
Chapter 8
Models for HIV/AIDS

8.1 Introduction

Acquired immunodeficiency syndrome (AIDS) was first identified as a new disease
in the homosexual community in San Francisco in 1981. The human immunod-
eficiency virus (HIV) was identified as the causative agent for AIDS in 1983.
The disease has several very unusual aspects. After the initial infection, there
are symptoms, including headaches and fever for 2 or 3 weeks. Transmissibility
is high for about 2 months, and then there is a very long latent period during
which transmissibility is low. At the end of this latent period, which may last 10
years, transmissibility rises, signaling the development of full-blown AIDS. In the
absence of treatment, AIDS is invariably fatal. Now, HIV can be treated with a
combination of highly active antiretroviral therapy (HAART) drugs, which both
reduce the symptoms and prolong the period of low infectivity. While there is still
no cure for AIDS, treatment has made it no longer a necessarily fatal disease. To
describe the variation of infectivity for HIV, one possibility would be to use a
staged progression model, with multiple infective stages having different infectivity.
Another possibility would be to use an age of infection model.

HIV is transmitted in many ways, the most common of which are sexual
contact, either heterosexual or homosexual, shared drug injection needles, and
contaminated blood transfusions. Vertical transmission from mother to child is also
possible. In the past, transfusions of contaminated blood were another source of
disease transmission, but in developed countries screening of blood since 1985 has
eliminated blood transfusions as a transmission mode.

A full model for HIV/AIDS should include a variety of transmission modes, and
might take into account of many factors including the level of sexual activity, drug
use, condom use, and the sexual contact network, resulting in large scale systems
with many parameters that need to be estimated from data. Models were developed
first for homosexual transmission. In this chapter, we will consider not only models
for disease transmission in a homosexual community (the current terminology is
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men having sex with men, or MSM), but also models that include heterosexual
transmission through female sex workers. We also consider modes that include the
joint disease dynamics of HIV and TB and the synergy between HIV and HSV-2.

The identification of the human immunodeficiency virus [11, 55, 56, 58, 107]
captured the attention of theoreticians and modelers as AIDS became one of the
most feared diseases nearly three decades ago. Most of the initial modeling contri-
butions focused on the study of the transmission dynamics of HIV at the population
level since little was known about the epidemiology of HIV and, as expected,
modeling was carried out first under simple settings and crude assumptions [3–
7, 10, 19, 26, 32–35, 46, 48, 49, 57, 59, 65, 67–71, 75, 76, 79, 81, 88, 95–97, 102, 103].
An overview of the “state of the art” on the transmission dynamics of HIV modeling
in the 1980’s is found in [30], the review papers [97, 99], or in the books [8, 30, 63].

The modeling studies in [32–35, 67, 102, 103] focused on the impact that changes
in the pool of susceptibles, disease-induced mortality, heterogeneous mixing,
vertical transmission, asymptomatic carriers, variable infectivity, and incubation
(or latent) and infective periods may have on the dynamics of sexually transmitted
HIV. Efforts to model the risk of infection from sexual partner selection or from
within and between group mixing became central to the research of various
groups studying HIV dynamics. Other studies focused on the role of gender, core
populations, and heterogenous mixing contact rates on HIV dynamics. These were
naturally involved in the development of sexual-behavior surveys and data collection
on sexual and “dating” activity, as well as on the mathematical modeling and
analysis of heterogenous “mixing” frameworks (see [20, 21, 23, 24, 27, 28, 36–
39, 41, 47, 78, 93]). The overview in [83] highlights the potential role of sexual
activity and drinking on the dynamics of STDs [47, 65, 66, 93] and while the
adaptive dynamics generated by changing behaviors in response, to a multitude of
factors, were rarely explored, some earlier attempts were also carried out as a result
of the HIV pandemic [22, 60].

As described in these historical papers [3–5], knowledge of these periods was
quickly identified as critical to the initial efforts to predict the dynamics of HIV.
In [35] it is observed that: “The duration of the latent period is thought to be a
few days to a few weeks [3–5], and while the duration of the infectious period is
not yet known, those individuals that develop full-blown AIDS have an average
incubation period estimated variously at 35–47 months [88], 66 months [3], and as
high as 96 months [81].” This estimate is continually being revised as information
and experience accumulate. However, even the most conservative estimate suggests
that it may be reasonable to approximate the infectious period by the incubation
period; that is, to assume a negligible latent period. Pickering et al. [88] stress that
the ability to transmit HIV is not constant, as individuals are most infectious 3–16
months following exposure, and recent studies [58, 77, 94] report the existence of
two peaks of infectiousness, one taking place a few weeks after exposure and the
other before the onset of “full-blown” AIDS.

In the context of the dynamics of a homosexually-active homogeneously-mixing
population, the reproduction number is given by R0 = λC(T )D, where λ denotes
the probability of transmission per partner, C(T ) the mean number of sexual
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partners an average individual has per unit time when the population density is
T , and D the death-adjusted mean infective period (see [35]). Since HIV is a
slow disease, if R0 ≤ 1 it will die out while if R0 ≥ 1 it will persist in the
presence of a small number of infected/infective individuals. The mathematical
analysis and numerical simulations in [35] suggest that whenever the incubation
period distribution is exponential the reproduction number R0 is a global bifurcation
parameter (transcritical bifurcation), that is, as R0 crosses 1 a global transfer of
stability from the disease-free state to the endemic equilibrium takes place, and vice
versa. Local results do not depend on the distribution of times spent in the infective
categories (the survivorship functions). Keeping a suite of parameters fixed [35]
allowed for the comparison of the exponential incubation period distribution versus
a piecewise constant survivorship (individuals remain infective for a fixed length
of time). It was found that for “. . . some realistic parameters we can see (at least
in these cases) that the reproduction numbers corresponding to these two extreme
cases do not differ by more than 18% whenever the two distributions have the same
mean [35].”

The inclusion of heterogeneity via the introduction of a large number of
subgroups limited the forecasting capability of these models due to factors that
included increased levels of uncertainty (more parameters). The use of multi-
group models raised the expected modeling and parameter estimation challenges
[20, 21, 23, 24, 27, 28, 36–38, 41, 65, 66, 93]. In addition, the analyses of some of
these models generated novel dynamic behavior, questioning, possibly for the first
time in epidemiology, the centrality of the role of the basic reproduction number
in the identification and development of control, or education, or intervention
measures. For example, the natural asymmetry present in disease transmission as
a result of prevalent alternative modes of sexual engagement proved to be capable
of giving rise to the existence of multiple equilibria [33, 34, 67]; an unexpected
outcome at that time.

8.2 A Model with Exponential Waiting Times

A single homosexually-active population is divided into three classes. S denoting
the number of susceptible individuals, I infective individuals, and A former I -
individuals who have developed full-blown AIDS (see Fig. 8.9). We assume that all
HIV-infected individuals will eventually develop full-blown AIDS (unless they die
first from other causes). This, unfortunately, may be the most realistic as evidence
accumulates that AIDS is a progressive disease. Later, we will suggest a project to
develop a model under the assumption that some fraction of infected individuals
will escape progression to full-blown AIDS. Originally, a latent class (i.e., those
exposed individuals that are not yet infectious) was not included because it was
believed then that the time spent in that class is short. It is further assumed that
individuals who develop full-blown AIDS are no longer actively infective, that is,
that they have no sexual contacts; it is also assumed that infected individuals become
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infective immediately. Finally, it is assumed that infective individuals acquire AIDS
at the constant rate αI per unit time and become sexually inactive at the constant
rate α per unit time. Therefore, 1/(μ + αI ) gives the mean incubation period and
1/(μ + α) gives the mean sexual life expectancy.

The introduction of the model requires additional definitions. Λ will denote the
constant recruitment rate into the susceptible class (individuals who are sexually
active); μ the constant per-capita natural mortality rate; d the per-capita constant
disease-induced mortality due to AIDS. The function C(T ) models the mean
number of sexual partners an average individual has per unit time when the
population density is T ; λ (a constant) denotes the average sexual risk per infected
partner; λ is often thought as the product iφ [68], where φ is the average number
of contacts per sexual partner and i the conditional probability of infection from
a sexual contact when the latter is infected. Kingsley et al. [72] had presented (not
surprising) evidence that the probability of seroconversion (infection) increases with
the number of infected sexual partners. Hence, λC(T ) models the transmission rate
per unit time per infected partner when the size of the sexually active population
is T . Using the modeling framework published in [3, 4] with the help of Fig. 8.1,
we arrive at the following epidemiological model [35] for sexually transmitted HIV
under the assumption of exponential waiting times in the infection classes.

dS(t)

dt
= Λ − λC(T (t))

S(t)I (t)

T (t)
− μS(t)

dI (t)

dt
= λC(T (t))

S(t)I (t)

T (t)
− (αI + μ)I (t) (8.1)

dA(t)

dt
= αI I (t) − (α + μ)A(t)

where

T = I + S. (8.2)

The fraction I/T can be thought of as representing the fraction of contacts that
a susceptible individual has with a randomly selected infective individual. Here
λC(T )SI/T denotes the number of newly-infected individuals per unit time since

Λ

μ μ μ

αI

d
λC(T )S

I

T
AIS

Fig. 8.1 Flow diagram: single group model in the case when all infected people will progress to
AIDS
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individuals in classes A are sexually inactive. A plausible assumption for modeling
C(T ) would be to assume that it is approximately linear for small T approaching
a saturation level for large values of T [62]. Here, it is assumed that C(T ) is a
differentiable and increasing function of T (except when noted). Anderson et. al. [4]
observe that C(T ), the mean number of sexual partners per unit time, underestimates
the importance of highly active individuals and that consequently, modifications
should be made to this framework in order to properly account for their role.

The analysis of the system (8.1) found in [35] makes the following assumptions
concerning C(T ):

C(T ) > 0, C′(T ) ≥ 0, (8.3)

with prime denoting the derivative with respect to T . The dynamics of S and I are
independent of A (by construction). The system is well-posed, that is, if S(0) ≥ 0,
I (0) ≥ 0, A(0) ≥ 0 then a unique solution exists with S(t) ≥ 0, I (t) ≥ 0, A(t) ≥ 0
for t ≥ 0.

As it is the case with most of the epidemiological systems addressed in this book,
system (8.1) always has the disease-free equilibrium given by

(S, I, A) =
(

Λ

μ
, 0, 0

)
, (8.4)

and under certain assumptions it also supports a unique endemic equilibrium.
The stability of the disease-free equilibrium (8.4) is determined by the non-

dimensional ratio

R0 = λ

(
1

σI

)
C

(
Λ

μ

)
, (8.5)

that is, by the basic reproduction number. In the definition of R0, σI = αI + μ,
and R0 denotes the number of secondary infections generated by a single infective
individual in a population of susceptibles at a demographic steady state. R0 is given
by the product of the three factors (epidemiological parameters): λ (the probability
of transmission per partner), C(Λ/μ) (the mean number of sexual partners that an
average susceptible individual has per unit time when everybody in the population
is susceptible), and

D =
(

1

σI

)
. (8.6)

The death-adjusted mean infective period is D = DI with DI denoting the death-
adjusted mean infectious period 1/σI of the I class. The use of the dimensionless
ratio, R0 = λC(Λ/μ)D leads to the following result [35]:

Theorem 8.1 If R0 < 1 then the equilibrium (Λ/μ, 0, 0) of the system (8.1) is
globally asymptotically stable.
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That is, every solution of (8.1) (S(t), I (t), A(t)) with S(0) ≥ 0, I (0) ≥ 0,
A(0) ≥ 0 tends to (Λ/μ, 0, 0) as t → +∞. That is, the condition R0 ≤ 1 is
sufficient to guarantee that the disease will eventually die out in this population.

An endemic equilibrium (S∗, I ∗, A∗) of (8.1) satisfies

Λ =
[
Λ − μS∗

σI

− μ

]
S∗, I ∗ = Λ − μS∗

αI + μ
, A∗ = αI

αI + μ
I ∗.

In [35] it has also been established (following some of the same arguments used in
other chapters) that:

Theorem 8.2 If R0 > 1, there is a unique endemic equilibrium (S∗, I ∗, A∗),
which is locally asymptotically stable, and the disease-free state (Λ/μ, 0, 0) is
unstable.

We can summarize the situation (full details of all proofs are in [35]) as follows:
The disease-free state of system (8.1) is globally asymptotically stable when R0 > 1
and unstable if R0 > 1. When R0 > 1, this system has a unique locally
asymptotically stable endemic equilibrium. There is a transfer of stability to the
endemic state as R0 crosses one. Further, when R0 > 1 it was shown, as one would
expect, that the endemic equilibrium is also globally asymptotically stable.

The reproduction number (R0) increases proportionately with the transmission
probability and the average number of sexual partners; it may also increase in
proportion to the rate of recruitment of individuals to the susceptible class through
C(T ). R0 is an increasing function of the mean infective period D and may be a
decreasing function of the mortality rate (depending on the functional expression
for C(T )).

8.3 An HIV Model with Arbitrary Incubation Period
Distributions

The use of exponential waiting distributions in the I class corresponds to the
requirement that the per-capita removal rate from the I class (by the development
of full-blown AIDS symptoms) into the A class is constant. It would be clearly
an improvement in the model of Sect. 8.2 if we were to move from constant to
variable removal rates and this is what we do in this section (the ideas follow
those in [19, 35]). Hence, it is still assumed that individuals become immediately
infective (that is, we continue to neglect the latent period) and continue to divide the
at risk population into the three classes: S, I , and A. The parameters λ = iφ, Λ,
μ, d, and p have the same meaning as in Sect. 8.2; however, the removal rates are
modified through the introduction of the function PI (s) representing the proportion
of individuals who become I−infective at time t and that, if alive, are still infective
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at time t +s (survive as infective). The survivorship function PI is non-negative and
non-increasing, and PI (0) = 1. It is further assumed that

∫ ∞

0
PI (s)ds < ∞,

and thus, −ṖI (x) is the rate of removal of individuals from the class I into the class
A, x time units after infection.

The number of new infections occurring at time x is λC(T (x)S(x)I (x)/T (x)

where we have kept the meaning of C(T ), I , and T as in Sect. 8.2. The rate of
change in the susceptible class is given now by the expression:

dS(t)

dt
= Λ − λC(T (t))S(t)

I (t)

T (t)
− μS(t), (8.7)

with
∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(t−x)PI (t − x)dx

representing the number of individuals who have been infected from time 0 to t and
are still in class I . The discount factor exp(−μ(t − x)) takes into account removals
due to deaths by natural causes (not HIV). Hence, if I0(t) denotes individuals in
class I at time t = 0 that are still infective at time t then the total number of
infectives at time t is given by

I (t) = I0(t) +
∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(t−x)PI (t − x)dx, (8.8)

where I0(t) is assumed (for biological and mathematical reasons) to have compact
support (vanishing for large enough t).

The expression for A(t) turns out to be the sum of three terms: A0e
−(μ+d)t , where

A0 = A(0), representing individuals who had full-blown AIDS at time zero and are
still alive; A0(t) representing individuals initially in class I who moved into class
A and are still alive at time t ; and those who joined the I class after time t = 0 (see
below). We assume that A0(t) approaches zero as t approaches infinity. The term
representing infected individuals “born” after time t = 0 is given by

∫ τ

0

{∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(τ−x)[−ṖI (τ − x)e−(μ+d)(t−τ)]dx

}
dτ,

where −ṖI (τ − x), denotes the rate of removal from the class I at time τ or (τ − x)

units after infection. Therefore

A(t) =p

∫ τ

0

{∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(t−x)[−ṖA(τ − x)e−(t−τ)]dx

}
dτ

+ A0e
−(μ+d)t + A0(t). (8.9)
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The model given by equations (8.7) is a system of nonlinear integral equations.
The standard results on well-posedness for these systems, as found in [82] guarantee
the existence and uniqueness of solutions and their continuous dependence on
parameters. The proof of positivity is given in [32].

The basic reproduction number R0) of the system (8.7) is given by

R0 = λC

(
Λ

μ

)∫ ∞

0
PI (x)e−μxdx, (8.10)

where
∫ ∞

0
PI (x)e−μxdx,

is the death-adjusted mean infective period, D. If PI (x) = e−αI x then (8.10) reduces
to (8.5). We also observe that as before

DI =
∫ ∞

0
PI (s)e

−μsds

denotes the mean infective periods of the class I .
System (8.7) with I0(t) = 0 always has the equilibrium

(S, I ) =
(

Λ

μ
, 0

)
, (8.11)

but no other constant solutions. However, since I0(t) must be zero for large t , one
would expect, under appropriate assumptions, that (Λ/μ, 0) will be an attractor or
“asymptotic equilibrium” as t → +∞. The following results have been shown in
[32, 35].

Theorem 8.3 The infection-free state (Λ/μ, 0) of the limiting system (8.7) is a
global attractor; that is, limt→+∞(S(t), I (t)) = (Λ/μ, 0) for any positive solution
of system (8.7) as long as R0 ≤ 1.

Theorem 8.4 The infection-free state of system (8.7) is unstable when R0 > 1 and
there exists a constant W ∗ > 0, such that, any positive solution (S(t), I (t)) of (8.7)
satisfies lim supt→+∞ I (t) ≥ W ∗.

In other words, if R0 > 1 the disease-free state (8.4) cannot be an attractor of any
positive solution. That is, every solution has at least approximately W ∗ infectives
(this W ∗ is the same as that in the statement of Theorem 8.5 below) for a sequence
of times t tending to +∞ and if S(t), I (t) approach nonzero constants as t → +∞,
when R0 > 1 then the results in [82] guarantee that these constants must satisfy
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the limiting system associated with (8.7), which is given by the following set of
equations:

dS

dt
= Λ − λC(T (t))S(t)

I (t)

T (t)
− μS(t) (8.12)

I (t) =
∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(t−x)PI (t − x)dx.

The limiting system (8.12) is an autonomous system for which we have
established the following result:

Theorem 8.5 If R0 > 1 the limiting system (8.12) has a unique positive equilib-
rium S∗, I ∗. If in addition (d/dT )(C(T )/T ) ≤ 0, then this endemic equilibrium is
locally asymptotic.

Theorem 8.5 indicates that there is a switch of stability from (Λ/μ, 0) to (S∗, I ∗)
as R0 crosses 1. We also conjecture but have not proved that the asymptotic
dynamics of system (8.7) and the limiting system (8.12) agree. An alternative
approach can be found in [61]. The proofs of these results can be found in [35].

8.4 An Age of Infection Model

The model presented here is developed in [103]. We consider a homogeneously-
mixing male homosexual population with infected members stratified by infection
age (time since having been infected). We divide the population into three com-
partments: S (uninfected, but susceptible), I (HIV infected but with minimal or no
symptoms), and A (fully developed AIDS). We assume members of the class A are
no longer sexually active, and we let T = S + I be the size of the sexually active
population.

We let t denote time and τ denote age of infection, and we stratify the infected
population by writing

I (t) =
∫ ∞

0
i(t, τ )dτ,

where i(t, τ ) denotes the infection age density at time t . We assume:

• the mean number of sexual contacts per individual in unit time is a,
• there is a mean transmission rate λ(τ) at which a typical susceptible individual

contracts the infection by contact with an infected individual of infection age τ ,
• there is a rate α(τ) of leaving the sexually active population (because of

progression to AIDS) that depends on the age of infection,
• there is a constant rate of recruitment Λ into the sexually active population,
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• there is a constant rate μ of departure of uninfected members from the sexually
active population,

• there is a constant death rate ν from full-blown AIDS.

Under these assumptions, the fraction of members remaining in the class I τ time
units after having been infected is

P(τ) = e−μτ−∫ τ
0 α(σ)dσ .

Then

i(t, τ ) = i(t − τ, 0)P (τ).

We define the total infectivity at time t ,

W(t) = W0(t) +
∫ t

0
λ(τ)i(t, τ )dτ = W0(t) +

∫ t

0
λ(τ)i(t − τ, 0)P (τ)dτ,

where W0(t) is the infectivity at time t of those individuals who were infected at
time t = 0. Then the rate of new infections in unit time is

B(t) = i(t, 0) = a
S(t)

T (t)
W(t),

and

W(t) = W0(t) +
∫ t

0
λ(τ)P (τ)B(t − τ)dτ.

We will take a to be constant, but one could assume more generally that a is a
function of the total sexually active population size T .

These assumptions lead to the model

S′(t) = Λ − B(t) − μS(t)

W(t) = W0(t) +
∫ t

0
λ(τ)P (τ)B(t − τ)dτ (8.13)

B(t) = a
S(t)

T (t)
W(t)

I (t) = I0(t) +
∫ t

0
B(t − τ)P (τ)dτ.
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Since we wish to study equilibria and their stability, we consider the limit system
of (8.13), namely

S′(t) = Λ − B(t) − μS(t)

W(t) =
∫ ∞

0
λ(τ)P (τ)B(t − τ)dτ (8.14)

B(t) = a
S(t)

T (t)
W(t)

I (t) =
∫ ∞

0
B(t − τ)P (τ)dτ.

In order to obtain an expression for the number of active AIDS cases, not part
of the model since individuals in the class A are assumed not to have any further
sexual contacts, but included because it provides a relation that may be compared
with data, we differentiate the equation

I (t) =
∫ t

0
B(s)P (t − s)ds

of (8.14), using

P ′(u) = −[μ + α(u)]P(u).

We obtain

I ′(t) = B(t) − μI (t) −
∫ t

0
B(s)α(t − s)P (t − s)ds.

The input to the AIDS class A is

∫ t

0
B(s)α(t − s)P (t − s)ds.

Thus the number of active AIDS cases is given by

A′(t) =
∫ ∞

0
α(t − s)P (t − s)B(s)ds − νA(t).

Analysis of the model (8.14) would be considerably simpler if we had assumed
mass action incidence rather than standard incidence, because use of standard
incidence brings T (t) = S(t)+I (t) into the model. However, mass action incidence
is much less plausible for sexual transmission models than standard incidence. For
the model it is not difficult to show that the basic reproduction number is given by

R0 = a

∫ ∞

0
λ(τ)P (τ)dτ,
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and that there is a disease-free equilibrium S = Λ/μ, I + B = W = 0 which
is asymptotically stable if R0 < 1. Calculation of the endemic equilibrium is
more difficult, but it is possible to show that there is an endemic equilibrium that
is asymptotically stable at least for values of R0 larger than 1 but close to 1. For
larger values of R0 the endemic equilibrium may be unstable, and there may be a
Hopf bifurcation [64] and sustained oscillatory solutions of the model.

8.5 *HIV and Tuberculosis: Dynamics of Coinfections

HIV diminishes the ability of the immune system to respond to invasions by
infectious agents such as M. tuberculosis. Furthermore, as HIV infection progresses,
immunity often declines with patients becoming more susceptible to typical or rare
infections. In wealthier societies HIV and TB treatments are common; these drugs
have altered significantly the joint dynamics of TB and HIV.

The modeling literature on the independent dynamics of HIV or TB is quite
extensive. TB efforts include, for example, [9, 18, 40, 42, 43, 50, 51, 89] while
HIV/AIDS include [31, 63, 80, 103] to name a few more. TB/HIV coinfection
modeling efforts have also been published. Kirschner [73] developed an immuno-
logical model describing HIV-1 and TB coinfections within a host. Naresh et al. [86]
introduced a model involving a population sub-divided into four epidemiological
classes: susceptible, TB infective, HIV infective, and those with AIDS; a model
focusing on the transmission dynamics of HIV and treatable TB in variable size
populations. Schulzer et al. [101] looked at HIV/TB joint dynamics using actuarial
methods. West and Thompson [105] introduced models for the joint dynamics of
HIV and TB that were explored via numerical simulations; their main goal was to
estimate parameters and use their estimates to forecast the future transmission of
TB in the United States. Porco et al. [90] looked, using a discrete event simulation
model, at the impact of HIV on the probability and expected severity of TB
outbreaks. Additional efforts include those in [91, 98].

A system of differential equations is used in [92] to model the joint dynamics
of TB and HIV. The total population is divided into the following epidemiological
subgroups: S, susceptible; L, latent with TB; I , infectious with TB; T , successfully
treated with TB; J1, HIV infectious; J2, HIV infectious and TB latent; J3, infectious
with both TB and HIV; and A, “full-blown” AIDS. The compartmental diagram in
Fig. 8.2 illustrates the flow of individuals as they face the possibility of acquiring
specific-disease infections or even coinfections.

The TB/HIV model is given by the following systems of eight ordinary differen-
tial equations:
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Fig. 8.2 Transition diagram between classes for the dynamics of TB and HIV coinfections. The
force of infection for TB is λT = c(I +J3)/N , and the force of infection for HIV is λH = σJ ∗/R,
where J ∗ = J1 + J2 + J3

TB :

dS

dt
= Λ − cS

I + J3

N
− σS

J ∗

R
− μS

dL

dt
= c(S + T )

I + J3

N
− σL

J ∗

R
− (μ + k + r1)L

dI

dt
= kL − (μ + d + r2)I

dT

dt
= r1L + r2I − cT

I + J3

N
− σT

J ∗

R
− μT,

(8.15a)

HIV :

dJ1

dt
= σ(S + T )

J ∗

R
− cJ1

I + J3

N
− (α1 + μ)J1 + r∗J2

dJ2

dt
= σL

J ∗

R
+ cJ1

I + J3

N
− (α2 + μ + k∗ + r∗)J2

dJ3

dt
= k∗J2 − (α3 + μ + d∗)J3

dA

dt
= α1J1 + α2J2 + α3J3 − (μ + f )A,

(8.15b)
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Table 8.1 Definition of parameters and state variables used in the TB/HIV model (8.15)

Symbol Definition

N Total population

R Total active population (= N − I − J3 − A = S + L + T + J1 + J2)

J ∗ Individuals with HIV who have not developed AIDS (= J1 + J2 + J3)

Λ Constant recruitment rate

c Transmission rate of TB

σ Transmission rate of HIV

μ Per-capita natural death rate

k Per-capita TB progression rate for individuals not infected with HIV

k∗ Per-capita TB progression rate for individuals infected also with HIV

d Per-capita TB-induced death rate

d∗ Per-capita HIV-induced death rate

f Per-capita AIDS-induced death rate

r1 Per-capita latent TB treatment rate for individuals with no HIV

r2 Per-capita active TB treatment rate for individuals with no HIV

r∗ Per-capita latent TB treatment rate for individuals with also HIV

αi Per-capita AIDS progression rate for individuals in the Ji (i = 1, 2, 3)

where

N = S + L + I + T + J1 + J2 + J3 + A,

R = N − I − J3 − A = S + L + T + J1 + J2,

J ∗ = J1 + J2 + J3.

(8.16)

The variable R here collects non-infectious “circulating” individuals, that is,
those who do not have active TB or AIDS. Definitions of model parameters are
collected in Table 8.1.

The modeling assumptions include: homogenous mixing; HIV positive and TB
infective (J3) showing severe HIV symptoms cannot be effectively treated for active
TB; TB infections are only acquired through contacts with TB infectious individuals
(I and J3); and individuals may acquire HIV infections only through contacts with
HIV infectious individuals (J ∗ group). Further, the “probability” of infection per
contact is assumed to be the same for T and S classes (β and λ). Furthermore, I

(TB infectious), J3 (TB and HIV infectious), and A (AIDS) individuals are too ill to
remain sexually active and, consequently, they do not transmit HIV through sexual
activity. Hence, R ≡ N − I − J3 − A and the HIV incidence is modeled by σJ ∗/R
(see [29, 74, 108]).

The probability of having a contact with HIV infectious individuals is modeled as
J ∗/R and the number of new HIV infections in a unit time is therefore σSJ ∗/R [IV
drug injections, vertically-transmitted HIV (children of birth), or HIV transmission
via breast feeding, forms of HIV transmission are ignored]. The most drastic in
this model comes from the incorporation of sexual transmission as an indirect risk
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factor, a function of HIV prevalence. Further, demographic changes are ignored
or alternatively, it is assumed that the time scale under consideration is such that
changes in population size are not too significant.

The TB control reproduction number (under treatment) is given by the expression

R1 = ck

(μ + k + r1)(μ + d + r2)
(8.17)

while the HIV reproduction number is

R2 = σ

α1 + μ
. (8.18)

R1 is the product of the average number of susceptible infected by one TB
infective individual over its effective infective period, c/(μ+d+r2), and the fraction
of the population that survives the TB latent period, k/(μ + k + r1). R1 denotes
the number of secondary TB infectious cases generated by a typical TB infective
individual during its effective infective period if introduced in a population of mostly
TB-susceptible individuals, in a population where TB treatment is accessible. R2 is
the HIV reproduction number in a TB-free society, the number of secondary HIV
infections produced by an HIV infectious (but not TB-infected) individual during
its infectious period if introduced in a population of HIV-susceptible individuals (in
a TB-free world). The reproduction numbers do not involve the parameters tied in
to the dynamics of TB-HIV coinfection, that is, k∗ and α3.

Consequently, the reproduction number for system (8.15) under TB treatment is
given by

R = max{R1,R2}.

We have shown in [92] that TB and HIV will die out if R < 1 while either or both
diseases may become endemic if R > 1.

In [92], it was shown that system (8.15) is well-posed, that is, solutions that start
in this octant where all the variables are non-negative stay there. It was also shown
that system (8.15) has three possible non-negative boundary equilibria: the disease-
free equilibrium (DFE) or E0, the TB-only (HIV-free) equilibrium or ET , and the
HIV-only (TB-free) equilibrium or EH . The components of E0 are

S0 = Λ

μ
, L0 = I0 = T0 = J01 = J02 = J03 = A0 = 0.

The ET components are

ST = Λ

μ + cIT /NT

, LT = IT

R1b

, IT = NT (R1 − 1)

R1 + R1a

, TT = (r1L + r2IT )ST

Λ
,

J1T = J2T = J3T = AT = 0,
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where

NT = Λ

μ + d(R1 − 1)/(R1 + R1a)
,

with

R1a = c

μ + k + r1
, R1b = k

μ + d + r2
. (8.19)

The EH components are

SH = Λ

μR2 + α1(R2 − 1)
, LH = IH = TH = 0,

J1H = (R2 − 1)SH , J2H = J3H = 0, AH = α1J1H

μ + f
.

The following results were established in [92]:

Theorem 8.6 The disease-free equilibrium E0 is locally asymptotically stable if
R < 1, and it is unstable if R > 1.

Theorem 8.7 The HIV-free equilibrium ET is locally asymptotically stable if R1 >

1 and R2 < 1.

We observe that EH may not be locally asymptotically stable under the con-
ditions R1 < 1 and R2 > 1. Our numerical studies show that when R1 < 1
and R2 > 1 it is possible that the equilibrium EH is unstable and TB can coexist
with HIV [92]. Further, whenever both reproduction numbers are greater than 1,
that is, R1 > 1 and R2 > 1, ET and EH both exist and E0 is unstable. Our
numerical studies show that all three boundary equilibria are unstable and solutions
converge to an interior equilibrium point. Furthermore, partial analytical results and
numerical simulations support the existence of an interior equilibrium Ê when both
reproduction numbers, R1 and R2, are greater than 1. The numerical simulations
of the system further suggest that the interior equilibrium is LAS in most cases
although the possibility of stable periodic solutions seems likely [92].

When both reproduction numbers are greater than 1, i.e., R1 > 1 and R2 > 1,
ET and EH both exist and E0 is unstable. In this case, the numerical simulations of
the model show that it is possible that all three boundary equilibria are unstable and
solutions converge to an interior equilibrium point. Although explicit expressions
for an interior equilibrium are very difficult to compute analytically, we have
managed to obtain some relationships that can be used to determine the existence of
an interior equilibrium.
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Let Ê = (Ŝ, L̂, Î , Ĵ1, Ĵ2, Ĵ3, Â) denote an interior equilibrium with all compo-
nents positive, and let x and y denote the fractions:

x = Î + Ĵ3

N̂
> 0 and y = Ĵ ∗

R̂
> 0. (8.20)

Note that x and y correspond to the levels of disease prevalence for TB and HIV,
respectively.

By setting the right-hand-side of the system (8.15) equal to zero we can obtain
the following two equations for x and y:

x = xF(x, y),

y = yG(x, y),
(8.21)

where

F(x, y) = c

N̂

[ kŜ

(μ + d + r2)B1
+ k∗

Δ2Δ3

( Ŝσy

B1
+ Ĵ1

)]
,

G(x, y) = σ

R̂

{ 1

B2

(
Ŝ + T̂ + r∗L̂

Δ2

)(
1 + cx

Δ2

[
1 + k∗

Δ3

])
+ L̂

Δ2

[
1 + k∗

Δ3

]}
,

(8.22)

in which

Ŝ = Λ

μ + cx + σy
, L̂ = cΛ

B1(μ + cx + σy)
x, Î = k

μ + d + r2
L̂,

T̂ = r1 + r2k
μ+d+r2

cx + σy + μ
L̂, Ĵ1 =

(
Ŝ + T̂ + r∗L̂

Δ2

)
σy

B2
, Ĵ2 = L̂σy + Ĵ1cx

Δ2
,

Ĵ3 = k∗(L̂σy + Ĵ1cx)

Δ2Δ3
, Â = 1

μ + f

(
α1Ĵ1 + α2Ĵ2 + α3Ĵ3

)
,

(8.23)

and

Δ2 = α2 + μ + k∗ + r∗,
Δ3 = α3 + μ + d,

B1 = σy + μ + k + r1 − cx(r1 + r2k
μ+d+r2

)

cx + σy + μ

≥ σy + μ + k + r1 − (r1 + k)

> 0,

B2 = cx(α1 + μ + k∗)
Δ2

+ α1 + μ.

(8.24)
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Fig. 8.3 Contour plots showing the intersection points of the curves F(x, y) = 1 (dashed curve)
and G(x, y) = 1 (solid curve) for various values of R2 with R1 being fixed at 1.5 (c = 12). The
values of R2 in (A)–(C) are 3.6, 4.6, and 7, respectively (corresponding to λσ = 0.41, 0.52,
and 0.8). The axes are x = (I + J3)/N and y = J ∗/R, representing the factors in the

incidence functions for TB and HIV, respectively. The intersection (x̂, ŷ) = (
Î+Ĵ3

N̂
, Ĵ ∗

R̂
) determines

components of the interior equilibrium Ê if 0 < x̂ < 1 and ŷ > 0

Note that x > 0 and y > 0, Eq. (8.21) reduces to

F(x, y) = 1, G(x, y) = 1, (8.25)

and an intersection of the two curves determined by Eq. (8.25), denoted by x̂ and
ŷ, corresponds to a coexistence equilibrium of TB and HIV. We can consider x̂ as
a measure for the TB prevalence. The intersection property of the two curves given
by F(x, y) = 1 and G(x, y) = 1 are illustrated in Fig. 8.3.

Figure 8.3 plots the intersection point (x̂, ŷ) of the contour plots of F(x, y) = 1
(dashed curve) and G(x, y) = 1 (solid curve) for several values of R2 with R1
being fixed (R1 = 1.5 corresponding to c = 12). Again, an interior equilibrium
Ê can be determined by x̂ and ŷ if 0 < x̂ < 1 and ŷ > 0. This figure illustrates
how x̂ changes with increasing R2. We have chosen k∗ = 5k (i.e., the progression
rate to active TB in individuals with both latent TB and HIV is five times higher
than that in individuals with latent TB only), α3 = 5α1 (i.e., the progression to
AIDS in individuals with active TB is five times higher than that in individuals
without TB). For this set of parameter values, the values of R2 in Fig. 8.3A–C
are 3.6, 4.6, and 7, respectively. It shows that when R2 increases from 3.8 to
4.6, the F(x, y) = 1 curve does not change much while the right-end of the
G(x, y) = 1 curve moves to the right of the F = 1 curve. This leads to an
intersection point of the two curves (see (A) and (B)), which corresponds to an
interior equilibrium Ê. When R2 is further increased to 7, the G(x, y) = 1 curve
changes from decreasing to increasing (see (C)). Although there is still a unique
intersection point, the y = Ĵ ∗/R̂ component may become greater than 1. This is still
biologically feasible as J/R can exceed 1 (see (C)). The intersection points in (A)-

(C) are (x̂, ŷ) = (
Î+Ĵ3

N̂
, Ĵ ∗

R̂
) = (0.15, 0.07), (0.25, 0.4), (0.33, 1.25), respectively.

We observe that x̂ increases with R2 from 0.15 to 0.33. This implies that the
prevalence of HIV may have significant impact on the infection level of TB.
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Fig. 8.4 Time plots of prevalence of TB and HIV. The TB curves (solid) represent the fraction of
active TB ((I + J3)/N ), and the HIV curve (dashed) represents the activity-adjusted fraction of
HIV (J ∗/R)

Figure 8.4 examines changes in infection levels over time. It plots the time series
of [I (t) + J3(t)]/N(t) (fraction of active TB) and J ∗(t)/R(t) (activity-adjusted
fraction of HIV infectious) for fixed R1 and various R2. The top two figures are for
the case when the reproduction number for TB is less than 1 (R1 = 0.96 < 1 or
c = 7.5), and the reproduction number for HIV is R2 = 0.9 < 1 (or σ = 0.105) in
(a) and R2 = 1.3 > 1 (or σ = 0.15) in (a). It illustrates in Fig. 8.4a that TB cannot
persist if R2 < 1. However, if R2 > 1 then it is possible that TB can become
prevalent even if R1 < 1 (see Fig. 8.4b). The bottom two figures are for the case
when the reproduction number of TB is greater than 1 (R1 = 1.2, or c = 9.1), and
R2 = 2 (or σ = 0.23) in (c) and R2 = 3 (or σ = 0.34) in (d). It demonstrates that
an increase in R2 will lead to an increase in the level of TB prevalence as well. All
other parameters are the same as in Fig. 8.3 except that k∗ = 3k.

Another way to look at the role of HIV on TB dynamics is to compare the
outcomes between the cases where HIV is absent or present (instead of varying
the value of R2). This result is presented in Fig. 8.5. The reproduction numbers are
identical in Fig. 8.5A, B: R1 = 0.98 < 1 (c = 7.7) and R2 = 1.2 > 1 (σ = 0.137).
Other parameter values are the same as in Fig. 8.4 except that k∗ = k. The variables
plotted are (I + J2)/N and J ∗/N . Figure 8.5A is for the case when HIV is absent
by letting J ∗(0) = 0. It shows that TB cannot persist. In Fig. 8.5B, the initial value
of HIV is positive (i.e., J ∗(0) > 0). It shows that both TB and HIV coexist.

Examples of other mathematical models on dynamics of TB/HIV coinfections
include [73, 86, 90, 91, 101].
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Fig. 8.5 For the plot in (A), HIV is absent by letting J ∗(0) = 0. It shows that TB cannot persist.
In (B), the initial value of HIV is positive (i.e., J ∗(0) > 0). It shows that both TB and HIV will
coexist

8.6 *Modeling the Synergy Between HIV and HSV-2

The example presented in this section considers the synergy between HIV and
HSV-2. One of the questions that is of interest for public health officials is how
treatment of HSV-2 may influence the prevalence and control of HIV.

Several mathematical models have been developed to investigate the transmission
dynamics of HSV-2 (e.g., [17, 53, 87, 100] and references therein) and HIV (e.g.,
[12–14, 44, 84, 85] and references therein). To our knowledge, however, there
have only been a few modeling studies of the epidemiological synergy between
HSV-2 and HIV. Using the individual-based model STDSIM, White et al. [106]
studied the population-level effect of HSV-2 therapy on the incidence of HIV in
sub-Saharan Africa. Foss et al. [54] developed a dynamic HSV/HIV model to
estimate the contribution of HSV-2 to HIV transmission from clients to female sex
workers in southern India and the maximum potential impact of “perfect” HSV-2
suppressive therapy on HIV incidence. Blower and Ma [16] used a transmission
model that specifies the dynamics of HIV and HSV-2 to predict the effect of a high-
prevalence HSV-2 epidemic on HIV incidence. Abu-Raddad et al. [1] constructed
a deterministic compartmental model to describe HIV and HSV-2 transmission
dynamics and their interaction. However, the model studied in [16] does not
include heterogeneity in sexual activity and assumes that individuals mix randomly,
whereupon each infective individual is equally likely to spread the disease to all
others. Also, gender is not incorporated into the models studied by either [16] or
[1]. The models in [54, 106] incorporate various heterogeneities, including gender
and/or age, but not sexual activity, and only numerical simulations are conducted.

Gender may be an important factor in modeling the epidemiological synergy
between HSV-2 and HIV as shown in the meta-analysis of several studies that
male parameters differ from the corresponding female parameters. For example, the
male-to-female HSV-2 transmission probability is greater than the female-to-male
transmission probability [45, 104], and thus the risk of female-to-male transmission
per sex act is less than the risk of male-to-female transmission [84, 85]. Thus, to fully
understand the epidemiological synergy between HSV-2 and HIV and to investigate
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measures for controlling these sexually transmitted diseases, it is important to
analyze models that consider heterogeneities in sexual activity, mixing within and
between different activity groups and genders.

In [2, 52], a model incorporating both HIV and HSV-2 infections was analyzed.
The model considers one male population and multiple female populations based
on their activity levels with variable male preferences to different female groups.
Results from the model demonstrate that the heterogeneity in activity levels and
male preference in mixing may play an important role in model outcomes. More
details of the model analysis are presented below.

Consider a population consisting of sexually active female and male individuals.
Consider the case in which the female population is divided into subgroups based
on levels of sexual activity (e.g., number of partners) with a low-risk group (e.g.,
members of the general population) and a high-risk group (e.g., sex workers), while
all individuals in the male population have the same activity level. These sub-
populations are labeled by the subscripts f1, f2,m, which denote low- and high-risk
females and males, respectively. Let Ni denote the population sizes of groups i,
where i = m, f1, f2. The population in each group is assumed to be homogeneous
in the sense that individuals have the same infectious period, duration of immunity,
contact rate, and so on. We divide the progression of HIV into two stages, acute
infection and AIDS. Similarly, HSV-2 is represented by acute and latent infection
stages. Because individuals infected with HIV alone or HSV-2 alone can become
coinfected with both HIV and HSV-2, each group i (i = m, f1, f2) is further divided
into seven epidemiological classes or subgroups: susceptible, infected with acute
HSV-2 only (Ai), infected with latent HSV-2 only (Li), infected with HIV only
(Hi), infected with HIV and acute HSV-2 (Pi), infected with HIV and latent HSV-2
(Qi) and AIDS (Di). A transition diagram between these epidemiological classes
within group i is depicted in Fig. 8.6.

Fig. 8.6 Transition diagram of the coupled dynamics between HIV and HSV-2. The top row
includes classes infected with HSV-2 only, and the bottom row includes classes infected with either
HIV only or coinfected with HIV and HSV-2
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For each sub-population i (i = f1, f2,m) there is a per-capita recruitment rate
μi into the susceptible group. For all classes there is a constant per-capita rate μi

of exiting the sexually active population. Thus, the total population Ni in group i

remains constant for all time. Susceptible people in group i acquire infection with
HSV-2 or HIV at the rate λA

i (t) or λH
i (t), respectively. Upon being infected with

HSV-2, people in group i enter the class Ai (infected with acute HSV-2 only).
These individuals become latent Li at the constant rate ωA

i (an average duration
in Ai is 1/ωA

i ). Following an appropriate stimulus in individuals with latent HSV-
2, reactivation may occur [17]. We assume that people with latent HSV-2 only
reactivate at the rate γ L

i . Individuals with HIV are assumed to develop AIDS at
the rate dH

i . Let δA
i and δL

i denote the enhanced susceptibility to HIV infection
for individuals in group i with acute or latent HSV-2 infection. Classes Pi and Qi

are similar to Ai and Li , respectively, except that Ai and Li denote individuals
with HSV-2 only whereas Pi and Qi denote individuals with coinfections. The
difference in stage durations is indicated by the superscripts (e.g., 1/γ L

i for the

L class and 1/γ
Q
i for the Q class). Finally, the antiviral treatment rates for the

Ai and Pi individuals are denoted by θA
i and θ

Q
i , respectively. Because antiviral

medications will also suppress reactivation of latent HSV-2, we assume that the
reactivation rate of people with latent HSV-2 γ L

i (or γ
Q
i ) is a decreasing function of

θA
i (or θP

i ), denoted by γ L
i (θA

i ) (or γ
Q
i (θP

i )). The sources for most of the parameter
values are from [1, 53] (see [52] for more details).

Based on Fig. 8.6, Alvey et al. [2] studied the following model:

dSi

dt
= μiNi − (λA

i (t) + λH
i (t))Si − μiSi,

dAi

dt
= λA

i (t)Si + γ L
i (θA

i )Li − δA
i λH

i (t)Ai − (ωA
i + θA

i + μi)Ai,

dLi

dt
= (ωA

i + θA
i )Ai − δL

i λH
i (t)Li − (γ L

i (θA
i ) + μi)Li,

dHi

dt
= λH

i (t)Si − δH
i λA

i (t)Hi − (μi + dH
i )Hi,

dPi

dt
= δA

i λH
i (t)Ai + δH

i λA
i (t)Hi + γ

Q
i (θP

i )Qi − (ωP
i + θP

i + μi + dP
i )Pi,

dQi

dt
= δL

i λH
i (t)Li + (ωP

i + θP
i )Pi − (γ

Q
i (θP

i ) + μi + d
Q
i )Qi, i = m, f1, f2,

(8.26)

where the functions λ
j
i (t) represent the forces of infection given below. Let bi

(i = m, f1, f2) be the rate at which individuals in group i acquire new sexual
partners (also referred to as contact rates), and let cj denote the probability that
a male chooses a female partner in group j (j = f1, f2). Then c1 + c2 = 1. For
ease of notation, let

c1 = c, c2 = 1 − c.
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Overall, the number of female partners in groups j (j = f1, f2) that males
acquire should be equal to the number of male partners that females in groups j

acquire. These observations lead to the following balance conditions:

bmcNm = bf1Nf1 , bm(1 − c)Nm = bf2Nf2 . (8.27)

To ensure that constraints in (8.27) are satisfied, we assume in numerical simulations
that bm and c are fixed constants with bf1 and bf2 being varied according to Nm,Nf1 ,
and Nf2 .

The force of infection functions can be expressed as

λH
m (t) =

2∑
i=1

bmciβ
H
fim

Hfi
+ δP

fi
Pfi

+ δ
Q
fi

Qfi

Nfi

,

λH
fj

(t) = bfj
βH

mfj

Hm + δP
mPm + δ

Q
mQm

Nm

, j = 1, 2,

λA
m(t) =

2∑
i=1

bmciβ
A
fim

Afi
+ σP

fi
Pfi

Nfi

,

λA
fj

(t) = bfj
βA

mfj

Am + σP
m Pm

Nm

, j = 1, 2,

(8.28)

where

Ni = Si + Ai + Li + Hi + Pi + Qi, i = m, f1, f2

denotes the total population size of group i. In (8.28), βH
im (βH

mi), i = f1, f2 are
the HIV transmission probabilities per partner between females infected with HIV
in group i and susceptible males (between males infected with HIV and susceptible
females in group i); βA

im (βA
mi), i = f1, f2 are the HSV-2 transmission probabilities

per partner between females infected with acute HSV-2 in group i and susceptible
males (between males infected with acute HSV-2 and susceptible females in group
i); δP

i and δ
Q
i (i = m, f1, f2) are the enhanced HIV infectiousness of coinfected

individuals, and σP
i (i = m, f1, f2) are the enhanced HSV-2 infectiousness of

coinfected individuals.

8.6.1 Reproduction Numbers for Individual Diseases

For each of the two diseases, we can compute the reproduction number in the
absence of the other disease. Let RA

0 and RH
0 denote these reproduction numbers

for HSV-2 and HIV, respectively. Due to the loop between the symptomatic and
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asymptomatic stages of HSV-2, the derivation of analytical expression for RA
0 for

model (8.26) is not straightforward. A detailed derivation of the following formula
for RA

0 can be found in [2, 52]:

RA
0 =

√(
RA

mf1m

)2 +
(
RA

mf2m

)2
, (8.29)

where

RA
mfj m =

√√√√ bfj
βA

mfj

ωA
m + θA

m + μm

· P A
m ·

bmcjβ
A
fj m

ωA
fj

+ θA
fj

+ μfj

· P A
fj

, j = 1, 2

with P A
i (i = m, f1, f2) representing the probability that an individual of group i is

in the acute stage (A), which is given by

P A
i =

(
ωA

i + θA
i + μi

)(
γ L
i (θA

i ) + μi

)
[
γ L
i (θA

i ) + ωA
i + θA

i + μi

]
μi

, i = m, f1, f2. (8.30)

The formulas for P A
i in (8.30) can be explained as follows. Let

p = ωA
i + θA

i

ωA
i + θA

i + μi

, q = γ L
i

γ L
i + μi

,

where p represents the probability that an individual moves from the acute stage
(A) to the latent stage (L), and q represents the probability that an individual moves
from L to A. Thus, the probability that an individual is in the acute stage within the
A � L loop is

∞∑
k=1

(pq)k =
(
ωA

i + θA
i + μi

)(
γ L
i + μi

)
(
γ L
i + ωA

i + θA
i + μi

)
μi

= P A
i .

Notice that in the formula for RA
0 the balance conditions in (8.27) have been used.

Other factors in RA
mfim

(i = 1, 2) also have clear biological interpretations:

• bfj
βA

mfj
is the number of new infections that a male will cause in females of

group j (j = 1, 2) per unit of time;
• bmcjβ

A
fj m is the number of new infections that a female in group j (j = 1, 2)

will cause in males per unit of time;
• 1

ωA
i +θA

i +μi
(i = m, f1, f2) represents the mean time that an individual in group i

remains infected (i.e., in either A or L).
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Thus,
√
RA

mfj m represents the average secondary HSV-2 male infections by one

male individual through females in group j (j = 1, 2) while in the infectious stage
(A) in a completely susceptible population. The square root is associated with the
fact that we need to consider both the male-to-female and female-to-male processes
to obtain the number of secondary infections. The overall reproduction number RA

0
is an average of RA

mfim
(i = 1, 2).

Let RH
0 denote the basic reproduction number for HIV in the absence of HSV-2.

Then

RH
0 =

√(
RH

mf1m

)2 +
(
RH

mf2m

)2
,

where

RH
mfj m =

√√√√ bfj
βH

mfj

dH
m + μm

·
bmcjβ

H
fj m

dH
fj

+ μfj

, j = 1, 2.

The biological meanings of RH
mf1m

and RH
mf2m

can be explained in the similar way

as those of RA
mf1m

and RA
mf2m

. It is clear that RH
0 represents the average secondary

HIV male infections by one male individual (through both female groups) during
the whole HIV infective period in a completely susceptible population.

8.6.2 Invasion Reproduction Numbers

Let RH
A denote the invasion reproduction number for HIV in a population where

the HSV-2 infection is already established at the endemic equilibrium, which is
denoted by EA

∂ . The nonzero components of EA
∂ are S0

i , A0
i , and L0

i , representing
the density of susceptible, acute HSV-2, and HSV-2 latent, respectively, in group i.
Let N0

i = S0
i + A0

i + L0
i . For ease of notation, let

λA0
m = bm

2∑
i=1

ciβ
A
fj m

A0
fj

N0
fj

, λA0
fj

= bfj
βA

mfj

A0
m

N0
m

, j = 1, 2

and

di =
(

1, δP
i , δ

Q
i

)
, x0

i =
(
S0

i , δA
i A0

i , δ
L
i L0

i

)T

, i = m, f1, f2.

Note that the system (8.26) has 9 infected variables with HIV (Hi, Pi,Qi, i =
m, f1, f2). Consider the HIV-free equilibrium EA

∂ of system (8.26). The matrices
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FH and V H (corresponding to the new infection and remaining transfer terms,
respectively) are given by

FH =

⎛
⎜⎜⎜⎝

0 FH
f1m

FH
f2m

FH
mf1

0 0

FH
mf2

0 0

⎞
⎟⎟⎟⎠ , V H =

⎛
⎜⎜⎜⎝

V H
m 0 0

0 V H
f1

0

0 0 V H
f2

⎞
⎟⎟⎟⎠ , (8.31)

where

FH
fj m = bmcjβ

H
fj m

x0
m

N0
m

dfj
, FH

mfj
= bfj

βH
mfj

x0
fj

N0
fj

dm, j = 1, 2

and

V H
i =

⎛
⎜⎜⎜⎝

(μi + dH
i + δH

i λA0
i ) 0 0

−δH
i λA0

i ωP
i + θP

i + μi + dP
i −γ

Q
i (θP

i )

0 −(ωP
i + θP

i ) γ
Q
i (θP

i ) + μi + d
Q
i

⎞
⎟⎟⎟⎠ ,

(8.32)

for i = m, f1, f2. Then, the next generation matrix for HIV, denoted by KH , can be
expressed by

KH = FH (V H )−1

=

⎛
⎜⎜⎜⎝

0 FH
f1m

(V H
f1

)−1 FH
f2m

(V H
f2

)−1

FH
mf1

(V H
m )−1 0 0

FH
mf2

(V H
m )−1 0 0

⎞
⎟⎟⎟⎠ := (kij

)
9×9,

(8.33)

where the entries kij of the matrix KH can be found in the Appendix A of [52].
Noting that Rank(KH ) = 2 and that the sum of the diagonal elements in matrix

KH is zero, it follows from Vieta’s formulas that if the numbers of susceptible
people and those with acute and latent HSV-2 in group i are S0

i , A0
i , L

0
i , respectively,

the reproduction number for HIV infection is given by

RH
A = RH

A (S0
i , A0

i , L
0
i , 0, 0, 0) := ρ(KH ) = √−E2(KH )

=

√√√√√
3∑

i=1

9∑
j=4

kij kji ,
(8.34)
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Fig. 8.7 Numerical solutions
of the system (8.26) for the
case when RA

0 > 1,RH
0 < 1,

and RH
A > 1. The dashed and

solid curves represent levels
of HIV infections with and
without HSV-2 present,
respectively. It shows that
even when the basic
reproduction number for HIV
RH

0 is less than 1, HIV can
still persist if the invasion
reproduction number RH

A is
greater than 1

where ρ(KH ) represents the spectral radius of the matrix KH and E2(KH ) is the
sum of all the 2 × 2 principal minors of matrix KH . It is shown in [52] that invasion
is possible if and only if RH

A > 1.
Similarly, an invasion reproduction number RA

H for HSV-2 to invade a population
in which HIV is present (see [52]). Detailed results on the existence and local
stability of the boundary equilibria can also be found in [52].

8.6.3 Influence of HSV-2 on the Dynamics of HIV

Figure 8.7 illustrates the result of numerical simulations showing how the joint
disease dynamics of HIV and HSV-2 may depend on the basic and invasion
reproduction numbers. It is for the case when enhancement of HIV by HSV-2 is
relatively strong with RA

0 > 1,RH
0 < 1, and RH

A > 1. It shows that while HIV
can invade and persist in the presence of HSV-2 (the dashed curve), it dies out in the
absence of HSV-2 (the solid curve), suggesting that HSV-2 infection can favor the
invasion of HIV.

8.7 An HIV Model with Vaccination

Blower et al. [15] studied model for HIV with live attenuated HIV vaccines
(LAHVs). Consider two viral strains, one wild strain and one vaccine strain.
Divide the total population into the following epidemiological classes: susceptible
individuals (S), unvaccinated individuals infected with the wild-type HIV (Iw) or
the vaccine strain (either by vaccination or by transmission) (Iv) or dually infected
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with both strains (Ivw), and individuals with AIDS (A). The model consists of the
following ordinary differential equations:

S′ = (1 − p)π − (cλv + cλW + μ)S,

I ′
v = pπ + cλvS − (1 − ψ)cλwIv − (νv + μ)Iv,

I ′
w = cλwS − (νw + μ)Iw,

I ′
vw = (1 − ψ)cλwIv − (νvw + μ)Ivw,

A′ = νwIw + νvIv + νvwIvw − (μA + μ)A,

(8.35)

where λv and λw are per-capita risks of infection with the vaccine and wild-type
strains, respectively, given by

λv = βv

Iv

NSA

, λw = βw

Iw + gIvw

NSA

,

and NSA = X + Iv + Iw + Ivw denotes the number of sexually active population.
Other parameters include: βv and βw are infection rates for vaccine and wild-
type strains, respectively, p is the fraction of new susceptibles vaccinated, π is the
number of new susceptibles that join the sexually active population per unit time,
c is the average rate of acquiring new sex partners, 1/μ is the average period of
acquisition of new sex partners, 1/μA is the average survival time with AIDS, ψ

denotes the degree of protection that the vaccine provides against infection with
the wild-type strain, ν is the progression rate to AIDS in individuals infected with
the LAHV strain (νv), the wild-type strain (νw), or both strains (νvw), 1/μA is the
average survival time from AIDS to death. The disease progression rates are related
by the expression νvw = δνw, where δ specifies the vaccine-induced degree of
reduction in the wild-type disease progression rate.

A time-dependent uncertainty analysis of model (8.35) can be used [15] to
predict the potential impact of LAHVs on the annual AIDS death rate, as illustrated
in Fig. 8.8. It shows the result of infection with the wild-type strain of HIV for
Zimbabwe (A) and Thailand (B), and the result of the LAHV strain for Zimbabwe
(C) and Thailand (D). Parameter values used include the following probability
density functions (pdfs): 1/μA (pdf: 9 months to 1 year to 18 months), βw (pdf: 0.05
to 0.1 to 0.2), βv = αβw where α (range of pdf: (0.001, 0.1)), νw (pdf: range from
50% progression to AIDS in 7.5 years to 50% progression in 10 years). Consider
a mass vaccination campaign (with follow-up programs) that would vaccinate
anywhere from 80% to 95% of susceptibles with p (range of pdf: (0.8, 0.95)), ψ

(range of pdf: (0.5, 0.95)), δ (range of pdf: (0.1, 1)). The population size of sexually
active adults are chosen to be 5,560,000 (Zimbabwe), 34,433,00 (Thailand).
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Fig. 8.8 Simulation results of model (8.35). It plots annual AIDS deaths (per 100,000 individuals)
for Zimbabwe (A), Thailand (B), Zimbabwe (C), and Thailand (D). Source: [15]

8.8 A Model with Antiretroviral Therapy (ART)

A mathematical model with antiretroviral therapy (ART) is considered in [25] to
study the effect of ART on risk behaviors and sexually transmitted infections (STI).
Individuals are divided into two risk groups i = 1, 2, with s = 1 for STI+ and
s = 0 for STI-. The population size for fix i and s is divided into the following
epidemiological classes: susceptible to HIV (Sis), untreated HIV+ (Iu

is), untreated
with AIDS (Au

is), treated HIV+ (I τ
is), treated with AIDS (Aτ

is). The group sizes are

Nis = Sis + Iu
is + I τ

is + Aτ
is, i = 1, 2, s = 0, 1.

The per-capita rates of STI and HIV infection of a susceptible individual in risk
group i are denoted by ξi(t) and λis(t), respectively, and are given by

ξi(t) = θi

∑
j

ρij

Nj1∑
s Njs

, i = 1, 2, (8.36)

λi0(t) = βi

2∑
j=1

ρij

∑
s

(
Iu
js + (1 − η)(I τ

js + Aτ
js)
)

∑
s Njs

, λi1 = 3λi0, i = 1, 2,

(8.37)
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where θi and βi are transmission rates of STI and HIV, respectively, for susceptibles
of risk level i, ρij represents the sexual mixing between types i and j individual
(e.g., proportionate mixing), η1 represents the reduction in HIV infectiousness due
to treatment with ART.

The following model is a simplified version of the model considered in [25]:

dSis

dt
= Λi − (λis(t) + μ)Sis + (1 − s)

[− ξi(t)Si0 + δSi1
]+ s

[
ξi(t)Si0 − δSi1

]
,

dIu
is

dt
= λis(t)Sis − (γ u + μ + rh)Iu

is

+ωIτ
is + (1 − s)

[− ξi(t)I
u
i0 + δIu

i1

]+ s
[
ξi(t)I

u
i0 − δIu

i1

]
dI τ

is

dt
= rhIu

is − (γ τ + μ + ω)I τ
is

+(1 − s)
[− ξi(t)I

τ
i0 + δI τ

i1

]+ s
[
ξi(t)I

τ
i0 − δI τ

i1

]
(8.38)

dAu
is

dt
= γ uIu

is − (αu + μ + ra)Au
is + ωAτ

is + (1 − s)δAu
i1 − sδAu

i1

dAτ
is

dt
= γ τ I τ

is − (ατ + μ + ω)Aτ
is

+raAu
is + (1 − s)

[− ξi(t)A
τ
i0 + δAτ

i1

]+ s
[
ξi(t)A

τ
i0 − δAτ

i1

]
,

where i = 1, 2, s = 0, 1, Λi is the recruitment rate to group i (i = 1, 2), γ u

and γ τ are the rates of progression to AIDS for untreated and treated individuals,
respectively, αu and ατ are the rates of AIDS mortality for untreated and treated
individuals, respectively, δ is the recovery rate from the STI infection, η represents
the reduction in HIV infectiousness as a result of ART, w is the withdraw rate
from treatment, ra and rh are treatment coverage rates of AIDS and HIV-positive
individuals, respectively, 1/μ represents the average duration of sexually active life.

A more general model is studied in [25], in which a detailed model analysis
is presented to demonstrated the impact of the wide-scale use of ART on HIV
transmission.

8.9 Project: What If Not All Infectives Progress to AIDS?

In the model (8.1) it is assumed that all HIV-infected individuals eventually progress
to full-blown AIDS, as this appears to be the case. Suppose, however, that only a
fraction p, 0 < p < 1 progress to AIDS while the remaining infectives remain in
this class until they are no longer sexually active. In addition to the classes S, I , and
A, a model must now also include a class Y of infective individuals that will not
develop full-blown AIDS and a class Z of former Y -individuals who are no longer
sexually active. The corresponding model is
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Fig. 8.9 Flow diagram; single group model for the case when only a fraction of infected people
will progress to AIDS

dS(t)

dt
= Λ − λC(T (t))

S(t)W(t)

T (t)
− μS(t)

dI (t)

dt
= λpC(T (t))

S(t)W(t)

T (t)
− (αI + μ)I (t)

dY (t)

dt
= λ(1 − p)C(T (t))

S(t)W(t)

T (t)
− (αY + μ)Y (t) (8.39)

dA(t)

dt
= αI I (t) − (d + μ)A(t)

dZ(t)

dt
= αY Y (t) − μZ(t)

where

W = I + Y and T = W + S. (8.40)

A flow diagram is shown in Fig. 8.9.
It is further assumed that individuals who develop full-blown AIDS are no longer

actively infective, that is, that they have no sexual contacts; it is also assumed
that infected individuals become immediately infective. Finally, it is assumed that
individuals in this population become sexually inactive or acquire AIDS at the
constant rates αY and αI (respectively) per unit time. Therefore, 1/(μ + αI ) gives
the average or mean incubation period with the fraction 1/(μ + αY ) denoting the
average or mean sexual life expectancy. For simplicity, we assume αI = αY , but it
is possible to extend the model to the case αi 	= αY .
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As before, the function C(T ) models the mean number of sexual partners an
average individual has per unit time when the population density is T ; λ (a constant)
denotes the average sexual risk per infected partner; λ is often thought as the product
iφ [68], where φ is the average number of contacts per sexual partner and i the
conditional probability of infection from a sexual contact when the latter is infected.
Kingsley et al. [72] had presented (not surprising) evidence that the probability of
seroconversion (infection) increases with the number of infected sexual partners.
Hence, λC(T ) models the transmission rate per unit time per infected partner when
the size of the sexually active population is T . We continue to assume

C(T ) > 0, C′(T ) ≥ 0, (8.41)

Question 4 Show that for the model (8.39) the basic reproduction number is given
by

R0 = λ

(
p

σI

+ 1 − p

σY

)
C

(
Λ

μ

)
, (8.42)

where σI = αI + μ, σY = αY + μ.
R0 is given by the product of the three factors (epidemiological parameters): λ

(the probability of transmission per partner), C(Λ/μ) (the mean number of sexual
partners that an average susceptible individual has per unit time when everybody in
the population is susceptible), and

D =
(

p

σI

+ 1 − p

σY

)
. (8.43)

The death-adjusted mean infective period is D = pDI + (1 − p)DY with DI and
DY denoting the death-adjusted mean infective periods, 1/σI and 1/σY of the I and
Y classes, respectively.

Question 5 Show that if R0 < 1, the disease-free equilibrium (Λ/μ, 0, 0) of the
system (8.39) is asymptotically stable, and if R0 > 1 there is a unique endemic
equilibrium (S∗, I ∗, Y ∗), which is locally asymptotically stable, and the disease-
free state (Λ/μ, 0, 0) is unstable.

Next, we allow arbitrary incubation period distributions by introducing two
functions PI (s) and PY (s) representing the proportion of individuals who become
I - or Y -infective at time t and that, if alive, are still infective at time t +s (survive as
infectious). PI and PY , survivorship functions, are non-negative and non-increasing,
and PI (0) = PY (0) = 1. It is further assumed that

∫ ∞

0
PI (s)ds < ∞,

∫ ∞

0
PY (s)ds < ∞,
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and thus, −Ṗ (x) and −ṖY (x) are the rates of removal of individuals from classes I

and Y into classes A and Z, x time units after infection.

Question 6 Derive the corresponding model and determine its basic reproduction
number.
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