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Abstract The vitamin D receptor (VDR) is a ligand-inducible transcription factor, whose target genes
play key roles in cellular metabolism, bone formation, cellular growth, differentiation, and in controlling
inflammation. Many of these VDR target genes are also involved in dysregulated pathways leading to com-
mon human diseases, such as cancer, osteoporosis, or the metabolic syndrome. The activation of VDR by
natural and synthetic ligands may improve such pathological conditions. On a genomic level these path-
ways converge on regulatory modules, some of which contain VDR-binding sites, so-called vitamin D
response elements (VDREs). Transcriptome analysis, chromatin immunoprecipitation scans and in silico
screening approaches already identified many genomic targets of the VDR. Important regulatory modules
with VDREs should have a major impact on understanding the role and potential therapeutic value of VDR
and its ligands.
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1. INTRODUCTION

The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3
[1,25(OH)2D3], acts as a ligand to the transcription factor vitamin D receptor
(VDR). In order to directly activate a gene by 1,25(OH)2D at least one VDR molecule
has to bind in sufficient vicinity to the gene’s transcription start site (TSS) (1). However,
“vicinity” could in some cases be a distance of up to 100 kB, irrespective if upstream
or downstream of the TSS. Moreover, there are a number of evidences that most
primary VDR target genes use multiple VDR-binding sites, the so-called vitamin D
response elements (VDREs), for their full functionality (2). The complete sequence
of the human genome and also that of other mammalian species, such as chimp, dog,
mouse, and rat, is now available, so that we are able to screen for all putative VDREs.
However, the constant packaging of genomic DNA into chromatin provides a repressive
environment, which in most cases denies the access to putative VDREs (3). Fortunately,
new experimental techniques for genome-wide analyses of chromatin modifications
and transcription factor binding, such as chromatin immunoprecipitation (ChIP)-chip
and massively parallel sequencing, are now available (4). This will revolutionize
our understanding of the genome-wide effects of the VDR and of the diversity of
1,25(OH)2D target genes as outlined in this chapter.

2. VDR IS A NUCLEAR RECEPTOR

2.1. The Nuclear Receptor Superfamily
Nuclear receptors are the best-characterized representatives of approximately 3,000

different mammalian proteins that are involved in transcriptional regulation in human
tissues (5). They form a superfamily with 48 human members, of which the most have
the special property to be ligand-inducible (6, 7). Nuclear receptors modulate genes
that affect processes as diverse as reproduction, development, inflammation, and gen-
eral metabolism. They can be classified based on ligand sensitivity (6), evolution of
the nuclear receptor genes (8), and their physiological role as interpreted from tissue-
specific expression patterns (9).

The ligand sensitivity approach suggests three classes of nuclear receptors. Class I
contains the endocrine receptors with high-affinity hormonal lipids, such as the recep-
tors for the steroid hormones estradiol (estrogen receptors α and β), progesterone (pro-
gesterone receptor), testosterone (androgen receptor), cortisol (glucocorticoid receptor),
and aldosterol (mineralocorticoid receptor), for thyroid hormones (thyroid hormone
receptors α and β), and for the biologically active forms of the fat-soluble vitamins
A and D, all-trans retinoic acid (retinoid acid receptors α, β, and γ) and 1,25(OH)2D
(VDR). In class II are adopted orphan receptors that bind to dietary lipids and xenobi-
otics with low affinity, such as peroxisome proliferator-activated receptors (PPARs) α,
δ, and γ, constitutive androstane receptor, and pregnane X receptor. Finally, in class III
orphan receptors are placed, such as estrogen-related receptors, for which a physiologi-
cal ligand has not yet been identified.

When the sequences of nuclear receptors are compared on DNA and protein level,
the grouping significantly differs from the ligand-centered view. For example, VDR is
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in the same group with PPARs and the highly ligand-sensitive estrogen receptors and
the orphan estrogen-related receptors are together in another group.

On the basis of mRNA expression of all nuclear receptor genes in 39 different tissues
in two different mouse strains, nuclear receptors are divided into clades with distinct
physiological roles. In this classification, for example VDR is grouped to bile acid and
xenobiotic metabolism based on its high expression in gastroentric tissues and PPARs
are linked to lipid metabolism and energy homeostasis.

2.2. Modular Structure of Nuclear Receptors
Nuclear receptors have a modular structure, onto which certain functions can be

ascribed. The amino-terminus is of variable length and sequence in the different family
members. It contains a transactivation domain, termed AF-1, which is recognized by co-
activator proteins and/or other transcription factors, often in a ligand-independent fash-
ion. The central DNA-binding domain has two zinc-finger motifs that are common to the
entire family. The carboxy-terminal ligand-binding domain, whose overall architecture
is well conserved between the various family members, nonetheless diverges sufficiently
to guarantee selective ligand recognition as well as accommodate the broad spectrum
of nuclear receptor ligand structures. The ligand-binding domain consists of 250–300
amino acids in 11–13 α-helices (10). Ligand binding causes a conformational change
within the ligand-binding domain, whereby, at least in the case of endocrine nuclear
receptors, helix 12, the most carboxy-terminal α-helix (also called AF-2 domain), closes
the ligand-binding pocket via a “mouse-trap like” intramolecular folding event (11). The
ligand-binding domain is also involved in a variety of interactions with nuclear proteins,
such as other members of the nuclear receptor superfamily and co-regulator proteins.

2.3. The VDR
VDR is an endocrine member of the nuclear receptor superfamily (7), because it is

the only nuclear protein that binds 1,25(OH)2D with high affinity (Kd = 0.1 nM) (12,
13). VDR has been shown to form homodimers (14, 15) and heterodimers with thyroid
hormone receptors (16, 17) and retinoid acid receptors (18), but by far the strongest
binding partner of VDR is one of the three retinoid X receptors (RXRs) α, β, and γ (19).
In mammals, the highest VDR expression is found in metabolic tissues, such as intestine
and kidney, as well as in skin and the thyroid gland, but moderate expression is found in
nearly all tissues (9). Moreover, the receptor is also expressed in many malignant tissues
(20). Mice lacking a functional VDR gene develop alopecia (likewise found in many
patients with mutations in the VDR) (21); these mice also exhibit a defect in epidermal
differentiation. Moreover, VDR-null mice also show an increased susceptibility to tumor
formation (22). More details on the receptor have been provided in the previous chapter.

3. VDR-BINDING SITES

3.1. DR3-Type VDREs
The binding of VDR–RXR heterodimers is achieved through the specific binding of

the DNA-binding domain of the VDR to the major grove of a hexameric DNA sequence,
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Fig. 1. VDR–RXR heterodimer on VDREs: VDR–RXR heterodimer binding to different types of
VDREs is schematically depicted.

referred to as core-binding motif, with the consensus sequence RGKTSA (R = A or
G, K = G or T, S = C or G) (13) (Fig. 1). Numerous studies (for example (14, 23))
have confirmed Umesomo’s suggestion (24) that VDR–RXR heterodimers bind well to
response elements (REs) that are formed by a direct repeat of the hexameric sequences
with three spacing nucleotides. These DR3-type REs are therefore widely accepted as
the classical structure of a VDRE.

Every 1,25(OH)2D target gene has to contain at least one VDRE in its promoter
region and the first VDREs have been identified rather close to the TSS of the genes. The
strongest DR3-type VDREs has been identified within the rat atrial natriuretic factor
promoter (25), the mouse and pig osteopontin promoter (26, 27), and the chicken car-
bonic anhydrase II promoter (28). A number of other DR3-type VDREs have been pub-
lished and were based on their in vitro binding affinity categorized into different classes
(29). The REs with the lowest affinity show a significant deviation from the RGKTSA
consensus and may not be functional. However, it is possible that these VDREs may
gain responsiveness to 1,25(OH)2D in their natural promoter context through the help
of flanking partner proteins (see also Section 3.4.). Moreover, the functionality of a
1,25(OH)2D responding gene will also depend on a potential cooperative action of two
or more VDREs, such as in the case of the 24-hydroxylase (CYP24A1) gene (30). Nev-
ertheless, VDR–RXR heterodimers form identical complexes on all DR3-type VDREs
and display no significant differences in their interaction with a given co-activator or
co-repressor protein (29).
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3.2. Other Types of VDREs
There are also other VDRE structures, such as direct repeats with four intervening

nucleotides (DR4). Effective VDR binding has also been observed on everted repeat
(ER)-type REs with 6–9 spacing nucleotides (ER6, ER7, ER8, ER9) (17, 31) (Fig. 1).
A VDRE classification according to the affinity for VDR–RXR heterodimers suggests
that the degree of deviation from the core-binding motif consensus sequence RGKTSA
(32) is proportional to the loss of in vitro functionality (29). Interestingly, the DR4-
type RE of the rat pit1 gene (33), which contains two perfect core-binding motifs, was
found to be stronger than any known natural DR3-type VDRE (29). However, one has
to consider that a DR4-type REs is also recognized by the heterodimeric complexes
of thyroid hormone receptor, constitutive active receptor and pregnane X receptor and
other orphan nuclear receptors with RXR (19, 34), whereas the same complexes bind to
DR3-type REs less tightly than VDR–RXR heterodimers. The competitive situation on
DR4-type REs may therefore be the reason why in vivo VDR–RXR heterodimers still
prefer DR3-type REs. Moreover, VDR–RXR heterodimers bind to DR4-type REs in the
same conformation as to DR3-type REs (34), i.e., there seem to be no differential action
of VDR on these elements due to a differential complex formation with RXR.

The VDRE of the human osteocalcin promoter was the first identified natural binding
site for the VDR (35, 36). It was initially described as a DR6-type structure but later a
third cryptic hexamer was identified at a distance of 3 nucleotides, so that the whole
VDRE is more likely a complex DR6/DR3-type RE (see Section 3.4.). The DR6 part of
the VDRE has been shown to bind VDR homodimers (14) and VDR–RAR heterodimers
(18), whereas the DR3 part weakly binds VDR–RXR heterodimers. Other examples of a
DR6-type VDREs that bind VDR homodimers and VDR–RAR heterodimers have been
identified in the promoters of mouse fibronectin (37), rat CYP24A1 (38), and human
phospholipase C (39). Their functionality remain to be determined.

3.3. Chromatin and Co-factors
The major protein constituents of chromatin are the four different histones that form

a nucleosome, around which DNA is wound. Covalent modifications of the lysines at
the amino-terminal tails of these histone proteins neutralize their positive charge and
thus their attraction for the negatively charged DNA backbone is diminished (40). As a
consequence, the association between the histone and the DNA becomes less stable. This
influences the degree of chromatin packaging and regulates the access of transcription
factors to their potential binding sites. When nuclear receptors are bound to REs in the
regulatory regions of their target genes, they recruit positive and negative co-regulatory
proteins, referred to as co-activators (41) and co-repressors (42), respectively.

In a simplified view of nuclear receptor signaling, in the absence of ligand, the nuclear
receptor interacts with co-repressor proteins, such as NCoR1, SMRT, hairless, and
Alien, which in turn associate with histone deacetylases leading to a locally increased
chromatin packaging (43, 44). The binding of ligand induces the dissociation of the
co-repressor and the association of a co-activator of the p160 family, such as SRC-1,
TIF2, or RAC3 (45). Some co-activators have histone acetytransferase (HAT) activity
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or are complexed with proteins harboring such activity and this results in the net effect
of local chromatin relaxation (46). In a subsequent step, ligand-activated nuclear recep-
tors change rapidly from interacting with the co-activators of the p160 family to those
of the mediator complex, such as Med1 (47). The mediator complex, which consists
of approximately 15–20 proteins, builds a bridge to the basal transcriptional machinery
(48). In this way ligand-activated nuclear receptors execute two tasks, the modification
of chromatin and the regulation of transcription.

Cell- and time-specific patterns of relative protein expression levels of some co-
regulators can distinctly modulate nuclear receptor transcriptional activity. This aspect
may have some diagnostic and therapeutic value in different types of cancer (49). Con-
cerning skin cancer it was postulated that the stoichiometric ratio between co-activators
of the p160 family and Med1 might regulate a 1,25(OH)2D-dependent balance between
proliferation and differentiation of keratinocytes (50). However, the switch between
gene repression and activation is more complex than a simple alternative recruitment
of two different regulatory complexes (51). Most co-regulators are co-expressed in the
same cell type at relatively similar levels, which raises the possibility of their concomi-
tant recruitment to a specific promoter. This has been resolved by the mutually exclusive
binding of co-activators and co-repressors to ligand-bound and ligand-unbound nuclear
receptors, respectively. Therefore, repression and activation are more likely achieved
by a series of sequential multiple enzymatic reactions that are promoter and cell-type
specific. Transcriptional regulation is a highly dynamic event of rapid association and
dissociation of proteins and their modifications, including proteolytic degradation and
de novo synthesis. A pattern of recruitment and release of cohorts of co-regulatory com-
plexes was demonstrated on a single region of the trefoil factor-1 promoter in breast
cancer cells (52). This study revealed detailed and coordinated patterns of co-regulator
recruitment and preferential selectivity for factors that have similar enzymatic activities.
Interestingly, similar cyclic behavior was also observed for the VDR (53).

3.4. VDREs in the Chromatin Context
It is assumed that matrix attachment regions (MARs) subdivide genomic DNA into

units of an average length of 100 kB containing the coding region of at least one gene
(54) (Fig. 2). DNA looping should be able to bring any DNA site within the same
chromatin unit close to the basal transcriptional machinery that is assembled on the
TSS. This model suggests that also very distant sequences can serve as VDREs and
that even sequences downstream of the TSS could serve as functional VDR-binding
sites.

Due to its optimized 5′-flanking dinucleotide and core-binding motif sequences the
DR4-type RE of the rat pit-1 gene is the most efficient known VDRE in vitro (29, 34).
However, the chromatin in the region of the pit-1 gene promoter containing this RE
seems to be closed in the adult rat, so that the responsiveness of the gene to 1,25(OH)2D
is lower than expected (46). This indicates that a high in vitro binding affinity of VDR–
RXR heterodimers for a VDRE is not sufficient for responsiveness to 1,25(OH)2D.
When the promoter region that contains the VDRE is covered by condensed chromatin,
VDR–RXR heterodimers are unable to bind there. This makes sufficiently decondensed
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Fig. 2. 1,25(OH)2D responsive chromatin units: A chromatin unit carrying two genes and six VDREs
is schematically depicted. The loop may be formed by some 100 kB of genomic sequence, which is
kept together by a matrix attachment region (MAR) complex. For clarity the some 500 nucleosome
covering this genomic region are not shown. In this scenario VDREs 4 and 5 do sub-looping to the
basal transcriptional machinery (Pol II) on the TSS (arrow) of gene 2 and induce transcription. Sim-
ilarly all six VDREs have the potential to activate genes 1 and 2, i.e., both genes are supposed to be
primary VDR target genes.

chromatin an essential prerequisite for a functional VDRE. Chromatin decondensation
is achieved by the activity of HATs, which are recruited to their local chromatin tar-
get by co-activator proteins. In turn, these co-activators are transiently attracted to a
promoter region by ligand-activated nuclear receptors and other active transcription
factors. Therefore, the more transcription factor binding sites a given genomic region
has and the more of these transcription factors are expressed in the respective cell, the
higher is the chance that this area of the promoter gets locally decondensed. One exam-
ple is the VDRE of the rat osteocalcin gene, which is flanked on both sides with a
binding site for the transcription factor Runx2/Cbfa1 (55). By contacting co-activator
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proteins and HATs Runx2/Cbfa1 seems to mediate the opening of chromatin locally,
which allows efficient binding of VDR–RXR heterodimers to this decondensed region
to occur. This mechanism suggests that VDREs are better targets for VDR–RXR het-
erodimers, if other transcription factors are bound to the same chromatin region. In this
respect, promoter context and cell-specific expression of other transcription factors may
be of greater importance to VDRE functionality and specificity than its in vitro binding
profile.

The DR6/DR3 and ER9/DR3 structures of the VDREs of the human and rat osteo-
calcin genes, respectively, are the first examples of complex VDREs. These two com-
plex VDREs show only limited homology to each other, although they are derived from
orthologous genes. This suggests that for an important primary 1,25(OH)2D respond-
ing gene, such as osteocalcin, there may be limited evolutionary pressure for a specific
VDRE structure. It seems to be more important to guarantee an efficient binding of
the VDR to a promoter in competition with the tight packaging of nucleosomes. It is
interesting to note that the complex VDRE of the human osteocalcin gene is overlaid
by a binding site of the transcription factor AP-1 (56), which provides the RE with
an increased activity. These types of REs are also observed for other nuclear receptors
and often referred to as composite REs (57). Another interesting example of a com-
plex/composite VDRE has been reported in the mouse c-fos promoter (58). Within this
VDRE three hexameric core-binding motifs are forming a DR7/DR7 structure, which
contains an internal binding site for the transcription factor NF-1. Additional examples
are the VDRE of the human and mouse fibronectin gene, which contains an internal
binding site for the transcription factor CREB (37), or the VDRE of the rat bone sialo
protein, which also seems to bind the general transcription factor TBP (59).

3.5. Negative VDREs
Expression profiling using microarray technology indicates that comparable num-

bers of genes are down-regulated by 1,25(OH)2D as are up-regulated by the hormone
(60). In general, the mechanisms of the down-regulation of genes by 1,25(OH)2D are
much less understood, but they also seem to require the binding of an agonist to the
VDR. It is obvious that only genes, which show basal activity, can be down-regulated,
i.e., these genes exhibit basal activity due to other transcription factors binding to their
promoter. There are several different models that attempt to explain, how 1,25(OH)2D
and the VDR can mediate down-regulation of genes, but the common theme is that
VDR counteracts the activity of specific transcription factors. For the physiologically
important down-regulation of the 25-dihydroxyvitamin D3 1α-hydroxylase (CYP27B1)
gene by 1,25(OH)2D a negative VDRE located at position –0.5 kB has been proposed,
where VDR–RXR heterodimers do not bind directly, but via the transcription factor
VDR-interacting repressor (VDIR, also called TCF3) (61). In addition, two positive
VDREs are located –2.6 and –3.2 kB upstream from the TSS and modulate the cell-
specific activity of the negative VDRE (62). Association of VDR–RXR heterodimers to
TCF3-binding sites may also occur through ligand-dependent chromatin looping from
more distal regions that directly bind the VDR (62). In situations where these activat-
ing transcription factors are other nuclear receptors or transcription factors that bind
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to composite nuclear receptor REs, VDR could simply compete for DNA-binding sites
(63, 64). In a similar way, VDR could also compete for binding to partner proteins, such
as RXR, or for common co-activators, such as SRC-1 or CBP (65). In all these situations
the down-regulating effects of the VDR should be of general impact, i.e., the mechanism
could apply to other genes in the same way. So far, however, no general down-regulating
effects of 1,25(OH)2D have been reported.

The concept that multiple VDREs (see also Fig. 2) together with other transcription
factor binding sites regulate primary 1,25(OH)2D responding genes (see Section 5.2.)
suggests that a promoter may contain both negative and positive VDREs. The activi-
ties of the different VDREs are determined by the promoter context and may not be
simultaneously active. One might imagine that prior to stimulation with 1,25(OH)2D
only the negative VDREs bind the VDR and recruit co-repressors. This would actively
condense the chromatin on a particular promoter region. The addition of ligand induces
the release of co-repressor proteins and reduces chromatin density. The VDR may then
be transiently released from the negative VDRE and bind to a positive VDRE, which
may be uncovered through 1,25(OH)2D-dependent local nucleosome acetylation. The
VDR then interacts with the mediator protein complex on this positive VDRE leading
to transient transcriptional activation. After a certain period of time, newly synthesized,
unliganded VDR again binds to the negative VDRE, which initiates chromatin closing
and inactivation of the positive VDRE (62). In this or even more complex scenarios,
the balance between negative and positive VDREs could explain the time course of the
activation of primary 1,25(OH)2D responding genes.

4. VDR TARGET GENES

4.1. Classical VDR Targets
The most striking effect of severe vitamin D deficiency is rickets. Rickets can also

by inflicted by mutations in the CYP27B1 or the VDR gene. 1,25(OH)2D is essential for
adequate Ca2+ and Pi absorption from the intestine and hence for bone formation (66).
Liganded VDR has been shown to induce expression of the gene encoding for the major
Ca2+ channel in intestinal epithelial cell, TRPV6, by direct binding to a VDRE at -1.2 kB
from the TSS (67). The phosphate co-transporter NaP(i)-IIb gene was also found to
be induced by 1,25(OH)2D but no VDREs have yet been identified for this gene
(68). 1,25(OH)2D also down-regulates the expression of the PTH gene that opposes
1,25(OH)2D in regulation of serum Ca2+ and Pi levels, but up-regulates the FGF23
gene, which, like PTH, lowers serum Pi levels (69). The induction of the RANKL gene
by liganded VDR via multiple distant VDREs (up to 70 kB from the TSS) leads to stim-
ulation of osteoclast precursors to fuse and form new osteoclasts, resulting in enhanced
resorption of bone (70).

4.2. VDR Targets in Cell Cycle Regulation
The main anti-proliferative effect of 1,25(OH)2D on cells is a cell cycle block at the

G1 phase. This can be explained by changed expression of multiple cell cycle regu-
lator genes. Among the first targets described, expression of cyclin-dependent kinase
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inhibitors (CDKIs) p21 (CDKN1A) and p27 were found to be up-regulated by ligand
treatment (71, 72). For the CDKN1A gene a VDRE in the proximal promoter was char-
acterized, thus establishing CDKN1A as a direct 1,25(OH)2D target gene (73). Later on
it has been questioned, whether CDKN1A truly is a primary target or a secondary target
via up-regulation of TGFβ or of the insulin-like growth factor binding protein (IGFBP)
3, and whether the described VDRE is truly functional (74, 75). However, by screening
7 kB of the CDKN1A promoter with overlapping ChIP regions three novel regions with
1,25(OH)2D-induced VDR enrichment, two of which harvested also p53 were identified
(76). The direct role of the characterized 1,25(OH)2D-responsive regions on regula-
tion of CDKN1A expression is illustrated by the their association with VDR-RNA poly-
merase II complexes as well as by their ligand-dependent looping to the CDKN1A TSS
(51). Also other CDKIs, such as p15, p16, p18, and p19, show transcriptional response
to 1,25(OH)2D, but for p16 the response is secondary as it can be blocked by inhi-
bition of protein synthesis (73, 77). In addition, cyclin E, cyclin D1, and CDK2 were
found to be down-regulated by 1,25(OH)2D (74). It remains to be elucidated, whether
these effects are primary and occur via functional VDREs on regulatory regions of these
genes.

Another interesting 1,25(OH)2D-target gene is cyclin C (CCNC). The cyclin C-CDK8
complex was found to be associated with the RNA polymerase II basal transcriptional
machinery (78) and is considered as a functional part of those mediator protein com-
plexes that are involved in gene repression (79). The fact that the CCNC gene, being
located in chromosome 6q21, is deleted in a subset of acute lymphoblastic leukemias,
suggests its involvement in tumorigenesis (80). In addition, GADD45A and members
of the IGFBP gene family respond to 1,25(OH)2D (81, 82). GADD45A plays an essen-
tial role in DNA repair and GADD45 proteins displace cyclin B1 from Cdc2 and thus
inhibit the formation of M phase-promoting factor that is essential for G2/M transition
(83). GADD45A has been shown to be a direct transcriptional target of 1,25(OH)2D
with a functional VDRE within the fourth exon of the gene (84). IGFBPs modulate the
activity of the circulating insulin-like growth factors (IGF) I and II. The IGFBP-3 gene
was first discovered to be up-regulated by 1,25(OH)2D and contains a functional VDRE
(85). Later also IGFBP-1 and IGFBP-5 have been characterized as primary 1,25(OH)2D
target genes (82). Another interesting primary 1,25(OH)2D target is the PPARD gene,
which carries a potent DR3-type VDRE in close proximity to its TSS (86). PPARδ and
VDR proteins are widely expressed and an apparent overlap in the physiological action
of the two nuclear receptors is their involvement in the regulation of cellular growth,
particularly in neoplasms. High PPARD expression in tumor seems to be positive for the
prognosis of the respective cancer (87).

Overall, 1,25(OH)2D restricts cell cycle progression in several phases via multi-
ple and partially redundant targets on parallel pathways, that when combined, provide
robustness for its anti-proliferative effect.

4.3. Relative Expression of VDR Target Genes
The steady-state mRNA expression levels of some VDR target genes, such as that

of the CYP24A1 gene, are very low in the absence of ligand, but are up to 1,000-fold
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induced by stimulation with 1,25(OH)2D (88). Most other known primary 1,25(OH)2D
target genes, such as CCNC and CDKN1A, often show an inducibility of twofold or
less after short-term treatment with 1,25(OH)2D (89, 90). However, both genes have
10,000- to 100,000-fold higher basal expression levels compared to that of the CYP24A1
gene. Therefore, when the relative levels are taken into account, 2- to 20-fold more
CCNC and CDKN1A than CYP24A1 mRNA molecules are produced after induction
with 1,25(OH)2D.

5. VDR TARGET GENE ANALYSIS

5.1. Transcriptome Analysis
There are a number of modern methods for the identification and characteriza-

tion of VDR target genes. The effect of 1,25(OH)2D on the mRNA expression, i.e.,
1,25(OH)2D-induced changes of the transcriptome, has been assayed by multiple
microarray experiment in cellular models (either an established cell line or primary
cells) or in in vivo models (mostly rodents). In case the focus is on the identification
of primary VDR target genes, the stimulation times are short (2–6 h), but when the
overall physiological effects are the center of the study, longer treatment times are used
(24–72 h). For a limited number of putative VDR target genes quantitative PCR can be
applied, but for a whole genome perspective on VDR signaling, microarrays have to be
used.

A few years ago mostly cDNA arrays with an incomplete number of genes were used
and rather short lists of VDR target genes from colon (90), prostate (49, 91–93), breast
(89), and osteoblasts (94, 95). In squamous cell carcinoma more than 900 genes respond
to 1,25(OH)2D after 12 h treatment in the presence of the protein synthesis inhibitor
cycloheximide (96). However, the number of overlapping VDR target genes in these
lists was low. Since the setups of these microarray analyses were different in treatment
times and probe sets, this suggests that most VDR target genes reply to 1,25(OH)2D in
a very tissue-specific fashion and may have only a rather transient response. However,
on the basis of these results the total number of convincing primary 1,25(OH)2D target
genes is in the order of 250. In addition, secondary 1,25(OH)2D-responding genes con-
tribute to the physiological effects of 1,25(OH)2D, but their induction is delayed by a
few hours or even days and are probably mediated by primary 1,25(OH)2D-responding
gene products, such as transcription factors or co-regulator proteins (90). For a more
detailed meta-analysis of VDR target genes, standardized microarray procedures per-
formed on whole genome chips from Affymetrix, Illumina or other commercial suppli-
ers are essential. Results from such approaches will be published soon.

5.2. ChIP Analysis
For a detailed analysis of the regulatory regions of primary VDR target genes since

a couple of years the method of ChIP became the golden standard. For the genes
CYP24A1 (88), CYP27B1 (62), CCNC (97), and CDKN1A (76) 7.1–8.4 kB of their
promoter regions were investigated by using in each case a set of 20–25 overlapping
genomic region. The spatio-temporal, 1,25(OH)2D-dependent chromatin changes in the
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four gene promoters were studied by ChIP assays with antibodies against acetylated
histone 4, VDR, RXR, and RNA polymerase II. Promising promoter regions were then
screened in silico for putative VDREs, whose functionality was analyzed sequentially
with gel shift, reporter gene, and re-ChIP assays. This approach identified four VDREs
for both the CYP24A1 and CCNC genes, three in the CDKN1A promoter and two in
the CYP27B1 gene. However, most of them are simultaneously under the control of
other transcription factors, such as p53 in case of the CDKN1A gene (76), and therefore
possess significant basal levels of transcription.

An alternative approach to the identification of primary 1,25(OH)2D target genes was
performed with the six members of the IGFBP gene family. Here first an in silico screen
was performed, which was then followed by the analysis of candidate 1,25(OH)2D-
responsive sequences by gel shift, reporter gene, and re-ChIP assays (82). Induction of
gene expression was confirmed independently using quantitative PCR. By using this
approach, the genes IGFBP1, IGFBP3, and IGFBP5 were demonstrated to be primary
1,25(OH)2D target genes. The in silico screening of the 174 kB of genomic sequence
surrounding all six IGFBP genes identified 15 candidate VDREs, 10 of which were
shown to be functional in ChIP assays. Importantly, the in silico screening approach
was not restricted to regulatory regions that comprise only maximal 2 kB of sequence
up- and downstream of the TSS, as in a recent whole genome screen for regulatory
elements (98), but involved up to 10 kB of flanking sequences as well as intronic and
intergenic sequences. In a similar approach the 5-lipoxygenase (ALOX5) gene has been
analyzed and confirmed to be a primary 1,25(OH)2D target gene. From the 22 putative
VDREs identified in the whole ALOX5 gene sequence (–10 kB to +74 kB) by in silico
screening, at least two have been validated to be functional in vitro and in the living
cells. One of these VDREs is located far downstream of the TSS (+42 kB) and is one
of the strongest known VDREs of the human genome (99). No functional VDRE had
been reported for the ALOX5 gene before, since previous studies had been restricted to
the proximal promoter region (100, 101). Therefore, this approach revealed candidate
VDREs that are located more than 30 kB distant from their target gene’s TSS. Based on
the present understanding of enhancers, DNA looping and chromatin units being flanked
by insulators or MARs, these distances are not limiting (102).

5.3. ChIP-Chip Assays
The combination of ChIP assays with hybridization of the resulting chromatin frag-

ments on microarrays, the so-called ChIP-chip assays, provides an additional step
for a larger scale analysis of VDR target genes. The ChIP-chip technology has been
applied for the analysis of the VDR gene itself (103), the intestinal calcium ion chan-
nel gene TRPV6 (67), the Wnt signaling co-regulator LRP5 (104), and the TNF-like
factor RANKL that promotes the formation of calcium-resorbing osteoclasts (105). For
all those genes a number of VDR-associated chromatin regions were identified, some
of which were far upstream of the gene’s TSS. These studies confirmed that many,
if not all, VDR target genes have multiple VDR-associated regions. However, not all
of these VDREs may be functional, i.e., they may not contact the gene’s TSS via
DNA looping. Therefore, it is necessary to apply an additional method, the so-called
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chromosome-conformation-capture (3C) assay. So far, 3C assays confirmed the func-
tionality of the VDREs in the CYP27B1 (62) and the CDKN1A (51) genes.

The next step in genome-wide association studies will be massively parallel sequenc-
ing of genomic fragments obtained after ChIP assays, also referred to as ChIP-Seq, with
antibodies against VDR and its partner proteins. Results will be published soon.

5.4. In Silico Screening of VDREs
The specificity of VDR for its DNA-binding sites allows constructing a model to

describe the VDRE properties that can be used to predict potential binding sites in
genomic sequences. For this the VDR-binding preference, often expressed as position
weight matrix, has to be described on the basis of experimental data, such as series
of gel shift assays with a large number of natural binding sites (106–109). However,
VDR–RXR heterodimers do not only recognize a pair of the nuclear receptor consensus
binding motifs AGGTCA, but also a number of variations to it. Dependent on the indi-
vidual position weight matrix description this leads to a prediction of VDREs every
1,000–10,000 bp of genomic sequence. This probably contains many false-positive
predictions, which is mainly due to scoring methodology and the limitations that are
imposed by the available experimental data. Wang et al. combined microarray analysis
and in silico genome-wide screens for DR3- and ER6-type VDREs (96). This approach
identified several novel VDREs and VDR target genes, but most of the VDREs await a
confirmation by ChIP and 3C assays.

In a position frequency matrix the quantitative characteristics of a transcription factor,
i.e., its relative binding strength to a number of different binding sites, are neglected,
since simply the total number of observations of each nucleotide is recorded for each
position. Moreover, in the past there was a positional bias of transcription factor binding
sites upstream in close vicinity to the TSS. This would be apparent from the collection
of identified VDREs (13), but is in contrast with a multi-genome comparison of nuclear
receptor binding site distribution (98) and other reports on wide-range associations of
distal regulatory sites (110).

Internet-based software tools, such as TRANSFAC (111), screen DNA sequences
with databases of matrix models. The accuracy of such methods can be improved by
taking the evolutionary conservation of the binding site and that of the flanking genomic
region into account. Moreover, cooperative interactions between transcription factors,
i.e., regulatory modules, can be taken into account by screening for binding site clus-
ters. The combination of phylogenetic footprinting and position weight matrix searches
applied to orthologous human and mouse gene sequences reduces the rate of false pre-
dictions by an order of magnitude, but leads to some reduction in sensitivity (112).
Recent studies suggest that a surprisingly large fraction of regulatory sites may not be
conserved but yet are functional, which suggests that sequence conservation revealed by
alignments may not capture some relevant regulatory regions (113).

The recently published classifier method for the in silico screening of transcription
factor binding sites (114) showed at the example of PPAR–RXR heterodimers, how
a set of in vitro binding preferences of the three PPAR subtypes can be used as an
experimental data set. Single nucleotide variants were sorted into three classes, where in
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class I the PPAR subtypes are able to bind the sequence with a strength of 75 ± 15% of
that of the consensus PPAR-binding site, in class II with 45 ± 15%, and in class III with
15 ± 15%. Additional 130 PPREs were sorted on the basis of counting increasing num-
ber of variations from the consensus and taking into account the single nucleotide variant
binding strength. Those variants that alone decrease the binding only modestly (class I)
could be combined with even three deviations from consensus still resulting in more
than 20% binding relative to consensus. Other combinations resulted in faster loss of
binding detailed in 11 categories, where such combinations still resulted in more than
1% relative binding. The main advantage, when comparing the classifier to position
weight matrix methods, is a clear separation between weak PPREs and those of medium
and strong strength (114). With this method the gene-dense human chromosome 19
(63.8 MB, 1,445 known genes) and its syntenic mouse regions (956 genes have known
orthologs) were screened. Twenty percent of genes of chromosome 19 were found to
contain a strong RE and additional 4% have more than two medium REs or one prox-
imal medium RE. These numbers suggest a total of 4,000–5,000 targets for PPARs in
the human genome. Presently, the same approach is used for a genome-wide screening
of VDREs and the results will be published soon. First results already indicated that the
number of putative VDR target genes is in the same order as that of possible PPAR tar-
gets. Certainly not all sites will be accessible and the human genome also contains weak
binding sites that could gain function via interaction with other transcription factors.

In effect, these approaches and tools are still insufficient and there has to be a focus
on the creation of bioinformatics resources that include more directly the biochemical
restraints to regulate gene transcription. One important aspect is that most putative tran-
scription factor binding sites are covered by nucleosomes, so that they are not accessible
to the transcription factor. This repressive environment is found in particular for those
sequences that are either contained within interspersed sequences, are located isolated
from transcription factor modules, or lie outside of insulator sequences marking the
border of chromatin loops (115). This perspective strongly discourages the idea that iso-
lated, simple VDREs may be functional in vivo. In turn, this idea implies that the more
transcription factor binding sites a given promoter region contains and the more of these
transcription factors are expressed, the higher is the chance that this area of the promoter
becomes locally decondensed.

6. CONCLUSIONS

The sequencing of the complete human genome and the genome of other species,
i.e., the availability of all regulatory sequences, enable a more mature understanding of
the diversity of 1,25(OH)2D target genes. Perhaps the idea of simple isolated VDREs
should shift to the concept of complex VDREs, of which a simple DR3-, DR4- or
ER-type VDRE represents the core. Depending on the temporal presence of cell-specific
transcription factors, these complex REs may act positively or negatively in respect to
1,25(OH)2D. The coordinated action of these different types of VDREs could explain
the individual response of target genes to 1,25(OH)2D.

Methods incorporating both experimental- and informatics-derived evidence to arrive
at a more reliable prediction of VDR targets and binding modules can bring all available
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data together with the aim to predict the outcome in a specific context. We envision
that in future the emphasis will shift from target genes to target regulatory modules to
alter a physiological response and from individual genes to whole genome response.
Therefore, a much larger challenge lies ahead when we would be confronted with the
higher order of regulated networks of genes, where the sum effect of ligand treatment
may reveal itself. In an effort to study this, we have started applying systems biology
to the field of nuclear receptor biology, through an EU-funded Marie Curie Research
Training Network, NUCSYS (www.uku.fi/nucsys).
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