
Chapter 7
Models for Tuberculosis

In this chapter we describe several models for tuberculosis (TB). The disease is
endemic in many areas of the world. The models in this chapter will be extensions of
the standard SIR or SEIR type of endemic models presented in Chap. 3. Depending
on the typical characteristics of a specific disease, various modifications of the
standard models will be considered.

According to the recent WHO report [25], there were 8.6 million new TB
cases in 2012 and 1.3 million TB deaths. TB remains a major global health
problem and is the leading cause of death by an infectious disease, after the human
immunodeficiency virus (HIV). It is reported that about three million people who
developed TB in 2012 were missed by national notification systems. Key actions
needed to detect people with the illness and ensure that they get the right treatment
and care include: expanded services (including rapid tests) throughout health
systems bolstered by the support of nongovernmental organizations, community
workers, and volunteers to diagnose and report cases.

A typical epidemiological feature associated with TB is its long period of latency.
As pointed out by G.W. Comstock, “tuberculosis is an infectious disease with an
incubation period from weeks to a lifetime.” Figure 7.1 illustrates that TB has a long
and variable period of latency. Treating a patient with an active TB is more difficult
and requires a much longer time to complete the treatment than treating a latent TB
infection (LTBI). This makes it important to identify and treat latent people before
they develop the disease. One of the approaches to achieve this is through screening.
However, such screening programs require resources. An optimal control problem
can be formulated using mathematical models for TB.

Figure 7.2 shows the data from observation in adolescents who had developed
clinical tuberculosis following primary infection [24]. It suggests that among the
10% of latent individuals who eventually develop active TB, around 60% will do so
during the first year post-infection. The rest will develop active TB in either 2 years
(20%), 5 years (15%), 20 years (5%), or even longer.
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Fig. 7.1 A diagram showing
the progression from latent to
active TB during the period of
infection (adopted from www.
biomerieux-Řdiagnos6cs.
com). It shows that only
about 10% of latently infected
will develop active TB and
5% of those will stay in the
latent stage for long time

Fig. 7.2 An example of
distribution of progression
from latent to active TB [24]

The good news is that latent and active TB can be treated with antibiotics. The
bad news is that its treatment has side effects (sometimes quite serious) and takes
a long time. Carriers of the tubercle bacillus who have not developed TB disease
can be treated with a single drug INH; unfortunately, it must be taken religiously
for 6 months [6]. Treatment for those with active TB requires the simultaneous
use of three drugs for a period of about 9 months. Lack of compliance with these
drug treatments (a very serious problem) may lead to not only a relapse but also to
the development of multidrug-resistant TB (MDR-TB)—one of the most serious
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public health problems facing society today. According to the WHO report [25],
globally in 2012, approximately 450,000 people developed MDR-TB and there were
approximately 170,000 deaths from MDR-TB. An individual can become infected
with the resistant strain of TB in two ways, one is the so-called primary resistance
which is obtained by direct transmission from someone with resistant TB, and the
other is the acquired resistance which is developed from the sensitive TB due to
incomplete or inappropriate treatment. This also creates a challenge for designing
treatment policy, and should be incorporated in the modeling of optimal control
for TB.

In this chapter we present several TB models that can be used to study the above
mentioned problems. We begin with a relatively simple TB model with a single
strain, and then extend it to include both drug-sensitive and drug-resistant strains.
The two-strain model will be further extended to include two control measures
representing “case-finding” (i.e., identifying people with LTBI) and “case-holding”
(i.e., making sure the treatment of active TB infections is complete) and study the
optimal control strategies.

7.1 A One-Strain Model with Treatment

Because there is no permanent immunity and an individual after treatment for
TB can still become infected with possibly reduced susceptibility, we divide the
population into four epidemiological classes: susceptible (S), latently infected (L),
infectious (I), and treated (T). Assume that latent and infectious individuals are
treated at rates r1 and r2, respectively, and latent individuals develop active TB at
rate κ . The model reads

S′ = μN − cS
I

N
− μS + r1L + r2I,

L′ = cS
I

N
+ c∗T I

N
− (κ + r1 + μ)L,

I ′ = κL − (r2 + μ)I,

T ′ = r1L + r2I − c∗T I

N
− μT,

(7.1)

where N = S + L + I + T is the total population, which will remain constant for
all time due to the balanced birth and natural death rate μ. The parameters c and
c∗ denote the average numbers of susceptible and treated individuals, respectively,
infected by one infective individual per unit of time. If the treated individuals have
a reduced susceptibility to infection, then c∗ < c.
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The dynamics of system (7.1) is standard in the sense that the disease will either
go extinct or persist depending on whether the reproduction number

R0 = cκ

(κ + r1 + μ)(r2 + μ)
(7.2)

is less or greater than 1. It is clear from (7.2) that R0 is a decreasing function of
treatment rates r1 and r2. The effect of treatment on the disease prevalence can be
examined by considering the fraction of infectives I/N at the endemic equilibrium
in the case R0 > 1. In the simpler case when c = c∗, the equilibrium value of I/N

is given by

I ∗

N∗ = κ

κ + r2 + μ

(
1 − 1

R0

)
, (7.3)

which is a decreasing function of r1 and r2 as well. This shows that in the absence
of the resistant strain, treatment is beneficial in reducing the disease burden. This is
not the case when a resistant strain is considered, as shown in the two-strain model
presented next.

7.2 A Two-Strain TB Model

As mentioned earlier, treatment of active TB may take as long as 12 months,
and lack of compliance with these treatments may lead to the development of
antibiotic resistant TB. The one-strain model (7.1) can be extended to include
both drug-sensitive (DS) and drug-resistant (DR) strains of TB, with possible
development of resistance due to treatment failure. A transition diagram between the
epidemiological classes is shown in Fig. 7.3. The latent and infectious individuals
with sensitive TB are denoted by L1 and I1, respectively. Two additional classes are
included for the resistant strain, i.e., the latent and infectious classes with resistant
strain denoted by L2 and I2, respectively. The sensitive and resistant strains will be
referred to as strain 1 and 2, respectively. Because it is very hard to cure a patient
with resistant TB, we ignore the treatment of the resistant strain. Furthermore,
assume that I2 individuals can infect S,L1, and T individuals. The λ functions
represent the forces of infection, which are given by

λi(t) = ci

Ii

N
, λ∗

1(t) = c∗
1
I1

N
, i = 1, 2,

where c1 and c∗
1 have the meaning as c and c∗ in the one-strain model (7.1); c2 is

similar to c1 but for the resistant strain; ri (i = 1, 2) and μ are the same as in (7.1);
κi denotes the progression rate from latent to infectious stage of strain i.
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Fig. 7.3 A diagram for the
two-strain TB model showing
transitions between the
epidemiological classes. The
thicker arrow and the rate qr2
represent the development of
resistant TB due to the failure
of treatment for infections
with the sensitive strain. The
birth and death rates are
omitted

The additional parameters are related to treatment failure and the development of
resistant TB. For example, p + q denotes the proportion of those treated infectious
individuals who did not complete their treatment, where the proportion p modifies
the rate that departs from the sensitive TB latent class; qr2I1 gives the rate at which
individuals develop resistant TB because they did not complete the treatment of
active TB. Therefore, p ≥ 0, q ≥ 0 and p + q ≤ 1. From the disease transmission
diagram (see Fig. 7.3) we can write the following system of ordinary differential
equations:

S′ = μN − c1S
I1

N
− c2S

I2

N
− μS,

L′
1 = c1S

I1

N
− (μ + κ1)L1 − r1L1 + pr2I1 + c∗

1T
I1

N
− c2L1

I2

N
,

I ′
1 = κ1L1 − μI1 − r2I1,

L′
2 = qr2I1 − (μ + κ2)L2 + c2(S + L1 + T )

I2

N
,

I2 = κ2L2 − μI2,

T ′ = r1L1 + (1 − p − q)r2I1 − c∗
1T

I1

N
− c2T

I2

N
− μT,

(7.4)

where N = S + L1 + I1 + T + L2 + I2 is the total population, which remains
constant.

The detailed analysis of the model (7.4) is presented in [4]. System (7.4) has up to
four possible equilibria denoted by E0 (infection-free), E1 (only the sensitive strain
is present), E2 (only the resistant strain is present), and E∗ (coexistence of both
strains). The existence of these equilibria depends on the reproduction numbers for
the sensitive and resistant strains, which are given by

RS =
(

c1 + pr2

μ + r2

)(
κ1

μ + κ1 + r1

)
(7.5)
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and

RR =
(

c2

μ

)(
κ2

μ + κ2

)
, (7.6)

respectively.
The dynamics of system (7.4) are dramatically different for the cases q = 0

and q > 0 (development of resistant TB due to treatment failure), particularly in
terms of the number of equilibria and their stability, as well as the likelihood for
coexistence of both strains. In addition to the reproduction numbers, there are two
functions, RR = f (RS) and RR = g(RS), which divide the parameter region in
the (RS,RR) plane into sub-regions for the stability of equilibria:

f (RS) = 1

1 + 1−RS

(RS−AB)(1+1/B)

g(RS) = 1
C

(
AB + C − 1 ± √

(AB + C − 1)2 + 4(RS − AB)C
)

,

(7.7)

for RS ≥ 1 where

A = pr2

μ + κ1 + r1
, B = κ1

μ + d1 + r2
, C = μ

μ + κ1 + r1
.

The properties of f and g include

f (1) = g(1) = 1, f (RS) < g(RS) for RS > 1

(see Fig. 7.4). The two curves of f and g and the lines Ri = 1 (i = S,R) divide
the first quadrant of the (RS,RR) plane into either four regions in the case q = 0
(see Fig. 7.4a) or three regions in the case q > 0 (see Fig. 7.4b). The stability results
for system (7.4) in the case of q = 0 and q > 0 are summarized in Theorems 7.1
and 7.2, respectively.

Theorem 7.1 Assume q = 0. Let Regions I–IV be as in Fig. 7.4a.

(a) The disease-free equilibrium E0 is g.a.s. if (RS,RR) is in Region I .
(b) For RS > 1, the boundary equilibrium E1 is locally asymptotically stable if

(RS,RR) is in Region II and unstable in Regions III and IV .
(c) For RR > 1, the boundary equilibrium E2 is locally asymptotically stable if

(RS,RR) is in Region IV and unstable if in Regions II and III .
(d) The coexistence equilibrium E∗ exists and is locally asymptotically stable if

(RS,RR) is in Region III .

When q > 0, the equilibrium E1 (sensitive strain only) is never stable, and the
coexistence region III is much larger than that in the case of q = 0, as stated in the
following theorem and illustrated in Fig. 7.4b.



7.2 A Two-Strain TB Model 255

Fig. 7.4 (a) A bifurcation diagram for the system in the case q = 0. There are four Regions
I , II , III , and IV in the parameter space (RS,RR). In Region I , E0 is a global attractor and
other equilibria are unstable when they exist. In Regions II and IV , E∗ does not exist, while
E1 and E2 are locally asymptotically stable, respectively. In Region III , E∗ exists and is locally
asymptotically stable . (b) A bifurcation diagram for the system in the case q > 0. There are three
Regions I , III , and IV in the parameter space (RS,RR) (E1 does not exist), in which E0, E2,
and E∗ are stable, respectively

Fig. 7.5 Phase portraits of solutions to (7.4) in the case of q = 0. The choice of parameter values
gives a fixed value RS = 3.45. In (a) RR = 2 and (RS,RR) ∈ IV. In (b) RR = 2.4 and
(RS,RR) ∈ III. In (c) RR = 1.2 and (RS,RR) ∈ II. A circle indicates a stable equilibrium, and
a triangle indicates an unstable equilibrium

Theorem 7.2 Assume that q > 0. Let Regions I–III be as in Fig. 7.4b.

(a) The disease-free equilibrium E1 is g.a.s. if RS < 1 and RR < 1 (Region I ).
(b) For RR > 1, the boundary equilibrium E2 is locally asymptotically stable if

RS < 1 or if RS > 1 and RR > g(RS) (Region IV ). E2 is unstable if RS > 1
and RR < g(RS) (Region III ).

(c) The equilibrium E3 exists and is locally asymptotically stable iff RS > 1 and
RR < g(RS) (Region III ).

Figure 7.5 shows some simulation results of the model in the case of q = 0,
illustrating the disease outcomes for (RS,RR) in different regions as shown in
Fig. 7.4a. In this figure, the parameter values used are μ = 0.143, c1 = 13, κ1 =
1, q = 0, p = 0.5, r1 = 1, r2 = 2, κ2 = 1. For this set of values, RS = 3.45.
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Figure 7.5a–c corresponds to different values of RR (or equivalently c2), for which
(RS,RR) is in Regions IV , III , and II , respectively.

These results demonstrate that lack of drug treatment compliance by TB patients
may have an important implication for the maintenance of antibiotic resistant
strains. To make the role of antibiotic resistance transparent, we first studied a
special version of our two-strain model with two competing strains of TB: the
typical strain plus a resistant strain that was not the result of antibiotic resistance
(q = 0). In this last situation, we found that coexistence is possible but rare while
later we noticed that coexistence is almost certain when the second strain is the
result of antibiotic resistance. In our two-strain model there is a superinfection-like
term c2L1I2/N . Is this necessary to obtain the coexistence result because it is well
known that superinfection can cause coexistence (see [16, 18])? The answer is no. In
fact, it can be shown that in the absence of the superinfection-like term coexistence
is still almost the rule when the second strain is the result of antibiotic resistance
(see Fig. 7.4).

7.3 Optimal Treatment Strategies

Analysis of the two-strain model in Sect. 7.2 demonstrated that treatment may
facilitate the spread of resistant TB and increase the level of TB prevalence. Thus,
the effort levels devoted to treating latent and infectious TB individuals may lead to
different outcomes.

Let u1(t) and u2(t) denote the time-dependent control efforts, which represent
the fractions of individuals in L1 and I1 classes receiving prophylaxis and drug
treatment, respectively, at time t . The state system with controls u1(t) and u2(t)

reads:

S′ = μN − c1S
I1

N
− c2S

I2

N
− μS,

L′
1 = c1S

I1

N
− (μ + κ1)L1 − u1(t)r1L1

+(1 − u2(t))pr2I1 + c∗
1T

I1

N
− c2L1

I2

N
,

I ′
1 = κ1L1 − μI1 − r2I1,

L′
2 = (1 − u2(t))qr2I1 − (μ + κ2)L2 + c2(S + L1 + T )

I2

N
,

I2 = κ2L2 − μI2,

T ′ = u1(t)r1L1 + [
1 − (

1 − u2(t)
)
(p + q)

]
r2I1 − c∗

1T
I1

N
− c2T

I2

N
− μT,

(7.8)

with initial values S(0), L1(0), I1(0), L2(0), I2(0), T (0).
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The control functions, u1(t) and u2(t), are bounded, Lebesgue integrable func-
tions. The “case-finding” control, u1(t), represents the fraction of typical TB
latent individuals that is identified and will be put under treatment (to reduce the
number of individuals that may be infectious). The coefficient, 1 −u2(t), represents
the effort that prevents the failure of the treatment in the typical TB infectious
individuals (to reduce the number of individuals developing resistant TB). When
the “case-holding” control u2(t) is near 1, there is low treatment failure and high
implementation costs.

Our objective function to be minimized is

J (u1, u2) =
tf∫

0

[
L2(t) + I2(t) + B1

2
u2

1(t) + B2

2
u2

2(t)
]
dt, (7.9)

where we want to minimize the latent and infectious groups with resistant-strain
TB while also keeping the cost of the treatments low. We assume that the costs of
the treatments are nonlinear and take quadratic form here. The coefficients, B1 and
B2, are balancing cost factors due to size and importance of the three parts of the
objective functional. We seek to find an optimal control pair, u∗

1 and u∗
2, such that

J (u∗
1, u

∗
2) = min

Ω
J(u1, u2), (7.10)

where Ω = {(u1, u2) ∈ L1(0, tf ) | ai ≤ ui ≤ bi, i = 1, 2} and ai and bi, i = 1, 2,
are fixed positive constants.

The necessary conditions that an optimal pair must satisfy come from Pontrya-
gin’s maximum principle [19]. This principle converts (7.8)–(7.10) into a problem
of minimizing pointwise a Hamiltonian, H , with respect to u1 and u2:

H = L2 + I2 + B1

2
u2

1 + B2

2
u2

2 +
6∑

i=1

λigi, (7.11)

where gi is the right-hand side of the differential equation of the ith state variable.
By applying Pontryagin’s maximum principle [19] and the existence result for the
optimal control pairs from [13], we know that there exists an optimal control pair u∗

1,
u∗

2 and corresponding solution, S∗, L∗
1, I ∗

1 , L∗
2, I ∗

2 , and T ∗, that minimizes J (u1, u2)

over Ω . Furthermore, there exist adjoint functions, λ1(t), . . . , λ6(t), such that

λ′
1 = λ1(c1

I ∗
1

N
+ c∗

1
I ∗

2

N
+ μ) + λ2(−c1

I ∗
1

N
) + λ4(−c∗

1
I ∗

2

N
),

λ′
2 = λ2(μ + κ1 + u1(t)r1 + c∗

1
I ∗

2

N
) + λ3(−κ1) + λ4(−c∗

1
I ∗

2

N
) + λ6(−u∗

1(t)r1),

λ′
3 = λ1(c1

S∗

N
) + λ2(−c1

S∗

N
− (1 − u∗

2(t))pr2 − c2
T ∗

N
) + λ3(μ + r2)
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+ λ4(−(1 − u∗
2(t))qr2) + λ6(−(1 − (1 − u∗

2(t))(p + q))r2 + c2
T ∗

N
),

λ′
4 = −1 + λ4(μ + κ2) + λ5(−κ2),

λ′
5 = −1 + λ1(c

∗
1
S∗

N
) + λ2(c

∗
1
L∗

1

N
) − λ4(β

∗ S∗ + L∗
1 + T ∗

N
) + λ5μ + λ6(c

∗
1
T ∗

N
),

λ′
6 = λ2(−c2

I ∗
1

N
) + λ4(−c∗

1
I ∗

2

N
) + λ6(c2

I ∗
1

N
+ c∗

1
I ∗

2

N
+ μ), (7.12)

with transversality conditions

λi(tf ) = 0, i = 1, . . . , 6 (7.13)

and N = S∗ + L∗
1 + I ∗

1 + L∗
2 + I ∗

2 + T ∗. Moreover, the characterization holds:

u∗
1(t) = min

(
max(a1,

1
B1

(λ2 − λ6)r1L
∗
1), b1

)
u∗

2(t) = min
(

max(a2,
1
B2

(λ2p + λ4q − λ6(p + q)r2I
∗
1 )), b2

)
.

(7.14)

Due to the a priori boundedness of the state and adjoint functions and the
resulting Lipschitz structure of the ODEs, we obtain the uniqueness of the optimal
control for small tf . The uniqueness of the optimal control follows from the
uniqueness of the optimality system, which consists of (7.8) and (7.12)–(7.14).
There is a restriction on the time interval in order to guarantee the uniqueness of
the optimality system. This smallness restriction on the length on the time interval
is due to the opposite time orientations of (7.8), (7.12), and (7.13); the state problem
has initial values and the adjoint problem has final values. This restriction is very
common in control problems (see [12, 15]).

The optimal treatment is obtained by solving the optimality system, consisting
of the state and adjoint equations. An iterative method is used for solving the
optimality system. We start to solve the state equations with a guess for the
controls over the simulated time using a forward fourth-order Runge–Kutta scheme.
Because of the transversality conditions (7.13), the adjoint equations are solved by a
backward fourth-order Runge–Kutta scheme using the current iteration solution of
the state equations. Then, the controls are updated by using a convex combination of
the previous controls and the value from the characterizations (7.14). This process is
repeated and iteration is stopped if the values of unknowns at the previous iteration
are very close to the ones at the present iteration.

For the figures presented here, we assume that the weight factor B2 associated
with control u2 is greater than or equal to B1 which is associated with control u1.
This assumption is based on the following facts: The cost associated with u1 will
include the cost of screening and treatment programs, and the cost associated with
u2 will include the cost of holding the patients in the hospital or sending people
to watch the patients to finish their treatment. Treating an infectious TB individual
takes longer (by several months) than treating a latent TB individual. In these three
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Fig. 7.6 The optimal control strategy for the case of B1 = 50 and B2 = 500

figures, the set of the weight factors, B1 = 50 and B2 = 500, is chosen to illustrate
the optimal treatment strategy. Other epidemiological and numerical parameters are
presented in [14].

In the top frame of Fig. 7.6, the controls, u1 (solid curve) and u2 (dashdot curve),
are plotted as a function of time. In the bottom frame, the fractions of individuals
infected with resistant TB, (L2 + I2)/N , with control (solid curve) and without
control (dashed curve) are plotted. Parameters N = 30,000 and β∗ = 0.029 are
chosen. Results for other parameters are presented in [14]. To minimize the total
number of the latent and infectious individuals with resistant TB, L2 + I2, the
optimal control u2 is at the upper bound during almost 4.3 years and then u2 is
decreasing to the lower bound, while the steadily decreasing value for u1 is applied
over the most of the simulated time, 5 years. The total number of individuals L2 +I2
infected with resistant TB at the final time tf = 5 (years) is 1123 in the case with
control and 4176 without control, and the total number of cases of resistant TB
prevented at the end of the control program is 3053 (= 4176 − 1123).

In Fig. 7.7, the controls, u1 and u2, are plotted as a function of time for
N = 6000, 12,000, and 30,000 in the top and bottom frame, respectively. Other
parameters except the total number of individuals and c∗

1 = 0.029 are fixed for
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Fig. 7.7 The controls, μ1 and μ2, are plotted as a function of time for N =
6000, 12,000, and 30,000 in the top and bottom frame, respectively

these three cases. These results show that more effort should be devoted to “case-
finding” control u1 if the population size is small, but “case-holding” control u2 will
play a more significant role if the population size is big. Note that, in general, with
B1 fixed, as B2 increases, the amount of u2 decreases. A similar result holds if B2
is fixed and B1 increases.

In conclusion, our optimal control results show how a cost-effective combination
of treatment efforts (case holding and case finding) may depend on the population
size, cost of implementing treatments controls, and the parameters of the model. We
have identified optimal control strategies for several scenarios. Control programs
that follow these strategies can effectively reduce the number of latent and infectious
resistant-strain TB cases.

7.4 Modeling of the Long and Variable Latency of TB

As indicated in Figs. 7.1 and 7.2, the latent period of TB can range from a couple of
years to lifetime. One of the approaches to incorporate this feature is to divide latent
individuals into two classes based on the rates of progression to the disease stage,
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Fig. 7.8 A transition
diagram of TB with fast and
slow progressions [3]

with one class having a faster progression than the other. For example, based on the
transition diagram shown in Fig. 7.8, Blower et al. considered the following model
in [3]:

S′ = Λ − cSI − μS,

L′ = (1 − p)cSI − (κ + r1 + μ)L,

I ′ = pcSI + κL − (r2 + μ + d)I,

C′ = r1L − μC,

T ′ = r2I − μT,

(7.15)

which includes five epidemiological classes: susceptible (S), latently infected (L),
infectious (I ), effectively chemoprophylaxed (C), and effectively treated (T ). The
model assumes that a fraction p of the newly infected individuals will become
infectious within 1 year (fast progression,p ≈ 0.05), while the remaining 1 − p

fraction of newly infected individuals will enter the latent stage first and develop
active TB at a rate κ (slow progression, approximately 1/20 (years)). The model
suggests that for fast progression, an infected individual enters the infectious class I

immediately. The parameters r1 and r2 denote the rates of prophylaxis and treatment,
respectively. The per-capita natural and disease mortalities are μ and d, respectively.

The control reproduction number of the model (7.15) is

RC = Rfast
C + Rslow

C , (7.16)

where

Rfast
C =

(cpΛ

μ

)( 1

r2 + μ + d

)
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Fig. 7.9 Plots of the curve RC = 1 for severity levels of mild, moderate, and severe, which
correspond to the basic reproduction number R0 values of 4, 9, and 17, respectively [3]

and

Rslow
C =

(c(1 − p)Λ

μ

)( κ

r1 + κ + μ

)( 1

r2 + μ + d

)

represent the reproduction numbers associated with the fast and slow paths,
respectively. The formula (7.16) can be used to evaluate the possibility to eradicate
tuberculosis either by treatment alone or by a combination of treatment and
chemoprophylaxis, as demonstrated in Fig. 7.9 (adopted from [3]).

To investigate the role of treatment failure for drug-sensitive (DS) cases in the
prevalence of drug-resistant (DR) TB, Blower et al. [3] extended the one-strain TB
model (7.15) to include a drug-resistant strain as follows:

S′ = Λ −
(
cSIS + cRIR

)
S − μS,

L′
S = (1 − p)cSISS − (r1 + κ + μ)LS,

I ′
S = pcSISS + κLS − (r2 + μ + d)IS,

C′
S = r1LS − μCS,

T ′
S = r2(1 − q)IS − μTS,

L′
R = (1 − p)cRIRS − (κ + μ)LR,

I ′
R = pcRIRS + qr2IS + κLR − (r2δ + μ + d)IR,

T ′
R = δr2TR − μTR,

(7.17)
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where the epidemiological classes associated with the DS and DR tuberculosis are
indicated by the subscripts S and R, respectively. The parameter q represents the
fraction of treatment failure for DS tuberculosis that leads to the development of
DR tuberculosis, and the parameter δ denotes the relative effectiveness of treatment
for a resistant case.

Blower et al. [3] showed that the model (7.17) can help gain insights into the
impact of treatment failure (q) on the development of DR tuberculosis.

Another approach to incorporate the long and variable latency is to consider
an arbitrarily distributed latency, in which case the model consists of a system of
integro-differential equations. Examples can be found in [10, 11]. It is shown in
[10] that the model with a distributed latency has the same dynamical behavior as the
ODE model, although it can provide a more detailed description for the reproduction
number as it involves a more realistic distribution of the latent period. The model
considered in [11] includes both DS and DR strains with infection age-dependent
progression (e.g., the progression distribution shown in Fig. 7.2).

7.5 Backward Bifurcation in a TB Model with Reinfection

As mentioned earlier, the latent period of TB can be as long as many years and even
lifetime. Re-exposure to TB bacilli through repeated contacts with individuals with
active TB may accelerate the progression of LTBI towards active TB, and exogenous
reinfection (i.e., acquiring a new infection from another infected individual) may
occur. To investigate the impact of exogenous reinfection in the spread and control
of TB, we can extend the one-strain model (7.1) by incorporating the exogenous
reinfection. It is demonstrated in [9] that exogenous reinfection may play a
fundamental role in the transmission dynamics and the epidemiology of TB at
the population level. Particularly, the model is capable of exhibiting a backward
bifurcation, i.e., a stable endemic equilibrium can exist even when the reproduction
number is less than 1. Although some studies (e.g., see [23]) find that, for parameter
values in a certain range, the onset of the backward bifurcation is unlikely to occur,
other scenarios are possible in which the conditions for backward bifurcation can
be satisfied. In either case, it is helpful to know that exogenous reinfection may play
an important role in TB dynamics, which can be critical for the design of control
programs for TB.

An extension of the one-strain model (7.1) when reinfection is included takes the
form:

S′ = μN − cS
I

N
− μS,

L′ = cS
I

N
+ c∗T I

N
− pcL

I

N
− (κ + μ)L,

I ′ = pcL
I

N
+ κL − (r + μ)I,

T ′ = rI − c∗T I

N
− μT .

(7.18)
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The model (7.18) ignores the treatment of latent individuals and only infectious
individuals may receive treatment at the rate r . The parameter p is a factor
reflecting the difference between primary infections (infection from susceptibles)
and exogenous reinfections (infection from latent individuals). A value of p ∈
(0, 1) implies that a primary infection provides some degree of cross-immunity to
exogenous reinfections. Other parameters have the same meaning as in (7.1).

The reproduction number for (7.18) is

R0 = cκ

(κ + μ)(r + μ)
. (7.19)

The usual result that the disease-free equilibrium is locally asymptotically stable
when R0 < 1 still holds. However, the usual result that there is no endemic
equilibrium when R0 < 1 no longer holds. To show that an endemic equilibrium
may exist when R0 < 1, consider the simpler case when c∗ = c. Let U∗ =
(S∗, L∗, I ∗, T ∗) denote an endemic equilibrium, i.e., I ∗ > 0. Let x = I ∗/N , then

S∗

N
= μ

μ + cx∗ ,
L∗

N
= (μ + r)x∗

κ + pcx∗ ,
T ∗

N
= rx

μ + cx
,

and x∗ is a solution of the quadratic equation

Ax2 + Bx + C = 0, (7.20)

where

A = pR0, B = (1 + p + Q)DE − pR0, C = DEQ
( 1

R0
− 1

)
,

and DE = κ/(μ+κ) and Q = κ/(μ+r). Note that DE < 1 denotes the probability
that a latent individual survives and becomes infective. Let

Rp = 1

p

(
DE(1 + p − Q) + s

√
DEQ(p − pDE − DE)

)
(7.21)

and

p0 = (1 + Q)DE

1 − DE

. (7.22)

Then Rp < 1 if p > p0, and B2 −4AC > (=, <) 0 if R0 > (=, <) Rp, in which
case Eq. (7.20) has two (one, none) positive solutions x± (see [9] for more detailed
proofs). This establishes the following result:
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Fig. 7.10 The left plot is a depiction of the backward bifurcation for the model with rein-
fection (7.18). The I ∗ component of an equilibria is plotted as a function of R0. The curve
demonstrates that there are two positive steady states for Rp < R0 < 1. The solid part of the
curve corresponds to the stable steady state (SSS) and the dashed part corresponds to the unstable
steady state (USS). The right figure shows the numerical solutions of system (7.18) for parameter
values in the region where the backward bifurcation occurs (Rp < R0 < 1 and p > p0).
The number of infectious individuals I (t) is plotted. It illustrates that, depending on the initial
conditions, the solution will converge to either the infection-free equilibrium (the solid curves) or
the stable positive equilibrium (dashed curves)

Theorem 7.3 Let R0, Rp, and p0 be as defined in (7.19), (7.21), and (7.22).

(a) If R0 > 1, then system (7.18) has exactly one endemic equilibrium and it is
locally asymptotically stable

(b) If R0 < 1, then the disease-free equilibrium is locally asymptotically stable
Moreover,

(i) for each p > p0 there exists a positive constant Rp < 1 such that
system (7.18) has exactly two (one, none) positive equilibria when R0 >

( =, <) Rp. In the case of two positive equilibria, the one with large
(smaller) I ∗ component is stable (unstable), as depicted in Fig. 7.10 (left).

(ii) for p = (<)p0, system (7.18) has exactly one (no) positive equilibrium.

Numerical simulations of the model (7.18) confirm the backward bifurcation.
Figure 7.10 (right) shows the I component of the solutions with different initial
values in the case p > p0 and Rp < R0 < 1. We observe that solutions with
initial I values near 0 converge to the disease-free steady state (see the solid curves),
whereas other solutions converge to the endemic steady state with a larger I value
(see the dashed curves).

7.6 Other TB Models with More Complexities

The models considered above assume homogeneity in several aspects including
mixing and age structure of the population. In many cases, the problems under
investigation require the consideration of some of the heterogeneities. For example,
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in [1] TB models involving non-homogeneous mixing that incorporates “household”
contacts and age-dependent mixing are considered to assess the possible causes for
the observed historical decline of tuberculosis notifications. In [5], an age-structured
TB model is used to study optimal age-dependent vaccination strategies ψ(a),
where a denotes the chronological age of an individual. One of the optimal control
problems is to minimize the reproduction number corresponding to ψ(a), Rψ , under
the constraint on the cost C(ψ) < C∗, where C∗ is a fixed constant. Results suggest
that the optimal vaccination strategy is either a one-age strategy (vaccinate every
one at a single age A determined by the parameter and parameter functions in the
model) or two-age strategy (vaccinate the population at two fixed ages A1 and A2
determined by model parameters).

Models with multiple resistant strains have been used to answer various questions
associated with the establishment and spread of drug-resistant TB. Blower and Chou
[2] use a model with three strains of resistant TB to study how to effectively control
MDR-TB in “hot zones” (i.e., areas that have > 5% prevalence of MDR-TB). The
findings of the model suggest that the levels of MDR are driven by case-finding
rates, cure rates, and amplification probabilities (the probability that a case will
develop further resistance during treatment). In [7], heterogeneity in the relative
fitness of MDR strains is incorporated in a TB model. The model includes two
resistant strains (one is more fit than the other), as well as a drug-sensitive strain, and
is used to study the impact of initial fitness estimates on the emergence of MDR-TB.
The model results show that “even when the average relative fitness of MDR strains
is low and a well-functioning control program is in place, a small sub-population
of a relatively fit MDR strain may eventually outcompete both the drug-sensitive
strains and the less fit MDR strains.”

A two-strain TB model with reinfection is considered in [21] to study the role of
reinfection in the transmission dynamics of drug-resistant TB and the coexistence of
sensitive and resistant strains of TB. In [17] multiple sub-populations are considered
with one sub-population being genetically susceptible to TB. Different strategies
involving treatment of latent TB infections and active TB disease are examined and
in different populations are examined. Results from the model analysis suggest that
the presence of a genetically susceptible sub-population dramatically alters effects
of treatment. To study the impact of treatment failure and its influence in the criteria
for the control of drug-resistant TB, a model with multiple stages of treatment failure
with different probabilities of leading to resistant TB is considered in [8]. Model
results indicate that case detection and treatment can be a critical factor in the control
of MDR-TB.

To explore the influence of HIV on TB prevalence, models including the
interaction between TB and HIV can be used, in which case the model analysis can
be very challenging due to the possible coinfections of TB and HIV. For example,
a model incorporating both TB and HIV with multiple stages of HIV is studied in
[20]. The model results suggest that “an HIV epidemic can significantly increase the
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frequency and severity of tuberculosis outbreaks, but that this amplification effect of
HIV on tuberculosis outbreaks is very sensitive to the tuberculosis treatment rate.”
Another model that includes both TB and HIV is studied in [22]. The model results
suggest that the accelerated progression from LTBI to active TB in individuals co-
infected with HIV can have a significant influence in TB prevalence.

7.7 Project: Some Calculations for the Two-Strain Model

Exercise 1 Derive the formulas of the reproduction numbers RS and RR given
in (7.5) and (7.6), respectively, for the two-strain TB model (7.4) by considering the
stability of the disease-free equilibrium

E0 = (
S(0), L

(0)
1 , I

(0)
1 , L

(0)
2 , I

(0)
2 , T (0)

) = (N, 0, 0, 0, 0, 0).

The Jacobian a E0 is

J (E0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μ 0 −c1 0 −c2 0
0 −(μ + κ1 + r1) c1 + pr2 0 0 0
0 κ1 −(μ + r2) 0 0 0
0 0 qr2 −(μ + κ2) c2 0
0 0 0 κ2 −μ 0
0 r1 (p + q)r2 0 0 −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly, J (E0) has the negative eigenvalues μ with multiplicity 2, and other
eigenvalues are given by the eigenvalues of J1 and J2, where

J1 =
[−(μ + κ1 + r1) c1 + pr2

κ1 −(μ + r2)

]
, J2 =

[−(μ + κ2) c2

κ2 −μ

]
.

Show that J1 has negative eigenvalues if and only if RS < 1 and J2 has negative
eigenvalues if and only if RR < 1.

Exercise 2 Consider the two-strain TB model (7.4) and conduct numerical simula-
tions of the system for parameter values specified below. Given the parameter values
μ = 0.0143 (or 1/μ = 70), c1 = 13, κ1 = κ2 = 1, r1 = 1, r2 = 2, q = 0, p = 0.5.
Choose the values of c2 such that

(a) E1 is stable;
(b) E2 is stable;
(c) E∗ is stable.
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Exercise 3 Similar to Exercise 2 but for the case when q > 0. Given the same
values for other parameters as in Exercise 2, and choose the values of c2 such that

(a) E2 is stable;
(b) E∗ is stable.

7.8 Project: Refinements of the One-Strain Model

The model (7.1) is a one-strain model for TB, which assumes that infected people
stay in the latent stage L before entering the infective stage I . The model (7.15)
includes fast and slow progression (represented by p and 1 − p, respectively),
which assumes that with fractions 1 − p and p infected individuals will enter the
latent L and infectious I stages, respectively. In both models, the stage duration is
assumed to be exponentially distributed with parameter k. That is, the probability
that an infected individual has not become infective s units of time after infection is
e−ks . This assumption may not be appropriate for TB due to the long and variable
latency, as shown in Figs. 7.1 and 7.2. To examine whether or not a model with
a more realistic assumption on the distribution of latent period, we can consider
a model in which the exponential survival function e−ks is replaced by a general
distribution p(s), as described below.

Let p(s) be a function representing the proportion of those individuals latent at
time t and who, if alive, are still infected (but not infectious) at time t + s. Then
−ṗ(τ ) is the rate of removal of individuals from E class into I class τ units of time
after becoming latent. Assume that

p(s) ≥ 0, ṗ(s) ≤ 0, p(0) = 1,

∫ ∞

0
p(s)ds < ∞.

Let S(t), E(t), I (t), and T (t) denote the number of individuals in the susceptible,
latent, infectious, and treated classes, respectively. Consider the following model
with p(s) being the arbitrary distribution of the latent stage:

S′ = Λ − cS I
N

− μS,

E(t) = E0(t) +
∫ t

0

[
cS(s) + c∗T (s)

] I (s)

N(s)
p(t − s)e−(μ+r1)(t−s)ds,

I (t) =
∫ t

0

∫ τ

0

[
cS(s) + c∗T (s)

] I (s)

N(s)
e−(μ+r1)(τ−s)

×[−ṗ(τ − s)e−(μ+r2)(t−τ)]ds dτ + I0e
−(μ+r2)t + I0(t),

T ′ = r1E + r2I − c∗T I
N

− μT,

N = S + E + I,

(7.23)
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where E0(t) denotes those individuals in E class at time t = 0 and still in the
latent class, I0(t) denotes those initially in class E who have moved into class I and
are still alive at time t , and I0e

−(μ+r2)t with I0 = I (0) represents those who are
infective at time 0 and are still alive and in I class. E0(t) and I0(t) are assumed to
have compact support (that is, they vanish for large enough t). All other parameters
have the same meanings as in model (7.1).

Question 1 Derive the formula below for the reproduction number R0

R0 = c

∫ ∞

0
a(τ)dτ, (7.24)

where a(u) is defined by

a(t − s) =
∫ t

s

e−(μ+r1)(τ−s)[−ṗ(τ − s)e−(μ+r2)(t−τ)]dτ.

Provide biological interpretations for the a(u) and the factors in the expression of
a(u).

Question 2 Show that the disease will die out if R0 < 1 and persist if R0 > 1.

Question 3 Find all biologically feasible steady-state solutions of the model (7.23).
Determine the condition for the existence of a coexistence steady state (i.e., I > 0
and J > 0).

Question 4 For each steady state, identify the conditions under which the steady
state is locally asymptotically stable.

Question 5 Does the model with a more realistic distribution for the latent stage
provide new qualitative behavior of the disease dynamics in comparison with the
ODE model (7.1)? Identify the additional insights that the model (7.23) can provide.

7.9 Project: Refinements of the Two-Strain Model

Model (7.4) is a two-strain model for TB with drug-sensitive and drug-resistant
strains. In this model, the latent stages for both strain are assumed to be exponen-
tially distributed with parameters κ1 and κ2. The long and variable latency for the
sensitive strain make this assumption unrealistic (the latent period for the resistant
strain is much shorter). The model below is an alternative two-strain model with
distributed delay in latency, in which p(θ) is used to describe the progression from
latent stage to infectious stage and θ is the age of infection (time since becoming
infected):
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dS

dt
= μN − (μ + λ1(t) + λ2(t)) S + (1 − r)χ

∫ ∞

0
p(θ)i(θ, t)dθ,

∂i

∂t
+ ∂i

∂θ
+ μ i(θ, t) + (1 − r + qr)χp(θ)i(θ, t) = 0, (7.25)

dJ

dt
= λ2(t)S − μJ + qrχ

∫ ∞

0
p(θ)i(θ, t)dθ,

i(0, t) = λ1(t)S(t), S(0) = S0 > 0, i(θ, 0) = i0(θ) ≥ 0, J (0) = J0 > 0.

S(t) is the number of susceptibles at time t ; i(θ, t) denotes the density of infection
age θ individuals with the drug-sensitive strain at time t ; J (t) is the number of
infected individuals with a drug-resistant strain at time t ; and N = S +I +J , where

I (t) =
∫ ∞

0
i(θ, t)dθ

is the total number of individuals infected with the sensitive strain. The function
p(θ) (0 ≤ p(θ) ≤ 1) is assumed constant in time and is based on experimental data
(e.g., the distribution in Fig. 7.2). Note that p(θ)i(θ, t) represents the age density of
infectious individuals. The transmission rates of sensitive and resistant strains are

λ1(t) = c1

N(t)

∫ ∞

0
p(θ)i(θ, t)dθ and λ2(t) = c2

J (t)

N(t)
, (7.26)

respectively, with c1 and c2 being the per-capita transmission rates of the sensitive
and resistant strains. The rate at which sensitive-strain-infected individuals leave
the i class due to treatment is (1 − r + qr)χp(θ), where χ denotes the treatment
rate for individuals with drug-sensitive TB. The factor (1 − r + qr) introduces the
effect of incomplete treatment: a fraction r of the treated individuals with sensitive
TB do not recover due to incomplete treatment, and the remaining fraction 1 − r

is actually cured and becomes susceptible again. Moreover, among the individuals
who do not finish their treatment, a fraction q of them will develop drug-resistant
TB and the remaining fraction will remain latent. The per-capita birth and natural
death rates are assumed to be the same and equal to μ. In this model, for simplicity,
treated individuals are assumed to have the same susceptibility.

Question 1 Let v(t) = i(0, t) = λ1(t)S(t). Show that system (7.25) is equivalent
to the following system, which is easier to analyze:
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v(t) =
N(t) − J (t) −

∫ t

0
K0(θ)v(t − θ)dθ

N(t)

∫ t

0
K1(θ)v(t − θ)dθ + F̃1(t),

dJ

dt
= β2

(
N(t) − J (t) −

∫ t

0
K0(θ)v(t − θ)dθ

)
J (t)

N(t)

−mJ(t) +
∫ t

0
K2(θ)v(t − θ)dθ + F̃2(t),

dN

dt
= b(N)N(t) − μN(t) − δJ (t),

(7.27)

where F̃i(t) involve parameters and initial condition with limt→∞ F̃i(t) = 0, i =
1, 2, and

K0(θ) = e
−μθ−

∫ θ

0
(1 − r + qr)χp(s)ds

,

K1(θ) = β1p(θ)K0(θ) = − β1

χ(1 − r + qr)

(
d

dθ
K0(θ) + μK0(θ)

)
,

K2(θ) = qrχp(θ)K0(θ) = − qr

(1 − r + qr)

(
d

dθ
K0(θ) + μK0(θ)

)
.

(7.28)

Question 2 Let R1 and R2 denote the reproduction numbers for the sensitive and
resistant strains. Derive a formula for R1 and R2.

Question 3 Explore how the existence and stability of steady states of the
model (7.25) depend on R1 and R2.

Question 4 Does the model with a more realistic distribution for the latent stage
for the sensitive strain provide new qualitative behavior of the disease dynamics in
comparison with the ODEs model (7.4)? Identify the additional insights that the
model (7.25) may provide.
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