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Abstract Calcitriol has recently been demonstrated to play an important role in modulating adipocyte
function by regulating adipocyte lipid metabolism and energy homeostasis via both genomic and non-
genomic actions. Physiological concentrations of calcitriol dose-dependently inhibit adipocyte apopto-
sis, although supra-physiological concentrations stimulate adipocyte apoptosis; the former is mediated by
inhibition of mitochondrial uncoupling and the latter by mitochondrial calcium overload. Calcitriol also
regulates adipose tissue fat depot location and expansion by promoting glucocorticoid production and
release. Finally, calcitriol also modulates the cross talk between adipose tissue and both skeletal muscle and
macrophages. Calcitriol modulation of adipocyte–macrophage cross talk results in a synergistic increase in
expression and release of reactive oxygen species and inflammatory cytokines from both cell types, while
calcitriol regulation of adipocyte–skeletal muscle cross talk results in inhibition of skeletal muscle fatty acid
oxidation and preferential energy storage in adipocytes. Accordingly, conditions which chronically increase
calcitriol levels, such as low-calcium diets, increase obesity risk, decrease metabolic flexibility, and increase
oxidative and inflammatory stress.
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1. INTRODUCTION

Although vitamin D and its metabolites are not generally considered to have a major
role in the control of energy metabolism, evidence accumulated over the past 8 years
indicates that calcitriol does play a key regulatory role in adipocyte lipid metabolism
and thereby modulates energy homeostasis and obesity risk (1). This concept emerged
from the search for a mechanism to explain an apparent “anti-obesity” effect of dietary
calcium first noted in epidemiological studies and subsequently confirmed in some clin-
ical trials. Data from the 1987–1988 US Department of Agriculture’s Nationwide Food
Consumption Survey showed an inverse relationship between dietary calcium intake
and body weight (2, 3); notably, when stratified by ethnicity, non-Hispanic blacks had
the lowest mean daily calcium intake and the highest obesity prevalence. Similarly, in
the data from the first National Health and Nutrition Examination Survey (NHANES I)
McCarron demonstrated a significant inverse association between calcium intake and
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body weight (3), and data from NHANES III demonstrated a strong inverse asso-
ciation between calcium intake and relative risk of obesity (4). Subsequent support
emerged from retrospective and prospective epidemiological and observational studies,
secondary analysis of past clinical trials originally conducted with other primary end-
points (e.g., skeletal, cardiovascular), and prospective clinical trials; these effects are
supported by a clear mechanistic framework based upon emerging data demonstrating a
key role for calcitriol in modulating energy metabolism (5); this role is mediated through
both genomic and non-genomic actions of calcitriol, as discussed in the remainder of this
chapter.

2. Ca2+ SIGNALING

Calcitriol is well recognized to modulate Ca2+ signaling in numerous cell types
(6–10), including adipocytes, and earlier work on the agouti gene demonstrated that
Ca2+ signaling plays a pivotal role in adipocyte lipid metabolism (11, 12). Agouti
is normally expressed in mouse melanocytes, where it is involved in modulation
of hair pigmentation via melanocortin-1 receptor antagonism (13); normal expres-
sion of agouti produces the characteristic wild-type pigmentation pattern of mouse
hair, with a predominately black hair shaft with a subapical yellow segment. How-
ever, dominant mutations in the mouse agouti gene confer a pleiotropic syndrome
characterized by obesity and insulin resistance, and expressing the wild-type agouti
cDNA under control of either a ubiquitous promoter or an adipose tissue-specific
promoter (aP2) recapitulates this syndrome (14, 15). Notably, the human homolog
of this gene is primarily expressed in white adipose tissue. Agouti protein exerts
significant paracrine/autocrine effects by targeting ion channels, thereby causing an
increase in adipocyte intracellular free calcium ([Ca2+]i) (16, 17). Strong correlation
between the degree of agouti expression and both [Ca2+]i levels and body weight
has been demonstrated in mice, indicating that agouti may modulate adiposity via a
[Ca2+]i-dependent mechanism (18). Indeed, an agouti/Ca2+ response sequence has been
mapped to the fatty acid synthase (FAS) promoter region (19), and increasing [Ca2+]i
in adipocytes via either receptor- or voltage-mediated Ca2+ channel activation stimu-
lated FAS gene expression and consequently resulted in stimulation of FAS activity
(20); notably, there is a significant association between adipose tissue agouti expres-
sion and both FAS expression and body mass index in normal humans (21). The role
of Ca2+ signaling in obesity was confirmed by the observation that calcium chan-
nel inhibition resulted in significant decreases in adipose tissue mass and adipocyte
lipogenesis in obese agouti-transgenic mice (22). Agouti protein also plays a role in
regulation of adipocyte lipolysis via a Ca2+-dependent mechanism (23, 24). Recom-
binant agouti protein inhibits both basal and agonist-stimulated lipolysis in human
adipocytes. Increasing Ca2+ influx through either voltage- or receptor-operated Ca2+

channels also inhibits lipolysis, and this effect is blocked by Ca2+ channel antagonists,
indicating that this anti-lipolytic effect is mediated by calcium signaling. The mech-
anism underlying the anti-lipolytic effect of Ca2+ has been demonstrated to be medi-
ated by increased activation of phosphodiesterase 3B, resulting in reduced cAMP levels
and consequently inhibition of hormone sensitive lipase activity. Although calcitriol and
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Ca2+ signaling inhibit the early stages of adipogenesis, they serve to accelerate late-stage
differentiation and lipid filling of existing adipocytes by stimulating expression of per-
oxisome proliferator-activated receptor γ (PPAR-γ) and key downstream genes, such as
aP2, stearoyl-CoA desaturase (SCD-1), phosphoenolpyruvate carboxykinase (PEPCK),
and FAS (25). Thus, increased Ca2+ signaling favors a smaller number of hypertrophic
adipocytes.

This regulation of lipid metabolism by [Ca2+]i provides the framework for calcitriol
modulation of adiposity and, consequently, the link between dietary calcium and obe-
sity. We found that calcitriol induces rapid Ca2+ influx, while a specific membrane vita-
min D receptor antagonist (1β,25-dihydroxyvitamin D3) blocked this effect (26). This
indicated a non-genomic action of calcitriol via a putative membrane vitamin recep-
tor, which later was identified as the membrane-associated rapid response to steroid
(1,25(OH)2D-MARRS) (27), in modulating [Ca2+]i. Dietary calcium supplementation
has been demonstrated to decrease the [Ca2+]i concentration in various cell types includ-
ing adipocytes (4, 28–30), and this effect is largely mediated by suppression of calcitriol.
We have demonstrated that the increased calcitriol produced in response to low-calcium
diets stimulates adipocyte Ca2+ influx and, consequently, promotes adiposity by both
inhibiting lipolysis and stimulating lipogenesis (31, 32). Accordingly, suppressing cal-
citriol levels by increasing dietary calcium is an attractive target for obesity interven-
tions. In support of this concept, transgenic mice expressing the agouti gene specifi-
cally in adipocytes (a human-like pattern) respond to low-calcium diets with accelerated
weight gain and fat accretion, whereas high-calcium diets markedly inhibit lipogene-
sis, accelerate lipolysis, increase thermogenesis, and suppress fat accretion and weight
gain in animals maintained at identical caloric intakes (31). Further, low-calcium diets
impede body fat loss whereas high-calcium diets markedly accelerate fat loss in trans-
genic mice subjected to caloric restriction (32). These concepts are confirmed by both
epidemiological and clinical data (33, 34), which demonstrate that increasing dietary
calcium results in significant reductions in adipose tissue mass in obese humans in the
absence of caloric restriction and markedly accelerates the weight and body fat loss sec-
ondary to caloric restriction, whereas dairy products exert significantly greater effects.

3. ROLE OF THE NUCLEAR VITAMIN D RECEPTOR

In addition to regulating adipocyte metabolism via [Ca2+]i through the non-genomic
1,25(OH)2D-MARRS, calcitriol also exerts a genomic act via the adipocyte nuclear vita-
min D receptor (nVDR) to inhibit the expression of uncoupling protein 2 (UCP2) (35).
Polymorphisms in the nVDR are associated with the susceptibility to obesity in humans
(36, 37), and several lines of evidence demonstrate alterations in the vitamin D endocrine
system in obese humans (38, 39). Interestingly, the nVDR is expressed at very low level
in preadipocytes, but is transiently stimulated during adipogenesis and then returns to
low levels. However, we have recently shown nVDR expression in mature adipocytes
to be subjected to regulation by multiple compounds, including calcitriol, resulting in
a positive feedback pathway in response to both agonist (calcitriol) and glucocorticoid
(40), as discussed in a subsequent section of this chapter.
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Calcitriol acts via the nVDR to inhibit UCP2 expression and to suppress UCP2
responses to both isoproterenol and fatty acids (35). The role of the nVDR in this
antagonism is demonstrated by its reversal by antisense oligonucleotide-mediated
nVDR knockout in adipocytes and by the failure of 1,25(OH)2D-MARRS agonist and
antagonist to either mimic or prevent the calcitriol inhibition of UCP2 expression.
Uncoupling proteins (UCPs) are mitochondrial transporters present in the inner mem-
brane of mitochondria and have been shown to stimulate mitochondrial proton leak and
therefore exhibit a potential role in thermogenesis and energy metabolism (41). Unlike
the other isoforms of UCPs, UCP2 is ubiquitously expressed, with the highest level in
white adipose tissue while UCP3 is dominantly expressed in skeletal muscles of human
and rodents. Suppression of calcitriol by feeding high-calcium diets to energy-restricted
mice results in increased adipose tissue UCP2 and skeletal muscle UCP3 expression and
attenuates the decline in core temperature which otherwise occurs with energy restric-
tion (42). The high level of homology of UCP2 and UCP3 with UCP1 suggests a pos-
sible uncoupling activity which has been shown to stimulate mitochondria proton leak
and therefore exhibit a potential role in thermogenesis and energy metabolism (43–45);
both are associated with fatty acid transport across the inner mitochondrial membrane
and subsequent β-oxidation, and polymorphisms of anonymous markers encompassing
the UCP2–UCP3 locus in humans are strongly linked to resting metabolic rate. Accord-
ingly, calcitriol suppression of UCP2 expression may be anticipated to increase energetic
efficiency and thereby increase obesity risk.

4. CALCITRIOL REGULATION OF ADIPOCYTE APOPTOSIS

Calcitriol regulation of both UCP2 and [Ca2+]i appears to exert an additional role in
energy metabolism by affecting adipocyte apoptosis (46). Although calcitriol has previ-
ously been shown to exert a pro-apoptotic effect in several tissues (47–49), these effects
are generally observed with supra-physiological levels of the hormone (≥100 nM), and
our data in human adipocytes also demonstrate a pro-apoptotic role of such high con-
centrations. However, we have also shown that lower doses of calcitriol (0.1–10 nm)
dose-dependently inhibit apoptotic gene expression such as caspase-1 and caspase-3
expression but stimulate anti-apoptotic gene expression such as BCL-2 and increase
the BCL-2/Bax ratio in wild-type adipocytes. Furthermore, calcitriol dose-dependently
induced an increase in mitochondrial potential (�ψ) and ATP production, while over-
expressing UCP2 in adipocytes exerted the opposite effect, indicating that suppression
of UCP2 expression and consequent increases in mitochondrial potential and ATP pro-
duction may contribute to the anti-apoptotic effect of calcitriol. Notably, high doses of
calcitriol also induced a markedly increase in mitochondrial calcium ([Ca2+]m) load
while lower, more physiological doses of calcitriol exerted the opposite effect, indicat-
ing that the increased [Ca2+]m is associated with the induction of apoptosis by calcitriol.
Mitochondria are often located close to endoplasmic reticulum (ER) and are thereby
exposed to the Ca2+ released by the inositol-1,4,5-triphosphate receptor (IP3R) and
ryanodine receptor (RyR). The high Ca2+ levels achieved at these contact sites favor
Ca2+ uptake into mitochondria. Because of their tight coupling to ER Ca2+ stores, mito-
chondria are highly susceptible to abnormalities in Ca2+ signaling (50). Recent evidence
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suggests that the amount of Ca2+ going through mitochondria is crucial in triggering a
Ca2+-dependent apoptotic response, probably by the opening of a sensitized state of
permeability transition pore (PTP) (51). Thus, the anti-apoptotic effect of physiological
concentrations of calcitriol appears to be mediated primarily by suppression of UCP2,
while the pro-apoptotic effects observed with pharmacological concentrations are medi-
ated by mitochondrial Ca2+ overload (Fig. 1). The effects of calcitriol on adipocyte
apoptosis were further supported by our recent microarray study of human adipocytes
(52), as physiological concentrations of calcitriol suppressed the pro-apoptotic gene
stanniocalcin 2 (STC2) but stimulated anti-apoptotic gene STC1. Further in vivo data
provide additional supporting evidence for a role of calcitriol and of dietary calcium in
adipocyte apoptosis (46), with suppression of calcitriol using high-calcium diets resulted
in significant, substantial increases in white adipose tissue apoptosis in diet-induced
obesity.
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Fig. 1. Proposed mechanism for calcitriol modulation of adipocyte apoptosis.

5. CALCITRIOL MODULATION OF ADIPOCYTE GLUCOCORTICOID
PRODUCTION

Calcitriol may also participate in the energy metabolism by regulating adipose tis-
sue fat depot location and expansion. Excessive central fat deposition in obesity may
result from the greater capacity for regeneration of active glucocorticoids in the vis-
ceral fat depot. Local adipose tissue glucocorticoid levels and intracellular glucocor-
ticoid availability are controlled by the activity of 11β-hydroxysteroid dehydrogenase
type 1 (11β-HSD 1) to generate active cortisol from inactive cortisone (53). Overex-
pression of 11β-HSD 1 specifically in white adipose tissue of transgenic mice recapit-
ulates features of the metabolic syndrome, including central obesity, hypertension, dys-
lipidemia, and insulin resistance (54, 55), suggesting that tissue-specific dysregulation
of glucocorticoid metabolism may promote expansion of adipose tissue stores. Previ-
ous studies from this laboratory demonstrate that the anti-obesity effect of dietary cal-
cium is associated with preferential loss of central adipose tissue (56), and we recently
demonstrated that calcitriol directly up-regulates adipocyte 11β-HSD 1 expression and
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cortisol release and, consequently, correspondingly affects local cortisol levels, indicat-
ing a potential role for calcitriol in visceral adiposity (57, 58). This effect is attributable
to the rapid non-genomic action of calcitriol mediated through the 1,25(OH)2D-MARRS
because this response is prevented by 1,25(OH)2D, which antagonizes the rapid,
membrane-associated signaling events resulting from exposure to calcitriol. These find-
ings are further supported by our recent microarray study (52), as well as by data demon-
strating that dietary calcium-induced suppression of calcitriol attenuated adipose tissue
11β-HSD 1 expression in diet-induced obese mice (59).

Recent data from this laboratory also demonstrated an interesting positive feedback
regulation of glucocorticoids on calcitriol in adipocytes (40); the cortisol precursor cor-
tisone or the synthetic glucocorticoid dexamethasone each increased nVDR expression,
while 11β-HSD 1 knockdown attenuated this effect. We thus propose that the increased
cortisol, which results from liganded adipocyte nVDR stimulation of 11β-HSD 1, up-
regulates nVDR expression, resulting in further potential binding of calcitriol by the
nVDR and consequent further stimulation of active glucocorticoid generation (Fig. 2).
Notably, calcitriol also exerts additional effect on stimulation of glucocorticoid produc-
tion by increasing cortisol release. This effect, however, appears to be independent of
the nVDR and is instead mediated by intracellular calcium signaling because knock-
down 11β-HSD 1 did not affect short-term corticosterone release while modulating cal-
cium influx by KCl, BAYK8644, and 1,25(OH)2D-MARRS agonist lumisterol markedly
increased corticosterone release.
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Fig. 2. Calcitriol regulation of adipocyte nVDR expression: interaction with glucocorticoids.

6. CALCITRIOL REGULATION OF CROSS TALK BETWEEN
ADIPOCYTE AND SKELETAL MUSCLE IN ENERGY METABOLISM

Calcitriol may also modulate energy metabolism via regulation of the expression
and production of multiple adipokines, as discussed later in this chapter. In addition
to its role as a fuel reservoir, adipose tissue serves as an active endocrine organ which
synthesizes and secretes a variety of biological molecules (60–63). The more recent
recognition that skeletal muscle may also assume a similar role in response to various
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metabolic stimuli suggests a potential interaction between skeletal muscle and adipose
tissue (64, 65). Energy partitioning between adipose tissue and skeletal muscle has been
previously demonstrated. Animals lacking myostatin exhibit markedly increased skele-
tal muscle mass (66, 67) and reduced body fat accumulation, and stimulation of beta-
adrenergic receptor produces a dramatic increase in skeletal muscle mass and a corre-
sponding reduction body fat content (68, 69). Consistent with this concept, data from our
laboratory demonstrated an independent role of leucine and calcium antagonism in reg-
ulating energy partitioning between adipocytes and muscle cells (70), with both favor-
ing fatty acid oxidation and UCP3 expression in C2C12 muscle cells while calcitriol
suppressed fatty acid oxidation and attenuated the effects of leucine and nifedipine,
indicating that this increase in muscle fat oxidation is coupled with decreased fat stor-
age and increased fat catabolism in adipocytes. Indeed, we found that leucine inhibited
FAS and PPAR gamma expression in differentiated 3T3-L1 adipocytes while calcitriol
stimulated the expression of both genes and attenuated the effect of leucine on FAS
expression. In addition, we have demonstrated that calcitriol decreases mitochondrial
biogenesis and associated regulatory gene expression in both myocytes and adipocytes
while leucine exerts the opposite effect (71), indicating that calcitriol modulates both
adipocyte and muscle metabolism by antagonizing mitochondrial biogenesis. Moreover,
muscle cells treated with conditioned medium derived from adipocytes or co-cultured
with adipocytes exhibited suppressed fatty acid oxidation (70) and decreased mitochon-
dria biogenesis (71), indicating that one or more factors derived from adipocytes regu-
late skeletal muscle energy metabolism. Indeed, leucine, nifedipine, and calcitriol also
modulate adiponectin production, with leucine and nifedipine increasing adiponectin
production while calcitriol exerts the opposite effect (70). Consequently, we further
evaluated the role of adiponectin in mediating the response to leucine, nifedipine, and
calcitriol (70). Our data to date suggest calcitriol modulation of adipocyte–skeletal mus-
cle cross talk is mediated, in part, by alterations in adipocyte adiponectin and skeletal
muscle interleukin-15 (IL-15) and IL-6 (70); however, additional studies are required to
clarify the role of specific adipokines in mediating this cross talk between adipose tissue
and skeletal muscle (Fig. 3).
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7. CALCITRIOL REGULATION OF ADIPOCYTE OXIDATIVE STRESS

Adipose tissue excess is an important pathogenic mechanism underlying the obesity-
related disorders, and this effect is attributable, in part, to the increased production of
reactive oxygen species (ROS) and inflammatory cytokines by adipose tissue (72–76). It
has been postulated that hyperglycemia and hyperlipidemia, key clinical manifestation
of obesity and diabetes, may promote ROS production through several pathways (77).
Indeed, the generation of ROS as byproducts of the mitochondrial electron transport
chain has long been attributed to the high rates of glucose and lipid metabolism. Addi-
tional mechanism may be operated to produce ROS under high-glucose and high-lipid
conditions, including the formation of advanced glycation end products (78), altered
polyol pathway activity (79), activation of oxidases (80, 81), and/or reduction of antiox-
idant enzymes (82, 83). The interaction between ROS and calcium/uncoupling has been
intensively investigated. There is a bidirectional interaction wherein ROS regulates
cellular calcium signaling while manipulation of calcium signaling may also regulate
cellular ROS production. Calcium signaling is essential for production of ROS (84),
and elevated [Ca2+]i activates ROS-generating enzymes, such as NADPH oxidase and
myeloperoxidase, as well as the formation of free radicals by the mitochondrial respi-
ratory chain. Increased ROS production also stimulates [Ca2+]i by activating calcium
channels on both the plasma membrane and the endoplasmic reticulum (85). Mitochon-
drial respiration is associated with production of ROS, and mitochondria produce a large
fraction of the total ROS made in cells (86). Mild uncoupling of respiration thus dimin-
ishes mitochondrial ROS formation by dissipating mitochondrial proton gradient and
potential (87).

We have recently shown that ROS production is modulated by mitochondrial uncou-
pling status and cytosolic calcium signaling (88) and that calcitriol regulates ROS pro-
duction in cultured murine and human adipocytes via its modulation of both Ca2+ signal-
ing and mitochondrial uncoupling. Consistent with this, our recent in vivo data showed
that dietary calcium-induced suppression of calcitriol reduced adipose tissue ROS pro-
duction (89). Interestingly, animals on a low-calcium diet showed markedly higher vis-
ceral fat gain than subcutaneous fat versus mice on a high-calcium diet and exhib-
ited strikingly enhanced ROS production and NADPH oxidase expression in visceral
fat versus subcutaneous fat, indicating that higher visceral fat predisposes to enhanced
ROS production. We also demonstrated that 11β-HSD 1 expression in visceral fat was
markedly higher than subcutaneous fat in mice on basal low-calcium group whereas no
difference was observed between the fat depots in mice on the high-calcium diet. We
also found the high-calcium diet suppressed 11β-HSD 1 expression in visceral adipose
tissue compared to mice on the low-calcium diet. These findings demonstrated that sup-
pression of ROS production by dietary calcium may be mediated, at least in part, by the
regulation of glucocorticoid-associated fat distribution.

8. CALCITRIOL REGULATION OF ADIPOCYTE INFLAMMATORY
CYTOKINE PRODUCTION

Adipocytes produce a variety of biological molecules, including both inflamma-
tory cytokines such as tumor necrosis factor alpha (TNFα), IL-6, and IL-8 and
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anti-inflammatory factors such as adiponectin and IL-15 (60–63). Dysregulated pro-
duction of these adipocytokines contributes to the pathogenesis of obesity-associated
metabolic syndrome. Given that obesity and related disorders are associated with low-
grade systemic inflammation and oxidative stress, and that both Ca2+ signaling and ROS
production modulate cytokine expression and release, we considered the possibility that
calcitriol, and by extension dietary calcium, may also play a role in modulating adipose
tissue cytokine production and systemic inflammatory stress. We found that calcitriol
stimulated TNFα, IL-6, and IL-8 production in cultured human and murine adipocytes
and that this effect was completely blocked by a calcium channel antagonist (90), sug-
gesting that dietary calcium suppresses inflammatory factor production in adipocyte
and that calcitriol-induced Ca2+ influx may be a key mediator of this effect. More-
over, dietary calcium decreased production of pro-inflammatory factors such as TNFα

and IL-6 and increased anti-inflammatory molecules such as IL-15 and adiponectin in
visceral fat, as well as systemic biomarkers of both oxidative and inflammatory stress
(90, 91). Our recent clinical evidence support these observations (91), as high-calcium
diets suppressed circulating C-reactive protein and increased adiponectin levels dur-
ing both weight loss and weight maintenance in obese subjects. In a recent follow-up
randomized crossover study in overweight and obese subjects, we found that suppress-
ing calcitriol levels with high- versus low-calcium diets suppressed both oxidative and
inflammatory stress within 7 days of initiation of supplementation and that these effects
increased in magnitude with increased duration of supplementation (92). Collectively,
these findings indicate an important role of both calcitriol in inducing oxidative and
inflammatory stress and, consequently, of dietary calcium in attenuating these risk fac-
tors.

9. CALCITRIOL REGULATION OF ADIPOCYTE–MACROPHAGE
CROSS TALK IN INFLAMMATION

Adipose tissue also includes a stromal vascular fraction that contains blood cells,
endothelial cells, and macrophages (93–95). Although adipocytes directly generate
inflammatory mediators, adipose tissue-derived cytokines also originate substantially
from these non-fat cells (96), among which the infiltrated macrophages play a prominent
role. Infiltration and differentiation of adipose tissue-resident macrophages are under the
local control of chemokines, many of which are produced by adipocytes. Accordingly,
cross talk between adipocytes and macrophages may be a key factor in mediating inflam-
matory and oxidative changes in obesity. Calcitriol stimulates production of adipokines
associated with macrophage function and increases inflammatory cytokine expression in
both macrophages and adipocytes (97); these include CD14, migration inhibitory factor
(MIF), macrophage colony-stimulating factor (M-CSF), macrophage inflammatory pro-
tein (MIP), TNFα, IL-6, and monocyte chemotactic protein-1 (MCP-1) in adipocytes,
and TNFα and IL-6 in macrophages. Moreover, a cytokine protein array identified mul-
tiple additional inflammatory cytokines that were up-regulated by calcitriol in both
macrophages and adipocytes (97). Further, calcitriol also regulated cross talk between
macrophages and adipocytes, as shown by augmentation of expression and production
of inflammatory cytokines from adipocytes and macrophages in co-culture versus indi-
vidual culture. These effects were attenuated by either calcium channel antagonism
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or increasing mitochondrial uncoupling, indicating that the pro-inflammatory effect of
calcitriol is mediated by calcitriol-induced stimulation of Ca2+ signaling and attenuation
of mitochondrial uncoupling.

10. CONCLUSION

Accumulating evidence suggests a key role for calcitriol in regulating adipocyte func-
tion. Calcitriol favors lipogenesis and inhibits lipolysis via non-genomic modulation
of Ca2+ influx. In addition, calcitriol suppresses UCP2 expression via the nVDR and
thereby increases energy efficiency and directly stimulates nVDR expression in mature
adipocyte to induce a positive feedback loop between calcitriol and its receptor. Cal-
citriol also exerts a dose-dependent impact on adipocyte apoptosis and regulates adi-
pose tissue fat depot location and expansion by promoting glucocorticoid production
and release. Recent data also demonstrate a pivotal role of calcitriol in modulation of
adipokine production resulting in significant roles in cross talk between adipocytes and
macrophages in oxidative and inflammatory stress and between adipocytes and skeletal
muscle in metabolic flexibility (Fig. 3).
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