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  Abstract 

 Stress is associated with the activation of a number of central physiological 
systems, which act to enhance arousal and modulate attentional, memory, and 
other behavioral processes. The net consequence of these actions better permits 
the organism to contend with a challenging situation and react promptly and 
effectively when similar conditions are reencountered. It has long been known 
that stress is associated with a robust activation of the locus coeruleus and other 
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noradrenergic systems. Moreover, evidence indicates a prominent involvement 
of central noradrenergic systems in a variety of behavioral and cognitive proc-
esses associated with stress, including arousal, memory, and attention. Under 
normal conditions, these actions are likely beneficial to the individual. How-
ever, under conditions of extreme stress/trauma, stressor-induced sensitization 
of noradrenergic systems and long-term actions of norepinephrine may well 
prove maladaptive. Consistent with this hypothesis, available evidence indicates 
a prominent involvement of noradrenergic systems in the behavioral pathol-
ogy associated with various stress-related disorders, particularly post-traumatic 
stress disorder (PTSD). In particular, there is strong evidence for an involvement 
of noradrenergic systems in PTSD-related hyperarousal, intrusive memories, and 
sleep disturbances. Consistent with this, recent studies suggest that pharmaco-
logical disruption of noradrenergic neurotransmission may well be efficacious 
in treating these symptoms of PTSD. Combined, available information indicates 
that the central noradrenergic systems likely contribute to a broad spectrum of 
behavioral symptoms of PTSD and that pharmacological treatments targeting 
noradrenergic neurotransmission will prove clinically beneficial.  

  Key Words:    α -Receptor ,  basal forebrain ,   β -receptor ,  locus coeruleus ,  long-
term potentiation ,  norepinephrine .    

  OVERVIEW  

 The current conceptualization of stress as a behavioral state elicited by chal-
lenging or threatening events arises from nearly a century of research, starting 
with the seminal work of Cannon  (  1  )  and Selye  (  2  ) . These studies identified 
physiological systems that were similarly affected by disparate environmental 
events, which had in common a potential to threaten animal well-being. Initially, 
emphasis was placed on stressor-induced activation of peripheral systems, pri-
marily endocrine systems. This work identified the activation of both peripheral 
catecholamine systems and the pituitary-adrenal axis as hallmark features of 
the state of stress. The activation of these systems results in enhanced ability 
of the animal to physically contend with a challenging situation. More recently, 
emphasis has been placed on the neurobiology of the affective, cognitive, and 
behavioral components of stress. 

 This raises the long-standing issue of which psychological features define the 
state of stress. In contrast to the well-delineated physiological indices of stress, 
the affective and cognitive features of stress remain less clear. The extent to which 
stress has an affective component that can or cannot be dissociated from anxi-
ety is not clear. Regardless of the exact configuration of cognitive and affective 
responses associated with stress, it appears that a heightened level of readiness for 
action is paramount to a state of stress. A prominent component of this prepara-
tory state is an  elevated level of arousal , defined for the purposes of this review as 
a heightened sensitivity to environmental stimuli. 

 Sustained arousal can be a considerable drain on physiological resources, 
regardless of whether it is precipitated by aversive or pleasant events. Indeed, the 
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concept of eustress was introduced to acknowledge that pleasant events that are 
nonetheless challenging and arousing can produce a physiological state  similar 
to that seen in the presence of aversive conditions (distress;  3) . Regardless of 
whether negative affect is an obligatory component to the state of stress, there 
is a strong relationship between arousal level and a variety of state-dependent 
processes affected in stress, including attention, memory, and sensory informa-
tion processing. These observations suggest the working hypothesis that at least 
a subset of the physiological and cognitive/behavioral components of stress may 
be independent of affective valence (pleasant vs. unpleasant) and more closely 
aligned with arousal level, motivational state, or the need for action. 

 It has long been known that stress is associated with a robust activation of the 
locus coeruleus (LC) and other noradrenergic systems, resulting in increased 
rates of norepinephrine (NE) release widely throughout the brain. Moreover, 
these noradrenergic systems are known to modulate a variety of behavioral and 
cognitive processes associated with stress. Consistent with this, evidence dem-
onstrates a causal role of brain noradrenergic systems in a variety of behavioral 
and cognitive components of stress. Under normal conditions, these actions 
are likely beneficial to the individual. However, under conditions of extreme 
stress/trauma, actions of NE may well prove maladaptive. Consistent with this 
hypothesis, available evidence indicates a prominent involvement of noradren-
ergic systems in the behavioral pathology associated with various stress-related 
disorders, particularly post-traumatic stress disorder (PTSD).  

  THE LOCUS COERULEUS-NORADRENERGIC SYSTEM  

 Norepinephrine is a prominent neuromodulatory transmitter within the brain. 
NE acts at three major receptor families,  α  

1
 ,  α  

2
 , and  β , each comprised of multi-

ple subtypes. The  α  
1
 - and  β -receptors exist primarily postsynaptically, whereas 

 α  
2
 -receptors are present both pre- and postsynaptically. The LC is the major 

source of brain NE  (  4  ) . This nucleus is composed of a small number of neu-
rons, approximately 1,500 per nucleus in rat, several thousand in monkey, and 
10,000–15,000 in humans. Despite these relatively small numbers, LC neurons 
possess immensely ramified axons, permitting the nucleus to project broadly 
throughout the neuraxis  (  4  ) , excluding the basal ganglia. Importantly, the LC 
is the sole provider of NE to hippocampus and neocortex, regions critical for 
higher cognitive and affective function. Despite the widespread distribution of 
noradrenergic efferent fibers within the brain, there is substantial regional specif-
icity of noradrenergic fiber distribution across cortical and subcortical structures  (  5  ) . 
This regional heterogeneity likely has important functional ramifications. 

  Discharge Activity of LC Neurons 
 LC neurons fire in two distinct activity modes: tonic and phasic.  Tonic  activ-

ity is characterized by relatively low-frequency, sustained, and highly regular 
discharge patterns. Tonic discharge activity is state dependent, with LC neurons 
displaying highest discharge rates during waking, slower rates during slow-
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wave sleep, and minimal activity during rapid eye movement (REM) sleep  (  6 , 
 7  ) . Within waking, sustained increases in tonic discharge rates are elicited by 
environmental stimuli that elicit sustained increases in electroencephalographic 
(EEG) and behavioral indices of arousal  (  7,  8  ) . 

 LC neurons also display  phasic  alterations in discharge rates in response to 
both unconditioned and conditioned salient sensory stimuli  (  7,  9  ) . These phasic 
responses are observed with a relatively short latency and are comprised of 
a brief burst of two or three action potentials followed by a sustained period 
of suppression of discharge activity (approximately 300–700 ms). Phasic 
responses are observed in association with overt attending to a novel stimulus 
within a particular environmental location (e.g., an orienting response). Phasic 
responses are less robust during lower levels of arousal/vigilance  (  10  )  as well as 
higher levels of tonic discharge activity, including in stress. For example, both 
hypotension stress and corticotropin-releasing hormone elevate tonic discharge 
activity and reduce sensory-driven phasic discharge  (  11  ) . Thus, stress likely 
interferes with behavioral processes dependent on phasic LC discharge.  

  Plasticity of the LC-Noradrenergic System in Stress 
 Central noradrenergic systems possess robust compensatory mechanisms 

that permit adjustment to long-term alterations in activity. These alterations are 
observed in response to damage (e.g., lesions) as well as environmental (e.g., 
stress) and pharmacological (e.g., antidepressant) manipulations. In the case of 
stress, prolonged or repeated exposure to stressors such as foot shock, cold, or 
restraint decrease  β -receptor-driven accumulation of cyclic adenosine mono-
phosphate (cAMP)  (  12  )  The stressor-induced downregulation of the  β -dependent 
cAMP response appears to result largely from a reduction in  α  

1
 -receptor 

potentiation of the  β -receptor cAMP response  (  12  ) . Repeated exposure to a 
stressor also attenuates LC neuronal responsivity and NE release to the same 
(homotypic) stressor  (  13,  14  ) . Although repeated presentation of certain stres-
sors results in tolerance to the LC-activating actions of those stressors, enhanced 
responsivity of LC neurons to repeated immobilization stress has been observed 
 (  15  ) , indicating that tolerance to a given stressor is not obligatory. 

 Tolerance to stressor-induced LC activation is in contrast to the ability of 
both acute and chronic stressors to increase levels of the rate-limiting enzyme 
in NE biosynthesis, tyrosine hydroxylase  (  16  ) . Thus, although chronic/repeated 
stressors do not tend to increase LC neuronal discharge, they do result in 
increased capacity of the system to release NE due to elevated rates of NE 
synthesis (for review,  see  Ref.  5) . These observations raise the question of 
which conditions would utilize an increase in NE synthetic capacity. Insight 
into this issue is provided by the observation that, in contrast to homotypic 
stressors, repeated/chronic stress results in an increased responsiveness of the 
LC-noradrenergic system to presentation of a  different  (heterotypic) stressor. For 
example, chronic cold stress results in larger increases in NE efflux in response 
to tail shock  (  14  )  or tail pinch  (  17  ) . These observations are consistent with an 



Chapter 10 / The Locus Coeruleus- Noradrenergic System and Stress 217

increase in responsivity of LC neurons to excitatory input seen in anesthetized 
animals that had been previously exposed to chronic stress  (  18  ) . 

 Thus, during prolonged exposure to a stressor, the LC-noradrenergic system devel-
ops an increased capacity to respond to additional challenges. As reviewed later, stress-
related sensitization of noradrenergic systems may play a critical role in PTSD.  

  Sensitivity of the LC-Noradrenergic System to Appetitive Stimuli 
 Extensive evidence indicates a robust activation of the LC-noradrenergic sys-

tem by a variety of stressors (for review,  see  Ref.  5) . The early demonstration of 
a sensitivity of LC neurons to stressors suggested a possibly selective role of the 
LC in stress and led to a number of hypotheses concerning alarm- or anxiety-
specific functions of these neurons. However, subsequent studies in unanes-
thetized animals demonstrated a sensitivity of tonic and phasic LC discharge 
as well as NE release to both appetitive as well as aversive stimuli  (  7,  19,  20  ) . 
Combined, these observations suggest that both tonic and phasic LC-NE neuro-
transmission is more closely related to the overall salience, arousing or motivat-
ing nature of a given stimulus rather than affective valence.   

  AROUSAL-ENHANCING ACTIONS OF 
THE LC-NORADRENERGIC SYSTEM  

 Enhanced arousal is a primary component of the state of stress. The fact that 
LC neurons increase firing rates in anticipation of waking and waking-associ-
ated forebrain activation suggests the hypothesis that LC neurons help induce 
the waking state. Substantial evidence collected since 1990  provides strong sup-
port for this hypothesis. 

  Noradrenergic Modulation of Cortical and Thalamic 
Neuronal Activity State In Vitro 

 Cortical and thalamic neurons display distinct activity modes during sleep-
ing and waking. Thus, during slow-wave sleep, these neurons are hyperpolar-
ized and display a burst-type activity mode that is associated with a relative 
insensitivity to incoming sensory information. In contrast, during waking these 
neurons display a single-spike mode associated with the efficient and accu-
rate processing of sensory information  (  21,  22  ) . Consistent with the described 
increase in LC discharge rates during waking, in vitro, NE induces a shift in the 
firing pattern of cortical and thalamic neurons from a burst mode to a waking-
like single spike mode  (  23  ) .  

  Effects of LC Neuronal Discharge Activity on EEG 
and Behavioral Indices of Arousal 

 The small size of the LC, situated in close proximity to a variety of brain 
stem structures, presents a substantial challenge for the selective  manipulation 
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of LC neuronal discharge rates. A combined recording/infusion probe was 
developed that permitted a greater degree of anatomical localization of intratis-
sue infusions  ( 24     ) . Using this approach, it was demonstrated that  unilateral  LC 
activation, produced by a small infusion of the cholinergic agonist bethanechol, 
elicits a robust  bilateral  activation of cortical and hippocampal EEG ( 25) . In 
contrast, bilateral suppression of LC neuronal discharge activity via infusion of 
an  α  

2
 -agonist produces a robust increase in slow-wave activity in cortical and 

hippocampal EEG ( 78 ). Combined, these and other observations indicate the 
LC is a potent modulator of forebrain EEG state, with unilateral LC neuronal 
discharge activity causally related to the bilateral maintenance of EEG activity 
patterns associated with arousal.  

  NE Acts Within the Basal Forebrain to Promote Arousal 
 A number of subcortical structures have been implicated in the regulation 

of cortical and hippocampal activity state, including the general region of the 
basal forebrain encompassing the medial septal area (MSA)/diagonal band of 
Broca, the general region of the anterior-medial hypothalamus, encompassing 
the medial preoptic area (MPOA), and the substantia innominata (SI; for review, 
 see  Ref.  5) . Moreover, each of these regions receives a prominent noradrenergic 
innervation from the LC  (  26  ) . Therefore, a series of microinfusion studies was 
conducted to assess the degree to which NE acts within these regions to modu-
late the behavioral state. 

 These studies demonstrated potent EEG-activating and wake-promoting 
actions of NE via actions at both  β - and  α  

1
 -receptor subtypes located within 

MSA  and MPOA, but not SI. For example, in sleeping, unanesthetized rats, 
 β - and  α  

1
 -receptor stimulation within MSA and MPOA produced a robust and 

additive increase in time spent awake (for review,  see  Ref.  5) . In contrast, when 
infused into SI, neither NE, a  β -agonist, an  α  

1
 -agonist, or the indirect noradren-

ergic agonist amphetamine exerted wake-promoting actions (for review,  see  
Ref.  5) . It is important to note that although the LC provides a majority of 
noradrenergic input to the MPOA and MSA, two areas within which NE acts to 
promote arousal, other noradrenergic nuclei also contribute to the noradrenergic 
innervation of these regions (e.g.,  26) . Thus, although the LC plays a critical 
role in the regulation of arousal, other noradrenergic systems likely also exert 
arousal-promoting actions. 

 NE Is Necessary for Alert Waking: Synergistic Sedative Actions 
of  α  1 - and  β -Receptor Blockade 

 As described,  α  
1
 - and  β -receptors exert additive wake-promoting actions. 

Consistent with this, combined  β -receptor and  α  
1
 -blockade blockade (intracere-

broventricular timolol and intraperitoneal prazosin, respectively) exerts additive 
sedative actions, resulting in a profound increase in large-amplitude slow-wave 
activity in cortical EEG in animals exposed to an arousal-increasing and stress-
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inducing, brightly lit novel environment  (  27  ) . This increase in slow-wave activity 
is in contrast to the minimal EEG effects observed with  β -receptor blockade 
alone or the high-voltage spindles elicited by  α  

1
 -receptor blockade  (  27  ) .  

  Enhanced LC Discharge Activity Contributes to Stressor-Induced 
Activation of the Forebrain 

 The described observations suggest a potentially critical role of the LC-NE 
system in stressor-induced arousal. Consistent with this hypothesis, bilateral 
suppression of LC neuronal activity, via peri-LC infusions of an  α  

2
 -agonist (clo-

nidine), prevented EEG activation elicited by hypotension-stress in the anes-
thetized rat  (  28  ) . These results provide direct support for a causal role of the 
LC-noradrenergic system in stressor-induced arousal.  

  Summary: LC Modulation of Arousal in Stress 
 A large body of information demonstrates a prominent role for the LC-
noradrenergic system in the modulation of EEG and behavioral indices of 
arousal. Additional evidence demonstrates a critical role of the LC in stressor-
induced activation of the forebrain. Combined, these observations suggest the 
prominent participation of this neurotransmitter system in stressor-induced 
increases in arousal. Stressor-induced sensitization of the LC-NE system could 
contribute to elevated arousal levels associated with PTSD and other stress-
related disorders.   

  THE LC-NORADRENERGIC SYSTEM MODULATES SENSORY 
INFORMATION PROCESSING WITHIN CORTICAL 

AND THALAMIC CIRCUITS  

 During periods of environmental demand (e.g., stress), information collection 
and processing are critical for guidance of appropriate behavior. Sensory infor-
mation processing is highly state-dependent (for review,  see  Ref.  5) . Given the 
described state-dependent nature of the LC-NE system, this system may well 
contribute to state-dependent modulation of sensory information processing 
during stress. 

 A large body of work indicates complex modulatory actions of NE on discharge 
properties of cortical and thalamic sensory neurons (for review,  see  Ref.  5) . 
These actions include increasing the “signal-to-noise” ratio of evoked respond-
ing (both excitatory and inhibitory responses) as well as “gating” of neuronal 
responses to previously subthreshold stimuli. Importantly, the electrophysio-
logical actions of NE on sensory cortical neuronal activity follows a nonmonot-
onic, inverted U-shaped dose-response relationship, similar to that described for 
noradrenergic modulation of cognitive function  (  29  ) . Combined, these observa-
tions indicate that, within neocortex, NE exerts a complicated array of modula-
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tory actions. Such actions are likely of particular importance under conditions 
of threat/stress when a rapid and accurate behavioral response is required.  

  MODULATORY ACTIONS OF THE LC-NORADRENERGIC 
SYSTEM ON NEURONAL PLASTICITY  

 Long-term survival requires behavioral, and thus neural, plasticity. As described, 
the LC-noradrenergic system displays long-term, stressor-induced alterations in 
a variety of cellular processes. Additional information indicates that the LC 
system modulates long-term alterations in synaptic efficacy and gene transcrip-
tion posited to underlie learning and memory. Combined, these actions may 
contribute to stress-related long-term alterations in behavior. 

 Long-Term Modulatory Actions of the LC-Noradrenergic System 
on  Synaptic Efficacy Within Neuronal Ensembles 

 Long-lasting, experience-dependent alterations in responsiveness to affer-
ent information are observed within large-population neuronal ensembles. For 
example, long-term potentiation (LTP) refers to a long-lasting increase in syn-
aptic strength that results when excitatory synapses are rapidly and repetitively 
stimulated for brief periods (tetanic stimulation). Experimentally, this has been 
most intensively studied within the hippocampal formation and is manifested as 
an increase in the population spike to subsequent punctate stimulation of hip-
pocampal afferent paths. That LTP is readily observed in a structure believed 
to be critical for memory function has stimulated interest in LTP as a possible 
mechanism underlying memory. 

 The LC-NE system is a potent modulator of LTP. For example, when tested 
in vitro, depletion of NE decreases LTP in the dentate gyrus  (  30  ) , whereas NE 
application elicits a  β -receptor-dependent enhancement of LTP in CA3  (  31  ) . NE 
also produces a long-lasting enhancement of synaptic efficacy in both the den-
tate gyrus and CA1 region of the hippocampus in the absence of tetanic stimula-
tion  (  32,  33  ) . In vivo, enhancement of NE neurotransmission by LC activation, 
 α  

2
 -antagonist administration, or direct application of NE results in an increase 

in the population spike recorded in the dentate gyrus  (  32,  34  ) . These last actions 
involve both  β - and  α  

1
 -receptors  (  35,  36  ) . 

 An additional form of NE-dependent plasticity has also been described in neocor-
tex in which NE elicits a long-term synaptic depression of the population response 
recorded from layer III of visual cortex  (  37  ) . Overall, these observations indicate a 
potentially prominent role of the LC-NE system in mediating long-lasting modi-
fications in neurotransmission within large populations of forebrain neurons. It is 
particularly intriguing that these actions are observed in structures implicated in 
learning and memory. Such actions may be particularly critical for dealing rapidly 
and effectively when environmental situations that pose a threat (e.g., stress) are reen-
countered. Excessive activation of these systems may manifest in an excessive and 
potentially detrimental sensitivity to otherwise mild environmental events/stressors. 
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  Facilitatory Actions of the LC-Noradrenergic System 
on  Transcription Rates of Immediate-Early 

and Other  Plasticity-Related Genes 
 Long-term alterations in behavior likely involve alterations in rates of gene tran-
scription and protein production. A set of immediate-early genes (IEGs) has 
been identified that are activated rapidly by a variety of neuromodulators. Many 
of these genes act as “transcription regulators,” regulating gene transcription 
rates. Through these actions, IEGs may provide an intervening step through 
which relatively short-term alterations in neuronal activity are transduced into 
long-term alterations in neuronal function and behavior  (  38  ) . 

 Evidence indicates a prominent role of the LC-NE system in the regulation 
of IEGs. For example, increases in NE release result in an increase in  messenger 
ribonucleic acid (mRNA) and protein levels for a variety of IEGs in the neo-
cortex and amygdala (for review,  see  Ref.  5) . Interestingly, stress is associated 
with similar activating effects on IEG expression  (  39–  41  ) . Importantly, the acti-
vating effects of stressor-induced increases in NE neurotransmission on IEG 
expression are attenuated with pretreatment of either  β - or  α  

1
 -antagonists or 

LC lesions  (  42  ) . These observations indicate that stressor-induced alterations in 
IEG expression are dependent on stressor-induced increases in NE release.   

  MODULATORY ACTIONS OF THE LC-NORADRENERGIC 
SYSTEM ON COGNITIVE PROCESSES  

   The described actions of the LC efferent system suggest a widespread influence 
of this neurotransmitter pathway on information processing within a variety of 
LC terminal fields. Indeed, substantial evidence suggests the LC-noradrenergic 
system plays a prominent role in a variety of behavioral/cognitive processes 
related to the collection, processing, retention, and utilization of sensory infor-
mation. Importantly, actions of NE appear to play a prominent role in stressor-
induced alterations in at least a subset of these processes. 

  The LC-Noradrenergic System Modulates Attention 
 The ability to regulate attention is an important aspect of behavior. This may 
be particularly true under stressful conditions that pose a threat to the animal. 
The actions of NE on cortical/thalamic neuronal activity reviewed indicate 
that NE  facilitates processing of relevant sensory signals. These observations 
suggest that the LC-noradrenergic system might enhance cognitive function 
under “noisy” conditions in which irrelevant stimuli could impair performance. 
Results from pharmacological and lesion studies conducted in rodents, mon-
keys, and humans largely support these hypotheses. For example, NE deple-
tion produces deficits in the performance on a variety of tasks when irrelevant 
stimuli are presented during testing (for review,  see  Ref.  43) . Thus, the addition 
of distracting visual stimuli at the choice point in a T maze produces a greater 
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disruption of  performance in NE-depleted rats than in sham-treated animals 
(for review,  see  Ref.  5) . Similarly, the presentation of irrelevant auditory stimuli 
impairs sustained attention in rats with forebrain NE depletion, although these 
animals perform normally under nondistracting conditions  (  44  ) . Further, NE 
depletion increases conditioned responses to irrelevant stimuli while decreasing 
responses to relevant stimuli  (  45–  47  ) . Thus, overall, impairment of noradren-
ergic neurotransmission has an impact on attentional and other cognitive tasks 
under conditions associated with high-demand or increased arousal. 

 The LC-noradrenergic system may be particularly sensitive to novel envi-
ronmental stimuli. For example, enhanced LC discharge rates are observed 
when rats encounter novel stimuli within a familiar environment  (  48  ) . Further, 
pharmacological manipulations that enhance NE release increase physical 
contact/interaction with a novel stimulus located within a familiar environ-
ment  (  49  ) . In contrast, when examined in a novel environment, enhanced 
NE neurotransmission decreases attention to an individual object, possibly 
reflecting enhanced scanning of the environment  (  50,  51  ) . Interestingly, stress 
produces a similar decrease in focused attention that is reversed by  α  

1
 -recep-

tor blockade  (  51  ) . 
 Combined, these observations suggest an involvement of noradrenergic sys-

tems in the regulation of attentional processes, including sustained or focused 
attention. Initial electrophysiological recordings suggested the potential involve-
ment of both phasic and tonic LC discharge and performance in a vigilance task  (  9  ) . 
In these studies, moderate levels of tonic discharge, correlating with moderate 
arousal levels, were associated with high levels of performance and robust phasic 
LC responses. When tonic levels were too low (sedation) or too high (high 
arousal, scanning attention), phasic discharge was reduced, and performance 
was impaired. Although this was originally interpreted to suggest a role for both 
phasic and tonic discharge in sustained attention, subsequent work indicated 
that phasic LC discharge most closely correlates with behavioral responding 
in this task rather than attention to a sensory stimulus  (  52  ) . Nonetheless, these 
studies indicate a sensitivity of sustained attention to fluctuations in tonic LC 
discharge, indicating an optimal level of tonic LC discharge is necessary for 
maximal levels of sustained attention.  

  The LC-Noradrenergic System Modulates Working Memory 
 The prefrontal cortex (PFC) is involved in a variety of cognitive, behavioral, 
and physiological processes, many of which are affected in stress. NE modu-
lates PFC neuronal activity and PFC-dependent behavior (for review,  see  Ref. 
 53) . The actions of NE on PFC-dependent behavior have been most compre-
hensively studied in the context of working memory. A large body of work 
demonstrates NE acts directly within the PFC to produce an inverted U-shaped 
modulation of working memory, with both low and high levels of NE neuro-
transmission associated with impaired working memory (for review,  see  Ref. 
 53 ). For example, decreased NE neurotransmission impairs working memory, 
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an effect that is reversed by local infusion of postsynaptic-preferring  α  
2
 -ago-

nists (e.g., guanfacine;  53) . Conversely, stressor-induced impairment in work-
ing memory is reversed by intra-PFC infusion of  α  

1
 -antagonists  (  54,  55  ) . Based 

on these and other observations, it has been hypothesized that moderate levels 
of NE release associated with nonstress conditions activate high-affinity  α  

2A
 -

receptors, whereas release of higher levels of NE (i.e., stress) activates lower-
affinity  α  

1
 -receptors  (  53  ) .  

  LC-Noradrenergic System Modulates Arousal-Related Memory 
 Memory strength can be enhanced by stressful and emotionally arousing con-
ditions. Steroid (e.g., glucocorticoids) and catecholamine (e.g., epinephrine) 
hormones participate in this arousal-related enhancement of memory (for 
review,  see  Ref.  56) . Circulating epinephrine stimulates release of central NE 
via stimulation of  β -receptors located on vagal afferents  (  56  ) . Evidence indi-
cates that NE action at  β -receptors within the amygdala plays a critical role in 
the memory-enhancing actions of both arousing stimuli and circulating epine-
phrine  (  56  ) . The basolateral nucleus of the amygdala appears to be a critical site 
within the amygdala for the memory-modulating effects of NE. Thus, posttrain-
ing infusions of NE into the basolateral nucleus of the amygdala enhance spatial 
learning, while  β -antagonist infusions impair performance in this task  (  57  )  as 
well as an inhibitory avoidance task  (  58,  58  ) . Further, glucocorticoid-induced 
enhancement of performance in an inhibitory avoidance task is prevented by 
the blockade of basolateral amygdala  β  

1
 - or  β  

2
 -receptors  (  60  ) . Basolateral 

amygdala  α  
1
 -receptors also facilitate performance in an inhibitory avoidance 

task  (  61  ) . This facilitatory action of  α  
1
 -receptors on memory appears to result 

from the  α  
1
 -dependent enhancement of  β -receptor-mediated cAMP production 

 (  61,  62  ) . In support of a role of NE in emotion-related memory in humans, 
Cahill, Prins, Weber, and McGaugh  (  63  )  demonstrated that  β -receptor blockade 
in human subjects blocks the enhanced memory typically observed with emo-
tionally activating images. 

 These observations indicate a prominent role of NE, via actions within the 
basolateral amygdala, in the consolidation of memory under high-arousal, 
stressful conditions. Memory involves not only the consolidation of informa-
tion following an event, but also the retrieval and subsequent reconsolidation 
of that information  (  64  ) . Additional information suggests that the modulatory 
actions of basolateral amygdala NE on memory consolidation are not univer-
sally observed across different types of memories. Thus, in a conditioned fear 
(conditioned freezing) paradigm, posttraining blockade of basolateral amygdala 
 β -receptors had minimal effects on auditory fear conditioning  (  65  ) . In contrast, 
intrabasolateral amygdala  β -receptor blockade interfered with reconsolidation 
in this paradigm  (  65  ) . 

 Combined, these observations suggest NE acts within the basolateral amy-
gdala to strengthen consolidation or reconsolidation of aversive and emotion-
ally arousing events.   
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  THE LC IN STRESS-RELATED DISORDERS: PTSD  

  Introduction 
 The information reviewed indicates noradrenergic systems have an impact on 
widespread neural circuits involved in the regulation of arousal and the collec-
tion, processing, and responding to sensory information. Moreover, noradrener-
gic systems participate in a variety of behavioral, cognitive, and physiological 
responses associated with stress. These observations suggest a potentially prom-
inent role of NE in stress-related disorders, including PTSD. In this discussion, 
it is worth noting that much of the impetus behind the initial speculation of an 
anxiogenic action of NE was the observation that stressors were particularly 
potent at activating the LC-NE system. As reviewed, subsequent work demon-
strated comparable sensitivity/responsivity of LC neurons to both aversive and 
appetitive stimuli. These observations indicate that increased release of NE per 
se does not produce a negative affective state, such as anxiety. Such a conclusion 
apparently contradicts results from studies in humans that indicate increased 
anxiety following peripheral manipulations that increase NE neurotransmission 
 (  66  ) . However, the relationship between generalized arousal, which is likely 
sensitive to peripheral manipulations of noradrenergic neurotransmission, and 
anxiety has not been fully explored in humans. Thus, the extent to which results 
obtained in humans indicate direct versus indirect actions of central noradrener-
gic systems on anxiety-related circuits remains unclear. 

 Despite these caveats, it is clear that noradrenergic systems are highly respon-
sive to stressful stimuli and mediate a variety of stress-related physiological, 
behavioral, and cognitive processes. These observations suggest that, at the very 
least, the LC and other noradrenergic systems may contribute to certain  affect -
 independent  components of stress-related disorders.  

  Norepinephrine and PTSD 
 Among stress-related disorders, the strongest case for an involvement of 
noradrenergic systems can be made for PTSD (for review,  see  Ref.  67) . For 
example, PTSD is associated with the dysregulation of a variety of processes 
influenced by central noradrenergic systems. This includes dysregulation of 
arousal and long-term memory as well as working memory, attention and other 
PFC-dependent processes  (  68–  70  ) . As reviewed, NE not only acutely modu-
lates a variety of behavioral processes but also can induce long-term alterations 
in plasticity-related gene transcription, neuronal reactivity, and memory. Thus, 
the activation of central noradrenergic systems under intense/traumatic stressful 
events could contribute to certain long-lasting behavioral attributes of PTSD 
that result from trauma exposure. 

 The described work indicates that via actions at  β -receptors located within 
the basolateral amygdala, NE strengthens memories for emotionally arousing 
events. It has been posited that this mechanism may contribute to certain symptoms 
associated with PTSD, including long-lasting and intrusive memories. Consistent 
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with this hypothesis, clinical studies indicated that the administration of the 
 β -antagonist propranolol within close proximity of a traumatic event, or while 
remembering that event, lessens behavioral and physiological symptoms of 
PTSD  (  71–  73  ) . 

 Beyond long-term alterations in neuronal circuitry induced by NE at the time 
of a traumatic event, evidence further indicates that noradrenergic systems may be 
dysregulated in PTSD. Specifically, noradrenergic systems appear to be hyperre-
active in PTSD (for review,  see  Ref.  74) . Hyperactivity of peripheral NE systems 
is observed in response to auditory reminders of trauma  (  75  )  and in response to 
pharmacological challenge with the  α  

2
 -antagonist yohimbine  (  74  ) . Based on the 

preclinical evidence reviewed, it is expected that excessive activity/reactivity of 
noradrenergic systems in PTSD would have a broad impact on arousal, memory, 
and attentional systems. Thus, noradrenergic hyperactivity could well contribute 
to a variety of symptoms associated with PTSD. Consistent with this,  α  

2
 -antago-

nist challenge (to increase NE release) has been documented to cause both panic 
attacks and flashbacks in a large proportion of the PTSD patients, effects not seen 
with either placebo or yohimbine treatment in control subjects  (  74  ) .  Moreover,  α  

1
 -

antagonist treatment has been demonstrated to reduce trauma-related nightmares 
and other sleep-related disturbances seen in PTSD  (  76,  77  ) .   

  SUMMARY  

 A defining feature of stressful conditions is the need to confront challenging, 
or threatening, conditions. Associated with this is the need to acquire and proc-
ess sensory information rapidly and efficiently to make an accurate response 
selection. Long-term survival may be dependent on behavioral plasticity to 
better contend with, or avoid, a threatening environmental stimulus when it is 
reencountered. Evidence reviewed in this chapter argues for a prominent role 
of the LC-noradrenergic system in a variety of physiological, cognitive, and 
behavioral processes associated with information processing, response selec-
tion, and behavioral plasticity. Stress is associated with elevated rates of NE 
release. Thus, it is not surprising that evidence indicates an involvement of the 
LC-noradrenergic system in stressor-induced alterations in a variety of these 
processes (e.g., arousal, working memory, high-arousal-related memory, IEG 
expression). These actions of the LC-noradrenergic system are likely independ-
ent of affective valence (e.g., appetitive vs. aversive) and are dependent only on 
whether a stimulus is salient (relevant) to the organism. 

 Under normal conditions, the long-term actions of NE, whether at the level of the 
gene (IEGs), neural ensembles (LTP ), or behavior (memory) likely facilitate rapid 
and accurate response selection when a stimulus is reencountered. However, under 
extreme conditions associated with extreme activation of the LC-NE system, these 
long-term changes may result in an excessive sensitivity of arousal, memory, or 
other systems. In addition, these extreme conditions may result in a sensitization of 
the LC-NE system to otherwise innocuous stimuli. In support of these hypotheses, 
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available evidence indicates hyperactivity/reactivity of noradrenergic systems in 
PTSD. Moreover, symptoms associated with PTSD are reduced by pharmacologi-
cal interference with noradrenergic neurotransmission. Combined, this information 
indicates a prominent role for central noradrenergic systems in PTSD.      
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