
66 
DynaDesigner: A Tool for Rapid Creation of 

Device-Independent Interactive Services 

Loren Terveen and Mark Tuomenoksa 
AT&T Bell Laboratories 

{ terveen, mit} @ research.att.com 

KEYWORDS service creation tools, device-independent design, dialogue design, end user 
programming, consumer systems 

ABSTRACT DynaDesigner is a tool for creating, testing, and deploying interactive 
services to be delivered on devices such as telephones, TV s, and PCs. A key feature is that 
it supports device-independent service design - a service is designed once, independent 
of any particular device. This eases the design and maintenance task for service providers 
and makes services easier for consumers to use, since they are consistent across devices. 
DynaDesigner has been used to design and deploy many services. With DynaDesigner, 
services can be designed and deployed in hours. 

INTRODUCTION 

The convergence of computers, communications, 
and consumer electronics brings a new urgency to 
the problem of creating easy to use systems - now 
all people with telephones and TVs, not just PC 
owners, are potential users. Further, the 
proliferation of devices raises the challenge of 
creating device-independent services - consumers 
may want to use a service such as home banking on 
different devices such as telephones, TVs, PCs, or 
PDAs - and they will want consistency across 
devices. We have responded to these challenges by 
creating a service creation tool called 
DynaDesigner. Direct manipulation, form-based 
editing, and graphical simulation are used to design 
and test services. Code is automatically generated to 
implement services on standard hosting platforms. 
Device-specific interpreters enable the same service 
to be delivered on many devices and guarantee a 
consistent, high quality interface for each device. 

TRANSACTIONAL SERVICES 

DynaDesigner targets the class of transactional 
services that includes activities such as home bank
ing, bill paying, ticket purchasing, and catalog shop
ping. In such services, a consumer completes a 

transaction by reading or listening to information, 
selecting options from menus, and supplying 
information such as personal identification numbers. 

This type of service typically is implemented in a 
distributed, network-based architecture. A program 
that implements the service logic runs on a hosting 
platform - a computer on the service provider's 
premises or in the telephone network that is 
equipped with special purpose voice and data 
transmission hardware. The service provider's 
databases typically are on a large mainframe 
computer. And the service must be delivered on a 
consumer device such as a telephone, TV, or PC. 
The hosting platform, database machine, and 
delivery devices are connected by a combination of 
telephone lines and high speed data links. 

DYNADESIGNER 

DynaDesigner is a service creation tool that 
addresses the following goals: 
• Service creation should be fast and easy. 

Competitive pressures make speed necessary; 
speed requires an easy to use system. 

• Services created should be of high-quality. 
Making service creation fast and easy is of no 
use unless consumers want to use the services. 

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995



DynaDesigner 387 

• Services should be device-independent. A 
device-independent representation of services 
aids consumers (i.e., service users) by ensuring 
service consistency across devices and aids 
service providers since they have just one 
service to design and maintain. 

DynaDesigner achieves these goals with two major 
features: 
• Service authoring consists of specifying the 

service logic and information content, rather 
than designing an interface. DynaDesigner uses 
interface "templates" to produce an appropriate 
interface for each delivery device from the same 
logic and information content. This helps 
service providers by making service design and 
modification faster and easier. It helps end 
users by guaranteeing a consistent, high-quality 
interface across services and devices. And it is 
the key enabler of device independent services. 

• DynaDesigner supports end-to-end service 
creation, i.e., both design and implementation 
via automatic code generation. This is 
necessary to make service deployment and 
modification fast. 

Computationally, the type of services we are con
cerned with can be modeled naturally as state ma
chines. However, DynaDesigner is not a general 
purpose visual state machine programming system. 
Rather, it offers service designers a set of domain
specific (but device-generic), high-level abstractions 
for creating a service. A domain-specific [Fischer 
1992] approach makes service creation much easier, 
enabling non-programmers to build services. 

Service creation building blocks include computa
tional (or logic) objects, such as objects for querying 
and updating databases, branching based on data 
comparisons or on the time, date, or day of week, 
and transferring calls to customer service represen
tatives. Clearly, the logic of a service is device
independent - the challenge is coming up with a 
device-independent way of specifying interactions 
with a user. We do this by providing a set of generic 
interaction (or dialogue) objects that encapsulate 
common types of communications with users -
such as Present Information, Get Input, and Present 
Options - but do not specify the surface details of 
how the communication should be carried out. 

A designer specifies the logic of a service by select
ing objects from a palette, positioning them on a de
sign pad, then linking the objects. For example, a 
home banking application might begin with a 
Present Information object that welcomes the user, 
continue with a Get Input object that asks the user to 
enter a personal identification number (PIN), then a 
Database Lookup object to verify that the PIN is 
valid, and next contain a Present Options object that 
lets the user select from a set of banking services. 

Each type of object encapsulates "natural" (as shown 
by our experience in working with service providers) 
chunks of information and user response types. For 
example, each of the interaction objects has Title, 
Information, and Instruction fields, and the Get In
put object includes standard actions that allow an 
end user to signal that input is complete or to erase 
input, so the designer does not have to remember to 
add these actions. Each type of object has one or 
more editors for filling in the information required 
for that object. For example, each interaction object 
has editors for specifying the information to present 
to users and possible user responses (in addition to 
the default responses built into the object). The Get 
Input editor also lets the designer specify a variable 
for saving the user input (thus making it available to 
the rest of the service) and select one of several 
common ways to validate the user input, e.g., by 
looking it up in a database table. More complicated 
validation can be performed with other objects such 
as database lookups and data comparisons, but the 
Get Input object makes it very simple to do the most 
common types of validation. 

Figures 1 and 2 show the editors for specifying the 
information content and user actions for a Get Input 
object that collects a user's PIN. They help show 
how we maintain device-independence. Clearly the 
Title ("Enter PIN") and Information ("Please enter 
your personal identification number") text is device
independent (i.e., it can be spoken or displayed). 
However, the Instruction field, which tells users how 
to proceed, is a bit more complicated. The 
instruction "Press [CONT] when you are finished or 
[BKSP] to erase a character" contains references to 
two device-independent actions, [CONT] (for 
"CONTinue") and [BKSP] (for "BacKSPace"). An 
action editor lets a designer assign a device-specific 



388 Part Five Case Studies: Application and Practice 

EniorPfN 

Pltut tnl.tf )'OUt ptt•on•IIUnt,IJettlOI'I rHJmbll 

Figure 1: Editor for specifying information content for 
an interaction object 

Figure 2: Editor for specifying actions users may 
take in response to an interaction object 

key that a consumer uses to signal the action (e.g., 
"*"might be used on a touchtone phone) and a short 
phrase for describing the action (e.g., "Continue" or 
"Next" for [CONT]). In addition to device
independence, this ensures intra-service consistency: 
action definitions are global to a service, so it is 
impossible for a designer to use (for example) the 
"*" key for [CONT] in one state and the "# key in 
another. 

This illustrates another aspect of our approach: we 
keep the core of the service specification device-in
dependent, but provide principled ways to specify 
and use device-specific information. First, a device
specific interface template for each interaction object 

is used to generate the speech or display and manage 
the user input for that object. For example, suppose 
a Menu object contains three options, say "Account 
Balance", "Transfer of Funds", and "Order New 
Checks". The template for spoken menus and text
to-speech synthesis would generate the spoken 
instructions "For Account Balance, press 1", "For 
Transfer ... ". Users could select an option by 
pressing the appropriate key on the touchtone pad. 
The template for TV display screens would result in 
each item being presented on a separate, numbered 
line. Users could select an option by pressing the 
appropriate button on a universal remote control. 

Second, editors like the action editor collect device
specific information. While the action-key mappings 
gathered by this editor are required, other editors 
capture optional annotations which enhance the 
presentation of a service on a particular device. For 
example, a phrase manager for spoken output allows 
text to be broken up into phrases, each of which can 
be spoken using a professionally recorded voice, and 
an appearance editor for screen output allows 
designers to specify bitmaps to use as screen back
grounds and tailor display properties such as font, 
background color, etc. 

At any time, a service designer may simulate a 
service, determining whether the logic is correct and 
getting a feel for what the interaction would be like 
on a specific device. Graphical simulation, single
stepping, and stop-points make it easy to test and 
debug a service. 

When a service is complete, DynaDesigner auto
matically generate the code to implement the service 
on a standard service hosting platform. Currently, 
code is generated for the Conversant™, a special 
purpose AT&T computer that resides in the AT&T 
network or on the premises of a service provider. It 
can send and receive voice or data over telephone 
lines and can communicate with other computers as 
necessary, for example, to access a database. 

We have developed DynaDesigner in close collabo
ration with service providers, building many services 
to ensure ease of use and broad coverage. 
DynaDesigner went into production use in August 
1994. About 50 voice services have been deployed. 



DynaDesigner 389 

Using DynaDesigner resulted in dramatic decreases 
in the time it takes to design and deploy a service. 
The application of DynaDesigner to interactive TV 
services is newer, and it was this application that led 
us to develop the device-independent interaction 
objects. To date, we have designed several services 
based on these new objects and will be 
implementing and deploying these and other such 
services in the near future. 

RELATED WORK 

DynaDesigner is related to cross-platform GUI con
struction tools and end user programming environ
ments. Like a GUI builder, it enables the design of 
an interactive system that can run on different 
devices. However, with DynaDesigner, designers 
specify dialogue structure and content, not widgets 
and layout. And rather than delivery across 
different windowing systems or interface toolkits, 
DynaDesigner services are generic across a range of 
devices, from televisions to telephones. As an end 
user programming system, DynaDesigner enables 
users who are not programmers to create 
applications. Unlike general purpose visual 
programming (Glinert 1986) or state machine 
(Carneiro et a! 1994, Wellner 1989) systems, 
DynaDesigner is a domain-specific system. It 
provides a set of high-level, domain-specific 
abstractions for building applications. Other 
systems exist for creating voice dialogues, both 
commercial tools such as TFLX, VOS, and Visual 
Voice, and research prototypes such as VDDE 
(Repenning & Sumner 1992). Our work is 
distinguished from all of these systems by our 
provision of high-level, device-independent 
interaction objects. Further, we automatically 
generate the code to implement services on standard 
network-based, hosting platforms, which typically 
means that many more customers can be serviced. 

FUTURE WORK 

First, we are refining the DynaDesigner objects in 
response to user feedback. For example, we have 
created objects for dealing with databases that are 
simpler to use, encapsulate both data access and user 
interaction, and which are both more cleanly device
independent and better exploit the unique resources 

of voice and display devices. Third, we are 
beginning to explore the creation of services that use 
speech for input and produce coordinated speech 
and visual output. 

CONCLUSIONS 

We conclude by summarizing lessons this work has 
taught us. First, by providing high-level 
abstractions for creating services, we both ease the 
task of service creation and enable device
independent services. Service creation requires 
neither programming nor interface design, allowing 
service authors to concentrate on the content of a 
service. Second, end-to-end service authoring 
requires addressing infrastructure issues; thus, we 
generate code to implement services on standard 
hosting platforms, to handle distribution of 
computation in network-based services, and to inter
face to legacy databases. The combination of high
level building blocks and end-to-end service 
generation makes DynaDesigner a very usable and 
useful tool. 

REFERENCES 

Carneiro, L.M.F., Cowan, D.D., and Lucena, C.J.P. 
(1992) ADVCharts: A Visual Formalism for 
Interactive Systems, SIGCHI Bulletin, 1992, Vol. 26 
No.2, pp. 74-77. 

Fischer, G. (1992) Domain-Oriented Design 
Environments, In Proc. Knowledge Based Software 
Engineering Conf., 1992, IEEE Press, pp. 204-213. 

Glinert, E.P. (1986) Towards "Second Generation" 
Interactive, Graphical Programming Environments, 
In Proc. IEEE Comp. Society Workshop on Visual 
Languages, 1986, IEEE Press, pp. 61-70. 

Repenning, A. and Sumner, T. (1992) Using 
Agentsheets to Create a Voice Dialog Design 
Environment, In Proc. ACM Symposium on Applied 
Computing, 1992, ACM Press, pp. 1199-1207. 

Wellner, P.D. (1989) Statemaster: A UIMS based 
on Statecharts for Prototyping and Target 
Implementation, In Proc. CHI'89, 1989, ACM 
Press, pp. 177-182. 


