
12 
GEDRICS: THE NEXT GENERATION OF ICONS 

J org Geij3ler 
German National Research Center for Computer Science (GMD) 
Integrated Publication and Information Systems Institute (IPSI) 

Dolivostr. 15, D- 64293 Darmstadt, Germany 
geissler@darmstadt.gmd.de 

KEYWORDS: pen computing, icons, gestures, gesture recognition, gedrics, human-computer 
interaction, user-interface design 

ABSTRACT: Using today's combination of standard point-and-click user-interface elements 
for pen-based applications is a decision that implies that the pen is nothing more than a 
derivative of the mouse. This assumption is not necessarily correct. In order to be able to design 
more adequate interaction styles for pens, this paper introduces a new kind of user interface 
element: the gedric. Gedrics are gesture-driven icons, a combination of icons, pull-down 
menus and gestures. They provide a very fast, easy-to-learn, and easy-to-use interaction style 
for future pen interfaces. This paper describes and discusses the concept and implementation 
of gedrics. 

INTRODUCTION 
Like command languages graphical user interfaces (GUis) 
have had to accomodate the increasing complexity of 
software functionality. When Xerox introduced the STAR 
system (Smith et al., 1982), direct manipulation, icons, 
and property/option sheets led the way to economic 
success and popularity through simple, more intuitive 
interfaces. However, these interfaces were simple for only 
a short period. It is very easy for software designers to 
invent new features and build them into the GUI. Thus, 
modern interfaces offer palettes for mode change, pull
down menus for hundreds of commands, context sensitive 
and hierarchical pull-down menus with dozens of items 
and much more. Today's complex software applications 
confront users with complex interfaces. 
One reason for this increasing complexity is easy to 
identify: it is the point-and-click method. Most operations 
offered by the application are mapped on exactly one 
element in the GUI, e.g. on one icon, or one menu item. 
Users have to point and click with the mouse--for more 
than ten years the point-and-click device-more or less 
often to activate one of those operations (Foley & van 
Dam, 1984). For a small set of operations this method 
works fine but when the applications become more and 
more complex, the effort to activate these operations 
increases dramatically. 
During the last few years, other input methods have 
become the center of interest. Electronic pens (Greenstein 
& Arnaut, 1988) still belong to the most promising of 
them. The first commercially available GUis like 'Win
dows™ for Pen Computing' were still based on traditional 
concepts. Users did not click with the mouse anymore but 
tapped with the pen. And they tapped twice to open a menu 
and to select one of its items. Obviously, it was ignored that 
the pen is primarily a device for drawing and not for 

tapping. But in most of these interfaces drawing was 
reduced to scribbling free-hand notes. Pen interfaces 
require another interaction style. 
This is why the idea of gesture recognition (Kurtenbach & 
Hulteen, 1992) emerge from theories about handwriting 
recognition. More or less complex drawings with the pen 
may be interpreted as gestures triggering special actions of 
the application. This aspect is not as easy as it looks like, 
neither in terms of the algorithms for the recognition pro
cess nor in terms of the cognitive overload for users who 
need to remember all the gestures. Gestures are only effi
cient if they are intuitive but how many gestures fulfill this 
requirement? 
Nevertheless, the approach proposed in this paper is based 
on gesture recognition techniques because of its potential 
to minimize effort in the use of system functionality. One 
goal is that the functionality of a pen-based application 
may remain complex while the interaction itself should 
become very simple. Commands should be based on fast 
pen actions only, like a tap or the drawing of a stroke. 
Obviously, this idea is similar to the unistroke concept 
(Goldberg & Richardson, 1993) that tries to speed up 
handwriting. Gedrics are designed to speed up interaction. 
To achieve this goal, we combine three already known 
concepts in the area of human-computer interaction to 
build a new kind of GUI element: the gedric, a gesture
driven icon. Gedrics are a combination of three compo
nents: icons, pull-down menus and gestures. We use icons 
because they do not need much display space, pull-down 
menus because they offer functionality on demand and 
gestures as short-cuts to reach this functionality. 
The next section describes these three components in more 
detail. Then the concept behind gedrics will be presented, 
followed by some implementation issues. The paper con
cludes with a discussion, related work and future plans. 

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995



74 Part Two Research and Theory 

MOTIVATION 
As with many innovations the starting point are problems 
with existing concepts. In our case it was the difficulty of 
equipping a meeting support tool (S treitz et al., 1994) with 
many operations that have to be accessed very fast and in 
natural way with electronic pens although the tool does not 
provide much display space for the GUI elements. We had 
a look at several standard methods but none of them would 
meet our needs (compare (Benbasat & Todd, 1993)). This 
section describes why. 

Icons' Destiny 
Most icons (Gittins, 1986) are nothing more than indica
tors for a specific process executed by an object in the ap
plication. Their images represent characteristics of these 
objects (associative icons) or they function as cognitive 
keys to them. 
Like with any GUI element there are pros and cons for 
icons. Most of the literature stresses that their advantages 
outweigh the problems: they are easy to learn and to re
member if there exist carefully designed images which are 
often embedded in a metaphor, and they save display 
space. Unfortunately, icons in applications, e.g. in palettes 
or tool bars, have one in common: they are constructed to 
be clicked on by devices like the mouse which activate 
their one and only operation. That is why complex icon
only applications need a large amount of them and why 
users have problems in remembering all their operations. 
Although it is not correct, the use of icons is often a syn
onym for having direct manipulation, but how poor is the 
idea of direct manipulation (Shneiderman, 1983) if users 
can only click on icons? 

Pull-down Menus' Problem 
Imagine the following scenario. A person working with a 
standard Macintosh™ text processor wants to emphasize 
a specific expression in a text by changing its font style to 
italic and increasing its font size. Thus, the person selects 
the passage, opens the font menu, selects the appropriate 
style item and does· the same to change the font size. This 
seems to be little effort, but a more detailed look at the 
operations after the selection makes the hard work clear: 
+ First, the menu that holds the items the person is look-

ing for has to be found. This is done by scanning the 
display and reading the menu titles. 

+ Then the mouse pointer is moved to the menu by drag
ging the mouse across the desk or mouse pad. The 
menu opens if the mouse button is pressed on the menu. 

+ While holding the mouse button pressed it is necessary 
to scan through the offered menu items until the one the 
person is looking for is found. 

+ Still holding the mouse button pressed the highlight bar 
has to be moved to the appropriate menu item. 

+ The highlighted menu item activates the correspond-
ing operation when the mouse button is released. 

Apart from the disrupting nature of this action sequence, 
the example shows how time consuming the scan-open
select method of menu-based systems is. All this work is 

required just for activating one operation. Therefore, it is 
not surprising that many oftoday's applications offer addi
tional alternatives like keyboard shortcuts, or customized 
tool bars to access operations that are hidden somewhere 
in the menu tree. 
Gestures' Profits for P~n Computing 
Where the interaction style of the mouse ends with uncom
fortable dragging procedures, the power of the pen just 
begins. To move the pen from one point of the display to 
another is one of the most natural actions one can perform 
with this device. Basically, all possible actions in a ges
ture-based user interface can be classified as follows: 
Taps. For a long time point-and-click was essential for 
direct manipulation. In contrast to users who move their 
mice across a surface while their eyes are following the 
moving mouse pointer on the display, pen users point 
directly to the displayed object and tap on it. As long as 
there is no "real" access to the displayed object pen 
computing is pure direct manipulation even if the pen is 
used for tapping only. 
Strokes. Drawing an almost straight short line between 
two points on the display is nearly as easy as tapping. 
Although this action seems to be very simple there is much 
more information hidden in a stroke. In addition to the 
location of the stroke on the display every stroke has at 
least two other characteristics: an orientation and a 
direction. Each of them makes it possible to differentiate 
between many simple and-from the result-very similar 
strokes, e.g. horizontal strokes drawn from left to right or 
vice versa, vertical ones from top to bottom or vice versa, 
diagonal strokes, etc. 
Complex Gestures. Every drawing that can be interpreted 
by the application and that is more difficult to describe 
than a simple stroke may be seen as a complex gesture. As 
mentioned in the introduction, gestures are only powerful 
if they are intuitive. "Intuitive" gestures means that they 
are either already known to users (Raskin, 1994) because 
they reflect actions they did hundreds of times before with 
ordinary pencils or ball-pens, or they are simple enough to 
be learned at once. Intuitive pen gestures are, for example, 
the circling of a text passage to highlight or select it or the 
crossing-out of a paragraph to delete it. 
If there is a "new" input device like the pen, software 
designers have the chance to develop new interaction 
styles. Icon-only interfaces for pen-based applications 
must fail because each icon covers exactly one operation 
and the operations are difficult to remember if the amount 
of icons in the interface increases. pull-down menus are 
good for hiding functionality but there is too much effort 
to select their items again and again. Gesture-only inter
faces fail because most of the gestures are not intuitive and 
difficult to remember. Now, the issues are: Why should 
icons in pen-based applications only interpret clicks/taps 
and not other actions like strokes or more complex ges
tures, as well? How can the GUI help users to remember 
gestures? Is it possible to retain the concept of hiding 
functionality like with menus but to optimize the access 



Gedrics: the next generation of icons 75 

strategies? In short, is there a way to combine the best of 
different worlds, i.e. icons, menus and gestures, to model 
a new GUI element that is best for pen computing? The 
following section describes our approach to do so. 

GEDRICS 
A gedric is a gesture-driven icon. It is an icon in a pen
based application that has the ability to interpret more 
gestures than just a simple click/tap. Remember the given 
example of emphasizing a selected passage of text. In 
order to do that with menus, one had to open them several 
times which was done with large effort. Realizing this 
functionality with a gedric could result in a "font gedric" 
on which users can draw gestures to manipulate several 
font characteristics. According to the example, to set the 
style of the selection to italic it would be possible to draw 
a diagonal stroke from the lower left to the upper right area 
of the gedric image. An almost vertical stroke from the 
bottom to the top of the image area would then increase the 
font size of the selection. Drawing both strokes the other 
way round would reset those values. This kind of user input 
is not only done very fast and with less effort but compared 
with icon-only solutions, there is also an enormous amount 
of display space saved. And there is no need for a special 
"make italic" or "increase font size" gesture. 
Such an extension of the icon concept includes that the 
gedric image-in contrast to an icon image-may have to 
represent a large variety of functional possibilities of the 
underlying object. That is why a gedric image has much in 
common with a menu title. The operation that has to be 
activated is not only encoded in the image itself but it is 
always the combination of the image and a gesture. As a 
consequence, the representation of all possible actions of 
a gedric requires much more careful design of the gedric 
image than it is the case with icons. 

Classes of Gedrics 
Currently, we distinguish between two classes of gedrics: 
worker gedrics and container gedrics. Like many icons, 
worker gedrics process data, e.g. when they are activated 
by users. Most of them examine the current system status, 
e.g. if there is some selection, and then behave sensitively 
to the context. The main task of container gedrics is to 
store (processed) data. Although most of the functionality 
of a gedric-based application is realized with worker 
gedrics, container gedrics are necessary for the storage of 
(provisional) results during the working process or they 
handle external resources like file systems or peripherals. 

Characteristics 
This section is about those aspects that differ gedrics from 
any other kind of GUI element: their ability to recognize 
gestures, to support novice users of gedric-based applica
tions, to store data, and to have children. 
Most of the figures in this section show diagrams that 
demonstrate dynamic processes: idealized pen move
ments and their sem<mtics to gedrics. To "freeze'" the 
dynmnics in a diagram. we choose the following notation 
(compare fig. 1): each square in a diagrmn symbolizes the 

area of a gedric image whereas the small circle with the 
attached line or free-form drawing visualizes the pen 
movement (the circle indicates the final pen position). A 
thick vertical line in some of the diagrams separates the 
gedric area from the editing area of the application. 
Gesture recognition. The gestures recognized by a gedric 
can be divided into basic gestures that are the same for all 
gedrics (fig. 1) and those that offer special functionality. 
Current basic gestures are 
• the tap that just activates a gedric. The result of the ac

tivation depends on the gedric's task. One gedric may 
simply undo an operation, another may do some scal
ing, yet another may print a selected text passage and 
so on. Basically, activated gedrics behaves similar to 
traditional icons. 

• the stroke into its display area and back, symbolizing 
an arrow into it, a kind of open or go into command. 
Although every gedric recognizes this gesture, the re
sult depends on the gedric class. Container gedrics will 
present their content whereas worker gedrics will open 
a pull-down menu in which users may select one of its 
items. The role of these menus is described in more 
detail below. It is important to mention that the corre
sponding diagram in fig. 1 demonstrates only one ex
mnple how to make the open gesture. In fact, users may 
draw it from any angle into the gedric's image area. 

+ the drawing of a question mark without a dot. There
sulting pull-down window not only explains any of the 
possible gestures, but also functions as an extended 
menu. Using this built-in help feature, novice users 
only have to know this one gesture to learn how to work 
with a gedric-based application. 

Obviously, any of these basic gestures may activate a dif
ferent operation, depending on the gedric 's task. At first 
glance this may seem confusing (Grudin, 1989), but the 
principle is the same as with icons. Each icon in an applica
tion only understands clicks. Nevertheless, users have no 
problem with the fact that they may save, delete, print or 
scroll with that same kind of action. As long as the design 
of the gedric 's feedback is done carefully, the activated op
erations will be transparent. More information about ges
tures will follow in the section on exmnples of gedrics. 
Pull-down menus. Whenever a worker gedric receives an 
open command the appearing pull-down menu explains 
everything one can do with the gedric. As long as users are 
not fmniliar with all the gestures, this feature is very useful 
in their learning phase. At first, novice users may need the 
full description of the functionality using the built-in help, 
they may then only need the menu items and at a certain 
point they use gestures to have direct access to the opera
tions without opening the menu. So gedrics support both 

81 or C2J 
activate gedric open gedric display gedric's help menu 

Figure 1. Basic gedric gestures. 



76 Part Two Research and Theory 

paste content 
into a gedric 

G--{) 

.-.~_·L__Ll 
"'TL--J 

copy content 
out of a gedric 

spawn content 
as child 

put child back into 
parent gedric 

remMe child 

Figure 2. Gestures for container gedrics. 

novice and expert users without any change of the input 
device as it is the case with keyboard shortcuts for mouse
based systems. They allow a smooth transition between 
different levels of user knowledge about how to access an 
application's functionality. Although the motivation for 
the design of gedrics was a pen-based system, they are suit
able for mouse users, too, because they are also able to in
terpret mouse button events as activate or open com
mands. Thus, gedric-based applications can be used in 
environments of pen- and mouse-driven platforms. 
Data Storage. Container gedrics behave differently than 
~orke_r gedrics. Their repertoire of gestures is quite lim
Ited (fig. 2). Users can copy objects into a container gedric, 
e.g. the content of other gedrics, by pressing the pen on one 
gedric's image and dragging the appearing outline of that 
gedric's content to the image of the destination gedric. 
Whenever data of a container gedric is moved out of the 
gedric area into the application's editing area or vice versa, 
the application creates a copy of that data. 
As an alternative to dragging, copy and paste operations 
can also be performed by tapping on (activating) a contain
er gedric. It then looks for any selection in the editing area 
of the application and if it finds one, that selection is co
pied into its container. If there is no selection at all, the 
gedric produces an outline of its content that is then at
tached to the pen until users tap anywhere to drop the data. 
Although this method is not as intuitive as the first solution 
it is still an increase of interaction speed with nearly the 
same pen movements. 
Parenthood. Another container gedric characteristics is 
the ability to spawn their content as an independent gedric. 
To do ~his, the data that is attached to the pen during a copy 
operauon only has to be dropped somewhere else in the 
gedric area. After that, a new gedric will be created that 
~so displa{~ its content. That child gedric may be copied 
mto the edll.lng area of the application, moved within the 
g.edric area, removed or even put back into its parent ged
nc. It depends on the specific task of the container gedric 
what will happen to its original content if one of its chil
dren is put back. Some merge the child's content with their 
own, others replace their content by that of the child. With 
container g~drics many system features can be implement
ed very easily. One example is a clipboard whose content 
may be set aside. Another is a marker gedric as it is ex
plained in more detail in the following section. 

CUPBOARD (container gedric) 
Stores data; ability to tear off content 

MASTER OF TIME (worker gedric) 
Multiple undo/redo functionality 

DooRKEEPER (container gedric) 
Import/export from/to file system and peripherals 

PINBOARD (container gedric) 
Marking of objects; ability to tear off content 

TYPOGRAPHER (worker gedric) 
M anipulation of font characteristics 

ZOOMER (worker gedric) 
Manipulation of object sizes 

LAYOUTER (worker gedric) 
Reorganization of display objects 

Figure 3. Some design studies of gedric images. 

Examples of Gedrics 
This section provides an overview of gedrics that have 
~ready been designed by our group (fig. 3). Current ged
ncs cover functionality like loading and saving files, print
ing, scanning, editing, scrolling and more. Explanations of 
all of them would exceed the scope of this paper but the 
section provides exemplary descriptions of two gedrics to 
demonstrate the power of the gedric idea. 
Layouter. A gedric that not only supports taps and simple 
strokes but also more complex gestures is the Layouter 
(fig. 4). Imagine an object-oriented drawing program. A 
person selects some of the graphical objects and wants to 
rearr~ge them. The Layouter now offers operations like 
snappmg the objects to a grid, aligning them in several 
ways, and the person is even able to create a table-like lay
out by drawing a number on the gedric that stands for the 
number of columns that should be created. 
Pi.nboard. Imagine a hypertext system (Nielsen, 1990) 
With many nodes containing text and graphics and linked 
~ogether in a n~n-linear way, building a network. A person 
IS browsmg this net and finds interesting nodes for late1 

Q or [:] 

snap selection align selection align selection circular 

ffi ~ '[fi a orB 

align selection vertically align selection horizontally 

[]] [Z] [J] 
format selection as tabular of 

one, two or three columns 
Figure 4. Layouter gestures. 



Gedrics: the next generation of icons 77 

visit. To mark those nodes one has to select them and tap 
on the Pinboard or drag them onto that gedric. The nodes 
are indicated by the application as marked and a formerly 
empty Pin board shows its content. In this way it is possible 
to mark several locations in the net. Later, the person opens 
the Pinboard and it displays its contents in more detail. 
Each of the marked nodes appear as a gedric. The most im
portant marker gedrics may then be dragged to a free place 
in the gedric area where they will appear as independent 
child gedrics. A tap on each of them triggers a jump to the 
corresponding node in the hypertext network. The marker 
gedrics may be removed from the gedric area very easily 
either by dragging them back to the Pinboard where they 
would be merged with the Pinboard contents or crossing 
them out which would delete them. 
IMPLEMENTATION ISSUES 
This section provides a general description of how gedrics 
can be implemented. Although they are also able to handle 
mouse events, the section concentrates on pen input. 
Display Layers 
Conceptually, we differentiate between two display lay
ers: the working layer and the gedric layer (fig. 5). 
+ The working layer is responsible for the recording of 

the pen action, the display of temporary information, 
and the first step of gesture recognition. It behaves like 
a clear film on the display surface. People draw on it, 
their input is interpreted, maybe recognized or just kept 
as scribbles. Every interaction is based on this layer. 

+ The gedric layer is a "deeper" display level. The ged
rics do not have any possibility to react directly to user 
input. They only get second-hand information through 
the transparent working layer. 

Because of this distinction, it is possible to handle user 
input in a very flexible way. Gestures need not start or end 
exactly on the gedric image-the working layer can 
handle sloppiness. In addition, gestures are not restricted 
to be processed by exactly one gedric at a time-they can 
become relevant to more gedrics. 

Gesture Recognition 
The gesture recognition process takes place in two passes. 
The first pass checks the general characteristics of the in
put: whether it is an almost straight line with a specific 
direction and orientation, or a more complex graphical ob
ject. Then, this information is sent to the relevant gedrics 
which have to react according to their gesture understand
ing. The complete process is illustrated in fig. 5: 
+ Whenever the working layer detects a "pen-down" 

event it has to check whether the current pen position 
is on a gedric image or not. If it is, the result would be 
a mode change from "recognize gesture" to "move 
gedric" or "copy and paste gedric's content." These 
procedures are much the same as those for traditional 
icon movement and dragging operations and will not 
be explained any further in this paper. 

+ If the pen is not located on a gedric image, the working 
layer begins to record the following pen movement by 

Figure 5. Gesture recognition process. 

a periodical collection of pen coordinates. Further
more, the recording includes the names of relevant 
gedrics, i.e. whose display areas are touched by the pen 
(those gedrics get highlighted for a moment). As long 
as the pen is still on the surface a line is drawn between 
those recorded points. 

+ A "pen-up" event stops the recording and starts the 
analyzing process. Apart from taps, the working layer 
is able to recognize strokes and a few other shapes. The 
recognized shape is then combined with additional 
data like significant points, e.g. the center of the 
shape's extent. This information is then sent to the next 
process which tries to find out which of the gedrics are 
relevant. 

+ For most shapes the center of their extent is the most 
significant point to analyze. If it is inside the display 
area of a gedric the complete shape information is sent 
to that gedric. If it is not clear which of the gedrics are 
relevant, the working layer does some clipping to the 
borders of the closest gedrics. The clipped shape with 
new significant points is then checked again. If there 
is still no possible gedric found the user input is 
rejected and a message is sent to the error handler. 

+ Finally, each gedric looks up in its internal dictionary 
whether it understands the received shape information 
or not and activates the corresponding operation. At 
this point one can call the user input a gesture with its 
task specific semantics. If there is no known gesture 
received, the application has to decide whether the ges
ture shape should be kept on the display as some kind 
of scribble or not. 

To sum it up, the working layer only recognizes geometri
cal shapes and sends them to the relevant gedrics. Strictly 
speaking, a child gedric, for example, is not removed from 
the display because the user crossed it out but because the 
gedric understood a cross received from the working layer 
as a gesture to call the delete opemtion. 



78 Part Two Research and Theory 

DISCUSSION AND FUTURE WORK 
This paper introduced the concept of gedrics: icons that are 
primarily activated by pen gestures but that are also able 
to understand mouse events. Gedrics offer several differ
ent access strategies to system functionality for novice to 
expert users without any explicit mode change. They com~ 
bine the advantages of icons, pull-down menus and gesture 
input. 
The idea of extending the icon concept is not new. 
Attempts to add more information about the represented 
object have been published as auditory icons (Gaver, 
1989) or as video thumbnails in a loop (motion icons) 
(Br!l)ndmo & Davenport, 1990). Using earcons (Blattner, 
Sumikawa, & Greenberg, 1989) the icon concept was even 
transferred to another medium. But none of these alterna
tives dealt with the aspect of how people interact with 
icons. These 'new' kinds of icons where still objects users 
point to (and click on). Nonetheless, these ideas will 
influence the evolution of gedrics. Future gedrics may be 
completely animated, offer sound as additional feedback, 
or even exist in another medium. 
As mentioned before, even the design of traditional icon 
images may cause some problems and can impede the us
ability of an application. During our design studies of the 
ftrst gedrics it was a problem to fmd an image that is able 
to represent a whole set of operations. Remembering real
world container-like objects helped us to fmd images for 
container gedrics but especially the design of worker ged
ric images is still a challenge. A guideline in this respect 
for us was to think of a representation of the object that has 
to be processed. The Typographer (ftg. 3) that displays a 
plain character and that is able to manipulate font charac
teristics is an example that follows this guideline. 
The majority of currently recognized gestures are stroke
based. The ftrst reasons for this is that strokes as 
geometrical shapes are very easy and fast to process. 
Additionally, in combination with the gedric image 
strokes offer a large variety of possible operations that are 
accessible in a very fast way. More complex gestures not 
only require more pen movements but also more complex 
recognition algorithms that as a consequence usually 
require more processing time. Nevertheless, the repertoire 
of gestures each gedric is able to understand will be 
extended. We are also considering the support of multi
stroke gestures which would allow us, for example, to 
recognize complete question marks (with a dot) as a help 
gesture. 
Gedrics are currently in the test phase. The ftrst prototypes 
are implemented for the Newton™ and the ftrst real 
application software will be a meeting support tool (Streitz 
et al., 1994) that is used in an environment where 
pen-based and mouse-driven platforms (electronic white
boards, personal digital assistants, notebooks, and person
al computers) can be used side by side. Due to the 
limitation of display space on most pen-based systems and 
the fact that the standard meeting situation is familiar to a 
wide range of (non-)computer users, we believe that 
gedrics with their ability to support people with several 
levels of computer experience and their fast access 
methods to application functionality are the right choice 

for this kind of graphically-oriented application. The 
empirical results we will get from evaluating this software 
will then influence both the functionality of the applica
tion and the interface-the next generation of gedrics. 

ACKNOWLEDGEMENTS 
I would like to thank Jorg Haake, Gloria Mark, Ajit Bapat, 
Thomas Knapik, Chris Neuwirth and Norbert Streitz for 
their thoughtful reading of previous drafts and helpful 
comments. 

REFERENCES 
Benbasat, I. & Todd, P. (1993). An experimental investiga

tion of interface design alternatives: icon vs. text 
and direct manipulation vs. menus. Int. J. Man-Ma
chine Studies, 38, 369-402. 

Blattner, M.M., Sumikawa, D.A., & Greenberg, R.M. 
(1989). Earcons and Icons: Their Structure and 
Common Design Principles. Human-Computer In
teraction, Volume 4, 11-44. 

Brjl)ndmo, H.P. & Davenport, G. (1990). Creating and 
viewing the ElasticCharles- a hypermedia journal. 
McAleese, R.; Green, C. (ed.): Hypertext: state of 
the art. Oxford: intellect, 43-51. 

Foley, J.D. & van Dam, A. (1984). Fundamentals of inter
active computer graphics. Reading, MA: Addison
Wesley. 

Gaver, W.W. (1989) The Sonic Finder: An Interface That 
Uses Auditory Icons. Human-Computer Interac
tion, Volume4, 67-94. 

Gittins, D. (1986). Icon-based human-computer interac
tion. Int. J. Man-Machine Studies, 24, 519-543. 

Goldberg, D. & Richardson, C. (1993). Touch-typing With 
a Stylus. lnterCH/'93 Proceedings, 80-87. 

Greenstein, J.S. & Arnaut, L.Y. (1988). Input Devices. He
lander, M. (ed.): Handbook of Human-Computer 
Interaction. North-Holland 

Grodin, J. (1989). The Case Against User-Interface Con
sistency. Communications of the ACM. Vol.32 
No.lO, 1164-1173. 

Kurtenbach, G. & Hulteen, E.A. (1992). Gestures in Hu
man-Computer Communication. Laurel, B. (ed.): 
The Art of Human-Computer Interface Design. 
Reading, MA: Addison-Wesley, 309-317. 

Nielsen, J. (1990). Hypertext and Hypermedia. San Diego: 
Academic Press. 

Raskin, J. (1994). Intuitive equals familiar. Communica
tions of the ACM, Vol.37 No.9, 17-18. 

Smith, D.C. et al. (1982). Designing the Star User Inter
face. Byte, April1982, 242-282. 

Shneiderman, B. (1983). Direct Manipulation: A Step Be
yond Programming Languages. Computer, August 
1983, 57-69. 

Streitz, N.A., GeiBier, J., Haake, J.M. & Hoi, J. (1994). 
DOLPHIN: Integrated Meeting Support across Li
veboards, Local and Remote Desktop Environ
ments. Proceedings ofCSCW'94, 345-358. 

Waterworth, J.A., Chignell, M.H. & Zhai, S.M. (1993). 
From icons to interface models: designing hyper
media from the bottom up. Int. J. Man-Machine 
Studies, 39,453-472. 


