic Receptor Overstimulation
and Sensitization to Other Factors

It may not be that one process alone, namely B2AR overstimulation during
critical periods for prenatal brain development, consistently in all cases leads
to a complex neurodevelopmental disorder with heterogeneous presentation
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such as autism. The presence of polymorphisms of the B2AR that amplify this
tendency could further increase the chances that the disorder might develop in
an individual child. It is also possible that prenatal B2AR overstimulation
sensitizes the CNS and peripheral tissues to other, later factors that could affect
development. For example, in rats, B2ZAR overstimulation by terbutaline
during the neurodevelopmental equivalent of the second trimester in humans
results in dysregulated AC signaling as described previously. However, when
these same neonatal rats are later exposed at PN 11-14 to the organophosphate
insecticide, chlorpyrifos, larger alterations in more widespread areas of the
developing brain are found than are seen with either agent alone [75]. A good
deal of attention is understandably paid to genetic etiologies of differential
susceptibility to environmental toxicants, but it is equally plausible that
nongenetic factors such as prior chemical or drug exposure in mothers, chil-
dren, and fetuses may also define subpopulations that are especially vulnerable
to alterations in developmental trajectories.

Effects on Other Neurotransmitter Systems

During postnatal life, B2AR signaling interacts with and affects all other
neurotransmitter systems in various tissues. The same may be true for brain
development during fetal life. Prenatal B2ZAR overstimulation not only leads to
dysregulation of development in the catecholamine/AC signaling system,
but also influences the development of other neurotransmitter systems, such
as serotonin (SHT). Overstimulation of the B2AR during PN 2-5 in the rat
elicits global increases in SHT receptors and the SHT transporter in brain
regions possessing SHT cell bodies (midbrain and brainstem) as well as in the
hippocampus [235, 236]. Slotkin and Seidler [236] found that the changes in the
SHT system were demonstrable after this exposure, as late as adolescence.
Interestingly, lower total serotonin content was noted in the brains of treated
rats compared to controls [236]. This may be analogous to lower levels of brain
serotonin synthesis over time in autistic patients compared to controls [237]
(see Blue chapter 95).

The Role of Maternal Factors

In considering prenatal factors that may result in the dysregulation of AC
functioning and disordered development, one must take into account that
effects on the fetus are the result of, and influenced by, the physiology of the
pregnant mother and her adaptive responses to the environment. It may be that
downstream cell signaling that results from factors such as inflammatory
(cytokine) responses in the mother [227], maternal antibodies [238, 239],
and stress [225] shares components that are also elicited by overstimulation
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of the B2AR. Additional factors may worsen the tendency for abnormal
developmental trajectories, such as low maternal plasma serotonin [240] and
genetic polymophisms that could increase or decrease cell responses. Because
abnormalities in development induced by the pregnancy environment can
become transgenerational [241], studies of mothers and grandmothers of
children with autism may be necessary in the future.

Prenatal [3,-Adrenergic Receptor Understimulation

The opposite case, i.e., blocking BAR function or adrenergic denervation
during early development, also produces unique patterns of receptor responses
in animal studies. In comparison with prenatal B2AR overstimulation, which
would lead to dysregulation of AC signaling, after adrenergic denervation
with 6-hydroxydopamine, developing rats exhibit a delay in the onset of
desensitization in the heart (PN 25 instead of PN 15) and lack of any desensi-
tization in the liver, even at PN 25 [242]. The resulting signal enhancement
continues as an immature pattern of sensitization for a prolonged period
compared to controls [242]. Effects can be permanent: receptors in some tissues
never acquire some of their essential responses [243]. Denervation in this
context, then, shifts a developmental change (one from sensitization to desensi-
tization) toward an older age and creates a physiological developmental delay.
This scenario of understimulation may relate to maternal antibodies that can
potentially block receptors [238, 239] and viral infections such as influenza in
the pregnant mother [227] or postnatal herpes [244], both of which decrease
AC signaling and lower cAMP production [245, 246].

Speiser et al. [247] treated pregnant rats during GD8-22 with the BAR
antagonists propranolol (a B; and B, receptor blocker) and atenolol (a specific
B receptor blocker). The offspring of rats treated with propranolol demon-
strated increased motor activity and poor performance in the active avoidance
test, whereas the offspring exposed to atenolol during gestation exhibited no
behavioral changes, showing that blocking B2ARs during brain development
can be linked to behavioral abnormalities in animals. Blocking BARs in rats
during an age equivalent to the second trimester has not been studied as
extensively as has B2AR overstimulation in the same period, but there are
two studies pointing toward alterations in neural cell development that may
be relevant to neurodevelopmental disorders such as autism. In newborn rats,
destruction of presynaptic noradrenergic terminals with the neurotoxin
6-hydroxydopamine results in blunting of the development of the ability of
B2ARs to elicit cellular responses [248], again showing the importance of a
critical period in which the appropriate exposure of receptors to the natural
neurotransmitter ligand “programs” the development of cell responses. Simi-
larly, chronic administration of propranolol to pregnant rats throughout gesta-
tion delays the development of B2ZAR coupling to cellular responses [248]. In the
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long run, interference with B2AR transmission during pregnancy produces a
permanent change in the responsiveness to noradrenergic input in the brain
[249]. Since these mechanisms result in abnormalities in AC signaling, they all
are potentially important in autism pathogenesis.

Conclusion

Historically, there seem to be several stages in unraveling the etiology of a
neurodevelopmental disorder. After recognition that a specific disorder exists
(for example, Rett syndrome was first described in 1966), a prolonged period
ensues, marked by a plethora of research studies that describe the physiology of
the disorder, and proposes mechanisms of pathogenesis as well as candidate
genes involved in it. Finally, the cause is discovered and research into treatment
begins (the abnormality in the MECP2 gene was discovered in 1999). At this
time in history, autism research is still in the descriptive phase of this process,
but with cohesive theories on which to base research efforts, it will move from
description to discover causes. Autism is clearly heterogeneous in its clinical
presentation, with biological research results that show widespread dysregula-
tion. The theory of prenatal B2AR signaling outlined in this chapter, relating
environmental influences with genetic predispositions to dysregulation in an
enzyme system that is ubiquitous and influences a multitude of developmental
pathways, accounts for multiple disparate findings and disordered develop-
ment. This type of approach will help to unravel the etiologies of autism.
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