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Glutamate and Depression

Joaquín Del Río and Diana Frechilla

1. INTRODUCTION

1.1. Prevalence and Symptoms of Depressive Disorders

There are two principal types of mood disorder: major depression and bipolar disorder.
Recurring episodes of major depression constitute unipolar depression whereas individuals
who alternate periods of mania and depression are manic-depressive and suffer from
bipolar disorder. Depression is a disease with a prevalence of 3–5% in developed coun-
tries and a lifetime morbidity of approx 15–18%. The disease is more prevalent in
females than in males. Prevalence values are not, however, very precise because many
depressed patients are still neither diagnosed nor treated. Clinical symptoms include
depressed mood and loss of interest in almost everything, anhedonia and fatigue, as well
as sleep disturbances, low self-esteem, guilty feelings, and suicidal tendencies. Other
somatic symptoms such as gastrointestinal or cardiovascular disorders are also often pre-
sent. The symptoms of mania are almost the exact opposite of those of depression. In
major depressive disorders, there is a high risk not only for suicide but also for life-
threatening effects on multiple organ systems, so it is considered that the mortality risk
engendered by major depression is similar to that of the more severe cardiac and cere-
brovascular diseases (reviewed in refs. 1 and 2). It is supposed at present that depressive
syndromes are the result of a combination of susceptibility genes and multiple environ-
mental factors. The search for genetic substrates underlying depressive disorders has not
as yet resulted, however, in any universally accepted �nding. 

1.2. Initial Theories on Depression: The Monoaminergic Hypothesis

Early theories on the pathogenesis of depressive disorders have been entirely based on
the mechanism of action of antidepressant drugs (see also Chapter 9). Because of the
absence of animal models for a disease involving higher human emotions, it has been
accepted that understanding the mechanisms underlying antidepressant treatment would
provide substantial advance in the interpretation of pathological changes in depression. The
initial biogenic amine hypothesis of depression was based on the effects on monoamine
levels of reserpine, an antihypertensive drug, and antidepressants. Reserpine induces
monoamine depletion as well as marked sedation and depressive symptoms, whereas clini-
cally effective antidepressants increase monoamine levels and reverse reserpine-induced
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sedation. Most therapeutically useful antidepressants block the monoamine transporters
providing increased extracellular levels of serotonin (5-HT) and/or noradrenaline (NA) or,
alternatively, prevent monoamine degradation by monoamineoxidase (MAO) or act on
presynaptic auto/heteroreceptors controlling monoamine release (Table 1). Lithium salts
are of much value in the prophylaxis of bipolar disorder and electroconvulsive treatment
(ECT) is still widely used in the treatment of depression. Another more recent physical
therapy is rapid transcranial magnetic stimulation, which appears to improve mood in
depression (3). There is, however, a signi�cant proportion of patients who do not respond
to any antidepressant treatment and there is also a lag time of some weeks for the therapeu-
tic effect of these agents, not correlated with the rapid increase in the availability of
monoamines, suggesting that slower adaptive mechanisms, related or not to the monoaminer-
gic systems, could be involved in the antidepressant effect (see also Chapter 9). In this
regard, the so-called β-adrenoceptor downregulation hypothesis (4,5), which assumed that
suppression of signaling through β-adrenoceptors after chronic antidepressant treatment was
indispensable for clinical ef�cacy, was the �rst widely accepted approach in the search for
adaptive changes induced by chronic antidepressant treatment. However, this hypothesis
was challenged since some more recently introduced antidepressants, such as the selective
serotonin reuptake inhitors, did not downregulate β-adrenoceptors and some of them, such as
citalopram, even produced the opposite effect (6).

2. MORPHOLOGICAL CHANGES IN DEPRESSION

2.1. Neuroimaging and Neuropathological Studies in Depressed Patients

A consistently observed neuroanatomical change in unipolar major depression has been
the volume loss in the hippocampus. Reductions in hippocampal volume, evaluated using
magnetic resonance imaging, were nearly 20% in some reports, and apparently dissociated
from antidepressant medication or ECT; these reductions have been correlated with the total
lifetime duration of depression (7,8). Neuronal atrophy and cell death have been reported
not only in the hippocampus but also in the prefrontal cortex of depressed patients. In brain-
imaging studies, a decreased volume of the subgenual prefrontal cortex along with a reduced
blood �ow was found (9). Decreased number and size of neurons, as well as decreased glial
cells in the prefrontal and orbitofrontal cortex have been also reported (10,11).

Other positron emission tomography studies have revealed increased cerebral blood
flow and glucose metabolism, positively correlated with depression severity, in the amyg-
dala (12), one of the brain regions mediating emotional and stress responses. Antidepres-
sant treatment producing symptom remission decreased amygdala metabolism, supporting
the notion that chronic antidepressants have an inhibitory effect on amygdala function
(12). Conversely, areas that appear to inhibit emotional expression, such as the posterior
orbital cortex, suffer histopathological abnormalities in depression. Excellent reviews on
neuroimaging and postmortem studies in depression have been published in recent
years (11–13).

2.2. Stress-Induced Neuroanatomic Changes

It is known that a signi�cant percentage of major depression patients display some
form of hyperactivity of the hypothalamic–pituitary–adrenal (HPA) axis, such as hyper-
cortisolemia and lack of feedback inhibition, and increased release of corticotropin-
releasing factor (CRF). A high percentage of patients with Cushing disease also manifest
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depressive symptoms as well as hippocampal atrophy (1,14,15). The reduced hippocam-
pal volume may be a consequence of the increased release of glucocorticoids induced by
stress, so depression may be ultimately considered as a stress-related disorder. Stress and
glucocorticoids make certain neuronal populations more vulnerable to the neurotoxic
effects of ischemia, hypoglycemia, and excitatory amino acids (15). Chronic stress or
repeated glucocorticoid administration induce in rodents dendritic atrophy in hippocam-
pal neurons of the CA3 region, a suppression of the normal production of granule cells in
the dentate gyrus, and even neurotoxic effects on pre-existing hippocampal neurons
(reviewed in refs. 16 and 17). It remains to be established with certainty whether stress is
an epiphenomenon of depression or is rather critically involved in the pathophysiology of
depression (cf. ref. 2), although there is abundant evidence suggesting that there is a causal
link between stressful experience and depression (18).

Glucocorticoids, secreted during stress, contribute to neuronal atrophy in the hip-
pocampus through two major mechanisms. One of them, shown not only in fat cells but
also in cultured hippocampal neurons, is a decreased glucose uptake (19) that could
result in increased sensitivity to other neurotoxic insults. The other major mechanism is
an enhanced activation of glutamatergic transmission. It is known that an elevation of
glucocorticoid levels from the low basal range to those typically excitotoxic increases
glutamate levels by fourfold (17). Excessive stimulation of glutamate receptors, in par-
ticular of the N-methyl-D-aspartate (NMDA) ionotropic receptor, may result in cell death
through increased intracellular Ca2+ levels (Fig. 1).

Table 1
Representative Antidepressant Drugs Acting on the CNS 5-HT and NA Systems

NA/5-HT reuptake inhibitors
Imipramine
Amitriptyline
Clomipramine
Venlafaxine (low anticholinergic side effects)

Selective 5-HT reuptake inhibitors
Fluoxetine
Paroxetine
Sertraline
Citalopram

Selective NA reuptake inhibitors
Desipramine
Reboxetine

Miscellaneous (non-MAO inhibitors)
Tianeptine (enhances 5-HT uptake)
Mirtazapine (antagonist at α2-adrenoceptors controlling monoamine release)

MAO inhibitors
Phenelzine
Tranylcypromine

CNS, central nervous system; 5-HT, serotonin; NA, noradrenaline; MAO, monoamine oxidase.
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Expression of the neurotrophin brain-derived neurotrophic factor (BDNF) is also
downregulated by stress in different hippocampal sub�elds (20). In the hippocampus and
in other brain regions, BDNF in�uences neuronal survival, differentiation, and synaptic
strength so reduced levels of this neurotrophic factor may also contribute to the atrophy
and decreased function of different populations of hippocampal neurons. Like other neu-
rotrophic factors, BDNF activates the mitogen-activated protein (MAP) kinase-signaling
pathway, which inhibits cell death through different mechanisms, notably through an
increased expression of the antiapoptotic protein Bcl-2 (ref. 21; see Fig. 1). In the context
of the present review, it is of interest that BDNF and NMDA receptor antagonists share
protective effects on stress-induced neurotoxicity. Whereas NMDA antagonists prevent
the reduction by corticosterone of cell proliferation in the adult dentate gyrus (22),
BDNF prevents neuronal cell death induced by corticosterone (23).

2.3. Antagonism of Stress-Induced Changes by Antidepressants

Standard treatments for depression such as administration of antidepressant drugs or
ECT have effects on the hippocampus that should counter those found in major depres-
sion, such as stress-induced retraction of dendritic processes in CA3 pyramidal neurons
(24) or reduction of neurogenesis in the adult dentate gyrus (25). Stress-induced changes
in neural plasticity of the hippocampus can be prevented by representative antidepres-
sants, such as imipramine and �uoxetine, and also by ECT (26). In a model of psychosocial
stress in primates, it was found that tianeptine, an antidepressant with an unconventional
mechanism of action (see Table 1), prevented many of the morphological changes associ-
ated to stress, including the inhibition of cell proliferation in the hippocampus (27). The
ability of the NMDA antagonist MK-801 to prevent corticosterone-induced decrease of
proliferating cells in the dentate gyrus (22), suggests the possibility of common mechanisms
for antidepressants and NMDA antagonists (see Section 5).

Fig. 1. Effect of stress and antidepressant treatment on the regulation of neuroplasticity and
cell survival in affective disorders. Cellular plasticity and survival depend on genetic factors.
Stress associated to depression increases cortisol and glutamate levels. Stimulation of glucocorti-
coid receptors reduces glucose uptake, increasing the sensitivity to neurotoxic insults. Excessive
stimulation of N-methyl-D-aspartate receptors induces cell death through increased Ca2+ levels
and formation of reactive oxygen species. Stress also decreases brain-derived neurotrophic factor
(BDNF) levels with the consequent attenuation in the PI-3K/Akt pathway, which promotes cell
survival through inhibition of glucogen synthase kinase activity and reduced expression of the
proapoprotic proteins Bad and Bcl-x. Different classes of antidepressants stimulate the cyclic
adenosine monophosphate-protein kinase A signaling system and activate the transcription factor
CREB (cAMP response element-binding protein). One of the target genes of CREB is BDNF,
which inhibits cell death by activating the extracellular signal-regulated kinase mitogen-activated
protein (MAP) kinase pathway and promoting the expression of the antiapoptotic protein Bcl-2.
Antidepressants may also reduce NMDA receptor function and induce the membrane insertion of
α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors, leading to enhanced synaptic con-
nectivity and activation of the antiapoptotic mechanisms of the MAP kinase pathway. GR, gluco-
corticoid receptors; NMDA, N-methyl-D-aspartate; ROS, reactive oxygen species; BDNF,
brain-derived neurotrophic factor; GSK-3, glucogen synthase kinase; PKA, protein kinase A;
CREB, cAMP response element-binding protein; AMPA, α-amino-3-hydroxy-5-methylisoxazole-
4-propionate; ERK, extracellular signal-regulated kinase; MEK, mitogen-activated protein ERK,
RSK, ribosomal subunit kinase-2.
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3. GLUTAMATERGIC TRANSMISSION DYSFUNCTION IN DEPRESSION

3.1. Changes in Glutamate Levels

Glutamate in mood disorders has been studied using magnetic resonance spectroscopy.
Although preliminary, some of these studies appear to re�ect regionally speci�c alterations
in glutamate turnover rates associated with mood disorders, such as reduced glutamate in
the anterior cingulate cortex (28,29).

The reported de�cit of glial cells in mood disorders (see Subheading 2.1.) could cause
complex changes in glutamate neurotransmission. Because glial glutamate uptake is critical
for removing glutamate from the synapse, the reduced number of glial cells may produce
toxic accumulation of extracellular glutamate (30). In response to AMPA (α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionate) receptor stimulation, glial cells release D-serine,
which stimulates the glycine site of the NMDA receptor (31). Glial de�cits may conse-
quently produce glutamatergic hyperactivity. Because glial cells also release trophic factors
that participate in the development of synaptic networks, abnormalities in glial function
could contribute to the pathophysiology of mood disorders (32).

The effect of antidepressants on glutamate release has been analyzed in some studies.
One of them (33) showed that desipramine enhanced the spontaneous vesicular release
of glutamate in cultured hippocampal neurons. In contrast, it was found in an ex vivo
study (34) that imipramine markedly blunted glutamate over�ow in the prefrontal cortex
but not in the striatum, although similar effects were found after acute or chronic antide-
pressant treatment. Because antidepressants are only ef�cacious on chronic treatment,
the signi�cance of these �ndings is unclear.

Stress increases extracellular levels of glutamate in the prefrontal cortex, nucleus
accumbens and hippocampus (35–37). In adrenalectomized rats, this effect is reduced in
the prefrontal cortex or blocked in the hippocampus, indicating that corticosterone is
involved in the stress-induced elevation of extracellular glutamate levels in brain regions
(36,37). Further studies on the effect of chronic antidepressant treatment on enhanced
extracellular glutamate levels induced by acute or chronic stress would be no doubt of
interest at the time of assessing the neuroprotective effect of antidepressants on stress-
induced neurotoxicity. It is of note that in a single magnetic resonance spectroscopy study,
a decreased caudate glutamate resonance was found following paroxetine treatment for
obsessive-compulsive disorder (38).

It has been suggested that inhibition of glutamate release could be a valid approach in the
treatment of depression. Repeated administration of lithium, the prototype mood stabilizer,
promotes glutamate uptake and reduces glutamate receptor function (39). Lamotrigine, an
anticonvulsant agent that among other effects, reduces glutamate release has antimanic and
antidepressant ef�cacy (40). Clinical trials for the ef�cacy in major depression of riluzole,
another inhibitor of glutamate release that is used for the treatment of amyotrophic lateral
sclerosis, are in progress.

3.2. Changes in Glutamate Receptor Function

NMDA receptor dysfunction has been studied in postmortem samples from suicide
victims, many of whom could have been depressed patients. A reduced binding to the
glycine site of the NMDA receptor complex was found in suicide victims as compared to
sudden-death controls (41). This study has been questioned, however, as diagnoses of the
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suicide victims, as well as previous pharmacological treatments, were in general unknown.
In another postmortem study on suicide victims with a �rm diagnosis of depression, no
change in the binding characteristics of the noncompetitive NMDA receptor antagonist,
3H-MK-801, was found (42).

Postmortem studies in the striatum of patients with major depression or bipolar disorder
revealed only minimal changes in mRNA expression of the different NMDA and AMPA
receptor subunits, the only signi�cant change being a reduced GluR1 mRNA expression in
bipolar disorder (43). The striatal expression of excitatory amino acid transporters was also
analyzed in mood disorders. A decrease in neuronal EAAT3 and EAAT4 mRNA in bipolar
disorder and a reduced EAAT4 mRNA in major depression was found (44).

Exposure to stress has been shown to increase mRNA levels of NR1 and NR2 subunits
of the NMDA receptor and the GluR1 subunit of the AMPA receptor in the rat hippocampus,
as well as the expression of NR1 and GluR1 in the ventral tegmental area (45,46).

4. ANTIDEPRESSANT TREATMENT AND SYNAPTIC PLASTICITY

Recent hypotheses on the pathophysiology of depressive disorders involve adaptive
plasticity of neural systems. As proposed by Duman and colleagues (47), depression could
result from an inability to make the appropriate responses to stress as a consequence of a
dysfunction of the normal mechanisms underlying neural plasticity. It has been supposed
for some time that plastic changes should be involved in antidepressant actions since there
is a lag time of several weeks for the therapeutic effect of antidepressants whereas acute
effects on monoamine transporters or monoamine-inactivating enzymes are of rapid onset
(see also Chapter 9). Indeed, abundant evidence indicates that antidepressants exert key
effects on cell-signaling pathways regulating neuroplasticity and cell survival.

4.1. Effect of Antidepressant Treatment on the Cyclic Adenosine
Monophosphate Signaling System

Chronic treatment with different classes of antidepressants, including selective 5-HT
and NA reuptake inhibitors, upregulates the cyclic adenosine monophosphate (cAMP)
transduction cascade leading to the activation of cAMP-dependent protein kinase A
(PKA), which phosphorylates proteins with a key role in cell signaling (47–49). One of
them is the transcription factor CREB (cAMP response element-binding protein), which
mediates many of the actions of the cAMP system on cell signaling (Fig. 1). The time
course for the induction of CREB is consistent with the lag time for therapeutic effec-
tiveness of antidepressant treatment (50). Furthermore, overexpression of CREB in the
rat dentate gyrus produced an antidepressant-like effect in the forced swim and learned
helplessness tests (51). Consistent with these data, it was found in a postmortem study
that CREB was decreased in the temporal cortex of depressed patients and this effect was
reversed by antidepressant treatment (52).

4.2. Effect of Antidepressant Treatment on BDNF Expression

Among the target genes of CREB is the BDNF, which contributes to cellular processes
underlying neuronal plasticity and cell survival. Chronic administration of antidepres-
sants with different primary mechanisms of action increases BDNF mRNA and its receptor
trkB in the rat hippocampus and blocks the downregulation of BDNF mRNA in the hip-
pocampus in response to restraint stress (53–55). It is of interest that BDNF induces



antidepressant-like effects in two widely used animal models of depression such as the
learned helplessness and forced swim test (56). The notion that BDNF may be regulated
by antidepressant treatments is supported by postmortem studies in the hippocampus of
depressed patients. An increased BDNF expression was found in dentate gyrus, hilus,
and supragranular regions of subjects receiving antidepressant medication (57). Consistent
with this �nding, decreased serum BDNF levels were found in major depressed patients
(58). The mechanisms that underlie BDNF inhibition of cell death include activation of
the MAP kinase cascade, which leads to phosphorylation of CREB and to increased
expression of the antiapoptotic protein Bcl-2 and inactivation of the apoptotic protein
Bad (59). Activation of trkB receptor by BDNF also enhances cell survival through the
phosphatidylinositol-3 kinase (PI-3K)/Akt pathway (ref. 60; see Fig. 1). Interestingly, it
was recently reported that chronic antidepressant treatment is also able to increase the
intensity of Bcl-2 immunostaining in rat hippocampus (61). 

4.3. Effect of Antidepressants on Neurogenesis in Adult Brain

Neurogenesis has been demonstrated in the adult mammalian brain from different ani-
mal species, including humans (62). Neurogenesis is restricted to two brain areas, the
olfactory bulb and the dentate gyrus of the hippocampus. The new neurons are derived
from the subventricular zone or from the subgranular zone of the hippocampus. Stress
activates the HPA axis with the consequent release of glucocorticoids, which downregulate
neurogenesis in the hippocampus through downstream actions on NMDA receptors (63).
Glutamate, by acting at NMDA receptors, suppresses neurogenesis whereas NMDA
antagonists, such as MK-801, enhance it (64). Exposure to stress, including learned help-
lessness, a paradigm of inescapable stress, decreases neurogenesis (63) and, conversely,
exposure to an enriched environment (65) and chronic, but not acute, treatment with differ-
ent classes of antidepressants, and also with the mood-stabilizing agent lithium,
increases the neurogenesis of dentate gyrus granule cells (25,66). Both the cAMP signal-
ing system and BDNF, which are upregulated by chronic antidepressant treatment
(50,53,67), play a role in the regulation of neurogenesis. It has been suggested (68) that
the lag time of several weeks for the therapeutic effectiveness of antidepressants is con-
sistent with the time taken by newly born dentate gyrus neurons to migrate and to
become integrated into the existing brain circuitry.

5. INVOLVEMENT OF NMDA RECEPTORS IN ANTIDEPRESSANT
ACTIONS 

5.1. Physiological and Pathophysiological Role of NMDA Receptors

Excitatory synaptic transmission is mediated by three distinct classes of ionotropic
receptors—NMDA, AMPA, and kainate—and by the three groups of metabotropic gluta-
mate receptors (see Chapters 4 and 5). It is widely accepted that excitatory amino acid
receptors are involved in numerous aspects of both normal and abnormal brain function.
Activation of NMDA and AMPA receptors appears to underlie the vast majority of fast
excitatory transmission in the central nervous system (CNS). Synaptically released gluta-
mate results in a two-component EPSC on binding to NMDA and AMPA receptors. Acti-
vation of AMPA receptors mediates a component of rapid onset and decay, whereas the
activation of NMDA receptors is more prolonged probably owing to the higher af�nity of
glutamate for NMDA than for AMPA receptors, at least one order of magnitude. NMDA
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receptors are highly permeable to Ca2+, whereas AMPA receptors are only permeable
when they have no GluR2 subunits. 

The elevation of cytosolic Ca2+, leads to the activation of a variety of enzymes,
including kinases with a critical role in paradigms of synaptic plasticity, such as long-
term potentiation (LTP) in the hippocampus (69), a long-lasting enhancement in the
strength of synaptic connections between neurons that represents a widely accepted
model for learning and memory. NMDA receptors are critical for the induction of LTP. In
the expression and maintenance of LTP, there is an increase in AMPA receptor function,
so a sequential activation of the two major classes of glutamate ionotropic receptors is
necessary for this paradigm of synaptic plasticity. The effects of exposure to various
types of uncontrollable stress on glutamate-mediated hippocampal synaptic plasticity has
been studied. In general, LTP in rodent hippocampus is impaired by behavioral stress
(70), including manipulations such as the inescapable stress of learned helplessness, an
animal model for depression. It is not clear however that antidepressant treatment can
restore stress-induced impairment in hippocampal synaptic plasticity.

Excessive activation of ionotropic glutamate receptors can precipitate seizures and
induce acute neuronal injury (excitotoxicity) and may also underlie some chronic neu-
rodegenerative disorders. A signi�cant proportion of the neuronal death associated with
intense glutamate exposure is mediated by NMDA receptor activation, probably because
lethal amounts of Ca2+ in�ux are induced more rapidly than in the case of AMPA or
kainate receptor activation. Sustained elevation in intracellular Ca2+ initiate toxic cascades
that ultimately result in neuronal cell death through free-radical production and lipid per-
oxidation, activation of nitric oxide (NO) synthase, and release of NO, which interacts
with reactive oxygen species to generate peroxynitrite and uncoupling of mitochondrial
electron transport enhancing production of free radicals (71).

5.2. Modulation of NMDA Receptors by Antidepressants

Acute and chronic treatment with antidepressants affects NMDA receptors. Chronic
antidepresant treatment inhibits the binding of the uncompetitive NMDA antagonist
3H-MK-801 to mouse brain membranes (72) and reduces NMDA-induced behaviour
(73). Chronic, but not acute, administration of most clinically effective antidepressants
down-regulates the strychnine-insensitive glycine site of the NMDA receptor in corti-
cal membranes (74). A transcriptional mechanism has been suggested for this down-
regulation, as antidepressants such as citalopram and imipramine are able to produce
after chronic administration to mice a region-specific altered expression of mRNA for
NMDA receptor subunits (75). In the latter study, a reduced NR1 subunit mRNA
expression was found in different cortical areas, including the frontal cortex, and in
subcortical regions, including striatum and amygdala. In the hippocampus, NR1
expression was not altered by antidepressant treatment but the expression of NR2 sub-
units was reduced to a varying extent in hippocampal fields by the two antidepressants
tested. These studies suggest that chronic antidepressant treatment would be abating
NMDA receptor function through a reduction in the proportion of active glycine sites
(76). To our knowledge, no electrophysiological study has been however performed as
yet to confirm such assertion.

NMDA receptor antagonists exert a protective effect on multiple neuronal insults
(71). By reducing NMDA receptor expression, chronic antidepressants should exert also
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neuroprotective actions. Furthermore, chronic antidepressants promote the expression of
the neurotrophin BDNF with trophic and neuroprotective properties. A link between
NMDA receptors and BDNF was found in a study on primary neuronal cultures where
BDNF reduced NR2A and NR2C mRNA levels with a concomitant decrease in NMDA-
induced Ca2+ entry (77). On this basis, it has been suggested (78) that, by promoting
BDNF formation and by antagonizing NMDA receptors, antidepressants reach an identi-
cal functional end point, which results in a protection of vulnerable neurons.

5.3. Antidepressant-Like Actions of NMDA Receptor Antagonists

As previously indicated, NMDA receptor activation is required for LTP in the hip-
pocampus and inescapable stress impairs the induction of LTP. On the basis of the ability
of antidepressants to antagonize the syndrome of learned helplessness induced by
inescapable stress, an animal paradigm that models aspects of depression, Skolnick and
colleagues �rst suggested the possible utility of NMDA receptor antagonists as antide-
pressants. In their initial studies using the so-called “behavioral despair” models (forced
swim and tail suspension tests), a dose-dependent reduction in immobility was found
with a competitive NMDA antagonist (AP-7), a glycine partial agonist (ACPC), and
MK-801, an uncompetitive channel blocker (79). Studies from this and other groups
have later reported similar effects in various animal models with different NMDA antag-
onists such as memantine, a low-af�nity uncompetitive NMDA antagonist, CGP-39551
and CGP-37849, competitive NMDA antagonists, and eliprodil an NR2B-selective
antagonist (refs. 80–82; Table 2). Synergistic effects of weak uncompetitive NMDA
receptor antagonists (memantine and amantadine) with different antidepressants
(imipramine, �uoxetine, venlafaxine) also have been reported (83), suggesting the potential
utility of these combinations in treatment-resistant depressed patients. It is of interest that
one of the principal events in the neurotoxic cascade following NMDA receptor activa-
tion is NO production. NO synthase inhibitors also signi�cantly reduce the immobility time
in the forced swim test (84), suggesting that an antidepressant-like effect can be obtained
by any interruption of the NMDA receptor signaling cascade (cf. ref. 78). However, a
5-HT-dependent mechanism also appears to be involved in the antidepressant-like effects
of NO synthase inhibitors (85).

5.4. Effects of NMDA Antagonists in Depressed Patients

There have been few clinical studies with NMDA antagonists in depression (Table
2). In one of them (86), ketamine, an intravenous dissociative anaesthetic that uncom-
petitively blocks the NMDA receptor channel, was given on a double-blind basis to a
cohort of patients unresponsive to conventional antidepressants and a signi�cant reduc-
tion in the scores of the Hamilton Depression Rating Scale was found. Positive results
in clinical studies have been also obtained with other low-af�nity NMDA receptor
antagonists, such as metapramine, amantadine, memantine, and also D-cycloserine, a
partial agonist/antagonist, at the glycine site of the NMDA receptor (see reviews in refs.
29 and 78). Further clinical studies with memantine in major depression are in progress,
as well as clinical trials in treatment-resistant bipolar depression with the anticonvulsant
felbamate, an NMDA antagonist at the glycine site. Because highly potent NMDA
receptor antagonists such as MK-801 or ketamine elicit a number of psychotomimetic
side effects (87), more subtle approaches aimed at dampening NMDA receptor function
are probably necessary.
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6. INVOLVEMENT OF AMPA RECEPTORS IN ANTIDEPRESSANT
ACTIONS

6.1. Physiological Role of AMPA Receptors

AMPA receptors mediate most of the fast excitatory neurotransmission in mammalian
brain and are an important target for mechanisms controlling synaptic strength. As already
mentioned (Subheading 5.1.) an increase in AMPA receptor function is necessary for the
expression and maintenance of LTP, a lasting enhancement in the strength of synaptic
connections between neurons. Another main mediator of synaptic plasticity is the neu-
rotrophin BDNF, which is induced by AMPA receptor activation, an effect found initially
in vitro (88) and also in vivo (89). Because chronic antidepressant treatment increases
BDNF in the hippocampus, probably through activation of the cAMP transduction pathway
and phosphorylation of the transcription factor CREB, there appears to be a close relation-
ship between the effects of antidepressants and AMPA receptor activation, suggesting the
interest of these ionotropic receptors in the search for new antidepressants. 

Table 2
Preclinical and Clinical Data on the Antidepressant Efffect of Modulators of Glutamatergic
Neurotransmissiona

Preclinical studies

Compound Forced swim test Tail suspension Chronic mild
(rats, mice) test (mice) stress (rats)

NMDA antagonists
MK-801 + + +
AP-7 + –
ACPC + + +
CGP 37849 + +
CGP 40116 +
CGP 39551 +
Eliprodil + –
Memantine +

AMPA potentiators
LY 392098 + +
LY 404187 + +
LY 451616 + +

Clinical trials

Compound Indication Development status

NMDA antagonists
Ketamine Major depression Phase II
Memantine Major depression Phase III
Felbamate Resistant bipolar disorder Phase II

Glu release inhibitor
Riluzole Major depression Phase II

a(+) Signi�cant effect; (−) nonsigni�cant effect.
NMDA, N-methyl-D-aspartate; AMDA, α-amino-3-hydroxy-5-methylisoxazole-4-propionate.



6.2. Effect of Antidepressants on AMPA Receptors

Antidepressant treatment may potentiate AMPA-mediated transmission. It has been
found that repeated electroconvulsive treatment increases GluR1 mRNA expression in
different �elds of the rat hippocampus (90). Fluoxetine increases phosphorylation of the
GluR1 subunit, preferentially at the Ser-845 PKA site (91), a change that contributes to
maintaining AMPA receptors at the synapses. We have found that chronic antidepressant
treatment with either paroxetine, a selective 5-HT reuptake inhibitor, or desipramine,
which is a more selective noradrenaline reuptake inhibitor, produced an increased
expression of the AMPA receptor subunits GluR1 and GluR2/3 in rat hippocampus (92).
This effect was observed after chronic antidepressant treatment for 21 d but not after
acute treatment and was restricted to membrane extracts and not to total protein extracts
from rat hippocampus, suggesting a traf�cking of these subunits from intracellular pools
to synaptic sites. Changes in phosphorylation systems induced by chronic antidepressant
treatment may account for the membrane insertion of AMPA receptors. Among the
changes in phosphorylating enzymes, an increase of calcium/calmodulin-dependent pro-
tein kinase II (CaMKII) activity at postsynaptic sites (93) may result in the incorporation
of GluR1-containing AMPA receptors into the synaptic membrane, where the upregulation
of protein kinase A (PKA) by chronic antidepressants (67) contributes to prevent endocy-
tosis of the membrane-inserted receptors. The increased number of AMPA receptors at
the synapses may be a mechanism to enhance the strength of synaptic transmission. In
subsequent immunoprecipitation studies (Frechilla et al., unpublished results), we found
that desipramine increased the interaction of the GluR2/3 subunits of the AMPA receptor
with the N-ethylmaleimide sensitive factor (NSF), which plays a critical role in protein
traf�cking, and also of the GluR1 subunit with the protein SAP 97, involved in the
synaptic insertion of AMPA receptors, providing a mechanism for the enhanced expres-
sion of AMPA receptor subunits in hippocampal membranes. Because repeated antide-
pressant administration is required for increased expression of BDNF and its receptor
trkB in the hippocampus and also for regulating AMPA receptor insertion into the
synapses, the sequential correlation between both effects remains to be established (55).
AMPA receptor activation promotes BDNF expression but, reciprocally, BDNF
increases the surface expression of AMPA receptor subunits (94). The interplay between
both molecular effectors probably represents a major contribution to the enhanced synaptic
plasticity in the hippocampus induced by chronic antidepressant treatment. 

6.3. AMPA Receptor Potentiators

AMPA receptor potentiators or Ampakines are compounds able to increase AMPA-
mediated excitatory postsynaptic responses and to reduce the rate of desensitization/
deactivation of the ligand-gated ionic channel (95). Several classes of Ampakines have
been identified, including benzothiazides, such as cyclothiazide, pyrrolidones with
nootropic effect, such as piracetam and aniracetam, benzoylpiperidines (CX-516, CX-
614) and, more recently, biarylpropylsulfonamide derivatives (LY392098 and
LY404187). Different Ampakines (cyclothiazide, CX-614, LY392098, LY404187) are
able to potentiate the AMPA-stimulated increase in the expression of BDNF or to poten-
tiate BDNF expression by themselves. This effect has been found in vitro and also in
vivo, after daily administration for 5–7 d, in hippocampal sub�elds, notably in the den-
tate gyrus (88,96,97). Increased BDNF mRNA is blocked by selective antagonists, of
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AMPA receptors, such as NBQX, but not by NMDA receptor antagonists, such as MK-
801 (96). Chronic administration of LY451646 also increased, like clinically effective
antidepressants, progenitor cell proliferation in the rat dentate gyrus in a dose-dependent
manner (98). Ampakines are not able to affect AMPA channel opening in the absence of
glutamate or other AMPA receptor agonist, so it is to be supposed that these compounds
also augment glutamate levels in neuronal cultures. AMPA receptor-mediated increase in
BDNF expression has been linked to activation of voltage-sensitive L-type calcium
channels because this increase can be blocked by nimodipine, a typical calcium channel
blocker (77). Increase in [Ca2+]i can then activate BDNF expression through multiple mech-
anisms including the activation of calcium response elements located in the promoter region
of the BDNF gene (99). Activation of a MAP kinase pathway that may be activated by Lyn
kinase (a member of the Src family of protein tyrosine kinases) may be also involved in the
increased BDNF expression induced by AMPA receptor potentiators (77,100). 

Ampakines not only promote, like chronic antidepressants, BDNF expression but
the biarylpropylsulfonamides LY392098 and LY404187 are also effective in animal
models of depression with high predictive validity such as the forced swim test and
the tail suspension test (refs. 77 and 101; see Table 2). The antidepressant-like effect
of this class of compounds can be blocked by the noncompetitive AMPA receptor
antagonist LY300168. The rapid antidepressant-like effect of Ampakines in these
behavioral despair tests do not appear in principle to be linked to a significant increase
in BDNF levels. Some studies have shown however that BDNF can be induced as an
immediate early gene, in only 30 min, in response to behavioral manipulation (102).
Potentiation of AMPA-mediated glutamatergic transmission may consequently exert
an antidepressant-like effect, probably mediated through an increased expression of
the neurotrophin BDNF.

7. METABOTROPIC GLUTAMATE RECEPTORS AND ANTIDEPRESSANT
TREATMENT

Metabotropic glutamate receptors form a family divided into three subgroups. Group I
includes the subtypes mGlu1/5 coupled to PI hydrolysis, group II includes mGlu2/3 cou-
pled to Gi proteins, and group III includes mGlu4/6/7/8, also coupled to Gi proteins in
heterologous expression systems (see Chapter 5). It has been shown that repeated
imipramine treatment attenuates the neuronal responsiveness to the selective group 1
mGlu receptor agonist dihydroxyphenylglycol (DHPG) in the CA1 �eld of rat hippocam-
pus with a time course correlated with the delayed therapeutic effect of antidepressants in
humans (103). It is of note that in this study the attenuation of the response to DHPG was
still detectable 1 wk after imipramine withdrawal. Chronic imipramine, and also chronic
ECT, enhanced the expression of group I mGlu receptors, located postsynaptically and
generally connected with the enhancement of glutamatergic transmission, in different rat
hippocampal �elds. The most pronounced effects were the increased expression of the
splice variants mGluR1a in CA3 and mGluR5a in CA1 (104). An antidepressant-like
activity has been found with a mGlu5 receptor antagonist, MPEP, although it is possible
that this effect is rather related to the additional interaction of this compound with the
serotonergic system (105).

An upregulation of mGlu2/3 receptor protein in the hippocampus, cerebral cortex,
striatum, and nucleus accumbens was found in rats chronically, but not acutely, treated
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with imipramine (106). Some functional effects associated with mGlu receptors such as
the ampli�ed PI response to combined activation of group 1 and group 2 mGlu was also
enhanced by the chronic antidepressant treatment. It has been proposed that endogenous
activation of group II mGlu receptors negatively modulate the activity of the HPA axis
(107). Accordingly, these �ndings suggest that agonists at these receptors would oppose
the effects of stress.

8. CONCLUSIONS AND FUTURE DIRECTIONS

The monoaminergic hypothesis of depression has provided the basis for extensive
research into the pathophysiology of mood disorders and has been of great signi�cance
for the development of effective antidepressants. Current antidepressant treatments not
only increase serotonin and/or noradrenaline bioavailability but also originate adaptive
changes increasing synaptic plasticity. Novel approaches to depression and to antidepres-
sant therapy are now focused on intracellular targets that regulate neuroplasticity and cell
survival. Accumulating evidence indicates that there is an anatomical substrate for such a
devastating neuropsychiatric disease as major depression. Loss of synaptic plasticity and
hippocampal atrophy appear to be prominent features of this highly prevalent disorder.
A combination of genetic susceptibility and environmental factors make hippocampal
neurons more vulnerable to stress.

Abundant experimental evidence indicates that stress causes neuronal damage in brain
regions, notably in hippocampal sub�elds. Stress-induced activation of glutamatergic
transmission may induce neuronal cell death through excessive stimulation of NMDA
receptors. Both standard antidepressants and NMDA receptor antagonists are able to pre-
vent stress-induced neuronal damage. NMDA antagonists are effective in widely used
animal models of depression and some of them appear to be effective also in the few
clinical trials performed to date.

Chronic antidepressant treatment increases the expression in hippocampal sub�elds of
the neurotrophin BDNF, which promotes processes underlying neuronal plasticity and
cell survival. Antidepressants also increase AMPA receptor insertion into synapses of the
hippocampus, a mechanism contributing to enhanced synaptic strength and to increased
BDNF expression. The interplay between AMPA receptors and BDNF appears to be a
key factor in the enhanced synaptic plasticity induced in the hippocampus by chronic
antidepressants. In this context, the development of AMPA receptor potentiators, which
promote BDNF expression and show antidepressant-like effects in animal models, may
represent a novel approach to the treatment of mood disorders.

We are still far from understanding the complex cellular and molecular events
involved in mood disorders. Yet, there appears to be an emerging role for glutamate neu-
rotransmission in the search for the pathogenesis of major depression. Mechanisms for
potentiation of AMPA-mediated neurotransmission, for attenuation of NMDA receptor
function, and for increased neurotrophic factor signaling appear to be promising targets
in the search for a more effective antidepressant therapy.
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