
32

VERIFICATION OF AN INTERACTIVE SOFTWARE
BY ANALYSIS OF ITS FORMAL SPECIFICATION

Ph. Palanque *t and R. Bastide *t

* LIS-IHMf University of Toulouse I,
1, P ace Anatole France

31042 Toulouse cedex FRANCE
Email: {palanque,bastide} @cict.fr

t Centre d'Etudes de la Navigation Aerienne,
7 avenue Edouard 13elin
31055 Toulouse cedex

FRANCE

KEY WORDS: Formal specification, verification, UI design, Petri nets, tasks models

ABSTRACT: While designing interactive software, the use of a formal specification
technique is of great help by providing non-ambiguous, complete and concise notations. The
advantages of using such a formalism is widened if it is provided by formal analysis
techniques that allow to prove properties about the design, thus giving an early verification
to the designer before the application is actually implemented. This paper presents such a
formalism, called Interactive Cooperative Objects. The paper mainly focuses on the formal
analysis of the design, describing the calculation of its properties and their interpretation in
terms of the software behaviour.

1. INTRODUCTION

Much current interface design is characterised by the
use of event-driven direct manipulation interfaces.
Despite the widespread use of such interfaces, the
design methods and tools are surprisingly weak for
handling the most critical aspect: the design of
dialogue structure. Focus has often been devoted to
the external appearance of the interface and several
powerful interface presentation editors, e.g. Microsoft
Visual Basic™, are now available. Although a lot of
work has recently been devoted to formal
specification of interfaces (Harrison & a!. 1990,
Paterno 1994), few references explain the practical
use of formal analysis results in the design of an
interactive application, and even fewer detail the
mathematical analysis techniques to be applied to
those formalisms.

In (Bastide & a!. 1990) we proposed a Petri-net and
object based formalism (PNO) that supports the
specification of the dialogue structure of event-driven
interfaces. In this paper we present a more complete
formalism called Interactive Cooperative Objects
(ICO). ICO extends PNO to support more of the
software design cycle including specification, design
(Palanque & al. 1993), verification and
implementation (Palanque & a!. 1994b). As with the
PNO formalism, ICO is mathematically founded and
the description of the mathematical analysis of a
specification is the main goal of this paper. The
verification of models is achieved by using the
techniques provided by Petri Net theory. The analysis
gives results concerning the dialogue and its influence
on the interface behaviour. Hereafter, the first kind of
results and their interpretation are fully detailed and
their calculation is presented.

The next section presents the ICO formalism, in
which a High-Level Petri Net (HLPN) model is used
for modelling the object's behaviour. Section III uses
a case study to demonstrate the use of the formalism.
Section IV fully details the formal analysis results
that can be obtained, and their interpretation in terms
of the interface behaviour. Due to space reasons we
are assuming from readers basic knowledge of Petri
nets that can otherwise be found in (Peterson 1981).

2. INTERACTIVE COOPERATIVE OBJECTS

Interactive Cooperative Objects (ICO) is an object­
oriented formalism intended for modelling interactive
software where concurrency takes an important place
(Palanque & a!. 1994a). In this formalism, an object
is an entity featuring four components: a data
structure (a set of attributes), a set of operations
(services offered to its environment or internal
operations), an Object Control Structure (ObCS), and
a presentation.

The ObCS of an object fully defines its behaviour:
the availability of its services, how it processes
service requests, the operations it performs on its
own behalf, and the services it requires from other
objects as a client. The ObCS is defined by a high­
level Petri net. In a Petri net, places stand for state
variables (and are depicted by ellipses) and transitions
for state changing operators (and are depicted by
rectangles). Each service of an object is associated
with one or several ObCS' s transitions using a
function called Disp. A service request may be
accepted only when one of its associated transitions is
enabled, and it is performed by the occurrence of such
a transition. Graphically, the name of the service
associated with a transition is written inside it (and

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995

192 Part Two Research and Theory

corresponds to the graphical representation of the
function Disp), while the service input (resp. output)
parameters label a broken arrow incoming to (resp.
outgoing from) the transition. Services of an reo
which are at the user's disposal, called user
services, are pointed out by a small ellipse at the
beginning of the incoming broken arrow. An ObeS
may include transitions which are not associated to
any service: they correspond to the object's
spontaneous activity. The action performed when a
transition occurs is written in it. It consists either in
performing an internal operation of the object, or in
applying for a service offered by another object (if the
transition is moreover related to a service, those two
texts are separated by a line in the transition as for
example the transition T3 of the left part of Figure 4)
. Thus, the communications between objects are not
buried in the code of the internal operations; they are
defined in an explicit way, and this enable to check
more easily whether the object cooperation satisfies
the intended properties. Objects communicate
according to a client/server relationship which
formal semantics is defined in term of Petri nets in
(Bastide 1992).

The Presentation of an object states its external look
and is structured as a set of widgets (or interactors),
such as Pushbutton, List-Box, etc. The user I
software interaction will only take place through
those components. Each user action on a widget may
trigger one of the reO's user service, and the user
services of an reo are precisely the ones which may
be activated by the user through a widget. The
relationship between user services and widgets is
fully stated by the activation function which
associates to each couple (widget, user's action) the
service to be triggered.

In an interactive system each window is modelled by
an reo. The sequencing and synchronisation
constraints for the availability of user services are
expressed in the ObeS (as for the other services).
Transitions relate to the object's user services, stating
their availability, and user services are related to
widgets through the activation function. Thus the
active or inactive state of the widgets can be
determined from the ObeS's current state: if no
transition associated to a user service is enabled by
the current state means that this user service is not
currently available to the user. This must be shown
to the user by shading out or otherwise inactivating
the related widgets (Dix 1991).

3. MODELLING AN APPLICATION

This section demonstrates how to model an
Automated Teller Machine (ATM), using the IeO
formalism. Actually, we will not model the physical
device but a software featuring the same functions as
the real device. User's input will take place through

classical interactors using direct manipulation input
device as for example mouse (representing real user's
actions on the physical device).

3.1. Informal Specification
In order to exemplify the particular features of the
reo formalism, we will add and remove several
features to the classical functioning of an ATM. Our
ATM allows the user to change the amount selected
if it is greater than the amount allowed by uses. The
entering of the pin number has been omitted to
simplify the presentation. We abstract away from the
actions performed by the user to enter the amount of
cash he/she wants to withdraw, modelling this by an
atomic action Select. Some actions may be performed
in any order e.g. the withdrawing of the cash and the
card.

3.2. Modelling the ATM
The A TM class is a full fledged reo, featuring
attributes, services, an ObeS and a presentation. The
description of the class may be seen in Figure I. The
presentation, which consists of the widgets list and
the activation function, is not entirely detailed here as
the layout of an ATM is quite common.
Class ATM
Attributes

a, b: Real; c: Card; r: {CANCEL, RETRY};
Methods

Ok<a,b:real>:Boolean; Avail<c:Card>:Real;
Services
Insertcard <C:Card>; Select <a: Real>;
GetCash; GetCard;

ObCS (see Figure 2)
Presentation

Layout -- Not presented
Activation function·

Widget User's actions
Pushbutton InsertCard Click
Pushbutton Select Click
Pushbutton Cash click
Pushbutton Card click

end
Figure 1 : The Class ATM

Service
lnsertCard

Select
GetCash
GetCard

In the A TM specification, the ObeS is modelled by a
high level Petri net (HLPN). The main difference
from basic Petri nets is that HLPNs incorporate the
data structure and the data values in the models. (e.g.
the precondition in transition T7). In HLPNs tokens
are no more undifferentiated items, but may be
references to other IeOs of the interactive software.
This formalism provides a concise, yet formal and
complete specification for the control structure of the
software as each facet of an reo is formally described
using the mathematical foundations of Petri nets.
The functioning of a HLPN is quite the same as the
one of a basic Petri net. However, the firing rule and
the fireability of transitions is somehow different. A
transition of a HLPN is fireable (may occur) if and

Verification of an interactive software 193

only if each of its input places holds at least one
token (so that each variable labelling an input arc
may be bound to an object). Moreover, if the
transition features a precondition (graphically
represented by a pentagon; see for example transition
T7 in Figure 2) the values of the tokens in the input
places of the transition must make the boolean
expression of the precondition true in order for the
transition to be fireable. When a transition is fired (or
occurs), the objects bound to the input variables are
removed from the input places and their values are
processed by the transition's action which may also
generate or delete objects. The new or modified
objects are finally set into the output places,
according to the variables labelling the arcs and thus
fully stating the flow of references of objects in the
net.

Figure 2 : ObCS of the ATM Class

The ObCS of the A TM (Figure 2) must be read in
the following way:

• Initialisation:
The initial marking of the ObCS net is shown on
Figure 2 by a black dot in the place No Card. This
dot represents a basic token, describing the current
idle state of the ATM.

• Processing
From this initial state, only the InsertCard service
can be performed by the user. Indeed, the only
transition that is fireable from the initial marking is
the transition Tl which is related to the user service
InsertCard. If the InsertCard service is requested by
the user, the transition T1 will be fired. Its occurrence
removes the token from the place No Card, and puts
one token in place P2 and another in place P3. The
token put in place P2 is not a basic one. Actually it
is a token of the type Card, and is a reference to the
Card inserted by the user. At that moment two
transitions (T2 and T3) are enabled in the model as
there is one token in each of their input places. T3 is
related to the pushbutton Select so it will be fired
only when the user clicks on this widget. At the
opposite T2 is not related with a service and thus
shows how internal behaviour as well as spontaneous
activity can be modelled. This transition is fired as
soon as it is enabled.

After the occurrence of the Select service (the
transition T2) the ATM will perform one of the
transitions T4 and T5, as both of them are enabled.
Only one of then can occur as they are related to the
same input places. The choice among them is directed
by the result of the Ok internal operation of the ATM
stating if the amount selected by the user is
compatible with the card he/she has introduced. This
is modelled by a precondition that has to be checked
by the ATM before firing the transition. So, if the
result of the Ok internal operation is TRUE, the
ATM will fire T4, otherwise it will fire T5. If T4 is
fired, the tokens in the places P5 and P4 are removed
and one token will be put in each output place of the
transition T4, that is to say P7 and P8. At this point,
two user services are available: GetCash and GetCard,
because their associated transitions (T8 and T9) are
enabled within the ObCS. This illustrates the
description of concurrent multi-threaded dialogues in
ICO. At the end of the multi-threaded dialogue the
transition TIO enforces synchronisation since it
demands a token in both of its input places in order
to fire . When transition T I 0 is fired, the system
comes back to its initial state i.e. one basic token in
the No Card place and no tokens in all the other
places of the model.

4. VERIFICATION OF THE DIALOGUE

In this section we fill in the gap between the
mathematical tools available for studying nets
properties and the validation of a concrete system, by
showing how Petri net theory may be used to prove
properties on the behaviour of an interactive system
modelled by ICOs. We show that proofs on a Petri
net model can be performed in an automated way or
by people with limited knowledge of mathematics
unlike other formalisms (such as Z or temporal logic)
where proof is made by theorem proving.

194 Part Two Research and Theory

4.1. Verification of models
The validation of a model may be done in three
different steps:

Unitary validation studies the behaviour of a
single reo, making a "good cooperation" assumption
upon its relationships with other objects, that is: the
servers used by the reo are always able to process all
its requests, and its clients send as many requests for
its services as it may process. The dialogue properties
we want to check are those specified in the
application's interface requirements. These properties
may relate: either to sequences of commands e.g. each
update command may be followed either by a save
command or by a cancel command; or to states that
must or must not be reachable e.g. a list box may be
able to contain any number of items above a given
minimum. The main properties that can be proved
using Petri net theory are: the absence of deadlock,
the predictability of a command, the reinitiability, the
availability of a command, among others (see
(Peterson 198 I) for more details on the properties
themselves). When modelling an interface, unitary
validation enables to prove that the dialogue of each
window is designed in such a way that it meets the
basics requirements in HCI design (for example no
deadlock, user-driven style of dialogue, etc.).

Cooperation validation studies the behaviour of
a set of ICOs according to the way they cooperates
through the client/server relationship. It shows
whether the objects cooperate in such a way that each
server fulfils the needs of its clients, that is whether
the cooperation preserves the objects' behaviour
properties set out by the unitary validation.
Cooperation validation concerns ICO cooperation that
can be seen in two different way: cooperation with
the user (through user services) and cooperation
between ICOs. The former enables to ensure that the
user's requests may be satisfied by the application's
functional kernel and that the ICO' s presentation
reflects the state of the functional kernel, the latter is
needed if an application may open several windows
that can cooperate together (for example a user's
action in a window can affect the availability of
interactors in another window).
User cooperation validation relates the model
of the inner behaviour of the interactive software to
the typical behaviour of users interacting with that
software. This requires to build one or more task
models, and to checks whether those tasks are
actually compatible with the application model.
The formal aspects of user cooperation validation are
identical to those of cooperation validation. The key
to our verification practice is that the users
themselves may be considered as ICOs, interacting
with the application in a client/server relationship. In
modern event-driven software, the user mainly acts as
a client, driving the interaction and requesting
services from those offered by the application. The

user is considered as a server only when an imperative
confirmation is requested by the application (e.g. a
modal dialogue box such as the one modelled in
transition T5, Figure 2). The task models are thus
taken into account in our formalism by embedding
them into objects, and by checking their cooperation
with the application's objects.
We shall illustrate this approach by giving two
different task models within the reo formalism in
section 4.3.

4.2. Example of analysis: the ATM
Although this analysis is shown as done manually it
may be automated, and several tools are actually
available for this purpose (Feldbrudge & a!. I 986).
The ObCS of the ATM is live as is most often the
case with "well designed" interfaces, except for some
particular transitions (e.g. those associated with a quit
command or initialising a window). The analysis of
the structure of the net is based on both calculation of
conservative and repetitive components in the ObCS
of the ATM.

A set of places is called a conservative component if
the number of tokens in this set of places remains the
same whatever transitions are fired in the net. A
sequence S of transitions is called a repetitive
component if, given a marking M (that enables this
sequence), the fireing of this sequence brings the net
back in the marking M.

The structure of a Petri net N can be formally defined
by N = <P, T, Pre, Post> (Peterson 1981) where Pis
the set of places of the Petri net, T the set of
transition (PnT=0) and Pre and Post two functions
such as:
Pre : P x T ~ 1 T ; is called the input function
Post : P x T ~ l T ; is called the output function.
Informally, Post represents the number of arcs from
each transition to each place, and Pre represents the
number of arcs from each place to each transition, and
of course, both Post and Pre can be represented by
matrices where rows represent places and columns
transitions. More precisely, the element Pre(i,j) of
the matrix Pre holds the number n if there exists n
arcs from the place Pi to the transition Tj. The
element Post(i,j) of the matrix Post holds the number
n if there exists n arcs from the transition Ti to the
place Pj. As the matrix C= Post-Pre, each element
C(i,j) of C is such as : C(i,j) = Post(i,j) - Pre(i,j).

Calculation of conservative components.
The ObCS of the ATM is defined as follow:
P={Pl, P2, P3, P4, P5, P6, P7, P8, P9, PIO}
T={Tl, T2, T3, T4, T5, T6, T7, T8, T9, TIO}
The Pre and Post matrixes are not given for space
reasons, however the matrix C is shown in Figure 3.

Finding the conservative components of the ATM
consist in looking for all the positive solutions of

Verification of an interactive software 195

the equation: fT.C=O where fT is the transpose of a
vector of places f. This consists in finding all the
linear combinations of rows that lead to a null row.

Tl T2 T3 T4 T5 T6 T7 T8 T9 TIO
PI -1 0 0 0 0 0 0 0 0 I
P2 I -1 0 0 0 0 0 0 0 0
P3 I 0 -1 0 0 0 I 0 0 0
P4 0 I 0 -1 0 -1 0 0 0 0
P5 0 0 I -1 -1 0 0 0 0 0
P6 0 0 0 0 I -1 -1 0 0 0
P7 0 0 0 I 0 I 0 -1 0 0
P8 0 0 0 I 0 0 0 0 -1 0
P9 0 0 0 0 0 0 0 I 0 -1

PIO 0 0 0 0 0 I 0 0 I -1

Figure 3. Matrix C=Post-Pre

It is trivial to understand that this kind of calculus
can be automated, so we will only give here the
result of this process. In this case four vectors are
solution of the previous equation, and the
conservative components for the ATM are:
Pl+P3+P5+P6+P8+P10 ; Pl+P3+P5+P6+P7+P9
Pl+P2+P4+P7+P9 ; Pl+P2+P4+P8+P10

Calculation of repetitive components. The
calculus of repetitive components follows the same
process, but it is applied to columns instead of rows.
Finding the repetitive components of the ATM
consist in looking for the positive solutions of the
equation: C.s=O where s is a vector of transitions.
Two vectors are solutions of the previous equation
and the repetitive components of the ATM are:
Tl+T2+T3+T4+T8+T9+T10 and T3+T5+T7
It results from the calculation of the invariants that
each place of the net belongs to at least one
conservative component (the net is bounded) and each
transition of the net belongs to at least one repetitive
component (which is necessary for the net to be live).

Let's examine what can be proved:
• There is absence of deadlock (at least one transition
is available at anytime) because the net is live (this
· nas' oeen ensurect' oy·"me duciuauon 6r'me ma'rkmg
graph (not presented here);
• The reinitiability of the ATM results from the fact
that the net is live and bounded (Brauer 1986)
whatever the state the A TM is in, there exists a
sequence of transitions that will put the ATM back in
its initial state. This is an important property since it
ensures that each user will find the ATM in the same
state as when he/she starts to use it.
• Availability of commands, as for example:

- InsertCard is only available when there is one
token in the place No Card. That means that it
will be impossible for the user to insert several
cards in the ATM.
- Get_Cash is available only if the P8 place
contams a token, i.e. after transition T4 has
occurred. T4 can occur only if the result of the Ok
operation is TRUE which means that the user
will be able to withdraw cash only in that case.

4.3. Verification of cooperation with users
Once the unitary validation has proved that each

obj~ct has the appropriate properties, it remains to
venfy that they cooperate suitably. The criterion for
"suitable cooperation" between objects is that it
doesn't change the possibilities of the behaviour of
~ach ob~ect. In. that case, if each of the objects
mteracung With the environment satisfies
individually the functional requirements, then the
same will hold when they cooperate. This
cooperation verification is available because the client
server protocol used is formally described in terms of
Petri nets. As these constructs are very technical to
describe, we will only use the results here, and the
theoretical foundation of the protocol can be found in
(Bastide 92) refined in (Sibertin 1993).

Leaving ATM Leaving ATM

Figure 4. two different user's tasks

T.hi!_Obf'.S i JJ_.Fj !!!,1re-2_reoJeseot•Ubi!_ h.ebR:viom:. of_
the ATM object as a server, i.e. to precisely state the
sequence of services it is able to perform, and which
operations it permits according to its internal state.
Figure 2 also states the behaviour of the ATM as a
client, i.e. how it may request information from other
entities during its evolution. The behaviour as a
client is stated by user transitions that are enabled
~hile ~he behaviour as a server is stated by
mvocatwn of other objects' services inside the
actions of the transitions . Actually, at this rather
coarse level of detail, the A TM is mainly described as
a server. The only time it acts as a client is in
transition T5: this transition contains the call r : =
User. choice () which models a modal prompt
for a user response, blocking the evolution of the
whole system until an answer has been provided.
Figure 4 describes two possible user's tasks for the
use of the ATM. The model on the right describes the
typical behaviour of a customer fronting the ATM, as
might be gathered by observation. The task is a
sequence of interactions between the user and the

196 Part Two Research and Theory

system, consisting only in the user requesting
services among those offered by the ATM. The
question to ask is whether this particular sequence of
service requests might actually be performed by the
ATM, and this question may be answered by Petri net
analysis. The model on the left describes a typical
"incident" which may occur : the user requests an
amount exceeding his/hers withdrawing capabilities.
The sequence of interaction thus involves a step
where the user acts as a server towards the ATM : the
ATM requests the user to state whether he/she will
try another amount or cancel his cash request
altogether. In this case, the user chooses to cancel,
and only removes his card from the machine.

The formal analysis of those models is done by
comparing the language of the task models and the
language of the system model. As both of those Petri
nets are bounded, the language is regular, and thus
can be compared automatically. We do not show the
analysis here (only for space reasons) but it can be
easily proved that the language of the ATM includes
the language of the tasks models.

Moreover, it is possible to make unitary validation
on the user's tasks models. The expected properties of
"good" user's tasks models are exactly the opposite to
the one expected for the system model. Indeed, we
want to ensure that these models cannot be
reinitialisable and that they do not feature infinite
cycles. The analysis of the marking graph of the net
allows to ensure the ending of a task (it actually
occurs when the terminal marking of the graph
represents the final state of the task).

5. CONCLUSION

In most interactive software that are nowadays
developed, concurrency takes a very important part
either because of their User-Driven nature or because
of the interactions between several simultaneous
users. Since it is difficult to cope with concurrency,
specification, verification and implementation of this
kind of software raise problems.
We have presented an approach based upon the
Interactive Cooperative Objects formalism to solve
these problems. The ICO formalism relies on Petri
nets for modelling the dynamics of an interactive
software. Indeed, PNs enable to cope with
concurrency in an explicit and formal way, while they
are quite natural and may be used by non concurrency­
specialists. Moreover, due to the object oriented
structuring of the ICO formalism, the models are
well structured, easy to read, and have a well defined
semantics. We have shown in this paper how the
results of PN theory may be used for the verification
of the design of an application, and what kind of
properties can be checked through this analysis. The
implementation stage is also addressed using the
ICO formalism as the models of the interactive

software can be directly executed by an ICO
interpreter (currently under construction), or the code
for an object-oriented language and an UIMS can be
generated in an automated way (Palanque & al.
1994b). Moreover, several other interesting features
(for example contextual help) can be ensured by
exploiting the formal specification at run time
(Palanque & al. 1994b).

ACKNOWLEDGMENTS

The development of the environment of the ICO
UIMS is made possible by the use of high-level
UIMS and graphical tools kindly donated by the
ILOG company. The authors would like to thanks the
HCI group of the Department of Computer Science
of the University of York (U.K.) (and precisely A.
Dearden for his useful comments) where Ph. Palanque
was a visiting researcher during the development of
this paper.

REFERENCES

Bastide R. (1992). Cooperative Objects: a
formalism for modeling concurrent systems.
PhD Dissertation. (In French).
Bastide R., Palanque P. (1990). Petri net with
objects for the design, validation and
prototyping of user-driven interfaces. In
proceedings Interact'90, Elsevier, p.625-631.
Brauer W. (Editor) (1986). LNCS 254 & 255,
Springer Verlag.
Dix A. (1991). Formal methods for interactive
systems. Academic Press.
Feldbrudge F., Jensen K. (1986). Petri net
tool overview in (Brauer 1986).
Harrison M. & Thimbelby H. (eds.) (1990).
Formal Methods in HCI. Cambridge
University Press.
Palanque P., Bastide R. (1994a). Petri net
based Design of User-driven Interfaces Using
Interactive Cooperative Object Formalism ; In
(Paterno 1994).
Palanque P., Bastide R., Senges V. (1994b).
Automatic code generation from a high-level
Petri net based specification; In proceedings of
EWHCI'94.
Palanque P., Bastide R., Sibertin C., Dourte
L. (1993). Design of User-Driven Interfaces
using Petri nets and Objects, In proceedings of
CAISE'93. LNCS 685, Springer-Verlag.
Paterno F. (Editor) (1994). Proceedings of EG
Workshop on Design, Specification and
Verification of Interactive Systems.
Peterson J.L. (1981). Petri net theory and
modeling of systems. Prentice-hall.
Sibertin-blanc C. (1993). A client server
protocol for the composition of Petri nets. In
proceedings of Application and Theory of Petri
nets LNCS 691, Chicago.

