
Chapter 5
Models with Heterogeneous Mixing

5.1 A Vaccination Model

To cope with annual seasonal influenza epidemics there is a program of vaccination
before the “flu” season begins. Each year a vaccine is produced aimed at protecting
against the three influenza strains considered most dangerous for the coming season.
We formulate a model to add vaccination to the simple SIR model under the
assumption that vaccination reduces susceptibility (the probability of infection if
a contact with an infected member of the population is made).

We consider a population of total size N and assume that a fraction γ of this
population is vaccinated prior to a disease outbreak. Thus we have unvaccinated and
vaccinated sub-populations of sizes NU = (1 − γ )N and NV = γN , respectively.
We assume that vaccinated members have susceptibility to infection reduced by a
factor σ, 0 ≤ σ ≤ 1, with σ = 0 describing a perfectly effective vaccine and σ = 1
describing a vaccine that has no effect. We assume also that vaccinated individuals
who are infected have infectivity reduced by a factor δ and both vaccinated and
unvaccinated individuals have a recovery rate α. The number of contacts in unit time
per member is aU for unvaccinated individuals and aV for vaccinated individuals.
These may be equal.

In this chapter we will study models in which there is more than one susceptible
or infective compartment, and it is convenient to formulate such models using the
number of contacts in unit time instead of the number of contacts multiplied by
the total population size. Thus, for example, instead of writing the simple epidemic
model as

S′ = βSI, I ′ = βSI − αI,
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we would write it as

S′ = −aS
I

N
, I ′ = aS

I

N
− αI.

We let SU , SV , IU , IV denote the number of unvaccinated susceptibles, the
number of vaccinated susceptibles, the number of unvaccinated infectives, and the
number of vaccinated infectives, respectively. The resulting model is

S′
U = −aUSU

[
IU

NU

+ δ
IV

NV

]

S′
V = −σaV SV

[
IU

NU

+ δ
IV

NV

]
(5.1)

I ′
U = aUSU

[
IU

NU

+ δ
IV

NV

]
− αIU

I ′
V = σaV SV

[
IU

NU

+ δ
IV

NV

]
− αIV .

The initial conditions prescribe SU(0), SV (0), IU (0), IV (0), with

SU(0) + IU (0) = NU, SV (0) + IV (0) = NV .

Since the infection now is beginning in a population which is not fully sus-
ceptible, we speak of the control reproduction number Rc rather than the basic
reproduction number. However, as we will soon see, calculation of the control
reproduction number will require a more general definition and a considerable
amount of technical computation. The computation method is applicable to both
basic and control reproduction numbers. We will use the term reproduction number
to denote either a basic reproduction number or a control reproduction number. We
are able to obtain final size relations without knowledge of the reproduction number
but these final size relations do contain information about the reproduction number,
and more.

Since SU and SV are decreasing non-negative functions they have limits SU(∞)

and SV (∞), respectively, as t → ∞. The sum of the equations for SU and IU

in (5.1) is

(SU + IU )′ = −αIU ,

from which we conclude, just as in the analysis of the simple SIR model in Sect. 2.4,
that IU (t) → 0 as t → ∞, and that

α

∫ ∞

0
IU (t)dt = NU − SU(∞). (5.2)
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Similarly, using the sum of the equations for SV and IV , we see that IV (t) → 0 as
t → ∞, and that

α

∫ ∞

0
IV (t)dt = NV − SV (∞). (5.3)

Integration of the equation for SU in (5.1) and use of (5.2), (5.3) gives

log
SU(0)

SU (∞)
= aU

[∫ ∞

0
IU (t)dt + δ

∫ ∞

0
IV (t)dt

]

= aU

α

[
1 − SU(∞)

NU

]
+ δaU

α

[
1 − SV (∞)

NV

]
.

(5.4)

A similar calculation using the equation for SV gives

log
SV (0)

SV (∞)
= σaV

α

[
1 − SU(∞)

NU

]
+ δσaV

α

[
1 − SV (∞)

NV

]
. (5.5)

This pair of Eqs. (5.4) and (5.5) are the final size relations. They make it possible to
calculate SU(∞), SV (∞) if the parameters of the model are known.

It is convenient to define the matrix

R =
[
R11 R12

R21 R22

]
=
[

aU

α
δaU

α
σaV

αU

δσaV

αV

]
.

The element Rij can be interpreted as the average number of susceptibles of group
i infected by an infective of type j over its infectious period.

Then the final size relations (5.4), (5.5) may be written as

log
SU(0)

SU (∞)
= R11

[
1 − SU(∞)

NU

]
+ R12

[
1 − SV (∞)

NV

]

log
SV (0)

SV (∞)
= R21

[
1 − SU(∞)

NU

]
+ R22

[
1 − SV (∞)

NV

]
.

(5.6)

The matrix R is closely related to the reproduction number. In the next section we
describe a general method for calculating reproduction numbers that will involve a
matrix which is similar to this matrix.
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5.2 The Next Generation Matrix and the Basic Reproduction
Number

Up to this point, we have calculated reproduction numbers by following the
secondary cases caused by a single infective introduced into a population. However,
if there are sub-populations with different susceptibility to infection, as in the
vaccination model introduced in Sect. 5.1, it is necessary to follow the secondary
infections in the sub-populations separately, and this approach will not yield the
reproduction number. It is necessary to give a more general approach to the meaning
of the reproduction number, and this is done through the next generation matrix
[18, 19, 45]. The underlying idea is that we must calculate the matrix whose
(i, j) entry is the number of secondary infections caused in compartment i by an
infected individual in compartment j . We will follow the development in [45, 46]
for ordinary differential equation models, even though the approach of [18, 19] is
more general.

In a compartmental disease transmission model, we sort individuals into com-
partments based on a single, discrete state variable. A compartment is called a
disease compartment if the individuals therein are infected. Note that this use of the
term disease is broader than the clinical definition and includes stages of infection
such as exposed stages in which infected individuals are not necessarily infective.
Suppose there are n disease compartments and m non-disease compartments, and
let x ∈ Rn and y ∈ Rm be the sub-populations in each of these compartments.
Further, we denote by Fi the rate at which secondary infections increase the ith

disease compartment and by Vi the rate at which disease progression, death, and
recovery decrease the ith compartment, that is, Vi is the net outflow from the i th
compartment due to disease progression, death, and recovery, with inflow from other
compartments yielding a negative contribution. The compartmental model can then
be written in the form

x′
i = Fi (x, y) − Vi (x, y), i = 1, . . . , n,

y′
j = gj (x, y), j = 1, . . . , m.

(5.7)

Note that the decomposition of the dynamics into F and V and the designation
of compartments as infected or uninfected may not be unique; different decompo-
sitions correspond to different epidemiological interpretations of the model. The
definitions of F and V used here differ slightly from those in [45].

The derivation of the basic reproduction number is based on the linearization
of the ODE model about a disease-free equilibrium. We make the following
assumptions:

• Fi (0, y) = 0 and Vi (0, y) = 0 for all y ≥ 0 and i = 1, . . . , n.
• The disease-free system y′ = g(0, y) has a unique equilibrium that is asymp-

totically stable, that is, all solutions with initial conditions of the form (0, y)

approach a point (0, yo) as t → ∞. We refer to this point as the disease-free
equilibrium.
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The first assumption says that all new infections are secondary infections arising
from infected hosts; there is no immigration of individuals into the disease
compartments. It ensures that the disease-free set, which consists of all points of
the form (0, y), is invariant. That is, any solution with no infected individuals at
some point in time will be free of infection for all time. The second assumption
ensures that the disease-free equilibrium is also an equilibrium of the full system.

Next, we further assume that

• Fi (x, y) ≥ 0 for all non-negative x and y and i = 1, . . . , n.
• Vi (x, y) ≤ 0 whenever xi = 0, i = 1, . . . , n.
•
∑n

i=1 Vi (x, y) ≥ 0 for all non-negative x and y.

The reasons for these assumptions are that the function F represents new
infections and cannot be negative, each component, Vi , represents a net outflow
from compartment i and must be negative (inflow only) whenever the compartment
is empty, and the sum

∑n
i=1 Vi (x, y) represents the total outflow from all infected

compartments. Terms in the model leading to increases in
∑n

i=1 xi are assumed to
represent secondary infections and therefore belong in F .

Suppose that a single infected person is introduced into a population originally
free of disease. The initial ability of the disease to spread through the population
is determined by an examination of the linearization of (5.7) about the disease-free
equilibrium (0, yo). It is easy to see that the assumption Fi (0, y) = 0,Vi (0, y) = 0
implies

∂Fi

∂yj

(0, yo) = ∂Vi

∂yj

(0, yo) = 0

for every pair (i, j). This implies that the linearized equations for the disease
compartments, x, are decoupled from the remaining equations and can be written as

x′ = (F − V )x, (5.8)

where F and V are the n × n matrices with entries

F = ∂Fi

∂xj

(0, yo) and V = ∂Vi

∂xj

(0, yo).

Because of the assumption that the disease-free system y′ = g(0, y) has a
unique asymptotically stable equilibrium, the linear stability of the system (5.7)
is completely determined by the linear stability of the matrix (F − V ) in (5.8).

The number of secondary infections produced by a single infected individual can
be expressed as the product of the expected duration of the infective period and
the rate at which secondary infections occur. For the general model with n disease
compartments, these are computed for each compartment for a hypothetical index
case. The expected time the index case spends in each compartment is given by
the integral

∫∞
0 φ(t, x0) dt , where φ(t, x0) is the solution of (5.8) with F = 0
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(no secondary infections) and non-negative initial conditions, x0, representing an
infected index case:

x′ = −V x, x(0) = x0. (5.9)

In effect, this solution shows the path of the index case through the disease
compartments from the initial exposure through death or recovery with the ith

component of φ(t, x0) interpreted as the probability that the index case (introduced
at time t = 0) is in disease state i at time t . The solution of (5.9) is φ(t, x0) =
e−V tx0, where the exponential of a matrix is defined by the Taylor series

eA = I + A + A2

2
+ A3

3! + · · · + Ak

k! + · · · .

This series converges for all t and
∫∞

0 φ(t, x0) dt = V −1x0 (see, for example,
[29]). The (i, j) entry of the matrix V −1 can be interpreted as the expected time
an individual initially introduced into disease compartment j spends in disease
compartment i.

The (i, j) entry of the matrix F is the rate at which secondary infections are
produced in compartment i by an index case in compartment j . Hence, the expected
number of secondary infections produced by the index case is given by

∫ ∞

0
Fe−V tx0 dt = FV −1x0.

Following Diekmann and Heesterbeek [18], the matrix KL = FV −1 is referred to
as the next generation matrix with large domain for the system at the disease-free
equilibrium. The (i, j) entry of K is the expected number of secondary infections
in compartment i produced by individuals initially in compartment j , assuming, of
course, that the environment seen by the individual remains homogeneous for the
duration of its infection.

Shortly, we will describe some results from matrix theory which imply that the
matrix, KL = FV −1 is non-negative and therefore has a non-negative eigenvalue,
R0 = ρ(FV −1), such that there are no other eigenvalues of K with modulus
greater than R0 and there is a non-negative eigenvector ω associated with R0 [7,
Theorem 1.3.2]. This eigenvector is in a sense the distribution of infected individuals
that produces the greatest number, R0, of secondary infections per generation.
Thus, R0 and the associated eigenvector ω suitably define a “typical” infective
and the basic reproduction number can be rigorously defined as the spectral radius
of the matrix, KL. The spectral radius of a matrix KL, denoted by ρ(KL), is the
maximum of the moduli of the eigenvalues of KL. If KL is irreducible, then R0 is a
simple eigenvalue of KL and is strictly larger in modulus than all other eigenvalues
of KL. However, if KL is reducible, which is often the case for diseases with
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multiple strains, then KL may have several positive real eigenvectors corresponding
to reproduction numbers for each competing strain of the disease.

We have interpreted the reproduction number for a disease as the number
of secondary infections produced by an infected individual in a population of
susceptible individuals. If the reproduction number R0 = ρ(FV −1) is consistent
with the differential equation model, then it should follow that the disease-free
equilibrium is asymptotically stable if R0 < 1 and unstable if R0 > 1.

This is shown through a sequence of lemmas.
The spectral bound (or abscissa) of a matrix A is the maximum real part of all

eigenvalues of A. If each entry of a matrix T is non-negative we write T ≥ 0 and
refer to T as a non-negative matrix. A matrix of the form A = sI − B, with B ≥ 0,
is said to have the Z sign pattern. These are matrices whose off-diagonal entries are
negative or zero. If in addition, s ≥ ρ(B), then A is called an M-matrix. Note that in
this section, I denotes an identity matrix, not a population of infectious individuals.
The following lemma is a standard result from [7].

Lemma 5.1 If A has the Z sign pattern, then A−1 ≥ 0 if and only if A is a non-
singular M-matrix.

The assumptions we have made imply that each entry of F is non-negative and
that the off-diagonal entries of V are negative or zero. Thus V has the Z sign
pattern. Also, the column sums of V are positive or zero, which, together with the Z
sign pattern, implies that V is a (possibly singular) M-matrix [7, condition M35 of
Theorem 6.2.3]. In what follows, it is assumed that V is non-singular. In this case,
V −1 ≥ 0, by Lemma 5.1. Hence, KL = FV −1 is also non-negative.

Lemma 5.2 If F is non-negative and V is a non-singular M-matrix, then R0 =
ρ(FV −1) < 1 if and only if all eigenvalues of (F − V ) have negative real parts.

Proof Suppose F ≥ 0 and V is a non-singular M-matrix. By the proof of
Lemma 5.1, V −1 ≥ 0. Thus, (I − FV −1) has the Z sign pattern, and by
Lemma 5.1, (I − FV −1)−1 ≥ 0 if and only if ρ(FV −1) < 1. From the equalities
(V − F)−1 = V −1(I − FV −1)−1 and V (V − F)−1 = I + F(V − F)−1, it follows
that (V −F)−1 ≥ 0 if and only if (I −FV −1)−1 ≥ 0. Finally, (V −F) has the Z sign
pattern, so by Lemma 5.1, (V − F)−1 ≥ 0 if and only if (V − F) is a non-singular
M-matrix. Since the eigenvalues of a non-singular M-matrix all have positive real
parts, this completes the proof. �	
Theorem 5.1 Consider the disease transmission model given by (5.7). The disease-
free equilibrium of (5.7) is locally asymptotically stable if R0 < 1, but unstable if
R0 > 1.
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Proof Let F and V be defined as above, and let J21 and J22 be the matrices of partial
derivatives of g with respect to x and y evaluated at the disease-free equilibrium.
The Jacobian matrix for the linearization of the system about the disease-free
equilibrium has the block structure

J =
[
F − V 0

J21 J22

]
.

The disease-free equilibrium is locally asymptotically stable if the eigenvalues of
the Jacobian matrix all have negative real parts. Since the eigenvalues of J are those
of (F − V ) and J22, and the latter all have negative real parts by assumption, the
disease-free equilibrium is locally asymptotically stable if all eigenvalues of (F −V )

have negative real parts. By the assumptions on F and V , F is non-negative and
V is a non-singular M-matrix. Hence, by Lemma 5.2 all eigenvalues of (F − V )

have negative real parts if and only if ρ(FV −1) < 1. It follows that the disease-free
equilibrium is locally asymptotically if R0 = ρ(FV −1) < 1.

Instability for R0 > 1 can be established by a continuity argument. If R0 ≤
1, then for any ε > 0, ((1 + ε)I − FV −1) is a non-singular M-matrix and,
by Lemma 5.1, ((1 + ε)I − FV −1)−1 ≥ 0. By the proof of Lemma 5.2, all
eigenvalues of ((1 + ε)V − F) have positive real parts. Since ε > 0 is arbitrary,
and eigenvalues are continuous functions of the entries of the matrix, it follows
that all eigenvalues of (V − F) have non-negative real parts. To reverse the
argument, suppose all the eigenvalues of (V − F) have non-negative real parts.
For any positive ε, (V + εI − F) is a non-singular M-matrix, and by the proof of
Lemma 5.2, ρ(F (V + εI)−1) < 1. Again, since ε > 0 is arbitrary, it follows that
ρ(FV −1) ≤ 1. Thus, (F − V ) has at least one eigenvalue with positive real part if
and only if ρ(FV −1) > 1, and the disease-free equilibrium is unstable whenever
R0 > 1. �	

These results validate the extension of the definition of the reproduction number
to more general situations. In the vaccination model (5.1) of Sect. 5.1 we calculated
a pair of final size relations which contained the elements of a matrix K . This matrix
is precisely the next generation matrix with large domain KL = FV −1 that has been
introduced in this section.

Example 1 Consider the SEIR model with infectivity in the exposed stage,

S′ = − a

N
S(I + εE)

E′ = a

N
S(I + εE) − κE

I ′ = κE − αI

R′ = αI.

(5.10)
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Here the disease states are E and I ,

F =
[
εEa + Ia

0

]

and

F =
[
εa a

0 0

]
, V =

[
κ 0

−κ α

]
, V −1 =

[
1/κ 0
1/α 1/α

]
.

Then we may calculate

KL = FV −1 =
[εa

κ
+ a

α

a

α
0 0

]
.

It is clear that since R0 is equal to the trace of FV −1,

R0 = εa

κ
+ a

α
,

the element in the first row and first column of FV −1. If all new infections are in a
single compartment, as is the case here, the basic reproduction number is the trace
of the matrix FV −1.

In general, it is possible to reduce the size of the next generation matrix with
large domain to the number of state at infection [18]. The states at infection are
those disease states in which there can be new infections. Suppose that there are n

disease states and k states at infection with k < n. Then we may define an auxiliary
n × k matrix P in which each column corresponds to a state at infection and has 1
in the corresponding row and 0 elsewhere. Then the next generation matrix is the
k × k matrix

K = P T KLP.

It is easy to show, using the fact that PP T KL = KL, that the n×n matrix KL and the
k × k matrix K have the same non-zero eigenvalues and therefore the same spectral
radius. Construction of the next generation matrix which has lower dimension than
the next generation matrix with large domain may simplify the calculation of the
basic reproduction number.

In Example 1 above, the only disease state at infection is E, the matrix P is

[
1
0

]
,



188 5 Models with Heterogeneous Mixing

and the next generation matrix K is the 1 × 1 matrix

K =
[εa

κ
+ a

α

]
.

5.2.1 Some More Complicated Examples

The next generation approach is very general and can be applied to models with
heterogeneous mixing and control measures applied differently in different groups.

Example 2 Consider the vaccination model (5.1) of Sect. 5.1. The disease states are
IU and IV . Then

F =
[

aU(IU + δIV )

σaV (IU + δIV

]

and

F =
[

aU
NU

N
δaU

NU

N

σaV
NV

N
σδaV

NV

N

]
, V =

[
αU 0
0 αV

]
.

It is easy to see that the next generation matrix with large domain is the matrix K

calculated in Sect. 5.1. Since each disease state is a disease state at infection, the next
generation matrix is K , the same as the next generation matrix with large domain.
As in Example 1, the determinant of K is zero and K has rank 1. Thus the control
reproduction number is the trace of K ,

Rc = aU

αU

NU

N
+ δσ

aV

αV

NU

N
.

5.3 Heterogeneous Mixing

In disease transmission models not all members of the population make contacts
at the same rate. In sexually transmitted diseases there is often a “core” group
of very active members who are responsible for most of the disease cases, and
control measures aimed at this core group have been very effective in control [27].
In epidemics there are often “super-spreaders”, who make many contacts and are
instrumental in spreading disease and in general some members of the population
make more contacts than others. Recently there has been a move to complicated
network models for simulating epidemics [23, 24, 32–34, 38]. These assume
knowledge of the mixing patterns of groups of members of the population and
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make predictions based on simulations of a stochastic model. A basic description
of network models may be found in [44]. While network models can give very
detailed predictions, they have some serious disadvantages. For a detailed network
model, simulations take long enough to make it difficult to examine a significant
range of parameter values, and it is difficult to estimate the sensitivity with respect
to parameters of the model. The theoretical analysis of network models is a very
active and rapidly developing field [38–40].

However, it is possible to consider models more realistic than simple compart-
mental models but simpler to analyze than detailed network models. To model
heterogeneity in mixing we may assume that the population is divided into
subgroups with different activity levels. We will analyze an SIR model in which
there are two groups with different contact rates. The approach extends easily to
models with more compartments, such as exposed periods or a sequence of infective
stages and also to models with an arbitrary number of activity levels. In this way,
we may hope to give models intermediate between the too simple compartmental
models and the too complicated network models.

In this section, we describe the formulation of models for two groups with
different activity levels and give the main results for the simplest compartmental
epidemic models. The analysis of models of the same type with more complicated
compartmental structure is given in [11] and the analysis of models with more
groups is given in [12]. There is no problem, other than technical calculation
difficulties, in extending everything in this section to an arbitrary number of sub-
populations.

Consider two sub-populations of constant sizes N1, N2, respectively, each
divided into susceptibles, infectives, and removed members with subscripts to
identify the sub-population. In this section, we will assume that the number of
contacts per member in unit time is a constant. Suppose that each group i member
makes ai contacts sufficient to transmit infection in unit time, and that the fraction
of contacts made by a member of group i that is with a member of group j is
pij , (i, j = 1, 2). Then

pi1 + pi2 = 1, i = 1, 2.

We assume that all contacts between a susceptible and an infective transmit infection
to the susceptible. Suppose the mean infective period in group i is 1/αi. We assume
that there are no disease deaths, so that the population size of each group is constant.

A two-group SIR epidemic model is

S′
i = −aiSi

[
pi1

I1

N1
+ pi2

I2

N2

]

I ′
i = aiSi

[
pi1

I1

N1
+ pi2

I2

N2

]
− αiIi, i = 1, 2.

(5.11)
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The initial conditions are

Si(0) + Ii(0) = Ni, i = 1, 2.

The two-group model includes two possibilities. It may describe a population
with groups differing by activity levels and possibly by vulnerability to infection.
For an epidemic model, in which we assume the time scale is short enough that
members do not age over the course of the epidemic, the grouping could be by
age. However, for a longer term disease transmission model with age-dependent
transmission it would be necessary to take into account the fact that the ages of
members of the population change over the course of the disease and use a different
type of model, to be studied in Chap. 13.

The two-group model (5.11) assumes the same infectivities and susceptibilities
in each group. A more general model would be

S′
i = −σiaiSi

[
δ1pi1

I1

N1
+ δ2pi2

I2

N2

]

I ′
i = σiaiSi

[
δ1pi1

I1

N1
+ δ2pi2

I2

N2

]
− αiIi, i = 1, 2.

(5.12)

This is just the model (5.11) with the addition of susceptibility factors σ1, σ2 for
susceptibles in the two groups and infectivity factors δ1, δ2 for infectives in the two
groups. As before a1, a2 are effective contact rates, and this model adds transmission
probabilities to (5.11).

It is not possible to calculate the reproduction number for the two-group
model (5.11) directly by counting secondary infections. It is necessary to use the
next generation matrix approach of [45] described in Section 5.2 and calculate the
reproduction number as the largest eigenvalue of the matrix FV −1, where

F =
⎡
⎢⎣

p11a1 p12a1
N1

N2

p21a2
N2

N1
p22a2

⎤
⎥⎦ , V =

[
α1 0
0 α2

]
.

Then

FV −1 =
⎡
⎢⎣

p11a1

α1

p12a1

α2

N1

N2
p21a2

α1

N2

N1

p22a2

α2

⎤
⎥⎦ .

The eigenvalues of the matrix FV −1 are the roots of the quadratic equation

λ2 −
(

p11a1

α1
+ p22a2

α2

)
λ + (p11p22 − p12p21)

a1a2

α1α2
= 0. (5.13)
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The basic reproduction number R0 is the larger of these two eigenvalues,

R0 =
p11a1

α1
+ p22a2

α2
+
√(

p11a1

α1
− p22a2

α2

)2

+ 4
p12p21a1a2

α1α2

2
.

In order to obtain a more useful expression for R0, it is necessary to make some
assumptions about the nature of the mixing between the two groups. The mixing is
determined by the two quantities p12, p21 since p11 = 1 − p12 and p22 = 1 − p21.

There has been much study of mixing patterns, see, for example, [8, 9, 13]. One
possibility is proportionate mixing, that is, that the number of contacts between
groups is proportional to the relative activity levels. In other words, mixing is
random but constrained by the activity levels [42]. Under the assumption of
proportionate mixing,

pij = ajNj

a1N1 + a2N2
,

and we may write

p11 = p21 = p1, p12 = p22 = p2,

with p1 + p2 = 1. In particular,

p11p22 − p12p21 = 0,

and thus

R0 = a1
p1

α1
+ a2

p2

α2
.

Another possibility is preferred mixing [42], in which a fraction πi of each
group mixes randomly with its own group and the remaining members mix
proportionately. Thus, preferred mixing is given by

p11 = π1 + (1 − π1)p1, p12 = (1 − π1)p2

p21 = (1 − π2)p1, p22 = π2 + (1 − π2)p2,
(5.14)

with

pi = (1 − πi)aiNi

(1 − π1)a1N1 + (1 − π2)a2N2
, i = 1, 2.

Proportionate mixing is the special case of preferred mixing with π1 = π2 = 0.
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It is also possible to have like-with-like mixing, in which members of each group
mix only with members of the same group. This is the special case of preferred
mixing with π1 = π2 = 1. For like-with-like mixing,

p11 = p22 = 1, p12 = p21 = 0.

Then the roots of (5.13) are a1/α1 and a2/α2, and the reproduction number is

R0 = max
{ a1

α1
,
a2

α2

}
.

By calculating the partial derivatives of pij (i, j = 1, 2) with respect to π1 and
π2, we may show that p11 and p22 increase when either π1 or π2 is increased, while
p12 and p21 decrease when either π1 or π2 is increased. From this, we may see
from the general expression for R0 that increasing either of the preferences π1, π2
increases the basic reproduction number.

We may follow the analysis of the SIR model (5.11) to obtain the basic
reproduction number for the SIR model (5.12) with susceptibility and infectivity
reduction factors

R0 =

2∑
i=1

σiδi

piiai

αi

+
√(

σ1δ1
p11a1

α1
− σ2δ2

p22a2

α2

)2

+ 4σ1δ2σ2δ1
p12p21a1a2

α1α2

2
.

In the special case of proportionate mixing, where p11p22−p12p21 = 0, this reduces
to

R0 =
2∑

i=1

σiδi

piiai

αi

.

The vaccination model of Sect. 5.1 is an example of a two-group model of the
form (5.12), with

σ1 = σ2 = δ1 = 1, δ2 = δ.

It is easy to show [11] that, just as for a one-group model [10],

S1 → S1(∞) > 0, S2 → S2(∞) > 0,

as t → ∞.
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Example 1 Consider a two-group SEIR model,

S′
i = −aiSi

[
pii

Ii

Ni
+ pij

Ij

Nj

]
E′

i = aiSi

[
pii

Ii

Ni
+ pij

Ij

Nj

]
− κiEi

I ′
i = κiEi − αiIi

R′
i = αiIi, i, j = 1, 2, i 
= j.

(5.15)

The disease states are Ei and Ii (i = 1, 2).

Now

F =

⎡
⎢⎢⎢⎢⎢⎣

a1p11I1 + a1p12I2
N1

N2
0

a2p21I1
N2

N1
0

⎤
⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎣

0 a1p11 0 a1p12
N1

N2
0 0 0 0

0 a2p21
N2

N1
0 a2p22

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

and

V =

⎡
⎢⎢⎣

κ1 0 0 0
−κ1 α1 0 0

0 0κ2 0
0 0 −κ2 α2

⎤
⎥⎥⎦ , V −1 =

⎡
⎢⎢⎢⎣

1
κ1

0 0 0
1
α1

1
α1

0 0

0 0 1
κ2

0

0 0 1
α2

1
α2

⎤
⎥⎥⎥⎦ .

Then we may calculate

KL = FV −1 =

⎡
⎢⎢⎢⎢⎢⎣

a1
p11

α1
a1

p11

α1
a1

p12

α1

N1

N2
a1

p12

α1

N1

N2
0 0 0 0

a2
p21

α1

N2

N1
a2

p21

α1

N2

N1
a2

p22

α2
a2

p22

α2
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

In this example, it is advantageous to construct the next generation matrix by
reducing the next generation matrix with large domain KL. In order to do this, we
use the auxiliary matrix

E =

⎡
⎢⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎥⎦
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to construct the next generation matrix

K = ET KLE =
⎡
⎢⎣

p11a1

α1

p12a1

α2

N1

N2
p21a2

α1

N2

N1

p22a2

α2

⎤
⎥⎦ . (5.16)

This is the same matrix as the next generation matrix obtained for the two-group
SIR model (5.11) introduced in this section.

For a one-group epidemic model there is a final size relation that makes it
possible to calculate the size of the epidemic from the reproduction number
[10, 35]. There is a corresponding final size relation for the two-group model (5.1),
established in much the same way, combining expressions for the integrals of (S1 +
I1)

′, (S2 + I2)
′, (S1)

′/S1, (S2)
′/S2). This relation does not involve the reproduction

number explicitly but still makes it possible to calculate the size of the epidemic
from the model parameters.

The final size relation for the model (5.11) is the pair of equations

log
Si(0)

Si(∞)
= ai

[
pii

αi

(
1 − Si(∞)

Ni

)
+ pij

αj

(
1 − Sj (∞)

Nj

)]
, i, j = 1, 2, i 
= j.

(5.17)

Just as with the vaccination model (5.1), the final size relation may be written in
terms of the matrix

R =
[
R11 R12

R21 R22

]
=
[

a1p11
α1

a1p12
α2

a2p21
α1

a2p22
α2

]
.

The matrix R is similar to the next generation matrix K (and therefore has the
same eigenvalues), since

R = T −1KT,

where

T =
[
N1 0
0 N2

]
.

The final size relation makes it possible to calculate S1(∞) and S2(∞) and thence
the number of disease cases

[N1 − S1(∞)] + [N2 − S2(∞)].
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The final size relation takes a simpler form if the mixing is proportionate. With
proportionate mixing, since

p11 = p21 = p1, p12 = p22 = p2,

(5.17) implies

a2 log
S1(0)

S1(∞)
= a1 log

S2(0)

S2(∞)
,

and we may write the final size relations as

log
S1(0)

S1(∞)
= a1p1

α1

[
1 − S1(∞)

N1

]
+ a1p2

α2

[
1 − S2(∞)

N2

]
,

[
S1(∞)

S1(0)

]a2

=
[
S2(∞)

S2(0)

]a1

.

(5.18)

We recall that in the case of proportionate mixing

R0 = p1a1

α1
+ p2a2

α2
.

The second equation of (5.18) implies that if a1 > a2, then

1 − S1(∞)

S1(0)
> 1 − S2(∞)

S2(0)
,

that is, the attack ratio is greater in the more active group.
It is not difficult to show that the final size relations (5.18) give a unique set

of final numbers of susceptibles in each group. The final size relation can also be
obtained in a similar way for more complicated compartmental models [4–6].

The model can be extended easily to an arbitrary number of groups with different
activity levels. It is also important to be able to describe models with more stages in
the progression through compartments, and models in which there are differences
between groups in susceptibility. For example, influenza has two characteristics not
included in the model (5.11) that are of importance. There is a latent period between
infection and the development of infectivity and influenza symptoms. Also, only a
fraction of latent members develop symptoms, while the remainder go through an
asymptomatic stage in which there is some infectivity. Another important aspect is
treatment, which could be directed at either or both group, and could be used for
making decisions on how to target groups for treatment. A natural way to proceed
in this direction is to build an age of infection model for populations with multiple
groups.
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Example 2 Consider a two-group endemic SIR model with preferential mixing and
group-targeted vaccination:

dSi

dt
= μNi(1 − φi) − (λi(t) + μ)Si,

dIi

dt
= λi(t)Si − (α + μ)Ii,

dRi

dt
= μNiφi + αIi − μRi, i = 1, 2,

(5.19)

where Ni = Si + Ii + Ri . Here, λi represents the force of infection for susceptibles
in group i given by

λi = aiσ

n∑
j=1

pij

Ij

Nj

, (5.20)

where ai denotes the average number of contacts an individual in sub-population
i has per unit of time (which represents the activity level of group i), and σ is the
probability of infection per contact when the contact is with an infectious individual,
φi denotes the proportion of susceptibles in group i vaccinated (and removed) when
entering the population. The fraction Ij /Nj gives the probability that a contact is
with an infectious individual in sub-population j . The contact matrix (pij ) has the
same form as the preferential mixing considered earlier with

pij = πiδij + (1 − πi)pj , i, j = 1, 2. (5.21)

The parameter πi is the fraction of contacts with individuals in the same sub-
population, δij is the Kronecker delta (i.e., 1 when i = j and 0 otherwise), and

pj = (1 − πj )ajNj

(1 − π1)a1N1 + (1 − π2)a2N2
, j = 1, 2.

Clearly, unless all the sub-groups are isolated (i.e., no interactions between the
groups), there must be some i with πi < 1.

For each sub-population i, if all contacts are with people within the same group
(i.e., pii = 1 and pij = 0 for i 
= j ), then the basic and control reproduction
numbers for group i are, respectively,

R0i = σai

μ + α
, Rvi = R0i (1 − φi), i = 1, 2. (5.22)

When there are contacts between sub-populations, i.e., pii < 1 or πi < 1 for some
i, we can derive the basic and control reproduction numbers for the metapopulation.
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These reproduction numbers will be functions of R0i or Rvi . The next generation
matrix Kv (v for vaccination) is

Kv =
(

Rv1p11 Rv1p12

Rv2p21 Rv2p22

)
. (5.23)

The control reproduction number Rv for the metapopulation is given by

Rv = 1

2

[
A + D +

√
(A − D)2 + 4BC

]
, (5.24)

where

A = R01p11(1 − φ1), B = R01p12(1 − φ1),

C = R02p21(1 − φ2),D = R02p22(1 − φ2),

and R0i (i = 1, 2) are given in (5.22). If φ1 = φ2 = 0, then Rv reduces to

R0 = 1

2

[
R01p11 + R02p22 +

√
(R01p11 − R02p22)2 + 4R01p12R02p21

]
.

To study the effects of vaccination strategies, assume that R0 > 1 in the absence
of vaccination and

R01 > 1, R02 > 1. (5.25)

Let

Ω = {(φ1, φ2)| 0 ≤ φ1 < 1, 0 ≤ φ2 < 1}. (5.26)

Then each point (φ1, φ2) ∈ Ω represents a vaccination strategy.
Because we are interested in the case when the two groups are not isolated, either

π1 < 1 or π2 < 1. This will be assumed for the results below. It can be shown that,
for each fixed (φ1, φ2) ∈ Ω , Rv increases with both π1 and π2, i.e.,

∂Rv

∂π1
> 0,

∂Rv

∂π2
> 0 for all (π1, π2) ∈ Ω. (5.27)

For each fixed (π1, π2), there are different combinations of φ1 and φ2 that can reduce
Rv to be below 1. For ease of presentation, consider the simpler case in which

π1 = π2 = π,



198 5 Models with Heterogeneous Mixing

and consider Rv = Rv(π) as a function of π . Then, for each fixed π ∈ [0, 1), the
curve determined by Rv(π) = 1 divides the region Ω into two parts: one is the
region

Ωπ = {(φ1, φ2)| 0 ≤ Rv(π) < 1, (φ1, φ2) ∈ Ω, 0 ≤ π < 1},

which includes all points above the curve (see Fig. 5.1), and another is the region

Dπ = {(φ1, φ2)| Rv(π) > 1, (φ1, φ2) ∈ Ω, 0 ≤ π < 1},

which includes all points below the curve. It can be shown that the region Ωπ

decreases as π increases and reduces to the region Ω∗ as π → 0, while the region
Dπ decreases as π decreases and reduces to the region D∗ as π → 1 (see Fig. 5.1).
All these curves intersect at a single point (φ1c, φ2c) with

φ1c = 1 − 1

R01
, φ2c = 1 − 1

R02
. (5.28)

We observe from Fig. 5.1 that the region Ω∗ (lighter-shaded) is determined by
the two inequalities

φ1c < φ1 < 1, φ2c < φ2 < 1, (5.29)

where φ1c and φ2c are defined in (5.28). For region D∗ (darker-shaded), the upper
bound is determined by the line

φ2 = −A φ1 + B, (5.30)

Fig. 5.1 Plot showing the
regions Ω∗ and D∗. Several
curves of Rv(π) = 1 for
different π values are also
shown, with the dashed
curves corresponding to
0 < π < 1, the thin solid
lines (boundary of Ω∗)
corresponding to π = 1, and
the thick line corresponding
to π = 0 (the upper bound of
the region D∗). The arrows
indicate the direction of
change of the curve
Rv(π) = 1 as π increases
from 0 to 1. All of the
Rv(π) = 1 curves intersect at
the single point (φ1c, φ2c).
Source: [15]
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where

A = R01a1N1

R02a2N2
,

B = (R01 − 1)a1N1 + (R02 − 1)a2N2

R02a2N2
.

(5.31)

The two regions intersect at the point (φ1c, φ2c).
This result suggests that there is a “lower bound” for vaccination efforts

(φ1, φ2), above which the infection can be eradicated regardless of mixing patterns.
Similarly, it provides an “upper bound” for vaccination efforts (φ1, φ2), below
which the infection cannot be eradicated regardless of mixing patterns (see the
definitions for φ∗

1 and φ∗
2 defined in (5.32) and see Fig. 5.2 for an illustration

of the lower and upper bound). For an “intermediate level” vaccination strategy
(φ1, φ2), mixing parameters π1 and π2 can play an important role in influencing the
effect of vaccination strategies on reducing Rv . Thus, when designing vaccination
strategies, one should take into consideration mixing patterns within and between
sub-populations.

For given πi (i = 1, 2), it can be shown that ∂Rv

∂φi
< 0. When the curve Rv = 1

lies between regions D∗ and Ω∗, the curve intersects the φ1-axis and φ2-axis at
(φ∗

1 , 0) and (0, φ∗
2 ), respectively, where

φ∗
1 = 1 − 1 − R02p22

R01p11(1 − R02p22) + R01R02p12p21
,

φ∗
2 = 1 − 1 − R01p11

R02p22(1 − R01p11) + R22R01p12p21
.

(5.32)

Because R0i > 1 for i = 1, 2, it is possible that R01p11 > 1 and/or R02p22 > 1.
Thus, it is possible that φ∗

1 > 1 and/or φ∗
2 > 1. When φ∗

1 > 1, we know from
∂Rv/∂φ1 < 1 that Rv > 1 for any vaccination strategy (φ1, 0). Thus, it is
impossible to eradicate the infection if only sub-population 1 is vaccinated.

The results described above are based on the control reproduction number.
Figure 5.2 shows some simulation results illustrating the effect of vaccination on
the prevalence of infection. Different preference levels are used: π1 = 0.2 and
π2 = 0.4, i.e., group 2 has a higher preference contacting people in its own
group. Other parameter values used are σ = 0.03, α = 0.15 (an infective period
of about 6 days), and a1 = 12, a2 = 8, μ = 0.00016 (a duration of 17 years
in school). These values correspond to R01 = 2.4 and R02 = 1.6. The initial
conditions are x1(0) = S1(0)/N1(0) = 0.4, y1(0) = I1(0)/N1(0) = 0.00002,
x2(0) = S2(0)/N2(0) = 0.6, y2(0) = I2(0)/N2(0) = 0.00002. For this set of
parameters, φ∗

1 = 0.77 and φ∗
2 � 1. Figure 5.2a is for a vaccination strategy (φ1, 0)

with φ1 = 0.2 < φ∗
1 , for which the infection persists (Rv = 1.8 > 1), while

Fig. 5.2b is for a vaccination strategy (φ1, 0) with φ1 = 0.8 > φ∗
1 , in which case the

infection dies out (Rv = 0.97 < 1).
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Fig. 5.2 When φ∗
1 < 1 and φ∗

2 > 1, the disease is eventually eradicated if the vaccination is
applied to sub-population 1 alone at a level above φ∗

1 . (a) (φ1, φ2) = (0.2, 0) and φ1 < φ∗
1 =

0.77, the disease persists (Rv = 1.8); (b) (φ1, φ2) = (0.8, 0) and φ1 > φ∗
1 = 0.77, the disease

eventually disappears (Rv = 0.97). Source: [15]
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Fig. 5.3 The figure on the left shows observed patterns of contacts between age groups [41]. The
lighter areas correspond to higher level of contacts. The figure on the right shows schematic contact
matrices illustrating the main and off-diagonals representing contacts among contemporaries,
between children and parents, and vice versa

Example 3 This example considers a more general preferential mixing function
than the one given in (5.21). This is motivated by the observed mixing pattern
shown in Fig. 5.3. Figure 5.3 illustrates the recently collected data reported in [41],
which reveals the preferential mixing between parents and children in addition to
that among contemporaries.

In the case of n groups, the similar function as (5.21) can be written as

pij = πiδij + (1 − πi)pj , i, j = 1, 2, · · · , n, j 
= i (5.33)
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with

pi = (1 − πi)aiNi∑n
k=1(1 − πk)akNk

, i = 1, 2, · · · , n.

Here, ai’s are the contact rates, δij ’s are the Kronecker delta (i.e., δij = 1 if i = j

and δij = 0 if i 
= j ).
To capture the feature shown in Fig. 5.3 (left), Glasser et al. in [25] extended the

mixing function (5.33) to include not only the preference along the diagonal but also
along the sub- and super-diagonals as indicated in Fig. 5.3 (right). The function is
described by

pij = φij +
(

1 −
3∑

l=1

πli

)
pj , pj =

(
1 −∑3

l=1 πli

)
ajNj

∑n
k=1

(
1 −∑3

l=1 πlk

)
akNk

(5.34)

with

φij =
{

δijπ1i + δi(j+G)π2i , i ≥ G,

δijπ1i + δi(j−G)π3i , i ≤ L − G.
(5.35)

G is the generation time (i.e., average age at which women bear children), L is
longevity (i.e., average expectation of life at birth), and L > G. The parameters ε1i–
ε3i represent the fractions of contacts reserved for contemporaries, children (j −G),
and parents (j +G), respectively, and the corresponding delta function is defined as

δi(j±G) =
{

1 if i = j ± G,

0 otherwise.
(5.36)

Only people whose ages equal or exceed G can have children, and only those whose
ages equal to or less than L−G can have parents, but people aged at least G but not
more than L − G can have both children and parents.

Denote the preferential vectors by Πl = (πl1, πl2, · · · , πln), l = 1, 2, 3. When
Π2 = Π3 = 0, the expression (5.34) reduces to the formula (5.33). For ease of
notation, we mix indices and real numbers, but if age classes are 0–4, 5–9, · · · and
G = 25 years, for example, by i > G we mean i > class 5. Notice that the non-zero
elements of Π2 and Π3 are related. If G = 25 years, for example, then

aiNiπ2i = ajNjπ3j , i = 6, 7, · · · , j = i − 5.

Notice also that 0 ≤∑3
l=1 πli < 1.
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The mixing function was further extended in [25] to replace the delta functions
in (5.36) by Gaussian kernels. Delta formulations are convenient mathematically,
but do not allow the age range of one’s contemporaries to vary as one ages
(e.g., the range narrows perceptively among adolescents), much less differences
between the age ranges of one’s contemporaries and one’s parents or children. By
virtue of secular patterns in childbearing, moreover, the age ranges of parents and
children may change with age. But the Gaussian formulation allows such variation,
reproducing the essential features of these observations. Figure 5.4 demonstrates the
comparison between observed mixing patterns (left panel) and the model outcomes
(right panel) using the extended mixing functions.

5.3.1 *Optimal Vaccine Allocation in Heterogeneous
Populations

One of the significant benefits of models with heterogeneous mixing is that it
provides an approach to identifying optimal allocation of vaccines in a metapop-
ulation, particularly when resources are limited. Consider a metapopulation with
n sub-populations connected by heterogeneous mixing, which is described by an
n × n matrix P = (pij ) for i, j = 1, 2, · · · , n. The following model is studied in
[21, 26, 43]:

dSi

dt
= (1 − φi)θNi − (λi + θ)Si

dIi

dt
= λiSi − (γ + θ)Ii

dRi

dt
= φiθNi + γ Ii − θRi

Ni = Si + Ii + Ri

λi = σai

n∑
j=1

pij Ij /Nj , i = 1, 2, . . . , n,

(5.37)

where φi are proportions immunized at entry into sub-population i, γ is the per-
capita recovery rate, θ is the per-capita rate for entering and leaving sub-population
i so that the population size Ni remains constant. The function λi is the force
of infection, i.e., per-capita hazard rate of infection of susceptible individuals in
sub-population i, in which σ is the probability of infection upon contacting an
infectious person, ai is the average contact rate (activity) in sub-population i, pij

is the proportion of ith sub-population’s contacts that are with members of j th sub-
population, and Ij /Nj is the probability that a randomly encountered member of
sub-population j is infectious. A similar model with two-level mixing is studied in
[22].
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Fig. 5.4 Comparison of the mixing patterns generated by the four empirical studies (top to
bottom): [17, 41, 47, 49] (left panel) and the fitted model (5.34) and (5.35) (right panel).
Interpolating functions are fitted to geometric means of corresponding row- and column-elements
of the mixing matrix Source: [25]
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The mixing matrix P can incorporate heterogeneities in contact rate (ai),
population size (Ni), preference for mixing within the same sub-population (πi), etc.
Because of these heterogeneities, the optimal combination of vaccination coverages
φi is unlikely to be homogeneous. Typically, the matrix P has to satisfy the
following conditions of [14]:

pij ≥ 0, i, j = 1, . . . , n,
n∑

j=1

pij = 1, i = 1, . . . , n,

aiNipij = ajNjpji, i, j = 1, . . . , n.

(5.38)

A commonly used non-homogeneous mixing function that satisfies conditions
in (5.38) is the preferred mixing function of [30] given by

pij = πiδij + (1 − πi)
(1 − πj )ajNj∑n
k=1(1 − πk)akNk

, i, j = 1, . . . , n, (5.39)

where πi ∈ [0, 1] is the fraction of contacts of group i that is reserved for itself
(preferential mixing), whereas the complement (1 − πi) is distributed among all
sub-populations in proportion to the unreserved contacts, including i (proportionate
mixing). We refer to the mixing given by (5.39) as Jacquez-type preferred mixing.
Two extreme cases of (5.39) are the proportionate mixing when πi = 0 and the
isolated mixing (i.e., no interactions between sub-populations) when πi = 1.

For model (5.37), the basic and effective sub-population reproduction numbers,
denoted, respectively, by R0i and Rvi , for sub-population i (i = 1, 2, . . . , n) are
given by

R0i = ρai, Rvi = R0i (1 − φi), i = 1, 2, . . . , n, (5.40)

where

ρ = σ

γ + θ
.

The next generation matrix (NGM) corresponding to this metapopulation model is

Kv =

⎛
⎜⎜⎜⎝

Rv1p11 Rv1p12 · · · Rv1p1n

Rv2p21 Rv2p22 · · · Rv2p2n

...
. . .

...

Rvnpn1 Rvnpn2 · · · Rvnpnn

⎞
⎟⎟⎟⎠ . (5.41)

Then the effective reproduction number for the metapopulation is given as

Rv = r(Kv),



5.3 Heterogeneous Mixing 205

which is the spectral radius (and the dominant eigenvalue, by the Perron–Frobenius
Theorem) of the non-negative matrix Kv . Let φ = (φ1, φ2, · · · , φn). Naturally,
Rv = Rv(φ) is a function of φ. The total number of vaccine doses, denoted by
η, is η = ∑n

i=1 φiNi . For demonstration purposes, we will assume that vaccine
efficacy is 100%. We focus on identifying the most efficient allocation of vaccine
φ = (φ1, φ2, · · · , φn) ∈ [0, 1]n for reducing Rv with limited vaccine doses η or
using fewest doses to achieve Rv < 1 (to prevent outbreaks). More specifically, we
consider the following two constrained optimization problems:

(I) Minimize Rv = Rv(φ), subject to �(φ) :=
n∑

i=1

φiNi = η, for φ ∈ [0, 1]n.

(II) Minimize η =
n∑

i=1

φiNi , subject to Rv(φ) ≤ 1, for φ ∈ [0, 1]n.

Consider the optimization problem only for the case of R0 = Rv(0) ≥ 1, as there
will be no outbreak if R0 < 1. If a solution to Problem (I) exists for a given value
of η, let Φ∗ = Φ∗(η) and Rv{min}(η) denote the optimal vaccination allocation and
corresponding minimum reproduction number, , respectively. Let

Ω
(n)
φ (η) :=

{
(φ1, φ2, · · · , φn) : �(φ) = η

}
.

Then, for the solution Φ∗ to be feasible, we need to have

Φ∗(η) = (φ∗
1 (η), φ∗

2 (η), · · · , φ∗
n(η)) ∈ [0, 1]n,

Rv{min}(η) = min
Ω

(n)
φ (η)∩[0,1]n

Rv = Rv

∣∣
Φ∗(η)

. (5.42)

An optimal solution Φ∗(η) to Problem (I) that lies in the interior of the unit
hypercube must satisfy the following equations:

∇Rv

∣∣
Φ∗(η)

= λ̃∇� = λ̃(N1, · · · , Nn), Φ∗(η) ∈ (0, 1)n,

�
∣∣
Φ∗(η)

=
n∑

i=1

φ∗
i (η)Ni = η,

(5.43)

where the constant λ̃ is the Lagrange multiplier.
Similarly, if an optimal solution to Problem (II) exists, it is useful practically

to have an explicit expression or estimate of the bounds for the minimum vaccine
doses needed, which we denote by η∗. The significance of η∗ is that it is the
smallest number of vaccination doses that can prevent outbreaks under an optimal
vaccination policy.
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To find η∗, notice that Rv(φ) is a monotonically decreasing function of φi , and
thus, a decreasing function of η = ∑n

i=1 φiNi . Therefore, the inequality constraint
Rv(φ) ≤ 1 can be replaced by an equality constraint Rv(φ) = 1, and thus,

η∗ = min
{Rv(φ)=1}∩[0,1]n

�(φ).

It follows that η∗ is the minimum of η ∈ [0, N] such that Rv{min}(η) = 1 and can
be found by solving the equation:

Rv{min}(η∗) = Rv

∣∣
P ∗(η∗) = 1. (5.44)

Before we present the results of optimal solutions for Problems (I) and (II), we
state the following important results, which is proved in [43], regarding the bounds
for the effective reproduction number Rv for general mixing matrices (not just
Jacquez-type preferred mixing given in (5.39)).

Theorem 5.2 (Bounds for Rv(φ)) Let P be a non-negative, invertible, irreducible
matrix such that −P −1 is essentially non-negative and the conditions (5.38) are
satisfied. Then

(a) The lower and upper bounds of Rv(φ) are

n∑
i=1

ωiRvi ≤ Rv ≤ max{Rv1, . . . ,Rvn}, where ωi = aiNi∑n
k=1 akNk

.

(5.45)

(b) The lower and upper bounds of Rv(φ) correspond to the cases of proportionate
mixing and isolated mixing, respectively.

For the optimal solutions of Problems (I) and (II), it is shown in [43] that for the
case of n = 2 explicit expressions for Φ∗ and η∗ are possible, and for the case of
n > 2 their upper and lower bounds can be obtained.

For ease of presentation, introduce the following notation:

κ1 := p22

√
N1N2R02 − N2

√
p12p21R01R02,

κ2 := p11

√
N1N2R01 − N1

√
p12p21R01R02,

η0 := N − κ1N1 + κ2N2

max{κ1, κ2} .

(5.46)

For the mixing given in (5.39), it is easy to verify the following fact:

|P | =
∣∣∣∣p11 p12

p21 p22

∣∣∣∣ = π1π2 + π1(1 − π2)
2a2N2 + π2(1 − π1)

2a1N1

(1 − π1)a1N1 + (1 − π2)a2N2
> 0, (5.47)

provided that πi ∈ (0, 1), ai > 0, and Ni > 0, i = 1, 2.
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Theorem 5.3 (Optimal Solution to Problem (I) When n = 2) Consider Rv =
Rv(φ1, φ2) as a function of φ1 and φ2, and let η0 and κi be given in (5.46). Assume
that condition (5.47) holds.

(a) For a given value of η, the optimal point Φ∗(η) exists and lies in the interior of
the unit square if and only if

η0 < η < N and κi > 0 for i = 1, 2. (5.48)

(b) For each η0 < η < N , the explicit formulae for P ∗(η) and Rv{min}(η) are
given by

Φ∗(η) = (1, 1) − N − η

κ1N1 + κ2N2
(κ1, κ2) (5.49)

Rv{min}(η) = |P |R01R02

√
N1N2

N − η

κ1N1 + κ2N2
. (5.50)

(c) If 0 < η < η0, the minimum point Φ∗(η) is one of the boundary points
(η/N1, 0) or (0, η/N2) and hence

Rv{min}(η) = min{Rv(η/N1, 0),Rv(0, η/N2)}.

For the general case of n > 2, Theorem 5.2 can be used to derive the lower
and upper bounds for the minimum reproduction number Rv{min}(η). To facilitate
biological interpretations, introduce the following notation:

fi := Ni/N, 1 ≤ i ≤ n Population fraction of sub-population i;
U :=

n∑
i=1

(1 − φi)fi Population fraction unvaccinated;

R̂0 :=
n∑

i=1

R0ifi Population weighted reproduction number;

R�
0 :=

( n∑
i=1

1

R0i

fi

)−1
Harmonic mean of R0i weighted by

sub-population fractions fi;
R̃0 := min

i
R2

0i/R̂0 Analogous to a scaled reproduction number.

(5.51)

The following results provide the lower and upper bounds for the minimum
Rv{min}(η) in Problem (I):

Theorem 5.4 Assume that the conditions of Theorem 5.2 hold. Let η < N , and let
U , R̂0, R�

0 , and R̃0 be defined in (5.51).
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(a) The bounds of Rv{min}(η) for φ ∈ Ω
(n)
p (η) ∩ [0, 1]n are

R̃0 U ≤ Rv{min}(η) ≤ R�
0 U . (5.52)

(b) If R0i > 1 for all i, then

η∗
N

≤ 1 − 1

R�
0
. (5.53)

Remarks The bounds for the optimal solutions have clear biological meanings
based on the biological interpretations of the quantities in (5.51). (i) Note that R�

0
and R̃0 are weighted basic reproduction numbers, and the factor U is the fraction of
the overall population that remains susceptible. In light of this, we see that the lower
and upper bounds for Rv{min}(η) in (5.52) take the familiar form of an effective
reproduction number. (ii) For the upper bound of η∗, if ai = a are all the same, we
have R�

0 = R0, in which case the upper bound in (5.53) becomes 1 − 1/R0. This
is similar to the usual formula for the critical vaccination fraction φc = 1 − 1/R0,
for which the number of vaccinated is ηc = φcN = N(1 − 1/R0).

Although various observations about the effect of mixing on reproduction
numbers have been made in previous studies, the result stated in Theorem 5.2
provided a definitive lower and upper bounds corresponding to the proportionate
and the isolated mixing (a rigorous proof can be found in [43]) for a large class of
mixing matrix P (not just Jacquez-type). Using a model metapopulation composed
of a city and several villages, May and Anderson [36, 37] showed that heterogeneity
in relevant sub-population characteristics also increased Rv . Hethcote and van
Ark [28] argued that person-to-person contact rates in densely populated urban
areas should be no more than twice those in sparsely populated rural ones. This
change in parameter values diminished the apparent effect of heterogeneity. The
facts that population heterogeneities tend to increase R0 and that models assuming
proportionate mixing generate lower values of R0 have been suggested by other
researchers [1, 3, 20].

Example 4 Figure 5.5 illustrates an example from [21], which extends May and
Anderson’s [36] conclusion that “under a uniformly applied immunization program,
the overall fraction that must be immunized is larger than would be estimated
by (incorrectly) assuming the population to be homogeneously mixed.” Consider
Rv = Rv(φ1, φ2) as a function of vaccination coverage (φ1, φ2). The two contour
plots of Rv are for the cases of (a) homogeneous contacts (a1 = a2 = 10) and (b)
heterogeneous contacts (a1 = 8, a2 = 12), while other parameters are the same
for the two sub-populations (N1 = N2, π1 = π2 = 0.6, σ = 0.05, γ = 1/7,
θ = 1/(365 × 70)). Note that the total number of vaccine doses is given by
φ1N1 + φ2N2. Because N1 = N2, a vaccination pair (φ1, φ2) that minimizes the
total doses if and only if it minimizes the quantity φ1 + φ2. The thicker curve is
the contour for Rv = 1. The thick dashed line with slope −1 is φ1 + φ2 = c for a
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Fig. 5.5 Contour plots of Rv as a function of φ1 and φ2 for (a) homogeneous population (a1 = a2)
and (b) heterogeneous population (a1 
= a2). For both plots, π1 = π2 and N1 = N2. The thick
solid curve represents the contour Rv = 1. The thin and thick dashed lines correspond to φ1 = φ2
and φ + φ2 = 2 × 0.74, respectively. All points (φ1, φ2) on the line φ1 + φ2 = c for a constant
c > 0 correspond to the same total vaccination doses. Source: [21]

constant c > 0. It shows in (a) that Rv(0.74, 0.74) = 1 and that Rv(φ1, φ2) > 1
for all other pairs (φ1, φ2) with φ1 + φ2 = 2 × 0.74. This suggests that the
optimal allocation is the homogeneous coverage φ1 = φ2. However, the plot in
(b) shows a very different result. Particularly, among all pairs (φ1, φ2) on the line
φ1 + φ2 = 2 × 0.74, some can make Rv(φ1, φ2) < 1. In fact, there is one point
(φ1c, φ2c) at which the minimum Rv(φ1c, φ2c) = 0.86 is achieved. This suggests
that, in a non-homogeneous population, uniform coverage (equal φi for all i) may
not be the most efficient.

5.4 A Heterogeneous Mixing Age of Infection Model

The basic age of infection model extends the simple SIR epidemic model by
allowing an arbitrary number of stages in the model and arbitrary distributions
of stay in each stage. However, it does not include the possibility of subgroups
with different activity levels and heterogeneous mixing between subgroups. This
possibility can be included in a heterogeneous mixing age of infection model. As
in homogeneous mixing models, the age of infection approach is more general
than simpler models in several respects. Age of infection models allow arbitrary
distributions of stay in compartments and arbitrary sequences of compartments. In
addition, they allow variable infectivity. This can be included in the kernel A(s)

which leads to the infectivity function ϕ(t) describing infectivity rather than simply
counting the number of infectives.
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As in the previous section, we consider two sub-populations of sizes N1, N2,
respectively, each divided into susceptibles and infected members with subscripts to
identify the sub-population. Suppose that Ai(s) is the mean infectivity of individuals
who have been infected s time units previously, and that a1, a2 are the contact rates
of the two sub-populations. It is necessary to describe also the mixing between the
two groups. Suppose that the fraction of contacts made by a member of group i that
is with a member of group j is pij , i, j = 1, 2. Then

p11 + p12 = p21 + p22 = 1.

A two-group model may describe a population with groups differing by activity
levels and possibly by vulnerability to infection, so that a1 
= a2 but A1(s) = A2(s).
It may also describe a population with one group which has been vaccinated against
infection, so that the two groups have the same activity level but different disease
model parameters. In this case, a1 = a2 but A1(τ ) 
= A2(τ ). In this model, any
differences between groups in susceptibility or infectivity are included in the factors
A1(s), A2(s).

An age of infection model with two subgroups is

S′
i = −aiSi

[
pii

Ni

ϕi + pij

Nj

ϕj

]

ϕi(t) =
∫ ∞

0
[−S′

i (t − τ)]Ai(τ)dτ, i, j = 1, 2, i 
= j.

Here, ϕi(t) is the total infectivity of infected members of group i (i = 1, 2).
As for the homogeneous mixing model, we may write this model using only the

equations for Si ,

S′
i (t) = −aiSi(t)

[
pii

Ni

∫ ∞

0
Ai(s)S

′
i (t − s)ds + pij

Nj

∫ ∞

0
Aj(s)S

′
j (t − s)ds

]
,

i, j = 1, 2, i 
= j.

(5.54)

The next generation matrix is

P =
[

a1p11
∫∞

0 A1(τ )ds a1p12
N1
N2

∫∞
0 A2(s)ds

a2p21
N2
N1

∫∞
0 A1(s)ds a2p22

∫∞
0 A2(s)ds

]
.

The matrix P is similar to the matrix Q = R−1PR, with

R =
[
N1 0
0 N2

]
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and

Q =
[
a1p11

∫∞
0 A1(s)ds a1p12

∫∞
0 A2(s)ds

a2p21
∫∞

0 A1(s)ds a2p22
∫∞

0 A2(s)ds

]
.

Thus R0 is the largest root of

det

[
a1p11

∫∞
0 A1(s)ds − λ a1p12

∫∞
0 A2(s)ds

a2p21
∫∞

0 A1(s)ds a2p22
∫∞

0 A2(s)ds − λ

]
= 0. (5.55)

In order to obtain an invasion criterion, initially when S1(t) is close to S1(0) =
N1 and S2(t) is close to S2(0) = N2, we replace S1(t) and S2(t) by N1, N2,
respectively, to give a linear system, and the condition that this linear system has
a solution Si(t) = Nie

rt (i = 1, 2) is

1 = aipi1

∫ ∞

0
e−rsA1(s)ds + aipi2

∫ ∞

0
e−rsA2(s)ds, i = 1, 2. (5.56)

The initial exponential growth rate is the solution r of the equation

det

[
a1p11

∫∞
0 e−rsA1(s)ds − 1 a1p12

∫∞
0 e−rsA2(s)ds

a2p21
∫∞

0 e−rsA1(s)ds a2p22
∫∞

0 e−rsA2(s)ds − 1

]
= 0. (5.57)

In the special case of proportionate mixing, in which p11 = p21, p12 = p22, so
that p12p21 = p11p22, the basic reproduction number is given by

R0 = a1p11

∫ ∞

0
A1(s)ds + a2p22

∫ ∞

0
A2(s)ds,

and Eq. (5.57) reduces to

a1p11

∫ ∞

0
e−rsA1(s)ds + a2p22

∫ ∞

0
e−rsAi(s)ds = 1. (5.58)

There is an epidemic if and only if R0 > 1.

In the special case in which the two groups have the same infectivity distribution
but may have different activity levels and possibly vulnerability to infection, so that
A1(s) = A2(s) = A(s), R0 is the largest root of

det

[
a1p11

∫∞
0 A(s)ds − λ a1p12

∫∞
0 A(s)ds

a2p21
∫∞

0 A(s)ds a2p22
∫∞

0 A(s)ds − λ

]
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and the initial exponential growth rate is the solution r of the equation

det

[
a1p11

∫∞
0 e−rsA(s)ds − 1 a1p12

∫∞
0 e−rsA(s)ds

a2p21
∫∞

0 e−rsA(s)ds a2p22
∫∞

0 e−rsA(s)ds − 1

]
= 0. (5.59)

Comparing Eqs. (5.55) and (5.59), we see that each of R0/
∫∞

0 A(τ)dτ and
1/
∫∞

0 e−rτA(τ)dτ is the largest eigenvalue of the matrix

[
a1p11 a1p12

a2p21 a2p22

]
,

the largest root of the equation

x2 − (a1p11 + a2p22)x + a1a2(p11p22 − p12p21) = 0.

Thus

R0∫∞
0 A(s)ds

= 1∫∞
0 e−rsA(s)ds

,

which implies the same relation as for the homogeneous mixing model. Thus, if
we assume heterogeneous mixing, we obtain the same estimate of the reproduction
number from observation of the initial exponential growth rate, and this conclusion
remains valid for an arbitrary number of groups with different contact rates. The
estimate of the basic reproduction number from the initial exponential growth rate
does not depend on heterogeneity of the model. This result does not generalize to
the case A1(s) 
= A2(s), but it does remain valid for an arbitrary number of groups
with different contact rates.

5.4.1 The Final Size of a Heterogeneous Mixing Epidemic

With homogeneous mixing, knowledge of the basic reproduction number translates
into knowledge of the final size of the epidemic. However, with heterogeneous
mixing, even in the simplest case of proportionate mixing, the size of the epidemic
is not determined uniquely by the basic reproduction number.

For the heterogeneous mixing model (5.54) there is a pair of final size relations.
We divide the equation for S1 in (5.54) by Si(t) and integrate with respect to t from
0 to ∞. Much as in the derivation of the final size relation for the homogeneous
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mixing model we obtain a pair of final size relations which may be solved for S1(∞)

and S2(∞):

log
Si(0)

Si(∞)
=

2∑
j=1

[
ai

pij

Nj

(
Nj − Sj (∞)

) ∫ ∞

0
Aj(s)ds

]
, i = 1, 2. (5.60)

The system of equations (5.60) has a unique solution (S1(∞), S2(∞)). In order
to prove this, we define

gi(x1, x2) = log
Si(0)

xi

− ai

2∑
j=1

pij

[
1 − xj

Nj

] ∫ ∞

0
Aj(s)ds.

A solution of (5.60) is a solution (x1, x2) of the system

gi(x1, x2) = 0, i = 1, 2.

For each x2, g1(0+, x2) > 0, g1(S1(0), x2) < 0. Also, as a function of x1, g1(x1, x2)

either decreases or decreases initially and then increases to a negative value when
x1 = S1(0). Thus for each x2 < S2(0), there is a unique x1(x2) such that
g1(x1(x2), x2) = 0. Also, since g1(x1, x2) is an increasing function of x2, the
function x1(x2) is increasing. Now, since g2(x1, 0+) > 0, g2(x1, S2(0)) < 0,
there exists x2 such that g2(x1(x2), x2) = 0. Also, g2(x1(x2), x2) either decreases
monotonically or decreases initially and then increases to a negative value when
x2 = S2(0). Therefore this solution is also unique. This implies that

(x1(x2), x2)

is the unique solution of the final size relations.
Numerical simulations indicate that models with heterogeneous mixing may give

very different epidemic sizes than models with the same basic reproduction number
and homogeneous mixing. The reproduction number of an epidemic model is not
sufficient to determine the size of the epidemic if there is heterogeneity in the model.
We conjecture that for a given value of the basic reproduction number the maximum
epidemic size for any mixing is obtained with homogeneous mixing.

Assume that the parameters N1, N2,
∫∞

0 A(τ)dτ remain fixed and attempt to
minimize S1(∞) + S2(∞) as a function of a1, a2 (with a1, a2 constrained to
keep p1a1 + p2a2 = k fixed and p1, p2 as specified by proportionate mixing).
Homogeneous mixing corresponds to a1 = a2.

The constraint relating a1, a2 implies that

da2

da1
= 2a1 − k

k − 2a2
· N1

N2
;
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when a1 = a2 = k we have

da2

da1
= −N1

N2
.

Also, when a1 = a2,

p1 = N1

N1 + N2
, p2 = N2

N1 + N2
,

S1

N1
= S2

N2
,

dp1

da1
= N1

kN
.

If we differentiate with respect to a1, we can calculate that

d[S1(∞) + S2(∞)]
da1

= 0

when a1 = a2. We believe that a1 = a2 is the only critical point of S1(∞) +
S2(∞), although we have not been able to verify this analytically. If a1 = a2 is
the only critical point of S1(∞) + S2(∞), this critical point must be a minimum.
We conjecture that this result is also valid if we allow arbitrary mixing, that is, we
conjecture that for a given value of the basic reproduction number the maximum
epidemic size for any mixing is obtained with homogeneous mixing.

While we have confined the description of the heterogeneous mixing situation to
a two-group model, the extension to an arbitrary number of groups is straightfor-
ward. We suggest that in advance planning for a pandemic, the number of groups to
be considered for different treatment rates should determine the number of groups
to be used in the model. On the other hand, the number of groups to be considered
should also depend on the amount and reliability of data, and these two criteria may
be contradictory. A model with fewer groups and parameters chosen as weighted
averages of the parameters for a model with more groups may give predictions that
are quite similar to those of the more detailed models. We suggest also that use of
the final size relations for a model with total population size assumed constant is a
good time-saving procedure for making predictions if the disease death rate is small.

We have seen that in the case of homogeneous mixing, knowledge of the
initial exponential growth rate and the infective period distribution is sufficient to
determine the basic reproduction number and thence the final size of an epidemic. In
the case of heterogeneous mixing, knowledge of the initial exponential growth rate
and the infective period distribution is sufficient to determine the basic reproduction
number, but not to determine the final size of the epidemic.

This raises the question of what additional information that may be measured at
the start of a disease outbreak would suffice to determine the epidemic final size if
the mixing is heterogeneous.

We assume that A1(s), A2(s), and the mixing matrix

M =
[
p11 p12

p21 p22

]
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are known. The next generation matrix is

K =
[
a1

p11
N1

∫∞
0 A1(s)ds a1

p12
N2

∫∞
0 A2(s)ds

a2
p21
N1

∫∞
0 A1(s)ds a2

p22
N2

∫∞
0 A2(s)ds

]
,

and R0 is the largest (positive) eigenvalue of this matrix. There is a corresponding
eigenvector with positive components

u =
[
u1

u2

]
.

Since the components of this eigenvector give the proportions of infective cases
in the two groups initially, it is reasonable to hope to be able to determine this
eigenvector from early outbreak data.

The general final size relation is

log
Si(0)

Si(∞)
=

2∑
j=1

[
aipij

(
1 − Sj (∞)

Nj

) ∫ ∞

0
Aj(s)ds

]
, i = 1, 2.

These equations may be solved for S1(∞), S2(∞) if the contact rates a1, a2 can be
determined from the available information.

The condition that the vector u with components (u1, u2) is an eigenvector of the
next generation matrix corresponding to the eigenvalue R0 is

ai

(
pi1u1 + pi2u2

) ∫ ∞

0
Ai(s)ds = R0ui, i = 1, 2,

and since it is assumed that the function A(τ), the vector u, and the mixing matrix
(pij ) are known these equations determine a1 and a2.

In vector notation, if we define the column vector

a =
[
a1

a2

]

and the row vectors

Mj = [pj1 pj2
]
,

we have

aj = R0

Mj u
∫∞

0 Aj(s)ds
uj .
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When these values are substituted into the final size system, S1(∞) and S2(∞) may
be determined. This argument extends easily to models with an arbitrary number of
activity groups.

In real-life applications, there are usually many groups, and the final size of an
epidemic is obtained most efficiently by numerical simulations. The results obtained
here are more likely to be useful in theoretical applications, such as comparisons of
different control strategies.

One may think of the case a1 
= a2, A1(s) = A2(s) as a model for a disease with
heterogeneous mixing but not treatment and the case a1 = a2, A1(s) 
= A2(s) as a
model for a disease in which the mixing is homogeneous but treatment that changes
the infective period distribution has been applied to a part of the population. Of
course, if the treatment also includes quarantine that also changes the contact rate,
the case a1 
= a2, A1(s) 
= A2(s) would be appropriate.

We suggest that in advance planning for a pandemic, the number of groups to
be considered for different treatment rates should determine the number of groups
to be used in the model. On the other hand, the number of groups to be considered
should also depend on the amount and reliability of data, and these two criteria may
be contradictory. A model with fewer groups and parameters chosen as weighted
averages of the parameters for a model with more groups may give predictions that
are quite similar to those of the more detailed models. We suggest also that use of
the final size relations for a model with total population size assumed constant is a
good time-saving procedure for making predictions if the disease death rate is small.

5.5 Some Warnings

An actual epidemic differs considerably from the idealized models such as (5.1) as
well as the extensions considered later. Some notable differences are:

1. When it is realized that an epidemic has begun, individuals are likely to modify
their behavior by avoiding crowds to reduce their contacts and by being more
careful about hygiene to reduce the risk that a contact will produce infection.

2. If a vaccine is available for the disease which has broken out, public health
measures will include vaccination of part of the population. Various vaccination
strategies are possible, including vaccination of health care workers and other
first line responders to the epidemic, vaccination of members of the population
who have been in contact with diagnosed infectives, or vaccination of members
of the population who live in close proximity to diagnosed infectives.

3. Diagnosed infectives may be hospitalized, both for treatment and to isolate
them from the rest of the population. Isolation may be imperfect; in-hospital
transmission of infection was a major problem in the SARS epidemic.

4. Contact tracing of diagnosed infectives may identify people at risk of becoming
infective, who may be quarantined (instructed to remain at home and avoid
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contacts) and monitored so that they may be isolated immediately if and when
they become infective.

5. In some diseases, exposed members who have not yet developed symptoms
may already be infective, and this would require inclusion in the model of new
infections caused by contacts between susceptibles and asymptomatic infectives
from the exposed class.

6. In the SARS epidemic of 2002–2003 in-hospital transmission of disease from
patients to health care workers or visitors because of imperfect isolation
accounted for many of the cases. This points to an essential heterogeneity in
disease transmission which must be included whenever there is any risk of such
transmission.

5.6 *Projects: Reproduction Numbers for Discrete Models

This project concerns the computation of the reproduction number for discrete
models using the approach of the next generation matrix. A formula for the
reproduction number R (either R0 or RC) is derived by adopting the method used
in [2] based on the next generation matrix approach. That is, in the discrete-time
case

R = �(F (I − T )−1), (5.61)

where � represents the spectral radius, F is the matrix associated with new
infections, and T is the matrix of transitions with �(T ) < 1 (see [2, 16, 31, 48]).
Here F and T are calculated on the infected variables only evaluated at the disease-
free equilibrium, and the Jacobian on these variables is F + T , which is assumed to
be irreducible.

Consider the simple discrete SEIR model with geometric distributions for the
latent and infectious period with parameters α and δ (α < 1, δ < 1), respectively.
This is equivalent to assuming constant transition probabilities 1 − α and 1 − δ per
unit time from E to I and from I to R, respectively. The model reads

Sn+1 = Sne
−β

In
N ,

En+1 = Sn(1 − e−β
In
N ) + αEn

In+1 = (1 − α)En + δIn, n = 1, 2, · · · .

(5.62)

For system (5.62), the matrices associated with new infections and transitions are

F =
[

0 β

0 0

]
and T =

[
α 0

1 − α δ

]
,
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respectively. Then �(T ) = max{α, δ} < 1; thus,

R = �(F (I − T )−1) = β

1 − δ
. (5.63)

Question 1 Extend the model (5.62) by incorporating isolation or hospitalization of
infectious individuals. For the extended model, compute the reproduction number
using the formula (5.61).

Question 2 Extend the model (5.62) by considering different transmission rates
βi for individuals in different infectious stages Ii (i = 1, 2, · · · ). Use the
formula (5.61) to compute the reproduction number for the extended model.

Project 2 Consider next the case when the infective period follows an arbitrary
discrete (bounded) distribution, which is denoted by Y . Let qi = P(Y > i) and
P(Y = i) = qi−1 − qi . It is easy to see that qi is a decreasing function, i.e., qi ≥
qi+1. In fact, q0 = 1 and qm = 0 for all m ≥ M , where M is the maximum number
of units of time that an individual takes to recover.

Because the geometric is the only memoryless discrete distribution, when other
distributions are considered it is necessary to keep track of the past in order to know
the values at the present. In fact, it is impossible to use the next generation matrix
approach directly because the disease stages (S,E, and I ) at time n + 1 cannot be
written in the form

[ En+1, In+1, Sn+1 ]T = M
(
[ En, In, Sn ]T

)
,

where M : R
3 → R

3. To overcome this difficulty we can consider multiple
I stages, similar to the approach known as the “linear chain trick” used in
continuous models to convert a gamma distribution to a sequence of exponential
distributions. Thus, we introduce the subclasses I (1), I (2), · · · , I (M) (see Fig. 5.6).
The superscript i corresponds to the time since becoming infectious. Notice that
these subclasses I (i) are different from those in the negative binomial model because

Fig. 5.6 A transition diagram for the case when the stage duration of the infective period has
an arbitrary bounded distribution with upper bound M . The superscript i is the stage age in the
infectious period and individuals in I (i) (for all i) can enter the recovered class R with a certain
probability
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here an individual can only stay in I (i) for one unit of time, and must go to either
the I (i+1) class with probability qi or the recovered class R with probability 1 − qi .

From Fig. 5.6 the model equations can be written as

Sn+1 = Sne
−∑M

i=1 βi
I
(i)
n
N ,

En+1 = Sn

[
1 − e−∑M

i=1 βi
I
(i)
n
N

]
+ αEn,

I
(1)
n+1 = (1 − α)En, I

(2)
n+1 = q1I

(1)
n , I

(j)

n+1 = qj−1
qj−2

I
(j−1)
n , 3 ≤ j ≤ M,

(5.64)

where βi denote the transmission rates at the infective stage i, 1 ≤ i ≤ M . As qi

is the probability that an infective individual remains infective i time units after
becoming infective, the transition probability from I

(2)
n to I

(3)
n+1 is given by the

probability that an infective individual is still infective two time units after becoming
infectious given that the person remained infective one time unit ago, i.e., q2/q1.
This explains the I

(3)
n+1 equation and similarly I

(j)

n+1 equations for 3 ≤ j ≤ M .

Question 1 For the case when transmission rates βi are stage-dependent, show that

R0 = �(F (I − T )−1) =
M∑
i=1

βiqi−1. (5.65)

Question 2 Derive R0 from its biological definition. Hint: Using the fact that the
distribution Y has an upper bound M and that for a given function f

M∑
m=1

P(Y = m)f (m) = E(f (Y )).

The reproduction number from the biological definition (with f (m) = ∑m
i=1 βi) is

R =
M−1∑
i=0

βi+1qi .

The formula (5.63) can also be applied to models with various heterogeneities.
Consider a model that includes two sub-populations, female and male populations,
with heterogeneous mixing (i.e., no sexual contacts between individuals of the same
sex). Assume that the infective periods for female and male populations follow
arbitrary discrete (bounded) distributions denoted by Yf and Ym, respectively. Here
the subscripts f and m stand for female and male, respectively. Let qf,i = P(Yf >

i) and qm,i = P(Ym > i) with qf,0 = qm,0 = 1, and the upper bounds for the two
distributions (i.e., the maximum numbers of units of time that an individual takes to
recover) be Mw for w = f,m.
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The model equations are

Sw,n+1 = Sw,ne
−∑Mw̃

i=1 βw̃,i I
(i)

w̃,n
/N

,

Ew,n+1 = Sw,n

[
1 − e

−∑Mw̃
i=1 βw̃,i I

(i)

w̃,n
/N ]+ αwEw,n,

I
(1)
w,n+1 = (1 − αw)Ew,n, I

(2)
w,n+1 = qw,1I

(1)
w,n,

I
(j)

w,n+1 = qw,j−1

qw,j−2
I

(j−1)
w,n , 3 ≤ j ≤ Mw, for w = f,m.

Here w̃ represents the opposite sex of w, i.e., f̃ = m, m̃ = f . The constant β
f̃ ,i

(βm̃,i) represents the infection rate to a female (male) transmitted by infectious male
(female) individuals with stage age i.

Question 3 Show that the reproduction number is given by

R = �(F (I − T )−1) =

√√√√√
( Mf∑

i=1

βf,i qf,i−1

)( Mm∑
i=1

βm,iqm,i−1

)
. (5.66)

The square root in (5.66) is a consequence of the fact that the secondary infections
need to be computed from one female (male) to other females (males) through the
male (female) population.

Hint: Consider the order of variables:

(Ef,n, I
(1)
f,n, I

(2)
f,n, · · · , I

(Mf )

f,n , Em,n, I
(1)
m,n, I

(2)
m,n, · · · , I (Mm)

m,n ).

First show that

F(I − T )−1 =
[

0 Fm(I − Tm)−1

Ff (I − Tf )−1 0

]
,

where

Fw(I − Tw)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Mw∑
i=1

βw,iqw,i−1

Mw∑
i=1

βw,iqw,i−1 · · · βw,Mw

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, w = f,m.

References: [2, 16, 31, 48].
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5.7 *Project: Modeling the Synergy Between HIV and HSV-2

Consider the following model for HSV-2, which includes a male population
(specified by subscript m) and a female population with two sub-groups representing
low-risk and high-risk groups (specified by subscripts f1 and f2, respectively):

dSi

dt
= μiNi − λi(t)Si − μiSi,

dAi

dt
= λi(t)Si + γi(θi)Li − (ωi + θi + μi)Ai,

dLi

dt
= (ωi + θi)Ai − (γi(θi) + μi

)
Li, i = m, f1, f2,

(5.67)

where λi(t) (i = m, f1, f2) are the force of infection functions given by

λm(t) =
2∑

i=1

bmciβfim

Afi

Nfi

,

λfj
(t) = bfj

βmfj

Am

Nm

, j = 1, 2,

(5.68)

and Ni = Si + Ai + Li, i = m, f1, f2. Each group i (i = m, f1, f2) is
divided into three subgroups: susceptible (Si), infected with acute HSV-2 only (Ai),
infected with latent HSV-2 only (Li). The population within each group is assumed
to be homogeneous in the sense that individuals have the same infective period,
duration of immunity, contact rate, and so on. A transition diagram between these
epidemiological classes within group i is depicted in Fig. 5.7.

For each sub-population i (i = f1, f2,m) there is a per-capita recruitment rate
μi into the susceptible group. For all classes there is a constant per-capita rate μi

of exiting the sexually active population. Thus, the total population Ni in group i

remains constant for all time. Susceptible people in group i acquire infection with
HSV-2 at the rate λi(t). Upon being infected with HSV-2, people in group i enter
the class Ai . These individuals become latent Li at the constant rate ωi (an average
duration in Ai is 1/ωi). Following an appropriate stimulus in individuals with latent
HSV-2, reactivation may occur at the rate γi . Finally, the antiviral treatment rate for
the Ai individuals is denoted by θi . Because antiviral medications will also suppress

Fig. 5.7 A transition diagram for HSV-2 for subgroup i (i = m, f1, f2)
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reactivation of latent HSV-2, we assume that the reactivation rate of people with
latent HSV-2 γi is a decreasing function of θi , denoted by γi(θi).

For the forces of infection λi(t) (i = m, f1, f2), bi is the rate at which individuals
in group i acquire new sexual partners (also referred to as contact rates), and cj

denotes the probability that a male chooses a female partner in group j (j = f1, f2).
Then c1 + c2 = 1. For ease of notation, let

c1 = c, c2 = 1 − c.

Overall, the number of female partners in groups j (j = 1, 2) that males acquire
should be equal to the number of male partners that females in groups j acquire.
These observations lead to the following balance conditions:

bmcNm = bf1Nf1 , bm(1 − c)Nm = bf2Nf2 . (5.69)

To ensure that constraints in (5.69) are satisfied, we assume in numerical simulations
that bm and c are fixed constants with bf1 and bf2 being varied according to
Nm,Nf1 , and Nf2 . The parameters βim(βmi), i = f1, f2 are the HSV-2 transmission
probabilities per partner between females infected with acute HSV-2 in group i

and susceptible males (between males infected with acute HSV-2 and susceptible
females in group i).

Question 1 Let Rmfj m denote the average number of secondary male infections
generated by one male individual through females in group fj (j = 1, 2). Show
that

Rmfj m =
√

bfj
βmfj

ωm + θm + μm

· Pm · bmcjβfj m

ωfj
+ θfj

+ μfj

· Pfj
, j = 1, 2

with Pi (i = m, f1, f2) representing the probability that an individual of group i is
in the acute stage (A), which is given by

Pi =
(
ωi + θi + μi

)(
γi(θi) + μi

)
[
γ L
i (θi) + ωi + θi + μi

]
μi

, i = m, f1, f2. (5.70)

Question 2 Let R denote the overall reproduction number for the entire population.

(a) Show that

R =
√(

Rmf1m

)2 +
(
Rmf2m

)2
, (5.71)

where Rmfj m (j = 1, 2) are given in Question 1.
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(b) Provide a biological interpretation of the expression on the right-hand side of
Eq. (5.71).

Question 3 Let E0 denote the disease-free equilibrium of the system (5.67), and let
E∗ denote an endemic equilibrium.

(a) Show that E0 is locally asymptotically stable when R < 1 and unstable when
R > 1.

(b) Choose the function for γ (θ) to be in the following form: γi(θi) =
γi(0)αi/(αi + θi). Show via numerical simulations that E∗ exists and is
locally asymptotically stable when R > 1. One case to consider is when
c > 0.5, e.g., c = 0.9 (90% of male contacts are with the low-risk female
group). Because of the constraint (5.69), bi and Ni are not independent.
Choose bm = 0.1, bf1 = 0.0901, bf2 = 9.01 (so that bf2/bf1 = 100),
Nm = Nf1 + Nf2 = 107 (e.g., Nf1 = 9.9889 × 106, Nf2 = 1.1099 × 104).
Consider the case when treatment is absent, i.e., θ = 0. Other parameter values
are ω = 2.5, γm(0) = 0.436, γf1 = γf2 = 0.339, αi = 2. The time unit is
month.

(c) Explore numerically the effect of treatment θ . Consider various scenarios such
as treatment in only one subgroup (male, low-risk female or high-risk female
group). Summarize the observed outcomes in terms of effect of treatment on
the prevalence of HSV-2.

5.8 Project: Effect of Heterogeneities on Reproduction
Numbers

Consider the metapopulation model (5.37), which includes vaccination coverage
φ = (φ1, φ2, · · · , φn) in the n sub-populations. As pointed out in Sect. 5.3.1 that
several types of heterogeneities including the activity (ai), sub-population size
(Ni), and preference for mixing within the sub-population (πi) may affect the
optimal vaccination strategy. In this project, we examine in more details how these
heterogeneities may affect Rv for the case of n = 2, and how to choose (φ1, φ2)

to reduce Rv below a certain level. For example, Fig. 5.8 illustrates the different
parameter regions in the (φ1, φ2) plane in which Rv < 1 in the cases of (a)
proportionate mixing (π1 = π2 = 0) and (b) preferential mixing (πi > 0).

For Questions 1–3 below, let σ = 0.05, γ = 1/7.

Question 1 For the cases in (a) and (b) below, determine the values of the basic
reproduction number R0 for each case. Describe how preferential mixing and
heterogeneous activity may influence the effect of heterogeneity in activity on R0.
Let N1 = N2 = 500. Determine the values of R0 for each case.
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Fig. 5.8 Plots of Rv as a function of φ1 and φ2 for (a) proportionate mixing (πi = 0, no
preference) and (b) preferential mixing (πi > 0). Values at or below their intersection with the
dark plane, Rv = 1, are combinations of φi(i = 1, 2) at which population-immunity attains or
exceeds this threshold

(a) Homogeneous activity: a1 = a2 = 10 (a1 + a2 = 20).

(i) No preference: π1 = π2 = 0.
(ii) Homogeneous preference: π1 = π2 = 0.5.

(iii) Heterogeneous preference: π1 = 0.25, π2 = 0.75 and π1 = 0.75, π2 =
0.25.

(b) Heterogeneous activity: a1 = 8 and a2 = 12 (a1 + a2 = 20).
Repeat (i)–(iii) in (a).

Question 2 Same as in Question 1 but consider heterogeneities in both activity ai

and population size Ni . Given that N1 + N2 = N = 1000 and a1 = 5, a2 = 10.
Repeat (i)–(iii) in Question 1(a) for the following two cases:

(a) Homogeneous population size: N1 = N2 = 0.5N.

(b) Heterogeneous population size: N1 = 0.1N and N2 = 0.9N.

Question 3 Consider the effective reproduction number Rv(φ1, φ2) as a function
of vaccination coverage (φ1, φ2).

(a) Find the optimal solution Φ∗ = (φ∗
1 , φ∗

2 ) for the following set of parameter
values: π1 = π2 = 0.3, a1 = 15, a2 = 12, N1 = 1100, N2 = 900. The given
number of vaccine doses is φ1N1 + φ2N2 = 990.

(b) What is the minimum value Rv{min} = Rv(Φ
∗)?
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