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SUMMARY

The tubulin molecule is an α/β heterodimer. In most eukaryotes both α- and β-tubulin
consist of isotypes encoded by different genes and differing in amino acid sequence.
Differences among isotypes are often highly conserved in evolution, suggesting that
they have functional significance. The complex isotype families in mammals,
Drosophila and higher plants have been particularly well studied. Different isotypes
often have different cellular and tissue distributions. In addition, purified isotypes dis-
play different properties including assembly, GTPase, conformation, dynamics, and
ability to interact with anti-tumor drugs. The different cellular, tissue, and species
distribution, as well as their primary structures and their in vitro properties give
clues as to the possible functions of the different isotypes, which will be discussed
in this chapter.

Key Words: Tubulin; α-tubulin; β-tubulin; βI; βII; βIII; βIV; βV; βVI; isotypes;
anti-tumor drugs; evolution; axonemes; cilia; flagella.

1. INTRODUCTION

Tubulin, the subunit protein of microtubules is an α/β heterodimer (1,2). The full
amino acid sequences of α and β were first determined in 1981 and found to be 41%
identical (3,4). The existence of tubulin isotypes was confirmed in this same work. The
amino acid sequences of the peptides, obtained from pig brain tubulin, showed hetero-
geneity at various positions, indicating that at least four forms of α and two forms of β
were expressed in pig brain, presumably encoded by different genes (3,4). Since that
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time genes for α- and β-tubulin have been sequenced from a large number of eukaryotes.
Many of these organisms contain multiple genes for α or β, or both, generally encoding
proteins of different amino acid sequence. These different proteins will be referred to as
isotypes of α or β, meaning proteins encoded by different genes with different amino
acid sequences. More recently, other very different forms of tubulin have been discov-
ered, designated as γ, δ, ε, ζ, η, θ, ι, and κ. Still others may be waiting in the wings.
These tubulins, together with α and β, are generally grouped together as the tubulin
superfamily. Some related proteins have been observed in prokaryotes as well. The
tubulin superfamily and the related prokaryotic proteins will be discussed in Chapter 7.
In addition to the genetically encoded forms of tubulin, multiple forms of α and β exist,
differing in their post-translational modifications. These will be discussed in Chapter 5.

The existence of tubulin isotypes had been predicted long before 1981. In 1967,
Behnke and Forer (5) had suggested that in view of the different stability of microtubules
performing different functions, there must be different forms of tubulin. This proposal
was later elaborated into the multitubulin hypothesis, which proposed the existence of
such forms, each one responsible for a specific function (6). As will be seen here,
the multitubulin hypothesis is fundamentally correct, although not all isotypes can be
explained this way, and, in those cases where the hypothesis applies, the functional dif-
ferences are often far more subtle and complex than originally envisioned. The area of
tubulin isotypes has been reviewed before (7–9). Here the concentration will be on
discoveries made since 1998.

2. DISTRIBUTION OF TUBULIN ISOTYPES

2.1. Phylogenetic Distribution
The existence of tubulin isotypes has been demonstrated in many organisms (Tables 1–3).

It is clear that organisms in every eukaryotic phylum exhibit multiple isotypes of both 
α- and β-tubulin. This is particularly true for the higher eukaryotes. Among the animals,
in every case where multiple isotypes of α and β have been searched for, they have been
found. One possible exception is the sea urchin Lytechinus, where a single α-tubulin
gene was reported (10). However, since this was published, multiple isotypes of α have
been found in the sea urchins Paracentrotus and Strongylocentrotus (11,12); hence, it is
very likely that further investigation will reveal multiple isotypes of α in Lytechinus as
well. Plants have a similar story. Multiple isotypes of both α- and β-tubulin have been
found in every plant that has been investigated. In short, there are no plants or animals
that have been found to express either a single α or a single β isotype. Every plant and
animal that has been studied expresses multiple isotypes of both α and β.

Protists and fungi, however, are a more complex story. Among the fungi there have
been organisms, such as Candida or Histoplasma, which express only a single α and a
single β (8). Others have a single β with multiple α. Interestingly, the converse pattern
of a single α with multiple β has not been seen in fungi. Within the different phyla of
fungi, all appear to contain species that express multiple α or multiple β isotypes, or
both. Expression of a single α or single β is restricted to the ascomycetes and
microsporidia (Table 2). In view of the pattern observed with plants and animals, one
is tempted to conclude that multicellularity favors the existence of multiple isotypes of
α- and β-tubulin.
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Table 1
Isotypes of α-, β-, and γ-Tubulin: Animalsa

Phylum/
Number of isotypes

Differences
Genus division α β γ in expression? References

Homo Chordate 7 8 2 Yes 8,76,181,185
(human)

Macaca Chordate ND ≥6 ND – 69
(Rhesus 
monkey)

Sus (pig) Chordate ≥4 ≥2 ND Yes 3,4
Bos (cow) Chordate ND ≥4 ND Yes 64
Odocoileus Chordate ND ≥2 ND – 96

(deer)
Canis (dog) Chordate ND ≥4 ≥1 – 302,303
Mus (mouse) Chordate 6 7 2 – 8,42,45,304
Rattus (rat) Chordate ≥3 ≥4 ≥1 – 183,305–311
Gallus Chordate 5 7 ≥1 Yes 8,63,173,312

(chicken)
Xenopus Chordate ≥2 ≥2 ≥1 Yes 8,43,313

(clawed 
frog)

Notothenia Chordate ≥8 ≥4 ND Yes 8,288,314
(rockcod)

Chionodraco Chordate ≥4 ≥2 ND – 288
(icefish)

Gadus Chordate ND ≥4 ND Yes 98,293
(Atlantic cod)

Oncorhynchus Chordate 4 ND ND – 8
(salmon)

Salmo (trout) Chordate ≥2 ND ND – 8
Torpedo Chordate ≥2 ND ND Yes 8

(electric
eel)

Danio Chordate 2 ND ND – 315
(zebrafish)

Ictalurus Chordate ND ≥2 ND – 97
(catfish)

Mustelus Chordate ND ≥2 ND – 97
(dogfish 
shark)

Myxine Chordate 2 ND ND – 316
(hagfish)

Branchiostoma Chordate 2 ND ND – 316
(lancelet)

Halocynthia Tunicata ND >2 ND Yes 17
Ciona Tunicata 3 ND ND – 316
Oikopleura Tunicata 10 ND ND – 317
Paracentrotus Echinodermata 4 3 ND – 8,11

(sea urchin)

(Continued)



126 Ludueña and Banerjee

Table 1 (Continued)

Phylum/
Number of isotypes

Differences
Genus division α β γ in expression? References

Lytechinus (sea Echinodermata 1 2 ND – 10
urchin)

Strongylocentrotus Echinodermata 3 ≥1 2 – 12,318
(sea urchin)

Gecarcinus Arthropoda >4 ND ND Yes 319
(land crab)

Homarus Arthropoda 2 ≥1 ND – 316
(lobster)

Heliothis Arthropoda ND ≥2 ND Yes 8
(moth)

Bombyx (moth) Arthropoda ≥3 ≥4 ND Yes 19
Drosophila Arthropoda 4 3 2 Yes 8,49,320

(fruit fly)
Octopus Mollusca ND ≥2 ND Yes 8
Aplysia (sea Mollusca 2 ND ND – 321

hare)
Hirudo Annelida 2 ND ND – 322

(leech)
Trichostrongylus Nematoda ND ≥2 ND Yes 209
Caenorhabditis Nematoda 4 3 ≥1 Yes 8,21,22,

208,323
Cyathostomum Nematoda ND ≥3 ND – 324,325
Cylicocyclus Nematoda ND ≥3 ND – 325,326
Haemonchus Nematoda ≥1 4 ND – 8,207
Cooperia Nematoda ND ≥2 ND – 327
Brugia Nematoda ND ≥2 ND – 8
Gyrodactylus Platyhelminthes ND 3 ND – 328
Echinococcus Platyhelminthes ND ≥3 ND – 329

(tapeworm)
Schmidtea Platyhelminthes >1 ND ND Yes 20
Schistosoma Platyhelminthes 2 ND ND – 8

aThe table gives either the actual number of isotypes or else states that there are at least that number.
The symbol “≥” as in “≥4” means that there are 4 known isotypes but that there is a reasonable probabil-
ity of more, based on information from closely related organisms. For more information, see ref. 8, Table 1.
For purposes of comparison, the isotypes of γ-tubulin, when known, are included in this table, although 
γ-tubulin will be discussed further in Chapter 7.

Various patterns of tubulin isotype expression are observed among the protists.
Several, such as Physarum or Trichomonas express multiple isotypes of both α and
β; some, such as Euplotes express a single α and multiple β; others, such as
Chlamydomonas and Plasmodium have the reverse pattern. Dictyostelium expresses
only one α and only one β. The widespread occurrence of multiple isotypes among the
protists may reflect the complex cellular architecture of some of these organisms.

The knowledge of isotypes of γ-tubulin is still in its infancy, but it is clear that these
occur. Multiple γ isotypes have been observed among the animals, plants, and protists,
but not among the fungi. γ-tubulin, which is thought to nucleate microtubules, is found



Table 2
Isotypes of α-, β- and γ-Tubulin: Plants and Fungia

Phylum/
Number of isotypes

Differences
Genus division α β γ in expression? References

Plants
Daucus (carrot) Angiosperm ≥1 >4 ND Yes 24
Pisum (pea) Angiosperm ND 3 ND – 8
Glycine (soybean) Angiosperm ND 3 ND Yes 8,47
Solanum (potato) Angiosperm ND ≥2 ND – 8
Eucalyptus Angiosperm >1 ND ND – 8
Zinnia Angiosperm ND ≥3 ND Yes 8
Prunus (plum) Angiosperm >1 ND ND Yes 8
Oryza (rice) Angiosperm 3 3 ≥1 Yes 8,330,331
Triticum (wheat) Angiosperm >1 6 ND Yes – 25,332
Arabidopsis (cress) Angiosperm 4 8 2 Yes 8,333
Nicotiana (tobacco) Angiosperm 2 5 ≥1 Yes 334–338
Hordeum (barley) Angiosperm 5 ≥3 ≥1 Yes 28,339
Gossypium (cotton) Angiosperm ≥5 ≥6 ND – 26,340
Lupinus (lupine) Angiosperm ND ≥2 1 Yes 8,341
Populus (aspen) Angiosperm 3 ND ND – 342,343
Cosmos (sunflower)Angiosperm ≥2 ND ND Yes 44
Zea (corn) Angiosperm ≥6 8 2 Yes 8,344,345
Eleusine Angiosperm ≥3 ≥4 ND – 346,347

(goosegrass)
Miscanthus Angiosperm 8 ND ND – 348
Anemia (fern) Angiosperm 2 2 1 – 349,350
Physcomitrella Bryophyta 2 5 1 – 351–353

(moss)
Fungi
Histoplasma Ascomycota 1 1 ND – 8
Aspergillus Ascomycota 2 2 1 Yes 8
Colletotrichum Ascomycota 2 2 ND Yes 8,33,354
Candida Ascomycota 1 1 1 – 8,355,356
Neurospora Ascomycota 2 1 1 Yes 8,35,357
Trichoderma Ascomycota ND ≥3 ND – 8,358
Hypocrea Ascomycota ND 2 ND – 8
Paracoccidioides Ascomycota 2 ND ND Yes 36
Botryotinia Ascomycota ND 1 ND – 359
Erysiphe Ascomycota ND 1 ND – 8

(grass mildew)
Epichloe Ascomycota ND 1 ND – 8
Saccharomyces Ascomycota 2 1 1 No 8,213
Schizosaccha- Ascomycota 2 1 1 No 8,313

romyces
Pneumocystis Ascomycota 1 1 ND – 8,360
Geotrichum Ascomycota ND 2 ND – 8
Conidiobolus Zygomycota 2 ≥1 ND – 361,362
Rhizopus Zygomycota 3 3 ND – 361,362
Basidiobolus Zygomycota 2 2 ND – 362

(Continued)
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Table 2 (Continued)

Phylum/
Number of isotypes

Differences
Genus division α β γ in expression? References

Spiromyces Zygomycota ND 2 ND – 362
Mortierella Zygomycota ND 2 ND – 362
Powellomyces Chytridiomycota 3 ND ND – 361,362
Allomyces Chytridiomycota ND 2 ND – 363
Spizellomyces Chytridiomycota ND 2 ND – 361
Harpochytrium Chytridiomycota ND 2 ND – 361
Glomus Glomeromycota ND 2 ND – 364
Suillus Basidiomycota ND 2 ND – 365
Cryptococcus Basidiomycota ND 2 ND No 366
Encephalitozoon Microsporidia 1 1 1 – 8,367,368

aSee explanation under Table 1. 
For more information, see ref. 8, Table 2.

Table 3
Isotypes of α-, β-, and γ-Tubulin: Protistsa

Phylum/
Number of isotypes

Differences
Genus division α β γ in expression? References

Cryptosporidium Apicomplexa ND 1 1 – 8,369,370
Toxoplasma Apicomplexa 3 3 ND – 8,38
Babesia Apicomplexa ND 1 ND – 8
Plasmodium Apicomplexa 2 1 1 – 8,371
Eimeria Apicomplexa ND 1 ND – 8
Physarum Mycetozoa 3 4 2 Yes 8,372

(slime mold)
Chloromonas Chlorophyta 2 ND ND – 373

(snow alga)
Chlamydomonas Chlorophyta 2 1 1 – 8,374
Polytomella Chlorophyta ND 2 ND – 8
Volvox Chlorophyta ND 2 ND – 8,375
Paramecium Ciliophora 2 1 1 – 8,376
Tetrahymena Ciliophora 1 2 1 – 8,377
Stylonichia Ciliophora 2 1 ND – 8
Euplotes Ciliophora 1 4 2 – 378,379
Moneuplotes Ciliophora 3 ≥1 2 – 8,380,381
Histriculus Ciliophora 1 ND ND – 382
Moneuplotes Ciliophora 5 ND ND – 381
Tintinnopsis Ciliophora 2 ND ND – 383
Strobilidium Ciliophora 3 ND ND – 383
Metacylis Ciliophora 2 ND ND – 383
Laboea Ciliophora 3 ND ND – 383
Strombidinopsis Ciliophora 6 ND ND – 383
Favella Ciliophora 2 ND ND – 383
Opisthonecta Ciliophora 2 ND ND – 384

(Continued)
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Table 3 (Continued)

Phylum/
Number of isotypes

Differences
Genus division α β γ in expression? References

Halteria Ciliophora 6 ND ND – 381
Metopus Ciliophora 3 ND ND – 381
Heliophrya Ciliophora 3 ND ND – 381
Nyctotherus Ciliophora 2 ND ND – 381
Dictyostelium Acrasiomycota 1 1 1 – 8,38
Ectocarpus Phaeophyta ND 2 ND – 8
Chondrus Rhodophyta ND 2 ND – 8
Achlya Oomycota ND 1 ND – 8
Amphidinium Dynophyceae 2 ND ND – 386

(dinoflagellate)
Reticulomyxa Rhizopoda 2 2 1 – 8,387
Naegleria Heterolobosea ≥4 >1 ND Yes 8,37
Leishmania Euglenozoa ≥1 2 1 Yes 8,388,389
Trypanosoma Euglenozoa 1 1 1 – 390,391
Trichomonas Parabasalidea 2 ≥3 ND Yes 8,392
Tritrichomonas Parabasalidea ≥2 ND ND – 393
Trichonympha Parabasalidea 2 ≥1 ND – 394
Hypotrichomonas Parabasalidea 2 3 ND – 395
Monocercomonas Parabasalidea ND 2 ND – 396
Pelvetia Phaeophyceae ≥2 ND ND – 397

(brown alga)
Bigelowiella Cercozoa 3 3 ND – 398
Pyrsonympha Oxymonadida 2 ND ND – 394
Streblomastix Oxymonadida 5 1 ND – 399

aSee explanation under Table 1. 
For more information, see ref. 8, Table 3.

in centrosomes as well as other microtubule organelles. It is conceivable that fungi,
which lack centrosomes, may not require more than a single isotype of γ-tubulin.

2.2. Tissue, Cellular, and Subcellular Distribution
What functions do isotypes serve? Why have the differences among isotypes in

groups such as the vertebrates been so widely conserved? The fact of this conservation
argues that the differences must matter, but it does not prove it. One could argue that all
isotypes are completely interchangeable functionally and that there is a space of certain
amino acid sequences that are compatible with function. Evolution has randomly filled
at least part of this space. In other words, conceivably, mammalian βI, for example,
could accept certain mutations and still assemble into a microtubule that would perform
all microtubule-mediated functions; mammalian βIII could do likewise. However, βI
could not mutate into βIII, because the intermediate forms would not be viable. This
would help to account for the preservation of isotype differences in evolution. What
about the fact that isotypes often differ in their tissue distribution? One could further
argue that when a certain tissue differentiates, a cassette of genes is expressed that hap-
pens to include one particular isotype and not another. The fact that certain isotypes
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Table 4
Tubulin Isotypes in the Inner Ear of the Gerbila

Cell βI βII βIII βIV

Cochlea (adult)
Outer hair cell + – – +
Inner hair cell + + – –
Outer pillar cell – + – +
Inner pillar cell – + – +
Deiters cell + + – +
Schwann cell + ? ? ?
Neurons + + + ?
Afferent dendrites – – – –

Cochlea (developing)
Outer hair cell + + – +
Inner hair cell + + – +
Outer pillar cell + + – +
Inner pillar cell + + – +
Deiters cell + + – +
Afferent dendrites + + + –

Vestibular organ (adult)
Type I hair cell + – – +
Type II hair cell + – – +
Supporting cell + + – +
Schwann cell + ? ? ?

Neurons
Axons, soma + + + –
Dendrites + + + –
Calyx – – + –

Source: Adapted from refs. 13–15.
aAbsence of signal could indicate either that the isotype as not present in the tissue or that extensive

post-translational modification made it undetectable to the antibody.

have their expression regulated by particular factors is consistent with this model, as
will be discussed later. The result would be tissues expressing different isotypes. Each
isotype would be participating in certain generic processes such as mitosis as well as
tissue-specific processes such as secretion in the liver or axonemal motility in tracheal
epithelia. However, by this model the isotypes would be interchangeable. In other
words, if the liver isotype were to be expressed in the tracheal epithelia and not in the
liver and conversely for the tracheal isotype, processes such as secretion and axonemal
motility would not be compromised. The ideal way to prove that the structural differ-
ences among isotypes have functional significance is to demonstrate that the isotypes
are not functionally interchangeable. As will be seen later, this has been done in a few
cases. In addition, there is a great deal of other evidence that supports the hypothesis
that isotype differences are functionally significant.

As just discussed, the differences in tissue distribution among tubulin isotypes do not
constitute definitive evidence that the isotype differences are functionally significant.
Nevertheless, in many cases, the distribution of isotypes among tissues and even among
different cell types in the same tissue is extremely complex. Table 4 shows the distribution
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of isotypes in different cells of the inner ear. It is striking that adjacent cells can have
different isotype compositions, even in cells that perform similar although not identical
functions such as the inner and outer hair cells of the cochlea (13). In addition, the pat-
tern of isotypes changes during development. For example, the inner and outer hair cells
express the same set of β isotypes (βI, βII, and βIV) in early development and then the
outer hair cells stop making βII, whereas the inner hair cells stop expressing βIV (14).
It is difficult to ascribe this complexity to different cassettes of genes.

In certain cases, isotype distributions appear to differ within the same cell. For exam-
ple, some of the neurons of the gerbil vestibular organ have a portion, called the calyx,
which is like a cup enveloping the adjacent hair cell. Although the rest of the neuron con-
tains βI, βII, and βIII, only βIII occurs in the calyx (Table 4) (15). If the cell is unable to
discriminate among the isotypes, how is it able to arrange that βI and βII, but not βIII,
be restricted from entering the calyx? If the cell is able to distinguish the isotypes from
each other, then it is easy to imagine that the different isotypes can perform different
functions. Nevertheless, there is still one way out of the dilemma posed by the vestibu-
lar neurons, a way that would still allow us to maintain the functional interchangeability
of isotypes. A highly elaborate series of temporally regulated cassettes of genes can be
posited, such that only βIII is expressed when the calyx is forming, whereas all three iso-
types are expressed before that time.

Isotype distributions are also complex in other animals. This complexity has been
seen in the frog Rana (16), the tunicate Halocynthia (17), sea urchins (18), the fruit fly
Drosophila, the moths Heliothis and Bombyx (19), the mollusc Patella, the nematode
Brugia, and even the platyhelminth Schmidtea (20) (reviewed in refs. 8,9).

An intriguing example of isotype distributions has been observed in the nematode
Caenorhabditis elegans. These organisms contain touch receptor neurons whose micro-
tubules are made up of 15 protofilaments, instead of the more usual 11 protofilaments as
are the other microtubules of C. elegans. The tubulin dimers that constitute these “giant”
microtubules consist of a unique α and a unique β isotype (21,22). As will be argued later
for the mammalian βVI isotype, it is possible that microtubules of unique morphology
require unique tubulin isotypes. Of the other isotypes in C. elegans, some interchange-
ability has been observed, but one β isotype is required for centrosomes to be stable (23).

Isotype distributions are complex in plants as well as shown for maize in Table 5.
Similar complex tissue distributions of plant tubulin isotypes have been found in
Arabidopsis, soybean, carrot (24), wheat (25), tobacco, and plum (reviewed in refs. 8,9).

Table 5
Distribution of Tubulin Isotypes in Maizea

Cell/tissue β1 β2 α1 α3 α5

Seedling root tip cells + – + + –
Seedling leaf epidermis +? – + + ND
Male meiocytes + + + + ND
Pollen tubes

Axial microtubules – – + – –
Microtubules associated with either – – + +? +?
vegetative nuclei or sperm cells 
aSource: Ref. 400.



More recently, complex distributions of isotypes have been reported in cotton (26), rice
(27), and barley (28). Interestingly, one of the rice β-tubulin genes encodes three differ-
ent mRNA species, thereby creating even more isotypes (29), a rare example of tubulin
isotypes arising by alternative splicing.

The relative levels of plant tubulin isotypes appear to be controlled by hormones such
as gibberellin (27) as well as by factors that selectively degrade the mRNAs for partic-
ular isotypes (30). The story of barley is probably typical. Schröder et al. (28) did not
attempt to study the entire set of tubulin isotypes, but only the five α isotypes in the leaf.
They found that α3 was probably constitutive, being expressed at each stage of leaf
development. α2 and α4 were found largely in meristematic cells, declining during later
stages of differentiation (α2 declined more rapidly than α4). α1 and α5, however,
appeared very transiently only in the rapidly growing cells; these cells contain micro-
tubule bundles that determine the later morphology of the leaf cells (31). This work
teaches a valuable lesson in indicating that an important tubulin isotype can appear, do
its job, and then quickly disappear, and hence may escape detection in experiments.
Mutants of two specific isotypes of Arabidopsis α-tubulin altered the growth pattern of
the hypocotyls and the pattern of microtubules in the root (32), as one would expect
given the different tissue distributions of the Arabidposis isotypes.

Fungi are simpler than plants and animals. Nevertheless, differences in tubulin iso-
type expression have been observed in Colletotrichum (33), Aspergillus, Fusarium (34),
Neurospora (35), and Paracoccidioides (36) (reviewed in refs. 8,9). In some cases, these
organisms have one isotype that is high during the vegetative phase and one during coni-
diation (33,34).

Differences in expression are occasionally seen in protists, even though they are single-
celled organisms. This is sometimes the case in different stages of the life cycle and has
been observed in Plasmodium, Leishmania, Physarum, Naegleria (37), and Toxoplasma
(38) (reviewed in ref. 8). In the case of Physarum, for example, of the three stages of its
life cycle—amoeba, plasmodium, and flagellate—a different β isotype predominates at
each stage, whereas the α isotypes differ as well, but not so strikingly (39,40).

One oddity of tubulin distribution is that when an organism with multiple isotypes
has an α or a β isotype of unusual sequence that isotype is often associated with the
reproductive system. In Drosophila, the α4 isotype is only 67% identical to the other
three α isotypes; it is uniquely expressed in the oocyte and the early embryo (41). The
mouse αTT1 isotype, sharing about 70% identity to the other α, is expressed only in the
testis (42). Xenopus has an unusual α expressed in the ovary (43). The platyhelminth
Schmidtea has a highly divergent α expressed only in the testis (20). Sunflower pollen
has a unique α-tubulin, much more basic than other α. It is even thought to have a dif-
ferent tertiary structure with an altered H1/B2 loop facing into the interior of the micro-
tubule (44). The fungus Colletotrichum has a divergent β expressed only in its conidia
(33). The protist Naegleria expresses three α isotypes, one of which is only 61.9% iden-
tical to the other two α; the unusual α is not expressed in the flagellate, but only in the
dividing amoeba, where it is found in the spindle (37). It is hard to account for these
divergent isotypes being restricted to the reproductive tissues. If the divergent isotype in
one organism had a striking resemblance to the corresponding isotype in another, one
could argue that the isotypes shared a particular structural feature that is necessary to
perform a certain function related to reproduction; formation of the meiotic spindle
would be a tempting candidate. However, the divergent isotypes not only do not resemble
each other, they can occur in either male or female reproductive organs. As most of
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these divergent isotypes are α, it may be that there is a particular function carried out
by the β-subunit in, say, meiosis and that this function does not involve α at all. Perhaps
the α- and β-subunits in reproductive cells are expressed in the same cassette of genes.
If only β is performing a stringent function, one could then argue that this situation
leaves α free to diverge significantly in the course of evolution.

Not all of the highly divergent isotypes occur in reproductive tissues, however.
Mammals and birds have a very divergent β isotype whose expression is restricted to
haematopoietic tissues, including erythrocytes and platelets (45,46). This will be dis-
cussed later in more detail. The soybean produces a divergent β isotype; low levels of
this isotype are expressed in the cotyledon, and high levels in the hypocotyl, when the
soybean is grown in the absence of light (47). It may be that an isotype that performs
only a single function is more likely to diverge in the course of evolution than one that
is involved in a large number of processes.

3. FUNCTIONS OF TUBULIN ISOTYPES

3.1. Tubulin Isotypes in Drosophila
The most unambiguous demonstration of isotype-specific functions comes from a

series of experiments done in the fruit fly Drosophila. Early experiments showed that
mutation of the testis-specific β2 isotype caused inability to form axonemes of normal
morphology and function (48–51). Similar results were obtained when β2 was replaced
by the divergent β3 isotype; meiosis was blocked as well (52). It is interesting that loss
of β2 blocks meiosis but not mitosis. This observation may be connected with the fact
that in Drosophila, the meiotic spindle is surrounded by a membranous structure (53).
Conceivably, the β2 isotype may play a role in interactions of the meiotic spindle with
that membrane.

Alterations in the β3 isotype also result in specific changes. This isotype appears
for a short time during embryogenesis. Mutants of β3 have poor sensory perception.
Microtubules in the chordotonal sensory organ are more highly crosslinked in the
mutant than in the wild-type. The authors suggest that increased crosslinking may
inhibit flexibility during development leading to impaired function later on (54).
Perhaps β3 has a smaller propensity to form crosslinks. In addition, β3 expression
correlates with muscle development whereas β1 expression is induced by attachment to
the epidermis (55).

The α-tubulin isotypes of Drosophila also appear to have specific functions. Komma
and Endow (56) showed that the α67C isotype binds to the motor protein Ncd whereas
the α84B isotype does not. Mutations in α67C alter meiosis I and decrease the accuracy
of chromosome segregation (57). Hutchens et al. (58) found that replacement of the
α84B with the very similar (98% identical) α85E led to synthesis of abnormal axonemes,
often lacking the central pair microtubules as well as the outer singlet, or accessory,
microtubules, characteristic of insect sperm flagella.

3.2. Mammalian Tubulin Isotypes: the β-Isotypes
In addition to Drosophila, a good deal is now known, or at least hypothesized, about

the functional assignments of the β-tubulin isotypes in mammals. This will be reviewed
later. As will be seen, the functional significance of some of the isotypes is fairly cer-
tain, others are speculative, and some are completely unknown.
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Table 6
Vertebrate β-Tubulin Isotypesa

Designation Species C-terminal sequence Distribution

Class Ia Human YQDATAEEEEDFGEEAEEEA Widespread
Mouse YQDATAEEEEDFGEEAEEEA
Rat YQDATAEEEEDFGEEAEEEA
Chicken YQDATAEEEEDFGEEAEEEA

Class Ib Human YQDATAEEEEDFGEEAEEEA Retina
Class II Human YQDATADEQGEFEEEEGEDEA Brain, muscle,

and so on
Mouse YQDATADEQGEFEEEEGEDEA
Rat YQDATADEQGEFEEEEGEDEA
Chicken YQDATADEQGEFEEEGEDEA
Gadus YQDATADEEGEFDEEAEEDG
Notothenia YQDATAEEEGEFEEEGEYEDGA

Class III Human YQDATAEEEGEMYEDDEEESEAQGPK Neurons,
Sertoli,
and so on

Rat YQDATAEEEGEMYEDDDEESERQGPK
Chicken YQDATAEEEGEMYEDDEEESEQGAK
Xenopus YQDATAEEEGEMYEDDEEESEGQGK
Gadus YQDATAEEEENFDEEADEEIA

Class IVa Human YQDATAEQGEFEEEAEEEVA Brain
Mouse YQDATAEEGEFEEEAEEEVA

Class IVb Human YQDATAEEEGEFEEEAEEEVA Widespread,
esp. in 
ciliated 

Mouse YQDATAEEGEFEEEAEEEVA tissues,
Rat YQDATAEEGEFEEEAEEEVA sperm
Chicken YQDATAEEEGEFEEEAEEEAE
Gadus YQDATAEEEGEFEEEGEEELA
Notothenia YQDATAEEEGEFEEEGEEDLA

Class V Human YQDATANDGEEAFEDEEEEIDG Unknown
Mouse YQDATVNDGEEAFEDEDEEEINE
Chicken YQEATANDGFEAFEDDEEEINE
Xenopus YQEATANDEEEAFEEDEEEVNE

Class VI Human FQDAKAVLEEDEEVTEEAE Platelets, bone
MEPEDKGH marrow

Mouse FQDVRAGLEDSEEDAEEAEV
EAEDKDH

Chicken YQDATADVEEAEASPEKET
Class VII Human YQDATAEGEGV Unknown
Unclassified Notothenia YQDATADEMGEYEEDEIEDE

EEVRHDVRH
aSource: From refs. 45,63,67,69,181,182,217,307–310,401–403. 
The chicken has two forms of βII, differing from each other at 2 out of 445 positions (63).

3.2.1. βI
The βI isotype appears to be the most widespread among mammalian tissues (Table 6).

It has been seen in almost every tissue that has been examined (8,59). It is also found
in many avian tissues (60). It is highly conserved in evolution: although the avian and



mammalian lines diverged 310 million years ago (mya) (61), chicken and mouse βI are
identical in all 444 residues (45,62,63). The relative amounts of βI in different tissues are
very variable. In cow brains βI constitutes about 3–4% of the total β-tubulin (64); by con-
trast, in the thymus βI appears to be the major β isotype (60). In fact, thymus tubulin was
used as the positive control in the selection of the monoclonal antibody to βI (59).
However, βI is probably not a constitutive tubulin. In the gerbil cochlea, for example, βI
is expressed in hair cells but not in pillar cells (13). Also, follicle-stimulating hormone
induces expression of βI in rat granulosa cells (65), suggesting that it may be perform-
ing a specific function, although one could argue that the hormone is merely stimulating
cell proliferation, which would in turn require microtubule assembly. βI is clearly not con-
stitutive in zebrafish, where its expression is limited to the nervous system throughout
development, and in the adult brain is restricted to the regions where proliferation is
occurring (66). Higher primates appear to have two very similar forms of βI, but they are
unlikely to differ in function (67–69). Mice and chickens have only a single βI.

What might be the role of βI? Narishige et al. (70) found that cardiac hypertrophy is
accompanied by increased βI and βII. They speculated that βI may play a role in increas-
ing microtubule stability. There is some evidence indicating specific roles for βI. First, it
is found in a variety of mammalian cilia, including those of nasal epithelia, tracheal
epithelia, vestibular epithelia, and oviduct epithelia (15,71,72). Traces of βI have been
observed in mouse sperm as well (9). As will be discussed further later, the major con-
stituent of ciliary and flagellar axonemes is βIV, which has the signal sequence (EGE-
FEEE) proposed by Raff et al. (73) to be a requirement for a β-tubulin to be incorporated
into axonemes. However, although βI lacks that signal sequence, it is conceivable that the
signal sequence requirement does not apply to all of the microtubules in the axoneme.
Certainly, the structure of axonemal microtubules is sufficiently complicated that it is
easy to visualize that there are more than enough functions to be distributed among two
isotypes. For example, one could speculate that βI could form one or both of the central
pair microtubules or the B-tubules of the outer doublets.

The clearest evidence for a specific function for βI was obtained by Lezama et al.
(74) MDCK cells, βI was relatively depleted in the cortical regions of MDCK cells, an
area that is rich in actin filaments. They also observed that overexpression of βI tubulin
in MDCK cells and incorporation of exogenous βI tubulin into microtubules interferes
with adhesion and spreading. They suggest that βI may interfere with the actin–tubulin
interaction. Very recently another possible function for βI was suggested. Yanagida et al
(75) found that human fibrillarin forms a complex with the α3 and βI isotypes of tubu-
lin. Fibrillarin is involved in ribosome assembly and processing of rRNA (75). The spe-
cific role of tubulin in this process is unknown.

3.2.2. βII
The brain is the source of the tubulin used in the vast majority of experimentation in

vitro. As βII constitutes 58% of the total β-tubulin in bovine brain (64), one could say
that βII is the best studied of the tubulin isotypes. For this reason, it is highly ironic that
so little is known about βII specific function. However, as βII is highly conserved in
evolution, it probably has a particular role to play. βII has a considerably more restricted
distribution than does βI. βII is prominent in the brain, where it is expressed in both neu-
rons and glia. βII is also found in skeletal and smooth muscle and in connective tissue
(76). It is found in the breast, adrenal, and testis as well (77,78). In other tissues where
βII occurs, it is more likely to be restricted to a single cell type than is βI. For example,

Chapter 6 / The Isotypes of Tubulin 135



in the skin, where βI is expressed in each of the three layers of the stratum malpighii,
βII is concentrated in only one of these layers, the stratum granulosum (59).

βII is more widespread in early development. In fetal rats, not only does βII occur in
muscles, nerves, and connective tissue but also in the retina, chondrocytes, and endothe-
lial cells (77). Not surprisingly, βII also is found in neural stem cells (79). Unlike βI and
βIV, βII is generally not associated with axonemal microtubules except for those of the
cilia of olfactory epithelia (71). The significance of this finding is uncertain. An immuno-
gold electron microscopic study of axonemes in retinal and tracheal cilia showed that
βII was present near the axonemes but did not form part of their microtubules, unlike
βIV, which was clearly incorporated into the axonemal microtubules (80). βII, thus, is
probably not adapted to function in axonemal microtubules. One study in HeLa inter-
phase cells found that βII was concentrated in the perinuclear region and the periphery
of these cells. Cold treatment (which causes microtubules to break up) resulted in βII
being associated with the centrosome and the cell periphery; nocodazole treatment had
the same effect (81). This finding raises the possibility that βII may play a role in
anchoring microtubules to the centrosome and the cell periphery.

A highly unusual property of βII has recently been discovered. Ranganathan et al.
(82) observed that βII, but not βI, βIII, or βIV, occurred in the cell nuclei of prostate
tumors and benign prostate hyperplasia. A later study showed that βII was present in the
nuclei of cultured rat kidney mesangial cells in interphase in nonmicrotubule form (83).
This will be discussed later on. The possibility will be raised that βII may play a role in
organizing the nuclear membrane during mitosis. Even if βII has a function involving
the cell nucleus and mitosis, however, this does not seem sufficient to explain its very
high concentration in neurons, which undergo little or no cell division and, which
appear to have a very high ratio of cytoplasm to nucleus. A similar argument would
apply to muscles, which are also rich in βII (76), although it is perhaps relevant that in
muscle, microtubules are nucleated by the nuclear membrane rather than by the centro-
some (84). In nerves and muscles, βII probably has other functions, totally unrelated to
mitosis, but what these functions may be is a complete mystery.

3.2.3. βIII
3.2.3.1. Unusual Characteristics of βIII. The βIII isotype has six distinguishing char-
acteristics, each of which is probably relevant to developing an understanding of its
functional significance.

1. βIII is highly conserved in evolution. As is the case with βI, there are only two differ-
ences in the amino acid sequences of chicken and human βIII (85,86).

2. βIII has a highly unusual distribution of cysteines. All the vertebrate β isotypes have
cysteines at positions 12, 127, 129, 201, 211, 303, and 354. The more widely distrib-
uted β isotypes—βI, βII, and βIV—also have a cysteine at position 239. βIII lacks this
cysteine but has a cysteine at position 124 instead, where βI, βII, and βIV have a serine.
The significance of these cysteines will be discussed later.

3. βIII has an extremely narrow distribution in normal adult tissues. It is the most abun-
dant in the brain, where it is found only in neurons and not in glial cells (by contrast,
βII is found in both) (87). Its absence from glial cells has made βIII a useful marker for
neuronal differentiation (88,89). βIII synthesis can be induced by factors such as andro-
gens (90), STEF (91), and nerve growth factor (92). The latter, when combined with
retinoic acid, can cause human umbilical cord blood cells to synthesize βIII as well as
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other neuronal proteins (92). βIII also occurs in Sertoli cells and, in small amounts, in
the vestibular organ, the nasal epithelia, and the colon (93). In other adult tissues that
have been examined, βIII appears to be absent. However, βIII is found in a large num-
ber of cancers and is also widespread in some developing tissues.

4. When tubulin is reduced and carboxymethylated, βIII has a unique electrophoretic
mobility on polyacrylamide gels in the system of Laemmli (94,95). This feature has made
it easy to measure its levels in the brains of different vertebrates. βIII accounts for 25%
of the total β-tubulin in the brains of cows and 20% in deer brains (96). The fact that,
unlike the more abundant βII, βIII occurs only in neurons and not in glial cells, however,
suggests that the relative amount of βIII in neurons must be very high indeed. This is
consistent with the observation that βIII accounts for 25.7 ± 0.7% of the total β in bovine
cerebral gray matter and only 20.7 ± 0.5% in white matter, the latter being enriched in
glial cells (135). In the brains of chickens, dogfish shark, and catfish, βIII accounts,
respectively, for 14%, 8–17% and 10%, of the total β (96,97). Interestingly, in a cold-
adapted fish, the Atlantic cod Gadus morhua, βIII accounts for 30% of the total β tubu-
lin (98). However, in other cold-adapted fishes, the Antarctic cod Notothenia and the
Antarctic icefish Chaenocephalus, βIII accounts for 8–12% and 4%, respectively (97).

5. βIII is phosphorylated at a serine near the C-terminus (99). Except for βVI, the
other vertebrate β isotypes have no serines in this region and thus cannot be phos-
phorylated here.

6. The dynamic behavior in vitro of microtubules made of the αβIII dimer is higher than
that of microtubules made of either the αβII or αβIV dimers (100). 

3.2.3.2. βIII is likely to be less sensitive to reactive oxygen species (ROS) and free
radicals. Let these observations be put together to see if they point to a specific func-
tional role for βIII. The unusual cysteine distribution is a good place to begin. It has long
been known that microtubule assembly in vitro and in vivo is exquisitely sensitive to
sulfhydryl-oxidizing agents (101). Cys239 in β is very reactive and its oxidation inhibits
assembly (102,103). In other words, a tubulin molecule oxidized at cys239 cannot
assemble onto a microtubule (104). βIII lacks cys239 and has ser239 instead; βV and
βVI also have ser239. It has been shown that the αβIII and αβVI dimers are signifi-
cantly less reactive with alkylating agents than are the other isotypes and that the poly-
merization of αβVI is less inhibited by alkylation (96,105). It must be emphasized that
the presence of a serine at position 239 is highly unusual among tubulins. Outside of
βIII, βV, and βVI, every other animal β-tubulin contains cys239 (8). Also, almost every
plant and protist β-tubulin has a cysteine at either position 239 or 238 or both. Fungal
β-tubulins are virtually the only ones without a cysteine in this area. βIII also contains
a cysteine at position 124 and this is even more unusual. Except for βV and avian βVI,
there is no β-tubulin in any eukaryote with a cysteine at position 124. The fact that
cys124 and ser239 are both highly conserved in the evolution of βIII and highly unusual
in the universe of β-tubulins strongly indicates that these particular residues must play
a major role in the function of βIII.

It is probably not a coincidence that cys124 is very close to the highly conserved
cys127 and cys129. Most β-tubulins have cysteines at these positions. These three cys-
teines (124, 127, and 129) constitute a cysteine cluster. A cysteine cluster of identical
topography occurs in Von Willebrand’s protein, a giant serum protein that promotes
blood coagulation. In Von Willebrand’s protein, the cysteine cluster is the site of inter-
chain disulfide bonds (106). Von Willebrand’s protein also contains sets of vicinal
cysteines (with two residues between the cysteines)—as with cys124 and cys127 in
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βIII—that appear to undergo sulfhydryl-disulfide interchanges during polymerization
(107). It is conceivable that such an interchange occurs when the αβIII dimer polymer-
izes. On the other hand, it is possible that an intrachain disulfide forms in response to
oxidation; This possibility will be pursued later. Although it is generally thought that
disulfide bridges in proteins cannot form in the cytosol, recent evidence indicates that
the SV40 protein Vp1 forms transitory intrachain and interchain disulfides whereas
folding and oligomerizing in the cytoplasm. The mature virus has no disulfides of any
kind (108).

The absence of a cysteine at position 239 in βIII is probably very telling, especially
when one considers the effects of nitric oxide (NO) and ROS on microtubules. ROS are
generated by mitochondria and can also be found in the diet. These species can react with
sulfhydryl groups. In view of the overall high reactivity of the sulfhydryl group of cys239,
it is easy to imagine it reacting with ROS. In addition, certain tissues synthesize NO,
which is itself a free radical capable of reacting with sulfhydryl groups. One ROS, O2

–

(superoxide anion), reacts with NO to make peroxynitrite (ONOO–) (109). ONOO– in turn
reacts with tubulin to form disulfide bridges between the α- and β-subunits (109,110).
Cys239, which is close to the α/β interface (111), probably participates in this disulfide,
which inhibits microtubule assembly (112). Lacking this cysteine, the assembly of βIII
would not be inhibited. Thus, βIII is likely to be less sensitive to free radicals.

3.2.3.3. βIII is most likely to occur in tissues and tumors with elevated levels of ROS
and free radicals. Is a protective role of βIII consistent with its observed distribution?
As mentioned earlier, βIII is highly concentrated in neurons. The neuronal isozyme of
nitric oxide synthase (neuronal NOS [nNOS]) is elevated in the brain (113). NO is pro-
duced by neurons, particularly at the synapses (114–116). Although NO has not been
shown to react directly with tubulin sulfhydryls, it does react with the microtubule-asso-
ciated protein (MAPs) tau and it has been proposed that NO could thus play a regulatory
role in neuronal differentiation (117). Although there is no reason to imagine that ROS
are especially high in neurons, it must be remembered that adult neurons rarely, if ever,
reproduce. The turnover time of neuronal tubulin is unknown, but it is probably very
long, perhaps in the range of weeks or months. This long turnover time of tubulin would
give sufficient time for even a low concentration of ROS to react with tubulin and dam-
age the microtubules. Thus, there is a clear advantage for neurons to form their micro-
tubules from a tubulin isotype less likely to react with ROS, NO, or ONOO–. Incidentally,
nNOS is also elevated in muscles, which lack βIII. However, muscles appear to have lit-
tle need for microtubules so the high NO may not be a problem there.

βIII is elevated in Sertoli cells (118). These cells produce NO and are very rich in the
inducible isotype of NOS (inducible NOS [iNOS]) (119,120). The rest of the testis has very
little iNOS (120). Sertoli cells also have high levels of the enzyme superoxide dismutase,
which they also secrete. This indicates that Sertoli cells operate in an environment rich in
free radicals (121). The model would predict, therefore, that Sertoli cells would be rich in
βIII. βIII has also been seen in the vestibular organ of the gerbil inner ear. In this organ,
which is responsible for balance, the βIII is concentrated in the calyx, a neuronal extension
that cups the bottom ends of the hair cells; the dendrites, soma and axons of these particu-
lar neurons contain βI and βII in addition to βIII, but the calyx has only βIII (15). It would
seem, therefore, that βIII has some particular function in this region. It is probably not
coincidental that vestibular neurons as well as the hair cells produce both NO and ROS
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(122–125). Small amounts of βIII are present in the colon (59) and the nasal epithelium,
where βIII is even found in the cilia (71). Although these tissues are not known to produce
ROS, it is possible that the colon and the nasal epithelia would be exposed to free radicals
in the food we eat and the air we breathe. Interestingly, however, βIII, although present in
fetal lung, is absent in adult lung (126). Nevertheless, it would appear that the normal dis-
tribution of βIII in adult mammalian tissues is generally consistent with its playing a role
in protecting microtubules from oxidation by NO, ROS, or ONOO–.

The presence of βIII in tumors is consistent with this model as well. Many tumors
express βIII, including some of nonneuronal origin such as lymphomas (127–135). This
has been reviewed by Katsetos et al. (136,137). Tubulin is the target for some of the
most successful antitumor drugs such as the taxanes and Vinca alkaloids (138,139).
Hence, one could argue that cancer cells rely heavily on microtubules. Cancers gener-
ally function under oxidative stress, in which the ratio of ROS to antioxidants is abnor-
mally high (140–144). Cancer cells therefore need protection from the same ROS that
may have helped to create the cancer in the first place. There is thus a selective advan-
tage for cancer cells to make their microtubules from βIII. One might expect that the
more aggressive cancers would have more oxidative stress and hence more ROS and
more need for βIII. In fact, it has been observed that tumors of higher malignancy
express higher levels of βIII (134,137,145). A study of patients with nonsmall cell lung
cancer showed that those whose tumors had elevated βIII responded less well to drugs
and had a poorer prognosis (146). When we compared the MCF-7 and BT-549 breast
cancer cell lines, it was found that the latter, which has much more βIII than the former,
and is resistant to taxol, vinblastine, and cryptophycin 1 (147), also has a much higher
level of free radicals (Chaudhuri and Ludueña, unpublished results).

A very interesting finding that may be relevant at this point is that of Carré et al. (148).
They found that tubulin occurs in mitochondrial membranes and that the membrane tubu-
lin is enriched in βIII compared with the rest of the cellular tubulin. Mitochondrial mem-
brane tubulin represents about 2% of total cellular tubulin (148). Mitochondria are the
cells’ major producers of ROS. Perhaps the function of βIII in the mitochondrial mem-
brane is to protect the cell from ROS; conceivably this could be the role of the unusual
cys124 of βIII. The ROS could be neutralized by forming a disulfide bridge involving
cys124 and either cys127 or cys129. That disulfide could then be reduced by subsequent
reaction with the thioredoxin system, a set of proteins that cells use to protect them-
selves from free radicals. The thioredoxin system has been shown to reduce disulfide
bridges in tubulin (110). This is obviously highly speculative, but the possible role of
mitochondrial membrane βIII in protecting cells from ROS does parallel the postulated
role of βIII in protecting microtubule assembly from ROS.

3.2.3.4. The unusual dynamic behavior of βIII may be highly regulated. If βIII helps
a cell cope with oxidative stress, why don’t all cells use βIII for their microtubules and
not bother with the other isotypes? Does βIII have a countervailing disadvantage? There
is evidence that it does. When the αβII, αβIII, and αβIV dimers are allowed to assem-
ble in vitro in the absence of MAPs, αβII, and αβIV begin to assemble immediately, but
αβIII only assembles after a long lag-time (149). Whether this is a phenomenon involv-
ing nucleation or elongation of microtubules is not clear. In the presence of either tau or
MAP2, however, αβIII assembles without a lag-time, exactly as does αβII (150). In
another experiment, when βIII was transfected into Chinese hamster ovary (CHO) cells,
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microtubule assembly in the cells actually decreased (151). It thus appears that βIII may
have an intrinsically lesser ability to polymerize into microtubules. Cells such as neu-
rons, which require large amounts of βIII, may compensate for its poorer polymeriza-
tion by synthesizing tau, MAP2, or other MAPs. It is interesting that βIII and MAP2 are
often synthesized concurrently, not only in neurons (91,152) but also in nonneuronal
tumors (90,135).

Another unique property of βIII is that microtubules formed of αβIII are consider-
ably more dynamic in vitro than those formed of either αβII or αβIV (100). This prop-
erty may be very important in development. βIII is expressed in the embryonic nervous
system in neurons as well as in cells that later stop expressing it (136). βIII is also
expressed in differentiating neuroblastoma cells (153) and in regenerating neurons
(154,155). It is possible that neurons undergoing rapid growth and differentiation
require very dynamic microtubules (136). A small amount of MAP2 is probably
expressed at this stage (156) and may be sufficient to allow the αβIII dimer to form
microtubules. At this stage βIII is not phosphorylated; once the neurons have matured,
βIII becomes phosphorylated (157).

3.2.3.5. A Model for βIII Function. All these observations and speculations could be
put together into a model for the functional role of βIII, based in part on the ideas of
Katsetos et al. (136). In the embryonic nervous system, and perhaps in other cells as well
(158), the high dynamicity of microtubules made of αβIII helps the cells to grow and dif-
ferentiate. At some point, the cells begin to express other isotypes such as βII and βIV
that are less dynamic, possibly as a way to regulate the overall dynamic behavior of the
microtubules. As the cells differentiate, glia, and other nonneuronal cells stop expressing
βIII. In neurons, however, which are faced with problems caused by NO and ROS, βIII
expression is retained in order to protect microtubules from oxidation. However, the high
dynamicity conveyed by βIII is curtailed, perhaps by increased synthesis of other tubulin
isotypes or MAPs, but also by phosphorylation, which is known to promote interaction of
βIII with MAP2 (159).

Although this is an attractive model, there are some potential problems with it. First,
the high dynamicity of microtubules formed of αβIII was obtained using fully phospho-
rylated βIII from bovine brain (100). The model assumes that phosphorylation would
decrease dynamicity, and therefore predicts that nonphosphorylated βIII would have
even higher dynamicity. This prediction, however, has yet to be tested. Second, one
could argue that, according to the model, all embryonic tissues should express βIII, as
they are all undergoing rapid growth and differentiation. However, this does not seem
to be the case (158). It may be that the βIII gene is one of a set of genes that is activated
in embryogenesis only in the nervous system and a discrete set of other tissues. The
remaining tissues in the embryo may need to find another way to create dynamic micro-
tubules, perhaps using a different tubulin isotype.

3.2.4. βIV
Mammals have two forms of βIV, designated as βIVa and βIVb. The former is

expressed only in the brain, whereas the latter is expressed in many tissues including the
brain (62). The sequence differences between the two are minor, always involving very
conservative amino acid substitutions. Although it is conceivable that there is a func-
tional difference between βIVa and βIVb the fact that birds only have a single βIV
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suggests that this is not likely to be the case. At any rate, the monoclonal antibody used
to localize and purify βIV does not distinguish between βIVa and βIVb (150).
Therefore, in this review the two isotypes will be referred collectively as βIV.

βIV has one very clear-cut function: it occurs in axonemes, the microtubule-based
apparatus that powers cilia and flagella. In mammals, βIV has been localized in sperm
flagella (9), and in cilia of the tracheal epithelium, brain ependyma, oviduct, efferent
duct of the testis, vestibular hair cells, retinal rod cells, olfactory neurons, and esophageal
progenitor cells (15,71,72,80,160). In fact, βIV has been found in every mammalian
axoneme that has been tested (72). This finding is totally consistent with the prediction
of Raff et al. (73) who proposed that any β-tubulin that forms part of an axonemal
microtubule must contain, very close to the C-terminus, the sequence EGEFXXX
(where X is D or E). Of the mammalian β-tubulin isotypes, βIVa, and βIVb are the only
ones with this sequence. Therefore, it can be concluded that one function of βIV is to
form the axonemal microtubules.

Exactly what role does βIV play in the axoneme? The axoneme is a highly special-
ized structure, consisting of at least 125 different polypeptides (161). In the middle are
two singlet microtubules, known as the central pair. Along the periphery are nine dou-
blet microtubules, known as the outer doublets. Each of these doublets consists of a com-
plete microtubule called the A-tubule and an incomplete microtubule called the B-tubule
(162). During motility the motor protein dynein that is connected to the A-tubule of each
outer doublet interacts with and slides along the B-tubule of the adjacent outer doublet
in a pattern that appears to be regulated by the central pair microtubules (163,164).
When one considers the structure of the axoneme, one would imagine that the outer
doublet is the specialized microtubule that requires a specific type of tubulin. In con-
trast, the central pair microtubules seem uncomplicated. In addition, the outer doublet
cannot be formed in vitro. Recently, however, it has become clear that the central pair
microtubules are special and that they have to rotate around each other to determine
which outer doublet pairs slide past one another (163,164). Like the distributor of a car,
the rotating central pair microtubules serially make contacts, through some bridging
proteins, with specific outer doublets. It should not be surprising if this highly complex
microtubule machinery requires a particular tubulin isotype. In fact, there is room in this
scenario for more than one isotype. It has been mentioned earlier that many axonemes
also contain βI (72).

It is possible that βIV is involved in determining axonemal microtubule structure
rather than being directly required for motility. This is based on the observation that two
of the cilia types in which βIV occurs are nonmotile: the retinal rod and the kinocilia of
the vestibular hair cell (15,80). Whether βIV plays a role in intraflagellar transport is not
clear (165).

In Drosophila, the β-tubulin isotype, β2, is the only one that contains the EGEFEEE
motif and is the only one found in the sperm flagellar axoneme. If β2 loses this motif,
or if β2 is replaced by β1, then the outer doublet microtubules are present but not the
central pair. Clearly, the EGEFEEE motif is very important. Interestingly, however, if
the axoneme motif is inserted into β1, then the outer doublets and central pair are all
present, but the distal end of the axoneme is abnormal. This implies that the EGEFEEE
motif is not enough to specify a proper axoneme; the other parts of the β2 isotype must
also be important (166). Extending this finding to mammals, one could argue that βIV
is required for proper formation of both the central pair and outer doublet microtubules.
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What is the role of the EGEFEEE sequence? It appears to be the site for polyglycy-
lation, a post-translational modification in which a series of glycines are attached to the
γ-carboxyl group of glutamate residues. This modification is very common in axonemal
tubulin. The polyglycyl side chain is thought to be necessary for the assembly of the
central pair microtubules as well as the B-tubule (167). This modification will be dis-
cussed further in Chapter 5. From these observations it is probably safe to hypothesize
that βIV is a major constituent of axonemal microtubules because it has a sequence that
can be polyglycylated and that this polyglycylation is necessary to form the central pair
and outer doublet microtubules.

However, the experiment on Drosophila described above implies that other parts of the
βIV molecule are necessary for proper formation of the axonemal microtubules. Therein
lies a problem for the mammalian sperm cell. The conformation of αβIV is significantly
less rigid than that of either αβII or αβIII (168). The high levels of ROS in the testis we
have already commented on. Although the precise susceptibility of the αβIV dimer to oxi-
dation has never been tested, it is likely to be higher than that of the other isotypes. The
need to protect βIV from oxidation may account for the presence of the protein thiore-
doxin-like 2 in sperm cells and tracheal cilia. This protein binds well to microtubules and
is presumably capable of reducing any disulfide bridges that form in βIV (169).

Another possible function for βIV was observed in cultured rat kidney mesangial
cells. The microtubules of these cells contain largely βI and βIV (170). When the cells
are extracted, the βI microtubules disappear completely, but the βIV becomes associ-
ated with actin filaments (171). Interactions between microtubules and actin filaments
are becoming well known (172). The results described here raise the possibility that βIV
may be involved in these interactions. It may be that βI and βIV have opposite effects
on microtubule–actin crosstalk.

3.2.5. βV
βV is the most intriguing of the β isotypes. It is highly conserved in evolution, sug-

gesting that it may have a specific function. However, not only is that function unknown,
even the normal distribution of βV is not known. Using mRNA measurements, Sullivan
et al. (173) showed that in chickens βV is found in every tissue outside of the brain.
Preliminary results with a monoclonal antibody to βV, however, suggest that it is found
in mammalian brain but in relatively few other tissues (174). Further work will be nec-
essary to resolve this. Perhaps the only clue to the function of βV is that it has the same
distribution of cysteine residues as βIII. In other words, it has cys124 but lacks cys239.
If, as was speculated earlier, cys124 allows βIII to react harmlessly with ROS and if the
lack of cys239 allows βIII to form microtubules resistant to oxidation, then perhaps the
same is true for βV. In fact, βV could conceivably do the job of βIII in tissues that lack
that isotype.

3.2.6. βVI
βVI is the least conserved of the β isotypes. In fact, avian and mammalian βVI are so

different from each other that it is not clear that they belong to the same isotype class.
They have been grouped together because they are clearly associated with the hematopoi-
etic system. In chickens, βVI forms the microtubules of the erythrocyte; in mammals,
whose erythrocytes lack microtubules, βVI is found in platelets and in hematopoietic tis-
sues such as bone marrow and spleen (45,46). βVI has a unique arrangement of cysteines.
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As is true for βIII and βV, βVI has ser239 instead of the assembly-critical cys239.
Keeping to this same pattern, chicken βVI has cys124, although mammalian βVI has
ser124 (45). Mouse and chicken βVI also have two extra cysteines: at positions 37 and
315 (45,63). One of these may be involved in the disulfide bridge that has been observed
in mammalian platelet tubulin (175).

Platelet tubulin has been extensively studied. βVI constitutes about 90% of the total
platelet β-tubulin (176). The transcription factor NF-E2 induces βVI synthesis in the
megakaryocytes of the bone marrow (177). Platelets are formed by budding off from

Table 7
Vertebrate α-Tubulin Isotypesa

Designation Species C-terminal sequence Distribution

Class I Human α1 VDSVEGEEEGEEY Mostly brain
Human α3 VDSVEGEEEGEEY Widespread
Mouse α1 VDSVEGEGEEEGEEY
Mouse α2 VDSVEGEGEEEGEEY
Rat α VDSVEGEGEEEGEEY
Chicken α1 VDSVEGEGEEEGEEY
Xenopus α1 TDSVEGEGEEEGEEY
Torpedo α VDSVEGEGEEEGEEY
Notothenia α VDSIEGDEEEEGEEY
Notothenia α VDSIEGDGEEEGEEF
Salmon α GDSIEGEGEEEGEEY

Class II Human α2 VDSVEAEAEEGEEY Testis
Mouse α3/7 VDSVEAEAEEGEEY
Rat α3/7 VDSVERKGEEGEEY
Trout α VDSVEGEAEEGEEY

Class III Human α4 IDSYEDEDEGEE Brain, muscle
Mouse α4 

IDSYEDEDEGEE
Rat α4 IDSYEDEDEGEE
Chicken α5 LDSYEDEEEGEE

Class IV Human α6 ADSADGEDEGEEY Blood
Mouse α6 ADSAEGDDEGEEY
Xenopus ADSADAEDEGEEY
Notothenia α ADSLGGEDEEGEEY
Notothenia α ADSLGDEEDEEGEEY

Class V Human α8 TDSFEEENEGEEF Heart, skeletal
muscle, and
testis

Mouse α8 TDSFEEENEGEEF
Chicken α8 TDLFEDENEAGDS

Class VI Mouse αTT1 MGSVEAEGEEEDRDTSC Testis
CIMFSSSIGNRHPC 

Class VII Xenopus TESGDGGEDEEDEY Ovary
Unclassified Danio ADSTDDCGEDEEEY

Source: From refs. 8,43,185,305,306,678,401–410. The classification adopted here is based on that of
Lewis and Cowan (410).

aMouse α1 and mouse α2 differ from each other at 1 position. The mouse α3 and α7 genes have dif-
ferent nucleotide sequences but encode identical proteins, referred to as α3/7.



megakaryocytes (178). Platelets have a marginal band at the periphery of the cell. The
marginal band consists of a single microtubule about 100 μm long, wound around itself
7–12 times (176,178,179). Inhibition of βVI synthesis results in platelets with a mar-
ginal band consisting of a single microtubule with only 2–3 coilings; platelets are
spherical instead of discoid and, in some experiments, blood coagulation is compro-
mised (176,179,180).

Based on these results one could hypothesize that the peculiar structure of βVI lends
itself to forming the marginal band microtubule. This hypothesis appears to be correct.
Platelets lacking βVI contain a marginal band formed of the βI and βII isotypes. In the
normal platelet, 95% of βVI is in the marginal band, whereas about 45% of βII and 58%
of βI are incorporated (179). It would thus seem that βVI is better adapted to forming
this unusual microtubule organelle than are the other β isotypes.

3.2.7. βVII
Very little is known about βVII. Its sequence lacks most of the C-terminus and it is

expressed in the brain (181,182). Its function, distribution, and properties are com-
pletely unknown.

3.3. Mammalian Tubulin Isotypes: the α-Isotypes
There is not much to say about the specific functions, if any, of the α isotypes in

mammals. Their tissue distributions seem much less complex, as far as is known, than
the distributions of the β isotypes (Table 7). α1 is found mostly in brain but also in a
variety of other tissues (8). α2 is similar (183,184). α3/7 is found only in the testis,
where it is the major α isotype. α4 is widespread, especially in muscle and heart; α6 is
also widespread, but less common than the others. α8 is considerably divergent in
sequence, being only 89% identical to the other α (except for the even more divergent
αTT1); it is found in heart, testis, and skeletal muscle, and at very low levels in the brain
and pancreas (185). The unusual isotype αTT1 is found only in the testis, where it is a
minor component of the α population (42).

The α1, α2, α3/7, α4, and α6 isotypes are at least 94% identical in amino acid
sequence. In addition, the differences tend to be conservative such as ser/thr or ilu/val.
When viewed in conjunction with the fact that the tissue distributions of several of these
are quite similar, it is hard to imagine that the differences among these isotypes are
functionally significant. However, α8, with its more divergent sequence and its highly
restricted distribution, may be an exception. This isotype has a unique sequence at posi-
tions 35–45, which is TFDAQASKIND and TFGTQASKIND, respectively, in human
and mouse α8. The equivalent sequence in α1, α2, α3/7, α4, and α6 is the completely
different QMPSDKTIGGG. This region corresponds to a loop located on the inner
microtubule wall that may play a role in contacts between adjacent protofilaments
(185). Conceivably, microtubules with α8 could have very different dynamics than
those containing the other α isotypes. The fact that the unique features of α8 are highly
conserved in evolution suggests that these are functionally significant.

Even though some functional differences among mammalian α isotypes are plausi-
ble, none have ever been demonstrated in vitro or in vivo. One approach to this ques-
tion would be to develop more antibodies specific for α isotypes and then use them for
detailed immunohistochemistry as well as to purify tubulin dimers homogeneous for
their α-subunit. If the α isotypes exhibit complex cellular distributions, as is the case,
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for example, with the β isotypes of the cochlea that would be highly instructive.
Similarly, comparison of the behavior in vitro of different α isotypes may reveal func-
tional differences. However, such a comparison has to account for differences that may
arise because of different extents of tyrosinolation/detyrosinolation and deglutamyla-
tion. In addition, it would be good to know which combinations of specific α and β iso-
types occur in different tissues. At the moment, much remains to be done to allow us to
understand the significance of the mammalian α isotypes.

3.4. Tubulin Isotypes May Have Functional Roles 
That Do Not Involve Microtubules

As the mammalian β isotypes have been surveyed, occasional indications of tubulins
that may have functional properties of at least potential physiological relevance that do
not involve being part of a microtubule have been seen. For example, βII, occurring in
the nuclei of various cell types, has been seen as a reticulum rather than as a micro-
tubule; it is in the form of an αβII dimer with apparently normal drug-binding proper-
ties (83). Although most of the cells in which this occurs are abnormal, soluble αβII has
been shown to compete with heterochromatin protein 1 for binding to the nuclear enve-
lope (186). Similarly, βIII occurs in mitochondrial membranes where it may act to pro-
tect the cell from ROS (148). Cells treated to destroy the microtubules show βIV bound
to actin. Whether an interaction between actin and soluble αβIV dimers occurs in intact
cells is not clear. Nevertheless, the idea of tubulin acting in a nonmicrotubule context is
not a new one. A spiral polymer of tubulin constitutes the conoid structure of the pro-
tist T. gondii (187). A possibly analogous situation is provided by the enzyme glu-
tathione peroxidase. Usually, the role of this selenium-containing protein is to protect
cells from ROS (188). The sperm isozyme of glutathione peroxidase has an additional
function, however. After the sperm cell has matured, this isozyme polymerizes to form
a sheath around the mitochondrion, losing its enzymatic activity in the process (189). In
a sense this is the converse of the situation in microtubules. On the one hand, there has
been glutathione peroxidase that normally functions as a monomer, one isoform of
which polymerizes, losing its original function. On the other hand, there has been tubu-
lin that normally forms polymers, but that has at least one isoform that can abandon its
role in forming that polymer and assume another function. Regardless of the applicabil-
ity of this particular analogy, the idea that certain tubulin isotypes may have functions
that do not involve forming microtubules may be worth pursuing.

An unusual finding that may speak to a possible nonmicrotubule role of βII is its
occurrence in the nuclei of a wide variety of cells. This was first discovered in rat kid-
ney mesangial cells (83). In these cells, an antibody to βII strongly stained the nuclei
but not the cytoplasm. The staining occurred throughout the nuclei, but was concen-
trated in the nucleoli. When the mesangial cells enter mitosis, the βII leaves the nuclei
and helps to form the mitotic spindle. During telophase, βII enters the reforming
nucleus. In contrast, βI and βIV, that constitute the interphase microtubule network,
enter the spindle during mitosis, at the end of mitosis returning to the interphase net-
work. These two isotypes never enter the nuclei.

The nuclear βII was in the form, not of a microtubule, but of a reticulum (83). Western
blot analysis of the purified nuclei indicated a band reactive with the antibody to βII that
comigrated on gels with bovine brain βII. Cells from which the cytosol had been
extracted showed α-tubulin in the nuclei as well. Treatment of the cells with fluorescent
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colchicine showed accumulation of fluorescence in the nuclei in a pattern indistin-
guishable from that of βII, suggesting that the nuclear tubulin was in the form of an αβII
dimer, capable of binding to colchicine. Disruption of the nuclear βII staining
with nocodazole, taxol, and vinblastine, corroborated this interpretation (190,191).
Microinjection of fluorescently labeled αβII into the cytosol of rat kidney mesangial
cells resulted in accumulation of fluorescence in the nuclei. In contrast, microinjected
fluorescent αβIII and αβIV did not enter the nuclei (170). It thus appeared that there
was a process that, in these cells, resulted in an αβII dimer entering the nuclei. The fact
that micro-injected αβII only entered the nuclei after a cycle of cell division had been
completed suggests that nuclear transport may not be involved in the process but rather
that the nucleus assembles around the αβII dimer (170).

Other studies revealed that only certain cultured nontransformed cells contained
nuclear βII, whereas nuclear βII occurred in almost every cultured cancer cell (192). A
survey of about 200 tumors excised from patients showed nuclear βII in 74% of them
(76). In general, nuclear βII staining was very variable, depending on the tumor type.
In tumors of the prostate, stomach, and colon, nuclear βII was seen in every sample
studied. In contrast, only a few hepatic and brain tumors showed nuclear βII. In some
excisions, nuclear βII occurred in almost every tumor cell, but sometimes in only a frac-
tion. The intensity of nuclear staining also varied. The pattern of intranuclear staining
was variable as well. In some cases, βII was concentrated in the nucleoli; in others it
appeared to stain the entire nucleoplasm except the nucleoli. Cytoplasmic staining of
βII was also highly variable. Many samples appeared to have βII only in their nuclei and
not in the cytoplasm.

The study with human tumors revealed two unusual patterns. First, nuclear βII
occurred in tumors of tissues such as the prostate, in which the normal tissue does not
express βII. This would suggest that transformation leads cells first to express βII and
then to localize it to the nuclei. Second, otherwise normal cells near the tumor would
also contain nuclear βII. This was particularly striking in cases of breast cancers that
had metastasized to the lymph nodes. Lymphocytes normally do not stain for βII.
However, lymphocytes adjacent to the metastatic cancer cells contained nuclear βII.
These results suggest that a cancer cell can influence adjacent normal cells to make βII
and put it in the nuclei (76). Analysis of a number of normal tissues indicated that most
of them did not contain nuclear βII (76). The exceptions were bone marrow, placenta,
and pancreatic acinar cells.

What conclusions can be drawn from the story of nuclear βII? It is clearly not a nor-
mally widespread phenomenon, being found mostly in cancers and cultured cells. The
presence of nuclear βII in cultured cells, tumors, placenta, and bone marrow may indi-
cate an association with proliferation, but this does not explain its presence in the pan-
creas. A recent finding may cast some light on nuclear βII. Kourmouli et al. (186),
working with human endometrial carcinoma cells, examined heterochromatin protein 1,
which binds to proteins associated with chromatin such as transcriptional regulators. It
also binds to the nuclear envelope. The binding of heterochromatin protein 1 to the
nuclear envelope is strongly inhibited by a soluble protein that was found to be a mix-
ture of the α2βII and α6βII dimers. The specific α isotypes involved in this are proba-
bly incidental, but it is striking that the only β isotype in these dimers is βII. The authors
report that the αβII dimer binds very tightly to the nuclear envelope, thus preventing
heterochromatin protein 1 from binding there. These findings raise the possibility that a
role of βII may be to control the interaction of chromatin with the nuclear membrane
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and perhaps also control the distribution of nuclear membrane fragments during mitosis.
Such a possibility may explain the higher concentration of βII observed in the perinu-
clear region (81). In addition, one could imagine that a relatively minor alteration in
certain cell types, especially cancer cells, would result in βII remaining in the nuclei
after mitosis is complete. Such alterations may involve a modification of βII or of
heterochromatin protein 1 or of the nuclear envelope itself. For example, if heterochro-
matin protein 1 is altered so as to decrease its affinity for the nuclear envelope, the αβII
dimer may stay bound to that membrane at the end of mitosis and may remain in the
nucleus during interphase. Of course, the connection of heterochromatin protein 1 and
βII may be only a coincidence. However, breaking up the nuclear envelope during
prophase and putting it together again during telophase are functions mediated by
microtubules (193–196), so a specific connection between the nucleus and one tubulin
isotype should not seem too outlandish. On the other hand, many cells appear to lack
βII; how do these cells regulate nuclear envelope breakdown and reassembly if βII is
important for this process? Are there subtle differences in the processing of the nuclear
envelope in these cells? This may be worth examining.

3.5. Not All Isotype Differences are Functionally Significant
The data presented above argue strongly that certain tubulin isotypes have specific

functions. This does not necessarily apply to all cases of isotypes, however. Many organ-
isms have isotypes that differ from each other at only a few positions, and only with con-
servative amino acid substitutions. It is hard to imagine that these small differences are
physiologically significant. The key evidence bearing on this point has to do with inter-
changeability of isotypes. For example, one of the two β isotypes of the fungus
Aspergillus appears largely during conidiation. However, replacing it with the other one
does not alter this process (197,198). Similarly, Aspergillus has one α isotype involved
in vegetative growth and another in sexual development. Using appropriate manipula-
tions, the expressions of the two α isotypes were reversed. No effect on the viability of
Aspergillus was observed, provided that particular levels of expression of each isotype
were chosen. In fact, it took three copies of the vegetative isotype to replace the sexual
isotype without altering the phenotype (199). This experiment has an important implica-
tion, namely that when performing genetic manipulation of isotype expression, one must
be careful to maintain the same level of total tubulin isotype expression. For example, it
may be that the vegetative α isotype of Aspergillus is expressed at a lower level than is
the sexual α isotype. In that case, replacing the latter with only one copy of the former
would mean that the total amount of tubulin expressed would be lower than normal and
that could have a deleterious effect. Alternatively, the extra β-tubulin, lacking its α part-
ner, may be toxic to the cell. These factors have to be considered when weighing the
results of this type of experiment.

Several early experiments using cultured cells suggested that the vertebrate isotypes
were interchangeable. For example, in cultured cells, most of the β isotypes are able to
form the mitotic spindle as well as the interphase microtubule network (118,200–202).
A similar result was obtained with the α isotypes (203). These experiments, however,
do not necessarily prove that the tubulin isotypes are interchangeable. As most cells, no
matter what isotypes they express, have both a mitotic spindle and an interphase
network, it is not surprising that each isotype could participate in forming these struc-
tures. However, cultured cells are less complex than cells in situ. The latter may have a
specialized need for a particular tubulin isotype that would not arise in a cultured cell.
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The above experiments, although very carefully performed, were not set up to address
the kinds of subtle and varied possibilities that have been being reviewed for the mam-
malian β isotypes such as the ability to form axonemes, protect cellular microtubules
from oxidation, interact with actin, or form marginal band microtubules.

3.6. Isotype Differences May be Generally Adaptive 
Without the Isotypes Having Specific Functions

It is possible that certain tubulin isotypes may not have specific functions but that the
presence of different isotypes may be adaptive in that they may increase the repertoire
of responses to environmental challenges. This is likely to be the case in some plant iso-
types. For example, expression of certain β isotypes in Arabidopsis decreases in the cold
whereas that of another β isotype increases (204). A similar result was obtained in wheat,
where lowering the ambient temperature to 4°C increased the expression of one α isotype
and decreased that of another (205). Under these conditions, the microtubules become
more dynamic. The authors propose that microtubules act as a kind of temperature-
sensor and that the cold-induced change in their behavior triggers specific cellular
responses to the cold (205). Such a model would not be possible without having differ-
ent isotypes and yet a specific function cannot be assigned to each isotype.

Multiple isotypes may also play a role in resistance to toxins. For example, there is
evidence that having multiple isotypes may make nematodes more resistant to benzim-
idazoles (206–210). Warm-blooded mammals are more protected from the environment
than are plants or nematodes. However, a great deal of evidence indicates that tumors
expressing certain isotypes are more resistant to drugs, or that drug treatment may lead
to increased expression of particular isotypes (reviewed in refs. 211,212). Do these
results—which will be discussed in more detail later on—speak to the hypothesis of
multiple isotypes being generically adaptive in mammals? Certainly, as will be seen,
the specific interpretations of these results are highly complex. It is hard to imagine
that we evolved for a half-billion years in order to develop mechanisms of resistance to
antitumor drugs. On the other hand, one must recall that many of these drugs are, or are
derived from, natural products. Thus, it is not inconceivable that the relative amounts of
tubulin isotypes may be adjusted in order to help cope with environmental toxins. The
fact that several of these toxins are intended to heal, is an unfortunate complication.

Another mechanism by which tubulin isotypes can be generally, rather than specifi-
cally, adaptive, is to have them differ in functionally relevant properties such as their
dynamic behavior. For example, the yeast Saccharomyces cerevisiae has two α-tubulin
isotypes (Tub1 and Tub3) (213). Microtubules made of Tub3 are less dynamic in vitro
than are the wild-type microtubules. Conversely, microtubules made from Tub1 are
more dynamic. The shrinkage rate and the catastrophe frequency for Tub1 are, respec-
tively, four- and threefold more than the corresponding parameters for Tub3, resulting
in Tub 1 microtubules having twice the dynamicity of Tub3 microtubules (214). Perhaps,
the cell can alter the relative proportions of the two isotypes in order to adapt its micro-
tubule dynamicity to different conditions.

3.7. Altered Expression of Tubulin Isotypes 
in Drug-Resistant Cells and Tumors

One of the most interesting observations was reported by the Horwitz laboratory,
which found that the levels of βI and βII rose 1.9-fold and 21-fold, respectively, in
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taxol-resistant murine cell lines (215). Subsequently, Ranganathan et al. (216,217)
observed that the levels of βIII and βIVa rose four to ninefold and three to fivefold,
respectively, in estramustine-resistant DU-145 human prostate cancer cells. Taxol-
resistant MCF-7 human breast cancer cells were found to express increased levels of
βIII, βIVa and the tyrosinated form of α-tubulin (218). Surveying the many studies done
in this area, one of the most frequent results is that tumors expressing increased levels
of βIII are more resistant to taxanes and estramustine (146,212,218–221). Almost as
frequently observed is that increases in βIV expression also accompany resistance to
taxanes and vincristine (222–224). In many fewer cases, taxane resistance involves
increased expression of βI (225) or βII (212,215,226). Increased βI expression also
correlates with resistance to vincristine and E7010 (222,227). Thus, there is ample evi-
dence to suggest that cells alter the synthesis of certain tubulin isotypes in order to sur-
vive drug exposure.

How can one make sense of these complex findings? One can speculate that tumor
cells elevate the synthesis of the isotype that has the weakest affinity for the drug in
question. For example, Derry et al. (228) showed that the dynamics of microtubules
made from the αβII dimer are significantly more sensitive to inhibition by taxol than are
the dynamics of microtubules made from αβIII or αβIV. This is certainly consistent
with the majority of the taxane studies, which showed resistance accompanied by
increases in βIII or βIVa. These results are also corroborated by the observation that
inhibition of the synthesis of βIII by the antisense phosphorothioate oligodeoxynu-
cleotide increases the sensitivity of A549 lung cancer cells to taxol (229). Similarly,
transfection of βIII into CHO cells caused a slight increase in taxol resistance (151). On
the other hand, overexpression of βIII in human prostate cancer cells failed to affect the
sensitivity to taxol (230). Furthermore, studies with human ovarian tumor xenografts
failed to detect any significant role of a specific tubulin isotype level on taxol sensitiv-
ity (231). These investigators used patient samples (before or after chemotherapy with
taxol) to establish a subset of 12 xenografts, and found no correlation between the tubu-
lin isotype expression and the taxol sensitivity. Similarly, overexpression of βIVb in
CHO cells did not create resistance to taxol (232). Resistance to Vinca alkaloids is
reported to be associated with decreased βIII expression (233). This is not consistent
with the finding of Khan and Ludueña (159) who showed that microtubule assembly of
αβIII in the presence of tau was more sensitive to vinblastine inhibition than was assem-
bly of either αβII or αβIV. In short, the hypothesis that tubulin isotypes that are elevated
in drug-resistant tumor cells are those isotypes that interact less well with that drug in
vitro is consistent with some studies but not others.

What other factors could account for these contradictions? First, there are certain exper-
imental aspects to be considered. If Reverse Transcriptase Polymerase Chain Reaction
(RT-PCR) indicates that the mRNA of one isotype increases much more than that of
another isotype in response to a drug that does not necessarily mean that the protein levels
of these isotypes increase in the same ratio. One isotype may be more sensitive to proteol-
ysis, for example. Similarly, isotype-specific antibodies may detect a many-fold increase in
one isotype and only a small percentage increase in another. However, if the latter is much
more abundant in the cell than the former, then the small percentage increase in the latter
may be much more significant physiologically than the large percentage increase in the for-
mer. In such cases, it is important to know the actual isotype levels rather than only the per-
centage increase or decrease. Also, it is possible that changes in post-translational
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modification in the antibody epitope (which is generally the C-terminus and the site of most
modifications) may highly alter the detectability of the isotype even if its actual level remains
the same. Second, other processes could be supervening that make the change in level of an
isotype irrelevant. For example, taxol resistance is sometimes accompanied by mutations of
isotypes such as βI (221). A cell with a taxol-resistant βI may actually increase its resistance
to taxol by making less of the other isotypes, including βIII. Third, resistance could reflect
the assembly properties of the isotypes rather than their drug-binding ability. For example,
microtubules containing βIII are less stable in vitro (100). As taxol can increase microtubule
assembly, one could argue that increased βIII would cause more resistance to taxol by mak-
ing less stable microtubules (233). Similarly, as vinblastine inhibits microtubule assembly,
one would expect that decreased βIII would increase the overall stability of cellular micro-
tubules and thus increase vinblastine resistance; this is exactly what has been observed (233).
Finally, it is possible that cells that more readily mutate to a drug resistant phenotype have
higher concentrations of ROS and, hence, that they may have an increased requirement for
βIII in order to protect their microtubules from the ROS. However, if, as it has been specu-
lated, βV has the same protective function as does βIII, then, as βV is rarely measured in
tumor cells, a scenario could be hypothesized where βV increases and βIII decreases, keep-
ing the total tubulin concentration the same, but only the βIII decrease is detected. In that
connection, it is interesting that a preliminary survey of 12 NIH cancer cell lines found that
βV was expressed in 11 of them, generally at higher levels than βIII (234).

The mechanism by which the expression of specific tubulin isotypes is altered in
drug-resistant cancer cells is still obscure. Overexpression of the oncogenic epidermal
growth factor receptor family of kinases has been reported to induce taxol resistance
and also increase the expression of βIVa and βIVb (235). Involvement of p53 has been
implicated in modulating the expression of tubulin isotypes and drug resistance in
human breast cancer cells (224). Extensive analysis with isogenic stable cell lines over-
expressing a specific tubulin isotype may shed light on these mechanisms.

3.8. Properties of Purified Mammalian Tubulin Isotypes In Vitro
If the differences among the tubulin isotypes are functionally significant, then it

could be expected that the purified isotypes would behave differently from each other
in vitro. To address this issue, monoclonal antibodies have been constructed specific for
the mammalian βI, βII, βIII, and βIV isotypes (59,64,150,236–239). These have been
used to purify the αβII, αβIII, and αβIV dimers from bovine brain by immunoaffinity
chromatography. A large number of parameters have been assayed in vitro. The dimers
differ from each other in virtually every parameter that has been assayed. Assembly into
microtubules is an obvious first parameter to examine. In the presence of either tau or
MAP2, αβII and αβIII assemble more rapidly and to a higher extent than does αβIV
(150). In the absence of MAPs, but in the presence of 4 M glycerol, αβII and αβIV
assemble rapidly with no lag time, whereas αβIII assembles only after a considerable
lag-time (149). This raises the possibility that αβIII has a harder time nucleating in vitro
in the absence of nucleating factors such as γ-tubulin. Microtubules formed from αβIII
are considerably more dynamic than those formed from either αβII or αβIV (100).
Possibly consistent with these findings is that the intrinsic GTPase activity of tubulin is
the highest for αβIII than for either αβII or αβIV (240). However, during microtubule
assembly in the absence of MAPs, αβIII hydrolyzes GTP more slowly than do the other
two dimers (9). One must be cautious about extrapolating these results to the situation
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in vivo. Buffer conditions used in vitro may not be physiological and different cell types
may have different MAPs that could create major differences in the relative assembly
and dynamic properties of the isotypes.

Structural differences among the isotypes are also evident. For example, the mam-
malian βIII isotype is phosphorylated, whereas the others are not (241). Using differen-
tial scanning calorimetry, Schwarz et al. (242) found that αβIII is considerably more
resistant to decay than is αβII. The half-times for decay at 37°C of colchicine-binding
activity for αβII and αβIII were, respectively, 17 h and 50 h (242). Conformation
was also probed using a series of sulfhydryl-reactive crosslinkers of the structure:
ICH2–CONH–(CH2)x–NHCO–CH2I, where x (the number of methylene groups) is
either 2, 3, 4, 5, 6, 7, or 10 (268). The reagent with x = 2 forms two intrachain crosslinks
in β-tubulin (243,244). One, designated β*, is between cys239 and cys354 and the other,
designated βs, connects cys12 to either cys201 or cys211 (102,245). When the series of
crosslinkers were reacted with the different isotypes, the β* crosslink formed, as
expected, in αβII and αβIV, but not in αβIII, which 1acks cys239. However, the βs

crosslink did not form at all in αβIII, even though βIII has the cysteines involved. Also,
in αβII, the βs crosslink formed at high yield with the x = 2 crosslinker, and with the
crosslinkers where x = 4, 5, 6, and 7, but very little with the x = 3 and x = 10 compounds.
In contrast, in αβIV, the βs crosslink formed well with each crosslinker (168). These
results suggest that at least one of the cysteines involved in the βs crosslink is probably
unavailable in αβIII and that it is available in αβII and αβIV, but even more so in the

Table 8
Tubulin Isotypes: Intrinsic GTPase Activity and Interactions With Antitumor Drugsa

Ligand αβII αβIII αβIV

Intrinsic GTPase
Induced by colchicine (nmole/h/mL) 4.5 9.6 3
Induced by MTPTb (nmole/h/mL) 5.8 11.5 7.3
Interactions with antitumor drugs
Kd for colchicine (M) 4.2 8.3 0.3
kon,app for colchicine binding (M/s) 132 ± 5 30 ± 2 236 ± 7
Kd for DAACc (M) 0.4 0.7 0.3
k2 for DAAC (s–1) 0.67 0.05 0.59
Kd for MTPT (M) 3 6.4 1.8
k2 for MTPT (s–1) 4.22 2.07 5.28
Kd for thiocolchicine THC18 (M) 0.5 17 NDd

Kd for nocodazole (M) 0.52 1.54 0.29
Kd for IKP104 (M) 0.01 0.11 1.4–1.8
Suppressivity of dynamics to taxole 3626 765 784
IC50 for vinblastinef (M) 0.6 2.1 0.6
IC50 for vinblastineg (M) 0.5 1.8 2

aSource: From refs. 159,228,240,260–262,411,412.
bMTPT, 5-(2′,3′,4′-trimethoxyphenyl)-1-methoxytropone.
cDAAC, desacetamidocolchicine. 
dND, not determined. 
eThis is a parameter that indicates the sensitivity of the shortening rate to taxol (228). 
fMicrotubule assembly was measured in the presence of tau and a series of vinblastine concentrations.
gMicrotubule assembly, as above, measured in presence of MAP2.



latter. These results are consistent with αβIII having a more rigid conformation than
either αβII or αβIV, but also suggest that the conformation of αβIV is the least rigid of
the three dimers.

Not surprisingly, the isotypes also differ in their ligand-binding properties (Table 8).
This has been studied in more detail with colchicine and its analogs. Colchicine binds
to tubulin in a slow, irreversible, and temperature-dependent manner (246–252). The
binding of drug to tubulin results in a promotion of drug fluorescence that has been used
to characterize this interaction (253,254). The binding of colchicine is a two-step
process in which initial complex formation is followed by a slow conformational
change resulting in the formation of a stable complex (255,256). When the association
kinetics are studied under pseudo-first-order conditions, the kinetics exhibit a biphasic
pattern (255–257). Biphasic kinetics are also observed for the faster-binding analogs of
colchicine such as desacetamidocolchicine (DAAC) and the bicyclic analog 5-(2′,3′,4′-
trimethoxyphenyl)-1-methoxytropone (MTPT), which binds to tubulin almost instanta-
neously (257,258).

The origin of the biphasic kinetics in the colchicines–tubulin interaction was not
clear until it was demonstrated that immunoaffinity depletion of the tubulin dimers to
remove the αβIII dimer eliminated the slow phase, resulting in monophasic kinetics
(259,260). Furthermore, addition of αβIII to the αβIII-depleted tubulin restored the
biphasic kinetics. Subsequent kinetic studies with the isotypically pure tubulin dimers
demonstrated that the isotypes differ significantly in their on-rate constants for binding
colchicine. The apparent on-rate constants (kon,app) for αβII, αβIII, and αβIV are shown
in Table 8. Scatchard analysis revealed that the isotypes also differ in their affinity con-
stants for colchicine and its B-ring analogs (261,262). Analysis of the binding kinetics of
colchicine and its analogs indicated that not only does αβIII have the lowest affinity for
colchicine, but that the rate (k2) of the conformational change in tubulin that is part of the
drug binding reaction is the slowest for αβIII (Table 8) (261,262). The slow rate of this
conformational change may reflect the higher rigidity of αβIII. If this is the case, then this
may explain its lessened ability to interact with nocodazole and taxol, although the bind-
ing kinetics of these drugs with tubulin isotypes have not been studied in any detail.

The interaction of Vinca alkaloids with purified tubulin isotypes is more complicated.
One study compared the effects of vinblastine on αβII, αβIII, and αβIV and measured
vinblastine’s ability to inhibit microtubule assembly and induce spiral aggregate forma-
tion (159). The results were clear: microtubule assembly of αβIII was least sensitive to
inhibition by vinblastine. Similarly, αβIII was the least susceptible to vinblastine-induced
aggregation. Interestingly, although vinblastine induced αβIV to form spiral aggregates,
αβIII generally formed amorphous aggregates instead (159). A second study carefully
and rigorously examined the effects of three Vinca alkaloids (vincristine, vinblastine, and
vinorelbine) on self-aggregation of αβII and αβIII. Few significant differences between
αβII and αβIII were noted (239). Although the two studies appear to give contradictory
results, this is not necessarily the case. No MAPs were present in the latter study, whereas
they are present in the former. The study of Lobert et al. (239) suggests that the isotypes
do not differ in terms of the specific tubulin–tubulin interactions or conformational
changes involved in self-aggregation. The study of Khan and Ludueña (159) suggests
that the isotypes differ either in their interactions with MAPs or else in the ability of vin-
blastine to interfere with the MAP-induced change in tubulin conformation that permits
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assembly. The work of Banerjee et al. (64) suggests that αβII and αβIII interact equally
well with both MAP2 and tau, so the former model is unlikely. As αβIII has the most
rigid conformation of the three dimers, it is not surprising that vinblastine’s ability to
interfere with the conformational change induced by the MAPs is the weakest in αβIII.
Similarly, as a conformational change induced by vinblastine is likely to favor aggrega-
tion that change is likely to be least marked in αβIII. This is consistent with the observa-
tion that αβIII does not aggregate into spirals; perhaps the conformation of αβIII does
not permit it to form spirals. A startling difference in vinblastine-induced aggregation
was seen when vinblastine (20 M) was added to preparations of erythrocyte tubulin and
brain tubulin from chickens (105). The former consists largely of αβVI, whereas the lat-
ter is likely to be a mixture of αβI, αβII, αβIII, and αβIV (64). About 42% of the brain
tubulin aggregated into spirals whereas 74% of the erythrocyte tubulin formed spirals.
Aggregation of the latter was so dramatic that the resulting flocculent precipitate was
readily visible to the naked eye (105). Clearly, αβVI has a unique ability to interact with
vinblastine. Conceivably, the ability of βVI to form microtubules in which the protofila-
ments bend so as to form a circular microtubule may translate into a higher ability for the
protofilaments to bend to form the vinblastine-induced spiral.

The most consistent finding, one obtained by a wide variety of experimental
approaches, is that αβIII has a more rigid conformation than either αβII or αβIV.
Could this have any bearing on the differences that have been discussed in vivo? First,
a more rigid αβIII would hydrolyze GTP more slowly during microtubule assembly,
as has been observed (9). This would increase the growth rate as that depends on the
presence of unhydrolyzed GTP at the microtubule end (263). Second, a more rigid
dimer is less likely to bind tightly to an adjacent dimer in the microtubule and thus the
longitudinal dimer-dimer interactions will be weaker. Hence, the rate of shrinkage
might be faster. In short, the increased dynamic behavior of αβIII microtubules may
be a function of the rigidity of αβIII.

The basic limitation of the experiments in which purified tubulin isotypes are studied in
vitro is that one only gets answers to the questions one asks. Assembly, GTPase, and drug-
binding activities are fairly obvious and easy areas to investigate. The fact is, however that
the number of proteins or other factors known to interact with tubulin is rising very quickly.
To name but a few, in addition to the well-known MAPs, there have been various chaper-
ones (264,265), collapsin-response mediator protein 2 (266), stable-tubulin-only polypep-
tide (267), the importin/Ran-GTP system (268), XMAP215 (269), Fhit (270), katanin
(271), aurora kinase (272), stathmin (273), clathrin-coated vesicles (274), aggregosomes
(275), and the proteins of the axoneme, centrosome, and basal body (276,277). In addition
to mitosis and the other classical microtubule functions, microtubules are thought to be
involved in processes such as determination of neuronal polarity and intramanchette trans-
port (278,279). Katanin, incidentally, has been shown to interact differently with two dif-
ferent β isotypes in C. elegans (271). Recent work suggests that Gsα binds to the β-subunit
of tubulin close to the GTP binding site (280). As it has been discussed earlier, both the
intrinsic and assembly-mediated GTPase activity of tubulin differ among the isotypes
(9,240), it is not unreasonable to expect that the binding and effects of Gsα may be isotype-
specific as well. Someday these systems will be constructed and tested in vitro with puri-
fied tubulin isotypes. Dramatic differences among the isotypes in such experiments would
strongly support the hypothesis that certain functions are mediated by different isotypes.
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3.9. Structure–Function Correlations in Tubulin Isotypes
The differences in amino acid sequence among the isotypes of a given organism are

generally clustered at the C-terminal ends. The fact that the sequences of the C-termini are
usually highly conserved in evolution, even to minor differences, indicates that the C-
termini are important. In addition, the C-termini contain the sites of most of the post-
translational modifications, including phosphorylation, tyrosinolation/detyrosinolation,
deglutamylation, polyglutamylation, and polyglycylation. The C-termini are highly nega-
tively charged. As negative charges repel, the C-termini are likely to be projecting outward
from the tubulin dimer and the microtubule. With such a model, it is very easy to imagine
that the C-terminus serves as a signal for other proteins that help to determine the func-
tion of that isotype. Since a β-tubulin with the sequence EGEFEEE near its C-terminus is
likely to form an axoneme (73). Fackenthal et al. (49) found that removal of the C-termi-
nus from the axonemal β2 isotype in Drosophila did not prevent that isotype from forming
the axonemal microtubules, but those axonemes were not functional. Clearly, the signal
sequence is necessary for successful function in the case of this isotype. The C-termini of
α- and β-tubulin are also the sites where a variety of proteins bind; these include MAP2,
tau, calponin, and the motor protein Ncd (281–283). Interestingly, Burns and Surridge
(284) noticed a correlation between the nature of the aromatic amino acid near the C-ter-
minus of β isotypes and the amino acid at position 217/218. If the former is a tyrosine then
the latter two are both threonines, whereas if the former is a phenylalanine, then the latter
are other residues. This suggests that the C-terminus may occasionally lie down along the
microtubule and interact with the residues at position 217/218. Thus, the “visibility” of the
signal sequence may vary depending on circumstances.

The C-terminal sequence is not the whole story, however. Tubulin isotypes differ from
each other at other places besides their C-termini. The lack of the assembly-
critical cys239 in mammalian βIII is a case in point. Hoyle et al. (285) prepared a chimera
of Drosophila β2 in which positions 1–344 were replaced by the corresponding sequence
of β3. The remainder of the β2 contained the C-terminal sequence. β2 is the axonemal and
meiotic isotype. If the C-terminal sequence were all that mattered then the chimeric tubu-
lin should function equally well. In reality, the chimeric protein did not form outer doublet
microtubules very well and was not able to carry out meiosis successfully. Thus, parts of
the protein other than the C-termini must play a role in determining isotype function.

Other evidence supports this hypothesis. For example, a difference has been observed
in the conformational rigidity among the αβII, αβIII, and αβIV dimers in the region in
which a crosslink can be artificially formed between cys12 and either cys201 or cys211
(168). Modeling studies indicate that this region is the binding pocket for the exchange-
able GTP and that GTP binding is influenced by conformational changes in this region
(286). The kinetics of hydrolysis of this GTP, which determine the dynamic properties
of the microtubule, will certainly be influenced by the conformational rigidity in this
area, which in turn depends on the nature of the isotype. Similarly, the lateral and lon-
gitudinal bond energies in the microtubule have been estimated and could easily vary
among the isotypes (287). Specific amino acid substitutions at positions involved in lat-
eral tubulin/tubulin interactions have been shown to promote cold stability (288,289).

The simplest hypothesis about the structure/function correlations in tubulin isotypes is
that the C-terminal sequence serves as a signal to other cellular proteins to determine at
which cellular location, or in which population of microtubules, the isotype will perform
its function. The rest of the protein is necessary for that function to be performed properly.
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4. THE EVOLUTION OF TUBULIN ISOTYPES

4.1. Evolution of the Vertebrate β-Isotypes
Enough β tubulins from vertebrates have been sequenced to enable one to construct

a rough family tree. As a first step, it can be asked, which β isotypes do not appear in
both mammals and birds. Thus, birds have only a single βI and a single βIV. Mammals
(mice, humans) have two βIV. Thus, the divergence of βIVa and βIVb must be dated
after 310 mya, the date at which the ancestral lines of mammals and birds diverged (61)
but before the divergence of the rodents and primates at 84 mya (290). Although βIVa
and βIVb differ in their tissue distributions—the former occurring in brain only and the
latter in all tissues—there is as yet no evidence of a functional difference between them.
Humans and rhesus monkeys have two βI but mice have only one (69). Thus, the βI iso-
type diverged into two species sometime after 84 mya. As with βIVa and βIVb, the func-
tional significance, if any, of the differences between βIa and βIb is as yet unknown.

As a second step, the vertebrate β isotypes should be grouped, based on their
sequences, as follows:

1. Group 1: βI and βIV;
2. Group 2: βII;
3. Group 3: βIII and βV;
4. Group 4: βVII;
5. Group 5: βVI.

Groups 1–3 have been identified in the amphibian Xenopus (Table 6). Thus, these
isotypes were probably present when vertebrates took their first step on land about 360 mya
(291). There is no distinction between βI and βIV in Xenopus. The separation of βI and
βIV probably occurred at the time of the appearance of reptiles over 310 mya (61). In con-
trast, βVII has been seen only in humans, so it may have appeared very recently. The
mammalian and avian βVI are so different from each other that it is possible that each one
may have appeared, separately, after 310 mya. βV occurs in birds, mammals, and amphi-
bians, but not in fish. Thus, it probably diverged from βIII at least as early as 360 mya.

Studies of β isotypes in fish are illuminating. There are various β isotypes present in
fish that do not have precise equivalents among other vertebrates. In addition to these,
however, Groups 1, 2, and 3 can be recognized. Thus, these groups probably diverged
from each other at or sometime after the appearance of the chordates about 590 mya
(292). A very intriguing experiment by Modig et al. (293) may cast light on the early
evolution of vertebrate isotypes. The Atlantic cod, Gadus morhua has cold-stable
microtubules. Transfection of fish βIV into human cells caused the microtubules of
these cells to become cold-stable. The same result was observed upon transfection of
βII. However, transfection of fish βIII did not confer cold stability. It is logical to
assume that if βII and βIV are major structural components of fish microtubules, then
they must be able to provide cold stability. In contrast, fish βIII is incapable of perform-
ing this function. As Gadus lives its entire life cycle at cold temperatures, it is
unlikely that it could have microtubules made entirely of βIII, as such microtubules
would be cold-labile. It is conceivable, of course, that certain MAPs could make βIII-
microtubules cold-stable. This is unlikely, however, as microtubule cold-stability in
Antarctic fish has been shown to reside in tubulin and not in MAPs (294).

Thus βIII cannot be the major component of any microtubule population in fish and the
invitation is given to speculate upon its function. In mammals, the earlier hypothesizing
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suggested that βIII had two major functions: (1) to form highly dynamic microtubules
that may be particularly important in development, especially in the nervous system;
and (2) to make microtubules resistant to ROS. Both of these functions could reason-
ably occur in fish. Vertebrate evolution has been suggested to be an example of neoteny,
in which a larva attains sexual maturity without metamorphosing into an adult (295).
The ancestors of the vertebrates may have had clearly differentiated larval and adult
stages, the former motile, and the latter sessile. At one point in evolution, the larva
acquired sexual maturity and the adult stage disappeared. Thus, vertebrates were able to
grow in size and retain motility. Tunicates, which are nonvertebrate chordates with very
simple nervous systems (296), have neither βII nor βIII. It is possible that βIII appeared
at the time when the vertebrates diverged from the other chordates and that its high
dynamicity made it useful in the rapid growth of the complex nervous system of verte-
brates (297). In this connection, it is worth recalling that βIII is common and wide-
spread in embryos, in which growth and development take place very rapidly (136,158).
βIII is unlikely ever to have been the sole component of a microtubule, but it could confer
dynamicity to microtubules in which it occurred. Microtubules made of mixtures of
αβIII and αβII dimers are significantly more dynamic than those made of αβII alone,
provided that αβIII predominates (100). It is perhaps not a coincidence that chordates
appeared soon after the concentration of O2 in the Earth’s atmosphere reached 10% of
present levels, the level required to form collagen and hence cartilage and bone (298).
The higher O2 level would have led to increased production of ROS. As vertebrates
developed an advanced nervous system, βIII may have acquired the additional function
of protecting the long-lived neuronal microtubules from ROS. If these arguments were
correct, one would predict that cephalopod mollusks that are as ancient as the verte-
brates and that are long-lived and have a complex nervous system (299), would also
have a tubulin isotype capable of protecting the neuronal microtubules from ROS.

The development of the nervous system would also have entailed the appearance of
βII, which presumably has a major, but as yet unknown, function in the nervous system.
If microtubules play a role in reorganizing the nuclear envelope, and if this is an ancient
function, βII may have retained this function, and the other isotypes may have lost it.

About 360 mya, the vertebrates emerged onto the land (300), thereby exposing them-
selves directly to the higher levels of O2 present in the atmosphere as well as to the
strong solar ultraviolet radiation that is capable of creating free radicals. There may
have been a premium on protection of microtubules from ROS, not only in the brain,
but in other tissues as well. If βV shares this function with βIII, as has been hypothe-
sized, it is possible that βV appeared about this time to protect the microtubules of other
tissues from ROS, whereas βIII performed that same function in neurons.

Full sequencing and analysis of reptile, amphibian, and fish genomes as well as those
of the nonvertebrate chordates may flesh out, corroborate, or disprove some of these
speculations. Further experiments on the evolution of nitric oxide synthase as well as
careful studies of the tissue distribution of nitric oxide synthase and tubulin isotypes in
fish would be very useful as well.

4.2. Evolution of the Vertebrate α-Isotypes
The evolution of the α isotypes in vertebrates is not as well understood as that of the

β isotypes. It is clear that the class V α (called α8) are present in mammals and birds,
but not, so far as it can be told, in amphibians or fish (185). Therefore, α8 probably
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appeared between 360 mya and 310 mya. The same argument could be made for class
III. However, it appears that classes I, II, and IV were present in fish probably after the
chordates appeared around 590 mya (292). Xenopus ovarian α and mouse testis αTT1
are too unique to draw conclusions regarding their evolution.

4.3. Evolution of Tubulin Isotypes in the Other Eukaryotes
The knowledge of tubulin isotype evolution in other eukaryotes is quite limited.

There are only a few phyla where multiple tubulin isotypes have been sequenced in
more than one organism. Nevertheless, there are a few generalizations that are probably
safe to make. With one possible exception, which will be discussed shortly, it is clear
that, although all α-tubulins resemble each other and the β-tubulins do likewise, there
is no specific resemblance between one particular isotype in one phylum and another
particular isotype in another phylum. In other words, there is no close structural resem-
blance between, say, βIII in vertebrates and any β isotype in any other phylum. In brief,
families of isotypes are phylum-specific. This has been seen to be true for the α- and β-
tubulins in vertebrates. There are discernible families of α and β isotypes in arthropods,
nematodes, and angiosperms (8).

The possible exception to this pattern is βIV, the isotype with the signal sequence
EGEFEEE, which is required for a β-tubulin to form part of an axoneme (73). This
sequence, or one very similar, occurs in at least one isotype in virtually every eukaryotic
organism except fungi (which lack axonemes, basal bodies, and centrioles). In a sense,
therefore, a tubulin containing this sequence has to be thought of as ancestral to all 
β-tubulins. It is highly unlikely that the signal sequence would spontaneously arise 
de novo three separate times, during the evolution of animals, plants, and protists.
Therefore, a β-tubulin containing this sequence must have been present in the ancestral
eukaryote. Fungi, presumably, would have lost this β-tubulin when they lost the complex
microtubule apparatuses in which this tubulin is required. That said, however, beyond the
signal sequence there is no overall specific quantifiably demonstrable similarity between,
say, vertebrate βIV and the corresponding β2 isotype in Drosophila. Thus, if assigning
to βIV the additional function of being involved in actin–microtubule crosstalk is correct,
this function may have arisen secondarily in βIV. If a β-isotype in Drosophila also has
this function, then that isotype need not be β2.

Various fish (Notothenia and Danio) have at least one α or β isotype that have no spe-
cific equivalent in amphibians, birds, or mammals. The specific functions of these iso-
types are unknown. Conceivably, these may represent the survivors of a large pool of
tubulin isotypes that arose when the vertebrates appeared. Speculating further, an intrigu-
ing correlation could be postulated. Most of today’s animal phyla—at least those where
fossil evidence is available—arose during the so-called Cambrian explosion, about
530 mya, when the ancestors of today’s phyla shared their world with animals with
unusual body plans who left no descendants (301). Whatever geological, climatic, or eco-
logical factors promoted the appearance of multiple body plans could also have impelled
the diversification of tubulin isotypes. If the multiple isotypes had different functions,
then in view of tubulin’s important role in development, it is not difficult to imagine that
different combinations of isotypes correlated with the appearance of specific phyla. If it
is assumed that the earliest eukaryote had a single α and a single β isotype, then this
tubulin would perhaps have been involved in different functions: not only mitosis and
axonemal motility but perhaps nuclear envelope organization and actin–microtubule
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crosstalk as well. The appearance of multiple isotypes meant that these functions could
have been distributed among different isotypes. Subsequent evolution of each phylum
would involve essentially random selection from this pool of isotypes of particular ones
performing whatever functions were adaptive for organisms in that phylum. For exam-
ple, an early animal having several isotypes with the appropriate signal sequence for
axonemal motility, could be imagined. In vertebrates, the ancestral βIV could have been
randomly selected for subsequent evolution and the others lost; in arthropods the ances-
tral β2 would have been similarly selected. In such fashion, phyla would arise with
unique families of isotypes, and there would be no specific similarity—other than the sig-
nal sequence—among the axonemal isotypes of the various phyla.

Two fish β isotypes may fit this hypothesis. Gadus has a β isotype (classified as βIII)
that has the same cysteines as does βIII (i.e., it lacks cys239 and has cys124). Nevertheless,
the C-terminus of the isotype lacks the basic residues seen in mammalian βIII.
Conceivably, this isotype could have the putative antioxidizing property of mammalian
βIII but lack the dynamic properties of βIII. In contrast, Notothenia has a β isotype
(unclassified) that has the C-terminus with basic residues similar to those of βIII or βVI,
but does not have the same cysteines as βIII. Perhaps, this isotype exhibits the dynamic
behavior of βIII but lacks any antioxidant activity.

In pursuing the evolution of the isotypes of α- and β-tubulin a trail has been followed
that fades out sometime before the beginning of the Paleozoic. Further insights may be
provided when the story of α and β is compared with that of the other members of the
tubulin superfamily, as will be discussed in Chapter 7.
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APPENDIX

Nomenclature of Avian and Mammalian β-Tubulin Isotypes

Class Human Mouse Rat Chicken

Ia HM40 Mβ5 rbt. 5 cβ7
II Hβ9 Mβ2 rbt.1 cβ1/cβ2
III Hβ4 Mβ6 rbt. 3 cβ4
IVa H5β Mβ4 rbt. 2 –
IVb Hβ2 Mβ3 – cβ3
V – – – cβ5
VI Hβ1 Mβ1 – cβ6
VII Hβ4Q – – –

Adapted from ref. 410.


