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ABSTRACT: While designing interactive software, the use of a formal specification 
technique is of great help by providing non-ambiguous, complete and concise notations. The 
advantages of using such a formalism is widened if it is provided by formal analysis 
techniques that allow to prove properties about the design, thus giving an early verification 
to the designer before the application is actually implemented. This paper presents such a 
formalism, called Interactive Cooperative Objects. The paper mainly focuses on the formal 
analysis of the design, describing the calculation of its properties and their interpretation in 
terms of the software behaviour. 

1. INTRODUCTION 

Much current interface design is characterised by the 
use of event-driven direct manipulation interfaces. 
Despite the widespread use of such interfaces, the 
design methods and tools are surprisingly weak for 
handling the most critical aspect: the design of 
dialogue structure. Focus has often been devoted to 
the external appearance of the interface and several 
powerful interface presentation editors, e.g. Microsoft 
Visual Basic™, are now available. Although a lot of 
work has recently been devoted to formal 
specification of interfaces (Harrison & a!. 1990, 
Paterno 1994), few references explain the practical 
use of formal analysis results in the design of an 
interactive application, and even fewer detail the 
mathematical analysis techniques to be applied to 
those formalisms. 

In (Bastide & a!. 1990) we proposed a Petri-net and 
object based formalism (PNO) that supports the 
specification of the dialogue structure of event-driven 
interfaces. In this paper we present a more complete 
formalism called Interactive Cooperative Objects 
(ICO). ICO extends PNO to support more of the 
software design cycle including specification, design 
(Palanque & al. 1993), verification and 
implementation (Palanque & a!. 1994b). As with the 
PNO formalism, ICO is mathematically founded and 
the description of the mathematical analysis of a 
specification is the main goal of this paper. The 
verification of models is achieved by using the 
techniques provided by Petri Net theory. The analysis 
gives results concerning the dialogue and its influence 
on the interface behaviour. Hereafter, the first kind of 
results and their interpretation are fully detailed and 
their calculation is presented. 

The next section presents the ICO formalism, in 
which a High-Level Petri Net (HLPN) model is used 
for modelling the object's behaviour. Section III uses 
a case study to demonstrate the use of the formalism. 
Section IV fully details the formal analysis results 
that can be obtained, and their interpretation in terms 
of the interface behaviour. Due to space reasons we 
are assuming from readers basic knowledge of Petri 
nets that can otherwise be found in (Peterson 1981 ). 

2. INTERACTIVE COOPERATIVE OBJECTS 

Interactive Cooperative Objects (ICO) is an object­
oriented formalism intended for modelling interactive 
software where concurrency takes an important place 
(Palanque & a!. 1994a). In this formalism, an object 
is an entity featuring four components: a data 
structure (a set of attributes), a set of operations 
(services offered to its environment or internal 
operations), an Object Control Structure (ObCS), and 
a presentation. 

The ObCS of an object fully defines its behaviour: 
the availability of its services, how it processes 
service requests, the operations it performs on its 
own behalf, and the services it requires from other 
objects as a client. The ObCS is defined by a high­
level Petri net. In a Petri net, places stand for state 
variables (and are depicted by ellipses) and transitions 
for state changing operators (and are depicted by 
rectangles). Each service of an object is associated 
with one or several ObCS' s transitions using a 
function called Disp. A service request may be 
accepted only when one of its associated transitions is 
enabled, and it is performed by the occurrence of such 
a transition. Graphically, the name of the service 
associated with a transition is written inside it (and 
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corresponds to the graphical representation of the 
function Disp), while the service input (resp. output) 
parameters label a broken arrow incoming to (resp. 
outgoing from) the transition. Services of an reo 
which are at the user's disposal, called user 
services, are pointed out by a small ellipse at the 
beginning of the incoming broken arrow. An ObeS 
may include transitions which are not associated to 
any service: they correspond to the object's 
spontaneous activity. The action performed when a 
transition occurs is written in it. It consists either in 
performing an internal operation of the object, or in 
applying for a service offered by another object (if the 
transition is moreover related to a service, those two 
texts are separated by a line in the transition as for 
example the transition T3 of the left part of Figure 4) 
. Thus, the communications between objects are not 
buried in the code of the internal operations; they are 
defined in an explicit way, and this enable to check 
more easily whether the object cooperation satisfies 
the intended properties. Objects communicate 
according to a client/server relationship which 
formal semantics is defined in term of Petri nets in 
(Bastide 1992). 

The Presentation of an object states its external look 
and is structured as a set of widgets (or interactors), 
such as Pushbutton, List-Box, etc. The user I 
software interaction will only take place through 
those components. Each user action on a widget may 
trigger one of the reO's user service, and the user 
services of an reo are precisely the ones which may 
be activated by the user through a widget. The 
relationship between user services and widgets is 
fully stated by the activation function which 
associates to each couple (widget, user's action) the 
service to be triggered. 

In an interactive system each window is modelled by 
an reo. The sequencing and synchronisation 
constraints for the availability of user services are 
expressed in the ObeS (as for the other services). 
Transitions relate to the object's user services, stating 
their availability, and user services are related to 
widgets through the activation function. Thus the 
active or inactive state of the widgets can be 
determined from the ObeS's current state: if no 
transition associated to a user service is enabled by 
the current state means that this user service is not 
currently available to the user. This must be shown 
to the user by shading out or otherwise inactivating 
the related widgets (Dix 1991). 

3. MODELLING AN APPLICATION 

This section demonstrates how to model an 
Automated Teller Machine (ATM), using the IeO 
formalism. Actually, we will not model the physical 
device but a software featuring the same functions as 
the real device. User's input will take place through 

classical interactors using direct manipulation input 
device as for example mouse (representing real user's 
actions on the physical device). 

3.1. Informal Specification 
In order to exemplify the particular features of the 
reo formalism, we will add and remove several 
features to the classical functioning of an ATM. Our 
ATM allows the user to change the amount selected 
if it is greater than the amount allowed by uses. The 
entering of the pin number has been omitted to 
simplify the presentation. We abstract away from the 
actions performed by the user to enter the amount of 
cash he/she wants to withdraw, modelling this by an 
atomic action Select. Some actions may be performed 
in any order e.g. the withdrawing of the cash and the 
card. 

3.2. Modelling the ATM 
The A TM class is a full fledged reo, featuring 
attributes, services, an ObeS and a presentation. The 
description of the class may be seen in Figure I. The 
presentation, which consists of the widgets list and 
the activation function, is not entirely detailed here as 
the layout of an ATM is quite common. 
Class ATM 
Attributes 

a, b: Real; c: Card; r: {CANCEL, RETRY}; 
Methods 

Ok<a,b:real>:Boolean; Avail<c:Card>:Real; 
Services 
Insertcard <C:Card>; Select <a: Real>; 
GetCash; GetCard; 

ObCS (see Figure 2) 
Presentation 

Layout -- Not presented 
Activation function· 

Widget User's actions 
Pushbutton InsertCard Click 
Pushbutton Select Click 
Pushbutton Cash click 
Pushbutton Card click 

end 
Figure 1 : The Class ATM 

Service 
lnsertCard 

Select 
GetCash 
GetCard 

In the A TM specification, the ObeS is modelled by a 
high level Petri net (HLPN). The main difference 
from basic Petri nets is that HLPNs incorporate the 
data structure and the data values in the models. (e.g. 
the precondition in transition T7). In HLPNs tokens 
are no more undifferentiated items, but may be 
references to other IeOs of the interactive software. 
This formalism provides a concise, yet formal and 
complete specification for the control structure of the 
software as each facet of an reo is formally described 
using the mathematical foundations of Petri nets. 
The functioning of a HLPN is quite the same as the 
one of a basic Petri net. However, the firing rule and 
the fireability of transitions is somehow different. A 
transition of a HLPN is fireable (may occur) if and 
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only if each of its input places holds at least one 
token (so that each variable labelling an input arc 
may be bound to an object). Moreover, if the 
transition features a precondition (graphically 
represented by a pentagon; see for example transition 
T7 in Figure 2) the values of the tokens in the input 
places of the transition must make the boolean 
expression of the precondition true in order for the 
transition to be fireable. When a transition is fired (or 
occurs), the objects bound to the input variables are 
removed from the input places and their values are 
processed by the transition's action which may also 
generate or delete objects. The new or modified 
objects are finally set into the output places, 
according to the variables labelling the arcs and thus 
fully stating the flow of references of objects in the 
net. 

Figure 2 : ObCS of the ATM Class 

The ObCS of the A TM (Figure 2) must be read in 
the following way: 

• Initialisation: 
The initial marking of the ObCS net is shown on 
Figure 2 by a black dot in the place No Card. This 
dot represents a basic token, describing the current 
idle state of the ATM. 

• Processing 
From this initial state, only the InsertCard service 
can be performed by the user. Indeed, the only 
transition that is fireable from the initial marking is 
the transition Tl which is related to the user service 
InsertCard. If the InsertCard service is requested by 
the user, the transition T1 will be fired. Its occurrence 
removes the token from the place No Card, and puts 
one token in place P2 and another in place P3. The 
token put in place P2 is not a basic one. Actually it 
is a token of the type Card, and is a reference to the 
Card inserted by the user. At that moment two 
transitions (T2 and T3) are enabled in the model as 
there is one token in each of their input places. T3 is 
related to the pushbutton Select so it will be fired 
only when the user clicks on this widget. At the 
opposite T2 is not related with a service and thus 
shows how internal behaviour as well as spontaneous 
activity can be modelled. This transition is fired as 
soon as it is enabled. 

After the occurrence of the Select service (the 
transition T2) the ATM will perform one of the 
transitions T4 and T5, as both of them are enabled. 
Only one of then can occur as they are related to the 
same input places. The choice among them is directed 
by the result of the Ok internal operation of the ATM 
stating if the amount selected by the user is 
compatible with the card he/she has introduced. This 
is modelled by a precondition that has to be checked 
by the ATM before firing the transition. So, if the 
result of the Ok internal operation is TRUE, the 
ATM will fire T4, otherwise it will fire T5. If T4 is 
fired, the tokens in the places P5 and P4 are removed 
and one token will be put in each output place of the 
transition T4, that is to say P7 and P8. At this point, 
two user services are available: GetCash and GetCard, 
because their associated transitions (T8 and T9) are 
enabled within the ObCS. This illustrates the 
description of concurrent multi-threaded dialogues in 
ICO. At the end of the multi-threaded dialogue the 
transition TIO enforces synchronisation since it 
demands a token in both of its input places in order 
to fire . When transition T I 0 is fired, the system 
comes back to its initial state i.e. one basic token in 
the No Card place and no tokens in all the other 
places of the model. 

4. VERIFICATION OF THE DIALOGUE 

In this section we fill in the gap between the 
mathematical tools available for studying nets 
properties and the validation of a concrete system, by 
showing how Petri net theory may be used to prove 
properties on the behaviour of an interactive system 
modelled by ICOs. We show that proofs on a Petri 
net model can be performed in an automated way or 
by people with limited knowledge of mathematics 
unlike other formalisms (such as Z or temporal logic) 
where proof is made by theorem proving. 
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4.1. Verification of models 
The validation of a model may be done in three 
different steps: 

Unitary validation studies the behaviour of a 
single reo, making a "good cooperation" assumption 
upon its relationships with other objects, that is: the 
servers used by the reo are always able to process all 
its requests, and its clients send as many requests for 
its services as it may process. The dialogue properties 
we want to check are those specified in the 
application's interface requirements. These properties 
may relate: either to sequences of commands e.g. each 
update command may be followed either by a save 
command or by a cancel command; or to states that 
must or must not be reachable e.g. a list box may be 
able to contain any number of items above a given 
minimum. The main properties that can be proved 
using Petri net theory are: the absence of deadlock, 
the predictability of a command, the reinitiability, the 
availability of a command, among others (see 
(Peterson 198 I) for more details on the properties 
themselves). When modelling an interface, unitary 
validation enables to prove that the dialogue of each 
window is designed in such a way that it meets the 
basics requirements in HCI design (for example no 
deadlock, user-driven style of dialogue, etc.). 

Cooperation validation studies the behaviour of 
a set of ICOs according to the way they cooperates 
through the client/server relationship. It shows 
whether the objects cooperate in such a way that each 
server fulfils the needs of its clients, that is whether 
the cooperation preserves the objects' behaviour 
properties set out by the unitary validation. 
Cooperation validation concerns ICO cooperation that 
can be seen in two different way: cooperation with 
the user (through user services) and cooperation 
between ICOs. The former enables to ensure that the 
user's requests may be satisfied by the application's 
functional kernel and that the ICO' s presentation 
reflects the state of the functional kernel, the latter is 
needed if an application may open several windows 
that can cooperate together (for example a user's 
action in a window can affect the availability of 
interactors in another window). 
User cooperation validation relates the model 
of the inner behaviour of the interactive software to 
the typical behaviour of users interacting with that 
software. This requires to build one or more task 
models, and to checks whether those tasks are 
actually compatible with the application model. 
The formal aspects of user cooperation validation are 
identical to those of cooperation validation. The key 
to our verification practice is that the users 
themselves may be considered as ICOs, interacting 
with the application in a client/server relationship. In 
modern event-driven software, the user mainly acts as 
a client, driving the interaction and requesting 
services from those offered by the application. The 

user is considered as a server only when an imperative 
confirmation is requested by the application (e.g. a 
modal dialogue box such as the one modelled in 
transition T5, Figure 2). The task models are thus 
taken into account in our formalism by embedding 
them into objects, and by checking their cooperation 
with the application's objects. 
We shall illustrate this approach by giving two 
different task models within the reo formalism in 
section 4.3. 

4.2. Example of analysis: the ATM 
Although this analysis is shown as done manually it 
may be automated, and several tools are actually 
available for this purpose (Feldbrudge & a!. I 986). 
The ObCS of the ATM is live as is most often the 
case with "well designed" interfaces, except for some 
particular transitions (e.g. those associated with a quit 
command or initialising a window). The analysis of 
the structure of the net is based on both calculation of 
conservative and repetitive components in the ObCS 
of the ATM. 

A set of places is called a conservative component if 
the number of tokens in this set of places remains the 
same whatever transitions are fired in the net. A 
sequence S of transitions is called a repetitive 
component if, given a marking M (that enables this 
sequence), the fireing of this sequence brings the net 
back in the marking M. 

The structure of a Petri net N can be formally defined 
by N = <P, T, Pre, Post> (Peterson 1981) where Pis 
the set of places of the Petri net, T the set of 
transition (PnT=0) and Pre and Post two functions 
such as: 
Pre : P x T ~ 1 T ; is called the input function 
Post : P x T ~ l T ; is called the output function. 
Informally, Post represents the number of arcs from 
each transition to each place, and Pre represents the 
number of arcs from each place to each transition, and 
of course, both Post and Pre can be represented by 
matrices where rows represent places and columns 
transitions. More precisely, the element Pre(i,j) of 
the matrix Pre holds the number n if there exists n 
arcs from the place Pi to the transition Tj. The 
element Post(i,j) of the matrix Post holds the number 
n if there exists n arcs from the transition Ti to the 
place Pj. As the matrix C= Post-Pre, each element 
C(i,j) of C is such as : C(i,j) = Post(i,j) - Pre(i,j). 

Calculation of conservative components. 
The ObCS of the ATM is defined as follow: 
P={Pl, P2, P3, P4, P5, P6, P7, P8, P9, PIO} 
T={Tl, T2, T3, T4, T5, T6, T7, T8, T9, TIO} 
The Pre and Post matrixes are not given for space 
reasons, however the matrix C is shown in Figure 3. 

Finding the conservative components of the ATM 
consist in looking for all the positive solutions of 
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the equation: fT.C=O where fT is the transpose of a 
vector of places f. This consists in finding all the 
linear combinations of rows that lead to a null row. 

Tl T2 T3 T4 T5 T6 T7 T8 T9 TIO 
PI -1 0 0 0 0 0 0 0 0 I 
P2 I -1 0 0 0 0 0 0 0 0 
P3 I 0 -1 0 0 0 I 0 0 0 
P4 0 I 0 -1 0 -1 0 0 0 0 
P5 0 0 I -1 -1 0 0 0 0 0 
P6 0 0 0 0 I -1 -1 0 0 0 
P7 0 0 0 I 0 I 0 -1 0 0 
P8 0 0 0 I 0 0 0 0 -1 0 
P9 0 0 0 0 0 0 0 I 0 -1 

PIO 0 0 0 0 0 I 0 0 I -1 

Figure 3. Matrix C=Post-Pre 

It is trivial to understand that this kind of calculus 
can be automated, so we will only give here the 
result of this process. In this case four vectors are 
solution of the previous equation, and the 
conservative components for the ATM are: 
Pl+P3+P5+P6+P8+P10 ; Pl+P3+P5+P6+P7+P9 
Pl+P2+P4+P7+P9 ; Pl+P2+P4+P8+P10 

Calculation of repetitive components. The 
calculus of repetitive components follows the same 
process, but it is applied to columns instead of rows. 
Finding the repetitive components of the ATM 
consist in looking for the positive solutions of the 
equation: C.s=O where s is a vector of transitions. 
Two vectors are solutions of the previous equation 
and the repetitive components of the ATM are: 
Tl+T2+T3+T4+T8+T9+T10 and T3+T5+T7 
It results from the calculation of the invariants that 
each place of the net belongs to at least one 
conservative component (the net is bounded) and each 
transition of the net belongs to at least one repetitive 
component (which is necessary for the net to be live). 

Let's examine what can be proved: 
• There is absence of deadlock (at least one transition 
is available at anytime) because the net is live (this 
· nas' oeen ensurect' oy·"me duciuauon 6r'me ma'rkmg 
graph (not presented here); 
• The reinitiability of the ATM results from the fact 
that the net is live and bounded (Brauer 1986) 
whatever the state the A TM is in, there exists a 
sequence of transitions that will put the ATM back in 
its initial state. This is an important property since it 
ensures that each user will find the ATM in the same 
state as when he/she starts to use it. 
• Availability of commands, as for example: 

- InsertCard is only available when there is one 
token in the place No Card. That means that it 
will be impossible for the user to insert several 
cards in the ATM. 
- Get_Cash is available only if the P8 place 
contams a token, i.e. after transition T4 has 
occurred. T4 can occur only if the result of the Ok 
operation is TRUE which means that the user 
will be able to withdraw cash only in that case. 

4.3. Verification of cooperation with users 
Once the unitary validation has proved that each 

obj~ct has the appropriate properties, it remains to 
venfy that they cooperate suitably. The criterion for 
"suitable cooperation" between objects is that it 
doesn't change the possibilities of the behaviour of 
~ach ob~ect. In. that case, if each of the objects 
mteracung With the environment satisfies 
individually the functional requirements, then the 
same will hold when they cooperate. This 
cooperation verification is available because the client 
server protocol used is formally described in terms of 
Petri nets. As these constructs are very technical to 
describe, we will only use the results here, and the 
theoretical foundation of the protocol can be found in 
(Bastide 92) refined in (Sibertin 1993). 

Leaving ATM Leaving ATM 

Figure 4. two different user's tasks 

T.hi!_Obf'.S .... i JJ_.Fj !!!,1re-2_reoJeseot•Ubi!_ h.ebR:viom:. of_ 
the ATM object as a server, i.e. to precisely state the 
sequence of services it is able to perform, and which 
operations it permits according to its internal state. 
Figure 2 also states the behaviour of the ATM as a 
client, i.e. how it may request information from other 
entities during its evolution. The behaviour as a 
client is stated by user transitions that are enabled 
~hile ~he behaviour as a server is stated by 
mvocatwn of other objects' services inside the 
actions of the transitions . Actually, at this rather 
coarse level of detail, the A TM is mainly described as 
a server. The only time it acts as a client is in 
transition T5: this transition contains the call r : = 
User. choice () which models a modal prompt 
for a user response, blocking the evolution of the 
whole system until an answer has been provided. 
Figure 4 describes two possible user's tasks for the 
use of the ATM. The model on the right describes the 
typical behaviour of a customer fronting the ATM, as 
might be gathered by observation. The task is a 
sequence of interactions between the user and the 
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system, consisting only in the user requesting 
services among those offered by the ATM. The 
question to ask is whether this particular sequence of 
service requests might actually be performed by the 
ATM, and this question may be answered by Petri net 
analysis. The model on the left describes a typical 
"incident" which may occur : the user requests an 
amount exceeding his/hers withdrawing capabilities. 
The sequence of interaction thus involves a step 
where the user acts as a server towards the ATM : the 
ATM requests the user to state whether he/she will 
try another amount or cancel his cash request 
altogether. In this case, the user chooses to cancel, 
and only removes his card from the machine. 

The formal analysis of those models is done by 
comparing the language of the task models and the 
language of the system model. As both of those Petri 
nets are bounded, the language is regular, and thus 
can be compared automatically. We do not show the 
analysis here (only for space reasons) but it can be 
easily proved that the language of the ATM includes 
the language of the tasks models. 

Moreover, it is possible to make unitary validation 
on the user's tasks models. The expected properties of 
"good" user's tasks models are exactly the opposite to 
the one expected for the system model. Indeed, we 
want to ensure that these models cannot be 
reinitialisable and that they do not feature infinite 
cycles. The analysis of the marking graph of the net 
allows to ensure the ending of a task (it actually 
occurs when the terminal marking of the graph 
represents the final state of the task). 

5. CONCLUSION 

In most interactive software that are nowadays 
developed, concurrency takes a very important part 
either because of their User-Driven nature or because 
of the interactions between several simultaneous 
users. Since it is difficult to cope with concurrency, 
specification, verification and implementation of this 
kind of software raise problems. 
We have presented an approach based upon the 
Interactive Cooperative Objects formalism to solve 
these problems. The ICO formalism relies on Petri 
nets for modelling the dynamics of an interactive 
software. Indeed, PNs enable to cope with 
concurrency in an explicit and formal way, while they 
are quite natural and may be used by non concurrency­
specialists. Moreover, due to the object oriented 
structuring of the ICO formalism, the models are 
well structured, easy to read, and have a well defined 
semantics. We have shown in this paper how the 
results of PN theory may be used for the verification 
of the design of an application, and what kind of 
properties can be checked through this analysis. The 
implementation stage is also addressed using the 
ICO formalism as the models of the interactive 

software can be directly executed by an ICO 
interpreter (currently under construction), or the code 
for an object-oriented language and an UIMS can be 
generated in an automated way (Palanque & al. 
1994b ). Moreover, several other interesting features 
(for example contextual help) can be ensured by 
exploiting the formal specification at run time 
(Palanque & al. 1994b). 
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