
43
INTERACTIVE NET-SERVICES ON THE WWW

Kenneth J. Rodham and Dan R. Olsen, Jr.
Computer Science Department, Brigham Young University, Provo, UT 84602 USA

E-mail: krodh @tim.cs.byu.edu, olsen @cs.byu.edu

KEY WORDS: Interactive Net-Services, World-Wide-Web, Transportable Interactive Clients,
Network-Based Interactive Systems, User Interface Toolkits

~BST~ACT: Thi~ paper explores the question of h?w the World-Wide-Web's ability to support
~nteract~ve net-servi~es can be .enhanced to support a wider range of applications. We give examples of
mteractive net-services, descnbe the abstract architectural components needed to support them, and
describe our implementation of these components in the NIC (Nucleus for Interactive Computing)
application framework.

1. INTRODUCTION

The World-Wide-Web (Berners-Lee, 1994a) and
WWW browsers like Mosaic provide a powerful
interactive environment for accessing Internet
resources. Users can easily access many kinds of
documents including PostScript files, images, and
videos. User interactions on the WWW are limited
primarily to downloading files and presenting them
with appropriate viewers. Although highly useful,
this style of interaction is also limited because it
does not allow users to engage in two-way dialogues
with Internet services. Some help is provided by the
ability to access telnet-based services through WWW
browsers, but telnet only supports character-based
interfaces. A substantial improvement is provided
by HTML forms (Berners-Lee, 1994b) which
support graphical forms-based interfaces. The forms
facility is also limited in that some Internet services
require more dynamic Uis than forms can provide.
Forms also do not allow the UI to perform
application-specific computations on the user's local
workstation, although many useful UI functions
could be performed locally without accessing the
service. Finally, the model used for communication
between a forms-based UI and a service is restrictive.
A query sent to the service takes the form of a string
packed with the contents of the form's fields, and the
service's reply takes the form of another HTML
document to be presented by the WWW browser.

This paper explores the question of how the WWW's
ability to support interactive net-services can be
enhanced to support a wider range of applications.
We begin by giving some specific examples of
interactive net-services that require more than a
forms-based UI. We then describe the abstract
architectural components that must be provided to

achieve greater interactivity on the WWW. Finally,
we describe our implementation of these
components in the NIC (Nucleus for Interactive
Computing) application framework.

2. EXAMPLE INTERACTIVE NET­
SERVICES

There are many possible examples of interactive net­
services. For example, a grocery store might want to
provide an on-line service that allows customers to
place orders in advance so that they can drive
through and pick up their groceries. When a
customer accesses this grocery service through
Mosaic, an interactive client that provides a UI to
the service is downloaded and executed on the
customer's computer. The client UI allows the
customer to browse through the choices in various
departments, view pictures of items, search for
items, inspect the nutritional content of items, order
items, tally the bill, etc. Once a complete order has
been assembled, the order is submitted to the service
at the grocery store. By the time the customer
arrives at the store, their order is ready to be picked
up.

Another example is a grade submission service
provided on the WWW by a university for its faculty
members. The client UI for accessing this service
allows an instructor to download class rolls, enter
student scores on assignments, compute various
statistics like averages and standard deviations,
generate graphs of student scores, compute final
grades, and submit final grades to the university.

A third example, which we have implemented using
NIC, is an interactive net-service that lets users
search NIC's on-line documentation for patterns.
This service is called Grep Service because the

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995

254 Part Two Research and Theory

server's functions are implemented using the Unix
grep command. When Grep Service is accessed
through Mosaic, the client UI shown in Figure 1 is
downloaded and executed on the user's computer.

"""""' }~~-

"""""" A ... -.:..tMI.t
,._,r·~

~~£$'-"'"'~-~
Mll<J­
A.n'l:•v.I~IX)i'tt,tnl
hlt""Ul«PP-1>!1111
(.'lo-C
Cl<<i<OO I ,,. .. ,.,.('

_!iiJT...,>

_;!:~'t>TrtKl

1)1;~.-•-u:r;.~---~~-

-::lf~----
NIC'&~
NIC~c.
Nl(~l)f ...
NW~il.m
Nit: 1)<,.,.,.,.,,""'"
MC """"-""""
Nlt' D·:<:JI:Trlt:I:IUIIJQ"'
Nlr~r.;l!;
"NJC[)o(;\ll'fltt'ILat.~
N-1C~rt't:

Figure 1

The scrolling list in the upper-left enumerates the
various sub-sections of NIC's documentation that
can be searched. The scrolling list in the upper-right
enumerates the sub-sections that the user has
actually selected to be searched. The buttons between
the lists are used for transferring sub-sections
between the lists. A text field is provided for typing
in a search expression, and buttons are provided for
starting a search and controlling the case sensitivity
of the search. When the user presses the "Start
Search" button, the client connects to the Grep
Service and sends a request with the search
parameters entered by the user. The scrolling list at
the bottom of the client UI is a list of files returned
by Grep Service that contain the search expression.
The user can select files from this list to be viewed
using Mosaic. When the user presses the "View
Document" button, the client constructs a URL for
the selected file and loads the contents of the URL
into Mosaic for viewing. The same Mosaic process
is used to view each file rather than starting a new
instance of Mosaic for each one.

3. ABSTRACT ARCHITECTURE

This section examines the architectural components
required to support interactive net-services like those

described in the previous section. The sequence of
events shown in Figure 2 illustrates these
components.

Client UI ... I Mosaic
HTTP I • I Server

Service Requests • ; Service I Client Ul
Viewer • Re uest Results
clientho t

q
erv•cehost

Figure 2

• The user follows a Mosaic hyper-link that points
to the client UI.
• Mosaic contacts the HTTP server on servicehost
to retrieve the file containing the client UI. This file
contains a description of the client's UI as well as its
application-specific code and data structures. In order
to publish such a client UI on the WWW, we need
to be able to represent Uis, application code, and
application data in a platform-independent,
transportable, storable manner. We refer to client
programs that can be downloaded and executed in
this manner as transportable client VIs to reflect the
fact that they must be both transferable over a
network and portable across different architectures.
• Having retrieved the client UI over the network,
Mosaic spawns a viewer that can instantiate and
execute the client. The client VI viewer must be able
to instantiate the client's UI, manage the interactive
dialogue with the user, and execute application code
contained in the client. This viewer must be general
in the sense that it can support a wide variety of user
interfaces just as Mosaic supports a wide variety of
HTML documents. The client is much more than a
dumb terminal to a remote service; the client can
perform substantial application processing on the
user's local machine. Interactive clients published on
the network will frequently need to include
application-specific user interface components. It
must be possible to distribute such application­
specific interface components along with a client UI.

The client UI needs to be able to establish
connections with the remote net-service, send
requests to the service, and receive replies from the
service in a simple and efficient manner.
• Building interactive net-services is a difficult and
time-consuming programming task. Ideally, UI
toolkits will provide tools to simplify their
construction.

Interactive net-services on the WWW 255

• Interactive net-services present significant security
issues. Client Uis are downloaded from the network
and executed locally, and services receive and execute
requests from remote clients. In both cases,
programs are received from remote sources and
executed locally. The activities of programs received
from untrusted sources must be restricted.

We have developed a programming framework
called NIC (Nucleus for Interactive Computing) that
supports interactive net-services by providing the
aforementioned architectural components. The
remainder of the paper describes NIC's architecture
and how it supports interactive net-services.

4. TRANSPORTABLE CLIENT UI'S

A client UI consists of three main components: the
user interface, the code that implements application­
specific functions, and structures that store the
client's data. A client UI must represent each of
these components in order to contain sufficient
information to execute the UI on the user's
workstation. NIC' s representation of client Uls is
based on a uniform object model that is used to
represent all three components of an interactive
program. All objects in NIC are subclasses of the
abstract class Object. An Object consists of an array
part and a list of (Attribute, Value) pairs. Figure 3
shows the textual representation of a NIC object of
class Student. The attributes of a Student object
contain the student's name, age, and address. The
array of a Student object holds a list of the courses
in which the student is currently enrolled. Each
course is represented by a sub-object whose array
elements contain the department and class number.

(:Student
[Name
[Age
[Address

"Bill Smith"]
17]
"P.O. Box 1234"]

(Physics 101) (English 301) (Math 344)

Figure3

NIC provides several subclasses of Object that can
be used by programs to store their data. For
example, the class DataObject implements a generic
object whose array elements and attributes can hold
any value, including other objects. When no class is
specified for an object, it is understood to be of class
DataObject. For instance, the sub-objects that
represent courses in Figure 3 are instances of

DataObject. The Grep Service client UI uses
instances of DataObject to store information about
what documentation sub-sections are available,
which sub-sections the user has selected for
searching, and the list returned by Grep Service of
documents containing the current search expression.

NIC also provides subclasses of Object that
implement a complete set of user interface
components. For example, the CheckButton class
implements a button that can be on or off. The
attributes of a CheckButton object specify the
button's label, the style of check to be used, whether
the button is currently on or off, etc. A
CheckButton object also knows how to process user
input events and redraw itself on the screen. The
Grep Service client UI is represented as a single
composite object that contains sub-objects of class
ListEdit for displaying the lists of sub-section titles
and file names and PushButton objects for the
various buttons.

Application functionality is coded in NIC's
interpreted programming language, NIC Script. The
Grep Service client UI uses NIC Script actions to
transfer sub-sections between lists, to construct
requests sent to Grep Service, and to display files in
Mosaic on the user's workstation. NIC Script is
implemented by several subclasses of Object that
provide a complete set of programming constructs.
For example, the While class implements a while
loop. An object of class While stores the code for
the loop's condition in its first array element and the
code of the loop's body in its second array element.
A segment of NIC Script code is represented as a
composite object containing sub-objects for the
statements to be executed. Some classes that
represent UI components have attributes whose
values are segments of NIC Script code. For
instance, all buttons have an Action attribute whose
value is the code to be executed when the button is
pressed.

The objects that comprise the user interface and the
application code communicate through shared
variables. The variables used in an application's NIC
Script code are accessible to its interface
components. Any part of an interface object can be
constrained to take on the value of a NIC Script
variable, thus allowing the UI to access application
data and the application to access UI objects.

A complete client UI can be represented as a single
composite NIC object. Although possible, it would

256 Part Two Research and Theory

be unreasonable to expect programmers to create a
client UI by manually creating the object that
represents the client. For this reason, a direct
manipulation interface editor is provided that allows
programmers to create complex programs in a much
more intuitive fashion.

Object's method interface provides methods for
manipulating the array part and attribute list of any
object. All subclasses of Object must support this
generic set of object-manipulation methods, but are
free to implement them in a manner appropriate for
the class. This global support for accessing an
object's state allows NIC to provide generic facilities
for converting any object to an intermediate form
that can be transported over a network or stored in a
file. Since all three components of a client UI (i.e.,
user interface, code, and data) are represented as NIC
objects, each can be represented in this distributable,
storable form. We currently provide two external
forms for NIC objects: the textual human-readable
form shown in Figure 3 and a binary form based on
XDR (Comer & Stevens, 1993).

5. CLIENT Ul VIEWER

NICUI is the client UI viewer provided with NIC.
NICUI consists of two main parts, a Dialog
Manager and a NIC Script Interpreter. Given an
object representing a client UI, the Dialog Manager
instantiates the client's interface and proceeds to
process interactive events. When the user takes
some action that requires application code to be
executed, the Dialog Manager invokes the NIC
Script Interpreter to execute the code. In the Grep
Service client UI, the action on the "View
Document" button is a segment of NIC Script that
constructs a URL for the selected file and loads the
contents of the URL into a Mosaic window. The
grocery store client might include NIC Script
actions to search the store's inventory or compute
sales tax, and the grades service might include NIC
Script actions to plot student scores or compute
final grades.

This ability to download and execute NIC user
interfaces over a network is of great value even if the
program does not access remote services. We have
found this capability to be especially effective as a
medium for publishing educational programs. For
example, we have implemented interactive programs
that teach the concepts of vector addition and
(R,G,B) color matching. These programs can be
accessed over the WWW and executed on any

machine that has NICUI. Once retrieved, these
programs operate locally and involve no further
network communication.

Many GUI-based programs require at least one
application-specific widget. In order to support the
distribution of such programs, NIC provides a
mechanism for writing new widgets completely in
NIC Script. This allows application-specific widgets
to be distributed with programs that require them.

6. CLIENT Ul I SERVICE COMMUNICATION

During its execution a client UI will make and break
connections with one or more remote services. A
model of client VI/service communication must be
designed in such a way that network connections are
easy for client UI programmers to create and use.
Two main issues must be addressed. First, simple
mechanisms for establishing network connections
need to be provided. Second, the form of
communication between clients and services must be
as general, easy to use, and efficient as possible.
These issues are discussed in this section.

6.1 CONNECTION ESTABLISHMENT

NIC Script provides a Connection class that is used
by client Uis to communicate with remote services.
Given a WWW URL describing the host and service,
Connection's ServiceConnect method establishes a
connection with the service. ServiceConnect extracts
the host name from the URL and makes a
connection with the Service Manager process on that
host. The Service Manager listens on a well-known
network port for incoming connection requests.
Having connected to the Service Manager,
ServiceConnect sends the URL to the Service
Manager. The Service Manager uses the extension of
the URL to determine which service the client
wants a connection with. Having determined the
appropriate service for the incoming request, the
Service Manager spawns a process for the service (if
necessary) and sends the new service process the
number of an unused network port on which it
should listen for incoming client requests. The
Service Manager then returns the service's port
number to the client. ServiceConnect then breaks its
connection with the Service Manager and establishes
a connection with the remote service on the port
received back from the Service Manager. At this
point a client connection has been established with
the service. Note that all of this protocol is invisible
to those who create client Uis.

Interactive net-services on the WWW 257

The Service Manager supports three classes of
service: PerService, PerObject, and PerConnection.
Each service is given one of these types. A type of
PerService specifies that at most one instance of that
service should exist on the host at a time. A type of
PerObject specifies that all clients who connect to a
service using the same URL are actually connected
to the same service instance (i.e., there is one
instance for each distinct URL used to connect to it).
A type of PerConnection specifies that a new
instance of the service is created for each individual
connection.

6.2 CLIENT REQUESTS

A client request to a service takes the form of a NIC
Script program. This program can be as long or
short as the client desires (a one-line request script
would be equivalent to a remote procedure call).
Upon receiving a script from a client, a service
evaluates the script and returns the result to the
client. A service simply listens to its client
connections and evaluates the scripts received over
those connections.

Since all scripts must be executed in the context of a
NIC Script variable table, a service maintains a
variable table for each client connection. The values
in a client's variable table persist across requests,
thus allowing values created by a request to be
accessed by later requests. A service consists of the
NIC Script Interpreter, which it uses to evaluate
client request scripts, and a variable table for each
client connection. A client sends a request to a
service using the Exec method on the Connection
class. Exec accepts a script as its only parameter and
sends that script to the Connection's service for
execution. Exec can be called synchronously or
asynchronously. An asynchronous call to Exec
accepts two parameters. The first parameter is the
script to be executed by the service. The second
parameter is a script to be executed in the client UI
when the return value is received from the service.
This gives the client UI flexibility in how it
interacts with a service.

The ability to send complete programs to a service
for execution has several benefits. First, it allows
client requests to include arbitrarily complex logic,
thus allowing a client request to make decisions
while executing within the service. Second, it
allows multiple operations to be packaged as a
single request. Third, it avoids passing values back

and forth over the network unnecessarily when the
result of one operation is used as input to a
subsequent operation. The most important benefit is
that this protocol is extremely simple for designers
of client Uls. It is, simply, build a NIC Script
object, send it to the service, and process the result.
It is also important to note that generic client UI
viewers (like NICUI) can build scripts containing
classes only implemented by the service, thus
allowing a client UI viewer to provide access to
capabilities far beyond what is implemented in the
viewer itself.

7. TOOLS FOR BUILDING INTERACTIVE
NET-SERVICES

NIC provides tools for building both the client UI
and the service itself. Client Uls are built using
NIC's direct manipulation interface editor. Interfaces
created using this editor can be published on the
WWW just like other types of files.

The thing that distinguishes one NIC service from
another is the set of classes it makes available to
client scripts. These classes can be implemented in
either NIC Script or C++. NIC provides a class pre­
processor that automatically generates the C++ code
necessary to make C++ service classes available
from NIC Script.

NIC also provides a function called NICMain that
encapsulates all client connection handling. A
service implementor does not need to know anything
about handling network connections. When a
service is started, it performs any necessary
initialization and then simply calls NICMain.
NICMain handles the establishment of client
connections and the execution of client scripts
received over those connections.

Creating a new NIC service requires two steps: 1)
implement any special classes to be provided by the
service in NIC Script and/or C++ using the class
pre-processor and 2) call NICMain from the service's
main function to manage the client connections. A
programmer can build a service without doing any
network programming.

8. ACCESS CONTROLS

NIC's interactive net-service architecture is based on
computers exchanging and executing NIC Script
code received from remote sources. This provides
substantial opportunity for malicious or careless

258 Part Two Research and Theory

programmers to do damage to other's systems. For
this reason NIC provides some controls over the
access given to executing NIC Script programs.

Suppose, for example, that a service wanted to
prevent computationally expensive requests. Not
allowing clients to include While or For objects in
request scripts would prevent any requests that
contain loops. Restricting object classes effectively
restricts the computational power of the interpreter
and thus provides effective protection for the service.
These restrictions are specified in the service's
configuration file.

Protection is also required in the client UI viewer
because commands in the client UI that execute shell
commands or write files could do serious damage.
Access to these operations can be allowed freely
(very unsecure), forbidden (very secure), or only
allowed after interactive confirmation by the user.
The later option provides some protection with
some useful flexibility.

9. RELATED WORK

There are several approaches that have been taken to
distributing Uis over networks. X Windows (Jones,
1989) distributes application windows, but .still
requires all event handling and application
processing to take place in the remote service.
HTML forms (Berners-Lee, 1994b) provide
hypertext access to forms-based interfaces. This
allows event handling to take place locally, but still
requires the remote service to perform all application
processing. NIC' s transferrable client Uls are a
generalization of HTML forms that allows all
dialogue management and much application
processing to take place locally on the client's
machine, which greatly reduces the burden placed on
remote services. Display Postscript/NeWS (Gosling,
1989) provides a programmable window server that
could be used to download Uls over a network,
although NIC's features are provided at the toolkit
level rather than at the lower graphics model and
window system level.

We have never seen it used for this purpose, we
believe that Tcl!Tk (Ousterhout, 1994) could be used
to distribute client ills over the WWW in a similar
fashion to NIC. The Tcl-Dp extensions to Tel could
be used for client/service communication. We did
not use Tcl/Tk for several reasons, the most
important of which is that Tcl/Tk did not exist when
we started this project. We also believe that an

object-oriented architecture is the best way to
achieve generality and extendibility in a toolkit
architecture, and Tcl/Tk is not object-oriented.

In general, any MIME-based (Borenstein & Freed,
1993) system can be used to distribute NIC client
Uls over a network. Whether it be through a MIME­
based WWW viewer like Mosaic or a MIME-enabled
mailer like ELM, the MIME mechanism for
launching NICUI to execute NIC client Uls is the
same.

10. SUMMARY

This paper describes an approach to increasing the
WWW's ability to support interactive net-services.
NIC provides transferrable client Uls, a client Ul
viewer, a general and simple protocol for client
UI/service communication, tools that simplify client
and service construction, and access controls.

REFERENCES

Berners-Lee, T., et. a!. (1994a). The World­
Wide Web. CACM, 37(8), (p. 76-82).

Berners-Lee, T. (1994b). Hypertext Markup
Language Plus.
URL:http://info.cern.ch/hypertext/
WWW /MarkUp/HTMLPlus/htmlplus_l.html

Borenstein, N. & Freed, N. (1993). MIME
(Multipurpose Internet Mail Extensions) Part
One: Mechanisms for Specifying and
Describing the Format of Internet Message
Bodies. In Internet RFC I521.

Comer, D. & Stevens, D. (1993).
Internetworking with TCP/IP, Volume III.
Prentice Hall.

Gosling, J., et. a!. (1989). The NeWS Book:
An Introduction to the Network Extensible
Window System. Springer-Verlag.

Jones, Oliver (1989). Introduction to the X
Window System. Prentice Hall.

Ousterhout, J. (1994). Tel and the Tk
Toolkit. Addison-Wesley.

