
2 Environmental Carcinogens
and Risk for Human Liver
Cancer

John D. Groopman, Kimberly Brodovicz,
and Thomas W. Kensler

CONTENTS

INTRODUCTION

MOLECULAR BIOMARKERS FOR

ENVIRONMENTAL CARCINOGENS

ENVIRONMENTAL ETIOLOGY OF HCC
METHODS FOR BIOMARKER MEASUREMENT

VALIDATION OF BIOMARKERS OF

ENVIRONMENTAL CARCINOGENS

BIOMARKERS IN HUMAN INVESTIGATIONS

INTERVENTION TRIALS USING AFLATOXIN

BIOMARKERS

DNA MUTATIONS MEASURED IN HUMAN

PLASMA AND HCC
SUMMARY

REFERENCES

ABSTRACT

Collectively liver cancer, including hepatocellular carcinoma (HCC) and
cholangiocarcinoma, accounts for 5.7% of all reported cancer cases and
is the sixth most common cancer diagnosed worldwide. The incidence of
liver cancer varies enormously globally and unfortunately the burden of

B.I. Carr (ed.), Hepatocellular Carcinoma, Current Clinical Oncology
DOI 10.1007/978-1-60327-376-3_2

C© Humana Press, a part of Springer Science+Business Media, LLC 2010

27



28 J.D. Groopman et al.

this nearly always fatal disease is much higher in the economically less
developed countries of Asia and sub-Saharan Africa. This chapter will
review the significant data that link exposures to specific environmental
carcinogens and the development of HCC in many parts of the world. These
epidemiologic studies have been made possible by devising biomarkers
reflective of exposure and risk. The translation of these basic science find-
ings to an understanding of the etiology of HCC has also provided guidance
for the development of preventive interventions in high-risk populations.
Thus, the consistency of the experimental animal and human data points to
the important role that environmental exposures play in gender differences
in HCC risk.

Key Words: Hepatocellular carcinoma (HCC); Cholangiocarcinoma; afla-
toxin B1 (AFB1); environmental exposures; biomarkers; hepatitis B surface
antigen (HBsAg); hepatitis B virus (HBV); hepatitis C virus (HCV)

1. INTRODUCTION

Collectively liver cancer, including hepatocellular carcinoma (HCC) and
cholangiocarcinoma, accounts for 5.7% of all reported cancer cases and is
the sixth most common cancer diagnosed worldwide (1). The incidence of
liver cancer varies enormously globally and unfortunately the burden of this
nearly always fatal disease is much higher in the economically less devel-
oped countries of Asia and sub-Saharan Africa (Fig. 1) (2). HCC is also the
most rapidly rising solid tumor in the United States and is overrepresented
in minority communities, including African-Americans, Hispanic/Latino-
Americans, and Asian-Americans (3). Overall, there are more than 650,000
new cases each year and over 200,000 deaths annually in the People’s
Republic of China (PRC) alone (4, 5). In contrast with most common can-
cers in the economically developed world where over 90% of cases are diag-
nosed after the age of 45, in high-risk regions for liver cancer onset begins
to occur in both men and women by 20 years of age and peaks between 40
and 49 years of age in men and between 50 and 59 years of age in women
(1, 6, 7). This earlier onset of HCC might be attributable to exposures that
are both substantial and persistent across the life span. Gender differences
in liver cancer incidence have also been described and the worldwide annual
age-standardized incidence rate among men is 15.8 per 100,000 and 5.8 per
100,000 among women (8). These epidemiologic findings are also similar
to experimental animal data for one potent liver carcinogen linked to human
HCC, aflatoxin, and male rats have been found to have an earlier onset of
cancer compared to female animals (9). Thus, the consistency of the experi-
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Fig. 1. Age-standardized incidence of liver cancer in men worldwide (8).

mental animal and human data points to the important role that environmen-
tal exposures play in gender differences in HCC risk.

This chapter will review the significant data that link exposures to spe-
cific environmental carcinogens and the development of HCC in many parts
of the world. These epidemiologic studies have been made possible by devis-
ing biomarkers reflective of exposure and risk. The translation of these basic
science findings to an understanding of the etiology of HCC has also pro-
vided guidance for the development of preventive interventions in high-risk
populations. We will review a number of these major investigations to pro-
vide an overview of this very active field of research.

2. MOLECULAR BIOMARKERS FOR ENVIRONMENTAL
CARCINOGENS

Molecular biomarkers are typically used as indicators of exposure, effect,
or susceptibility for both individuals and communities. A biomarker of expo-
sure refers to measurement of the specific compound of interest, its metabo-
lite(s), or its specific interactive products in a body compartment or fluid,
which indicates the presence and magnitude of current and past exposure.
A biomarker of effect indicates the presence and magnitude of a biological
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response from exposure to an environmental agent. Such a biomarker may be
an endogenous component, a measure of the functional capacity of the sys-
tem, or an altered state recognized as impairment or disease. A biomarker of
susceptibility is an indicator or a metric of an inherent or acquired ability of
an individual to respond to the challenge of exposure to a specific toxicant.
Such a biomarker may be the unusual presence or absence of an endogenous
component, or an abnormal functional response to an administered challenge
(10). Measures of these biomarkers through molecular epidemiology studies
have great utility in addressing the relationships between exposure to envi-
ronmental agents and development of clinical diseases, and in identifying
those individuals at high risk for the disease (11, 12). These data also help
to inform the risk assessment process, where the effectiveness of regulations
can be tested against biological measurements of exposure and effect.

The validation of any biomarker–effect link requires parallel experimen-
tal and human studies (13). Following the development of a hypothesis of an
exposure disease linkage, there is the need to devise the analytical method-
ology necessary to measure these biological markers in human and experi-
mental samples. Conceptually, an appropriate animal model is often used to
determine the associative or causal role of the biomarker in the disease or
effect pathway, and to establish relations between dose and response. The
putative biomarker can be validated in pilot human studies, where sensitiv-
ity, specificity, accuracy, and reliability parameters can be established. Data
obtained in these studies can then be extended to assess intra- or interindivid-
ual variability, background levels, relationship of the biomarker to external
dose or to disease status, as well as feasibility for use in larger population-
based studies. To fully interpret the information that the biomarker provides,
prospective epidemiological studies may be necessary to demonstrate the
role that the biomarker plays in the overall pathogenesis of the disease or
effect. Finally, these biomarkers can be translated as intermediate endpoints
in interventions in both experimental models and high-risk human popula-
tions to optimize agent selection, dose, and schedule and other parameter
influencing efficacy.

3. ENVIRONMENTAL ETIOLOGY OF HCC

As described above, HCC is among the leading causes of cancer death
in most parts of the economically developing world. The unequal distribu-
tion of this disease is depicted by the map in Fig. 1 based upon the IARC
cancer database (8). Since the level of HCC is also coincident with regions
where aflatoxin exposure is high, many efforts starting over 40 years ago
examined this possible association. These initial studies were hindered by
the lack of adequate data on aflatoxin intake, excretion, and metabolism in
people, the underlying susceptibility factors such as diet and viral exposure,
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as well as by the incomplete statistics on worldwide cancer morbidity and
mortality. Despite these deficiencies, early studies did provide data illustrat-
ing that increasing HCC rates corresponded to increasing levels of dietary
aflatoxin exposure (14). The commodities most often found to be contam-
inated by aflatoxin were common human food staples including: peanuts,
cottonseed, corn, and rice (15). The requirements for aflatoxin production
are relatively non-specific since molds can produce these toxins on almost
any foodstuff and the final levels in the grain product can vary from micro-
gram to tens of milligrams (16). Indeed, in a recent case of aflatoxin-related
deaths in rural villages in Kenya, daily exposures were estimated to be over
50 mg (17). Because contamination of foodstuffs is so heterogeneous, the
measurement of human exposure to aflatoxin by sampling foodstuffs or by
dietary questionnaires is extremely imprecise. The development and vali-
dation of specific aflatoxin biomarkers represents a significant advance for
accurate assessment of exposure in biofluids such as urine and blood.

Concurrent with the early aflatoxin research were a series of studies
describing a role for the hepatitis B virus (HBV) in HCC pathogenesis. A
number of investigations found that chronic carriers of HBV, as indicated by
sequential hepatitis B surface antigen (HBsAg) positivity at 6-month inter-
vals, were at increased risk of developing HCC (18). Further, the age of
initial infection was directly related to development of the chronic carrier
state and subsequent risk for HCC. Approximately 90% of HBV infections
acquired in infancy or early childhood become chronic, whereas only 10%
of infections acquired in adulthood become chronic, and less than 50% of
chronic carriers progress to HCC (5, 19–21). Finally, the global burden of
HBV infection varies geographically and China, Southeast Asia, and sub-
Saharan Africa have some of the highest rates of chronic HBV infection
in the world, with prevalence of over 10% (22). The public health signifi-
cance of HBV as a risk factor for HCC is staggering with the consideration
that there are over 400 million viral carriers and between 10 and 25% of
these individuals are likely to develop HCC (5, 23, 24). The biology, mode
of transmission, and epidemiology of this viral infection continues to be
actively investigated and has been recently reviewed (22, 23, 25).

To date, the overwhelmingly significant etiological factors associated
with development of HCC in the economically developing world are infec-
tion in early life with hepatitis B virus (HBV) and lifetime exposure to
high levels of aflatoxin B1 (AFB1) in the diet (26, 27). Indeed, the multi-
plicative interaction between HBV and AFB1 has been documented in two
separate cohorts at high risk for HCC (28–30). Over the past 20 years, an
appreciation for the role of the hepatitis C virus (HCV) has also emerged.
HCV is contributing to HCC being the most rapidly rising solid tumor in the
United States and Japan (31). Detailed knowledge of the etiology of HCC
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has spurred many mechanistic studies to understand the pathogenesis of this
nearly always fatal disease (2, 26, 32).

A number of other environmental exposures have been epidemiologically
associated with HCC (33). Vinyl chloride exposure in occupational settings
has been associated with the development of HCC in workers and there are
now the classic studies associating vinyl chloride exposure with angiosar-
comas in the liver (34–36). Recently, studies have found a multiplicative
interaction between vinyl chloride exposure in the workplace and alcohol
consumption in the enhancement of HCC (37). Finally, a synergistic inter-
action between vinyl chloride workplace exposure and HBV status has been
reported in a cohort in Taiwan (38).

Alcohol is a recognized human carcinogen and has been causally linked to
HCC. Alcoholic cirrhosis and heavy alcohol use have been repeatedly asso-
ciated with an increase in HCC risk (39). However, it is unclear if alcohol
use in the absence of cirrhosis influences HCC development (40). Several
studies have demonstrated an increased risk of HCC up to 5-fold with con-
sumption of more than 80 g of alcohol per day or approximately 6–7 drinks
per day (39). The risk of HCC ranges from borderline significant to dou-
bled with chronic alcohol consumption of less than 80 g/day (39). A syner-
gism between alcohol and HBV and HCV infections has also been described
(39, 41). In addition to the association of alcohol and HCC, in economically
developed countries the dramatic rise in obesity and nonalcoholic fatty liver
disease has also been related to increased HCC (42–44).

Cigarette smoke is a recognized human carcinogen, however, a causal role
in HCC is unclear (45). A recent hospital-based case–control study in Italy
found no independent effect for tobacco and HCC risk (46). However, a com-
posite analysis of tobacco exposure and cancer risk consistently shows a risk
for liver cancer and smoking (47). Finally, the role of hormones in the devel-
opment of HCC is unclear; however, in some studies, an increased risk of
HCC was observed among users of oral contraceptives (48–50). Collectively,
these hormonal-related increases in HCC are only seen in low incident coun-
tries where exposures to the other major risk factors for this cancer are rare.

4. METHODS FOR BIOMARKER MEASUREMENT

In the case of AFB1, the measurement of the DNA and protein adducts
were of major interest because they are direct products of (or surrogate mark-
ers for) damage to a critical cellular macromolecular target. The chemical
structures and metabolic pathways leading to the formation of the major
aflatoxin macromolecular DNA and protein adducts were known (Fig. 2)
(51, 52). The finding that the major aflatoxin–nucleic acid adduct AFB1–
N7-Gua was excreted exclusively in urine of exposed rats spurred interest
in using this metabolite as a biomarker of both exposure and risk. This
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Fig. 2. Structures of aflatoxin biomarkers.

adjunct, however, has a short half-life in the body (∼8 h) (53). The serum
aflatoxin–albumin adduct was also examined as a biomarker since the longer
half-life of albumin (∼3 weeks) integrates exposures over longer time peri-
ods. Studies in experimental models found that the formation of aflatoxin–
DNA adducts in liver, excretion of the urinary aflatoxin–nucleic acid adduct,
and formation of the serum albumin adduct were highly correlated (54).

Many different analytical methods were available for quantitation of
chemical adducts in biological samples (55–57). Each methodology has
unique specificity and sensitivity and, depending on the application, the user
can choose which is most appropriate. For example, to measure a single afla-
toxin metabolite, a chromatographic method can resolve mixtures of aflatox-
ins into individual compounds, providing that the extraction procedure does
not introduce large amounts of interfering chemicals. Antibody-based meth-
ods were often more sensitive than chromatography, but immunoassays are
less selective because the antibody may cross-react with multiple metabo-
lites. A recent inter-laboratory collaboration used identical serum sample
sets to analyze for aflatoxin–albumin adducts by ELISA, high-performance
liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and
HPLC with isotope-dilution mass spectrometry (IDMS). Overall, this study
showed an excellent correlation between these three independent method-
ologies conducted in different laboratories (58).

An immunoaffinity cleanup/HPLC procedure was developed to iso-
late and measure aflatoxin metabolites in biological samples (59–61).
With this approach, we performed initial validation studies for the dose-
dependent excretion of urinary aflatoxin biomarkers in rats after a single
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exposure to AFB1 (62). A linear relationship was found between AFB1
dose and excretion of the AFB–N7-Gua adduct in urine over the initial
24 h period of exposure. In contrast, excretion of other oxidative metabo-
lites, such as AFP1 showed no linear association with dose. Subsequent
studies in rodents that assessed the formation of aflatoxin macromolecular
adducts after chronic administration also supported the use of DNA and
protein adducts as molecular measures of exposure (63, 64). Recent stud-
ies using isotope-dilution mass spectrometry with liquid chromatography
separation have demonstrated an increase in sensitivity of at least 1,000-fold
over technologies used for the detection of aflatoxin biomarkers 15 years
ago (65–67). Further, repeated analysis of serum collected in 1983 from
aflatoxin-exposed people has demonstrated that the aflatoxin–lysine adduct
in albumin is stable under a range of temperature storage conditions (68).

An area of considerable importance, that has received far less attention
than it should, has been in the area of internal standard development. All
quantitative measurements require the use of an internal standard to account
for sample to sample variations in the analyte recoveries. In the case of mass
spectrometry, internal standards generally employ an isotopically labeled
material that is identical to the chemical being measured. Obtaining such
isotopically labeled materials requires chemical synthesis, if they are not
commercially available, and has impeded the application of internal stan-
dards in many studies. In the case of immunoassays, internal standards pose
a different challenge since the addition of an internal standard that is recog-
nized by an antibody results in a positive value contribution. The dynamic
range is usually less than 100 in immunoassays, and therefore great care
must be taken to spike a sample with an internal standard so one can obtain
a valid result. In contrast, most chromatographic methods result in dynamic
ranges of analyses that can be over a 10,000-fold range of levels. The mass
spectrometry methods are not only applicable for the quantitation of small
molecules such as aflatoxin, but it has also been extended for use to measure
mutations in DNA fragments found circulating in plasma that are mechanis-
tically linked to the etiopathogenesis of HCC, such as p53 (69–72).

5. VALIDATION OF BIOMARKERS OF ENVIRONMENTAL
CARCINOGENS

In the early 1980s studies to identify effective chemoprevention strategies
for aflatoxin carcinogenesis was initiated. The hypothesis was that reduc-
tion of aflatoxin–DNA adduct levels by chemopreventive agents would be
mechanistically related to and therefore predictive of cancer preventive effi-
cacy. Preliminary data with a variety of established chemopreventive agents
demonstrated that after a single dose of aflatoxin, levels of DNA adducts
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were reduced (73). A more comprehensive study using multiple doses of
aflatoxin and the chemopreventive agent, ethoxyquin, was carried out to
examine the relationships between levels and rates of DNA adduct for-
mation and removal and hepatic tumorigenesis in rats. At 3 months after
aflatoxin treatment, it was observed that co-treatment with ethoxyquin had
reduced both area and volume of liver occupied by presumptive preneoplas-
tic foci by >95%. This same protocol also dramatically reduced binding
of AFB1 to hepatic DNA, from 90% initially to 70% over the course of
a 2-week carcinogen-dosing period. Intriguingly, no differences in residual
DNA adduct burden, however, were discernible several months after dosing
despite the profound reduction in tumor burden.

The experiment was then repeated with several different chemopreven-
tive agents and in all cases aflatoxin-derived DNA and protein adducts
were reduced; however, even under optimal conditions, the reduction in
the macromolecular adducts always under-represented the magnitude of the
diminution in tumor burden (74, 75). These macromolecular adducts can
track with disease outcome on a population basis, but in the multistage pro-
cess of cancer the absolute level of adduct provides only a necessary but
insufficient measure of tumor formation.

Experimental validation of the role of human HBV in HCC etiopathogen-
esis has been compromised by the very restricted nature of the number of
species that can become infected with this virus. The chimpanzee and tree
shrew can be infected by human HBV but neither has proven to be a cost-
effective model for extensive investigation, while the woodchuck and duck
can be infected with similar yet distinct HBV strains (76–78). Transgenic
mouse models have also been developed that generate a 100% probability of
developing HCC (79). These transgenic mice have been used to explore the
interaction of the HBV transgene with AFB1 (80). Collectively, these models
are extremely valuable for the study of the underlying molecular pathways
in the virally induced cancers but they have to date been of limited value in
recapitulating the more complex etiology of human HCC.

Using the chemopreventive agent oltipraz, Roebuck et al. (74) estab-
lished correlations between reductions in levels of AFB1–N7-Gua excreted
in urine and incidence of HCC in aflatoxin-exposed rats. Overall, reduc-
tion in biomarker levels reflected protection against carcinogenesis, but
these studies did not address the quantitative relationship between biomarker
levels and individual risk. Thus, in a follow-up study, rats dosed with
AFB1 daily for 5 weeks were randomized into three groups: no interven-
tion; delayed-transient intervention with oltipraz during weeks 2 and 3
of exposure; persistent intervention with oltipraz for all 5 weeks of dos-
ing (81). Serial blood samples were collected from each animal at weekly
intervals throughout aflatoxin exposure for measurement of aflatoxin–
albumin adducts. The integrated level of aflatoxin–albumin adducts over
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the exposure period decreased to 20% and 39% in the delayed-transient
and persistent oltipraz intervention groups, respectively, as compared with
no intervention. Similarly, the total incidence of HCC dropped signif-
icantly from 83 to 60% and 48% in these groups. Overall, there was
a significant association between integrated biomarker level and risk of
HCC. When the predictive value of aflatoxin–serum albumin adducts
was assessed within treatment groups, however, there was no association
between integrated biomarker levels and risk of HCC. These data clearly
demonstrated that levels of the aflatoxin–albumin adducts could predict
population-based changes in disease risk, but had no power to identify
individuals destined to develop HCC. Because of the multistage process of
carcinogenesis, in order to determine individual risk of disease, a panel of
biomarkers reflecting different stages will be required.

6. BIOMARKERS IN HUMAN INVESTIGATIONS

Extensive cross-sectional epidemiologic studies have been conducted in
high-risk groups for HCC. The HBV biomarkers were developed and vali-
dated using the HBsAg biomarker. This work directly led to the research that
resulted in a vaccine effective against HBV. Indeed, this vaccine has been
reported to reduce HCC in a cohort of young children in Taiwan (82). Fur-
ther the serology of HBV has been extensively described and developed (25).
The work on AFB1 exposures and its role in HCC etiology has taken a far
longer time period to come to fruition. Initial studies in the Philippines (83)
demonstrated that an oxidative metabolite of aflatoxin could be measured
in urine and thus had potential to serve as an internal dose marker. Subse-
quent work conducted in the People’s Republic of China and The Gambia,
West Africa, areas with high incidences of HCC, determined that the levels
of urinary aflatoxin biomarkers showed dose-dependent relationships with
aflatoxin intake. Gan et al. (84) and Wild et al. (85) also monitored lev-
els of aflatoxin serum albumin adducts and observed a highly significant
association between intake of aflatoxin and level of adduct. Many of the
aflatoxin studies used different analytical methods and therefore the quan-
titative comparison of different data sets has been extremely problematic.
However, a recent study compared methods of ELISA and mass spectrome-
try (MS) and found high correlation between these two methods (r = 0.856,
p < 0.0001) (66).

Biomarker development in HCC has been further advanced by the molec-
ular biological studies on the TP53 tumor suppressor gene, the most com-
mon mutated gene detected in human cancer (86, 87). Many studies of p53
mutations in HCC occurring in populations exposed to high levels of dietary
aflatoxin have found high frequencies of guanine to thymine transversions,
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with clustering at codon 249 (88, 89). In contrast, no mutations at codon
249 were found in p53 in HCC from Japan and other areas where there was
little exposure to aflatoxin (90, 91). The occurrence of this specific mutation
has been mechanistically associated with AFB1 exposure in experimental
models including bacteria (92) and through demonstration that aflatoxin-
8,9-epoxide could bind to codon 249 of p53 in a DNA plasmid in vitro (93).
Mutational analysis of the p53 gene in human HepG2 cells and hepatocytes
exposed to AFB1 found preferential induction of the transversion of guanine
to thymine in the third position of codon 249 (94, 95 96, 97). In summary,
studies of the prevalence of codon 249 mutations in HCC cases from patients
in areas of high or low exposure to aflatoxin suggest that a G–T transition at
the third base is associated with aflatoxin exposure and in vitro data would
seem to support this hypothesis.

Although useful, cross-sectional epidemiological studies have the least
power to relate an exposure to disease outcome since these studies only
provide a view during a short time frame. Data from the cross-sectional
aflatoxin biomarker studies demonstrated short-term dose–response effects
for a number of the aflatoxin metabolites, including the major nucleic acid
adduct, serum albumin adduct, and AFM1 This information could then be
used in follow-up studies to test a number of hypotheses about risk to indi-
viduals having high exposures, the efficacy of exposure remediation, and
interventions and mechanisms underlying susceptibility.

Longitudinal studies are extremely important in the development and vali-
dation process for biomarkers. These investigations permit an understanding
of the stability in storage and the tracking potential of each biomarker, which
are essential for the evaluation of the predictive power of the biomarker.
While long-term stability of many of the HBV markers have been well-
established (98), we needed to know whether the aflatoxin metabolites were
stable over the long term. The stability of aflatoxin biomarkers was mon-
itored by supplementing urine samples with aflatoxins at the time of col-
lection and then analyzing repeated samples over the course of 8 years.
Similarly, aflatoxin–albumin adducts, as described above, in human sera
were found to be stable for at least 15 years when stored at –20◦C (68).
Therefore, at least for some of the aflatoxin biomarkers, degradation over
time was not a major problem; however, similar studies are required for all
chemical-specific biomarkers.

An objective in development of any biomarker is to use them as predic-
tors of past and future exposure status in people. This concept is embodied
in the principle of tracking, which is an index of how well an individual’s
biomarker remains positioned in a rank order relative to other individuals in
a group over time. Tracking within a group of individuals is expressed by the
intraclass correlation coefficient. When the intraclass correlation coefficient
is 1.0, a person’s relative position, independent of exposure, within the group
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does not change over time. If the intraclass correlation coefficient is 0.0,
there is random positioning of the individual’s biomarker level relative to the
others in the group throughout the time period. The tracking concept is cen-
tral to interpreting data related to exposure and biomarker levels and requires
acquisition of repeated samples from subjects. Unfortunately, data on the
temporal patterns of formation and persistence of aflatoxin macromolecu-
lar adducts in human samples are very limited. Obviously, chemical-specific
biomarkers measured in cross-sectional studies cannot provide information
on the predictive value or tracking of an individual’s marker level over time.
In contrast to the aflatoxin situation, the HBV biomarker tracking has been
well characterized and forms the basis for defining chronic infection sta-
tus (98).

Tracking is important in assessing exposure and this information is essen-
tial in the design of intervention studies. In all these situations it is critical
to know how many biomarker samples are required and when they should
be obtained. For example, if exposure remains constant and the tracking
value for a marker changes over time, it might be assumed that the change
in tracking is due to a biological process, such as an alteration in the balance
of metabolic pathways responsible for adduct formation. On the other hand,
lack of tracking can be attributable to great variance in exposure. Therefore,
to determine unequivocally the contributions of intra- and interindividual
variations to biomarker levels, experiments must assess tracking over time.

Many published case–control studies have examined the relation of afla-
toxin exposure and HCC. Compared with cohort studies, case–control stud-
ies are both cost- and time-effective. Unfortunately, case–control studies are
often initiated long after exposure has occurred and it cannot be assumed
that the exposure has not appreciably changed over time. Also, such studies
involve assumptions in the selection of controls, including that the disease
state does not alter metabolism of aflatoxin. Thus, matching of cases and
controls in a specific biomarker study is much more difficult than in a case–
control study involving genetic markers.

One of the first case–control studies compared the dietary intake of afla-
toxin in cases of HCC in the Philippines with intake in age- and sex-matched
controls. Bulatao-Jayme et al. (99) found that the mean aflatoxin expo-
sure per day in cases of HCC was 4.5 times higher than in the controls;
however, alcohol consumption was a confounder in this study that may
have enhanced this effect. In the Guangxi Autonomous Region of China
(100, 101) the interaction between HBV infection and dietary aflatoxin
exposure dichotomized for heavy and light contamination was examined.
Those individuals who were positive for HBsAg and had heavy aflatoxin
exposure had an incidence of HCC l0-fold higher than did people living
in areas with light aflatoxin contamination (100). In a case–control study
in Taiwan, two biomarkers, aflatoxin–albumin adducts and aflatoxin–DNA
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adducts in liver tissue samples, were measured (102). The proportion of sub-
jects with a detectable level of aflatoxins–albumin adducts was higher for
cases of HCC than for matched controls (odds ratio 1.5). There was also
a statistically significant association between detectable level of aflatoxin–
albumin adduct and risk of HCC among men younger than 52 years old
(multivariant adjusted odds ratio 5.3). Although a number of negative case–
control studies of aflatoxin and HCC have been reported (15), the over-
whelming evidence from many investigations pointed to an etiological role
for aflatoxin in human HCC.

Data obtained from cohort studies have the greatest power to determine
a true relationship between an exposure and disease outcome because one
starts with a healthy cohort, obtains biomarker samples, and then follows
the cohort until significant numbers of cases are obtained. A nested study
within the cohort can then be designed to match cases and controls. An
advantage of this method is causation can be established (due to the longitu-
dinal nature of cohort studies, there is no temporal ambiguity) and selection
bias is minimized. A major disadvantage, however, is the time needed in
follow-up (often years) to accrue the cases, especially for chronic diseases
such as HCC. This disadvantage can be overcome in part by enrolling large
numbers of people (often tens of thousands) to ensure case accrual at a rea-
sonable rate.

To date two major cohort studies with aflatoxin biomarkers have demon-
strated the important role of this carcinogen in the etiology of HCC. The first
study, comprising more than 18,000 men in Shanghai, examined the inter-
action of HBV and aflatoxin biomarkers as independent and interactive risk
factor for HCC. The nested case–control data revealed a statistically signif-
icant increase in the adjusted relative risk (RR) of 3.4 [95% CI: 1.1.–10.0]
for those HCC cases where urinary aflatoxin biomarkers were detected. For
HBsAg-positive people only the RR was 7 [95% CI: 2.2.–22.4], but for
individuals with both urinary aflatoxins and positive HBsAg status the RR
was 59 [95% CI: 16.6.–212.0] (103, 104). These results strongly support a
causal relationship between the presence of the chemical and viral-specific
biomarkers and the risk of HCC.

Subsequent cohort studies in Taiwan have substantially confirmed the
results from the Shanghai investigation. Wang et al. (105) examined HCC
cases and controls nested within a cohort and found that in HBV-infected
people there was an adjusted odds ratio of 2.8 [95% CI] for detectable com-
pared with non-detectable aflatoxin–albumin adducts and 5.5 [95% CI] for
high compared with low levels of aflatoxin metabolites in urine. In a follow-
up study, there was a dose–response relationship between urinary AFM1 lev-
els and risk of HCC in chronic HBV carriers. Similar to the Shanghai study,
the HCC risk associated with AFB1 exposure was more striking among the
HBV carriers with detectable AFB1–N7-gua in urine.
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Many studies across the globe have explored the relationship between
HBV infection and HCC and the risk estimates range from 3 to 30 in
case–control studies and from 5 to 148 in cohort studies (49). In the nested
case–control study cited above the risk of HCC was 7.3 times higher among
HBsAg-positive individuals compared to HBsAg-negative individuals, con-
trolled for smoking and aflatoxin exposures (29). A small hospital-based
case–control study from northeast Thailand showed an adjusted odds ratio
(OR) of 15.2 for the presence of HBsAg among HCC patients (106). An
adjusted OR of 13.5 was reported from a case–control study in The Gambia
(22). The risk of HCC among HBsAg positive individuals in Korea from
a prospective cohort study of government workers was 24.3 among men
and 54.4 among women, adjusted for age, smoking, alcohol use, and dia-
betes (107). A similar prospective study from Taiwan found men positive for
HBsAg were 223 times more likely to develop HCC than men with HBsAg
negative (20).

The contribution of HBV to the pathogenesis of liver cancer is multifac-
torial and is complicated by the identification of mutant variants in HBV
that modulate the carcinogenesis process (108, 109). The HBV genome
encodes its essential genes with overlapping open-reading frames; there-
fore, a mutation in the HBV genome can alter the expression of multiple
proteins. In many cases of HCC in China and Africa a double mutation in
the HBV genome, an adenine to thymine transversion at nucleotide 1762
and a guanine to adenine transition at nucleotide 1764 (1762T/1764A), has
been found in tumors (110–112). This segment of the HBV genome contains
an overlapping sequence for the base core promoter and the HBV X gene;
therefore, the double mutation in codon 130 and 131 of the HBV X gene
reported in human HCC is identical to the 1762 and 1764 nucleotide changes
(113). The increasing occurrence of these mutations have been also associ-
ated with the increasing severity of the HBV infection and cirrhosis (111,
112). This acquired mutation following HBV integration into hepatocytes
was originally characterized in HBV e antigen negative people (114). The
1762T/1764A double mutation occurs more frequently in people infected
with the genotype C strains of HBV, which is the most common genotype
found in East Asian patients (115–117). This double mutation tracks with
an increased inflammatory response that becomes stronger as the progres-
sion of liver damage transits through chronic hepatitis and into a cirrhosis
stage (118). The underlying mechanism of the effects of HBV e antigen on
the biology of inflammation and cirrhosis are still unclear, but there are sub-
stantial data that point to modulation of the immune surveillance system and
immune tolerance in the presence and absence of this protein (118–120).
The 1762T/1764A double mutation has also been demonstrated to affect an
increase in the rate of HBV genome synthesis in cellular models (108, 109).
In cellular studies the 1762T/1764A double mutation increased the replica-
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tion of the viral genome 2-fold and in the case of some of the rarer triple
mutations, an 8-fold increase in genome replication was found (108, 120).
Recent data have also shown that there is a sequential accumulation of these
mutations in people during the course of the progression to cancer (121).

7. INTERVENTION TRIALS USING AFLATOXIN
BIOMARKERS

Clinical trials and other interventions are designed to translate findings
from human and experimental investigations to public health prevention.
Both primary (to reduce exposure) and secondary (to alter metabolism and
deposition) interventions can use specific biomarkers as endpoints of effi-
cacy. Such biomarkers can be applied to the preselection of exposed indi-
viduals for study cohorts, thereby reducing study size requirements. They
can also serve as short-term modifiable endpoints (122). In a primary pre-
vention trial the goal is to reduce exposure to aflatoxins in the diet. Interven-
tions can range from attempting to lower mold growth in harvested crops
to using trapping agents that block the uptake of ingested aflatoxins. In sec-
ondary prevention trials one goal is to modulate the metabolism of ingested
aflatoxin to enhance detoxification processes, thereby reducing formation of
DNA adducts and enhancing elimination.

The use of aflatoxin biomarkers as efficacy endpoints in primary pre-
vention trials in West Africa has been recently reported (123). This study
assesses postharvest measures to restrict aflatoxin contamination of ground-
nut crops. Six hundred people were monitored and in control villages mean
aflatoxin–albumin concentration increased postharvest (from 5.5 pg/mg
[95% CI: 4.7–6.1] immediately after harvest to 18.7 pg/mg [17.0–20.6] 5
months later). By contrast, mean aflatoxin–albumin concentration in inter-
vention villages after 5 months of groundnut storage was much the same as
that immediately postharvest (7.2 pg/mg [6.2–8.4] vs. 8.0 pg/mg [7.0–9.2]).
At 5 months, mean adduct concentration in intervention villages was less
than 50% of that in control villages (8.0 pg/mg [7.2–9.2] vs. 18.7 pg/mg
[17.0–20.6], p < 0.0001). Thus, primary prevention may be an effective
means to reduce HCC burden, especially in areas where single foodstuffs
such as groundnuts are major components of the diet.

Aflatoxin biomarkers were also used as intermediate biomarkers in a
Phase IIa chemoprevention trial of oltipraz in Qidong, PRC (124–126). This
was a placebo-controlled, double-masked study in which participants were
randomized to receive placebo or 125 mg oltipraz daily or 500 mg oltipraz
weekly. Urinary AFM1 levels were reduced by 51% compared with the
placebo group in persons receiving the 500 mg weekly dose. No signifi-
cant differences were seen in urinary AFM1 levels in the 125 mg group
compared with placebo. This effect at the higher dose was thought to be
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due to inhibition of cytochrome P450 1A2 activity. Median levels of AFB1–
mercapturic acid (a glutathione conjugate derivative) were elevated 2.6-fold
in the 125 mg group, but were unchanged in the 500 mg group. Increased
AFB1–mercapturic acid reflects induction of aflatoxin conjugation through
the actions of glutathione S-transferases. The apparent lack of induction in
the 500 mg group probably reflects masking due to diminished substrate for-
mation for conjugation through the inhibition of CYPlA2 seen in this group.

This strategy was extended to chlorophyllin, an anticarcinogen in exper-
imental models when given in large molar excess relative to the carcinogen
at or around the time of carcinogen exposure. Chlorophyllin cuts by forming
molecular complexes with carcinogens such as aflatoxin in the gastrointesti-
nal tract, thereby blocking bioavailability. One hundred eighty healthy adults
from Qidong were randomly assigned to ingest 100 mg chlorophyllin or a
placebo three times a day for 4 months. The primary endpoint was modu-
lation of levels of aflatoxin–N7-guanine adducts in urine samples collected
3 months into the intervention measured using sequential immunoaffinity
chromatography and liquid chromatography–electrospray mass spectrome-
try. Chlorophyllin consumption at each meal led to an overall 55% reduction
in median urinary levels of this aflatoxin biomarker compared to those taking
placebo (127). Recently, we tested whether drinking hot water infusions of
3-day-old broccoli sprouts, containing defined concentrations of glucosino-
lates as a stable precursor of the anticarcinogen sulforaphane, could alter the
disposition of aflatoxin. Sulforaphane, like oltipraz, acts to increase expres-
sion of aflatoxin detoxication enzymes in the liver and other tissues. Two
hundred healthy adults drank infusions containing either 400 or < 3 μmol
glucoraphanin nightly for 2 weeks. Urinary levels of AFB1–N7-Gua were
not different between the two intervention arms. However, measurement
of urinary levels of dithiocarbamates (sulforaphane metabolites) indicated
striking interindividual differences in bioavailability. Presumptively, there
were individual differences in the rates of hydrolysis of glucoraphanin to
sulforaphane by the intestinal microflora of the study participants. Nonethe-
less, an inverse association was observed for excretion of dithiocarba-
mates and aflatoxin–DNA adducts in individuals receiving broccoli sprout
glucosinolates (128).

8. DNA MUTATIONS MEASURED IN HUMAN PLASMA
AND HCC

The development and validation of biomarkers for early detection of dis-
ease or for the identification of high-risk individuals is a major translational
effort in cancer research. α-Fetoprotein is widely used as a HCC diagnos-
tic marker in high-risk areas because of its ease of use and low cost. (129)
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However, this marker suffers from low specificity due to its occurrence in
diseases other than liver cancer. Moreover, no survival advantage is seen
in populations when α-fetoprotein is used in large-scale screening (130).
Such inadequacies have contributed to the need to identify other molecu-
lar biomarkers that are possibly more mechanistically associated with HCC
development, including hypermethylation of the p16 gene, p15 gene, GSTP1
promoter regions, and codon 249 mutations in the p53 gene (131–134).
Results from investigations of p16, p15, GSTP1 promoter hypermethyla-
tion, and p53 mutations indicate that these markers are prevalent in HCC,
but there is as of yet limited information on the temporality of these genetic
changes prior to clinical diagnosis.

Several studies have now demonstrated that DNA isolated from serum
and plasma of cancer patients contains the same genetic aberrations as DNA
isolated from an individual’s tumor (70, 135, 136). The process by which
tumor DNA is released into circulating blood is unclear but may result from
accelerated necrosis, apoptosis, or other processes (137). While the detec-
tion of specific p53 mutations in liver tumors has provided insight into the
etiology of certain liver cancers, the application of these specific mutations
to the early detection of cancer offers great promise for prevention (138).
In a seminal report, Kirk et al. (139) reported the detection of codon 249
p53 mutations in the plasma of liver tumor patients from The Gambia; how-
ever, the mutational status of the tumors was not known. These authors also
reported a small number of cirrhosis patients having this mutation and given
the strong relation between cirrhosis and future development of HCC, raised
the possibility of this mutation being an early detection marker. Jackson et
al. (140) used short oligonucleotide mass analysis (SOMA) in lieu of DNA
sequencing for analysis of specific p53 mutations in HCC samples. Analy-
sis of 20 plasma and tumor pairs showed 11 tumors containing the specific
mutation, 6 of the paired plasma samples exhibited the same mutation.

The temporality of the detection of this mutation in plasma before and
after the clinical diagnosis of HCC was facilitated by the availability of
longitudinally collected plasma samples from a cohort of 1,638 high-risk
individuals in Qidong, PRC, that have been followed since 1992 (141).
The results showed that in samples collected prior to liver cancer diagno-
sis, 21.7% of the plasma samples had detectable levels of the codon 249
mutation. The persistence of this prediagnosis marker was borderline statis-
tically significant. The codon 249 mutation in p53 was detected in 44.6% of
all plasma samples following the diagnosis of HCC. Collectively these data
suggest that nearly one half of the potential patients with this marker can be
detected at least 1 year and in 1 case 5 years prior to diagnosis.

Using a novel internal standard plasmid, plasma concentrations of p53
codon 249-mutated DNA were quantified by SOMA in 89 hepatocellular
carcinoma cases, 42 cirrhotic patients, and 131 nonliver diseased control
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subjects, all from highly aflatoxin-exposed regions of The Gambia (72). The
hepatocellular carcinoma cases had higher median plasma concentrations of
the p53 mutation (2,800 copies/mL; interquartile range: 500–11,000) com-
pared with either cirrhotic (500 copies/mL; interquartile range: 500–2,600)
or control subjects (500 copies/mL; interquartile range: 500–2,000). Levels
of >10,000 copies of p 53 codon 249 mutation/mL plasma were also signifi-
cantly associated with the diagnosis of HCC (odds ratio, 15; 95% confidence
interval, 1.6–140) when compared with cirrhotic patients. Potential applica-
tions for the quantification of this alteration of DNA in plasma include esti-
mation of long-term, cumulative aflatoxin exposure and selection of appro-
priate high-risk individuals for targeted intervention.

In many cases of HCC in China and Africa a double mutation in the
HBV genome, an adenine to thymine transversion at nucleotide 1762 and
a guanine to adenine transition at nucleotide 1764 (1762T/1764A), has
been found in tumors (142, 143). Kuang et al. (144) examined, with mass
spectrometry, the temporality of an HBV 1762T/1764A double mutation
in plasma and tumors. Initial studies found 52 of 70 (74.3%) tumors
from Qidong, PRC contained this HBV mutation. Paired plasma samples
were available for six of the tumor specimens; four tumors had the HBV
1762T/1764A mutation while three of the paired plasma samples were also
positive. The potential predictive value of this biomarker was explored
using stored plasma samples from a study of 120 residents of Qidong
who had been monitored for aflatoxin exposure and HBV infection. After
10 years passive follow–up, there were six cases of major liver disease and
all had detectable levels of the HBV 1762T/1764A mutation up to 8 years
prior to diagnosis. Finally, 15 liver cancers were selected from a prospective
cohort of 1,638 high-risk individuals in Qidong and the HBV 1762T/1764A
mutation was detected in 8 of the 15 cases prior to cancer. The persistence
of detection of this mutation was statistically significant. We have therefore
found that a prediagnosis biomarker of specific HBV mutations can be mea-
sured in plasma and suggest this marker for use as an intermediate endpoint
in prevention and intervention trials.

9. SUMMARY

HCC is a slowly developing process involving progressive genetic insults
and their resulting genomic changes (145, 146). HCC may not become evi-
dent until over 30 years after chronic infection with HBV, HCV, and/or afla-
toxin exposure. Chronic hepatitis and cirrhosis may only develop 5 years
before HCC is evident and globally, 70–75% of all HCC is accompanied by
cirrhosis (110, 145). This genomic heterogeneity may be a reflection of the
different etiologies of HCC and their effect upon the molecular regulation of
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hepatocytes (146). Over the past 25 years, the development and application
of molecular biomarkers reflecting events from exposure to manifestation
of clinical diseases has rapidly expanded our knowledge of the mechanisms
of HCC pathogenesis. These biomarkers will have increasing potential for
early detection, treatment, and prevention.

The molecular epidemiology investigations of aflatoxin, HBV, and HCC
probably represent one of the most extensive data sets in the field of environ-
mental carcinogenesis and this work may serve as a template for future stud-
ies of the role of other environmental agents in human diseases with chronic,
multifactorial etiologies (Fig. 3). The development of these biomarkers has
been based upon the knowledge of the biochemistry and toxicology of afla-
toxins gleaned from both experimental and human studies. These biomark-
ers have subsequently been utilized in experimental models to provide data
on the modulation of these markers under different situations of disease risk.
This systematic approach provides encouragement for design and successful
implementation of preventive interventions.
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Fig. 3. Mechanistic-based biomarkers of aflatoxin and HBV.
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