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Abstract

The development of animal models for PTSD and other traumatic stress 
related brain changes is an important part of advancing our neurobiological 
understanding of the disease process as well as recovery, resilience, and possible 
therapeutic targets. 

Although animal models for PTSD are limited to the assessment of measurable 
and observable behavioral parameters and cannot assess complex psychological 
symptoms such as intrusive thoughts, meaning and dreams, valid and reliable 
animal models offer a means for researching biomolecular, pathophysiological, 
and pharmacological features of the disorder in ways that are not feasible in 
human studies.

Trauma/stress-based Models were developed in an attempt to induce in the 
animal a state similar to PTSD by exposing animals to an equivalent of a trau-
matic experience. 

Mechanism-based models were developed considering potential brain mech-
anisms that may underlay the disorder. The most studied are enhanced fear condi-
tioning, impaired extinction and more recently, impaired contextualization. 
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Another important line of research addresses the question of additional factors 
that contribute to the susceptibility to develop PTSD. Genetic background and 
environmental factors have been studied and have led to the recognition of the 
importance of individual differences in susceptibility to develop the disorder. 

This chapter presents and discusses findings from various animal models, 
with the understanding that no single model encompasses in full the complexity 
of the disorder but that each of these models contributes to our understanding 
of PTSD.

  Key Words:   Amygdala ,  animal models ,  corticotrophin-releasing hormone , 
 HPA axis .   

  INTRODUCTION  

 Animal models of psychiatric disorders offer a complementary research 
modality that supports clinical research. To achieve a satisfactory degree of validity 
and reliability, animal models of complex and intricate psychiatric disorders must 
fulfill certain criteria. For example, the behavioral responses must be observable and 
measurable and must reliably reflect clinical symptomatology; pharmacological 
agents that are known to affect symptoms in human subjects should correct 
measurable parameters that model symptoms of the disorder with equal efficacy. 

 Developing an animal model for post-traumatic stress disorder (PTSD) is not 
a trivial issue. Diagnosis in human patients relies heavily on personal reports 
of thoughts, dreams, and images, which cannot be studied in rats. Furthermore, 
several of the typical symptoms of PTSD may be unique to humans and thus not 
be found in rats. Likewise, an important factor of the trauma in humans is the 
perception of the life-threatening potential of the situation. It is not clear whether 
rats can make this judgment or which stressors will be most effective for rats. 
In addition, there is as yet no clearly effective pharmacological treatment for 
PTSD. It is thus difficult to test a potential rodent model for its pharmacological 
predictability in relation to PTSD or other traumatic stress-related disorders. 

 Nevertheless, using animals to study PTSD holds advantages for several 
reasons. First, unlike many other mental disorders, the diagnostic criteria for 
PTSD specify an etiological factor, which is an exposure to a life-threatening, 
traumatic event  (  6  ) . In a model for PTSD, variables such as the quality and 
intensity of the stressor and the degree of exposure to it can be carefully con-
trolled, and the behavioral and concomitant physiological responses to a (valid) 
threatening stimulus could be studied. Second, little is known about pretrauma 
etiological aspects of the disorder since, naturally, the studies so far have 
focused on retrospective assessments of the patients after the onset of PTSD. 
An animal model will enable a prospective follow-up design, in which the disorder 
is triggered at a specified time and in a uniform manner, in controllable and 
statistically sound population samples, and enable the assessment of behavioral 
and gross physiological parameters. Moreover, unlike studies in human subjects, 
animal model studies enable the assessment of concomitant biomolecular 
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changes in dissected brain areas and the experimentation with pharmacological 
agents with potential therapeutic effects. 

 This chapter presents and discusses findings from various animal models of 
PTSD, which differ from one another in the rationale for their development. 
These models use different paradigms but show a range of behavioral and physio-
logical manifestations seen in PTSD patients.  

  TRAUMA-/STRESS-BASED MODELS  

 Stress paradigms in animals studies aim to model criterion A of the DSM 
diagnostic criteria  (  2  ) . They consist of extremely stressful experiences aimed to 
engender a sense of threat and helplessness in the animal. Some of these have 
focused more on the intensity of the experience, whereas others have combined 
this with an attempt to design an ethologically valid experience, one that an 
animal might encounter in its natural environment. 

 Exposure of rodents to predator stimuli (cat, cat odor, fox odor or trimethyl-
thiazoline, a synthetic compound isolated from fox feces) is fear provoking and 
stressful and produces long-lasting behavioral and physiological responses. 
Blanchard et al.  (  3–  8  ) , Adamec et al.  (  9–  14  ) , and others  (  15–  20  )  have estab-
lished the validity of this paradigm, in which adult rodents are exposed to feline 
predators for 5–10 min in a closed environment (i.e., inescapable exposure). 
The resultant freezing response mode is ethologically adaptive for animals 
when both “fight” and “flight” options are ineffective. Predator stress has eco-
logical validity in that it mimics brief, intense threatening experiences with last-
ing affective consequences  (  12–  13  ) . The predator stress paradigm has proven 
to be effective in inducing the expected range of behavioral and physiological 
responses  (  1,  9–  14  ) . These include freezing, avoidance, increased secretion of 
stress hormones, and changes in transmission from hippocampus via the ven-
tral angular bundle to the basolateral amygdala and from central amygdala to 
lateral column of the periaqueductal gray  (  3,  4,  10,  11,  13,  15–  19,  21–  29  ) . These 
pathways are of interest because neuroplastic changes within them are associ-
ated with aversive learning. Predator stimuli potency is comparable to that of a 
variety of paradigms in which the threat is more tangible and immediate, such 
as paradigms based on inescapable pain or electric shock, swimming and near-
drowning, a small raised platform, and even direct proximity to a kitten or a car 
(separated by a mesh divide or a solid divide with an opening large enough for 
the rodent to slip through). 

 Richter-Levin  (  30  )  developed an interesting stress model, the underwater 
trauma. Although rats naturally swim well and are able to dive and to cope 
with exposure to water, brief (30–45 s) uncontrollable restraint under water 
establishes an ethologically relevant traumatic experience. Exposure of rats to 
underwater trauma resulted in long-lasting heightened anxiety and context-
specific spatial memory deficits  (  30–  32  ) . Underwater trauma in a different 
(out-of-context) water container had no effects on the ability of rats to per-
form a spatial memory task in the water maze  (  30  ) . These results may explain 



136 Cohen and Richter-Levin

the lack of effect of inescapable tail shock procedure on spatial performance 
reported by others  (  33  )  because in their study the stressor was not associated 
with the context of the maze. Moreover, underwater trauma resulted in both 
behavioral and electrophysiological aversive effects. At 20 min after the trauma, 
the traumatized rats performed poorly in the spatial memory task in the water 
maze, and 40 min after the tetanic stimulation (100 min after the underwater 
trauma) they showed a reduced level of long-term potentiation (LTP). Thus, 
the underwater trauma induced electrophysiological alterations that resembled 
those observed in other models of stress  (  34–  37  ) . In addition, the impaired 
performance in the water maze was significantly correlated with the reduced 
ability to induce LTP. These findings of a strong correlation between LTP and 
spatial learning suggest that these two phenomena are related. However, it is 
possible that the trauma impairs performance not by affecting memory but by 
affecting memory-related processes such as attention. It was suggested that the 
underwater trauma could provide an important and potentially powerful model 
for understanding the mechanisms underlying the relationship among stress, 
cognition, and learning.  

  MECHANISM-BASED MODELS  

 Another approach in developing animal models of PTSD was to consider 
potential brain mechanisms that could underlay the disorder and to develop 
behavioral protocols that would mimic the activation of such mechanisms. 

  Enhanced Fear Conditioning 
 The persistence of the psychological and biological fear responses could 

not be satisfactorily explained by the stress theory, leading some to suggest 
that fear conditioning might underlay the phenomenon  (  38  ) . In certain 
respects, fear conditioning resembles PTSD  (  39  ) . During Pavlovian fear 
conditioning, a neutral conditioned stimulus (CS; usually a tone or light) 
is repeatedly paired with a stressful unconditioned stimulus (US; usually a 
foot shock). Once the CS-US association has been formed, the CS produces 
a conditioned fear response (CR; such as freezing [or movement arrest], 
enhancement of musculature [startle] reflexes, autonomic changes, analgesia 
and behavioral response suppression) in anticipation of the US  (  40,  41  ) . A 
CR is also evoked when the animal is placed in the environment in which the 
experiment took place. Translating to PTSD, the traumatic event (US) triggers 
an Unconditioned Response (UR) which is characterized by strong arousal 
and intense fear. This UR becomes associated with cues, such as smells, 
voices, or sights (CSs), that were present during the traumatic event. As a 
result of this pairing, these cues can trigger similar responses (CRs) even in 
the absence of the US  (  38,  42  ) . Thus, given theassociation between traumatic 
recall and seemingly unrelated stimuli and the ensuing fearful response, the 
mechanism of enhanced fear conditioning has often been suggested as a 
model for the reexperiencing phenomena in PTSD  (  43–  47  ) .  
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  Impaired Extinction 
 Conditioned fear responses can be extinguished by repeatedly presenting the CS 

without the US  (  39  ) . Pavlov, in his classic investigation of appetitive conditioning 
in dogs, observed that extinguished responses spontaneously recovered with 
the passage of time  (  39  ) . This suggested that extinction suppresses, rather than 
erases, the original CS-US association. Thus, extinction is an important behav-
ioral phenomenon that allows the organism to adapt its behavior to a changing 
environment  (  48  ) . Moreover, experimental extinction is a behavioral technique 
that leads to suppression of the acquired fear, that is, a decrease in the amplitude 
and frequency of a CR as a function of nonreinforced CS presentations  (  49  ) . 
More recently, impaired extinction learning has been proposed as an alternative 
mechanism for the formation of PTSD symptoms  (  42,  50–  52  ) . 

 Part of the attraction of fear conditioning was that much was concurrently 
being learned about the neurobiology of this animal paradigm. A large body of 
evidence from lesion, pharmacological, and neurophysiological studies indicate 
that the amygdala (corpus amygdaloideum) is involved in the acquisition and 
extinction of fear memory  (  53  )  and seems to have a pivotal role in the extinc-
tion of learned conditioning fear  (  54  ) . The hypothesis that lateral amygdala 
(LA) neurons encode fear memories, and conditional stimulus-elicited LA fir-
ing is contextually modulated after extinction has been demonstrated to require 
a functional hippocampus  (  55  ) . Based on this assertion, it has been proposed 
that contextual modulation of CS-evoked spike firing could be implemented 
by hippocampal modulation of medial prefrontal cortex (mPFC) control over 
the amygdala  (  56  ) . Alternatively, direct projections from the hippocampus to 
the amygdala may regulate fear expression after extinction  (  57  ) . Because the 
hippocampus is connected with many brain areas (including the mPFC and the 
amygdala), it is yet unclear which of these connections is important for the 
contextual modulation of extinction. This model proposes that the hippocampus 
performs an executive role in the balance of excitation and inhibition in fear 
circuits, in which the mPFC may come to inhibit LA neuronal activity during 
fear extinction that would otherwise excite the fear response  (  56  ) . Furthermore, 
the regulation of this fear is dependent on the context in which fear stimuli are 
encountered  (  56  ) . When animals are tested in contexts associated with extinc-
tion, the hippocampus drives mPFC inhibition of the LA  (  56  ) . However, if ani-
mals are presented with an extinguished CS outside the extinction context, the 
hippocampus may inhibit mPFC activation and thus promote excitation in the 
LA to renew the previously extinguished fear under these conditions  (  56  ) . In 
support of this, lesions of rat infralimbic (IL) cortex (analogous to the mPFC 
in humans) enhance renewal of extinguished appetitive Pavlovian responding 
when tested in the acquisition context following extinction in an alternative con-
text  (  58  ) . These results parallel previous observations of increased spontaneous 
recovery and reinstatement in animals with damage to the IL region  (  59  ) . More-
over, they are consistent with previous structural and functional neuroimaging 
studies in PTSD patients, indicating a hyperresponsive amygdala accompanied 
by hypoactivation of the PFC  (  39,  60–  72  ) . 
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 However, PTSD is a complex disorder that involves far more than a fear 
response and cannot be explained by a simple conditioning model.  

  Impaired Contextualization 
 A different mechanism that may contribute to the development of PTSD 

symptoms is the inability to appropriately “contextualize” the traumatic events 
in autobiographic memory. Clinically, PTSD patients relive their traumatic 
experiences repeatedly, unable to assimilate them as time- and context-limited 
events without negative implications for their future. For example, for a combat 
veteran, the sound of a passing helicopter in the current, objectively safe envi-
ronment can evoke the traumatic experience of combat that took place years 
earlier. Deficient embedding or contextualization of the traumatic events in 
autobiographic memory is thought to be one of the main problems in PTSD 
 (  73  ) . Indeed, suggestion of contextual memory deficits has been reported in the 
single prolonged stress (SPS) animal model of PTSD  (  74–  76  ) . However, direct 
testing of contextual cue processing is required to reliably demonstrate inability 
to contextualize memory in PTSD animal models. 

 We recently tested the hypothesis that exposure to a traumatic/stressful 
experience could impair contextual odor discrimination, and that this impair-
ment is associated with PTSD-like behavioral responses. To support this 
study, a novel experimental paradigm, differential contextual-odor condition-
ing (DCOC), was devised to examine the animals’ abilities to discriminate 
between the significance of an odor cue acquired in either safe or dangerous 
contextual environments when encountered in a novel, neutral environment. 
The odor cue consists of a cinnamon smell that could signal either reward or 
punishment (safety or threat signal) depending on the contextual cues that are 
present. Each of the conditions was learned in a different chamber. Animals 
were tested in a third, new chamber, so all other contextual cues were con-
trolled for, and the only previously encountered cue that was present was the 
cinnamon odor  (  77  ) . 

 Our findings demonstrated that, in this novel experimental paradigm, animals 
trained in the DCOC paradigm acquired the ability to discriminate between con-
textual cues signaling safe versus dangerous contextual environments, validat-
ing the DCOC paradigm for the assessment of contextualization. Exposure to 
severe traumatic stress (predator scent stress, PSS) interfered with processes 
related to subsequent adequate and flexible application of contextualization. 
Traumatized animals were unable to acquire the ability to accurately evaluate 
the contextual relevance of an odor stimulus or lost this ability after having 
effectively acquired it (Fig.  1 ). Thus, the DCOC paradigm is suggested as an 
effective animal model that would enable the study of the neurobiology of con-
textualization and of related pathology  (  77  ) .  

 Other animal models focus on modeling specific neurobiological sequelae 
or specific behavior findings reported in PTSD.   
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  ANIMAL MODELS BASED ON 
CHANGES IN NEUROBIOLOGICAL SYSTEMS  

  Hypothalamic-Pituitary-Adrenal Axis Response 
 The SPS model introduced by Liberzon et al  (  75,  76  ) , was developed to mimic 

specific hypothalamic-pituitary-adrenal (HPA) abnormalities and enhanced 
acoustic startle  (  74–  6  ) . In the SPS paradigm, rats are exposed sequentially to 
2 h of restraint, 20 min of swimming, and ether exposure until loss of con-
sciousness. One week after the experience, rats show increased startle responses 

  Fig. 1.    Percent freezing in the neutral arenas for control and DCOC animals and the 
effects of pretraining stress-exposure:  a  Percent free zingin five blocks of 1 min each.  b  
The area under the curve (AUC) during all training. The DCOC (differential contextual odor 
conditioning) rats displayed significantly less immobility than control (CON) or stress-
exposed DCOC animals in the neutral arena.  PSS  predator scent stress       
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to 50-ms, 108-dB tones, both when compared to a nonstressed control group 
and compared to their own startle responses before the SPS session  (  74  ) . Most 
important, the SPS model has been found to induce long-term alteration of 
the expression of glucocorticoid receptors in the hippocampal formation  (  6  ) . 
Whereas a long-term decrease was observed in type I (mineralocorticoid) recep-
tor, the type II (glucocorticoid) receptors showed a transient decrease (24 h), 
followed by enhanced expression at 7 days post-SPS. 

 Another study assessed aspects of the HPA axis response in strains with 
deficient and excessive HPA axis responsiveness compared to normal rats 
 (  78  ) . Stress responses were also examined in populations of inbred Lewis and 
Fischer rats and compared to outbred Sprague-Dawley rats. Lewis rats exhibit 
a reduced synthesis and secretion of corticotropin-releasing factor (CRF), 
leading to reduced plasma adrenocorticotropic hormone (ACTH) and reduced 
Corticosterone (CORT) release from the adrenal cortex, whereas Fischer rats 
possess a hyperresponsive HPA axis. Prevalence rates of extreme behavioral 
response (EBR) individuals were significantly higher in Lewis (50%) than in 
Fischer rats (10%) or controls (25%)  (  78  ) . However, exogenous administration 
of cortisol to Lewis rats before applying the stressor decreased the prevalence of 
EBR significantly (8%). These results suggest that blunted HPA axis response 
to stress may play a role in the susceptibility to experimentally induced 
PTSD-like behavioral changes, especially as these effects may be reversed by 
preexposure administration of corticosterone  (  78  ) .   

  MODELING ADDITIONAL FACTORS  

  Individual Differences in Response 
to an Exposure to a Traumatic Experience 

 It is important to note that, while PTSD requires exposure to a traumatic 
experience, the trauma alone is not sufficient for PTSD to develop since most 
individuals exposed to a traumatic event will not develop PTSD.  

  Identifying the Affected Ones: 
The Cutoff Behavioral Criteria Approach 

 The clinical diagnosis of PTSD, one of the most severe outcomes, is made only 
if an individual exhibits a certain number of symptoms from each of three quite 
well-defined symptom clusters over a certain period of time  (  2  ) . Irrespective of the 
study design or of the stress paradigm, animal studies have generally included the 
entire stress-exposed population as the study population, and the results discussed 
and conceptualized as involving this population versus “others,” although in prac-
tice, just as with humans, the exposed animals display heterogeneous responses. 
To more closely approximate the approach to understanding animal behavioral 
models to contemporary understanding of the clinical condition, Cohen and Zohar 
 (  79  )  conceived an approach to understanding the consequences of exposure to a 
variety of stress paradigms (exposure to a predator or its scent on soiled cat litter, 
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underwater trauma, and elevated platform) in a manner that would enable us to 
segregate the study animals into groups according to the degree of their response 
to the stressor, that is, the degree to which their behavior is altered or disrupted. 
To achieve this, behavioral criteria that would reflect something akin to clinical 
symptoms needed to be defined and then complemented by the definition of a 
series of cutoff behavioral criteria (CBC) reflecting severity of response, paral-
leling clinical inclusion and exclusion criteria applied to clinical research. The 
idea was to set apart the most clearly affected, that is, the EBR group from their 
minimal behavioral response (MBR) counterparts  (  26–  28,  32,  78–  88  ) . 

 The CBC method has been applied in a series of studies and has repeat-
edly enabled a greater degree of resolution in viewing data, a means to reflect 
them in starker contrast. First, there was highly significant overlap between 
animals showing EBRs and those with extreme biophysiological measures 
(i.e., HPA axis assays and heart rate variability [reflecting autonomic nervous 
system activity]), much more clearly so than when the exposed group was ana-
lyzed as a whole  (  26–  28  ) , (  79,  87  ) . Different types of traumatic stress paradigm 
could be seen to cause different proportions of EBR versus MBR animals, not 
unlike the “dose-response” phenomenon in the human condition, by which 
different forms of stressor are known to be associated with different incidence 
rates of PTSD. Serial assessments in the period after exposure to the stressor 
elicited a curve reflecting the incidence of EBR that parallels that seen in studies 
of acute stress reaction and subsequent development of chronic disorders: 
Initially, almost all animals responded “extremely” severely, and over the next 
30 days the incidence dropped to an unvarying 25%. This rate of incidence has 
recurred in all the studies and parallels rates of incidence of PTSD in the general 
population exposed to trauma (estimated to be between 15% and 35% for most 
types of trauma throughout the Western Hemisphere).  

  Modeling Early Life Stress as a 
Risk Factor for Developing PTSD 

 Separating out the more clearly affected animals also elicited significantly 
different effects on the incidence of chronically disordered behavior when 
recurrent exposure to trauma occurred in early childhood or later life, both 
compared to single exposure: In both cases earlier exposure had a greater effect, 
as is seen in many studies of human subjects exposed to trauma in childhood 
and youth  (  81  ) . 

 An important characteristic of stress paradigms is the age at which the 
animals are exposed to the stressor  (  89  ) . There are many indications that across 
the life span there are specific windows of vulnerability when high levels of 
stress have an increased impact on further development  (  89–  94  ) . Recent years 
have witnessed growing interest in effectively modeling in animals the long-
term effects of childhood emotional trauma on stress responses in adulthood. 
Most studies concerned with the impact of early life stress on subsequent stress 
responses in adulthood in rodents have focused on the postnatal preweaning 
period (i.e., 3–14 days) and involve some form of maternal deprivation or 
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maternal separation producing acute and long-term effects that vary with the 
pups’ age at exposure to stress  (  95–  97  ) . However, marked differences exist 
between neonate rats and infants’ stress response mechanisms  (  98  ) . For exam-
ple, rat pups’ HPA axis is characterized by a silent hyporesponsive period  (  99  ) , 
while in humans there is no conclusive evidence of a hyporesponsive period in 
the HPA axis course of development  (  100  ) . Indeed, it has been suggested that 
the ages of 3 to 14 days in the rat roughly correspond to the 23rd week of gesta-
tion in humans. Furthermore, psychiatric studies often refer to human childhood 
rather than infancy when investigating the traumatic history of stress-related 
psychopathologies in patients  (  101,  102  ) . Thus, Richter-Levin and colleagues 
 (  81,  103–  107  )  have started to examine the consequences of stress exposure at a 
later early life period: the juvenile or the early adolescent period. The authors 
reported that the combination of juvenile and adulthood exposures to stress 
increased anxiety levels, in comparison not only with control unstressed rats 
but also with rats exposed to stress twice in adulthood. Tsoory and Richter-
Levin  (  107  )  showed that exposure to stress during juvenility (27–29 days) 
has a stronger long-term deleterious effect on learning under stressful condi-
tions in adulthood than exposure to the same stressor during “adolescence” 
(33–35 days). The physiological changes associated with juvenile stress have 
also been reported and include increases of Dehydroepiandrosterone-sulphate 
(DHEA-S) concentrations in both the hypothalamus and the entorhinal 
cortex  (  103  ) , reduced levels of corticosterone  (  108  ) , altered autonomic nervous 
system responses (heart rate and heart rate variability)  (  81  ) , and downregula-
tion of brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid 
(mRNA) in the hippocampal CA1 subregion  (  108  ) . These physiologic changes 
presumably mediate clinical manifestations of PTSD.  

  The Contribution of Genetic Background 
 Twin and family studies of PTSD patients raised questions regarding a possi-

ble genetic predisposition to PTSD, although the relative contributions of geno-
type and environment to endophenotypic expression are unclear  (  109  ) .  

  Post-Traumatic Stress Behavioral 
Responses in Inbred Mouse Strains 

 To examine the importance of the genetic background, six inbred strains 
of mice frequently employed in transgenic research were assessed at baseline 
and 7 days after PSS exposure  (  84  ) . Inbred strains are expected to demonstrate 
about 97.5% homozygosity of loci as the result of at least 20 generations of 
sibling matings. The results, however, revealed an unexpectedly high degree of 
within-strain individual heterogeneity at baseline and in the degree of response 
to stress. This within-strain phenotypic heterogeneity most likely implies 
that environmental factors play a significant role in characterizing individual 
responses in spite of the significant strain-related (i.e., genetic) underpinnings. 
The authors thus suggested that heritable factors may be involved only in part 
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of the endophenotypes associated with the PTSD-like phenotype and may be 
influenced through a highly indirect route with considerable potential for inter-
action with environmental variables  (  110,  111  ) . 

 These data imply that the attempt to identify “genetic” versus “environmen-
tal” causality as independent main effects is probably logically and procedur-
ally flawed. The evaluation of genetic effects on behavioral phenotypes should 
consider interactions among genes as well as interactions between genes and 
environment  (  84  ) .   

  CONCLUSION  

 The development of animal models for PTSD and other traumatic stress-
related brain changes is an important part of advancing our neurobiological 
understanding of the disease process as well as recovery, resilience, and possible 
therapeutic targets. Ultimately, the “optimal” animal model should incorporate 
trauma-like exposure, will mimic pathophysiological and behavioral findings 
present in PTSD, and will presumably involve neurobiological mechanisms that 
participate in PTSD pathophysiology. However, no single widely accepted ani-
mal model of PTSD has been established to date, and there is an ongoing debate 
over what constitutes a valid animal model for this disorder. 

 Although animal models for PTSD are limited to the assessment of meas-
urable and observable behavioral parameters and cannot assess complex psy-
chological symptoms such as thought, meaning and dreams, valid and reliable 
animal models offer a means for researching biomolecular, pathophysiological, 
and pharmacological features of the disorder in ways that are not feasible in 
human studies.      
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