
58
AN APPROACH TO HYPERTEXT-BASED

REQUIREMENTS SPECIFICATION AND ITS
APPLICATION

Hermann Kaindl

Siemens AG bsterreich, PSE
Geusaugasse 17, A-1030 Vienna, Austria

E-mail: kaih@siemens.co.at

KEY WORDS: Hypertext, semiformal representation, requirements engineering.

ABSTRACT: Specifying the requirements of a new system to be built is one of the most
important parts of the life cycle of any project, but its support in practice is still insufficient.
Since pure natural language has its disadvantages, and immediate formal representation is
very difficult, a mediating representation is needed. Therefore, we used hype next technology
to develop a novel method for requirements specification (with tool support). This approach
provides both for a mediating representation during incremental formalization, and for conve­
nient interaction of the requirements engineer with a computer. We have applied our approach
in real-world projects, and our experience suggests its usefulness.

1 INTRODUCTION
Specifying the requirements of a new system to be
built is one of the most important parts of the life
cycle of any project. In the field called requirements
engineering many approaches have been proposed [2],
but the support in practice is still insufficient.

While from a theoretical point of view it would be de­
sirable to have formal representations of requirements,
in practice unstructured natural language is often used
informally. There is no doubt that formal approaches
are very important. However, people do not find for­
mality helpful except where the issues are thoroughly
studied. Consequently, there is a big gap between the
informality in the real world and the formality finally
required in computer representations.

Our approach attempts to bridge the gap in providing
semiformal hypertext representations. Therefore, our
approach and the tool supporting it are named RETH
(Requirements .§.ngineering Ihrough !!ypertext). We
do not attempt to exclude or replace formal represen­
tations, but try to provide means for gradually devel­
oping and to complement them. RETH provides both
for a mediating representation during incremental for­
malization [8, 9], and for convenient interaction of the
requirements engineer with a computer.

Our method and its supporting tool have been applied
in several real-world projects both outside and inside

of Siemens. We selected three projects from three dif­
ferent organizations for summarizing our experience:
a project for building a generic distributed control sys­
tem at CERN (Conseil Europeen pour Ia Recherche
Nucleaire) in Geneva; a project for building a mission
planning system at ESOC in Darmstadt, the German
branch of the European Space Agency; and a project
within Siemens in Vienna dealing with requirements
from the OBB (the Austrian railway organization).

First, we sketch the architecture of our hypertext­
based tool. We then describe RETH's support for
activities during requirements specification, and sum­
marize our experiences with RETH. Lastly, we relate
RETH to existing work.

2 OVERVIEW OF OUR TOOL RETH
For a better understanding of the architecture of our
tool, we sketch first the underlying hypertext level.
Our hypertext approach is similar to the one described
and used by Kaindl and Snaprud [7] for knowledge
acquisition in the course of building knowledge-based
(expert) systems. Analogously, we let the user define
explicit partitions of a hypertext node, that together
cover the whole node. The idea is to support the
user in partitioning the textual content in a machine
recognizable form, serving as an additional means of
introducing more formality.

In order to support convenient navigation we use a

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995

Hypertext-based requirements specification and its application 355

Requirements Engineering Tool

Requirements Objects

Domain Objects

Hypertext Tool

Run-time Layer

Use of Motif-Windows

Storage Layer

Nodes, Links, Inheritance

Within-Component Layer

Partitions, Inheritance

Figure 1: Architecture of RETH.

kind of bi-directionallink. Moreover, we also permit
links into nodes. Our feature of explicit partitioning
of hypertext nodes supports this, and in effect these
links point to partitions. In addition, taxonomic rela­
tionships can be directly represented, that support the
inheritance mechanism.

Figure 1 illustrates the layers of our hypertext ap­
proach according to the Dexter reference model [5].
The within-component layer includes the partitions.
The inheritance mechanism relates to both this layer
and the storage layer. The run-time layer uses Motif
for Sun Workstations, and for a more recently devel­
oped PC version it uses Microsoft Windows.

Our requirements engineering tool is architecturally
based upon a hypertext tool we built according to this
approach. While much of the interaction between
users and the system is directly via the hypertext tool,
the requirements engineering tool can be viewed as
a level above it (see Figure 1). It specifically sup­
ports some aspects of the method as described below.
Generally, every requirement object (class) and every

domain object (class) is represented in one hypertext
node each.

3 REQUIREMENTS SPECIFICATION USING RETH

While our approach should be generally useful, we
want to specifically support requirements specifica­
tion in the context of object-oriented approaches [3].
Therefore, we support the formation of OOA (object­
oriented analysis) models. When developing OOA
diagrams, we use mediating hypertext representations
that include textual representations in natural lan­
guage. Hypertext nodes represent (potential) domain
objects and their classes semiformally.

The structure inside (attributes) is described in parti­
tions of these nodes. Relationships/associations (and
in particular aggregation relationships) are represented
by use of partitions and hypertext links. The represen­
tation of taxonomic relationships between class nodes
in our hypertext tool provides an inheritance mecha­
nism. In addition, the hypertext representation allows
the embedding of an interlinked data dictionary into
the domain model.

While most OOA methods (for a comparison see [3])
focus on the creation of diagrams, textual descriptions
are typically maintained separately. Our approach
focuses on structuring and linking the text, but actual I y
we combine the use of text and diagrams. This can
be compared to the mixed external representations of
Guindon [4].

Since we want to make full use of object-oriented prin­
ciples, we also model requirements as objects in our
approach. The representation of a requirement should
not just be plain text, but include links to the nodes
representing domain objects (as a statement about the
domain). This leads to a tight combination of the
requirements with the domain model.

While installing links is also manually possible in
RETH (with an efficient user interface), there is ma­
chine support for installing links semi-automatically.
Whenever the editing of a node (or partition) is fin­
ished, a parser scans the text searching for object
names (using a thesaurus). However, such a link will
be just proposed to the user, and only after she or he
acknowledges the link will actually be installed.

Moreover, the representation of a requirement may
contain links to other nodes representing requirements,
making dependencies between these requirements ex­
plicit. In particular, relationships between functional
and certain quality requirements are important since
the latter can be viewed as constraints on the former.

356 Part Five Case Studies: Application and Practice

Another very important relationship between require­
ments exists between functional requirements and sce­
narios (behavioral requirements). Each functional re­
quirement can describe the purpose of one or more
scenarios, and each scenario can have several pur­
poses. Therefore, this can be in general a many-to­
many association between these requirements objects.

4 EXPERIENCE WITH RETH
According to our experience in real-world projects,
all the features of our method and its supporting tool
were useful to some extent. In fact, some of them were
worked out in detail in the course of these applications.
In the following, we focus on the lessons learned in
three selected projects.

A general observation is that it has been very useful
to have a metamodel in mind of how to classify infor­
mation. For example, when a scenario described by
the potential user cannot be related to required func­
tions, this indicates a missing function. Vice versa,
when a function is requested in isolation, asking for
a related scenario may reveal more information about
other required functions. In this way, our method has
helped to raise the right questions when something
seemed missing. This improves the completeness of
the requirements.

In all the projects, classification of the initially given
requirements was a major issue. In particular, in the
project at CERN the clean distinction in RETH be­
tween functional and quality requirements led to a
clearer view and helped to identify some available
text as specific quality requirements, and to link them
to the corresponding functional requirements. More
importantly, however, it turned out that in this project
initially behavioral requirements were totally missing,
while in the project at ESOC no quality requirements
were given. Although in the railway project both sce­
narios and required functions were initially described,
the purposes of some of these scenarios were left open
and had to be asked for. The lesson learned is that peo­
ple often do not provide information on their own that
they feel is "obvious". Without the use of our meta­
model important information for the developers would
have been lost.

In addition, we would like to point out the usefulness
of domain-specific requirements classes, and the use
of an inheritance mechanism within the corresponding
taxonomy. Especially in the railway project, build­
ing domain-specific classes I subclasses of require­
ments - and in particular also of scenarios - was of
great utility. Entering the requirements in a taxonomy
helped to determine those closely related to each other.

This led to the discovery of conflicting requirements
and an explicit representation of a corresponding asso­
ciation between the requirements instances represent­
ing them. After the right ones were determined, the
conflicting ones were explicitly labeled as invalid in
their attribute Status. This improved the consistency
of the requirements.

Moreover, this classification of domain-specific re­
quirements led to the discovery of similar require­
ments and an explicit representation of a correspond­
ing association between the requirements instances
representing them. This explicitly points to redun­
dancy in the definition of the requirements.

In the mission planning project for ESOC, our most
valuable experience was to uncover another important
relationship between requirements: the embedding of
the majority of functional requirements into an overall
scenario. The representation of requirements as ob­
jects has provided the whole object-oriented modeling
formalism for representing all these relationships ex­
plicitly.

While in the project at CERN some initial domain
model was already given, both in the ESOC and the
railway projects no such information was available.
Our approach of concurrently developing a domain
model and dealing with the requirements proved use­
ful there. Since these domains are quite complicated,
an explicit representation of the links between the re­
quirements and the domain model is particularly use­
ful for having the developers understand what the re­
quirements are talking about. Just as an example, the
notion of a "window" (a time frame for accessibility of
a satellite) is very different in the space domain from
the every-day notion of a window or the one used in
computer science.

Apart from the representational issues, we used two
different processes of requirements specification. For
the first, documents in natural language were given,
that were analyzed by this author. From this source
of information (enhanced by email communication),
a broad basis of the representation in RETH was built.
In the railway project, the natural language texts of
requirements statements were distributed in several
places, e.g., documents issued by OBB and protocols
of meetings. Therefore, we also developed a model
classifying the types of existing documents and their
generic relationships. Since the information came
from several places, it was very important to docu­
ment the source as an attribute of the requirements
objects. This greatly improved the traceability of the
requirements.

Hypertext-based requirements specification and its application 357

The second process involved users and this author
working together in front of the machine. Both pro­
cesses had their respective advantages. The first one
allowed to quickly process a large amount of infor­
mation with only little communication demands. The
second process allowed us to work out more subtle
issues, which required much and direct communi­
cation. The representation in RETH as represented
on the screen provided an excellent communication
medium. From our experience, these processes can
be successfully performed alternately. Their advan­
tages are complementary. Especially the second form
of process should also be looked at from the viewpoint
of CSCW (Computer-Supported Cooperative Work),
and a challenge would be to support it when the par­
ticipants are at different places. As a first step in this
direction, we built an interface to WWW (World-Wide
Web) that lets people involved browse the hypertext
base of RETH from distant places concurrently. This
feature is especially important for CERN, since people
involved are typically spread around the world.

5 RELATED WORK
Due to lack of space we cannot give here a compre­
hensive overview of all the proposed approaches tore­
quirements engineering. Especially for the traditional
ones, the interested reader is referred to [2]. Recent
OOA approaches challenge the traditional ones [3] but
still ignore early development phases where important
clarifications have to be made.

In particular, the methods and tools Objectory [6] and
KBRA [1] bear some similarity to our approach. How­
ever, they both lack important features in contrast to
RETH. For instance, they both do not make a clear
distinction between behavior and function.

6 CONCLUSION
There are many important advantages of using hyper­
text for requirements engineering. Generally, hyper­
text links lets users and analysts make relationships
and dependencies explicit and promotes awareness of
them. Moreover, these links allow the user to navigate
through the representation. These more or less obvi­
ous features are of course utilized in RETH, since our
approach primarily strives for being useful in practice.
Additionally, we introduce the use of hypertext for
requirements engineering in new ways: incremental
formalization in a mediating representation between
the completely informal ideas of the user in the very
beginning and the more formal representation of do­
main models and requirements; a smooth integration
of natural language texts in evolving object-oriented
models; and support for the cognitive processes in­
volved in modeling by a suitable external representa-

tion.

As a consequence of our experience from applying
RETH, we propose to use hypertext for requirements
specification. Since other approaches like using dia­
grams are complementary to this, we propose to com­
bine them.

Requirements specification involves much communi­
cation between humans. When hypertext is used as
an external representation supporting the activity of
domain modeling, it becomes a process where human
and computer co-operate. Since hypertext is a semi­
formal representation, it can help bridge the formality
I informality gap between computer and human. In
summary, RETH provides both for a mediating rep­
resentation during incremental formalization, and for
convenient interaction of the requirements engineer
with a computer.

REFERENCES
1. A. J. Czuchry and D. R. Harris. KBRA: a new

paradigm for requirements engineering. IEEE Ex­
pert, pages 21-35, Winter 1988.

2. A. M. Davis. Software Requirements: Objects,
Functions, and States. Prentice Hall, Englewood
Cliffs, NJ, 1993.

3. D. de Champeaux and P. Faure. A comparative
study of object-oriented analysis methods. Jour­
nal of Object-Oriented Programming, pages 21-
33, March/Aprill992.

4. R. Guindon. Requirements and design of design
vision, an object-orientedgraphical interface to an
intelligent software design assistant. In Proc. CHI
'92, pages 499-506, Monterey, CA, May 1992.

5. F. Halasz and M. Schwartz. The Dexter hypertext
reference model. Communications of the ACM,
37(2):30-39, February 1994.

6. I. Jacobson, M. Christerson, P. Jonsson, and
G. Overgaard. Object-Oriented Software Engi­
neering: A Use Case Driven Approach. Addison­
Wesley, Reading, MA, 1992.

7. H. Kaindl and M. Snaprud. Hypertext and struc­
tured object representation: A unifying view. In
Proc. Hypertext'91, pages 345-358, San Antonio,
TX, December 1991.

8. F. M. Shipman and R. McCall. Supporting
knowledge-base evolution with incremental for­
malization. In Proc. CHI '94, pages 285-291,
Boston, MA, April1994.

9. M. Snaprud and H. Kaindl. Types and inheritance
in hypertext. International Journal of Human­
Computer Studies, 41(1/2):223-241, July/August
1994.

