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Steroidogenic Enzymes in Leydig Cells
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SUMMARY

This chapter describes the enzymes expressed in Leydig
cells that are required for the biosynthesis of testosterone
from cholesterol, as well as the two enzymes, steroid 5α-
reductase and P450arom, that metabolize testosterone to
dihydrotestosterone and estradiol, respectively. The empha-
sis is on human and mouse enzymes.
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INTRODUCTION

The Leydig cell is the only cell in the male that
expresses all of the enzymes essential for the conver-
sion of cholesterol to testosterone, the major male sex
hormone secreted by the testis. Testosterone can be
metabolized further in the Leydig cell by S5A (5α-
reductase) to yield dihydrotestosterone (1), or by the
enzyme, CYP19A1 (P450arom) to yield estradiol (2,3).
Testosterone or its metabolite, dihydrotestosterone, is
essential for male sexual differentiation, expression of
male secondary sex characteristics (4), and mainte-
nance of spermatogenesis (5). The biosynthesis of
testosterone is dependent on both acute and chronic
stimulation of Leydig cells by the pituitary hormone
luteinizing hormone (LH). LH binds to specific high
affinity receptors on the surface of Leydig cells activat-
ing adenylate cyclase, resulting in increased production
of cyclic AMP. The acute stimulation results in the
rapid transport of cholesterol from the outer to the inner
mitochondrial membrane, the site of the first enzyme
in the pathway of cholesterol to testosterone. This
process is mediated by the steroidogenic acute regula-
tory protein (StAR) (6), see Chapter 9. Chronic stimu-
lation of Leydig cells by LH or cAMP is required for

optimal expression of the enzymes required for the
biosynthesis of testosterone from cholesterol. This
chapter describes the enzymes involved in the biosyn-
thesis of testosterone from cholesterol as well as the
two enzymes, steroid 5α-reductase and P450arom that
metabolize testosterone to dihydrotestosterone and
estradiol, respectively (Fig. 1). The enzymes can be
divided into two major classes of proteins: the
cytochrome P450 heme-containing proteins CYP11A1
(P450scc), CYP17A1 (P450c17), and P450arom, and
the hydroxysteroid dehydrogenases 3β-hydroxysteroid
dehydrogenase (3β-HSD), and 17β-hydroxysteroid
dehydrogenase (17β-HSD). 5α-reductase belongs to
the steroid 5α-reductase family (Table 1C; ref. 7).

The initial step in the biosynthesis of testosterone
from cholesterol is the conversion of the C27 choles-
terol to the C21 steroid, pregnenolone. This reaction is
catalyzed by the cytochrome P450 enzyme, cholesterol
side-chain cleavage (P450scc), located in the inner
mitochondrial membrane. Pregnenolone diffuses across
the mitochondrial membrane and is further metabolized
by enzymes associated with the smooth endoplasmic
reticulum. These include the cytochrome P450 17α-
hydroxylase C17-C20 lyase, P450c17, which catalyzes
the conversion of the C21 steroids pregnenolone or prog-
esterone to the C19 steroids dehydroepiandrosterone or
androstenedione, respectively, and 3β-hydroxysteroid
dehydrogenase which catalyzes the conversion of the ∆5
steroids, pregnenolone, or dehydroepiandrosterone to the
∆4 steroids, progesterone, or androstenedione, respec-
tively, and 17β-hydroxysteroid dehydrogenase, which
catalyzes the final step in the biosynthesis of testos-
terone (Fig. 1).

CYTOCHROME P450s

The cytochrome P450 enzymes are members of a
superfamily of heme-containing proteins (8). They
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Fig. 1. Steroid biosynthetic pathways in Leydig cells.
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derive their name from the characteristic which, when
complexed in vitro with exogenous carbon monooxide,
absorb light maximally at 450 nm. They function as
monooxygenases utilizing reduced nicotinamide adenine
dinucleotide phosphate (NADPH) as the donor for the
reduction of molecular oxygen. The general reaction is:
RH + O2 + NADPH + H+ → ROH + H2O + NADP+. In
this reaction, the oxygen is activated by P450, and one
oxygen atom is introduced into the substrate RH as a
hydroxyl group, and the other oxygen is reduced to
H2O. The electrons from NADPH are transferred to the
substrate by two distinct electron transfer systems. The
mitochondrial transfer involves the transfer of high
potential electrons to a flavoprotein, adrenodoxin
reductase (ferredoxin reductase), and then sequentially
to adrenodoxin (ferredoxin), a nonheme iron–sulfur
protein, then P450, and finally, to the substrate. The
microsomal electron transfer system involves only one
protein, cytochrome P450 oxidoreductase, a protein
that contains two flavins. The electrons are transferred
from NADPH, to flavinadenine dinucleotide, followed
sequentially by transfer to flavinmononucleotide and
then the substrate (7).

P450scc
REACTION CATALYZED

P450scc catalyzes the conversion of cholesterol to
pregnenolone, the first and rate-limiting enzymatic step
in the biosynthesis of testosterone (Fig. 1). P450scc cat-
alyzes three sequential oxidation reactions of choles-
terol. Each reaction requires one molecule of oxygen
and one molecule of NADPH, and the mitochondrial
electron transfer system (7). The first reaction is the
hydroxylation at C22, followed by hydroxylation at C20
to yield 20,22R-hydroxycholesterol that is cleaved
between C22 and C20 to yield the C21 steroid preg-
nenolone, and isocapraldehyde (9,10) Isocapraldehyde
is further metabolized to isocaproic acid (11).

Investigations utilizing the purified protein as well
as studies on recombinant proteins from P450scc
cDNAs have provided conclusive evidence that a sin-
gle protein catalyzes all three reactions at a single
active site (12,13). The pair of electrons required for
each of the reactions is transferred from NADPH to a
flavoprotein, ferredoxin reductase, and then sequen-
tially to a nonheme iron–sulfur protein, ferredoxin,
to P450scc, and finally, to the substrate (14). The
P450scc enzyme is typical of all mitochondrial
cytochrome P450 enzymes that share the same elec-
tron transfer proteins (15). It has been shown that the
P450scc enzyme only functions in the mitochondrion.
This requirement appears to be for the mitochondrial

environment rather than the specific mitochondrial
electron transfer system (16). A model of the interac-
tions between P450scc and the electron transport pro-
teins has been proposed based on the expression of
mutants. The results of these studies indicate that the
acidic residues, Asp 76, and Asp 79, of ferredoxin
interact with the basic residues of ferredoxin reduc-
tase and P450scc (17).

MOLECULAR STRUCTURE

P450scc is the product of a single gene. The cDNA
was first isolated in 1984 from bovine adrenal cortex
mRNA (18). Subsequently, P450scc cDNA has been
cloned from human (19), rat (20), mouse (21), and
numerous other species. The deduced amino acid (aa)
sequence displays high homology among species, equal
to or more than 71%. The open reading frame of human
cDNA encodes a peptide consisting of 521 aa (19,22).
The 39 aa at the amino-terminus includes the N-termi-
nal leader sequence essential for the translocation of the
protein to the inner mitochondrial membrane. The
removal of this leader sequence yields a protein of 482
aa (16,19). The aa sequence contains a heme-binding
region common to the P450 superfamily located close
to the carboxyl terminus containing a single cysteine
residue (18), and a specific 20 aa region of high homol-
ogy among species located at the amino-terminus which
is proposed to be the P450scc-specific substrate binding
region (23).

The structure of the cholesterol-side chain cleavage
gene designated as CYP11A1 has been determined in
human (22) and rat (24). The gene is at least 20 kb in
length, and consists of nine exons containing an
unusual exon/intron junctional sequence that begins
with GC found in the sixth intron of both the human
gene (22) and the rat gene (24). The human gene is
located on chromosome 15q23-q24 (19), and the mouse
gene is found on chromosome 9 at 31 cM (25).

P450C17

Reaction Catalyzed
P450c17 catalyzes two mixed function oxidase reac-

tions, 17α-hydroxylation, and C17–C20 cleavage. Each
reaction requires one molecule of NADPH, and one
molecule of oxygen, and the microsomal electron trans-
fer protein, cytochrome P450 oxidoreductase (7). The
two reactions catalyzed by P450c17 are the 17α-
hydroxylation of either the ∆5-C21 steroid, preg-
nenolone, or the ∆4-C21 steroid, progesterone,
followed by cleavage of the C17-20 bond to yield either
the C19 steroids, dehydroepiandrosterone (DHEA), or
androstenedione, respectively (Fig. 1). In this two
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step reaction, 17α-hydroxypregnenolone or 17α-
hydroxyprogesterone is synthesized as an intermediate.
Initially, it was believed that each reaction was cat-
alyzed by a distinct enzyme, but studies by Hall and
colleagues (26,27) demonstrated that a single purified
protein catalyzed both 17α-hydroxylation and
C17–C20 cleavage (lyase) activity. Subsequent cloning
of a bovine P450c17 cDNA and expression of this
cDNA confirmed that both reactions were catalyzed by
the same protein (28). Although, the P450c17 enzyme
from various species catalyzes both the hydroxylation
and the lyase reaction, there are marked species-depend-
ent differences in the utilization of either 17α-hydrox-
ypregnenolone (∆5) or 17α-hydroxyprogesterone (∆4)
as substrate for the lyase reaction. The human and
bovine enzymes use 17α-hydroxypregnenolone as
the preferential substrate yielding DHEA as the
product, whereas the rodent enzyme utilizes 17α-
hydroxyprogesterone as the substrate yielding
androstenedione as the product (29). Auchus and col-
leagues provided conclusive evidence that human testes
synthesize testosterone predominantly by the ∆5 path-
way (30). These species-dependent differences in sub-
strate preference for the C17–C20 lyase activity are not
related to differences in the aa sequence of the bovine
and human enzyme, compared with the rodent enzyme.
However, the differences are a property of the human
and bovine enzyme required for high molar concentra-
tion of cytochrome P450 reductase (31,32), serine/thre-
onine phosphorylation of P450c17 (33,34), and the
accessory protein cytochrome b5 in promoting lyase
activity of 17α-hydroxypregnenolone, but not of 17α-
hydroxyprogesterone (29,35).

Additional activities to that of the classic 17α-
hydroxylation/C17–C20 cleavage have been observed.
Swart et al. (36) reported that human P450c17 also
expresses 16α-hydroxylase activity at the same site as
17α-hydroxylase activity. More recent study by Liu et
al. (37) using a P450c17 deficient MA10 mouse tumor
Leydig cell culture indicated that P450c17 expresses a
secondary activity, squalene monooxygenase (epoxi-
dase) activity, suggesting that this enzyme may also be
involved in cholesterol biosynthesis as proposed sev-
eral years earlier by Lieberman and Warne (38).

MOLECULAR STRUCTURE

Genomic Southern blotting and/or cloning has estab-
lished that in mouse (39), rat (40), and human (41,42) as
well as in other species there is a single gene designated
as CYP17A1 in human and Cyp17a1 in mouse. The
CYP17A1 gene is approx 6 kb in length and contains
eight exons with the location of intron–exon boundaries

conserved among species. The 5′ upstream region of the
human, bovine, porcine, rat, and mouse gene share a
high homology over the first 550 bp including the same
nonconsensus TATA box (41–46). The human CYP17A1
gene has been mapped to chromosome 10q24.3 (47,48)
and the mouse Cyp17a1 gene to chromosome 19 at 46 cM
(39). The human P450c17 protein contains 508 aa (49)
compared with 507 aa in the mouse (39) and rat (40)
proteins. The molecular mass of the P450c17 protein is
approx 57 kDa. Comparison of the mouse aa sequence
to rat and human sequences indicates that they are 83
and 66% identical, respectively. The P450c17 protein of
different species contains regions of high homology
common to members of the P450 gene family (39).
These are the putative binding regions for mouse aa
434–454 (39), human aa 435–455 (50), and the ozols
tridecapeptide sequence (343–372 aa) (51) that may play
a role in substrate specificity (52). In addition, there is a
region that is specifically conserved among different
species of P450c17 (296–319) that may function in catal-
ysis (53). Arginine346 in the rat enzyme (54,55) and
arginine347 in the human enzyme were found to be crit-
ical for catalyzing lyase activity. 

P450AROM

Reaction Catalyzed
P450arom catalyzes the conversion of the C19

androgens, androstenedione, and testosterone, to the
C18 estrogens, estrone, and estradiol, respectively. The
reaction requires three molecules of oxygen and three
molecules of NADPH using the microsomal electron
transfer system. The first two oxygen molecules are
required for the oxidation of the C19 methyl group by
standard hydroxylation reactions, whereas the third
oxygen molecule is required for a reaction proposed to
be a peroxidative attack on the C19 methyl group com-
bined with elimination of the 1β hydrogen to yield a
phenolic A ring and formic acid (7).

Molecular Structure
P450arom (CYP19A1) is the product of a single

gene in human (56,57), mouse (58), and rat (59). The
human gene has been mapped to 15q21.1 (60), and
the mouse gene is located on chromosome 9 at 31 cM
(25). The human gene contains 10 exons, nine of
which includes the coding region spanning approx 30
kb (56). Upstream of exon II are several alternative
exon 1s that are spliced into the 5′ untranslated region,
which determines the tissue-specific expression of the
protein (56). The proximal promoter II determines tes-
ticular and ovarian expression of P450arom, and the
transcript originates immediately upstream of the
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translational start site, approx 26 bp downstream of
the putative TATA sequence (57,61,62). Although, the
transcripts have different termini in the different tis-
sues, the coding region of the expressed protein is
identical.

The deduced aa sequence of human P450arom in
comparison to the rat and mouse protein exhibits 81%
homology (56). Both the human and mouse protein
consist of 503 aa with a molecular mass of 58 kDa (56).
The P450arom proteins from different species contain
the same structural features described for the other
cytochrome P450 enzymes: the heme-binding region
containing a conserved cysteine residue that serves as
the fifth coordinating ligand of the heme iron, and the
substrate binding site in the amino-terminal I-helix
region.

HYDROXYSTEROID DEHYDROGENASES

The hydroxysteroid dehydrogenases, 3β-HSD and
17β-HSD, involved in the biosynthesis of testosterone
from cholesterol, belong to the same phylogenetic pro-
tein family, namely the short-chain alcohol dehydroge-
nase reductase superfamily. In general, they are involved
in the reduction and oxidation of steroid hormones,
requiring NAD+/NADP+ as acceptors and their reduced
forms as donors of reducing equivalents. One of the
major differences between the P450 enzymes and the
hydroxysteroid dehydrogenases is that each of the P450
enzymes is a product of a single gene, whereas there are
several isoforms for 3β-HSDs and several isozymes of
the 17β-HSDs, each a product of a distinct gene. The
number of isoforms or isozymes varies in different
species, in tissue distribution, catalytic activity (whether
they function predominantly as dehydrogenases or
reductases), substrate and cofactor specificity, and sub-
cellular distribution. The 3β-HSD isoform expressed in
Leydig cells is 3β-HSD II in human (63), 3β-HSD I (64)
and VI (65) in mouse, and 3β-HSD I in rat (66) The
17β-HSD3 is the 17β-HSD isoform exclusively
expressed in both human (67) and rodent adult Leydig
cells (68,69).

3β-Hydroxysteroid Dehydrogenase
REACTION CATALYZED

The 3β-HSD isoforms expressed in Leydig cells cat-
alyze the conversion of the ∆5-3β-hydroxysteroids, preg-
nenolone, 17α-hydroxypregnenolone, and DHEA, to the
∆4-3-ketosteroids, progesterone, 17α-hydroxyproges-
terone, and androstenedione, respectively. Two sequen-
tial reactions are involved in the conversion of the
∆5-3β-hydroxysteroid to a ∆4-3-ketosteroid. The first

reaction is the dehydrogenation of the 3β-equatorial
hydroxysteroid, requiring the coenzyme NAD+, yielding
the ∆5-3-keto intermediate, and reduced NADH. The
reduced NADH, activates the isomerization of the ∆5-3-
keto steroid to yield the ∆4-3-ketosteroid (7,70,71). This
reaction is catalyzed by a single dimeric protein without
the release of the intermediate or coenzyme (71). Four
isoforms in rat have been identified (7,72). Each of these
isoforms is the product of a distinct gene. Human
HSD3B genes are found on chromosome 1p31.1 (73)
and the Hsd3b mouse genes are located in a cluster on
mouse chromosome 3 close to the centromeric region
that shows conservation of gene order and physical dis-
tance with the centromeric region of human chromo-
some 1 (74,75). All of the HSD3B genes consist of four
exons, with the start site of translation found in exon 2
(75). The two human genes are approx 7.8 kb, and their
nucleotide sequences are highly homologous including
their intronic sequences and the 1250 bp sequence of the
5′ flanking region that exhibits 81.9% identity (72). The
size of the mouse genes varies as result of differences in
the size of their introns (75,76). Intron 1 of the mouse
Hsd3b6 gene was found to be 3.1 kb (76) compared with
126, 125, and 132 bp found in mouse Hsd3b1 and human
HSD3B1 and HSD3B2 (75). The open reading frames of
mouse I and mouse VI 3β-HSD, the isoforms expressed
in Leydig cells, encode a protein including the initiator
methionine of 373 aa (65), whereas human II 3β-HSD
encodes a protein of 372 aa (72). The aa sequences
among the different isoforms and between mouse and
human isoforms show a high degree of identity. Mouse
3β-HSD I is 84% identical to mouse VI, and 71% iden-
tical to human II (65,72). Although the aa sequence pre-
dicts a molecular mass of 42 kDa for all of the 3β-HSD
proteins, when subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, the mobilities of
mouse 3β-HSD I and VI are distinct, exhibiting an appar-
ent molecular mass of 42 and 44 kDa, respectively (65).
The cofactor binding site is located in the amino-
terminal sequence. Investigations using homology mod-
eling of human 3β-HSD I demonstrated that Asp36 is
responsible for the NAD(H) binding site (71). In earlier
studies investigating the difference in the aa sequence of
mouse 3β-HSD I, which requires NAD+ as a cofactor,
and mouse 3β-HSD IV and V, which require NADP+ as
cofactor, it was found that Asp36 was essential for
NAD+-mediated dehydrogenation/isomerization, and
replacement of Asp36 with phenylalanine at position 36
changed the cofactor specificity to NADP+. (77,78) The
dehydrogenase activity has been localized to the Y154-
P-H-S-K158 domain and the isomerase site to Tyr269
and Lys273 of the human 3β-HSD protein (79).
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17-HYDROXYSTEROID

Till date, 11 distinct 17β-HSDs have been identified.
Unlike the 3β-HSDs described earlier, there is little
homology among the different 17β-HSD isozymes (7).
But unlike the 3β-HSDs, the orthologs among the dif-
ferent species are assigned the same number. Thus, the
isozyme expressed in Leydig cells is 17β-HSD 3 in
human, rat, and mouse. 
Reaction Catalyzed

The 17β-HSD catalyzes the last step in the biosyn-
thesis of testosterone. It converts androstenedione, a
weak androgen, to testosterone, a potent androgen.
17β-HSD 3 prefers NADPH as a cofactor, and its pri-
mary activity is reductive.
Molecular Structure

The human gene HSD17B3 maps to chromosome
9q22 (67) and the mouse gene Hsd17b3 is located on
chromosome 13 (68). The human gene is 60 kb in
length and contains 11 exons (67). It encodes a protein
of 310 aa with a molecular mass of 34.5 kDa and no
apparent membrane spanning region (67). The mouse
gene encodes a protein of 305 aa, five fewer than the
human with a molecular mass of 33.7 kDa (68). The
mouse protein is missing four of the aa at the amino-
terminus and Val245 of the human sequence; the aa
identity between the mouse and the human protein is
72.5%, and similarity is 94.8% (68). Site-directed
mutational analysis of human 17β-HSD 3 demon-
strated that arginine at position 80 was critical for bind-
ing of the cofactor NADPH (80).

STEROID 5α-REDUCTASE

Reaction Catalyzed 
Steroid 5α-reductase (3-oxo-5α-steroid reductase)

catalyzes the irreversible conversion of a 3-keto ∆4–∆5
structure to the corresponding 5α-reduced metabolite,
e.g., testosterone to 5α-dihydrotestosterone (Fig. 1) or
progesterone to 5α-dihydroprogesterone. NADPH is
the donor of the electrons. Conversion of testosterone
to dihydrotestosterone is predominant in androgen
target tissues, although, it is also present in the testis. In
several species, including rat (81,82) and mouse
(83,84), there is a peak of 5α-reductase activity in
Leydig cells during pubertal development. The major
androgen produced in mouse Leydig cells during puber-
tal development is 5α-androstanediol reaching a maxi-
mal production between 25 and 30 d postnatal (83).

Molecular Structure
Two isoforms of steroid 5α-reductase, each a prod-

uct of a distinct gene, have been identified in human

(85), rat (85), and mouse (86). Both the human, and
most likely the mouse and rat genes, contain five exons
with the positions of the introns being essentially iden-
tical in the two isoforms (85). The two genes, human
SDR5A1 and SDR5A2, are located on distinct chromo-
somes. SDR5A1 maps to the distal arm of chromosome
5p15 (87), whereas SDR5A2 is located on chromosome
2p23 (88), the mouse Sdr5a1 maps to chromosome 13
39.0 cM and mouse Sdr5a2 to 17E2. 

The steroid 5α-reductases are hydrophobic intrinsic
membrane-bound proteins: the human 5α isozyme
type-1 consists of 259 aa whereas the type-2 consists
of 254 aa with a molecular mass of 29.5 kDa and 28.4
kDa, respectively (Table 1C; 89). The respective mouse
5α-reductases 1 and 2 consist of 217 and 254 aa, and a
molecular mass of 24.9 kDA and 28.6 kDa, respectively
(Table 1C; ref. 90). The enzymes show aberrant elec-
trophoretic mobilities in sodium dodecyl sulfate poly-
acrylamide gels. The human isozymes migrate with
molecular weights of 21–27 kDa instead of the 
predicted 28 and 29 kDa (85).

REGULATION OF EXPRESSION 
OF STEROIDOGENIC ENZYMES 

IN LEYDIG CELLS

P450 Enzymes
A major nuclear factor that is essential for cell-specific

expression for P450 steroidogenic enzymes was identi-
fied by two laboratories in 1992. This nuclear DNA-
binding protein, referred to as SF-1 by Lala et al. (91) or
Ad4BP by Morohashi et al. (92) belongs to the orphan
nuclear receptor family and binds to variants of an
AGGTCA sequence motif found in the proximal promoter
of all P450 steroidogenic enzymes (93,94). Although 
SF-1 is essential for cell-specific gonadal expression,
other factors are necessary for determining maximal as
well as cell-specific expression of these enzymes.

Chronic stimulation of Leydig cells by the pituitary
hormone LH is required for the maintenance of optimal
expression of the enzymes. LH, acting via G protein-
coupled receptors, activates adenylate cyclase thereby,
increasing cAMP, which in turn, leads to increased syn-
thesis of P450 steroidogenic enzymes. The regulation
of LH stimulation via cAMP is not mediated by the
cAMP response element (CRE/CRE-binding protein
[CREB]) system with the exception of CYP19A1. It has
been reported that cAMP acts via CRE/CREB in the rat
Cyp19a1 promoter expressed in rat granulosa cells and
in R2C Leydig cells (95) and in the PII human
CYP19A1 promoter expressed in human granulosa cells
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(96). cAMP-responsive sequences found in the promot-
ers of CYP11A1 and CYP17A1 differ among these CYP
genes and among the same genes of different species
(45,97). Although, hormone-stimulated increases in
cAMP enhance the expression of all of steroidogenic
P450 enzymes, additional factors are involved in main-
taining maximal expression. Recent studies have provided
evidence for a role of GATA-4 and GATA-6 as phos-
phorylated intermediates in cAMP-stimulated expres-
sion of P450scc, P450c17, P450arom, and 3β-HSD
(98–100).

In vitro studies using isolated Leydig cells in culture
have contributed to our understanding of the regulation
of steroidogenic enzymes. Early studies reported that
treatment of immature porcine Leydig cells in culture
with hCG increased the de novo synthesis of P450scc
and adrenodoxin (101). Similar studies using rat
Leydig cells in culture demonstrated that treatment
with hCG or cAMP increased the synthesis of P450scc
and adrenodoxin (102).

Studies by this author and colleagues using primary
culture of mouse Leydig cells demonstrated that LH or
cAMP are essential for the expression of P450c17
enzyme activity (103,104), de novo synthesis of P450c17
protein (105,106), and the expression of P450c17 mRNA
(107). The synthesis of P450c17 ceases in the absence of
cAMP (105). In a subsequent study, Youngblood and
Payne identified the cAMP-responsive region between -
346 and -245 bp upstream of the start site of transcrip-
tion of the Cyp17a1 promoter (45). The essential role of
cAMP for the expression of P450c17 in other species
has been reviewed by Waterman and Keeney (108). In
contrast to the absolute requirement for cAMP for the
expression of P450c17 in mouse Leydig cells, expres-
sion of P450scc and 3β-HSD are not dependent on
cAMP (105). Although LH, hCG, or cAMP may not be
critical for expression of P450scc in Leydig cells in cul-
ture, treatment of mouse MA-10 Leydig tumor cells with
cAMP (106,109) or forskolin (110) increases the amount
of P450scc protein and mRNA. 

In the studies on the requirement of cAMP for the
expression of P450c17, evidence was obtained that
testosterone produced during LH or cAMP stimulation
repressed cAMP induction of P450c17 activity (104),
de novo synthesis (106), and the amount of mRNA
(107). This negative effect of testosterone could be
mimicked by the androgen agonist mibolerone (107)
and prevented by the androgen antagonist hydroxyflu-
tamide (106) indicating that androgen-mediated repres-
sion of P450c17 expression was mediated by the
androgen receptor. A subsequent study demonstrated
that androgen-mediated repression involved the binding

of the androgen receptor to sequences within the cAMP-
responsive region of the Cyp17a1 promoter (111).

Glucocorticoids have been implicated in the regula-
tion of testicular steroidogenesis. Increased production
of glucocorticoids in pathological conditions of the
adrenal cortex, such as Cushing’s syndrome, can be
associated with decreased circulating testosterone and
reproductive dysfunction (112). Studies by Hales and
Payne (109) and Payne and Sha (107) demonstrated
that the glucocorticoids, cortisol, corticosterone, or the
synthetic glucocorticoid, dexamethsone, repress both
basal and cAMP-induced synthesis of P450scc protein
and mRNA. The glucocorticoid-mediated decrease in
P450scc synthesis was prevented by the antiglucocorti-
coid, RU486, suggesting that glucocorticoid repression
of P450 synthesis is mediated by the glucocorticoid
receptor found in Leydig cells (113).

For regulation of P450c19 in Leydig cells, see
Chapter 19.

HYDROXYSTEROID DEHYDROGENASES

3β-HSD
Gonadal expression of human 3β-HSD II and mouse

3β-HSD I is dependent on SF-1 as described for the
gonadal-specific expression of the P450 steroidogenic
enzymes (114,115). A study on the mouse Hsd3b1 pro-
moter identified three potential SF-1 consensus binding
sites in the proximal promoter of the gene (75). In a sub-
sequent study, it was shown that SF-1, also, was required
for the expression of mouse 3β-HSD I protein (76).

Studies involving the regulation of 3β-HSD mRNA
in mouse Leydig cells in culture, demonstrated high
constitutive expression of 3β-HSD (107). In a subse-
quent study, it was found that mouse Leydig cells
express two distinct isoforms of 3β-HSD, 3β-HSD I,
and VI (65). Investigations using gonadotropin-
deficient mice to study the role of LH/hCG in regulat-
ing the expression of 3β-HSD I and VI mRNA in the
adult Leydig cell lineage revealed that the expression
of 3β-HSD I is independent of LH stimulation (116).
In contrast, the expression of 3β-HSD VI mRNA is
highly dependent on LH/hCG stimulation. GATA fac-
tors appear to be important in the expression of human 
3β-HSD II in steroidogenic cells (100). In a recent
study, Martin et al. identified a proximal element in the
HSD3B2 promoter that interacts with GATA 4 and 6
which physically interact with SF-1 or LHR-1 to deter-
mine cell-specific and maximal expression of HSD3B2
in Leydig cells (117). In addition, Martin and Tremblay
(118) identified a response element located at -130 bp
specific for another orphan nuclear receptor, Nur 77,
which was found to be important for both basal- and
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hormone-induced human HSD3B2 promoter activity
Nur 77 expression is induced in vivo by LH/hCG in the
testis and appears to be an important mediator in the
action of LH on steroidogenesis (119).

17βHSD. Studies on the regulation of 17βHSD 3 are
limited. Baker et al. (120) examined the expression of
17β-HSD 3 mRNA during development in normal mice,
and mice lacking circulating gonadotropins (hpg), or
functional androgen receptors (Tmf). The results
showed that during neonatal development expression of
17β-HSD 3 mRNA is independent of gonadotropin
action, but becomes dependent on androgen action at
the time of puberty (120).

5α-Steroid Reductase
During puberty in rat (82) and mouse (83,84) Leydig

cells, 5α-steroid reductase is highly expressed result-
ing in 5α-androstanediol being the major androgen pro-
duced. Hypophysectomy of 21-d-old rats elicited a
marked decrease in 5α-reductase activity (121).
Treatment of the rats with LH, initiated 6 d posthy-
pophysectomy, resulted in a sharp increase in 5α-
reductase activity. Treatment with FSH did not increase
or prevent the decrease in 5α-reductase activity follow-
ing hypophysectomy. Similarly, LH, but not FSH,
increased 5α-reductase activity in hpg mice (122,123).

Additional studies provided evidence that prolactin
(PRL) is involved in the maintenance of high 5α-reduc-
tase activity in testes of immature mice (124,125). PRL
treatment of mice had no effect on 5α-reductase activity,
but enhanced the LH-induced increase in activity (125).
Murono and Washburn tested several hormones in 25-d-
old rat Leydig cells in culture and found only hCG
increased 5α-reductase activity (126). Additional studies
by Murono et al. showed that the acidic fibroblast growth
factor, as well as the platelet-derived growth factor
repressed basal and hCG-stimulated 5α-reductase activ-
ity in cultured immature rat Leydig cells (127). Basic
fibroblast growth factor repressed hCG-stimulated 5α-
reductase activity, but had no effect on basal activity
(128). In a subsequent study, Viger and Robaire exam-
ined the type and developmental expression of 5α-reduc-
tase mRNA and protein in the testis of rat (129). At all
ages examined, they identified type-1 5α-reductase in
Leydig cells. Type-1 5α-reductase mRNA was found to
the be most abundant in the immature rat between 21 and
28 d of age. Immunohistochemical staining with a specific
antiserum to the type-1 enzyme localized the type-1 pro-
tein in the cytoplasm of Leydig cells with the highest
expression between 21 and 28 d, followed by a progres-
sive decrease closely paralleling the enzyme activity
reported earlier by other investigators.

CLINICAL FEATURES OF MUTATIONS
IN STEROIDOGENIC ENZYMES

P450 Enzymes
CYP11A1. Mutations, homozygous in the CYP11A1

gene in human, are lethal (130). Such mutations result
in the inability of the placenta to produce progesterone,
which is essential for maintenance of pregnancy begin-
ning at 6–7 wk gestation when production of proges-
terone by the corpus luteum wanes. 

CYP17A1. Numerous reports have been published
describing patients with mutations in the CYP17A1
gene. Mutations have been identified that cause either
complete, partial, or isolated 17,20 lyase activity
(131–137). The patients exhibit a range of phenotypes
depending on the mutation. Both male and female
patients are hypertensive because of the overproduc-
tion of mineralocorticoids as well as impaired produc-
tion of cortisol. Affected females exhibit abnormal
sexual development resulting in primary amenorrhea.
Male patients are phenotypic females due to the defi-
ciency of testosterone production.

CYP19A1. To date five male patients with mutations
in CYP19A1 have been reported (138–143). Defects
observed in these patients are not because of the absence
of aromatase activity in Leydig cells but, the absence of
conversion of testosterone to estradiol in peripheral tis-
sues. Male patients developed very high stature in their
late twenties owing to the failure of epiphyseal fusion.
Furthermore, they exhibited severely delayed bone age
resulting in ostopenia and undermineralization. In addi-
tion, these patients experienced marked metabolic
defects in carbohydrate and lipid metabolism.

HYDROXYSTEROID DEHYDROGENASES

HSD3B. Homozygous mutations in HSD3B1 are
lethal in human because the 3β-HSD I protein is
required for progesterone synthesis in the placenta as
described above for CYP11A. Many mutations in the
HSD3B2 gene have been identified and are summa-
rized in a review by Simard et al. (72). The major
defect observed in males with mutations in the
HSD3B2 gene is either perineal hypospadias or peri-
neoscrotal hypospadias and ambiguous external male
genitalia or microphallus. These features in the male
are because of decreased biosynthesis of testosterone
that is required for normal development of external
male genitalia (72).

HSD17B3. Autosomal-recessive mutations in
HSD17B3 have been identified and characterized in
numerous male patients (144). The product of the
HSD17B3 gene is essential for Leydig cell biosynthesis
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of testosterone during fetal development. Mutations
result in phenotypic males with female external 
genitalia. These males have abdominal testes, epi-
didymides, vas deferentia, seminal vesicles, and ejacula-
tory ducts. Plasma testosterone concentrations rise at the
time of puberty resulting in many of these individuals
undergoing marked virilization. The explanation for
this phenomenon is most likely result of the peripheral
conversion of circulating androstenedione by one of the
other 17β-HSD isoforms (145).

5α-Reductases
In males, SDR5A2 is expressed in external genitalia.

Thus, mutations in SDR5A2 result in various degrees
of male pseudohermaphroditism with undermasculin-
ized external genitalia (see Chapter 12).
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