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ABSTRACT

Liver cancer is an important form of cancer worldwide ranking in the top
ten in both incidence and mortality (1). Over 200,000 new cases of primary
hepatocellular carcinoma are diagnosed worldwide each year (1). The Amer-
ican Cancer Society predicts over 22,000 new cases of liver and bile duct
cancer and that nearly 18,000 individuals will die of this disease in the year
2009 (2). In the United States and Europe, primary liver cancer is fairly rare,
but in some parts of the world, it is the primary type of cancer observed (1).
Environmental influences, including carcinogen exposure, are believed to
contribute to its distinct geographical distribution pattern (3). Although rare
genetic disorders can contribute to liver cancer development, ethanol and
dietary factors are known to contribute to its incidence and progression (3).
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The prevalence of liver cancer and its high mortality rate indicates the need
for appropriate animal models of this disease in order to develop treatment
and intervention strategies. In addition, the liver is the primary site for cancer
induction in the bioassays used for carcinogen testing indicating the neces-
sity for extrapolation of neoplasms that arise at this site in animals to man.
The utility of defining common biomarkers for the conversion of benign
to malignant transition will assist in developing appropriate inter-species
extrapolation for risk assessment. The inclusion of early lesions from pre-
clinical models will permit assessment of the ability of methods to develop
appropriate risk assessment. In addition, analysis of liver cancer develop-
ment is a useful model for study of the carcinogenic process of solid tumors
that arise in both humans and animals. The influence of genetic background
and environmental factors on neoplastic development is readily studied in
rodent models of this disease.

While genetic factors can contribute to primary liver cancer development,
environmental factors have an important role in human liver cancer devel-
opment. The liver is exposed to ingested materials and has a high level of
metabolism. The liver is susceptible to liver cancer development by chem-
icals and rodent liver has been used as a model to understand the role that
chemicals play in liver cancer development and progression. In the human,
cirrhosis is an important contributor to most primary liver cancer develop-
ment. Viral hepatitis can lead to cirrhosis and certain chemical exposures
to contribute to this baseline liver disease and can exacerbate the poten-
tial for liver cancer. These include aflatoxin, ethanol, and potentially other
dietary constituents (limited antioxidant intake (selenium, Vitamin E), iron
excess, and others). Ethanol and NASH can contribute to the development
of cirrhosis and likewise can lead to HCC development. Chemicals that can
increase the incidence of neoplasms in animals can be classified into geno-
toxic and nongenotoxic modes of action. The effects of agents with a car-
cinogenic potential are dose dependent. Understanding the biological basis
of the changes that occur during the cancer induction and progression pro-
cess, as well as the changes that chemicals induce in the liver will improve
our knowledge of the steps and stages in the pathogenesis of primary liver
cancer.

Key Words: Chemical carcinogens; primary liver cancer; HCC;
genotoxins; nongenotoxins

1. INTRODUCTION

The biology of the liver, the biological processes involved in cancer devel-
opment, and the etiological factors involved in liver cancer development
provide a focus on the early processes and signaling pathways important
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in primary liver cancer development. Perhaps, the most important point to
consider is the cell population at risk for initiation of the cancer process in
the liver. Since most hepatocytes are in Go phase, first proliferation must
be stimulated. Under normal conditions, single cell death is followed by
replacement of that hepatocyte. One hypothesis is that cancer stem cells
are bipotential and can be stimulated to proliferate (4). Their (oval cells)
outgrowth can occur under situations where a large percentage of the liver
is damaged. The stem cells then differentiate into hepatocytes or cholangio-
cytes depending on the degree and duration of damage. Agents that cause
extensive damage to the liver can result in neoplastic changes that are fetal
in nature. A second hypothesis is that mature hepatocytes are the cell popu-
lation at risk for early preneoplastic changes (5). Mature hepatocytes can
develop into focal areas of proliferation that in turn can become nodu-
lar areas of hyperplasia. In this case, both poorly differentiated, small cell
lesions (that are primarily diploid) and large cell, more highly differentiated
(tetraploid or higher ploidy) lesions develop (6). Understanding the etiol-
ogy, proliferative and differentiation cues for the liver, and the mechanisms
of the carcinogenesis process in the liver is key to understanding the role of
chemicals in the development of HCC (Table 1).

Chemical, biologic, and physical agents can contribute to cancer develop-
ment. Perturbations in single cells lead to the focal outgrowth of putatively
preneoplastic lesions. The altered areas can evolve into nodular hyperplasia,
focus in nodule pathology, and areas of frank malignancy (6). To determine
the contributions of chemicals to the carcinogenic process in the liver, a
variety of animal models have been developed. Since the liver is the pri-
mary site for cancer induction in the bioassays used for carcinogen testing,
there is a need for extrapolation of animal neoplasms that arise at this site
to man. The utility of defining common biomarkers for the conversion of
benign to malignant transition will assist in developing appropriate inter-
species extrapolation. The inclusion of early lesions from preclinical models
will permit assessment of the early changes that occur prior to the onset of
clinically detectable disease to our understanding of HCC.

2. LIVER CANCER IS AN IMPORTANT BIOLOGICAL
PROBLEM

Liver cancer is an important form of cancer worldwide ranking in the top
ten in both incidence and mortality (7, 8). Hepatocellular carcinoma (HCC)
is the primary form of liver cancer. Primary liver cancer is the sixth most
common form of cancer (626,000 cases/year) in terms of incidence (9). In
addition, it is the third most common cause of death (598,000 deaths/year)
from cancer (10), with 80% of cases (and deaths) occurring in developing
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Table 1
Different Chemicals and Their Role in Development of HCC

Chemical/toxin Mode of action Biological effects

Aflatoxin B1 AFB1 forms covalent bonds
with DNA, binds to free
amino groups of amino
acids

Carcinogenic, mutagenic
and toxic effects

Alcohol abuse
and tobacco

Evidence for direct action is
not clear. The abuse
exacerbates the action of
HCV, HBV,
cirrhosis-mediated HCC

It is a risk factor for the
progression of HCC

Oral contra-
ceptive

Requires chronic exposure
(>5 years) to mestranol,
ethinyl estradiol.
Mechanism not clear

Benign hepatic adenomas.
Prolonged use with high
doses and potency leads to
HCC

Dioxin Acts via AhR which binds
to arnt and ultimately
results in overexpression
of many anti-apoptotic
genes. It also induces
many metabolizing
enzymes that are
responsible for toxic
intermediates

Enhances proliferation and
inhibit apoptotic
processes. Causes increase
in the size of the liver and
ultimately causes liver
damage

Phenobarbital Mechanism is tightly linked
with induction of CYP2B1
and the activation of CAR.
Low levels of TGFβ1 and
elevated levels of
anti-apoptotic Bcl2 have
been reported.

PB is a liver tumor promoter
in rodents

PPAR
agonists

The agonists increase
TGFβ1 aiding
hepatocarcinogenesis

PPARα agonist produces
liver tumors in rodents. It
causes hepatomegaly and
cell proliferation

countries. Surveillance Epidemiology and End Results (SEER), the National
Cancer Institute’s statistical unit, estimated that 19,000 new cases of liver
and intrahepatic bile duct cancer were diagnosed and nearly 17,000 people
died from this disease in the United States in 2007 (2). Understanding the
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processes that contribute to the cancer development process are important
components of determining how and where certain compounds contribute to
liver cancer development and progression. Environmental influences, includ-
ing carcinogen exposure, are believed to contribute to the distinct geographi-
cal distribution pattern of primary liver cancer (11). Another important cause
of primary liver cancer in humans is viral with both HCV and HBV infection
contributing to its incidence. According to NHANES 3, the number of indi-
viduals with chronic HCV infection is greater than 3 million in the part of
the US population sampled (12; 13). Chronic infection with hepatitis C virus
(HCV) is known to be a major risk factor for development of hepatocellular
carcinoma (HCC). In general, HCC develops only after two or more decades
of HCV infection and in those with advanced fibrosis (14). Cirrhosis is also
an important factor associated with the development of primary liver cancer
and hence is an important control for liver cancer biomarker development,
most liver cancer arises in the context of cirrhosis. In the United States, less
than 30% of HCC is viral in etiology. Excess alcohol use and diabetes mel-
litus are independent risk factors for liver cirrhosis and are associated with
liver cancer development in the United States (15). In addition, smoking
may contribute to the risk of liver cancer development. The residual 10% of
attributable risk of HCC may be due to or influenced by hereditary metabolic
disease factors (such as hemochromatosis). Although rare genetic disorders
can contribute to liver cancer development, ethanol and dietary factors are
known to contribute to its incidence and progression (2, 3). The prevalence
of liver cancer and its high mortality rate indicates the need for appropriate
animal models of this disease in order to develop treatment and intervention
strategies. In addition, the pathogenesis of primary liver cancer development
for different etiologies needs to be better delineated. The influence of genetic
background and environmental factors on neoplastic development is readily
studied in rodent models of this disease.

3. CHEMICAL CARCINOGENS

Carcinogenesis can be induced by physical, biological, or chemical
means. Agents that act to increase the incidence of cancer in appropriate
organisms compared with concurrent and/or historic controls are consid-
ered carcinogens. The identification of a carcinogenic potential for an agent
delineates the conditions of exposure (dose, time, and duration) under which
the agent may induce cancer. Animals are surrogate models of humans
since they possess similar physiology and biochemistry. This similarity is
not absolute; hence any hazard detected must be examined in the con-
text of human relevance in order to understand the conditions of exposure
that may pose a plausible risk to humans. Each human HCC is detected
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at different points along the pathogenesis continuum. Several factors are
important for cancer development including a loss of normal growth control
with contributions from inhibition of apoptosis and enhanced but altered
proliferation control (16). In addition, an altered differentiation status can
contribute to cancer development and progression. The morphology and cer-
tain aspects of the natural history of rodent and human cancer are coin-
cident although the etiology and the exact molecular pathogenesis may
diverge between rodents and man. Although several parallel pathways may
be induced, the pathway for cytogenetic alterations observed in a specific
cancer type is similar in rats, mice, and men. The latency period between
initiation of early precancer changes in a single cell and its selection for
malignant growth comprises the reversible stage of tumor promotion. In the
human, exposure to dietary contaminants such as aflatoxins, as well as calo-
rie overload, ethanol over use, and methyl deficiency can contribute to the
risk of primary liver cancer. Certain metals (iron and copper) have been asso-
ciated with an increased risk of primary liver cancer. Thus, a number of
classes of chemical agents can increase the incidence of hepatic neoplasms
depending on their dose and duration of exposure.

3.1. Genotoxic Carcinogens
Chemically induced carcinogenesis has been examined experimentally

for less than 100 years (17, 18). Initial studies provided the compounds
typically in the diet for extended periods of time. For example, the studies
of Sasaki and Yoshida (19) demonstrated that chemicals could cause hep-
atic neoplasms in animals. Provision of o-aminoazotoluene in the diet led to
liver neoplasms in rats. Similarly, Kinoshita (20) demonstrated that feeding
4-dimethylaminoazobenzene to rats resulted in liver neoplasms. These find-
ings suggest that agents can be carcinogenic at sites distant from their initial
application. Importantly, analogues of these agents have also been examined
allowing some structural information to be gathered about the properties of
agents that have a carcinogenic potential (21). There is some tissue speci-
ficity for carcinogenic action as polycyclic aromatic hydrocarbons are not
typically carcinogenic to the liver (except in some circumstances during
the neonatal period), while they are to the skin (22). Similarly, certain
azo dyes, while carcinogenic to the liver, do not have this activity in the
skin (23). The agent 2-acetylaminofluorene but not its related regioisomer,
4-acetylaminofluorene, is carcinogenic in the rodent liver (24). However,
dialkyl nitrosamines and several analogs are cytotoxic to the liver and are
carcinogenic in rodents and many other mammals (25). These activities are
dose dependent and high doses induce acute toxicity, while lower doses
are tolerated but can result in neoplasms if the dose and duration of exposure
is sufficient. Similarly, aflatoxin produced by the fungus Aspergillus flavus



Chapter 3 / Chemically Induced Hepatocarcinogenesis 61

is acutely cytotoxic. This agent is also carcinogenic in all species examined,
although the mouse is relatively resistant to its carcinogenic action (26). A
variety of other agents in food can also be carcinogenic to the liver including
certain mycotoxins (27) in addition to aflatoxin (fumonisin in rodents) and
pyrrolizidine (28) alkaloids (found in comfrey and riddelline). In addition,
a dearth of antioxidants and a lack of lipotropes (29, 30) can lead to cancer
development in the rodent.

3.1.1. DNA ADDUCTS

This initial class of agents is capable of altering the genetic material either
directly, through one of its metabolites, or through perturbation of the pro-
cesses controlling its actions. Agents that modify the DNA can initiate the
carcinogenic process (31). These agents can be metabolized to form DNA
adducts or may directly form them. Alternatively, such agents can alter the
methylation status of the DNA. In each case, the DNA is modified in a man-
ner that results in heritable changes. In the case of DNA adducts coupled
with cell proliferation mutations can result (32). Such mutations can alter
the function of selected genes, in some cases inactivating them and in other
cases enhancing their activity (33). The dose and duration of exposure of an
agent is an important contributing factor to understanding the carcinogenic
risk of an agent at doses to which humans are exposed. Many agents with
a carcinogenic potential can be metabolized to an electrophilic form. These
reactive metabolites can bind to cellular nucleophiles including DNA, RNA,
proteins, and lipids (23). The biological consequences of these actions differ.
Early studies by James and Elizabeth Miller (34) demonstrated that certain
carcinogenic agents did not directly bind to proteins, but that following incu-
bation of the compound with tissue extract, the compound or some deriva-
tive could be found bound to protein in normal liver but not in the resulting
neoplasm. This harbinger of metabolic activation or reactive metabolite for-
mation would lead to the determination that the cell could metabolize some
compounds to a reactive form. For example, AAF is metabolized by ring
hydroxylation (35) and by N-hydroxylation (36). The N-hydroxy metabolite
can be demonstrated to be more carcinogenic than the parent AAF (23). The
N-hydroxy AAF is further metabolized by esterification with glucuronyl,
acetyl, and sulfate groups. Although conjugation can lead to inactivation of
reactive metabolites, in certain cases it can form more reactive agents with
facile leaving groups. This is the case for some esters of N-hydroxy AAF
(23). In addition to the formation of reactive metabolites, certain agents can
form free radicals (37). Free radicals have no charge, but have an unpaired
electron that makes them reactive. This process can be facilitated by the
presence of free iron or copper. Endogenous processes can form free radicals
and metabolism of certain carcinogenic agents can also lead to their genera-
tion (38). Many agents with a carcinogenic potential can be metabolized to
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reactive forms providing a mechanism to understand species differences and
individual risks. Understanding the structural basis for metabolic activation
permits the prediction of agents that are likely to be directly genotoxic or that
can be metabolized to a genotoxic form. In addition, it generates a physic-
ochemical basis for understanding mutagenesis at specific sites in the DNA
and in specific tissues. Careful analyses of structures that are positive in
rodent bioassays have yielded reactive groups that yield structural alerts for
carcinogenic risk (39, 40).
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3.1.2. MUTATIONS AND THEIR CONSEQUENCES

The reaction of electrophilic substances with the DNA results in physico-
chemical changes in the DNA. The high prevalence of cancer in individuals
with an inability to remove DNA adducts in DNA repair deficiencies indicate
the important role of DNA damage in cancer induction (41). Similarly, the
high incidences of mutations in selected genes in animal models of cancer
further demonstrate that DNA damage is the basis of early cancer develop-
ment (33). Alkylation of DNA can occur by carcinogenic agents that can
be metabolized to reactive forms. In this case, the reactive metabolite can
covalently adduct to the DNA (42). For example, aflatoxin B1 can be
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metabolized to 8,9-epoxide of AFB1, which then binds to N7 guanosine
leading to mutations (43). Mutation of G to T can occur at multiple sites,
most notably at 249Ser of P53 (44). Methylation, ethylation, and other alky-
lations can occur with each of the bases as well as the sugar and phosphate
backbone (45, 46). Direct-acting electrophiles can bind to the N7 of guanine,
while softer electrophiles can bind to the ring oxygens of the bases. Forma-
tion of bulky adducts can occur on the purine ring, while small alkylations
can occur more ubiquitously. At lower exposures, selective alkylation can
occur, which may or may not be repaired. The presence of DNA adducts
and the repair of these lesions can result in mutation. As the adduct burden
increases with increased dose/duration of exposure, the repair can be more
extensive and over a greater span of the DNA. In addition, as dose/duration
increases more cell types may become involved as metabolism shifts and
conjugation reserves are depleted. Repair can outpace adduct conversion to
mutations under some circumstances. When the lesion is repaired, either the
base is removed or a larger segment of DNA is removed. Each of these pro-
cesses can have different rates and consequences and each is dose dependent.

Point mutations, frameshift mutations, chromosome aberrations, and
aneuploidy can occur following chemical administration. Because of the
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degree of adduct formation, the site of adduct formation, the ability of
adducts to be repaired, and the degree of metabolism to reactive forms,
differential activity can be seen in individual cells, tissues, organisms, and
species. One consequence of the presence of DNA adducts is cell death.
Apoptosis is observed at lower concentrations followed at higher exposures
and degrees of damage by necrosis. Direct-acting carcinogens are reactive
without requiring metabolic activation and are often carcinogenic at the sites
of exposure in multiple species (47). Methylation or ethylation of DNA can
lead to base mispairing (45, 48). Because these simple alkylations are sim-
ilar to or can result from endogenous processes, they are not as actively
repaired. In part, the more persistent DNA adducts/lesions are the ones that
have an important mutagenic consequence. For example, ethylating agents
can adduct at O6 alkylguanine and O4 alkylthymidine. The O6 adduct is
readily repaired, while the O4 adduct is more persistent leading to base mis-
pairing with different consequences for both lesions (49, 50).

The consequence of bulky adduct presence is to block DNA synthesis
resulting in noncoding (46). However, the DNA synthetic machinery can
bypass such lesions placing in its stead the most abundant nucleotide, gen-
erally an adenine (51). Since bulky adducts are typically at guanines, this
is a useful strategy that can, however, result in more marked consequences
when more than one base is affected or the adduct was not at guanine. Using
2-AAF as an example, the parent is not mutagenic, but it can be esterified
to the sulfate ester that is highly reactive; binding to the N7 of guanine as
well as the N3 of guanine (23). In contrast to the formation of a covalent
bulky adduct by 2-AAF that distorts the DNA structure, 2-aminofluorene,
which also forms bulky adducts at the same sites, sits outside of the helix
and does not distort it. As a consequence, 2-AF can induce point mutations,
while 2-AAF can lead to frameshift mutations (52). Biological consequence
of the presence of DNA adducts is a function of their persistence in the DNA
(53) and impacts their tissue and species specificity. The persistence of DNA
adducts in viable cells has consequences when cell proliferation occurs to
fix the mutation before repair can occur (32). Once the mutation is fixed, its
location in the genome, the expression of that DNA, and the importance of
the affected gene in that stage of the differentiation of the cell, both impact
its consequent mutation and the ultimate consequence of a given adduct.
Although susceptibility to cancer induction can be modified by polymor-
phisms in DNA repair genes (41), carcinogen metabolism (54), and immune
system (55) differences, genes that regulate cell growth and proliferation are
more frequently the targets of carcinogens. Both protooncogene and tumor
suppressor gene function can be altered by carcinogen exposure (56–58).
For example, oncogenes such as Ha-ras can be activated by a single point
mutation (59). Activation of Ha-ras is an important mechanism of HCC
induction and development in the mouse (33, 60), but not in rats or humans
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(18). In the liver, activation and mutation of β-catenin (and possibly axin) is
an important aspect of some types of liver cancer (61, 62). Similarly, muta-
tions in HNF1 can result in loss of differentiation status as evidenced by
loss of expression of a number of drug-metabolizing genes in the neoplasm.
Although mutations have been observed in a number of genes in HCC devel-
opment and progression, only a few genes have non-random mutations. The
genes found in HCC that contain mutations include p53, IGF2R, CycD,
CycA, BCL10, met, RB, TRα, or β (6). Etiologic agents have been examined
with respect to the resulting mutations observed in specific genes including
p53, β-catenin, and HNF1. There appear to be multiple pathways that can
lead to HCC initiation and progression (62).

Endogenous DNA modifications can be perturbed and this perturbation
can contribute to chemical carcinogenesis. Hydroxylation of DNA bases can
also occur both through endogenous processes and by certain DNA damag-
ing agents (63). Repair processes for oxidative damage are pervasive in most
cell types nonetheless oxidized bases can persist (64). Although all of the
DNA bases can be oxidized, the most common are 8-hydroxy deoxyguano-
sine (65) and 5-hydroxymethylthymine (66). These oxidative bases likely
arise through endogenous processes (67) and they are readily repaired. The
most prevalent endogenous modification of DNA is methylation of deoxy-
cytidine (68, 69). Chemical carcinogens can perturb this process by adduct
formation, altered one-carbon pools, single strand break formation, or inac-
tivation of the enzymes involved in the methylation process (70). Diets
deficient in lipotropes can result in marked steatosis followed in time by
HCC formation in rodents (30). Methyl-deficient diets can result in DNA
hypomethylation. Global hypomethylation results in re-expression of genes
in general, while hypermethylation results in their silencing (71). Perturba-
tion of nucleosomes, minor and major groove protein binding, and the DNA
repair process can likewise lead to DNA perturbations. The presence of a
DNA adduct does not mean that a mutation will occur, but it does increase
the probability.

3.1.3. THE ROLE OF CELL PROLIFERATION IN CANCER

INITIATION

The presence of DNA adducts coupled with cell proliferation can lead to
mutation. This process is called fixation wherein the mutation is fixed when
an adduct or other DNA alteration persists through a cycle of DNA synthesis
(32). Thus, the rate of cell proliferation and DNA synthesis can impact DNA
damage (72). In situations where repair processes are normal, high rates of
cell proliferation can still lead to mutations. Inherited defects in DNA repair
lead to an increased risk of neoplasia (46) in many cell types especially in the
GI tract with its high rate of exposure to potentially mutagenic agents and
its high rate of proliferation. Hepatocytes turn over slowly by comparison
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except in circumstances of persistent inflammation induced by hepatitis
(viral, alcohol, or drug induced). DNA polymerases are not completely faith-
ful in their replication of the DNA (73, 74). Since a variety of types of DNA
damage can occur, many processes exist to remedy their activity. Excision
repair can remove either a modified base or nucleotide. The presence of
an adduct will result in excision and repair with more bases removed and
potentially misrepaired for nucleotide excision compared with base excision
repair. Single strand breaks are readily repaired. The repair of double strand
breaks is more problematic (75) and a nonhomologous end joining process
is used that is error prone (76). Mismatch repair can occur when bases are
mispaired or when it appears that they are mispaired due to the presence
of a DNA modification (77). Perturbation of the mismatch repair process
can result in mutations. Larger DNA damage including amplifications, dele-
tions, and aneuploidy can occur. Agents that lead to these lesions contribute
to the carcinogenesis process by altering gene dosage of critical genes and/or
perturbing their expression. Although mutations alone do not lead directly
to neoplasia, they can contribute to the process when they occur in genes
critical for cell survival, proliferation, apoptosis, and differentiation status.

3.2. Non-Genotoxic Mechanisms of Chemical Carcinogenesis
A variety of compounds other than mutagenic agents can contribute to

liver cancer development. These agents have in common the ability to alter
cell survival either by increasing cell proliferation or decreasing apopto-
sis. Agents that have this activity include those that cause cytotoxicity and
those that perturb signaling pathways associated with growth factors, some
of which act through nuclear receptors (18, 78). Certain agents are cytotoxic
at either high doses or with chronic administration (79). These agents such
as chloroform do not pose a risk when exposure occurs below the threshold
for cytotoxicity (80). For example, chronic high dose ethanol consumption
results in high levels of acetaldehyde generation (81). Aldehydes can cova-
lent adduct to proteins through Schiff base reactions and with other cellular
components. In addition, CYP2E1 that generates acetaldehyde is loosely
coupled to oxidoreductase resulting in the generation of reactive oxygen
species. Acetaldehyde can result in exocyclic etheno DNA adducts (82).
The resulting oxidant damage and lipid peroxidation can lead to chronic
hepatitis. In addition, the marked steatosis that can occur in conjunction
with excess alcohol consumption may perturb the insulin/IGF1 signaling
pathway of cell survival in the liver (83). Similarly, the one-carbon cycle
with eventual folate/choline depletion can contribute to cancer development
(84). Ethanol overconsumption in conjunction with HCV increases the risk
of cancer development (85). In addition, alcohol abuse in the context of
hemochromatosis increases both cirrhosis and HCC risk (86). In part this



Chapter 3 / Chemically Induced Hepatocarcinogenesis 67

may be due to increased oxidant stress in the presence of both increased
lipid deposition and increased iron. Low alcohol intake does not appear to
be associated with an increased risk of HCC, while higher levels are associ-
ated with an increase in risk of both cirrhosis and HCC (87). In some parts
of the world, alcohol is made with moldy food staples containing other liver
toxins that can compound the problem. Similarly, intake of high levels of
iron in conjunction with alcohol can similarly exacerbate the oxidant stress
in the liver leading to cirrhosis. Since cirrhosis is associated with more than
60% of HCC in the human (8), this is an important pathway through which
ethanol contributes to primary liver cancer development.

Studies in animal models indicate that agents that act through selected
nuclear receptors are associated with the ability to regulate cell prolifer-
ation/survival, apoptosis, and differentiation can promote tumor develop-
ment (18, 26, 78). Such agents can promote the outgrowth of cells with
genetic damage into preneoplastic lesions and hence can under certain
circumstances of exposure increase the incidence of hepatic neoplasia in
rodents and humans. Tumor-promoting agents are believed to alter the bal-
ance between proliferation and apoptosis in initiated cells relative to the
normal surrounding cells (88, 89). Studies with prototypical hepatic tumor-
promoting agents including phenobarbital, PPARα agonists, and ethinyl
estradiol indicate that a generalized mitosuppression of non-focal hepato-
cytes is an early and sustained activity of such agents. In addition, reversible
alteration of gene expression is associated with tumor promotion. Further-
more, tumor promotion is reversible and exhibits a threshold (26).

3.2.1. PHENOBARBITAL

Phenobarbital and related agents are not genotoxic, yet they can result
in the development of cancer in susceptible organisms (90). While selected
mouse strains can develop neoplastic lesions following chronic exposure to
phenobarbital or related agents, certain rat strains can develop adenomas and
rarely adenocarcinomas after chronic exposure. At therapeutic doses, man
does not appear susceptible to liver tumor development with chronic pheno-
barbital administration (c.f. (91)). Initiation–promotion studies indicate that
phenobarbital has a promoting action (92). Importantly, a dose-dependent
promoting activity is observed that exhibits a threshold (93). Interestingly,
phenobarbital and related agents can increase the background proliferation
rate transiently in the liver (94). Specifically, phenobarbital increases the
focal relative to the non-focal hepatic labeling index (95). Importantly, phe-
nobarbital promotes eosinophilic, but not basophilic lesions (96). In addi-
tion, a mitosuppression can be observed in the non-focal hepatocytes (97),
while the discrete focal hepatocytes have an increased rate of proliferation
compared with control hepatocytes or the surrounding normal appearing
ones (98, 99). Phenobarbital increased DNA synthesis and decreased
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apoptosis in hepatocytes in vitro (100, 101). Studies with phenobarbital
showed that only the promoting dose resulted in changes in gene expression
associated with apoptosis suppression and cell proliferation, while dose-
dependent changes in selected drug-metabolizing agents were observed
(102). It has been suggested that the increased growth rate of the eosinophilic
lesions compared with the surround is due to the decreased responsive-
ness of the altered focal cells to TGFβ family members responsible for
apoptosis (103). IGF2R modulates cell proliferation in response to insulin
and IGF family members and apoptosis in response to TGFβ. The expres-
sion pattern is altered in focal compared with non-focal areas of the liver
for IGF2R and TGFβR (104, 105). Phenobarbital can promote those initi-
ated cells with a low level of TGFβR, while increasing ligand expression in
surrounding hepatocytes (103, 105). TGFβ is a potent mitoinhibitor of hepa-
tocytes and phenobarbital increases this ligand in non-focal hepatocytes and
TGFβ is increased at the protein level during mitosuppression induced by
phenobarbital exposure (103, 106).

Previous work has demonstrated that phenobarbital-like compounds
cause the increase in gene expression of a number of genes includ-
ing CYP2B1/2 (107) and is transcriptionally regulated (108). The tumor-
promoting action of this type of agent is correlated with the induction of
CYP2B1 (109); therefore, the mechanism underlying tumor promotion by
phenobarbital and related compounds has been associated with the mecha-
nism of CYP2B1 induction. Since a structurally diverse group of compounds
act in a similar manner, it has been under consideration as to whether a
receptor was responsible for this action. The constitutive androstane recep-
tor (CAR) plays a role in the induction of CYP2B family members (110).
Agents that act to alter the metabolism of testosterone derivatives, specifi-
cally androstenedione, can alter endogenous activation of the CAR recep-
tor (111). There are two forms of CAR and phenobarbital can displace the
ligand from CARβ (111). Agents such as phenobarbital activate the CAR
receptor to perturb gene expression (112–114). Studies in knock-out mice
indicate that certain genes are expressed or repressed when the CAR recep-
tor is present while a separate set is affected when it is not present (115–116).
It is clear that CAR is associated with the gene expression acutely associated
with phenobarbital exposure, but how this is associated with tumor promo-
tion is unclear. CAR knock-out mice have been used to confirm that CYP2B
expression is dependent on CAR (114). Nonetheless, CAR knock-out mice
are resistant to phenobarbital-induced hepatic tumor promotion (117). Inter-
estingly, chronic phenobarbital administration results in DNA hypomethy-
lation that is CAR dependent (118). The mouse strain susceptible to
spontaneous and chemical carcinogenesis is sensitive to promotion by
phenobarbital, while the resistant strain C57B6l6 is resistant. The tumors
arising spontaneously in C3H mice are Ha-ras mutation positive (119), lack



Chapter 3 / Chemically Induced Hepatocarcinogenesis 69

CAR, and are not promoted by phenobarbital (120). These tumors lack CAR,
but express β-catenin and are promoted by phenobarbital (120, 121).

Nuclear receptors are frequent targets of drugs and of environmen-
tal chemicals. The function of these ligand-activated transcription factor
receptors is to regulate endogenous metabolism; hence, homeostasis can
be perturbed when their function is modulated. Drugs and environmental
chemicals can alter the effects of multiple nuclear receptors due to their
broad and overlapping substrate specificity. The interaction of nuclear recep-
tors with coactivators and corepressors provides another level of control of
their function within cells. The constitutive androstane receptor (CAR) is a
nuclear receptor that regulates the expression of drug-metabolizing enzymes
(112–114). CAR is an important regulator of many genes involved in drug
metabolism including a number of P450s, phase 2 enzymes, and trans-
porters. Species specificity in response to CAR agonists has been detected
although that of phenobarbital (PB) is only 1.5-fold (the human is less sen-
sitive) and human CAR is not sensitive to the same bile acids as mice (122).

3.2.2. ESTROGENIC AGENTS

In the human, certain estrogenic formulations can result in adenoma
development and rarely in carcinomas. Estrogenic agents can be carcino-
genic to rat liver, but tend to inhibit cancer development in the mouse liver.
Estrogenic agents are clearly promoting toward the rat liver, but the basis for
this action is unknown (123–128). Estrogenic agents can increase cell prolif-
eration in the rat liver and can induce focal proliferation with mitosuppres-
sion in the surrounding hepatocytes (129, 130). Examination of altered gene
expression during the mitosuppression observed with chronic ethinyl estra-
diol treatment demonstrated an increase in TGFβ and IGF2R/M6PR without
a change in myc or CEBPα levels (131, 132). The increase in TGFβ leads to
CKI induction that may lead more directly to the mitoinhibition (133). Sim-
ilarly, EE exposure induces TGFβ1 expression. Hepatocytes with decreased
levels of TGFβR are at a selective growth advantage compared to cells with-
out this characteristic (105). Hepatocytes that survive TGFβ exposure have
decreased HNF4α activity, but increased fos, jun, myc, and ras levels (134).
Oncogene expression can confer tumor characteristics that TGFβ respon-
siveness can limit (135); thus, loss of TGFβ responsiveness is permissive to
acquisition of the tumor phenotype. In certain, hepatocarcinogenesis proto-
cols administration of tamoxifen results in the regression of a component of
the lesions suggesting an estrogen (and estrogen receptor) dependence for
those lesions (136–138).

Sustained estrogen receptor activation is known to increase the incidence
of liver neoplasms in animals and humans. An increase in adenomas was
observed in young women taking an early form of oral contraceptives (with a
higher dose and different formulation to the current available forms). Rarely,
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HCC was observed in women taking early formulations of estrogens for
oral contraceptive purposes (143). Estrogenic agents are effective tumor-
promoting agents in the rat liver and their action to initiate cells through
catechol estrogen formation (144) or induction of aneuploidy (145) needs to
be assessed at physiological concentrations. For example, certain estrogenic
agents can cause a burst of increased proliferation in the rodent liver (146).
This transient increase in cell proliferation is associated with stimulation of
the estrogen receptor (126, 141). There is a mitosuppression in the normal
appearing hepatocytes, while the focal, putatively, preneoplastic hepatocytes
have a sustained increase in proliferation (131, 141, 146). Although the inci-
dence of HCC in humans following chronic (greater than 5 years) estrogen
exposure is low, the incidence is definable and permits one to anchor the
incidence in rats where a clear carcinogenic response to high dose, potent
carcinogens is observed under defined exposure conditions. This observa-
tion permits more accurate risk assessment from animal hazard identification
studies. Extrapolation of potential for risk across species could be performed
using the low incidence human tumor data as an anchor for the calculations.

Estrogenic agents have a carcinogenic potential at several sites includ-
ing the mammalian liver (144). Estrogenic agents are known liver tumor-
promoting agents in the rat (124, 125, 137) and in the human (145). There
is an apparent threshold for promoting action (146–148). The mechanism
of tumor promotion is not known although an increase in focal prolifer-
ation and a decrease in focal apoptosis have contributing roles. Although
tamoxifen has an estrogenic action in the liver that may contribute to its pro-
moting action, the phenotypes of the liver lesions that arise with mestranol
and tamoxifen treatment differ (149). In addition, tamoxifen can inhibit the
development of mestranol-promoted lesions indicating a divergent mech-
anism of action (126, 137). The mechanism of estrogenic/antiestrogenic
action for tamoxifen is only incompletely understood. While this action
may in part be due to an interaction with the estrogen receptor, other fac-
tors may also be involved. For example, antiestrogens bind to sites other
than the estrogen receptor including covalent binding to P450s (150), tubu-
lin (151), and other interactions with “antiestrogenic binding sites” (152).
In addition, antiestrogens inhibit protein kinase C and calmodulin activ-
ity (153). In addition, antiestrogens alter the production of several pep-
tide growth factors including TGFα (154), TGFβ (155), and IGF1 (156),
and affect some calcium-dependent processes (157). Estrogenic and antie-
strogenic agents additionally alter cholesterol metabolism (152). Tamox-
ifen appears to promote the diploid hepatocyte population (158), similar to
ethinyl estradiol (159). The triphenylethylene antiestrogens have differen-
tial effects on the hepatic proliferative rate in the rat (160, 161). In the liver
itself, triphenylethylene antiestrogens have an estrogenic action; however,
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these drugs are mixed agonist/antagonists in a species, strain, tissue, gene,
and hormone status basis.

Mestranol is a synthetic steroidal estrogen that is metabolized (162) to
the potent rat liver tumor-promoting agent, ethinyl estradiol (154). Mestranol
use in oral contraceptives was associated with an increased incidence of hep-
atic adenomas and a few hepatocellular carcinomas in young women (144,
163–165). Studies in rats indicate that mestranol and its active metabolite
ethinyl estradiol promotes the development of previously initiated liver cells
through induction of elevated cell proliferation levels. Mestranol does not
have a marked effect on P450 profiles in the liver (166), but it can cause
cholestasis (167) and clearly enhances liver growth (166). Chronic admin-
istration of ethinyl estradiol results in mitosuppression of liver cells with
selection of resistant hepatocytes for outgrowth (129, 143) and this in com-
bination with its ability to increase cell proliferation (126, 168) is believed to
be responsible for its tumor-promoting properties (123, 125, 126, 129, 143,
148, 169, 170). Tumor promotion by ethinyl estradiol is effected through the
estrogen receptor, since it can be inhibited by tamoxifen (137, 138). At low
doses and for short durations of administration, ethinyl estradiol can increase
hepatic hypertrophy and a transient increase in cell proliferation (126, 168),
while with chronic administration a mitoinhibition is observed (126, 129).

3.2.3. PPAR AGONISTS

The peroxisome proliferators-activated receptors (PPARs) are members
of the steroid/retinoid receptor superfamily. Three mammalian nuclear
receptors of the PPAR class have been isolated including PPAR alpha, delta,
and gamma (171). The PPARα receptor is a ligand-activated nuclear tran-
scription factor that is responsible for the regulation of lipid catabolism
(172). The PPARα receptor and the retinoid X receptor nuclear receptor
(RXR) can heterodimerize and bind to peroxisome proliferator response ele-
ments (PPRE) to alter the transcription of genes including those that are
involved in lipid metabolism (173–175). Peroxisome proliferators include
structurally diverse chemicals that can activate the PPARα receptor includ-
ing industrial chemicals, plasticizers, herbicides, and some lipid-lowering
drugs (175–177). Agonists of PPARα induce peroxisome proliferation (177,
178), hepatomegaly (177, 179), cell proliferation (177, 180, 181), and liver
neoplasms in rodents (175, 181, 182). Although numerous theories exist
regarding the mechanism of hepatocarcinogenesis in the rodent following
chronic exposure to PPARα agonists, the mechanism is not fully understood.
In general, PPARα agonists are not genotoxic and demonstrate a promot-
ing activity (183). Similar to other receptor-mediated, non-genotoxic rodent
carcinogens, PPARα agonists, including WY14, 643, methylclofenapate,
nafenopin, and clofibric acid increase the TGFβ1 ligand, while these agents
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excluding clofibric acid increase expression of the IGFII/Man6P receptor
(184). Sustained PPARα receptor activation is required for induction of liver
tumors, since PPARα knock-out mice do not develop hepatic neoplasms
even after a 1-year exposure to PPARα agonists (185). Similarly, peroxi-
some proliferation and gene expression regulated by PPARα are not altered
by exposure to PPARα agonists in the knock-out mice (185). The lack of
carcinogenic action in the human relative to the rodent has been explored
with human PPARα receptor knock-in mice (186). Although the precise
mechanism of the hepatocarcinogenesis of PPARα agonists in rodents is not
fully understood, it appears to be dependent upon PPARα receptor activa-
tion (187–189). Thus, PPARα agonists are non-genotoxic carcinogens that
function through receptor activation (190) and appear to be carcinogenic in
the rodent, but not in primates.

3.2.4. AHR AGONISTS

The aryl hydrocarbon receptor (AhR) is structurally distinct from the
nuclear receptors and contains a bHLH-PAS domain (191–193). The ligand-
bound receptor interacts with arnt and this dimerization partner regulates the
expression of specific genes. The ligand-binding domain of AhR is within
the PAS domain. The PAS domain of AhR binds ligand, binds to a repressor
(probably hsp90) and has some of the interaction function with arnt. The
function of excess AhR ligand may be to block the function at the other sites
of arnt binding. The low-affinity allele of AhR found in some mouse strains
is similar to that observed in humans (194–196). In addition, the transac-
tivation domain part of AhR is highly divergent with only a 60% identity
between rat and human (196). This suggests that human gene expression in
response to an AhR ligand will differ qualitatively as well as in magnitude
from that in rats and mice containing the high-affinity AhR allele.

TCDD and related agents can induce a range of toxicities that may
be mediated by AhR (191). Dioxin lacks any genotoxic activity, yet
increases the incidence of hepatic neoplasms in rats (197). Dioxin can
cause marked cytotoxicity at higher doses and this may contribute to its
tumor-promoting activity. Activation of arylhydrocarbon receptor (AhR) by
2,3,7,8-tetrachlorodibenzoparadioxin (TCDD) and related compounds of the
furan and PCB classes results in alterations in gene expression including an
induction of CYP1A1 (198). Although the role of CYP1A1, if any, in tumor
promotion is unclear, CYP1A1 expression is a useful marker for ascertain-
ing exposure to this class of compounds. Over 100 genes may be regu-
lated by AhR activation (199). Genetic differences between mouse strains
have been used to demonstrate that TCDD-mediated liver tumor promotion
is AhR dependent (200). Transgenic mice overexpressing a constitutively
active AhR are more sensitive to diethylnitrosamine initiation resulting in
a higher yield of preneoplastic lesions than the genetically matched control
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animals (201). Knock-out animals have been generated (202–204). The gene
expression patterns (205) and toxicity (206) have been examined after acute
but not chronic administration of TCDD to the knock-out animals. The
genetic background of the animal is important for its potential to develop
neoplasms in response to TCDD administration. Since a selection for neo-
plastic clones resistant to the toxic insult that permits their outgrowth occurs,
Ha-ras-mutated hepatocytes might be resistant to Ahr-dependent toxicity.
Liver tumors from TCDD-treated mice have a high incidence of Ha-ras
mutations (207) suggesting that the C3H background would be exquisitely
sensitive to TCDD-induced tumor promotion (121).

Initiation–promotion studies in the rat (208, 209) indicate that there is
a threshold for the promoting action of TCDD and related compounds. A
variety of studies indicate that TCDD causes a generalized mitosuppression
in the liver (210, 211). However, an increased cell turnover in focal lesions
was noted relative to the surrounding liver (212). The initiated cell popula-
tion is resistant to apoptosis (213). Interestingly, the AhR null hepatocytes
both secrete TGFβ ligands and are quite sensitive to the apoptosis induced
by TGFβ (214), indicating that AhR deficiency leads to increased TGFβ lig-
and production wherein selection for resistance to its apoptotic effects would
permit promotion. Perhaps, TGFβR or processing of TGFβ through IGF2R
would confer selective growth advantage to AhR–/– mouse hepatocytes that
secrete TGFβ ligands. The AhR null mice have been used to demonstrate
that the gene induction profile associated with AhR activation are altered
(205) and the acute toxicities associated with AhR activation are dimin-
ished (206). For example, CAR is increased by AhR activation (215), while
growth hormone receptor and janus kinase 2 are decreased (216). Future
studies should address the question of carcinogenicity in mice with AhR
overexpressing and null alleles on different mouse strain backgrounds. In the
human, exposure to TCDD has been associated, but not causally linked to
an increased cancer risk (217, 218). In part, the human AhR receptor is less
sensitive to activation by AhR ligands (196) and in part, the exposure level
in humans has been below that required to cause sustained tumor promotion
(219). Other agents in the class including certain polychlorinated biphenyls
and the tetrachlorofurans may act in part through an AhR-dependent mecha-
nism. Each agent has a unique contribution of AhR, CAR, and ER-dependent
activity as well as other actions including cytotoxicity that may contribute
to its carcinogenicity in rodents and provide a potential risk to the human.
Certain exposures to mixtures of PCBs and furans have been associated with
an increased risk of human liver disease and cirrhosis (220), but a causal link
has not been made to cancer. Even in worker populations, the low incidence
and lack of consistent dose trend prohibits the conclusion of causality (221).
The risks at high dose exposure differ from the risks posed by ambient expo-
sures and should not be oversimplified.
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3.2.5. ETHIONINE

Ethionine, an antimetabolite of the amino acid methionine, when admin-
istered in the diet for extended periods can result in the development of liver
cancer in rats (29). This was the first example of direct interference with
the metabolism of a normal metabolic constituent, resulting in the devel-
opment of cancer. Ethionine induces marked steatosis that progresses to
NASH, cirrhosis, and HCC (30, 222). Its ability to disturb one-carbon pools
(rats are ten times more sensitive than humans to choline deficiency), folate
metabolism, and to induce steatosis is similar to alcohol-induced changes
that progress to cirrhosis and ultimately to HCC. This compound inter-
feres with methylation causing hypomethylation upon chronic administra-
tion (223). This agent is not used in the human.

4. PATHOGENESIS OF HCC

The pathogenesis of human HCC has been examined extensively (6–8,
81). Generally, the neoplasms are detected at late stage when many con-
current genetic changes are apparent. Tracing the earliest genetic changes
in clinical samples has been limited. Studies using CGH arrays and gene
expression analysis indicate that multiple pathways and multiple mecha-
nisms lead to HCC development and progression due in part to different
etiologies and time during pathogenesis of clinical detection. Primary liver
cancer associated with cirrhosis evolves from precancerous lesions. Dysplas-
tic nodules have variable degrees of atypia and can exhibit a focus or nodule
in nodule appearance that can range from normal appearing to neoplastic in
appearance. The formation of dysplastic nodules is not required for HCC
development. Large cell dysplasia appears to be a response to injury and is
not strictly a preneoplastic lesion although it is associated with an increased
risk of HCC in a cirrhosis background of more than 3-fold (6). On the other
hand, small cell dysplasia seems more characteristic of preneoplastic change
with greater than a 6-fold risk (6). These small cell dysplastic cells are more
diploid and less differentiated in character than the large cell dysplasias.

4.1. Rodent Models of Hepatocarcinogenesis
Examination of the epidemiology of liver cancer in humans indicates that

both genetic and environmental factors are involved in the etiology and evo-
lution of this disease. Studies in rodents can provide insight into the various
factors involved in liver carcinogenesis. Early studies on rodents exposed
to carcinogens indicated that male rodents are more likely to develop liver
tumors (224, 225). Rats, although relatively resistant to the spontaneous
induction of liver neoplasms, will develop hepatic tumors later in life with



Chapter 3 / Chemically Induced Hepatocarcinogenesis 75

a sex-bias in incidence that differs between strain and study (226). This
compilation of strain background effects on spontaneous liver tumors in
rats suggests that females have a slightly higher rate in Charles River
CD, Osborne–Mendel, and Fischer rats and the incidence in males being
marginally greater in the Wistar strain. Hepatic tumors can be readily
induced in the rat by a variety of carcinogenic agents, with the male gen-
erally more sensitive than the female. The cancer bioassay is performed in
two species of rodent, the rat and mouse. The sex specificity of liver tumor
induction is, however, carcinogen specific due in large part to the sex depen-
dence of the metabolic pathways.

4.2. Rat Models
The rat liver has been used extensively as a model of the carcinogenic

process (5, 17). Three basic protocols with numerous variations have been
described including resistant hepatocyte model, neonatal rat model, and the
partial hepatectomy model. These models couple carcinogen administration
with a period of rapid cell proliferation due to the intrinsic growth of the
tissue in the neonate, the wave of proliferation that occurs following sur-
gical resection, or the extensive necrosis induced by excessive carcinogen
administration. These studies can be used to examine very early changes in
the pathogenesis of preneoplasia in the rat liver. The initiation–promotion–
progression (IPI) model (227), the Solt–Farber model (228), and transgenic
(229) rat models can be used to analyze later focal hepatic lesions, adeno-
mas, and carcinomas. The utility of the rodent as a model lies in the ability
to assess the changes associated with early premalignant changes that would
not be detected in clinical samples that present late in the progression pro-
cess. In addition, rodents can be used to model gene–environment interac-
tions in a controlled manner. Thus, the early premalignant changes, as well
as the initial stages and pathways in progression of primary liver cancer are
tractable in rodent models, while human cases are more amenable to analysis
of later progression.

The rat has been used extensively as a model to examine the process of
liver cancer development and to ascertain which compounds can influence
cancer development in the liver. Studies by Bannasch (230) indicate that
two pathways that evolve toward HCC in the rat are thyroid mimetic and
insulin mimetic (insulin-signaling pathway) with resulting glycogen accu-
mulation phenotype. With progression, a shift from anabolic to catabolic
glucose utilization occurs in the insulin-dependent signaling pathway. Sim-
ilarly in humans, diabetes mellitus predisposes to HCC development as an
independent risk factor (15). This effect is observed in livers of rats treated
with phenobarbital and related types of agents that promote eosinophilic
lesions, while a thyroid-like effect is observed for the basophilic lesions that
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arise with PPARα agonist administration. Although PGST has been used
as a marker of putatively preneoplastic lesions in the rat and is increased
in expression in single cells following carcinogen exposure, in focal lesions
with promotion, and in some neoplastic nodules and neoplasms, a deficiency
of glucose-6-phosphatase expression may be more representative of hepatic
lesions that will progress to neoplasia.

Analysis of the gene expression changes across the carcinogenesis pro-
cess and especially in preneoplastic lesions or following carcinogen expo-
sure can illuminate the processes impacted by carcinogens. Recently, gene
expression analysis has been applied to gain a clearer understanding of the
changes that accompany liver cancer development in the rat. Many of these
studies have been performed using variations on the Solt–Farber selection
model for rat liver cancer induction (228). Preneoplastic lesions have a
higher level of expression of genes that are anti-apoptotic (p53, NK-kB, and
Bcl-2 pathways) and pro-proliferation (231). Proliferation gene changes are
also common in liver tumors, while apoptosis was decreased (232, 233).
Early nodules demonstrate a decrease in both growth hormone receptor and
growth hormone binding proteins (234). Specifically, IGF2 is expressed dur-
ing liver cancer development, while IGF1 is decreased during liver can-
cer development (235). These more fetal-like gene expression patterns are
observed during early tumor development (236). The increased expression
of TGFα and HGF and their respective receptors, EGFR and met, observed
in early nodules is lost with neoplastic progression (237). Gene expression
analysis demonstrates many genes in common between neoplastic nodules
and HCC with only a few genes uniquely observed in HCC (231, 237).

4.2.1. MULTISTAGE NATURE OF CANCER DEVELOPMENT

Molecular analysis of the pathogenesis of the natural history of liver can-
cer induction and progression has been extensively examined in the rodent.
In the rat, single hepatocytes aberrantly expressing glutathione-S-transferase
P (GSTP) can be observed within 2 days of carcinogen exposure (238–
243). Under many conditions, GST expression has been suggested to rep-
resent a population of initiated hepatocytes in the rat liver (240, 241, 243).
This is true for several types of genotoxic carcinogens including diethylni-
trosamine (238, 243), an alkylating agent, aflatoxin B1 (238) that results in
the formation of bulky DNA adducts, and choline-deficient diet that results
in depletion of methyl pools (242). Single GSTP-expressing hepatocytes
are found in a dose-dependent manner following carcinogen administration
(238). Some subset of these cells will grow into colonies of hepatocytes also
expressing GSTP. These findings suggest that the single GSTP-expressing
cells are precursors of those that form colonies and by definition of some
of those that will progress into hepatic neoplastic nodules and HCC. Sin-
gle hepatocytes expressing GST have the characteristics associated with
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initiated liver cells; namely, dose-dependent induction with carcinogen
administration, rapid appearance after carcinogen treatment, enhanced
intrinsic proliferation compared with surrounding apparently normal hep-
atocytes, and response to the selective growth pressure exerted by a pro-
moting agent (238). Expression of genes at the single cell level has been
inadequately characterized, but GSTP and GGT are increased in certain hep-
atocytes following carcinogen administration.

4.2.2. PROMOTION

The promotion stage of cancer development has been operationally
defined as the clonal expansion of the initiated cell population. The growth
kinetics of GST-expressing hepatocytes can be followed over time through
the analysis of the size and volume fraction of the liver occupied by GST-
expressing hepatocytes (238). The hepatocytes within AHF during promo-
tion are primarily diploid (244, 245) and additionally lack demonstrable
karyotypic changes (245). Promoting agents stimulate the growth of the
focal hepatocytes in a reversible manner and this can be determined by
assessment of the size of the observed (GST expressing) hepatic lesions
and by determination of focal increase in the expression of cell prolifer-
ation markers (246). The net growth rate of GST-expressing hepatocyte
colonies can be determined from the volume fraction occupied by such
lesions as a function of time. The net growth rate thus reflects the balance
between the birth and death rate within this population in relation to that
observed in the surrounding apparently normal cells. While many of the
GSTP-expressing lesions will regress, the nodules that concurrently express
GSTP and gamma-glutamyltranspeptidase (GGT) appear to be the ones that
progress. The loss of expression of glucose-6-phosphatase has also been
associated with progression, but it is unclear whether this is through a differ-
ent mechanism than for GSTP-expressing lesions. Gene expression has been
examined in these early putatively preneoplastic lesions that precede nodule
in nodule of HCC.

4.2.3. PROGRESSION

The stage of progression encompasses the spectrum of changes that occur
in the conversion of preneoplastic cells into malignant neoplasia (247).
There is not as yet a validated method for the quantitation of hepatocytes
in the stage of progression. This stage is characterized by an evolving kary-
otypic instability and aneuploidy indicating the necessity of understanding
alternative pathways in progression of liver neoplasia. Morphologically, the
focus in nodule configuration is the earliest endpoint for detection of pro-
gression in the liver (227, 248, 249).
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4.3. Mouse Models
Certain mouse strains are more susceptible to spontaneous (224) and

chemically induced (250) hepatic tumors than other strains. An upregula-
tion of c-jun may mark single altered cells in the mouse liver (251) analo-
gous to the increased GSTP expression in the rat. The focal areas of change
can be detected in frozen sections by the loss of expression of glucose-6-
phosphatase. Alternatively, H&E stained sections demonstrate the presence
of two distinct lesion types (A and B). Discussions by Schwartz indicate that
one class contains Ha-ras mutations, while the other class contains β-catenin
mutations. The C57Bl/6 (resistant) and the C3H (sensitive) strains differ
in their susceptibility to spontaneous and chemically induced liver cancer
development (252). The hepatocarcinogenesis susceptibility allele (Hcs) is
autosomal and is inherited in a semi-dominant manner with the F1 between
the sensitive and resistant strain demonstrating an intermediate phenotype.
This phenotype is believed to be cell autonomous factor (253). In a study per-
formed by Drinkwater et al. (254), BXH (RI strains developed from a cross
between C57Bl/6 (B) and C3H (H) mice were subjected to neonatal ENU
administration. BXH strains 6, 14, and 10 were resistant, while BXH strains
8, 9, 7, and 3 were sensitive to ENU-induced increases in liver tumor multi-
plicity. A number of susceptibility gene loci have been described genetically
for mouse liver cancer development. These cancer modifier loci have been
mapped to specific chromosomal locations based on the Mendelian inher-
itance patterns in inbred mouse strains that are sensitive and resistant to
cancer development (255). Strain differences in sensitivity to liver can-
cer development were described by Andervont (255a) indicating a genetic
component to the spontaneous development of liver cancer in mice. A
few of these genes have been identified by positional cloning approaches.
In addition, human homologues of cancer sensitivity and resistance alle-
les have been proposed. The C3H strain is susceptible to spontaneous and
carcinogen-induced liver cancer development, while the C57/Bl6 mouse is
by comparison resistant. The hepatocarcinogenesis sensitivity (HCS) and
resistance (HRS) alleles have been defined for the mouse. A hepatic sus-
ceptibility locus on mouse chromosome 1 accounts for 85% of the vari-
ance between these two mouse strains (252, 256). Studies with other mouse
strains and other carcinogens have also been performed (157).

The National Toxicology Program assesses cancer risk in the C3B6 F1
mouse that carries the dominant susceptibility allele for liver cancer develop-
ment. The most common experimental cancer assessment tool is the neona-
tal mouse model (257) as first described by Vesselinovitch (258). Numer-
ous models of human liver diseases exist. Many of these are developed
as a complicated toxin or carcinogen regimen (17). In addition, geneti-
cally modified mice have been made against signaling pathway members
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believed important in liver cancer development (229). These rarely are
a complete recapitulation of the human disease, but are nonetheless use-
ful for modeling one component of the disease. The challenge is to cou-
ple etiologic agents, with pathway perturbations and disease models to
unravel components of the pathogenesis of human primary liver cancer
(17, 229, 259).

Analysis of early and progressive lesions that arise in the mouse, rat, and
human will provide a mechanism by which to develop models of human
liver cancer development, pathogenesis, and progression.

5. ETIOLOGY IN THE HUMAN

Patients at risk for HCC include those with chronic hepatitis B virus
(HBV) and/or hepatitis C virus (HCV) infection (260), certain metabolic
liver diseases, such as hereditary hemochromatosis (261), Wilson’s disease,
alpha-1 antitrypsin deficiency, and porphyria cutanea tarda (7, 8). Individu-
als with cirrhosis are at risk of HCC (7, 262). Heavy alcohol consumption
is also a common major risk factor for developing HCC (7, 8, 83, 85, 262).
Other predisposing factors include gender (males are times more likely to
develop HCC than females), smoking, and diabetes (262). Environmental
influences, including carcinogen exposure and viral hepatitis prevalence, are
believed to contribute to its distinct geographical distribution pattern (8).
Specifically, chronic infection with HBV and exposure to aflatoxin in the
diet contribute to high-risk levels of HCC (263). Thus, primary liver can-
cer is a product of environmental exposures with genetic consequences. In
the United States, the largest cross-sectional study of HCC identified infec-
tion with HCV and/or HBV as the most common risk factor for HCC (47%
HCV, 15% HBV, 5% both). Approximately, 33% of primary liver cancer in
the United States are not associated with HBV or HCV (8). The incidence
of HCC is increasing in the United States primarily due to an increase in
hepatitis C virus infection (8).

5.1. Cirrhosis
Individuals with cirrhosis, regardless of its etiology are at risk for HCC

(7, 262). Fibrosis of the liver can result as a response to liver injury or as
a component of selected genetic diseases (264, 265). Cirrhosis is the end
stage of fibrotic disease. Cirrhosis of the liver can occur during the progres-
sion of alcoholic hepatitis, non-alcoholic steatohepatitis (NASH), viral hep-
atitis, and cholestatic liver diseases (266). Viral hepatitis (HBV and HCV)
and alcohol are the primary causal factors in liver cirrhosis, while NASH,
certain genetic diseases (e.g., hemochromatosis), and immune-mediated
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damage provide other contributing factors (7, 8). There is an increased risk
of primary liver cancer in individuals with hepatitis C-associated cirrhosis
and diabetes mellitus (267). In some conditions, cirrhosis can progress to
hepatocellular carcinoma.

5.2. Non-alcoholic Steatohepatitis (NASH)
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of

elevated serum enzymes indicative of liver injury and may be due to many
etiologies (268–270). An independent diagnostic test or disease marker is
not available for NAFLD. The NAFLD disease continuum, which has a
worldwide prevalence of 20%, is defined to exclude viral hepatitis, autoim-
mune diseases, metabolic changes due to hemochromatosis, alpha-1 antit-
rypsin, and ceruloplasmin changes, and alcoholic liver disease despite the
similarities of disease presentation. Steatosis appears to be a benign con-
dition, but steatohepatitis is progressive (268–270). Essentially all mor-
bidly obese individuals have NAFLD and approximately 25–50% exhibit
steatohepatitis. For non-alcoholic steatohepatitis (NASH) patients (preva-
lence of 1–5% in the general population) approximately 20% will progress
to cirrhosis, with a small percentage of these progressing to hepatocellular
carcinoma. Approximately 10% of individuals with NASH will die of liver-
related diseases (269). NASH is common in type 2 diabetes and has a preva-
lence of 60% (269–271). Morbid obesity is another risk factor for NASH.
Approximately, 2–3% of lean individuals exhibit NASH, while 15–20% of
obese individuals have steatohepatitis at non-liver initiated autopsies. Indi-
viduals that have insulin resistance are susceptible to the development of
steatosis (fatty liver) and its progression to non-alcoholic steatohepatitis
(NASH). In some individuals, steatohepatitis can progress to cirrhosis and
in a limited number of cases can progress to primary liver cancer (271).
Recently animal models of NAFLD and NASH have been developed, but
these do not completely recapitulate the pathogenesis of the related dis-
eases and do not progress to cirrhosis or HCC without additional provocation
(272). Current trends suggest that the NAFLD continuum is not as benign as
once thought and that progression to NASH, cirrhosis, and potentially HCC
can occur depending on the interaction of genetic, environmental factors,
and underlying disease including diabetes, HFE, among others (273–276).

5.3. Viral Hepatitis
Chronic infection with HBV or HCV is the predominant risk factor for

development of HCC, accounting for up to 80% of liver cancer cases in
geographic regions of high incidence of the disease (7, 8, 277). Although
much of the HCC incidence is attributable to chronic HBV infection, only a
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low percentage of individuals that are infected with HBV go on to develop
progressive liver disease even though 80% or more develop chronic infec-
tion. Approximately one third of individuals with chronic infection will
develop cirrhosis and HCC develops in less than 5% of those that develop
cirrhosis (278). Carriers of HBV have 100-fold risk of developing HBV
(277) that has been suggested to be closer to 5–15-fold in case–control stud-
ies with a lifetime risk of 10–25%. The annual incidence in HBV carriers
is less than 1% (279). It increases to greater than 1% in those with hep-
atitis and to 2–3% in those with cirrhosis. Although rates of infection with
the viruses are similar in men and women, there is some evidence that pro-
gression of the disease is more likely to occur in men (7). Among chronic
carriers of hepatitis B surface antigen (HBsAg) in Taiwan, the ratio of men
to women was 1.2 for asymptomatic individuals, but there were six times
as many men as women among patients with chronic liver disease (278)
in concert with the greater prevalence of chronic hepatitis and cirrhosis in
men (278). A prospective study of liver cancer development among men in
Taiwan has indicated a relationship between serum testosterone levels and
risk for HCC (278–281). Men, whose testosterone levels were in the highest
tertile (>5.7 ng/ml), had a relative risk of 2 for development of HCC when
compared with men having lower testosterone levels (280). When other risk
factors, including HBsAg carrier status, anti-HCV positivity, and alcohol
consumption, were taken into account, the relative risk for men with high
testosterone levels was 4 (279, 281). However, this difference may have
been due to a higher proportion of HBsAg carriers among the liver can-
cer cases. In developed countries, HCV infection is a more prevalent risk
factor for HCC. HCV infection results in a 15-fold increase in risk of HCC
compared with uninfected individuals. Approximately, 90% of HCV carriers
develop hepatitis, while 20% of HCV carriers develop cirrhosis. Cirrhotic
HCV patients develop HCC at a rate of 1–4% per year (7, 8, 279, 281). The
high rate of cirrhosis development results in a risk of HCC over the lifetime
of 1–3%. The risk of HCC is further increased in HCV carriers for alcohol
excess and HFE carriers (279, 281).

5.4. Aflatoxin and Other Dietary Carcinogens
A number of dietary factors have been associated with HCC risk includ-

ing exposure to aflatoxin (a fungal product of Aspergillus flavus and related
species). The risk of HCC is exposure (dose and duration) dependent (26,
282). The risk is heightened in those with HBV (283). This toxic substance
is produced by certain strains of the mold Aspergillus flavus. Aflatoxin B1 is
one of the most potent hepatocarcinogenic agent known and has produced
neoplasms in rodents and primates (26). This agent is a potential contami-
nant of many farm products (the common food staples, grain, and peanuts)
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that are stored under warm and humid conditions for some time. Aflatoxin
B1 and related compounds may cause some of the toxic hepatitis and hep-
atic neoplasia seen in various parts of Africa and the Far East (284). Thus,
an important environmental and experimental hepatocarcinogenic agent is
aflatoxin B1. Other products of molds and fungi are potentially carcinogenic
in humans and animals including fumonisins (285). Other fungal (286, 287)
and microbial products (288) may similarly be associated with HCC risk.
Certain alkaloids are cytotoxic to the liver and may be associated with an
increased risk of liver cancer. A number of plants, some of which are edible,
also contain chemical carcinogenic agents whose structures have been elu-
cidated (289). These include the pyrrolizidine alkaloids which are found in
comfrey and riddelline (290). The use of Senecio, Crotalaria, Heliotropium,
and Symphytum species can result in veno-occlusive disorder. Acute toxicity
can occur with high dose exposure, but lower doses and longer durations of
treatment can result in chronic disease. While these agents are used as teas
and herbal remedies, they have been associated with acute toxicity and when
there is a genotoxic metabolite in addition to cytotoxicity the combination of
DNA adduct formation and cell proliferation permits mutation induction and
fixation. Similarly, a low intake of retinoids, selenium, vitamin E and other
antioxidants may also be associated with an increased risk when combined
with other risk factors (291–295).

5.5. Alcohol and Tobacco
Alcohol abuse has been associated with HCC development that occurs in

a background of hepatitis and cirrhosis (81, 262). Alcohol abuse can poten-
tiate HCV and HBV to increase the incidence of HCC (87). This incidence
is markedly increased in individuals with high AFP levels, high cell prolifer-
ation index, and in uncompensated patients with atypical macroregenerative
nodules. In those with compensated liver fibrosis, the risk of HCC is 3%
(87, 296, 297). Both case–control and prospective studies have indicated
that excessive alcohol consumption increases the risk of liver cancer devel-
opment by up to 3-fold, a result likely due to the induction of liver cirrhosis
(296, 298, 299). Liver cirrhosis due to excessive alcohol intake is an impor-
tant risk factor in countries with a low incidence of HCC. Since chronic
alcohol abuse is more prevalent among men than women, this risk factor
may also contribute to the higher incidence of HCC in men than women
(300). Alcohol abuse may be an independent risk factor for HCC in areas of
endemic HBV or HCV infection with an attributable risk of approximately
20% in one study (299). Alternatively, associations between gender and
lifestyle-associated risk factors, including smoking and alcohol consump-
tion, have been suggested as potential determinants of the sex difference in
HCC risk resulting in a male bias in the prevalence of this disease. There
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is a positive impact of cigarette smoking on HCC risk (301–307). However,
higher rates of HCC are observed in heavy smokers when all other risk fac-
tors were taken into account (307). Thus, the lifestyle factors of smoking and
alcohol intake contribute to the induction and progression of HCC in a dose
dependent and synergistic manner in both high- and low-risk geographical
areas (304, 305). Alcohol abuse can increase the risk of HCC in hepatitis
virus carriers by at least 2-fold (87).

5.6. Steroids
The factors underlying the sex difference in human risk of developing

liver cancer have not been determined. However, the geographical and eth-
nic diversity in the populations at risk indicate that sex hormone-related
factors may underlie the higher incidence of liver cancer development in
men. Similarly elevated levels of testosterone result in an increased inci-
dence of hepatic adenomas (308). In men taking anabolic steroids, an
increased incidence of liver adenomas has also been observed (309–311)
and these lesions may or may not regress upon cessation of androgen therapy
(312–313). Oxymetholone, methyltestosterone, and danazol administration
were associated with hepatic neoplasms in certain cases. HCC was associ-
ated with oxymetholone and methyltestosterone in some patients, while ade-
nomas were associated with danazol exposure (311). These studies support
the potential for elevated testosterone levels to contribute to the development
of hepatocellular carcinoma development (263, 278). Significant associa-
tions have been observed between polymorphisms in three hormone-related
genes and HCC. These include androgen receptor, 5-alpha reductase, and
cytochrome P450 17 alpha (263).

Exposure to either anabolic steroids or certain oral contraceptive for-
mulations has been associated with the increased incidence of hepatic
adenomas and in rare instances with HCC development in humans. The
earliest report of an association between liver cancer induction and expo-
sure to exogenous sex hormones described seven cases of benign hepatomas
in young women with a history of oral contraceptive use (314). Women of
child-bearing age appear to be sensitive to the induction of benign hepatic
adenomas and the induction of these liver tumors is enhanced by expo-
sure to oral contraceptives. These tumors respond to hormonal manipu-
lations such that they regress upon cessation of hormonal administration
(145) and grow or progress upon continued administration of these agents.
While a dose (estrogenic potency) and duration effect is seen for oral con-
traceptive use and adenoma development, the association with carcinoma
induction is very low and only detectable with greater than 8 years of
exposure (315). Several investigators reported that the relative risk for ade-
noma development increased sharply beyond 5 years of oral contraceptive
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use (316, 317). While formulations containing mestranol and ethinyl
estradiol have led to equivalent risks, the incidence of liver cancer among
women using high potency oral contraceptives was significantly greater
than that for users of low-potency formulations. Oral contraceptive use
has also resulted in an increased risk for malignant liver cancer (318).
Case–control studies in the United States, Britain, and Italy demonstrated
a 5-fold increased risk for hepatocellular carcinoma among women with
more than 5 years use of oral contraceptives relative to women with expo-
sures of shorter duration (315, 318–320). In contrast, estrogen replace-
ment therapy does not increase the risk for hepatocellular carcinomas (315).
Thus, excess exposure to hormonally active agents can increase the risk
of HCC.

5.7. Genetic Disorders
A number of metabolic diseases have been associated with an increased

risk of HCC (7, 8). These include hemochromatosis, tyrosinemia, citrulline-
mia, porphyrias, and alpha-1 antitrypsin. Individuals with cirrhosis and
genetic hemochromatosis have a markedly increased rate and shortened time
until HCC development that is exacerbated by viral infection and alcohol
abuse (263, 278). Other metabolic diseases can increase the risk of HCC but
to a lesser degree. These include Wilson’s disease, fructose intolerance, and
type I and III glycogen storage disease. Thus, the variety of the underlying
disease base that contributes to HCC demonstrates the multifactorial risk
profile for primary liver cancer development.

5.7.1. METAL OVERLOAD DISORDERS

Iron overload (260, 321) has been associated with hepatic fibrosis, cirrho-
sis, and hepatocellular carcinoma (HCC). Hereditary disturbances in iron
uptake (322–324) and metabolism result in one form of iron overload and
dietary ingestion excess (325) a second. A variety of iron overload condi-
tions have been associated with HCC even in the absence of cirrhosis includ-
ing sideroblastic anemia and thalassemia (321, 326). In certain areas of
sub-Saharan Africa, the natives ingest drinks with concentrated iron. These
individuals have an increased incidence of both cirrhosis and HCC (325).
Porphyrias occur due to defects in the heme biosynthetic pathway. Both
acute intermittent porphyria and porphyria cutanea tarda have been asso-
ciated with an increased risk of HCC (324). The mechanism is unknown,
but the presence of free iron in the tissue may be a contributory factor. In
combination with HBV infection, HCV infection, alcohol cirrhosis, iron
overload induced an increase in lipid peroxidation and the rate of pro-
gression to steatohepatitis, cirrhosis, and HCC (86, 262). Underlying liver
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disease including cholestasis, steatosis, and cirrhosis can impact the degree
and latency to disease onset and progression with iron overload syndromes.

Hereditary hemochromatosis was first described as a hereditary disease
associated with HLA linkage and a form of pigment-associated cirrho-
sis typically associated with diabetes. A prevalent gene mutation (323)
was found to underlie hereditary hemochromatosis (HFE) and a knock-out
mouse (327). Although several genetic factors can be involved in iron over-
load, the most common is in HFE (85–90%). Although several polymor-
phisms exist, the most prevalent is C282Y (85–100% attribution to HFE).
The prevalence is 1 in 250 with an allelic frequency of 5%. The second
polymorphism allele that is common in HFE is H63D. Carriers of this allele
comprise 15–20% of the American population, but the consequence of this
allele is not known (323). The HFE is an MHC class 1 molecule that is asso-
ciated with β2 microglobulin (B2M) and the major polymorphism C282Y
prohibits this interaction. Studies in a B2M knock-out mouse demonstrate an
iron overload syndrome (328). In the HFE knock-out mouse, periportal iron
deposition occurs in conjunction with elevated transferrin saturation (327).
Interestingly, HFE and B2M which are in a complex with transferrin recep-
tor result in an increase in intestinal iron absorption. HFE mutation carriers
cannot facilitate iron uptake by transferrin receptor (329, 330). Transferrin
receptor Ser142 alleles are increased in liver cancer cases and in addition,
TfR expression is increased in hepatic preneoplasia and in HCC (330). The
odds ratio for C282Y allele carriers with TFR142Ser alleles for HCC is 17.2,
while it is 62.8 in those with cirrhosis for HCC development demonstrating
the contribution of TfR to risk of HCC (330).

The long-term consequences of iron overload on the liver include fibro-
sis and cirrhosis that can be exacerbated by the presence of underlying liver
disease (260, 321). The incidence of HCC in hereditary hemochromatosis
(HH) is increased over 100× relative to a comparative control population
(260, 331). Outcomes in heterozygotes for HFE seem similar to wildtype,
except for those 1–2% individuals who are compound heterozygotes with
C263Y/H63D (332, 333). The odds ratio of HCC in HFE C282Y carri-
ers or homozygotes is 3.5, while it is 7 in those with cirrhosis indicating
that HFE is a risk factor for HCC (333). The HCC population is enriched
for C282Y carriers than is found in the general population indicating a
possible risk factor for its development and progression (332–334). The
increased risk from HFE alleles is found in alcoholic cirrhosis and some
cases of HCV viral hepatitis, but not HBV viral hepatitis patients (322,
332, 334). Animal models of liver disease in combination with iron overload
also demonstrate an increase in disease progression. For example, transgenic
mice overexpressing the HCV polyprotein fed a diet enriched in iron develop
microvesicular steatosis indicative of mitochondrial damage and impaired
energy use with fatty acid retention and earlier onset of HCC than their
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littermates similar to those humans that develop fatty liver with HCV infec-
tion (335). A wide range of hepatic tumor phenotypes is observed in HFE
(336). Interestingly, a high incidence of p53 mutations has been observed in
one series of HCC from HFE patients (337). Importantly, epigenetic defects
are observed in liver tissue from 75% of the HFE patients examined prior
to the onset of cirrhosis with hypermethylation and hence gene expression
decreases (338).

Wilson’s disease or inherited copper overload disease can result in cirrho-
sis, hepatitis, and HCC. Wilson’s disease is found in 1:30,000 with a carrier
rate of 1:250 (339). Cerruloplasmin is decreased in the serum of Wilson’s
disease patients. This autosomal recessive disorder is due to a mutation in
the P-type ATPase responsible for biliary copper excretion (ATP7B) located
in the trans-Golgi network (340). The most prevalent mutation, H1069Q, is
observed in 30% of Wilson’s patients of European decent. Other mutations
of the ATP7B gene exist and can also result in Wilson’s disease (339). In
addition, modifier genes that impact the severity of the disease also exist.
Copper is normally ingested and absorbed through the GI tract and excreted
through the bile. Copper is transported in the serum bound to histidine.
Copper binds to glutathione or metallothionein, and cerruloplasmin. It is
excreted into the bile in part through a secretory pathway involving ATP7B.
The Long Evans Cinnamon rat is susceptible to non-viral hepatitis with sub-
sequent formation of liver neoplasms, the male is more susceptible to the
development of liver tumors (341, 342). The LEC rat is a model of Wilson’s
disease that develops a non-viral hepatitis due to copper overload. These
rats also have disturbances in iron metabolism. Those animals that survive
the hepatitis will develop HCC. The toxic milk mouse has a mutation in
M1356V and G712D, has defects in copper transport (343), and a knock-out
mouse (ATP7B) has also been generated (344). If intracellular copper accu-
mulates beyond the ability of the hepatocyte to buffer it, then hepatic damage
will ensue with copper release into the circulation and its accumulation in
other tissues.

5.7.2. ALPHA-1 ANTITRYPSIN

Alpha-1 antitrypsin (AAT) is a prevalent protease inhibitor (Pi) found in
the plasma (345). The most prevalent mutation is a Glu342Lys caused by
a G to A transition called the Z mutation (346, 347). Adult males that are
homozygous for the Z mutation (PiZZ) have an increased risk of cirrho-
sis and HCC (346–348). Alpha-1 antitrypsin results in an increased risk
of HCC in the absence of cirrhosis in homozygotes (348). Carriers (PiZ)
are also believed to be at an increased risk for HCC (349) especially in
combination with other risk factors (350, 351). While the mechanism of
α1AT alleles on disease etiology is unclear, the altered protein structure may
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induce the unfolded protein response. Alternatively, this acute phase serum
protein, which acts as an inhibitor of elastase and is synthesized by the liver
and macrophage is retained in the liver resulting in a plasma insufficiency.
Retention in the liver and consequent polymerization can result in cirrhosis
and to HCC (346, 347).

5.7.3. HEREDITARY TYROSINEMIA

Tyrosinemia is an autosomal recessive disorder that can lead to HCC. This
inborn error of metabolism results (352) from inactivation of fumarylace-
toacetate hydrolase (FAH) resulting in the buildup of its substrate fumary-
lacetoacetate (FAA) and malylacetoacetate (MAA). As a consequence, these
individuals excrete high levels of succinylacetone into the urine (352). MAA
and more specifically FAA have multiple effects on liver cells including
apoptosis, ER stress response, redox balance including GSH depletion, and
cell cycle arrest. Since the last step in the catabolism of tyrosine is blocked,
tyrosine is elevated in the serum. These patients have a rapid conversion
from micro to macronodular cirrhosis and later conversion to dysplasia and
HCC. Without pharmacological (nitisinone) treatment or now surgical inter-
vention, the prognosis was poor with acute liver failure predominant, fol-
lowed by HCC (353, 354). A mouse model has been developed in which
FAH is knocked out (355). This mutant recapitulates the pathogenesis of
human hereditary tyrosinemia type 1 and can be protected by nitisinone
(356). Intervention with nitisinone does not reverse gene expression changes
associated with tyrosinemia (357). Thus, pharmacological treatment can
delay, but may not prevent HCC development. Genetic manipulation rever-
sal of double mutant FAH mice formed through ENU mutagenesis do not
develop preneoplastic lesions or HCC, suggesting that the lack of complete
reversal of the phenotype by pharmacological intervention is due to incom-
plete blockage of the formation of toxic intermediates (358).

5.7.4. CITRULLINEMIA

The inborn errors of disease associated with the urea cycle (359, 360);
namely, mutation of arginosuccinate results in acute liver toxicity (361).
Citrullinemia type I is an autosomal recessive disorder that is caused by
a deficiency in the rate-limiting enzyme in the urea cycle, argininosucci-
nate synthetase (ASS1). In severe cases, a hyperammonia can occur that
is fatal neonatally. An argininosuccinic aciduria with an increase in cit-
rulline and ammonia in the serum is observed. Since citrulline is essential
in nitrogen homeostasis, disruption of ammonia removal results in toxi-
city to the liver. There is a broad mutational pattern and each genotype
has different phenotypes (361). A knock-out mouse has been generated
that has high citrulline blood levels and a severe hyperammonemic pheno-
type (362, 363). The aspartate–glutamate carrier (AGC), SLC25A13, gene
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mutations result in citrin deficiency (364) and may develop hepatic steatosis
and steatohepatitis (365). These type 2 citrullinemia patients have an
increased level of pancreas-derived trypsin inhibitor and are associated with
pancreatitis (364). A decrease in this mitochondrial ACG, citrin, results in
hepatic apoptosis through a caspase pathway in which the bax to bcl2 ratio is
inverted (366). A knock-out model has been described, but does not recapit-
ulate all of the pathologies associated with adult-onset type 2 citrullinemia
(367). The citrin/mitochondrial glycerol-3-phosphate dehydrogenase double
knock-out mutant is a better model for type 2 citrullinemia (368). Urea cycle
disruption and perturbations of nitrogen removal can have adverse effects on
the liver as exemplified by citrullinemia.

5.8. Summary
Chemicals from a variety of chemical classes can initiate, promote, and

lead to the development or progression of HCC. The effects of chemical
agents occur on the backgrounds of a variety of genetic alterations and dis-
eases. Animal models have proven invaluable in the assessment of the early
pathogenesis of primary liver cancer by chemicals. The late stage neoplasms
analyzed from the human demonstrate that multiple etiologies, molecular
pathways, and genetic changes accompany neoplastic development in the
liver. Combinations of genetic factors, environmental exposures, and back-
ground liver disease will be modeled in increasing complex ways in the
future to better recapitulate the role of chemicals in HCC development and
progression. Systems biology tools as applied to the pathogenesis of HCC
will be informative about the pathways that chemicals dysregulate in dif-
ferent genetic and disease backgrounds to lead to HCC development and
progression.
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