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INTRODUCTION

The safety and regulatory needs to detect small drug-induced changes in the QT
interval have created many challenges for the design and analysis of “thorough” QT
studies. The measurement techniques available, the correlation between the RR interval
and the QT interval, and the high variability in the QT interval have made the detection
of changes in the QT interval difficult, and the verification of a lack of an effect on the
QT interval even more difficult. The purpose of this chapter is to provide statistical and
empirical rationales for key elements of study design, and statistical analysis that will
control for sources of QT variability and will enhance study sensitivity. We will identify
study design and statistical techniques to reduce QT variability, discuss the assumptions
inherent in many of the choices available in study design, and recommend study designs
based on these principles.

The QT interval, and its heart rate corrected value (QTc) varies widely throughout the
day in normal individuals with reports ranging from 76 ms to 117 ms (1,2). Numerous
groups have reported the influence of meals, sleep, age, autonomic tone or balance,
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gender, body position, electrolyte abnormalities, exercise, and insulin levels, as well as
the effects of drugs, disease, and genetic abnormalities on the QT interval (2–11). Despite
study designs that control for many of these factors, several factors may change during
the course of a study, and a time or sequence effect may be present in both the QT
variability as well as the absolute value of the QT. It is also important to understand that
it is not known whether the diurnal variation in the QT is a pattern or rhythm that is
reproducible day to day within individuals. In general, minute-to-minute variations in the
QT interval are less than day-to-day variations, and much less than week-to-week varia-
tions (12).

The sensitivity of a study is dependent on the ratio of the change in the QT to the
variability of that change. The magnitude of the change in QT is dependent on the drug,
dose, and occasionally the study population, but is often limited by drug tolerability and/
or safety. Thus, study designs that minimize the variability of the QT and reliably mea-
sure the QT at the time of maximal drug-induced changes will most efficiently detect the
change, and will require the smallest sample size.

STATISTICAL LIMITATION OF THE QT VARIABILITY

The simplest and easiest technique for reducing the minute-to-minute variability in the
QT is to standardize which complexes are measured within an electrocardiogram (ECG),
to measure two or more complexes, and to average values from two or more ECGs.
Typically, the QT interval is measured on three consecutive complexes from the same
ECG lead during a period of stable heart rate and rhythm, and the QT and its corrected
value averaged from the three complexes. Duplicate or triplicate ECGs are obtained at
1-to-5 min intervals and the values of these are all averaged to estimate the QT and QTc
values. In this fashion, the minute-to-minute variability in the QT is reduced by the square
root of the number of complexes and the number of ECGs measured. The effect of this
technique on reducing the variability (standard deviation) of the change in QT, as well
as on the sample size, is shown in Fig. 1.

The bars represent the standard deviation for the change in QTc from a model data set
where the true difference between baseline and on-drug QT values is 10 ms and the
within-subject standard deviations at both baseline and on-drug are 15 ms. Note how the
standard deviation decreases in an exponential fashion as the number of replicate ECGs
increase. The numbers above the bars indicate the number of subjects required for an
80% probability of finding a p < 0.05 difference between baseline and on-drug QTc by
the t-test. Multiple iterations of this model found a statistically significant reduction in
the standard deviation between one and two ECGs per time point, and a p = 0.07 reduction
between two and three replicate ECGs per time point. Thus, the QT and QTc averaged
from two or more ECGs per time point is a simple and effective method for increasing
study sensitivity and reducing sample size.

CHOICE OF BASELINE

The baseline against which the effect of drug is to be compared needs to be chosen
carefully. Factors to consider in this choice are listed previously and include the time of
day, meals, period of awakening, familiarity of the experimental surroundings, and the
time interval between the baseline and on-drug measurements. The assumption present
in the choice of baseline is that it should neither increase nor decrease the magnitude of
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the QT change, and it should minimize the variance of the estimate of the QT change.
There is some debate about what is the “best” baseline: a predose value of the QT or an
on-placebo, time-matched QT value. The predose baseline may be collected immediately
before dosing, or may be an average of baselines over several periods (as proposed in the
original Canadian/FDA draft of the ICH document). The on-placebo baseline may be the
QT obtained at the same time of day as the on-drug measurement (i.e., time-matched),
or an average of QTs over the course of multiple measurements on a placebo day. Each
of these options makes one or more assumptions about QT variability:

1. Predose QT as baseline: assumes time proximity to the drug-induced change minimizes
the variability, no diurnal pattern of QT changes, no study protocol-induced QT changes.

2. Multiple predose baselines over several days or periods: assumes no difference in the
absolute QT value or its variance between days (or weeks) compared to within day, no
sequence effect, no difference in QT or its variability caused by diurnal changes.

3. Same time of day on placebo day: assumes a stable, reliable pattern in QT with time of
day and study conditions, no sequence effect, stable day-to-day variability, stable QT–RR
relationship between the placebo day and the active drug day, and no effect of time
interval on magnitude of QT change.

4. Multiple ECGs averaged over a period of time on a baseline/placebo day: assumes stable
and consistent QT variability from day to day, with limited within day variability.

In the experience of the authors, the within subject moment-to-moment QT variability
(average SD = 6–9 ms) is slightly less than within day variability (SD = 9–10) which is
less than day-to-day variability (SD = 9–13) and less than between week variability
(SD = 10–15). A sequence effect has been noted in some studies, and the time-matched
placebo as baseline has been criticized for a lack of sensitivity and reliability (13).
In addition, the apparent magnitude of the QT change increases with the interval between
the baseline and on-drug measurements. Figure 2 illustrates the effect of time between
baseline and on-drug measurement of the Fridericia’s corrected QT (QTcF) change caused
by a single 400 mg oral dose of moxifloxacin (data taken from three studies reported in
the 4/27/01 Summary Basis for Approval for moxifloxacin [14]).

Figure 2 illustrates the change in QTcF at the time of drug Cmax when the time
between baseline and on-drug measurements was 0 (predose on the same day as drug
dosing), 1 d, 1 to 3 wk, and 1 to 5 wk. The diamond symbols are data from single ECG

Fig. 1. Effect of the number of replicate ECGs per time point on the standard deviation of the
change in QTc.
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determinations of baseline, and the squares are data from multiple ECG determinations
of baseline. These results suggest that the greater the interval between the baseline and
on-drug measurements of QTc, the greater the apparent effect of the drug. This phenom-
enon was observed in three studies designed a priori to test for this effect, and warrant
consideration in the design of crossover studies or in parallel design studies requiring
longer periods between predose baseline and drug steadystate concentration levels.

A similar effect was observed in the variability of the change in QTc in these
moxifloxacin studies. Figure 3 illustrates the standard deviation for the change in QTcF
at Cmax for moxifloxacin plotted against the time between the baseline and on-drug mea-
surements. The diamond symbols are data from single determinations of the baseline QT, and
the squares display data from multiple ECG determinations of baseline. Although the differ-
ences between single and multiple ECG measurements is clear, there is also a trend for greater
variability in the group standard deviation when the time between baseline and on-drug
measurements increase. This increase in variability as the time between baseline and on-drug
measurements increases will impact the sample size (number of subjects) necessary to detect
a drug effect in longer term studies.

In summary, whether the drug effect is expressed as a change from baseline or a change
from placebo, there are multiple assumptions inherent in the choice. For data transpar-
ency, display of data as a change from the predose baseline for both drug and placebo will
enhance the understanding of the drug effect as well as effects related to experimental
conditions. As indicated by the experience with moxifloxacin, the closer in time the
baseline is to the on-drug measurements of QT, the lower the magnitude of QT change,
and the lower the variance of the change. There appears to be little difference between
same day and preceding day baselines, but longer intervals have the potential to falsely
elevate the magnitude of QT effect, increase the variability of the estimate of this effect,
and will require larger sample sizes. This will be of particular concern in the design of
“thorough” QT studies with drugs or metabolites that have long half-lives, or that require
titration to reach the tested dose. Parallel designs that incorporate assessment of the
interval and sequence effect may be the best approach for evaluation of these drugs.

Fig. 2. Effect of time between baseline and on-drug measurement of the change in QTcF at Cmax
after oral doses of 400 mg moxifloxacin.
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QT CORRECTION METHODS

The RR and QT intervals are highly correlated, with the QT interval increasing with
increasing RR interval. As such, an observed increase in the absolute QT interval could
be the results of changes in the RR interval rather than a drug effect. Several methods have
been proposed to “correct” the QT interval with respect to the RR interval, such that the
corrected QT interval (QTc) is independent of the RR interval (15).

Figure 4 illustrates the relationship between the RR interval (x-axis) and the QT
interval (y-axis), showing a clear trend for the QT interval to increase with increasing
values of the RR interval. An appropriate correction method should show no trend in the
data when the corrected QT (QTc) is plotted vs the RR interval.

All methods are based on defining the RR–QT relationship, and then standardizing
the QT interval around an RR value of 1 s (equivalent to a heart rate of 60 bpm). In this
chapter, “population” and “individual” correction methods will be reviewed, as well as
a method that requires no correction. Finally, a brief overview of the use of Holter
ECGs and their analyses will be provided.

Population corrections are the most common and historically used methods. The oldest
of these is Bazett’s, QTcB = QT/(RR1/2), where RR is in seconds and QT in milliseconds.
Another common correction, is Fridericia’s, QTcF = QT/(RR1/3). These methods assume
a log-linear QT–RR relationship. The problem with these “fixed” corrections is that if the
actual QT–RR relationship differs from the fixed relationship, then the estimate of treat-
ment effects will be biased. In the case of Bazett’s correction, it is widely recognized that
Bazett’s over-corrects for the RR interval at higher heart rates, resulting in an increase
in false positive effects. Fridericia’s typically performs a bit better, but also is susceptible
to both over- and under-correcting, leading to both false positive and negative conclu-
sions, respectively.

Figure 5 illustrates that there is an inverse relationship between the RR interval (x-axis)
and the Bazett’s corrected QT (QTcB) interval (y-axis). The QTcB interval decreases

Fig. 3. Effect of time between baseline and on-drug measurement of QTcF on the standard devia-
tion of the change in QTcF.
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Table 1
Linear and Log-Linear Models of QT–RR Relationship
and Corresponding Formulae for Corrected QT (QTc)

Model QT Calculation of QTc

Linear QT = α + βRR QTc = QT + β(1–RR)

Log–linear log(QT) = α + βlog(RR) QTc = QT/(RRβ)

Fig. 5. Example of overcorrecting (should be no trend in QTc).

Fig. 4. QT–RR relationship.
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with increasing values of the RR interval, indicating that Bazett’s correction over-
corrected for the RR interval.

An alternative to the fixed population methods is to define the QT-RR relationship
based on the observed study data. It is recommended that one use off-treatment data
(baseline or baseline + on-placebo data). The first step is to model QT as a function of RR
(linear or log–linear) and estimate the slope parameter, β. Then QTc is calculated using
this estimate of the slope parameter.

In Table 1, the second column shows the model for the QT-RR relationship. The third
column shows the formulae for calculating the corrected QT interval (QTc) based on the
estimated parameters from the model for the QT-RR relationship. Note, for Bazett’s and
Fridericia’s corrections, the slope parameter, β, equals 0.5 and 0.33, respectively, for a
log-linear model.

The limitations of the population corrections are that they require the following
assumptions:
1. stable and constant QT–RR relationship across subjects
2. stable and constant QT–RR relationship across time, days, and/or sessions
3. stable and constant QT–RR relationship across treatments

There are data to suggest that the QT–RR relationship varies from subject to subject
and varies over time (when awakening, within a day, across days, weeks, months)
(2,4,6,7,16,17). Additionally, the QT–RR relationship may be altered by external factors
such as autonomic balance, drugs, and other external factors, as reviewed earlier.

Individual correction methods relax the assumption about stable and constant relation-
ships across subjects, by determining a unique relationship for each individual subject.
The only assumption across subjects is that the form of the relationship (linear or
log-linear) is the same. The correction is similar to the population approach, but a unique
slope parameter, β, is calculated for each subject. Thus, only assumptions 2 and 3 from
above are made. As with a population correction, it is recommended that individual
corrections be based on off-treatment data.

The limitations of the individual correction are the need for a sufficient number of
observations and a sufficient range of RR intervals. If either or both are insufficient, the
QT–RR relationship may be poorly defined, adding both bias and variability to treatment
effects. Figure 6 provides two such scenarios. Figure 6 illustrates two examples of insuf-
ficient data for determining an individual correction. Off-treatment RR interval (x-axis)
vs QT intervals are plotted with the dashed line representing a “best” fit log–linear model.
In the figure on the left, the data are clustered around a small range of RR values. In this
case, one could imagine that any line would have provided a reasonably good fit to the
data. In addition, one would not have much confidence in the modeled QT–RR relation-
ship for an RR interval greater than 1.2 s. The figure on the right illustrates that a single
observation (at RR 1.1 s) can impact the slope of the curve for sparse data. If that point
was not there, the slope of the curve might be quite different, leading to a different set of
corrected QT values.

The authors recommend that 20 to 50 off-treatment observations per subject are needed
for use of an individual correction, with more being better. For a crossover design this
should not be an issue, but it may be a limitation for parallel group designs. QTs distrib-
uted over a sufficient range of RR intervals, approx 0.7 to 1.1 s (heart rate of 55 to 86),
are necessary for an adequate estimate for each individual’s correction. However, a well-
controlled trial by design is going to limit the range of RR intervals for a subject, by
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controlling the external factors that may affect the RR interval. As such, care should be
taken when using an individual approach.

As all correction methods are flawed in some manner, two statisticians have proposed
using a repeated measures analysis that does not require a correction of the QT interval
(18). This is desirable as it avoids the potential for adding bias and variability to treatment
effects caused by the correction method, and it can account for potential treatment
effects on both the RR interval and the QT–RR relationship. The proposed method also
allows for assumptions that the QT–RR relationship may vary over time and treatment,
and takes into account the correlation between observations within a subject. As with
population and individual correction methods, the QT interval is modeled as either a
linear or log-linear function of the RR interval, with a unique set of parameters being
determined for each sampling time (i.e., pre- and post-dose) and each treatment (i.e.,
placebo and each active dose). Treatment differences are then calculated for the QT
interval based on the estimates of the model parameters for a given RR interval. For
further description of this approach the reader is referred to the method description (18).
Graphically, this analysis is illustrated in Fig. 7. The placebo is represented by the circles
and the experimental drug by the triangles. Open symbols are predose or baseline
values and filled symbols are post-dose values. The treatment effect is the difference
between experimental drug post-dose and predose values and placebo post-dose and
predose values ([� - �] – [� - �]).

As the QT–RR relationship is no longer restricted to be the same for each treatment
and time point, treatment effects must be evaluated at a range of values for the RR
interval. Specifically, if the QT–RR relationships are not parallel across treatments and
time, then the treatment effect will vary with the value of the RR interval. In the left part
of Fig. 7, the treatment effect increases with increasing RR interval. This may confound
the study results, leading to a false negative conclusion. Because many QT-prolonging
drugs change the QT–RR relationship and exhibit greater QT prolongation at slow heart
rates (“reverse rate dependency”), the assumptions of this method may underestimate
drug effects. When the method assumes parallel lines (i.e., assume stable and constant
QT–RR relationship across time and treatment) illustrated in the right part of Fig. 7, the
treatment effects are calculated by a linear combination of intercepts for the various

Fig. 6. Insufficient data for individual corrections.
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treatments and time points. By imposing parallel lines, this method provides results
similar to data based on a population correction.

The draft ICH guidance document (19) recognizes that none of the discussed methods
can be identified as “best” for all situations. As such, the guidance recommends and
allows for multiple correction methods to be used, with Bazett’s and Fridericia’s being
the standard methods. The authors recommend data-driven corrections (population or
individual) or repeated measures analysis on uncorrected QT values.

One recently validated method to avoid the use of correction factors is the so-called
“Holter bin” method (20). This method uses continuous ECG recordings via a Holter
monitor over a period of maximum pharmacodynamic effect of the drug. All of the
PQRST complexes from 10 ms RR intervals (“bins”) are averaged electronically and the
resulting high fidelity trace is measured for the QT interval. This allows for the compari-
son of placebo and on-drug QT intervals at every heart rate recorded, generating the
QT–RR relationship for both drug and placebo during the period of maximum drug
effect. The drug and placebo QT can be compared at the same heart rate (e.g., an RR of
1000 ms = a HR of 60 bpm), across all heart rates recorded, from the RR bin where the
greatest number of complexes were recorded for placebo and drug, and/or a regression
of the QT–RR relationship. Because of the large number of complexes averaged within
each RR bin, the within subject variability of the QT interval and its change is one-half
to one-third that of replicate ECGs. This results in a large increase in the sensitivity for
identifying a QT effect of a drug. The limitation of the “Holter bin” method is that
recording must be performed over a period of time (2–4 h) covering the peak effect of the
drug. This may dilute the maximum effect of a short half-life drug that exhibits a short-
lived peak. The marked advantage of the Holter bin method is that it allows within-subject
analysis via the repeated measures method using many more data points than can be
obtained with ECGs. It also avoids the increases in variability caused by correction
methods.

Fig. 7. QT analysis without heart rate correction: model options.
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CENTRAL TENDENCY ANALYSIS

The draft ICH guidance recommends that the “thorough” QT trial to evaluate repolar-
ization be designed to either detect a minimal mean effect or to “rule out” a mean effect.
In either case, the mean effect can be defined by a summary measure of the time course
of ECGs measured after each treatment. Possible summary measures or central tendency
parameters include:

1. change at observed drug Cmax/Tmax (maximum plasma concentration and time to
maximum concentration)

2. change at anticipated Tmax
3. maximum change regardless of drug concentration or time
4. average change over a specific period
5. area under the curve (or more properly, the area under the effect curve [AUEC]) of QT

for a specific period.

As the QT, RR, and corrected QT (QTc) are highly correlated, all should be summa-
rized in the same manner and analyzed at the same time points or periods chosen. The
choice of the parameter depends on the experimental drug’s pharmacokinetic (PK) char-
acteristics (time and duration of Cmax, variability of Tmax, half-life) and its concentra-
tion/QTc relationship (direct or lag-phase). If the experimental drug has active
metabolite(s), the PK and PK/QTc relationship should also be considered. For example,
Fig. 8 illustrates a direct concentration/QT relationship (left) and lag-phase (or indirect)
relationship (right). On the left, both the time profiles of the concentration data and the
QT interval are similar, with peaks occurring approximately at the same time. While on
the right, the time profiles are different, with the peak of the QT profile occurring several
hours after the peak of the concentration profile. It is easy to see that using the change at
Tmax for a compound with a lag-phase concentration–QT relationship could result in a
false negative conclusion.

The change from baseline at observed Tmax or anticipated Tmax (option 1 or 2) is an
appropriate parameter when the drug has the following characteristics: The concentration-
QTc relationship is a direct one (i.e., no lag-phase as in the left figure); Tmax is well defined
with low variability; the half-lives of the drug and its pharmacodynamic effect are fairly

Fig. 8. Direct and lag-phase concentration QT relationships.
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short (< 24 h); and the drug either has no active metabolite or the active metabolite(s) have
both a similar PK profile as the parent and direct concentration–QTc relationship.

The change from baseline at the anticipated Tmax is more easily implemented during
a study than the change from baseline at the actual Tmax, especially for parallel group
designs. For the change from baseline at observed Tmax, it is recommended that the
placebo comparator be time-matched to reduce bias caused by diurnal variation. For a
crossover trial, this would entail for each subject that the placebo comparator be the
change from baseline to the same Tmax of the active treatment. Although parallel group
designs cannot be analyzed in this manner, a Hodges-Lehmann-Moses non-parametric
approach can be used to estimate a time-matched comparison between active and placebo
treatments (21). Again, the change at Tmax parameter is only valid when there is a good
correspondence between the PK and the pharmacodynamic effect of the measured drug
(the left part of Fig. 8).

Another concern with using the change at observed or anticipated Tmax is that the
Cmax is typically the most variable PK parameter. As such, this variability will contribute
to the variability of the QT parameters. This is especially important when designing
parallel group designs. To help minimize variability, the study should be designed to
ensure that experimental conditions are optimal at the time of maximum concentration.
For example, one would not want to feed subjects within 2 h of the anticipated Tmax.

If the Tmax is highly variable, if there is a lag-phase in the concentration–QT relation-
ship, and/or if active metabolites have a different PK profile than the parent, then the
maximum change from baseline may be the appropriate measure of drug-induced QT
change. For the QTc interval, the maximum change is just the maximum post-dose QTc
value minus the baseline value, regardless of time and pharmacokinetics. For the QT and
RR intervals, the authors recommend that the change from baseline be time-matched to the
time at which the maximum QTc value occurred, so that one can assess and relate effects
on QTc to those of the QT and RR interval appropriately. This parameter is dependent on
both the sampling scheme for the ECG (number and timing) measurements and the experi-
mental conditions (evaluation time, meals, sleep, etc.). Too few sampling time points may
result in missing the maximal drug effect, whereas too many samples can increase the
probability of spurious effect (false-positive). This is illustrated in Fig. 9, which demon-
strates that the magnitude of the “maximum change in QTc” parameter is dependent on the
number of ECGs obtained after drug administration, as a result of simple statistical variabil-

Fig. 9. False positivity magnitude with the maximum change in QTc.
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ity. The magnitude of this change may be reduced if replicate ECGs are obtained at each
time point, but the risk of a falsely positive result is still present. The use of the maximum
change in QTc parameter will consistently overestimate the magnitude of drug-induced
QTc changes, and is only of value when changes can be compared to placebo data, or when
hysteresis curve analysis indicates a disjunction between the pharmacodynamic effect (PD)
and the PK of the measured drug. Additionally, the parameter is susceptible to diurnal
variation with the sampling times chosen, another cause of false-positive results. As with
the change at observed Tmax, it is recommended that the placebo comparator be time-
matched to reduce bias caused by diurnal variation.

A potential pitfall of the maximum change from baseline is that, as a result of the high
variability of the QT interval, often the maximum change from baseline does not occur
at the same time as Tmax, even for drugs with a well defined Tmax of low variability,
direct PK/PD relationship and no active metabolites. This is illustrated in the Table 2 of
actual data taken from the moxifloxacin Summary Basis of Approval for three different
drugs and placebo.

Table 2 demonstrates the large difference between the change in QTc at the time of
Cmax compared to the maximum change in QTc at any time after drug administration.
All three of these known QT-prolonging drugs (and even placebo) had their effects
confounded by the parameter “maximum change in QTc.” The time of Tmax and true
drug QT effect occurred at about 2 h for each drug, whereas the time of the maximum
change in QTc varied over the entire 12 h of data collection after drug administration. The
consistent 12 to 20 ms difference between these two estimates of drug effect demonstrates
the problems of false positivity with the maximum change in QTc parameter, and is
completely predictable as in Fig. 9.

If the drug has a long pharmacokinetic or pharmacodynamic (QTc) half-life, then the
average QTc change or the QTc area under the effect curve (AUEC) over a specific time period
may be considered as the response parameters. Similar to the maximum change, the sampling
scheme and experimental conditions may bias these parameters. Whereas these parameters
are useful for evaluating whether a drug has a sustained effect over time, they have not been
independently validated and as such are not considered sufficient for drug approval when used
alone. Specifically, these parameters are not appropriate for drugs that have a direct concen-
tration–QT relationship with a short half-life, as they may provide a false-negative result.

The statistical model for all of these central tendency parameters is similar. For a
crossover design, the authors recommend a mixed effect model fitting a random term for
subjects and fixed terms for sequence, period, and treatments. Additionally, baseline

Table 2
Difference in Change From Baseline @ Tmax vs Maximum Change From Baseline

Δ QTc @ Cmax Max Δ QTc Time of max
Drug (mean ±  SE) Tmax (h) (mean ±  SE) QTc (h)

X 1x   9 ± 15 2 24 ± 15 5.2
X 2x 20 ± 18 2.4 32 ± 17 4.3
Y 1x   5 ± 14 1.5 22 ± 14 5.5
Y 2x   7 ± 15 1.5 21 ± 12 5.3
Z   3 ± 14 1.3 21 ± 13 5.9
Placebo –5 ± 15 — 16 ± 14 6.1
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(predose) values should be fit as a covariate to further reduce variability. For a parallel
group design, an analysis of covariance (ANCOVA) is recommended, fitting a single
fixed term for treatment and baseline as a covariate. As appropriate to the study design,
fixed terms for other factors such as gender and age can also be included in either model.

INTERPRETATION OF THE OBSERVED
CENTRAL TENDENCIES IN QTc

There are two aspects to interpreting the observed central tendencies in QTc of an
experimental drug; statistical and clinical. The statistical interpretation is based on the
statistical hypothesis being tested. For a “thorough” QT study, this will either be to detect
a specific effect or to rule out a specific effect. The specific effects should be clinically
meaningful changes in QTc.

The ranges and associated risks in Table 3 are from the draft ICH guidance and are
based on clinical experience. It should be noted that there are other factors that may
mitigate or enhance the risk of TdP. In addition, these ranges do not take into account the
variability of the measurement, method of measurement, or correction factor. Finally,
these are based on historical data using Bazett’s corrected QT.

As mentioned earlier, the “thorough” QT study can be designed to test one of two
hypotheses: to detect a specific difference or to rule out a specific difference. The math-
ematical expressions of these hypotheses are shown in Table 4.

The former is the more traditional statistical hypothesis (similar to that used to dem-
onstrate a drug is superior to placebo in a pivotal trial). The latter is similar to that used
for a bioequivalence trial or a noninferiority trial. The draft ICH document recommends
that the study be designed to detect a 5 ms difference or to rule out a 5 or 7.5 ms difference.
For both hypotheses, the study should be adequately powered. In general, to rule out an
effect is a more stringent test and will require a larger sample size than that needed to
detect a difference.

Table 3
Clinical Interpretation of Mean Changes in QTc

Change from baseline Relative risk of TdP

< 5 ms So far no TdP
5–10 ms No clear risk
10–20 ms Uncertainty
> 20 ms “Substantially” increased likelihood of being pro-arrhythmic

TdP, torsade des pointes.

Table 4
Null and Alternative Hypotheses for Two Statistical Approaches to Definitive QT Study

To detect an effect To rule out an effect

Null hypothesis Ho: θ = 0 Ho: θ � δ
Alternative hypothesis Ha: θ � 0 Ha: θ < δ

θ represents the difference between the experimental drug and placebo.
δ represents a clinical relevant difference, e.g., the change from baseline in Table 3.
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For either of these hypotheses, the comparison of interest should be between the
change in QTc by the experimental drug vs the change in QTc on placebo. The draft ICH
guidance does not indicate for which dose, therapeutic or supratherapeutic, of the experi-
mental drug the hypotheses should be tested. If the hypotheses are to be tested for more
than one dose, then the type I error rate, α, needs to be controlled for multiple comparisons.

For all comparisons of interest, 100(1–α)% confidence intervals, rather than p values
should be employed to interpret the results, where α is the type I error rate. For the
hypothesis to detect a difference, the confidence interval should not include 0. For the
hypothesis to rule out an effect, the upper bound of the confidence interval should be less
than the clinically relevant difference, δ. For comparisons for which no hypotheses are
being tested, confidence intervals provide a range of plausible values. In addition, it is
recommended that point estimates and 100(1–α)% confidence intervals be provided for
mean effect of each treatment including placebo.

As changes in the QTc interval may be confounded with changes in the heart rate (RR
interval), effects of the drug on both the QT and RR (or HR) intervals should be examined.
Whereas there is no current guidance to interpret changes in the QT and RR intervals, an
increase in the RR interval should correspond to an increase in the QT interval, although
the magnitude of the increases should not necessarily be the same. Another signal that
drug effects may be confounded is when there are differences in the results depending on
the method of correcting QT for the RR interval. Bazett’s method tends to overcorrect the
QT interval when there are increases in heart rate. Thus, for a drug that increases the heart
rate, Bazett’s method may yield a larger estimate of drug effect on QTc than either a
Fridericia’s or population-based QT correction would.

There are two other analyses that might be done to help further assess the effect of
experimental drugs. The first is to examine the dose- or concentration–response relation-
ship, and the second is to look at individual subject changes from baseline. These are
discussed in the next two sections.

DOSE–RESPONSE AND CONCENTRATION–RESPONSE MODELING

Understanding the dose–response and/or concentration–response of an experimental
drug is essential to assessing the risk of QT prolongation. A shallow dose– or concentration–
response may indicate a low risk of prolongation. To adequately model a dose–response
of an experimental drug, a minimum of three doses should be studied, which has not been
employed in “thorough” QT studies submitted to the regulatory agencies (22). However,
a concentration–response can be done with two doses, such as the therapeutic and
supratherapeutic doses. If pharmacokinetic samples are taken over a range of times
following dose, this should provide a range of concentrations from very low to
supratherapeutic levels.

It is recommended that the following plots be generated to better understand the
concentration–response:

• individual hysteresis plots of concentration vs QTc
• population scatter plots of drug concentration vs QTc
• mean time course plots of both concentration and QTc

Hysteresis plots account for time, and thus are useful in helping to assess whether there
is lag-phase or prolonged effect on QTc. Figure 10 provides an example of what a
hysteresis plot might look like for a drug with a direct concentration–response relation-
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ship (left) and for a drug with a lag phase (right). These plots can also provide insight into
the shape of the concentration–response relationship, will validate the adequacy of the
frequency and timing of ECG collection, and may reveal additional factors (e.g., active
metabolites, distribution phase, etc.) that will influence the interpretation of the results.

Figure 10 shows hysteresis plots for direct (left) and lag-phase (right) concentration–
QTc relationships. Paired concentration (x-axis) and QTc interval (y-axis) values are
plotted, with > indicating the time sequence of the paired observations. The figure on
the left shows that concentration and QTc move together over time, whereas the right
figure shows that there is delay.

Plots of the mean time courses of both concentration and QTc provide a visual assess-
ment of the presence of a lag phase in the concentration–response relationship as illus-
trated in Fig. 8. These are then enhanced by the hysteresis plots of the concentration–PD
effect relationship illustrated earlier.

Scatter plots of concentration vs QTc provide a visual assessment of a direct concen-
tration–response. It is recommended that scatter plots include data from all doses of the
experimental drug.

Figure 11 illustrates the concentration–response relationship for an experimental drug
(open circles). A linear relationship was assumed that is represented by the solid line.

If the relationship between the drug concentration and the QTc change appears to be
well defined and without a lag phase, a simple linear or nonlinear regression can be used
to model the concentration–response relationship. The model should account for the
study design (crossover or parallel group), for correlation between observation and within
and between-subject variability. Whether three doses are tested or a concentration–
response model is used, this approach rapidly increases the power of the study and
minimizes the sample size.

The balance between the number of subjects and the frequency of data collection
can be estimated using techniques described by Ahn and Jung (23). In the presence
of a lag phase, modeling of the concentration–response relationship can be per-
formed using software designed for this purpose (e.g., Non-Mem, Win Non-Lin) and
the model results tested for significance of the relationship. The model then can be

Fig. 10. Hysteresis plots for direct and lag-phase concentration/QTc relationships.
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used to provide predictions for various concentrations or to predict at what concen-
tration a threshold or target effect occurs. As a general rule, predictions should only
be made for concentrations that fall within the range of observed concentrations, and
care should be taken in interpreting results for concentrations outside this range. As
a result of the large number of observations employed for concentration–response
modeling, this approach may avoid some of the inherent problems with the central
tendency analyses for drugs with variable Tmaxs. However, this analysis is not
sufficient for drug approval and should be considered a supplemental analysis to the
central tendency analyses.

CATEGORICAL AND OUTLIER ANALYSIS

One further way of assessing a drug’s effect on the QT interval is to look at the
individual values, as well as individual changes from baseline of QT and QTc. Both
the draft ICH guidance document and a CPMP Points to Consider document (24) provide
categories (Tables 5 and 6).

These categories are based on published clinical data and/or clinical experience, and
most recently have been influenced by the terfenadine data. As with other critical ranges
for QTc, these are primarily based on data using Bazett’s correction and single ECG QT
measurements. These may not be applicable to alternative correction factors, and specifi-
cally should not be employed for QT data averaged from two or more ECGs. Addition-
ally, they may not account for the variability of the measurement, differences between
males and females or the method of ECG measurement.

A simple way to display the data is to generate tables with a row for each category and
column for each treatment arm (placebo and experimental drug). Each cell of the table
should include both the number and frequency/percentage. Additionally, a total row and
column is recommended (see Table 7).

Fig. 11. Scatter plot of concentration and QTc intervals.
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As with some of the central tendency parameters, these tables may be dependent on
the sampling scheme for ECGs and experimental conditions. Again, drugs that require
a longer evaluation time in which meals, sleep, etc. will occur, may result in more
observations in the higher categories. However, if the drug has no effect, numbers and
frequencies should be similar to placebo.

SUMMARY AND RECOMMENDATIONS

A large number of factors influence the QT interval and its variability within and
between subjects. Appropriate experimental design and conditions can limit those that
are intrinsic to the individual (e.g., meals, sleep, physical activity, minute-to-minute QT
variations, etc.). Those extrinsic factors, such as ECG data collection and measurement,
correction factors, use of data from Cmax or anticipated Tmax, choice of baseline, and
the time between baseline and on-drug measurements, must all be carefully controlled in
order to enhance the power and efficiency of QT study design. Because the dose range
employed in QT studies is often limited by subject tolerability, virtually all of the design
decisions in “thorough” QT studies must be directed toward reducing the QT variability

Table 7
Sample Table of Categorical Summary of Individual Changes From Baseline

Change from Drug X, Drug X, Active
    Baseline Placebo dose 1 dose 2 control Total

� 30 ms 25 (50%) 23 (46%) 20 (40%) 20 (40%) 88 (44%)
> 30 and � 60 ms 20 (40%) 19 (38%) 20 (40%) 23 (46%) 82 (41%)
> 60 ms   5 (10%)   8 (16%) 10 (20%)   7 (14%) 30 (15%)
Total 50 50 50 50 200

Table 5
Categories of Risk for Absolute Values of Individual QT/QTc Intervals

Absolute QTc values Relative risk of TdP

� 450 ms So far no TdP
> 450 and �480 ms No clear risk
> 480 and � 500 ms Uncertainty
> 500 ms “Substantially” increased likelihood of being pro-arrhythmic

TdP, torsade des pointes.

Table 6
Categories of Risk for Changes From Baseline of Individual QT/QTc Intervals

Change from baseline Relative risk of TdP

� 30 ms No clear risk
> 30 and � 60 ms Uncertainty
> 60 ms “Substantially” increased likelihood of being pro-arrhythmic

TdP, torsade des pointes.
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and toward the use of the most powerful statistical analyses available. The choice of many
of the study design options is often a trade-off, and the assumptions inherent in these
choices must be understood and incorporated into the data analysis and interpretation.

We offer the following recommendations for the design and statistical analyses of
“thorough” QT studies:

1. The experimental design and setting should minimize known sources of QT variability.
The period of peak pharmacodynamic effect should avoid the post-prandial period, ex-
ercise, and sleep. Because of altered QT–RR relationships during sleep, QT data should
not be compared between awake and asleep periods, nor for approx 1 h after awakening.
Balancing male and female subjects and studying subjects evenly distributed throughout
the age range of the intended patient population will allow these factors to be added as
covariates in the statistical analysis. At least two and preferably three doses of the drug
should be tested to gain the marked increase in statistical power of a dose–response or
a concentration–response analysis. Crossover designs offer enhanced power by control-
ling for intersubject variability, but may not be practical for long half-life drugs and active
metabolites, or for drugs requiring dose titration.

2. Computer-assisted manual over-read of QT intervals from at least two replicate ECGs at
each time point is the most effective way to reduce QT variability. The same ECG lead
should be used within subjects for estimation of QT changes.

3. The preferred baseline is a predose time point on the same day as, or as close as practi-
cable to the on-drug ECG recordings. Data for both placebo and drug should be reported
prior to any “placebo-adjusted” calculations. For long half-life drugs requiring parallel
study designs, careful control for sequence effects in both the drug and placebo groups
should be incorporated in the data collection.

4. The Bazett’s and Fridericia’s corrected QT intervals are requested by regulatory agen-
cies, however, the QT–RR relationship of the study population should be inspected.
Where necessary, a population or individualized correction factor should also be
employed to avoid the increases in variability caused by standardized equations. A “Holter
bin” analysis that constructs the QT–RR relationship for each subject on drug and on
placebo is a highly sensitive and informative method that was accepted the FDA as
supporting evidence for the alfuzosin NDA in 2003. Alternative statistical methods that
avoid correction of the QT interval have been proposed but, as of the time of this manu-
script, have not been the basis for regulatory approval.

5. The ICH draft document proposes that the ECG obtained at drug Cmax or anticipated
Tmax is the first central tendency parameter to use. This is of value when the plasma
pharmacokinetics of the drug and/or measured metabolite corresponds to the pharmaco-
dynamic effect of the drug. The alternative parameter, the maximum change in QT, has
a high false positive rate and is randomly distributed over the time of observation even
in the presence of a moderate, true drug effect. The high false positive rate can be reduced
by obtaining replicate ECGs at each time point, and by performing an hysteresis analysis.
When hysteresis analysis indicates a correlation between drug or metabolite and the
maximum change in QT, the data at this time point may be considered as valid.

6. Dose–response and concentration–response modeling analysis offers powerful statisti-
cal tools to increase the sensitivity of the “thorough” QT studies and to enhance the ability
to assess risk. When careful attention is paid to the timing of the concentration–response
relationships, this method is the most effective way to reduce sample size and increase
statistical power.

7. The categorical analyses should be limited to comparative frequency tables between drug
and placebo for individual (i.e., nonaveraged) ECG QT data.
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