
11 
HOW MANY NOVICES DOES IT TAKE TO MATCH 

THREE EXPERT DESIGNERS? LESSONS FROM AN 
EXERCISE IN PARALLEL DESIGN 

Saila Ovaska and Kari-Jouko Riiihii 

University of Tampere, Department of Computer Science 
P.O. Box 607, FIN-33101 Tampere, Finland 

ov@cs.uta.fi, kjr@cs.uta.fi 

KEYWORDS: Parallel design, Expert and novice designers, Usability engineering 

ABSTRACT: In parallel design, several interface designers work independently on a design 
problem, and produce a set of ideas that can be studied further. In a panel at INTERCHI'93 
three expert designers presented their first designs of a system for selecting and playing 
songs from a remote CD database. We have worked on the same exercise with novice 
designers. We show that also inexperienced interface designers can produce designs with 
many features worth investigating further. By increasing the number of novice designers 
also the number of new design ideas increases, and (in this exercise) finally exceeds the 
number of ideas produced by expert designers. 

INTRODUCTION 

In parallel design [Nielsen, 1993; Nielsen, 1994] sev­
eral designers work simultaneously and independently 
of each other on the first drafts of a user interface. 
Parallel design is a method intended to quickly pro­
duce ideas for a new interface, thus exploring the de­
sign space. The resulting designs give the design 
team an understanding of what is important, and they 
also make it possible to pick one of the designs for 
further development. The main goal is not to spot 
usability errors in designs but to find design ideas 
worth of working on in the future. 

A panel on parallel design was organised by Jakob 
Nielsen and Heather Desurvire [Nielsen and 
Desurvire, 1993] at the INTERCHI'93 conference. 
Three expert designers were given a design problem 
to work on. The designers were asked to produce a 
mock-up design before the conference. The members 
of the panel heuristically evaluated the designs. 

The panel discussion was entertaining, but the de­
signs produced by the experts have not been analyzed 
in detail. An interesting question is how many de­
signers are needed in parallel design to get close to 
saturating the space of good design ideas. 

In other studies [Nielsen, 1992] it has been observed 
that although experts, of course, are better qualified to 
carry out usability engineering tasks, novices can 
also do reasonably well, provided that sufficiently 
many novices are used. Another question that we 
wanted to investigate is whether this also holds for 
parallel design. 

We have used the INTERCHI'93 design exercise 
[Nielsen and Desurvire, 1993] as a student project 
assignment in our HCI class. Here we analyze the 
designs produced by both the experts and our stu­
dents. The results reiterate the value of quantity in 
usability engineering: 

A single designer, expert or no expert, is likely 
to overlook many promising design possibili­
ties. 
Sufficiently many novice designers can come up 
with more good design ideas than a handful of 
experts. 

In the following sections we first briefly describe the 
design problem. Next, the setting for the experiment, 
i.e. the arrangements of our course are described. 
Then the various problematic points of the design 
task are discussed to explain some items in the list of 

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995



68 Part Two Research and Theory 

good or interesting features that we have collected 
from the designs produced. The list is used to 
evaluate the solutions of both experts and novices, 
and the data is used to predict the number of good 
design ideas found by these groups for this particular 
problem. We conclude by discussing why the results 
have to be interpreted with caution and by presenting 
some questions for further study. 

THE REMOTE CD PLAYER ASSIGNMENT 

The task as described in the INTERCID'93 proceed­
ings is to design a remote control panel for a hypo­
thetical CD-player with a jukebox-like functionality 
and over 10 000 discs. The system operates like a 
central database, from which the songs are played via 
a broad band network to a set of speakers at the user's 
workstation. It is possible to select songs by different 
search criteria, and play them. A user can select 

• one song with various artists 
• one artist with various songs 

multiple selections for a certain time interval 
(e.g. 45 minutes of music) 
random songs in a selected genre (by singer, 
musician, or style of music) 

While listening to the music, the user should also be 
able to use the usual CD control buttons like Pause, 
Fast Forward, Skip and Rewind. 

The functionality description as given to the expert 
designers has (on purpose) been left vague by Nielsen 
and Desurvire; they claim that in practice no detailed 
functionality descriptions are available in the first 
place. 

OUR HCI CLASS 

The HCI course taught at our department is patterned 
after one of the model courses presented in the HCI 
Curriculum of ACM [Hewett et al, 1992, Appendix 
E]. The course is mainly intended for second year 
undergraduate students. The prerequisite for the 
course is an introductory course in programming. In 
1993, the course was a required course for all com­
puter science majors. Some of the students were 
more competent as programmers than the average 
second year student; for all of them, though, the 
course was the first one in HCI. 

During the course, the students work in groups of 
one to three persons. In 1993, there were altogether 
35 groups (67 students). The students used the whole 
semester for their designs, contrary to the few days 
that the experts reported in the panel. They carried 
out an assignment in four phases, each phase taking 
three weeks and involving feedback from the course 
assistant. The phases were the following. 

(1) Task analysis: Analysis of a task somehow 
analogous to the CD player problem. The 
method used was (iterative) design and testing of 
a questionnaire. 

(2) Designing of a paper mock-up for the CD player 
problem and usability testing of the mock-up. 

(3) Implementation of a user interface prototype. 
(4) Usability testing of the prototype. Test users 

were observed as they were asked to think aloud 
while carrying out a given set of tasks. Use of 
video equipment was optional. 

We used the same task description (translated into 
Finnish) in our student projects that the experts had. 
The designers were given free choice of implementa­
tion platform; the most popular choices were Tool­
book, HyperCard and Visual Basic. The solutions 
produced by the students evolved through several 
iterations. This paper is based on the last versions of 
their designs. The students did not see the list of 
design features that was prepared for this study. 

ANALYSING THE TASK 

The CD player interface presents several design chal­
lenges. First of all, the user may choose music from 
10 000 discs; she may know what she wants, but 
how should the system show what is available for 
those who have not made up their minds? A database 
containing information on 10 000 discs would in­
clude data of at least 100 000 songs, and the songs 
may be searched with several criteria. Just listing the 
songs in alphabetical order is not sufficient. Design 
choices range from information filters [Loeb, 1992] 
to more conventional query systems. 

A major design decision is how to separate the selec­
tion and play phases. Should the system maintain a 
separate list of what has been currently selected and is 
now playing, and what happens to the play list when 
the user makes another selection - or when a song 
has been played? Typically, the user may make selec­
tions while music is playing; but in this case at least 
two lists are needed: the list from where selections 
can be made, and the play list. Moving data (and con­
trol) between the lists is a delicate matter that needs 
to be studied carefully, and it is partially connected 
with separating the lists into their own windows. 

Another major decision is interaction style, since the 
CD player is planned to be used in a home computer 
environment. In the task description a graphic inter­
action style with mouse was assumed. This can be 
achieved using menus, buttons, or even direct manip­
ulation, or a mix of these interaction styles. 

As the task description allowed various interpreta­
tions of the task, also an extensive functionality can 
be planned. For example, saving play lists and load­
ing them into use, managing time and cost, and sup-



How many novices does it take to match three expert designers? 69 

porting a wider variety of search combinations will 
make the user more content with the system. Some 
of these options (like finding a song with just a 
phrase of its lyrics) may be hard to implement, but 
nevertheless, we have included them as desirable 
design features in our analysis. 

In practice a necessary attribute for searching the 
songs would be the compact disc name. It was not 
mentioned in the task description, perhaps because 
including it makes the interface even more compli­
cated. Some releases even consist of a set of CDs. 

= Music Database IC 

Searched 
Queen : Hammer to fall . 0:03:20 
Queen : Headlong • 0:04:25 

oCo Billy Idol 
oCo Pink Floyd 
-Queen 

Bohemian rhaprody 
F1ienda will be hiendc 

The screen shot above shows one of the better solu­
tions produced during the course. It illustrates one 
further issue that the designer has to decide: how 
should the search space be visualized? One possibility 
is to view it as a set of songs, each with a set of 
attributes. Then solutions such as those used in the 
FilmFinder [Ahlberg and Shneiderman, 1994] could 
be used. Another possibility is to view the search 
space as an hierarchical structure: an artist has 
released a sequence of albums, each containing a 
sequence of songs. This forms what we call a "static" 
hierarchy. The user, however, might be interested in 
another kind of hierarchy: she could start with an 
artist, then select a style, and expect to see a list of 
all songs by the artist in the given style. A 
"dynamic" hierarchy adjusts to the search path of the 
user, and this is exactly what the shown solution 
facilitates. A drawback in the solution above is the 
need to sort the database according to the required 

Selected lillie: 0:07:45 

hierarchy. The list of selected songs is always in the 
same format, though also whole albums and even the 
entire production of an artist may be moved into it 
with a single selection. 

ANALYSIS OF THE DESIGN SOLUTIONS 

To be able to compare the various solutions analyti­
cally, we made a list (presented in the Appendix) of 
all the good or interesting features that came up in 
the solutions. We have tried to include all features 
that are at least worth further consideration. Notably 
bad design features have been omitted from this 
analysis. This is in line with the goal of parallel 
design: the purpose is to come up with food for 
thought in developing the next version. An interface 
that may have serious overall problems but still 
contains some unique bright ideas can be very useful 
for further phases of the design process. 



70 Part Two Research and Theory 

In this respect, our approach is fundamentally differ­
ent from, e.g., that of Bailey [1993], who found that 
human factors experts produced notably better de­
signs than programmers. A comparison of the over­
all quality of expert designs and novice designs 
would have produced a similar result also in our 
case. We do not compare the quality of the designs; 
instead, we are interested in how the group of 
novices can collectively help in parallel design. 

Altogether, our list of interesting design features 
contains 67 design ideas - a considerable number in 
view of the relatively limited functionality. Obvi­
ously, some design choices are mutually exclusive: a 
search list, for instance, cannot be simultaneously 
presented as a flat list and as a hierarchy. Therefore it 
is impossible for any single design to incorporate all 
the features in the list. 

How did the designs fare? The variance was high in 
both groups. For the expert designs, the scores 
(number of interesting features appearing in the de­
signs) were 16, 20, and 26. For the student designs, 

60 

50 
rn 
~ 
:::l 
tO 
2 

40 

c: 
Cl 

"iii 30 (]) 
"0 

0 
Q; 

20 .0 
E 
:::l 
z 

10 

0 

the scores varied between 9 and 24. It is interesting 
that quite a few student designs scored 20 or more, 
which is quite good when compared to the expert 
designs. On the other hand, 9 is a really low score -
in some cases the list contains all possible design 
choices, so any design will automatically score a few 
points. 

The first conclusion to be drawn from this is the one 
familiar from other contexts in usability engineer­
ing: never trust a single opinion. The really interest­
ing questions are: 

how many parallel designs should be carried out 
to produce a large percentage of the useful 
design ideas; and 
how much does the experience of the designers 
affect this number. 

In the following diagram we present the number of 
good design features that can be expected to appear in 
at least one design, when the number of parallel 
designs grows. 

• Experts 

e Novices 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 

Number of design teams 

First of all, we observe that the designs produced by 
the experts were radically different. The slope of the 
curve is steep, and taken together, the designs of the 
three experts exhibit 51 of the 67 features. On the 
other hand, the novices were thus able to come up 
with 16 good ideas that did not appear in any of the 
expert designs. Inversely, the experts suggested 8 
ideas that did not appear in any student designs. 

It is remarkable that the expected value for just two 
novices is greater than that for a single expert! From 
there on the novice curve grows slowly, as could be 
expected. The expected value of 51 features for three 
experts is matched when the number of novices 
exceeds 16. 



How many novices does it take to match three expert designers? 71 

DISCUSSION 

There are many reasons why the results obtained in 
this study should be considered critically, and why 
more similar experiments are needed to produce re­
sults that can be generalized. 

The two groups approached the problem differently. 
The experts had other commitments and could spend 
only from a couple of days to perhaps a few weeks 
on the assignment. The students, on the other hand, 
worked with the assignment for almost three months 
and carried out at least two usability evaluations. 
However, we feel that this somewhat compensates 
for the fact that the students were really complete 
novices to interface design. The majority had never 
designed an interface before. In reality, one would 
expect even novices working in a parallel design 
project to have at least a basic training in interface 
design. 

The fact that the students carried out usability evalu­
ations also matches the goals of parallel design: it 
should represent one (and only one [Nielsen and 
Bergman, 1993]) step in the iterative design process. 
It is a commonly accepted principle that each itera­
tive design phase should include usability evalua­
tion. 

It can also be argued that the expert designers were 
asked to produce one complete design. They were not 
asked to list possible features of the interface. They 
can, in principle, have considered some features on 
our list and abandoned them for some reason. The 
same is true, of course, for the novice designers. In 
our evaluation of the various designs, we have not 
relied solely on the proposed interfaces. We have 
also counted features that have been discussed by the 
designers but not included in the interface. We esti­
mate that in this respect, neither group has benefited 
more than the other. On the other hand, the fact that 
the students had to implement a prototype could bias 
our analysis in favor of the experts. The students 
may have silently omitted some design ideas as too 
hard to implement. 

The list of interesting design features used in the 
analysis is unavoidably somewhat subjective. More­
over, the features are of varying importance, ranging 
from details of visualization to fundamental design 
decisions. It is noteworthy, though, that both groups 
- experts and students - could come up with minor 
and major ideas not discovered by the other group. 

The way that the analysis is presented may give the 
impression that we look at interface design as a 
competition in featurism. This, of course, is not our 
intention. A good interface is more than just a 
collection of nice features. For the next phase of the 
iterative design process, there were not many student 

solutions that could have competed with the best 
expert solutions from the status of the interface that 
is the basis for the next development phase. But 
again it is interesting that a couple of the best stu­
dent solutions were on a par with the expert solu­
tions. 

These reservations notwithstanding, some observa­
tions can be made safely. 

In parallel design, as in most usability engineer­
ing methods, it is necessary to use at least a 
couple of subjects- in this case, designers. 
To some extent, substituting quality with quan­
tity is possible: a sufficiently large number of 
novices can produce most of the design ideas 
generated by a few experts. In this experiment, 
the number of novices required was reasonable 
and in line with similar results obtained in 
studying usability inspection methods. 

FURTHER WORK 

This exercise was repeated in 1994 with a new slate 
of students [Ovaska and Raiha, 1995], with an 
interesting result: the number of expected design 
features grew more slowly than in the study 
described here. It could be expected that since we 
were ourselves more familiar with the problem, the 
students would receive different tutoring than the pre­
vious group. Moreover, the course is not a required 
course any more (very few of our courses are), so in 
1994 there were only 22 groups, not 35 as in 1993. 

There are several interesting directions to which we 
could take our study from here. For instance, how 
can we know what is a good design feature, and in 
particular, how well can the designers recognize 
those features? Another issue worth further study is 
the effect that the chosen prototyping tool might 
have on the existence of good design ideas in the so­
lutions. 

ACKNOWLEDGEMENTS 

We owe a lot to the students that made this paper 
possible by working hard with the design and imple­
mentation of their prototypes. We all learned from 
this experience. We would also like to thank the ex­
pert designers of the INTERCHI panel: Randy Kerr, 
Dan Rosenberg, and Gitta Salomon, for kindly shar­
ing with us their panel presentation material, and the 
panel moderator, Jakob Nielsen, for providing us 
with the complete assignment given to the designers 
(a slightly extended version of the one printed in the 
proceedings). 



72 Part Two Research and Theory 

REFERENCES 

[Ahlberg and Shneiderman, 1994] Christopher 
Ahlberg and Ben Shneiderman, The Alphaslider: 
A Compact and Rapid Selector. Proceedings of 
CHI'94, 365-371. 

[Bailey, 1993] Gregg (Skip) Bailey, Iterative 
Methodology and Designer Training in Human­
Computer Interface Design. Proceedings of 
INTERCHI'93, 198-205. 

[Hewett et al, 1992] Tom Hewett et at, ACM 
SIGCHI Curricula for Human-Computer Inter­
action. ACM Press, 1992. 

[Loeb, 1992] Shoshana Loeb, Architecting Person­
alized Delivery of Multimedia Information. 
Comm. ACM 35:12 (December 1992), 39-48. 

[Nielsen, 1992] Jakob Nielsen, Finding Usability 
Problems Through Heuristic Evaluation. Pro­
ceedings of CHI'92, 373-380. 

[Nielsen and Bergman, 1993] Jakob Nielsen and 
Marco G. P. Bergman, Independent Iterative De­
sign: A Method That Didn't Work. Manuscript, 
1993. 

[Nielsen and Desurvire, 1993] Jakob Nielsen and 
Heather Desurvire, Comparative Design Review: 
An Exercise in Parallel Design (Panel). Proceed­
ings ofiNTERCHI'93, 414-417. 

[Nielsen, 1993] Jakob Nielsen, Usability Engineer­
ing. Academic Press, 1993. 

[Nielsen, 1994] Jakob Nielsen, Diversified Parallel 
Design: Contrasting Design Approaches (Panel). 
Proceedings of CHI'94 (Conference Companion), 
179-180. 

[Ovaska and Raiha, 1995] Saila Ovaska and Kari­
Jouko Raiha, Parallel Design in the Classroom. 
Short paper to be presented at CHI'95. 

APPENDIX. THE LIST OF DESIGN FEATURES 

Few windows (simple navigation) 
Search criteria 

search by lyrics I era I substring of title I 
album I composer I lyricist I origin 

Entering search conditions 
from a menu or list I from an adjusting list 
(type-ahead) I by typing 
names can appear in either order 

Search method 
search list appearing after entering of one 
attribute I all attributes I arbitrary combination 
of attributes 

possibility to enter multiple choices for one 
attribute 

Manipulation of search list 
manual selection I subset selection for given 
duration I selection of given number of songs 
I selection of most popular songs I selection 
of all songs in list 
possibility to sort the list 

• possibility to gather selections together 
possibility to expand and collapse hierarchies 

• fast sampling of songs 

Presentation of search list 
selected songs highlighted I selected songs 
marked with checkmark I separate list of 
selected songs (for transfer into play list) 
as strings on a line I as a list with fields in 
columns I as a static hierarchical structure I as 
a dynamic hierarchical structure 

• duration of each song visible 
• duration of selection visible 
Handling of search and play lists 
• separate search and play list 

several lists open simultaneously 
searching possible while music is playing 

Transfer from search list to play list 
by pressing a button I drag and drop I by 
clicking or doubleclicking 

Manipulation of play list 
possibility to shuffle the play list I to remove 
songs from play list I to move songs to new 
positions in the play list I to name and store 
the play list I to clear the p1aylist 
played songs removed automatically 

Presentation of play list 
• duration of each song visible 
• current song shown separately 

costs visible 
Control of play 
• start by using a button I by doubleclicking I 

by a menu command 
• extensive I simple (easy to use) 
• automatic repetition of play 

random play 
Visualization 
• display of CD cover 

play list as personal CD 
• play mode as CD player 
Error messages 
• user generated errors not possible I as standard 

error messages I as synthesized speech I as 
non-speech audio 

Miscellaneous 
possibility to name and store the state of the 
system 

• expandability to other media 
additional information about songs available 
lyrics visible 


