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Abstract This chapter will examine the role of vitamin D in the innate immune system as a mediator
of human host defense mechanisms against microbial disease, focusing on tuberculosis. The first section
will examine tuberculosis and the innate immune response to the intracellular pathogen, Mycobacterium
tuberculosis (M. tuberculosis), the causative agent of tuberculosis. This is followed by a discussion of
the known associations, genetic and mechanistic, between the vitamin D pathway and tuberculosis sus-
ceptibility. Finally, the chapter will conclude with a discussion on the potential for adjuvant treatment of
tuberculosis with vitamin D.
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1. TUBERCULOSIS

1.1. Tuberculosis Overview
Tuberculosis has plagued humans throughout history with fossil evidence indicating

tuberculosis infection of early hominids, such as the Homo erectus, and recordings of
the disease by man as far back as ancient Egyptian and Chinese manuscripts (1). The
bacterium that causes tuberculosis, M. tuberculosis, was first described by Robert Koch
in 1882. The bacterium primarily infects lung macrophages leading to pathogenesis of
the disease. More than a century later, tuberculosis remains as a leading cause of mor-
bidity and mortality worldwide, with one-third of the world’s population infected and
eight million new cases of tuberculosis each year (2). Tuberculosis is one of the leading
causes of death worldwide in women of reproductive age and in individuals infected
with HIV (3, 4). Even developed countries are not spared by this pandemic; estimates
are that 10–15 million people residing in the United States are infected with M. tubercu-
losis (5, 6). And, like the situation worldwide, mycobacterial infection is a leading cause
of death among patients with AIDS in the United States (5). The recent emergence of
extensively drug-resistant (XDR) TB in HIV-infected individuals in KwaZulu Natal and
its high mortality are an additional and urgent concern (7).
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In addition to its importance with respect to global health, tuberculosis provides an
important model for investigation of the human immune response to an intracellular
pathogen and studies on tuberculosis have led to many basic immunological findings;
these include [1] that the innate immune system recognizes microbial lipoproteins via
Toll-like receptor 2 (TLR2) (8); [2] that activation, via TLR2, of monocytes leads to
instruction of the adaptive immune response via release of IL-12 (8), dendritic cell dif-
ferentiation (9), and maturation (10); and [3] that the activation of monocytes via TLR2
triggers (i) macrophage differentiation (9), (ii) a nitric oxide-dependent antimicrobial
pathway in mice (11), and (iii) a vitamin D-dependent antimicrobial pathway in humans
(12). TLR2 has been shown to be important for resistance to M. tuberculosis in mouse
models (13–15) and polymorphisms in both the vitamin D receptor (VDR) and TLR2 are
associated with susceptibility to TB in humans (16–23). The role of the innate immune
response and vitamin D will be discussed in detail below.

1.1.1. INNATE IMMUNITY

Metchnikoff originally described the key direct functions of cells of the innate
immune system: (1) rapid detection of microbes; (2) phagocytosis of those microbes;
and (3) antimicrobial activity. Charles Janeway advanced our thinking about how the
mammalian innate immune recognizes microbial pathogens, proposing that it must
involve evolutionarily primitive receptors that bind conserved microbial constituents,
termed pattern recognition receptors (24). M. tuberculosis is known to activate at
least two different families of pattern recognition receptors: TLRs and the nucleotide
oligomerization domain (NOD)-like receptors on macrophages. The TLR2 and TLR1
heterodimer recognizes a triacylated lipoprotein derived from M. tuberculosis, which
results in activation of NF-κB leading to the production of inflammatory cytokines and
direct antimicrobial activity (8, 11, 12). NOD2 recognizes muramyl dipeptide (MDP),
which is a peptidoglycan present on M. tuberculosis (25, 26). Triggering NOD2 simi-
larly leads to a NF-κB-mediated inflammatory response; however, in contrast to TLRs,
NOD2 also results in activation of the inflammasome (27). The inflammasome is a pro-
tein complex whose function is to cleave and activate the pro-IL-1β protein into the
active IL-1β cytokine through the enzymatic actions of caspase-1.

1.1.2. TOLL-LIKE RECEPTORS

Toll was first studied as a part of the dorsal ventral patterning system in Drosophila
melanogaster embryogenesis. In 1996, Lemaitre et al. (28) reported that Toll-deficient
adult Drosophila were more susceptible to fungal infection. Activation of Toll in flies
results in production of antimicrobial peptides (29), thus implicating Toll as a player in
a primitive immune system. One year later, Medzhitov et al. (30) demonstrated that a
constitutively active human Toll homologue, or a Toll-like receptor (TLR), modulates
the adaptive immune response by inducing cytokine secretion as well as expression of
co-stimulatory molecules. Together, these reports first established the importance of Toll
and TLRs in host defense.
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TLRs have been shown to have specificity in recognition of microbial ligands and
mediate immune functions of the innate immune system. To date, 11 mammalian TLRs
have been identified in both the human and murine genomes. Although, TLR1-9 are
conserved between humans and mice, the murine Tlr10 gene is nonfunctional, and
the human TLR11 gene harbors a premature stop codon which prevents its expres-
sion (31). All the mammalian TLRs share a highly similar cytosolic Toll/IL-1 recep-
tor (TIR) domain, which triggers several signaling pathways including the transcription
factor: NF-κB (32). The extracellular TLR domains include multiple leucine-rich repeat
motifs and is responsible for recognition of conserved pathogen-associated molecular
patterns (PAMPs). TLR2 heterodimerizes with TLR1 or TLR6, and the dimers mediate
recognition of triacylated and diacylated bacterial lipoproteins, respectively (33). The
remainder of the known TLR ligands are as follows: viral dsRNA (TLR3), lipopolysac-
charide (LPS) (TLR4), bacterial flagellin (TLR5), viral single-stranded RNA (ssRNA)
(TLR7 and TLR8), bacterial unmethylated CpG DNA (TLR9), and protozoan profilin-
like molecule (TLR11) (31). The ligand for TLR10 is still unclear. Thus, TLRs provide
a rapid first line of defense against a variety of microbial pathogens through the recog-
nition of a milieu of pathogen-associated molecules.

TLR activation induces a variety of effects, including enhancement of macrophage
phagocytosis (34), endosomal/lysosomal fusion (35), production of antimicrobial pep-
tides (36, 37), as well as induction of direct antibacterial (11, 36) and antiviral activ-
ity (38–40). M. tuberculosis-infected macrophages can induce a direct antimicrobial
activity upon TLR2/1 activation. In a murine macrophage cell line, this activity was
dependent on the generation of nitric oxide (NO) through inducible nitric oxide syn-
thase (iNOS) activity. Addition of the iNOS inhibitors L-NIL and L-NAME ablated
the murine TLR2/1-mediated antimicrobial activity; however, neither had an effect on
human monocytes, suggesting that human TLR2/1-induced antimicrobial activity is fun-
damentally different from murine cells (11). This correlated with the finding that, upon
TLR2/1 activation, human monocytes do not generate detectable levels of NO (41).
Accordingly, the mechanism by which human macrophages kill intracellular M. tuber-
culosis intrigued immunologists for many years; the surprising role of the vitamin D
synthetic/metabolic pathway in this mechanism is detailed below.

1.1.3. IMMUNOACTIVITY OF 1,25-DIHYDROXYVITAMIN D

There have been many studies on the role of active vitamin D, 1,25-dihydroxy-
vitamin D [1,25(OH)2D], on innate and adaptive immune responses (42–44). Insight
into vitamin D-induced antimicrobial activity by human monocytes and macrophages
against M. tuberculosis was first suggested by experiments in the labs of Rook
in 1986 (45) and Crowle in 1987 (46). These experiments were performed adding
1,25(OH)2D to the extracellular medium of M. tuberculosis-infected human monocytes
and macrophages in vitro with a resultant reduction of the intracellular bacterial load.
Yet Crowle writes “concentrations of 1,25(OH)2D near 4 μg/ml were needed for good
protection, these levels seemed unphysiologically high compared with 26–70 pg/ml
being in the normal circulating range.” Nevertheless, these studies opened new questions
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regarding [1] the role of vitamin D in the physiological response to M. tuberculosis and
[2] the identity of the vitamin D-dependent antimicrobial effectors.

It would be nearly a decade later before the molecular mechanism of the vitamin D-
induced antimicrobial activity in macrophage began to be elucidated. One study by Sly
et al. (47) reported 1,25(OH)2D-induced antimicrobial activity to be regulated by phos-
phatidylinositol 3-kinase and mediated through the generation of oxygen intermediates
via NADPH-dependent phagocyte oxidase. Interestingly, the observed 1,25(OH)2D-
induced oxidative burst occurred at a different time point than the antimicrobial activ-
ity, thus leading the authors to postulate that there had to be another key factor (47).
Another mechanism was proposed by Anand et al.; their study (48), (49) demonstrated
that the 1,25(OH)2D-induced antimicrobial activity was associated with downregulated
transcription of the host protein, tryptophan-aspartate-containing coat protein (TACO);
this protein plays an important role in M. tuberculosis entry and survival in human
macrophages. In 2005, using a genome-wide scan for vitamin D response elements
(VDREs), Wang et al. (50) reported that the genes encoding antimicrobial peptides,
cathelicidin and hBD2(DEFB4), were regulated by the VDR. Prior to this study, human
macrophages were not thought to utilize antimicrobial peptides as a defense mecha-
nism; however, it was demonstrated in the same year that human monocytes expressed
cathelicidin at both the mRNA and protein levels when stimulated with 1,25(OH)2D
(12, 50, 51). Although it was apparent that monocytes could express cathelicidin,
whether or not it played a role in host defense against intracellular M. tuberculosis infec-
tion was not clear. Two years later, a critical role for cathelicidin in the 1,25(OH)2D-
induced antimicrobial activity against intracellular M. tuberculosis was demonstrated in
human monocytic cells using siRNA knockdowns (52).

In contrast to its effects on macrophages, many studies have reported that
1,25(OH)2D induces immunosuppressive effects, including but not limited to
[1] inhibition of IL-12 secretion, [2] inhibition of lymphocyte proliferation and
immunoglobulin synthesis, and [3] impairment of dendritic cell maturation, leading to
the generation of tolerogenic dendritic cells and T-cell anergy (53–56). In particular,
it was suggested that 1,25(OH)2D produced by the macrophage in granuloma-forming
diseases, like tuberculosis and sarcoidosis, exerted a paracrine immunoinhibitory effect
on neighboring, activated lymphocytes that express the VDR, and that this acts to slow
an otherwise “overzealous” immune response that may be detrimental to the host (57).
The physiological significance of this has been highlighted by the recent development
of 1,25(OH)2D-deficient mouse models in which the gene for the vitamin D-activating
enzyme CYP27B1 has been knocked out (58, 59). A notable feature of these animals is
that they present with enhanced adaptive immunity signified by multiple enlarged lymph
nodes.

1.1.4. ANTIMICROBIAL PEPTIDES

Antimicrobial peptides consist of a highly diverse family of small peptides that can
function as chemoattractants (60, 61), dendritic cell activators (62), and importantly,
direct antimicrobial effectors (63, 64). They exert microbicidal activity by disrupting
the pathogen membrane through electrostatic interactions with the polar head groups of
membrane lipids (65), or the creation of membrane pores (63); as such, they exhibit
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a wide range of microbial targets including bacteria (66), fungi (67, 68), parasites
(69, 70), and enveloped virii (71). Although epithelial cells at the interface between
the outside and inside environment of the host express antimicrobial peptides (72), it
is the population of innate immune cells that buttress that external–internal barrier in
the host, such as neutrophils (73), mast cells (74), and monocytes/macrophages (51,
75), that are recognized to be the major producers of antimicrobial peptides. Several
antimicrobial peptides produced by macrophages have been demonstrated to have direct
antimicrobial activity against M. tuberculosis, including but most likely not limited to
LL-37 (cathelicidin) (12, 76), hBD2 (DEFB4) (77), and hepcidin (78). In humans, cathe-
licidin and DEFB4 were found to contain activating VDREs in their promoter regions;
whether or not hepcidin is vitamin D-regulated at the level of transcription is unknown
(50). Activation of the VDR in monocytes/macrophages results in the expression of
cathelicidin at both the mRNA and protein levels (12, 50, 76). siRNA knockdown of
1,25(OH)2D-induced cathelicidin in human monocytic cells resulted in complete loss
of antimicrobial activity (52), suggesting that antimicrobial peptides represent a major
human macrophage host defense mechanism. Furthermore, macrophages can obtain and
utilize neutrophil granules which can concentrate a variety of antimicrobial peptides
against M. tuberculosis (79, 80).

1.2. Vitamin D Pathway and Tuberculosis
Many studies have identified genes that may confer some degree of susceptibility

to tuberculosis, including: HLA-DR alleles (81–83), NRAMP-1 (84), interferon-γ sig-
naling (85), SP110 (86), complement receptor-1 (87), and notably, the VDR (19–23).
However, these studies did not identify a clear cut host defense mechanism. Sev-
eral studies have linked serum levels of the major circulating form of vitamin D,
25-hydroxyvitamin D [25(OH)D], to both tuberculosis disease progression and suscep-
tibility (23, 88). In 1985, a study reported that of 40 Indonesian patients with active
tuberculosis and treated with anti-tuberculosis chemotherapy, 10 patients with the high-
est 25(OH)D levels at the outset of therapy had “less active pulmonary disease” (88).

Another aspect of the vitamin D pathway that has been extensively studied is the
VDR itself. There are two major VDR polymorphisms that have been studied in terms
of tuberculosis susceptibility with conflicting results: TaqI (20–22) and FokI (22, 89),
located in exons nine and two of the VDR coding sequence, respectively (90). Bel-
lamy et al. conclude that the tt allele of the TaqI polymorphism protects against TB,
however, studies by two other groups report no such association (21, 89). Liu et al.
(22) report that the FokI ff allele is associated with active TB among the Chinese Han
population, but there are no other reports concluding an association for FokI ff and
TB in any other population. These associations became clearer in a study examining
the relationship between vitamin D deficiency and VDR polymorphisms with tubercu-
losis in the Gujarati Asians living in West London in the year 2000 (23). The study
reported that both the TaqI (Tt/TT) and FokI (ff) alleles were associated with tubercu-
losis only when the individual exhibited serum 25(OH)D deficiency (23). Collectively,
these studies have demonstrated that vitamin D plays an important role to host defense
against M. tuberculosis in vivo. The problem in drawing conclusions between the studies
in vitro with human inflammatory cells and these observations in vivo in humans with
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tuberculosis resides in the fact that previous in vitro studies used the active, 1,25(OH)2D
metabolite to affect antimicrobial activity, while the association to tuberculosis was with
serum levels of the 1,25(OH)2D substrate, 25(OH)D.

Relatively little is known about the direct effects of 25(OH)D on innate immunity.
Hewison et al. (91) found that 25(OH)D at physiologic levels (100 nM) suppressed
CD40L-induced IL-12 production in day-7 GM-CSF/IL-4-derived DCs in vitro. Other
studies in vitro have shown that intracrine metabolism of 25–1,25(OH)2D via endoge-
nous expression of CYP27B1 is a more efficient mechanism for modulating the phe-
notype of either DCs or monocytes compared to the exogenous addition of active
1,25(OH)2D itself (92). In contrast to these in vitro analyses, there are little data on
the effects of altering the 25(OH)D status in vivo on the immune status of the host.
Yang et al. (93) showed that profound reduction in the serum 25(OH)D in mice resulted
in significant blunting of the cell-mediated immune response to cutaneous dinitroflu-
orobenzene (DNFB) challenge. Administration of 25(OH)D to humans with head and
neck squamous cell carcinoma increases plasma IL-12 and IFN-γ levels and improves
T-cell blastogenesis (94). In more recent studies, we have shown that the ability of mono-
cytes from human subjects to mount a cathelicidin response following TLR challenge is
directly proportional to circulating levels of 25(OH)D but not 1,25(OH)2D (95). Impor-
tantly, this study also showed that TLR-induction of cathelicidin was enhanced in sub-
jects supplemented with vitamin D (500,000 IU vitamin D2 over 5 weeks), indicating
that the immunomodulatory effects of 25(OH)D also occur in vivo.

1.2.1. ROLE OF 25-HYDROXYVITAMIN D ON THE INNATE IMMUNE RESPONSE

In 2006, a potential mechanism by which the 25(OH)D status of an individual may
alter their ability to mount an innate immune response against M. tuberculosis was
reported. In humans, activation of TLR2/1 results in the induction of key genes in
the vitamin D pathway (Fig. 1), including the VDR and CYP27B1. Under conditions
where the extracellular concentration of 25(OH)D is present at sufficient levels, TLR2/1
activation of monocytes results in a CYP27B1- and VDR-dependent expression of the
antimicrobial peptide, cathelicidin, and direct microbicidal activity against intracellular
M. tuberculosis. The induction of CYP27B1 and VDR in monocytes was subsequently
demonstrated to be mediated through the actions of TLR2/1-induced IL-15 expres-
sion (96). Interestingly, the human but the not murine cathelicidin promoter contains
an activating VDRE (51), perhaps suggesting a point of divergent evolution between
mice and humans in the antimicrobial effectors used by the TLR-mediated innate
immune response. Inhibition of the VDR resulted in ablation of the TLR2/1-induced
antimicrobial activity, implicating that VDR activation is a critical step in the innate
immune response against M. tuberculosis and potentially explaining the association of
25(OH)D serum levels with susceptibility to tuberculosis; e.g., where low 25(OH)D
levels in the circulation cannot provide sufficient substrate 25(OH)D for CYP27B1-
mediated production of 1,25(OH)2D to activate the VDR-dependent antimicrobial
response.

This requirement of adequate 25(OH)D in the extracellular environment of the human
macrophage for the induction of host defense mechanisms via TLR2/1 provided a link
between two well-documented clinical observations: compared to lightly pigmented
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Fig. 1. Synthesis and innate immunoaction of vitamin D. The left panel shows synthetic/metabolic
pathway of vitamin D3 beginning in the skin. The initial step is the UVB-mediated, non-enzymatic
conversion of 7-dehydrocholesterol to previtamin D3. This is followed by thermal isomerization of
previtamin D3 to vitamin D3. Vitamin D3 gains access to the circulation for oxidative metabolism
first to 25-hydroxyvitamin D3 in the liver followed by conversion via the CYP27B1 hydroxylase in
the kidney, skin, and macrophage to hormone 1,25-dihydroxyvitamin D3. The right panel schematic
recapitulates the events post interaction of the human TLR2/1 dimer with pathogen-associated mem-
brane patterns (PAMPs) from Mycobacterium tuberculosis (M.tb.). TLR activation results in (1) induc-
tion of expression of the CYP27B1 hydroxylase and VDR genes; (2) intracrine generation of 1,25-
dihydroxyvitamin D [1,25(OH)D], if and only if sufficient substrate 25-hydroxyvitamin D (25(OH)D)
has been delivered to the macrophage bound to the serum vitamin D-binding protein (DBP);
(3) transactivation of the cathelicidin gene via interaction of the 1,25(OH)2D-VDR-retinoid X recep-
tor (RXR) with an enhancer element in its promoter; (4) induction of expression of the cathelicidin
gene product LL37; and (5) killing of ingested mycobacteria.

human populations, darkly pigmented black individuals are [1] more susceptible to
virulent infections with tuberculosis and [2] have lower circulating, serum 25(OH)D
levels owing to their relatively diminished capacity to synthesize vitamin D in their
skin during sunlight exposure. The biosynthetic pathway of 25(OH)D in humans
(Fig. 1) involves the absorption of ultraviolet B (UVB) photons from sunlight by
7-dehydrocholesterol (7HDC) in the basal layer of the epidermis and its non-enzymatic
conversion to a pre-vitamin D3 precursor in the skin; in fact, the melanin in pigmented
skin will competitively absorb these UVB rays preventing this photoreaction (97). In
human monocytes cultured in sera from pigmented African American subjects and stim-
ulated with a TLR2/1 ligand, there was no upregulation of cathelicidin mRNA, whereas
the same human monocytes conditioned in sera from lightly pigmented subjects did (12).
Moreover, supplementation of the African American sera with exogenous 25(OH)D
restored the induction of cathelicidin mRNA. This implies that an individual’s serum
25(OH)D level may affect their ability to combat infection and that returning circulat-
ing levels of 25(OH)D to normal could potentially restore their host defense mecha-
nisms (12).

Through reostatic regulation of CYP27B1 activity and conversion of substrate
25(OH)D to product 1,25(OH)2D, the macrophage directly controls its intracellular
level of 1,25(OH)2D (98). It is also now recognized that TLR-induced antimicrobial
activity can be inhibited by blocking CYP27B1 activity (12). These data suggest that it
is serum 25(OH)D and not the 1,25(OH)2D concentration that [1] controls the intracel-
lular 1,25(OH)2D level and [2] is essential for the TLR-induced antimicrobial activity.
This explains why in previous experiments in vitro, a supraphysiologic concentration of



304 Part II / Non-skeletal/Functions of Vitamin D

1,25(OH)2D in the conditioning extracellular media was required to generate sufficient
intracellular levels of the metabolite to affect the VDR and to achieve an antimicrobial
effect in human macrophages.

1.2.2. HISTORY OF VITAMIN D, SUNSHINE, AND TUBERCULOSIS

Establishment of vitamin D’s role in host defense against tuberculosis provides new
insights into the historical understanding of tuberculosis treatment prior to the advent
of antibiotics. In the late nineteenth century, two young physicians, who themselves
had contracted tuberculosis, were instructed by their physicians to travel to mountain-
ous regions of Europe during the summertime as part of their attempt to recover. Their
trek into this high UVB environment led to the “remission” of their disease. As a con-
sequence of this success, Hermann Brehmer built the world’s first high-altitude tuber-
culosis sanitorium in Germany, designed to allow patients to be exposed to “fresh air
and sunlight.” At about the same time in the United States, Edward Livingston Trudeau
of New York published his original scientific finding that rabbits infected with tuber-
culosis had a more severe course of disease if caged indoors in the dark as opposed
to being kept outdoors on a remote island. These experimental observations led him to
build the first sanitorium at Saranac Lake, NY. In fact, it was the success of treatment
facilities like these that paved the way to the 1903 Nobel Prize in Medicine awarded to
the Danish physician, Niels Ryberg Finsen, for demonstrating that UV light was ben-
eficial to patients with lupus vulgaris, a form of cutaneous M. tuberculosis infection.
Despite widespread skepticism about the value of sanitoria at the time and since then, it
is quite possible that the prolonged exposure to sunlight increased cutaneous vitamin D
production, increased substrate 25(OH)D levels, and enhanced innate immunity to com-
bat tuberculosis. Clearly, the harmful effects of sunlight have been well documented
and emphasized, particularly its strong association with melanomas and squamous cell
carcinomas (99, 100). However, there is also convincing epidemiologic evidence that
vitamin D has a positive association with lower incidences of colorectal and prostate
cancers (101). While heliotherapy is not likely to re-emerge as a useful intervention for
human disease, other than for perhaps seasonal depression, vitamin D supplementation
could represent an inexpensive adjuvant therapeutic approach to correcting the world-
wide prevalence of vitamin D insufficiency and enhancing innate immunity to microbial
infections, especially in individuals of pigmented African and South Asian descent in
whom tuberculosis is rampant.

1.2.3. TREATMENT OF TUBERCULOSIS WITH VITAMIN D

There is a long history of using vitamin D to treat mycobacterial infections with
apparent success. In 1946, Dowling et al. (102) reported the treatment of patients with
lupus vulgaris with oral vitamin D. Eighteen of 32 patients appeared to be cured, nine
improved. Morcos et al. (103) treated 24 newly diagnosed cases of tuberculosis in chil-
dren with standard chemotherapy with and without vitamin D; they noted more profound
clinical and radiological improvement in the group treated with vitamin D. Nursyam
et al. (104) administered vitamin D or placebo to 67 tuberculosis patients following the
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sixth week of standard treatment. Out of 60 total patients, the group with vitamin D
had higher sputum conversion rate and radiological improvement (100%) than placebo
group (76.7%). This difference was statistically significant (p = 0.002). Despite the
clear benefits of vitamin D treatment for tuberculosis, the mechanism of action had not
been elucidated. The fact that TLR-activated macrophages can convert vitamin D to pro-
duce antimicrobial peptides could be a possible mechanism by which supplementation
of patients with inactive vitamin D leads to a positive therapeutic outcome.

Progress in curtailing the human death rate from tuberculosis has been hampered by
access to, cost and effectiveness of current antibiotic regimens (105). Some of these
problems could potentially be overcome by adding vitamin D to the treatment regimen
of tuberculosis. Although the currently published studies on the effects of vitamin D
supplementation are generally inadequate to evaluate the efficacy of such treatment
(106), a single oral dose of 50,000 IU of vitamin D has been shown to enhance killing
of mycobacteria by whole blood of healthy volunteers (107). As such, knowledge of
the role of human vitamin D metabolism and action in the basic innate immune defense
mechanisms against mycobacterial infection provides hope in the development of safe,
simple, and cost-effective strategies in the near future to prevent and treat tuberculosis.
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