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Ribosome-Inactivating Proteins

Fiorenzo Stirpe

INTRODUCTION

The designation of ribosome-inactivating proteins (RIPs; reviews in refs.
1–4) has been applied to plant proteins that enzymatically damage ribosomes
in a catalytic manner, thus inhibiting protein synthesis (Table 1). The first
identified RIPs were two potent toxins, known for more than a century: ri-
cin, from the seeds of Ricinus communis, and abrin, from the seeds of Abrus
precatorius.

Subsequently, many more RIPs were identified; they can be divided into
type 1 RIPs, single-chain proteins of approx 30 kDa, and type 2 RIPs, con-
sisting of two peptide chains, an A chain of about 30 kDa with enzymatic
activity, linked to a B chain of about 35 kDa with lectin activity, capable of
binding to oligosaccharides containing galactose. A category of type 3 RIPs
has been proposed for a maize b-32 RIP, which is synthesized as a proen-
zyme and is activated after the removal of a short internal peptide segment
leaves two segments of 16.5 and 8.5 kDa (5), and for JIP60, an RIP from
barley in which a segment similar to type 1 RIP is combined with another
segment of similar size but no known function (6). It seems unjustified to
define a new class of proteins on the basis of two disparate cases, and for the
time being, it seems preferable to consider these two proteins as peculiar
type 1 RIPs. A schematic representation of RIP structure is shown in Fig. 1.

Type 2 RIPs can bind to galactose residues on cell membranes, thus ag-
glutinating the cells. Furthermore, this binding leads to entry of the mol-
ecule into the cells. Ricin, which contains mannose, also is taken up by
Kupffer cells and other macrophages via mannose receptors (7–9). The entry
into cells and the intracellular fate of type 2 RIPs and of ricin A chain has
been well studied. It has been found that they are transported to the Golgi
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Table 1
Purified Ribosome-Inactivating Proteins
Family, genus, species, and plant tissues Name

Type 1 ribosome-inactivating proteins
Angiospermae
Aizoaceae
Mesembryanthemum crystallinum
cDNA
Amarantaceae
Amaranthus viridis
Leaves Amaranthin
Asparagaceae
Asparagus officinalis
Seeds Asparins
Basellaceae
Basella rubra
Seeds
Caprifoliaceae
Sambucus ebulus
Leaves Ebulitins
Sambucus nigra
Bark Nigritin
Caryophyllaceae
Agrostemma githago
Seeds Agrostins
Dianthus barbatus
Leaves Dianthin 29
Dianthus caryophyllus
Leaves Dianthins
Dianthus sinensis
Leaves
Gypsophila elegans
Leaves Gypsophilin
Lychnis chalcedonica
Seeds Lychnin
Petrocoptis glaucifolia
Whole plant Petroglaucin
Petrocoptis grandiflora
Whole plant Petrograndin
Saponaria ocymoides
Seeds Ocymoidin

(continued on next page)
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Saponaria officinalis
Leaves, roots, seeds Saporins
Stellaria aquatica
Leaves Stellarin
Vaccaria pyramidata
Seeds
Chenopodiaceae
β vulgaris
Seedling cDNA Betavulgin
Spinacia oleracea Spinacia oleracea protein
leaves (SOP)
Cucurbitaceae
Bryonia dioica
Leaves, roots Bryodins
Citrullus colocynthis
Seeds Colocins
Cucurbita moschata
Sarcocarp Cucurmosin
Cucurbita pepo
Sarcocoarp Pepopcin
Luffa acutangola
Seeds Luffaculin
Luffa cylindrica
Seeds Luffins
Marah oreganus
Seeds MOR
Momordica balsamina
Seeds Momordin II
Momordica charantia
Seeds Momordins
Momordica cochinchinensis
Seeds Momorcochin
Sechium edule
Seeds Sechiumin
Trichosanthes sp. Bac Kan 8-98 Trichobakin
Trichosanthes anguina
Seeds Trichoanguin
Trichosanthes cucumeroides
Tubers β-Trichosanthin
Trichosanthes kirilowii
Roots, seeds Trichosanthins, trichokirin,

Trichosanthins antiviral proteins
(TAP 29)

(continued on next page)
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Tubers Trichomaglin
Euphorbiaceae
Gelonium multiflorum
Seeds Gelonin
Hura crepitans
Latex H. crepitans RIP
Manihot palmata
Seeds Mapalmin
Manihot utilissima
Seeds Manutins
Iridaceae
Iris hollandica
Bulbs Iris RIPs (IRIPs)
Lamiaceae
Clerodendron aculeatum
Leaves cDNA
Lauraceae
Cinnamomum camphora
Seeds Camphorin
Liliaceae
Asparagus officinalis
Seeds Asparins
Muscari armeniacum
Bulbs Musarmins
Yucca recurvifolia YLP
leaves
Nyctaginaceae
Bougainvillea spectabilis Bouganin
Leaves
Mirabilis expansa
Roots, cell cultures ME1

Mirabilis jalapa
Seeds, roots, tissue culture Mirabilis antiviral protein (MAP)
Phytolaccaceae
Phytolacca americana
Leaves, seeds, tissue culture, roots Pokeweed antiviral protein (PAP)
Phytolacca dioica
Seeds, leaves Phytolacca dioica RIPs
Phytolacca dodecandra
Leaves, tissue culture Dodecandrins
Phytolacca insularis
Leaves, cDNA Insularin (Phytolacca insularis

protein [PIP])
Poaceae

(continued on next page)
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Hordeum vulgare
Seeds Barley RIP
Secale cereale
Seeds Secale cereale RIP
Triticum aestivum
Germ, seeds Tritins
Zea mays
Seeds Maize RIP
Sambucaceae
Sambucus ebulus
Leaves Ebulitin
Cryptogamia
Laminaria japonica
Leaves Lamjapin
Mushroomsa
Volvariella volvacea V. volvacea RIP
Fruiting bodies

Type 2 ribosome-inactivating proteins
Toxic ribosome-inactivating proteins
Euphorbiaceae
Ricinus communis
Seeds Ricins, Ricinus agglutinin
Fabaceae
Abrus precatorius
Seeds Abrins
Passifloraceae
Adenia digitata
Roots Modeccins
Adenia volkensii
Roots Volkensin
Viscaceae
Phoradendron californicum
Leaves P. californicum lectin
Viscum album
Leaves Mistletoe lectin I, viscumin
Nontoxic ribosome-inactivating proteins
Cucurbitaceae
Momordica charantia
Seeds M. charantia lectin
Euphorbiaceae
Ricinus communis R. communis agglutinin
Iridaceae
Iris hollandica
Bulbs IRA

(continued on next page)
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and endoplasmic reticulum and subsequently translocate to the cytoplasm.
The matter has been exhaustively reviewed (10–12) and is not dealt with
here. Once inside the cytoplasm, the A chains, through their enzymatic ac-
tivity, cause irreversible damage to ribosomes and possibly other structures,
eventually killing the cell (see Fig. 2). However, some type 2 RIPs have
been identified with a structure very similar to that of the toxins, but with
much less toxicity.

Type 1 RIPs, devoid of a binding chain, are internalized much less effi-
ciently by cells, mainly by fluid phase pinocytosis (13) or through the α2-
macroglobulin receptor (14), and consequently have relatively low toxicity.
However, they can be rendered as toxic as type 2 RIPs if they can enter, or
are forced into, cells. This occurs when they are included in liposomes (15);
in erythrocyte ghosts that can be fused with cells (16); in viral envelopes
(17); when cells are infected by viruses (18); when RIPs are linked to pro-
teins capable of binding to cells, such as lectins, antibodies, growth factors,
and cytokines; and when cells are permeabilized with complement (19).
Entry of RIPs into cells can be facilitated also by electrical pulses (20), shock
waves (21,22), or photochemical internalization (23). A summary of the
properties of types 1 and 2 RIPs is given in Table 2.

DISTRIBUTION IN NATURE

Ribosome-inactivating proteins are widely present in the plant kingdom,
with type 1 found more frequently. Most RIPs were isolated from plants

Lauraceae
Cinnamomum camphora
Seeds Cinnamomin
Cinnamomum porrectum
Seeds Porrectin
Liliaceae
Polygonatum multiflorum
Leaves PM RIP
Ranunculaceae
Eranthis hyemalis
Bulbs EHL
Sambucaceae
Sambucus ebulus
Leaves Ebulin 1

aThe isolation of RIPs from other mushrooms (Boletus affinis, Flammulina velutipes,
Hypsizigus marmoreus, Lentinus edodes, Lyophyllum shimeji, and Pleurotus tuber-regium)
has been reported. However, these proteins do not appear to meet the stringent criteria re-
quired to identify RIPs.
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belonging to the Angiospermae, but at least one was found also in a mush-
room (Volvariella volvacea; 24) and one in an alga (Laminaria japonica;
25). They can be detected in virtually all tissues examined (roots, stems,
leaves, flowers, fruits, seeds, latex, cultured cells), sometimes in different
forms in the same tissue. Others are more restricted in distribution; for in-
stance, ricin is present in the seeds but not in other tissues of Ricinus com-
munis, compared to the several forms of saporin, which are found in seeds,
leaves, and roots of Saponaria officinalis (26). A higher level of RIP has
been found in stressed, senescent, or virally infected plant tissues (27–29).

Many plant materials (more than 300 in our laboratory) were examined
for the presence of RIPs, and type 1 RIPs appeared to be more frequent than
type 2 and preferentially distributed among plants belonging to some fami-
lies (e.g., Caryophyllaceae, Cucurbitaceae, Euphorbiaceae). It should be
noted, however, that most screening studies were performed not to study the
distribution of RIPs, but to find materials containing a high level of them.

Fig. 1. Schematic representation of the structure of type 1 and 2 ribosome-inac-
tivating proteins (RIPs). The prototypical type 1 RIP is saporin that consists only of
the enzymatic polypeptide without any binding capacity. The prototype for type 2
RIPs is ricin, which consists of a binding polypeptide (B chain) disulfide connected
to the enzymatically active A chain. Both saporin and ricin A chain have been arti-
ficially attached to binding moieties to produce toxins with specific targeting prop-
erties determined by the binding moiety. Examples include substance P-saporin,
which targets cells expressing the neurokinin-1 receptor, and OX7-ricin A chain,
which targets cells expressing Thy 1.
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Consequently, plants belonging to families in which RIPs had been found
were tested more frequently, and materials showing activity below a set
threshold were excluded.

RIP activity was detected in some plants, but even when the presence of a
RIP was excluded not all tissues were examined, an RIP could have been
present at a very low concentration below detection level, and the search for
these proteins was based on the effect of crude extracts on protein synthesis,
generally using a rabbit reticulocyte lysate. RIPs acting on different ribo-
somes could have been missed. Thus, RIPs could be more widespread, even
ubiquitous, in the plant kingdom. Furthermore, the bacterial Shiga and
shigalike toxins are RIPs (30), and an enzymatic activity similar to that of
RIPs has been detected in animal cells and tissues (31). Consequently, the
issue of the distribution of RIPs in nature remains open.

Fig. 2. Schematic representation of the biochemical action of ribosome-inacti-
vating proteins (RIPs) such as ricin and saporin. The enzymatic activity is directed
at removing an adenine within the α-sarcin site on the large (28S) ribosomal sub-
unit, which results in failure of binding of elongation factor-2 and cessation of pro-
tein synthesis by the altered ribosome.
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MECHANISM OF ACTION

The first clue to the mechanism of action of RIPs came from studies on
ricin. It was found that this toxin inhibits protein synthesis in cells and in
cell-free extracts. This was because of irreversible damage to ribosomes,
produced in a catalytic manner, suggestive of an enzymatic activity. This
was studied in detail by Endo and colleagues, who found that ricin cleaves
the glycosidic bond of a single adenine residue (A4324 in rat liver ribosomal
ribonucleic acid [rRNA]) from 28S rRNA, thus removing the base from
RNA (32). This key residue is adjacent to the site of cleavage of rRNA by α-
sarcin in a tetranucleotide GA4324GA of a highly conserved loop at the top
of a stem, now termed the α-sarcin/ricin loop. This observation was extended
to other RIPs, which were officially classified as rRNA N-glycosidases
(rRNA N-glycohydrolases, EC 3.2.2.22).

It was found that some RIPs remove more than one adenine from ribo-
somes, and subsequently that all RIPs remove adenine from deoxyribo-
nucleic acid (DNA) and some from other polynucleotides (33,34).
Consequently, the denomination of polynucleotide adenine glycosylase was
proposed for these proteins (31). This activity is variable from RIP to RIP
and from one substrate to another. These new findings shed a different light
on the mechanism of cytotoxicity and antiviral activity of RIPs, as is dis-
cussed in the section on antiviral activity. Hudak et al. (35) found that
pokeweed antiviral protein (PAP) removes adenine from capped but not
from uncapped BMV RNA and concluded that these proteins could inhibit
protein synthesis by depurinating capped messenger RNA (mRNA). Pre-

Table 2
General Properties of Ribosome-Inactivating Proteins

Type 1  Type 2

Structure One chain  Two chains

Toxic Nontoxic
Molecular weight 26 kDa 60–65 kDa 56–58 kDa
Inhibition of protein

synthesis (IC50, nM)
Cell free 0.002–4.0 45–48 ND

A chain 0–3.5 A chain 0.1–0.3
HeLa cells 140–33,000 0.0003–0.008 >200
Toxicity to mice 950–40,000 0.7–80 >1600
 ( LD50, μg/kg)
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sumably, whenever RIPs reach nucleic acids inside a cell, they would create
unstable abasic sites liable to be cleaved.

A controversial matter is the lyase activity of RIPs reported by several
investigators (reviewed in ref. 4). In at least two laboratories, it was clearly
shown that the nuclease activity of RIPs was caused by contamination by
nucleases (36,37) and that the glycosylase is the only enzymatic activity of
RIPs (38).

TOXICITY AND CYTOTOXICITY

Toxicity to Animals

The first RIPs identified, ricin and abrin, are potent toxins, and when
their structure became known, it was ascertained that their B chain with
lectinic properties binds to galactosyl residues on the cell membrane. This
allows and actually facilitates the entry of the toxin into cells, in which the
A chain exerts its enzymatic activity, damaging ribosomes and inhibiting
protein synthesis. These findings were extended and confirmed for other
type 2 RIPs subsequently identified and led to the conclusions that:

1. Type 2 RIPs were toxins.
2. This was the mechanism through which type 2 RIPs exerted their toxic action.

These two concepts were accepted for several years, until new informa-
tion was obtained both on the properties of RIPs and on the mechanism of
their enzymatic activity.

The toxic RIPs include (besides ricin and abrin, known for more than a
century) the more recently identified modeccin, volkensin, viscumin, and a
Phoradendron californicum lectin. These toxic RIPs have a very similar
structure, and still their median lethal doses (LD50’s) are different, some-
times by two orders of magnitude, as in the case of RIPs from taxonomically
related plants, such as modeccin and volkensin (both from Passifloraceae).
Also, the LD50 for different animal species may vary. The LD50 of volkensin
for rats is 20-fold lower than that for mice, and its value of 50–60 ng/kg
makes volkensin the most potent known toxin from a plant (39).

Different lesions result from the various toxins. Thus, only ricin affects
primarily Kupffer cells (7); modeccin (40) and volkensin (unpublished re-
sults from our laboratory) cause very severe necrotic changes in the liver of
rats. Ricin poisoning also causes severe inflammation of intestinal and lym-
phoid organs and consistently stimulates the production of inflammatory
cytokines by blood mononuclear cells (41). In contrast, abrin did not affect
liver and brought about necrosis of acinar pancreatic cells (42) and apoptotic
changes in the intestine and lymphoid tissues of the rat (43). No lesions that
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could account for death were observed in rats poisoned with viscumin or
with doses of volkensin high enough to cause death within 6–8 h (unpub-
lished observations from our laboratory). This, together with seizures ob-
served just before death, suggests the possible involvement of damage to the
nervous system. This is consistent with the following observations:

1. All toxic type 2 RIPs tested are retrogradely transported along peripheral
nerves, although only modeccin and volkensin undergo a similar “suicide
transport” if injected in the central nervous system (reviewed in refs. 44
and 45).

2. Ricin injected outside the nerves into several tissues reaches the relevant auto-
nomic ganglia (reviewed in ref. 1).

Some lectins identified from Sambucus species, camphor tree and iris,
have a structure very similar to that of ricin and related toxins in that they
consist of an A chain with enzymatic activity and of a B chain with similar
lectin properties, but they still have much lower cytotoxicity. The reasons
for this difference are not known yet, although in a comparative study of
ricin and nigrin, a nontoxic lectin, it was found that the two lectins enter
equally well into cells, but nigrin undergoes more rapid degradation and
excretion than ricin (46).

The less-toxic type 1 RIPs were discovered more recently, and very few
studies of their toxicity to animals are reported. The pathology of mice
given lethal doses of various type 1 RIPs consisted of cell necrosis in the
liver, kidney, and spleen (47). Liver lesions induced by saporin were histo-
logically very similar to those induced by ricin, although a difference was
observed in the effects on liver xanthine oxidoreductase, which was con-
verted from the dehydrogenase into the oxidase form in ricin-poisoned but
not in saporin-poisoned rats and leaked from the liver into blood only in
the latter animals (48).

Cytotoxicity

At the cellular level, it was found that RIPs, either type 2 (43,49) or type
1 (50,51), induce apoptosis and subsequently, or at higher doses, necrosis
both in organs of poisoned animals (43) and in a variety of cultured cells
(52–56).

The mechanism through which ricin induces apoptosis has been studied.
The involvement of various caspases, caspase-like and serine proteases (54–
56), and poly(ADP-ribose) [poly(adenosine 5'-diphosphate-ribose)] cleav-
age (57) was reported. It was suggested also (56) that protein synthesis
inhibition was not the sole cause of ricin-induced apoptosis. Very early
nuclear changes observed in cells poisoned by ricin or Shiga toxin appear to
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be independent of the inhibition of protein synthesis because they were not
seen when a comparable inhibition of protein synthesis was induced by cy-
cloheximide (57). Changes in genomic DNA also were observed in cells
exposed to saporin, and it was ascertained that both rRNA N-glycosidase
and internucleosomal DNA fragmentation contribute to cytotoxicity (58).
This suggests that the effect of RIPs on both RNA and DNA may contribute
to the pathogenesis of cell damage.

It is noteworthy that the toxicity of each RIP to different cells varies, with
IC50’s ranging over two orders of magnitude (1), at least partly related to
pinocytotic activity of the cells. Those with normally high pinocytotic/ph-
agocytic activity (e.g., macrophages) are more highly sensitive to ricin (8,9).

All RIPs are immunogenic. Ricin is a potent allergen and brings about
formation of immunoglobulin E (IgE) against ricin itself and other antigens
(reviewed in ref. 1), and many type 1 RIPs were found to cause allergy (un-
published observations from our laboratory).

ANTIPARASITIC ACTIVITY

Antiviral Activity

It has been known since 1925 that a pokeweed leaf extract has antiviral
activity against plant viruses (59). After 50 yr, the antiviral factor was puri-
fied as PAP, and it was found that it inhibited protein synthesis (60) by
inactivating ribosomes (61) and thus was the first purified RIP. Subse-
quently, it was found that all RIPs, either type 1 or 2, had antiviral activity
against plant viruses (62). Investigations were extended to animal viruses,
and it was found that several type 1 RIPs inhibited replication of poliovirus,
influenza virus, herpes simplex virus, and human immunodeficiency virus
(HIV) (reviewed in refs. 63 and 64).

These findings led to the investigation of possible practical applications.
Attempts to treat patients infected with HIV were unsuccessful and actually
caused mental (65) or neurological adverse reactions (66,67).

More promising were the attempts to use RIPs to protect plants against
viruses; several plants transfected with RIPs genes actually showed resis-
tance to viral infections. However, transfected plants had an altered pheno-
type when PAP (68) or barley jasmonate-induced protein (JIP60) (69) was
expressed at a high level, indicating that these RIPs also damaged plants.

The mechanism of the antiviral activity of RIPs is still not completely
clear. It was thought for some years that the subcellular segregation of RIPs
was broken as a consequence of cell damage caused by viral infection, and
then the proteins could reach and inactivate ribosomes, thus killing the
infected cells and preventing viral replication. This notion is supported by
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the sensitivity of plant ribosomes to conspecific RIPs (70), but is not consis-
tent with some observations:

1. Trichosanthin inhibited HIV replication at concentrations lower than that
inhibiting protein synthesis (71).

2. A mutant of PAP that did not damage pokeweed ribosomes still was able to
prevent viral replication (72).

Together, these results indicate that ribosomal damage cannot account
entirely for the antiviral activity of RIPs. The observations about the
depurination of nucleic acids other than rRNA suggest possible damage to
viral RNA or to the virus-induced DNA as an alternative or at least parallel
mechanism.

Antifungal Activity

It was reported that barley RIPs, in association with glucanase and
chitinase, have antifungal activity (73) and confer resistance against fungal
attack to transfected plants (74). Presumably, the other enzymes are neces-
sary to disrupt the tegument of fungi, thus allowing the entry of RIPs into
cells. Increased resistance to Rhizoctonia solani was found in plants trans-
fected with maize b-32 RIP (75) or PAP (reviewed in ref. 76). It was re-
ported that three RIPs (ricin A chain, saporin-S6, and an RIP from Mirabilis
expansa) have antifungal activity and inactivate fungal ribosomes (77).

CELL TARGETING

Experimental Studies
Ribosome-inactivating proteins have been used in attempts to eliminate

unwanted cells in a selective manner for both experimental and therapeutic
purposes. The subject has been exhaustively reviewed and is discussed here
in general terms only.

The general principle was to link the proteins to appropriate molecules
capable of entering, or at least binding to, the cells to be killed. Antibodies
were used in most of experiments as the carriers with the highest specificity,
but growth factors, lectins, hormones, neuropeptides, and cytokines were
also employed. Both type 1 and type 2 RIPs have been used; the latter are
highly toxic, but have the disadvantage of binding to virtually any cell
through their B chains. Thus, conjugates were prepared as follows:

1. With ricin with blocked B chain binding site.
2. With isolated A chains of type 2 RIPs (mostly ricin A chain).
3. With type 1 RIPs.
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Conjugates were prepared either chemically, introducing a link, most of-
ten a disulfide bond, between the RIP and the carrier or as fusion recombi-
nant proteins.

For experimental purposes, the most widely used conjugates are those
made with saporin and monoclonal antibodies against components of the
central nervous system, as described elsewhere in this book. Few conju-
gates were prepared for other experimental purposes, which is surprising
because these should be very useful experimental tools to remove any kind
of cells selectively, as shown by the removal of fibroblasts from pancreatic
cells in culture (78).

The great majority of conjugates prepared for clinical use were against
tumor cells (reviewed in ref. 79) or against immunoreactive cells for the
treatment of autoimmune diseases (reviewed in ref. 80), graft-vs-host reac-
tion (reviewed in ref. 81), or to prevent graft rejection (reviewed in ref. 82).
In other more limited studies, immunotoxins were prepared against various
cells, such as corneal endothelial cells, to prevent corneal vascularization
(83); retinal pigment epithelial cells (84); or muscle cells for the experimen-
tal therapy of muscular spasms (85).

Clinical Trials

Several clinical trials were performed with immunotoxins, most of them
prepared with modified ricin or ricin A chain (reviews in refs. 86–89) or
with type 1 RIPs momordin (90), PAP, and saporin (reviewed in ref. 79).
The great majority concerned the experimental therapy not only of tumors,
graft-vs-host disease, and autoimmune diseases, but also of other ailments,
such as diabetes (91) and opacification of the posterior capsule of the eye
(92). Immunotoxins either were administered to patients or were used for ex
vivo purging of cell suspensions (e.g., bone marrow) to be infused in pa-
tients.

The results were often encouraging, possibly more than those obtained
with the early trials of chemotherapeutic agents, particularly in the case of
hematological malignancies (87). The main limitations resulting from these
studies were:

1. The poor penetration of the conjugates inside solid tumors.
2. Adverse side effects, such as myalgias, fatigue, fever, capillary leak syndrome.
3. The immune response against both the antibody and the toxin, which prevented

repeated administrations.

The poor penetration into solid tumors could be overcome using smaller
conjugates (e.g., with scFv fragments or with immunotoxins against endot-
helial cells of tumour vasculature), which would cause thrombosis with con-
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sequent ischemia of the tumor (93). The peculiar capillary leak syndrome,
the most important side effect (94), might be reduced in various ways (re-
viewed in ref. 95) and controlled with careful dosage of the immunotoxins.

The immune response is currently the major obstacle to the use of
immunotoxins in the clinic because their administration cannot be repeated
except in severely immunodeficient patients. It is hoped that this difficulty
may be overcome in the future using conjugates of human antibodies linked to
the human enzymes, perhaps eventually including the equivalent of RIPs (31).

For the time being, immunotoxins constructed with RIPs or other toxic
moieties, in addition to usefulness as experimental tools, could be em-
ployed in the clinic for ex vivo purging and therapy of topical tumors (i.e.,
of bladder cancer), as suggested by in vitro studies (96,97) and clinical
trials (90,98). Finally, it is common opinion among many scientists work-
ing in the field (e.g., 99) that, because the decrease of tumor masses was
observed after a short-term treatment in some clinical trials, one or two
administrations of an immunotoxin could eliminate completely small
groups of cells and even now might be useful in the treatment of the mini-
mal residual disease.

SUMMARY
The RIPs from plants were described. The known RIPs are divided into

type 1, consisting of a single chain with enzymatic properties, and type 2,
consisting of an enzymatic A chain linked to B chain with the properties of
a lectin specific for sugar with the galactose structure. Some type 2 RIPs are
potent toxins, ricin being the best known, whereas others are much less toxic.
All RIPs damage irreversibly ribosomes, by removing an adenine residue
from rRNA, and depurinate also other nucleic acids. The distribution in na-
ture, the mechanism of action, the toxicity and the main biological proper-
ties of RIPs were described, as well and their use as components of
conjugates with antibodies (immunotoxins) and other carriers were men-
tioned.

NOTE ADDED IN PROOF

Reviews coverings several aspects of ribosome-inactivating protein
appeared in ref 100.
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