
Chapter 10
Models for Ebola

Another important infectious disease is Ebola virus disease (EVD). Ebola hemor-
rhagic fever is a very infectious disease with a case fatality rate of more than 70%.
It was first identified in 1976 in the Democratic Republic of Congo and there have
been more than a dozen serious outbreaks since then. The most serious outbreak to
date occurred in 2014 in Guinea, Liberia, and Sierra Leone and caused more than
10,000 deaths. Response to this epidemic included the development of vaccines to
combat the disease, currently being used to combat the most recent outbreak in the
Democratic Republic of Congo.

A distinctive feature of the Ebola virus is much disease transmission occurs
through contact with bodily fluids at funerals of Ebola victims. Many mathematical
models have been used to study its disease transmission dynamics. Most of these
studies have focused on estimating the basic and effective reproduction numbers
of EVD, assessing the rate of growth of an epidemic outbreak, evaluating the
effect of control measures on the spread of EVD, and conducting more theoretical
investigations on how model assumptions may affect model outcomes (see, for
example, [1, 3, 7, 8, 11, 18, 23, 25–27, 29, 31, 35, 36, 40]). Although some of
these models have provided useful information and better understanding of EVD
dynamics and evaluation of control programs, most of these models failed to provide
reasonable projections for the 2014 outbreak in West Africa. It is important to
examine the reasons for this, including the underlying assumptions made in these
models. In this chapter, we describe several models for Ebola.

10.1 Estimation of Initial Growth and Reproduction
Numbers

Estimation of the basic and effective reproduction numbers for EVD has been
conducted for both the 2014 outbreaks in West Africa and some of the outbreaks
in the past (see, for example, [1, 11, 23, 25, 36]). In [11], a standard SEIR model
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is used for estimating R0 and exploring the effect of timing of the intervention
on the epidemic final size. Let S(t), E(t), I (t), and R(t) denote the number of
susceptible, exposed, infective, and removed individuals at time t (the dot denotes
time derivatives), and let C(t) denote the cumulative number of Ebola cases
from the time of onset of symptoms. Assume that exposed individuals undergo
an average incubation period (asymptomatic and uninfectious) of 1/k days before
progressing to the infective class I . Infective individuals move to the R-class (death
or recovered) at the per-capita rate γ . The model reads

S′ = −βS(t)I (t)/N

E′ = βS(t)I (t)/N − kE(t)

I ′ = kE(t) − γ I (t)

R′ = γ I (t)

C′ = kE(t).

(10.1)

The model (10.1) predicts initial exponential growth of the number of infectives,
but in fact the initial growth rate is less than exponential. One way to modify the
model to allow this is to assume behavioral changes including education of hospital
personnel and community members on the use of strict barrier nursing techniques
(i.e., protective clothing and equipment, patient management), and the rapid burial
or cremation of patients who die from the disease. It is assumed that the net effect
is a reduced transmission rate β from β0 to β1 < β0. To take into consideration that
the impact of the intervention is not instantaneous, the transmission rate is assumed
to decrease gradually from β0 to β1 according to

β(t) =
{

β0 t < τ

β1 + (β0 − β1)e
−q(t−τ) t ≥ τ

where τ is the time at which interventions start and q controls the rate of the
transition from β0 to β1. Another interpretation of the parameter q can be given
in terms of th = log(2)

q
, the time to achieve β(t) = β0+β1

2 .
The basic reproduction number R0 corresponds to β0. If R0 can be estimated

from data, then β0 can be determined using the relation R0 = β0/γ . For estimating
R0, consider the E and I equations in (10.1) and the corresponding Jacobian matrix
J at the disease-free equilibrium

J =
(−k β

k −γ

)
.

The characteristic equation is given by

r2 + (k + γ )r + (γ − β)k = 0, (10.2)
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Fig. 10.1 (Top) Cumulative number of cases (log-lin scale) during the exponential growth phase
of the Congo 1995 epidemic as identified by the date of start of interventions (09 May 1995
[24]). The model-free initial growth rate of the number of cases for Congo 1995 is 0.07 (linear
regression); (bottom) estimated distribution of R0 from our uncertainty analysis (see text). R0 lies
in the interquartile range (IQR) (1.66–2.28) with a median of 1.89. Notice that 100% of the weight
lies above R0 = 1

and the dominant eigenvalue r represents the early-time and per-capita free growth
of the outbreak. Replacing the β in (10.2) by γR0 and solving for R0, we obtain

R0 = 1 + r2 + (k + γ )r

kγ
.

Using the time series y(t) (before intervention) of the cumulative number of cases
and assuming exponential growth (y(t) ∝ ert ) an estimate of r can be obtained,
as shown in Fig. 10.1 (top). The estimate of the initial rate of growth r for the
Congo 1995 epidemic is r = 0.07 day−1. Based on this fixed r and Monte Carlo
sampling of size 105 from the distributed epidemic parameters (1/k and 1/γ ) [5],
a distribution of R0 can be obtained as demonstrated in Fig. 10.1 (bottom), which
shows that the distribution lies in the interquartile range (IQR) (1.66–2.28) with a
median of 1.89.

Similar estimates for Congo 1995 data can be obtained. The estimated parameter
values are listed in Table 10.1.
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Table 10.1 Parameter definitions and baseline estimates obtained from the best fit of the model
equations (10.1) to the epidemic-curve data of the Congo 1995 and Uganda 2000 outbreaks

Congo 1995 Uganda 2000

Parameter Definition Estim. SD Estim. SD

β0 Pre-interventions transmission rate (days−1) 0.33 0.06 0.38 0.24

β1 Post-interventions transmission rate (days−1) 0.09 0.01 0.19 0.13

th Time to achieve β0+β1
2

(days) 0.71 (0.02, 1.39) 0.11 (0, 0.87)

1/k Mean incubation period (days) 5.30 0.23 3.35 0.49

1/γ Mean infectious period (days) 5.61 0.19 3.50 0.67

The parameters are 0 < β < 1, 0 < q < 100, 1 < 1/k < 21, 3.5 < 1/γ < 10.7

We use the model (10.1) to evaluate intervention strategies, including surveil-
lance and placement of suspected cases in quarantine for 3 weeks (the maximum
estimated length of the incubation period). The effectiveness of interventions can
be quantified in terms of the reproduction number Rp after interventions are
implemented. For the case of Congo Rp = 0.51 (SD 0.04) and Rp = 0.66 (SD
0.02) for Uganda. Furthermore, the time to achieve a transmission rate of β0+β1

2 (th)
is 0.71 (95% CI (0.02, 1.39)) days and 0.11 (95% CI (0, 0.87)) days for the cases of
Congo and Uganda, respectively, after the time at which interventions begin.

Using the parameter values estimated from early growth, the model (10.1) can
be used to simulate the Ebola outbreaks in Congo (1995) and Uganda (2000).
Figure 10.2 illustrates results via Monte Carlo simulations of the stochastic model
corresponding to (10.1) [33], which is constructed by considering three events:
exposure, infection, and removal. The transition rates are defined as

Event Effect Transition rate

Exposure (S, E, I, R) → (S-1, E+1, I, R) β(t)SI/N

Infection (S, E, I, R) → (S, E-1, I+1, R) kE

Removal (S, E, I, R) → (S, E, I-1, R+1) γ I

Figure 10.2 illustrates that there is very good agreement between the mean of
the stochastic simulations and the reported cases. The empirical distribution of the
epidemic final sizes for the cases of Congo 1995 and Uganda 2000 is given in
Fig. 10.3.

The epidemic final size is sensitive to the start time of interventions τ . Numerical
solutions (deterministic model) show that the epidemic final size grows exponen-
tially fast with the initial time of interventions. For instance, for the case of Congo,
the model predicts that there would have been 20 more cases if interventions had
started 1 day later, as shown in Fig. 10.4.

As for most outbreaks, the initial growth of the outbreaks in Congo 1995 and
Uganda 2000 is exponential. However, it is discussed that for the 2014 outbreaks in
West Africa there are significant differences in the growth patterns of EVD cases at
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Time Time

Fig. 10.2 Comparison of the cumulative number of Ebola cases during the Congo 1995 and
Uganda 2000 Ebola outbreaks, as a function of the time of onset of symptoms. Circles are the
data. The solid line is the average of 250 Monte Carlo replicates and the error bars represent
the standard error around the mean from the simulation replicates using our parameter estimates
(Table 10.1). For the case of Congo 1995, simulations were begun on 13 Mar 1995. A reduction
in the transmission rate β due to the implementation of interventions occurs on 09 May 1995 (day
56) [24]. For the case of Uganda 2000, simulations start on 27 August 2000 and interventions take
place on 22 October 2000 (day 56) [41]

Fig. 10.3 The epidemic final size distributions for the cases of Congo 1995 and Uganda 2000
obtained from 250 Monte Carlo replicas. Crosses (X) represent the epidemic final size from data



356 10 Models for Ebola

Fig. 10.4 Sensitivity of the final epidemic final size to the starting time of interventions. The
negative numbers represent number of days before the actual reported intervention date and
positive numbers represent a delay after the actual reported intervention date (τ = 0)

the scale of the country, district, and other sub-national administrative divisions. It is
illustrated that the cumulative number of EVD cases in a number of administrative
areas of Guinea, Sierra Leone, and Liberia is best approximated by polynomial
rather than exponential growth over several generations of EVD. It is also observed
that, when data are aggregated nationally, or across the broader West Africa region,
total case counts show periods of approximate exponential growth.

Temporal evolution of the effective reproduction number of Ebola is studied
in [36]. In this study, a simple SEIR model with standard incidence is used in
combination with the limited existing data to determine whether the transmission
rate of Ebola has been changing over time in West Africa. To this end, piece-
wise exponential curves were fit to the time series of outbreak data to estimate the
temporal evolution of the effective reproduction number of the disease. Instead of
R0, the study focuses on assessing the time evolution of the effective reproduction
number denoted by Reff , which is a dynamic estimate of the average number of
secondary cases per infectious case in a population composed of both susceptible
and non-susceptible individuals during the course of an outbreak. The SEIR model
and its linearization about this temporary “equilibrium” are used to determine the
predicted local rate of exponential rise of the epidemic curve, ρeff . For the SEIR
model, this is related to Reff by

Reff =
(

1 + ρeff

γ

)(
1 + ρeff

κ

)
, (10.3)
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Fig. 10.5 Time series of incidence of EVD cases in West Africa

where 1/κ and 1/γ are the average incubation and infective periods of the
disease, respectively. With estimates of ρeff from piecewise exponential rise fits
to the incidence data from an outbreak (along with estimates of the incubation and
infective periods of the disease), ρ can be estimated (Fig. 10.5), and then Eq. (10.3)
can be used to obtain estimates of the temporal behavior of Reff (Fig. 10.6), in
essence approximating the temporal behavior with a piece-wise step-function.

Figure 10.5 shows time series of recorded average number of new EVD cases
per day during the initial phase of the 2014 West African outbreak, for Guinea,
Sierra Leone, and Liberia (dots). The green lines show a selection of the piece-
wise exponential fits to the data (not all fits are shown to clarify the presentation); a
moving window of groups of ten contiguous points are taken at a time, and the rate
of exponential rise estimated for those ten points. The results for the estimations of
the exponential rise for the full set of piece-wise fits are shown in Fig. 10.6. Shown
in red is the fitted exponential rise from July 1st onwards.
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Fig. 10.6 Estimated rates of exponential rise from piece-wise exponential fits

In Fig. 10.6, estimated rates of exponential rise from piece-wise exponential fits
to the average daily EVD incidence data, as shown in Fig. 10.5; a moving window
of groups of ten contiguous incidence data time series points are taken at a time,
and the rate of exponential rise estimated for those ten points. The dates shown on
the x axis are the last date in each contiguous set of ten points, and the vertical
error bars denote the 95% confidence interval. The horizontal black line shows the
estimated rate of rise of an exponential fit to the incidence time series from July 1st
to September 8th, with the black dotted lines indicating the 95% confidence interval.

10.1.1 Early Detection

The effect of early detection on Ebola control is studied in [10]. The model considers
six epidemiological classes: susceptible individuals (S), latent undetectable individ-
uals (E1), latent detectable individuals (E2), infectious symptomatic individuals (I ),
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isolated individuals (J ), and individuals removed from isolation after recovery or
disease-induced death (P ), P = R + D, where R is the recovered class and D is
the death-induced class. Susceptible individuals become infected and latent through
contact with an infectious individual at the per-capita rate (I + lJ ) = N , where β

is the mean transmission rate per day, l is defined as the relative transmissibility of
isolated individuals, i.e., it is a measure of the effectiveness of isolation of infective
individuals, and N is the total population size. Latent undetectable individuals (E1)
enter the latent detectable class E2 at a rate k1, and become infectious symptomatic
at a rate k2. A fraction of the latent detectable individuals are diagnosed (i.e., by
RT-PCR), pT = fT = (fT + k2), and become isolated. We assume that the latent
detectable class represents individuals with a viral load above the detection limit of
the specific diagnostic test. Infective individuals are isolated at a rate α, or they are
removed after recovery or disease-induced death at a rate γ . Similarly, individuals
are removed from isolation after recovery or disease-induced death, but at a rate γr .
The model reads

S′ = −βS
I + lJ

N

E′
1 = βS

I + lJ

N
− k1E1

E′
2 = k1E1 − k2E2 − fT E2

I ′ = k2E2 − (α + γ )I

J ′ = αI + fT E2 − γrJ

R′ = γ (1 − δ)I + γr(1 − δ)J

D′ = γ δI + γrδJ

N = S + E1 + E2 + I + J + R.

(10.4)

The analysis suggests that the impact of early diagnosis of pre-symptomatic
infections is strongly dependent on the effectiveness of isolation of infective
individuals in health-care settings. For instance, with an isolation effectiveness of
50% and with an average time of 3 days from the onset of symptoms to isolation,
the attack rate (total number of Ebola cases/population size) remains essentially
unchanged as the rate of pre-symptomatic case detection increases (Fig. 10.7).
In contrast, early detection of pre-symptomatic individuals can have a significant
impact on the transmission dynamics of Ebola if the effectiveness of isolating
infective cases is at least 60%. Even at this level of isolation, at least 50% of
pre-symptomatic cases would need to be detected in the community, a scenario
difficult to achieve with limited resources. When the effectiveness of isolation is
increased to 65%, detecting about 25% of pre-symptomatic cases is predicted to
lead to epidemic control, i.e., the effective reproduction number is reduced below
the epidemic threshold.
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Fig. 10.7 Predictions of the effect of diagnosing pre-symptomatic individuals on the attack rate
of the Ebola epidemic. The mean time from onset of symptoms to isolation was set at 3 days

10.2 Evaluations of Control Measures

One of the typical characteristics for EVD is that significant transmissions can
occur by infectious individuals after death but before burial. Also, no effective
drugs or vaccine were available for the outbreak in West Africa. The main control
measures include isolation, hospitalization, contact tracing, and safe burial. Several
mathematical models have been used to assess the effectiveness of these control
measures (e.g., [3, 7, 26, 27, 35, 40]). Most of the models in these studies use SEIR
type of models with various modifications. One of the EVD models on which many
other models are based is the one considered in Legrand et al. [26], which will be
discussed in more detail in the next section.

A model considered in [7] has the following form (with modified notation):

S′ = −βS(Ih + Iu)/N

E′ = βS(Ih + Iu)/N − αE

I ′
h = pαE − δhIh

I ′
u = (1 − ρ)αE − δuIu

H ′ = δhIh,

(10.5)

where N is the total population size and is assumed to be constant. In this model, two
separate compartments for infective individuals are considered, namely infective
individuals which will be hospitalized/reported (Ih) and infectious individuals
which will not be hospitalized and unreported (Iu). The H compartment represents
the cumulative hospitalized/reported cases (so it includes those who are recovered
after being hospitalized). The model (10.5) also assumes that individuals in both Ih

and Iu have the same transmission rate β, p is the fraction of hospitalized cases,
1/δh is time from infectiousness (symptom) onset until hospitalization/isolation
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Fig. 10.8 A transition
diagram for model (10.5) H

U
ES

Iu

Ih

and reporting, and 1/δu is the mean infective period for an unhospitalized case.
A transition diagram of the model is depicted in Fig. 10.8.

For model (10.5), the reproduction number is given by

Re = R0

(
p

δu

δh

+ 1 − p

)
,

where R0 = β/δu is the basic reproduction number. An extension of the
model (10.5) is also considered in [7] to take into consideration contact tracing.

The following deterministic model is considered in [25].

S′ = −R0δSI/N,

E′
1 = R0δSI/N − mαE1,

E′
i = mα(Ei−1 − Ei), i = 2, · · · ,m

I ′ = mαEm − δI,

R′ = δI.

(10.6)

In model (10.6), the stage distribution of the latent stage is assumed to be gamma
with the shape parameter equal to m, which leads to a division of the exposed class
E into m sub-classes with mean duration 1/(mα). By examining the model fit to the
weekly case reports in Guinea, Liberia, and Sierra Leone from the WHO situation
report dated from 1 October 2014 (http://www.who.int/csr/disease/ebola/situation-
reports/en/), the authors pointed out that fitting of such deterministic models to
cumulative incidence data can lead to bias and pronounced underestimation of the
uncertainty associated with model parameters.

The models (10.5) and (10.6) ignored the special characteristic associated with
the fact that significant transmissions can occur by those who are dead but not yet
buried. This is considered in the Legrand model, which is discussed in detail next.

http://www.who.int/csr/disease/ebola/situation-reports/en/
http://www.who.int/csr/disease/ebola/situation-reports/en/
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10.3 The Legrand Model and Underlying Assumptions

Many mathematical models have been used for the recent epidemics of Ebola in
West Africa. However, the success of these models in the case of the 2014 Ebola
outbreak in West Africa was very limited. As pointed out in [8], “mathematical
models have failed to accurately project the outbreak’s course.” Although various
reasons may explain why “on-the-ground data contradict the projections of pub-
lished models,” including incomplete and unreliable data on Ebola epidemiology
(especially in the hardest-hit areas) and lack of empirical data on how disease-
control measures quantitatively affect Ebola transmission, it is important to examine
the appropriateness of assumptions made in the models on which the projections
are based. This is the objective of this section. There have been various modeling
approaches, including deterministic and stochastic models, or relatively simple
models consisting of ordinary differential equations (ODEs) and more complicated
agent-based models, among others. Many of the ODE models are variations of the
model studied by the Legrand model (10.7). It has been pointed out that some of
the assumptions made in the Legrand model may not have clear justifications (e.g.,
[35]). Thus, it is important to examine the critical assumptions made in this model
and better understand their possible impact on model outcomes.

10.3.1 The Legrand Model

The Legrand et al. model [26] consists of a system of ordinary differential equations
with six compartments representing the epidemiological classes of susceptible (S),
exposed (E), infective (I ), hospitalized (H ), dead but not yet buried (D), and
removed (R). The transition diagram of the model is depicted in Fig. 10.9.

Fig. 10.9 A transition diagram for the model in Legrand et al. [26]
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The model presented by Legrand et al. [26] reads

dS

dt
= − 1

N
S(βI I + βH H + βDD)

dE

dt
= 1

N
S(βI I + βH H + βDD) − αE

dI

dt
= αE − (γhθ1 + γi(1 − θ1)(1 − δ1) + γd(1 − θ1)δ1)I

dH

dt
= γhθ1I − (γdhδ2 + γih(1 − δ2))H

dD

dt
= γd(1 − θ1)δ1I + γdhδ2H − γf D

dR

dt
= γi(1 − θ1)(1 − δ1)I + γih(1 − δ2)H + γf D.

(10.7)

The parameters βI , βH , and βD denote the transmission rates in the I , H , and D

classes, respectively; let 1/α be the mean latent period; and let 1/γf be the mean
time between death and burial.

The three key parameters that are in the Legrand model (10.7), θ1, δ1, and δ2,
do not have direct biological meaning but are computed based on the probabilities
of hospitalization and of disease-induced mortality with or without hospitalization.
For example, the fraction of infective people hospitalized is

p = γhθ1

γhθ1 + γi(1 − θ1)(1 − δ1) + γd(1 − θ1)δ1
, (10.8)

and the probabilities of death with (fh) and without hospitalization (fi) are given
by

fh = γdhδ2

γdhδ2 + γih(1 − δ2)

fi = γdδ1

γi(1 − δ1) + γdδ1
.

(10.9)

If we assume fi = fh = f , then θ1, δ1, and δ2 can be determined in terms of p and
f using (10.8) and (10.9).

In addition, the Legrand model imposes the following constraints:

1

γi

= 1

γh

+ 1

γih

and
1

γd

= 1

γh

+ 1

γdh

, (10.10)
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and assumes that hospitalization does not affect the time from onset to recovery
or from onset to death. Other assumptions made in model (10.7) are associated
with exponential waiting times. It is assumed that, after entering the infective class
I , individuals can leave due either to hospitalization (entering H ) or recovery
without being hospitalized (entering R from I ) or death without being hospitalized
(entering D from I ) with average waiting times 1/γh, 1/γi , 1/γd , respectively. Or
equivalently, after onset, individuals enter the H , R, and D classes at constant rates
γh, γi , and γd , respectively. Their model assumes that the overall rate of leaving the
I class, denoted by Δ, is a weighted average of the three rates γh, γi , and γd as

Δ = θ1γh + (1 − θ1)δ1γd + (1 − θ1)(1 − δ1)γi, (10.11)

where θ1 is the proportion of cases hospitalized, and δ1 is a coefficient that is
determined such that

δ1γd

δ1γd + (1 − δ1)γi

is equal to case fatality (i.e., the proportion of cases that die).

10.3.2 A Simpler System Equivalent to the Legrand Model

It is shown in [18] that the Legrand model (10.7) is equivalent to the following
model:

dS

dt
= − 1

N
S(βI I + βH H + βDD),

dE

dt
= 1

N
S(βI I + βH H + βDD) − αE,

dI

dt
= αE − γ I,

dH

dt
= pγ I − ωH,

dD

dt
= (1 − p)f γ I + f ωH − γf D,

dR

dt
= (1 − p)(1 − f )γ I + (1 − f )ωH,

(10.12)

where

1

γ
= p

1

γIH

+ (1 − p)f
1

γID

+ (1 − p)(1 − f )
1

γIR

,

1

ω
= f

1

ωHD

+ (1 − f )
1

ωHR

.

(10.13)
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Using the following connections between parameters in (10.12) and the Legrand
model (10.7):

γIR = γi, γIH = γh, γID = γd,

the conditions in (10.13) can be written as

1

γ
= p

1

γh

+ (1 − p)fi

1

γd

+ (1 − p)(1 − fi)
1

γi

,

1

ω
= fh

1

γdh

+ (1 − fh)
1

γih

,

(10.14)

and the constraints (10.10) becomes

1

γIR

= 1

γIH

+ 1

ωHR

,
1

γID

= 1

γIH

+ 1

ωHD

. (10.15)

The only minor difference between the two models is where to move the buried
(whether or not to R), which does not affect the dynamic behavior of the model.

10.4 *Models with Various Assumptions on Stage Transition
Times

In the Legrand model (10.7) or the equivalent model (10.12), it is not clear what
underlying assumptions have been made regarding the distributions of waiting times
for epidemiological processes including the time from onset to recovery (transition
from I to R), to hospitalization (transition from I to H ), and to death (transition
from I to D). For ease of reference, we refer to these three transitions as IR,
IH, and ID, respectively. In addition, the two possible transitions for hospitalized
individuals, recovery or death, are denoted by HR and HD. In this section, we
derive three integro-differential equations models under different assumption on
those transition times and compare the difference in the model outcomes.

Let TP , TL, and TM denote random variables for the waiting times associated
with IR, IH, and ID, and let the associated survival functions be denoted by
P(t), L(t), and M(t), respectively. The mean duration of these transitions are,
respectively, E[TP ], E[TL], and E[TD]. Similarly, let DHR and DHD denote the
mean duration from hospitalization to recovery or death, respectively. For ease of
comparison between models presented in this paper, we list in Table 10.2 some
of the quantities that play common roles and have clear biological meaning in
these models. Several of these quantities should have values that are independent of
model assumptions, including the mean duration (absent intervention) from onset to
recovery E[TP ], the probability of hospitalization p, and the probability of death f .
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Table 10.2 Definition of symbols commonly used in the models in this section

Symbol Definition

TP , TL, TM Random variables for the waiting times in I before moving to R, H , D,
respectively

XI Random variable for the overall time spent in the I compartment

XH Random variable for the overall time spent in the H compartment

Pi(s) Probability that a living individual remains infectious s units of time since
onset

for models I, II, III when i = 1, 2, 3, respectively. That is, P
[
TPi

> s
] = Pi(s)

Li(s) Probability of a living individual not being hospitalized s units of time since
onset

for models I, II when i = 1, 2, respectively. That is, P
[
TLi

> s
] = Li(s)

M1(s) Probability of surviving the disease s units of time since onset for model I.
That is,

P
[
TM1 > s

] = M1(s)

Q3(s) Probability of not having recovered s time units after being hospitalized for
model III

E[TP ] Mean duration from onset to recovery (absent intervention or death)

E[TL] Mean duration from onset to hospitalization (given hospitalized and not dead)

E[TM ] Mean duration between onset and death (absent intervention or recovery)

E[XI ] Mean duration in the I compartment (hospitalization and death included)

E[XH ] Mean duration in the H compartment (death included)

DHR Mean duration from hospitalization to recovery

DHD Mean duration from hospitalization to death

γIR = 1/E[TP ]
γIH = 1/E[TL]
γID = 1/E[TM ]
ωHR = 1/DHR , per-capita rate of transition from H to R if the transition is

exponential

ωHD = 1/DHD , per-capita rate of transition from H to D if the transition is
exponential

p Proportion hospitalized (dependent on control effort)

f Probability of death (with or without hospitalization)

γ = 1/E[XI ], per-capita rate of exiting I if XI is exponential

If the transitions IR, IH, and ID are assumed to be independent in the Legrand
model and the waiting times are all exponentially distributed with mean durations
1/γIR, 1/γIH , and 1/γID , respectively, then the mean overall time spent in the I

compartment is

E
[

min {TP , TL, TM} ] =
∫ ∞

0
P(t)L(t)M(t)dt = 1

γIR + γIH + γID

.
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Thus, the overall rate of exiting I is γIR + γIH + γID , which is not a weighted
average given by Δ in (10.11) for the Legrand model. This implies that the Legrand
model has made different assumptions on these transitions.

In the formulation of the integro-differential equations models, we will adopt
probabilistic terminology to facilitate the interpretation of these models, and focus
on the following three scenarios:

(I) Assume that the three transitions IR, IH, and ID are independent and the
waiting times are described by the survival functions P1(s), L1(s), and M1(s),
respectively, where s represents the time-since-onset. It is also assumed that
hospitalization does not affect the time from onset to recovery or death.

(II) The two transitions IR and ID are combined and described by a single survival
function P2(s), with a fraction 1−f of the exiting individuals recovering (and
the fraction f dying). The transition IH is independent of IR and ID and the
waiting time is described by the survival function L2(s). Similar to model I,
it is also assumed that hospitalization does not affect the time from onset to
recovery or probability of death.

(III) All three transitions (IH, IR, and ID) are combined and described by a single
survival function P3(s), with a fraction p of the exiting individuals being
hospitalized and a fraction 1 − f (respectively, f ) of the non-hospitalized
individuals recovering (respectively, dying). The two transitions HR and HD
are combined and the waiting time is described by a single survival function
Q3(s) with a fraction 1 − f (or f ) of the exiting individuals recovering (or

dying). P3 and Q3 are assumed to be independent. Unlike models I and II, in
which the time from onset to hospitalization is tracked due to the independent
stage distributions, in model III a constraint must be imposed so that the time
between onset and hospitalization plus the time between hospitalization and
recovery (or death) equals the time between onset and recovery (or death).

To focus on the general waiting time for the infective stage and its influence on
model formulation when hospitalization is considered, assume simpler distributions
for other stages including the latent stage and the duration between death and burial.
That is, the E and D stages are assumed to have exponential distributions with
constant rates α and γf . As the models are derived under arbitrary distributions
for the waiting times of key disease stages, they consist of systems of integro-
differential equations. It shows that these systems reduce to ODE systems when
the arbitrary stage distributions are replaced by gamma or exponential distributions.
Detailed derivations of the systems of integral equations are provided in Feng et al.
(2016).
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The model I, which corresponds to the scenario (I) described above, assumes
independent IR, IH, and ID processes. Let TP1 , TL1 , and TM1 denote random
variables for the independent waiting times of IR, IH, and ID, respectively, that
are described by the following survival functions:

• P1(s): Probability that a living individual remains infectious s units of time since
onset (governing both IR and HR).

• L1(s): Probability of a living individual not being hospitalized s units of time
since onset (governing the IH transition).

• M1(s): Probability of surviving the disease s units of time since onset (governing
both ID and HD).

Figure 10.10 depicts the transitions between epidemiological classes for the model
under scenario (I). All variables and parameters have the same meanings as
before unless otherwise stated. The diagram in (a) depicts transitions between
compartments when stage durations for the IR, IH, and ID transitions are arbi-
trarily described by the survival functions P1(t), L1(t), and M1(t). The dotted
rectangle around the I and H compartments indicates that individuals in these two
compartments are being tracked for their time-since-onset using the same survival

(a) Arbitrary distributions

(b) Gamma distributions

Fig. 10.10 Transition diagram for Model I when TP1 , TL1 , and TM1 are arbitrary (a), or
gamma/exponential (b). The corresponding survival functions are P1(t) (red), L1(t) (green), and
M1(t), respectively
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function P1(t), i.e., the time elapsed in I before entering H is taken into account
when determining the time between entering H and recovery. The diagram in
(b) illustrates the effect of the “linear chain trick” when P1(t) follows a gamma
distribution, and L1(t) and M1(t) follow exponential survival functions.

The model with the general stage distributions P1, L1, and M1 consists of the
following system of integro-differential equations:

dS

dt
= −λ(t)S,

dE

dt
= λ(t)S − αE,

I (t) =
∫ t

0
αE(s)P1(t − s)L1(t − s)M1(t − s)ds + I (0)P1(t)L1(t)M1(t),

H(t) =
∫ t

0
αE(s)P1(t − s)M1(t − s)

[
1 − L1(t − s)

]
ds

+I (0)P1(t)M1(t)
[
1 − L1(t)

]
, (10.16)

D(t) =
∫ t

0

[∫ τ

0
αE(s)P1(τ − s)gM1(τ − s)ds + I (0)P1(τ )gM1(τ )

]
e−γf (t−τ)dτ,

R(t) =
∫ t

0

[∫ τ

0
αE(s)gp1

(τ − s)M1(τ − s)ds + I (0)gp1
(τ )M1(τ )

]
dτ,

where λ(t) is given by

λ(t) = βI I + βH H + βDD

N
, (10.17)

The initial condition is (S(0), E(0), I (0),H(0),D(0), R(0)) = (S0, E0, I0, 0,

0, 0), where S0 and E0 are positive constants. Notice that in system (10.16), the
probability distributions for TP1 , TL1 , and TM1 are arbitrary.

Consider the case when TP1 follows a gamma distribution with shape and rate
parameters (n, nγ1) (where n ≥ 1 is an integer), and TL1 and TM1 follow exponential
distributions with parameters χ1 and μ, respectively (which are gamma distributions
with shape parameter 1). That is,

P1(t) = Gn
nγ1

(t) =
n∑

j=1

(nγ1t)
j−1e−nγ1t

(j − 1)! ,

L1(t) = G1
χ1

(t) = e−χ1t ,

M1(t) = G1
μ(t) = e−μt .

(10.18)
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Then, it is shown in [18] that (10.16) is equivalent to the following system of ODEs:

dS

dt
= − 1

N
S
(
βI

n∑
j=1

Ij + βH

n∑
j=1

Hj + βDD
)
,

dE

dt
= 1

N
S
(
βI

n∑
j=1

Ij + βH

n∑
j=1

Hj + βDD
)

− αE,

dI1

dt
= αE − (nγ1 + χ1 + μ)I1,

dIj

dt
= nγ1Ij−1 − (nγ1 + χ1 + μ)Ij , for j = 2, . . . n,

dH1

dt
= χ1I1 − (nγ1 + μ)H1,

dHj

dt
= χ1Ij + nγ1Hj−1 − (nγ1 + μ)Hj , for j = 2, . . . n,

dD

dt
= μ

n∑
j=1

Ij + μ

n∑
j=1

Hj − γf D,

dR

dt
= nγ1In + nγ1Hn.

(10.19)

In the special case when n = 1 (i.e., P1 is also an exponential distribution), the
model (10.19) simplifies to

dS

dt
= − 1

N
S(βI I + βH H + βDD),

dE

dt
= 1

N
S(βI I + βH H + βDD) − αE,

dI

dt
= αE − (γ1 + χ1 + μ)I,

dH

dt
= χ1I − (γ1 + μ)H,

dD

dt
= μI + μH − γf D,

dR

dt
= γ1I + γ1H.

(10.20)
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Note that in model (10.20) the per-capita transition rates from I to R and from
H to R are both equal to γ1, from which we have γIR = ωHR . This means that
the constraints in (10.15) for model (10.12) cannot be satisfied. Thus, model I
cannot be equivalent to the Legrand model. This suggests that Legrand et al. did not
assume that the three transitions of IR, IH, and ID were described by independent
exponential distributions and that the overall waiting time in the I compartment was
the minimum of these three exponential waiting times.

When P1, L1, and M1 are exponential with the respective parameters γ1, χ1, and
μ, because of the assumption in model I that the three transitions IR, IH, and ID
are independent, the overall waiting time in the I compartment is also exponential
with the rate constant γ1 + χ1 + μ. From the definition of these parameters, we
can link them to the general parameters (i.e., independent of model assumptions) in
Table 10.2. There might be multiple ways of making the connections. One example
is the following: For example,

1

γ1
= 1

γIR

= E[TP1], f = μ

γ1 + μ
, p = χ1

γ1 + χ1 + μ
, (10.21)

where γIR , f , and p are parameters that are independent of models. From the
relations in (10.21) we can express the rates γ1, χ1, and μ in terms of only γIR ,
p, and f :

γ1 = γIR, χ1 = γIR

p

(1 − f )(1 − p)
, μ = γIR

f

1 − f
. (10.22)

Reproduction Numbers for Models (10.16), (10.19), and (10.20)

Based on the biological meaning of RC , we obtain the following expression for

R
general
C1 for model (10.16) under general stage distributions:

R
general
C1 = βIE

(
min

{
TP1, TL1 , TM1

})
+βH

[
E

(
min

{
TP1 , TM1

}) − E
(
min

{
TP1, TL1 , TM1

})] + βD
1
γf

pM,

(10.23)

where

E
(
min

{
TP1, TL1 , TM1

}) =
∫ ∞

0
P1(t)L1(t)M1(t)dt
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represents the average time spent in the I compartment, and

E
(
min

{
TP1, TM1

}) =
∫ ∞

0
P1(t)M1(t)dt

represents the average total time spent in the I and H compartments.
For the model (10.19) with gamma distribution,

RGamma
C1 = βI

χ1 + μ

[
1 −

(
nγ1

nγ1 + χ1 + μ

)n]

+βH

μ

[
χ1

χ1 + μ
+ μ

χ1 + μ

(
nγ1

nγ1 + χ1 + μ

)n

−
(

nγ1

nγ1 + μ

)n]

+βD

γf

[
1 −

(
nγ1

nγ1 + μ

)n]
.

(10.24)

For the model (10.20) with exponential distribution,

R
Exp
C1 = βI

γ1 + χ1 + μ
+ βH

γ1 + μ

χ1

γ1 + χ1 + μ
+ βD

γf

μ

γ1 + μ

= βI

γ1 + χ1 + μ
+ βH p

γ1 + μ
+ βDf

γf

.

(10.25)

Next, consider different assumptions on the transition processes. In model I, the
three transitions IR, IH, and ID are assumed to be independent, in which case the
three transitions “compete” for individuals in the I class. Another scenario is to
consider only two independent transitions, one being hospitalization and the other
combining recovery and death for those who are not hospitalized. In this case, we
have two survival probability functions:

• P2(s): Probability of still being infectious and alive s time units after onset
(governing all four transitions IR, ID, HR, and HD).

• L2(s): Probability of not being hospitalized s time units after onset (governing
the IH transition).

Assume that, for those who exit I without being hospitalized, a fixed fraction 1 − f

(or f ) will recover (or die) an assumption of Legrand model. Assume also that
individuals in I and H classes have the same probability of death (f ), also as
assumed in the Legrand model. The transition diagram is depicted in Fig. 10.11a.
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(a) Arbitrary distributions

(b) Gamma distributions

Fig. 10.11 A transition diagram for model II when TP2 and TL2 are arbitrary distributions (a)
and when they are gamma or exponential (b). In (a), the recovery/death (red) and hospitalization
(green) transitions are governed by the survival functions P2 and L2. In (b), the recovery/death
(red) and hospitalization (green) transitions are indicated by the same colors as in (a)

Model II has the form

dS(t)

dt
= −λ(t)S(t),

dE(t)

dt
= λ(t)S(t) − αE(t),

I (t) =
∫ t

0
αE(s)P2(t − s)L2(t − s)ds + I (0)P2(t)L2(t),

H(t) =
∫ t

0
αE(s)P2(t − s)

[
1 − L2(t − s)

] + I (0)P2(t)
[
1 − L2(t)

]
,

D(t) = f

∫ t

0

[∫ τ

0
αE(s)gP2(τ − s)ds + I (0)gP2(τ )

]
e−γf (t−τ)dτ,

R(t) = (1 − f )

∫ t

0

[∫ τ

0
αE(s)gP2(τ − s)ds + I (0)gP2(τ )

]
dτ.

(10.26)
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The function λ(t) is the same as in model I and given in (10.17). We can reduce
the integral equations in (10.26) to the ODEs given below:

dS

dt
= − 1

N
S
(
βI

n∑
j=1

Ij + βH

n∑
j=1

Hj + βDD
)
,

dE

dt
= 1

N
S
(
βI

n∑
j=1

Ij + βH

n∑
j=1

Hj + βDD
)

− αE,

dI1

dt
= αE − (nγ2 + χ2)I1,

dIj

dt
= nγ2Ij−1(t) − (nγ2 + χ2)Ij , for j = 2, . . . n,

dH1

dt
= χ2I1 − nγ2H1,

dHj

dt
= χ2Ij + nγ2Hj−1 − nγ2Hj , for j = 2, . . . n,

dD

dt
= f nγ2In + f nγ2Hn − γf D,

dR

dt
= (1 − f )nγ2In + (1 − f )nγ2Hn.

(10.27)

The reproduction numbers RC2 for model II also have different forms than those
for model I. In the case of general distributions,

R
general
C2 = βIE

(
min

{
TP2 , TL2

}) + βH

[
E

(
TP2

) − E
(
min

{
TP2, TL2

})]
+βD

1
γf

[f (1 − pH2) + fpH2] .

(10.28)

When P2 is a gamma distribution,

RGamma
C2 = βI

1

χ2

[
1 −

(
nγ2

nγ2 + χ2

)n]

+βH

[
1

γ2
− 1

χ2

[
1 −

(
nγ2

nγ2 + χ2

)n]]
+ βD

f

γf

. (10.29)
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When P2 is exponential, the model (10.27) becomes

dS

dt
= − 1

N
S(βI I + βH H + βDD),

dE

dt
= 1

N
S(βI I + βH H + βDD) − αE,

dI

dt
= αE − (γ2 + χ2)I,

dH

dt
= χ2I − γ2H,

dD

dt
= f γ2I + f γ2H(t) − γf D(t),

dR

dt
= (1 − f )γ2I + (1 − f )γ2H.

(10.30)

The formula for RC2 in (10.28) simplifies to

R
Exp
C2 = βI

γ2 + χ2
+ pβH

γ2
+ fβD

γf

. (10.31)

As in model I, there can be multiple choices for linking the parameter γ2 to the
common parameters. For example,

1

γ2
= (1 − f )

1

γIR

+ f
1

γID

,

where 1/γID denotes the average time from onset to death. Also, p = χ2/(γ2 +χ2).
Thus,

γ2 = 1

(1 − f )/γIR + f/γID

, χ2 = γ2p

1 − p
. (10.32)

Another set of possible assumptions that are different from models I and II
is to consider two independent distributions for the waiting times in I and H

compartments, denoted by TP3 and TQ3 , with survival functions

• P3(s): Probability of remaining in the I class s units of time since onset
(governing the transitions IR, IH, and ID).

• Q3(s): Probability remaining in the H class s units of time after being hospital-
ized (governing the HR and HD transitions).

Let p3(t) = −P ′
3(t) and q3(t) = −Q′

3(t) denote the probability density functions.
P3 describes the waiting time for the combined transitions, IR, IH, and ID. Assume
that among the individuals exiting the I class, fractions of p, (1−p)f , (1−p)(1−f )

will be hospitalized, non-hospitalized and dead, and non-hospitalized and recovered,
respectively (0 ≤ p, f < 1). Q3 describes the waiting time for the combined two
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(a) Arbitrary distributions

(b) Gamma distributions

Fig. 10.12 A transition diagram for model III when TP3 and TQ3 are arbitrary distributions (a)
and when they are gamma or exponential (b)

transitions, HR and HD, and we assume that fractions 1−f and f of the hospitalized
individuals recover or die, respectively. A transition diagram is shown in Fig. 10.12.

In this case, model III consists of the following system of integro-differential
equations:

S′(t) = −λ(t)S(t), E′(t) = λ(t)S(t) − αE(t),

I (t) =
∫ t

0
αE(s)P3(t − s)ds + I (0)P3(t),

H(t) =
∫ t

0
p

[∫ s

0
αE(τ)p3(s − τ)dτ + I (0)p3(s)

]
Q3(t − s)ds

D′(t) = (1 − p)f

[∫ t

0
αE(s)p3(t − s)ds + I (0)p3(t)

]

+f

∫ t

0

[
p

∫ s

0
αE(τ)p3(s − τ)dτ + pI (0)p3(s)

]
q3(t − s)ds − γf D(t),

R′(t) = (1 − p)(1 − f )

[∫ t

0
αE(s)p3(t − s))ds + I (0)p3(t)

]

+(1 − f )

∫ t

0

[
p

∫ s

0
αE(τ)p3(s − τ)dτ + pI (0)p3(s)

]
q3(t − s)ds.

(10.33)
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Note that it is easier in this case to write equations for D′ and H ′ than for D and H .
Assume that TP3 and TQ3 follow gamma distributions with shape parameters n

and m respectively, i.e., the survival functions are given by

P3(t) = Gn
nγ3

(t) =
n∑

j=1

[nγ3(t − s)] j−1e−nγ3(t−s)

(j − 1)! ,

Q3(t) = Gm
mω3

(t) =
m∑

j=1

[mω3(t − s)] j−1e−mω3(t−s)

(j − 1)! .

(10.34)

Then, the system (10.33) reduces to the following system of ODEs:

dS

dt
= − 1

N
S
(
βI

n∑
j=1

Ij + βH

m∑
j=1

Hj + βDD
)
,

dE

dt
= 1

N
S
(
βI

n∑
j=1

Ij + βH

m∑
j=1

Hj + βDD
)

− αE,

dI1

dt
= αE − nγ3I1,

dIk

dt
= nγ3Ik−1 − nγ3Ik, k = 2, . . . , n

dH1

dt
= pnγ3In − mω3H1,

dHk

dt
= mω3Hk−1 − mω3Hk, k = 2, . . . , m

dD

dt
= (1 − p)f nγ3In + f mω3Hn − γf D,

dR

dt
= (1 − p)(1 − f )nγ3In + (1 − f )mω3Hm.

(10.35)

A transition diagram under the gamma distributions for TP3 and TQ3 , for the ODE
model (10.35) is shown in Fig. 10.12b. We observe a major difference between this
figure and Fig. 10.10b or Fig. 10.11b in the recovery rates from In and Hm, which
have different values here. A similar difference exists in the transition rates from Ij

to Ij+1 (j = 1, · · · , n − 1) and from Hj to Hj+1 (j = 1, · · · ,m − 1).
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In the special case when n = m = 1 (i.e., P3 and Q3 are exponential), the ODE
model (10.35) simplifies to

dS

dt
= − 1

N
S(βI I + βH H + βDD),

dE

dt
= 1

N
S(βI I + βH H + βDD) − αE,

dI

dt
= αE − γ3I,

dH

dt
= pγ3I − ω3H,

dD

dt
= (1 − p)f γ3I + f ω3H − γf D,

dR

dt
= (1 − p)(1 − f )γ3I + (1 − f )ω3H.

(10.36)

Notice that, if we ignore the last term in the R equation in the equivalent Legrand
model (10.12) (this term indicates that the R class includes those buried), the
model (10.36) is identical to the model (10.12) when the subscript “3” is dropped;
that is, when γ3 and ω3 are defined as follows:

1

γ3
= p

γIH

+ (1 − p)f

γID

+ (1 − p)(1 − f )

γIR

,

1

ω3
= f

ωHD

+ 1 − f

ωHR

,

(10.37)

together with the constraints

1

γIR

= 1

γIH

+ 1

ωHR

,
1

γID

= 1

γIH

+ 1

ωHD

. (10.38)

The reproduction number RC3 for model III can be derived using the same
approach as for models I and II. Because the derivations are similar, we omit the
details, and present the formula only for the special case when P3 and Q3 are both
exponential, i.e., P3 = G1

γ3
and Q3 = G1

ω3
(see (10.34)). In this case, the formula

for RC3 for the ODE model (10.35) is independent of m and n, and is given by

R
Exp
C3 = βI

γ3
+ p

βH

ω3
+ f

βD

γf

, (10.39)

where γ3 and ω3 are given in (10.37).
Note that the main difference between models I, II, and III lies in the assumptions

on the underlying biological processes, particularly the sojourn distributions for
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various stage transitions, which are described by functions L(t), P(t), M(t), and
Q(t). The fact that the Legrand model can only be obtained from model III, not from
models I and II, identifies the specific assumptions made in the Legrand model in
terms of these sojourn distributions. For example, our analyses suggest the following
assumptions made in the Legrand model:

(a) The overall sojourn in the I stage is assumed to be exponentially distributed
with the average duration 1/γ , which is further assumed to be the specific
weighted average of 1/γIR , 1/γIH , and 1/γID as given in (10.13), where 1/γIR ,
1/γIH , and 1/γID are the respective average stage duration of the IR, IH, and ID
transitions. However, from model I we see that if the IR, IH, and ID transitions
follow independent exponential distributions with parameters γIR , γIH , and
γID , then the overall sojourn in the I stage is exponentially distributed with
the parameter γ = γIR + γIH + γID with the average duration

1

γ
= 1

γIR + γIH + γID

,

which differs from (10.13).
(b) The distributions for the I and H stages are independent (see P3(t) and Q3(t)).

This implies that the average time spent in the H stage before recovery or death
(1/ω3) does not depend on the average time spent in the I stage before recovery
or being hospitalized or dying (1/γ3). Under this assumption, the time spent in
H before recovery (1/γHR) does not take into consideration the time spent in
I before being hospitalized (1/γIH ) . Because of this independence, the model
needs to impose a constraint to link these two durations (see (10.10)).

Difference in Evaluations by Models I, II, and III

Among the three ODE models (10.20), (10.30), and (10.36), which are reduced
from the models I, II, and III with general distributions, the only model that can
match the Legrand model is (10.36), for which the assumptions include: (i) the
waiting times of the three transitions IR, IH, and ID are not independent and
(ii) the overall waiting time in the I compartment is a weighted average of the
mean durations (1/γIR , 1/γIH , and 1/γID) for the three transitions with weights
determined by the probabilities of hospitalization p and death f , as described in
(10.14). By examining the ODE model (10.20), we found that, if the waiting times
of the three transitions IR, IH, and ID are independent and exponentially distributed
(with parameters γ1, χ1, and μ), then the overall waiting time in I should be an
exponential distribution with the parameter γ1 +χ1 +μ. That is, the average overall
waiting time should be 1/(γ1 + χ1 + μ), not a weighted average such as the ones
in (10.14).

Formulas for the control reproduction numbers RCi (i = 1, 2, 3) for the three
general models provide a means of examining the influence of assumptions on
model outcomes. For example, consider the three control reproduction numbers
RCi (i = 1, 2, 3), which are given in (10.25), (10.31), and (10.39) corresponding to
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Fig. 10.13 Plots of the basic reproduction numbers (a) and control reproduction numbers (b) for
the three models. In (a), R0 is plotted as a function of f for model I (thin solid), model II (dashed),
and model III (thick solid). The parameter values are chosen such that all three R0i have the same
value 1.8 at f = 0.7 (note that p = 0). In (b), RCi is plotted as a function of p and f for models
I—III. Other parameter values are given in the text

the three ODE models (10.20), (10.30), and (10.36), respectively. In the absence
of hospitalization (i.e., p = 0), these RCi reduce to the corresponding basic
reproduction numbers R0i (i = 1, 2, 3). Figure 10.13 illustrates the difference
between the basic and control reproduction numbers of the three models for a given
set of parameter values, mostly based on the Ebola outbreak in West Africa in 2014.
We fix all parameters except βi (i = I,H,D) and f . Then, for a fixed value of
f0 = 0.7, we estimate βi (i = I,H,D) from a given value of R0 (assumed to
be the same for all three models). If we further assume that βH = βD = 0.3βI ,
then we can get a unique value for βI for fixed R0. Once we have the value of
βi , we have three functions of f , R0i (f ) (i = 1, 2, 3). For Fig. 10.13a, we used
the common value of R0(f0) = 1.8. The three curves are for model I (the thin
solid curve), model II (the dashed curve), and model III ( the think curve). For the
selected set of parameter values, the R0 curves for models II and III overlap. The
decreasing property of these curves represents the fact that higher disease mortality
decreases R0i (f ), which is expected because the assumption that βD < βI . An
interesting observation is that the dependence of the basic reproduction number on
disease death f is more dramatic in model I than models II and III, particularly for
smaller f values. For smaller values of f , model I tends to generate the highest R0,
while for larger f values, model III provides higher R0. Other parameter values
used are (time in days): 1/γIR = 18, 1/γf = 2, 1/α = 9. Parameters such as μ, χi

(i = 1, 2) are calculated based on their relationships with the common parameters.
For model III, additional parameter values include 1/γIH = 7, 1/γID = 8, which
can be used to determine γ3 and ω3 from (10.37).

When control is considered (p > 0), the dependence of RCi on p and f is
illustrated in Fig. 10.13b. We observe that, for the given set of parameter values,
model I (the darker surface with mesh) generates higher RC values than models
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II (the lighter surface) and III (the darker surface with no mesh) for smaller p

and f , while model III provides the higher values for larger values of p and/or
f . The differences in R0 and RC between the three models indicate that model
predictions about and evaluations of the effectiveness of control measures could be
very different as well. Figure 10.14 shows numerical simulation results of the three
ODE models (10.20), (10.30), and (10.36), which are reduced from the models
I, II, and III, and presented in columns 1, 2, and 3, respectively. The A, B, and
C panels correspond to three sets of (p, f ) values: (p, f ) = (0, 0.7) (top panel),
(p, f ) = (0.3, 0.5) (middle panel), and (p, f ) = (0.4, 0.7) (bottom panel). The
top panel (A1–A3) is for the case of no hospitalization (p = 0). We observe that
models II and III generate similar epidemic curves (fractions of infected individuals
(E + I + H)/N), including peak sizes, times to peak, duration of epidemic (which
lead to similar epidemic final sizes). Model I shows a higher peak size and an earlier
time to peak. The middle panel (B1–B3) is for the case when the hospitalization is
p = 0.3, and we observe that model I has the highest peak size while model II
has the lowest. This is in agreement with the relative magnitudes of the control

Fig. 10.14 Numerical simulations of the three ODE models (10.20), (10.30), and (10.36), which
are reduced from the models I, II, and III, respectively. The fractions of infected individuals (E +
I +H)/N and death (D/N ) are plotted over a time period of 1000 days. Three sets of (p, f ) values
are used: (p, f ) = (0, 0.7) (top row), (p, f ) = (0.3, 0.5) (middle row), and (p, f ) = (0.4, 0.7)

(bottom row). Parameter values are the same as in Fig. 10.13
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reproduction numbers RCi , as the point (p, f ) = (0.3, 0.5) lies in the region where
RC1 > RC3 > RC2 (see Fig. 10.13). For the bottom panel (C1–C3), because the
point (p, f ) = (0.4, 0.7) lies in the region where RC3 > RC1 > RC2, we observe
that model III generates the highest peak size while model II again has the lowest.

10.5 Slower than Exponential Growth

It has been standard practice in analyzing disease outbreaks to formulate a dynam-
ical system as a deterministic compartmental model, then to use observed early
outbreak data to fit parameters to the model, and finally to analyze the dynamical
system to predict the course of the disease outbreak and to compare the effects of
different management strategies. In general, such models predict an initial stochastic
stage (while the number of infectious individuals is small), followed by a period
of exponential growth. Measurement of this early exponential growth rate is an
essential step in estimating contact rate parameters for the model. A thorough
description of the analysis of compartmental models may be found in [21].

However, instances have been noted where the growth rate of an epidemic
is clearly slower or faster than exponential. For example, [13], the 2013–2015
epidemic in West Africa has been viewed as a composition of locally asynchronous
outbreaks at local levels displaying sub-exponential growth patterns during several
generations. Specifically, if I (t) is the number of infectious individuals at time t ,
a graph of log I (t) against t is a straight line if the growth rate is exponential, and
for some disease outbreaks this has not been true. One of the earliest examples
[16] concerns the growth of HIV/AIDS in the USA, and a possible explanation
might be the mixture of short-term and long-term contacts. This could be a factor in
other diseases where there are repeated contacts in family groups and less frequent
contacts outside the home.

During the 2013–2015 Ebola epidemic in West Africa, in the country of Liberia,
which has a total population size of 4,300,000, there were 10,678 suspected,
probable, and confirmed cases of disease as of September 3, 2015 [32]. An SIR
model for the whole country would have predicted more than 1,500,000 cases. This
discrepancy cannot be explained by the assumption of control measures. In order
to make plausible predictions of the effects of large-scale epidemics, it is necessary
to use a phenomenological model based on observations in the early stages of the
epidemic rather than to try to fit a mechanistic model. Some phenomenological
models that have been used to good effect have been the generalized Richards
model, the “generalized growth model,” and the IDEA model.
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10.5.1 The Generalized Richards Model

Perhaps the first attempt to fit early epidemic data is the Richards model [34]. This
is a modification of the logistic population growth model, described in [22]

I ′(t) = rI

[
1 −

(
I

K

)a]
.

In this model, I represents the cumulative number of infected individuals at time t ,
K is the carrying capacity or total case number of the outbreak, r is the per-capita
growth rate of the infected population, and a is an exponent of deviation from the
standard logistic model. The basic premise of the model is that the incidence curve
has a single turning point tm. The analytic solution of the model is

I (t) = K[
1 + e−r(t−tm)

]1/a
.

10.5.2 The Generalized Growth Model

It has been pointed out [12–15, 39] that a so-called general growth model of the
form

C′(t) = rC(t)p,

where C(t) is the number of disease cases occurring up to time t , and p, 0 ≤ p ≤ 1,

is a “deceleration of growth” parameter, has exponential solutions if p = 1 but
solutions with polynomial growth if 0 < p < 1. This is not and does not claim
to be a mechanistic epidemic model, but it has proved to be remarkably successful
for fitting epidemic growth and predicting the course of an epidemic. For example,
it has provided much better estimates of epidemic final size than the exponential
growth assumption for the Ebola epidemic of 2014. However, it assumes a sustained
increase in the number of disease cases and cannot capture the later decline in the
number of new infections. Such phenomenological models are particularly likely
to be suitable in situations where it is difficult to construct a mechanistic approach
because of multiple transmission routes, interactions of spatial influences, or other
aspects of uncertainty.
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10.5.3 The IDEA Model

Another direction that would be well worth further exploration would be contact
rates decreasing in time because of individual behavioral changes in response to a
disease outbreak. A contact rate which is a decreasing function of time can certainly
lead to early epidemic growth slower than exponential. A step in this direction has
been initiated in a discrete model [19] that has been applied to an Ebola model in
[20].

The IDEA model [19, 20, 37] is a discrete model that assumes damping
of recruitment of new infections because of spontaneous or planned behavioral
changes. It is assumed that the time interval in the model is equal to the duration
of infection, so that the number of infective individuals at each stage is equal to the
number of new infections. The resulting model is

It =
[

R0

(1 + d)t

]t

.

Here, d is a discount factor describing the recruitment damping.
A variety of epidemiological situations in which slower than exponential epi-

demic growth might be possible have been described. Ultimately, the challenge for
epidemiological modeling would be to determine which of these situations allow
slower than exponential growth by deriving and analyzing mechanistic models to
describe each of these situations. This is an important new direction for epidemic
modeling. Some suggestions include metapopulation models with spatial structure
including cross-coupling and mobility, clustering in spatial structure, dynamic
contacts, agent-based models with differences in infectivity and susceptibility of
individuals, and reactive behavioral changes early in a disease outbreak. It may well
turn out that slower than exponential growth may be ruled out in some cases but
is possible in others. For example, heterogeneity of mixing in a single location can
be modeled by an autonomous dynamical system and the linearization theory of
dynamical systems at an equilibrium shows that early epidemic growth for such a
system is always exponential. On the other hand, metapopulation models may well
allow many varieties of behaviors.

An important broader question is the matter of what information influences the
behavior of people during a disease outbreak, and how to include this in a model. A
recent book [28] describes some studies in this direction.

10.5.4 Models with Decreasing Contact Rates

There is anecdotal evidence that in an outbreak of a disease considered very serious
there is early action to decrease the risk of being infected by decreasing contact rates.
This early action may begin even before government efforts to combat the disease.
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Since Ebola is a very serious disease, with case fatality rates of 70% or more, it is
reasonable to assume a decreasing contact rate. This has been suggested in [1, 2].
In [1], an SIR model is assumed with a contact rate that decreases exponentially in
time, and observations are used to estimate the rate of decrease. In [6], such a model
is used to estimate the final size of an Ebola epidemic over a country using early
growth rate data and this yields early final size estimates that are much closer to the
eventual outbreak data than estimates assuming a constant contact rate. For example,
for the 2014-5 Ebola outbreak in Guinea, a country with a total population size of
10,589,000 the assumption of a constant contact rate corresponding to R0 = 1.5
led to an estimate of more than 9,000,000 cases over the whole country, while a
decreasing contact rate assumption led to an estimate of about 27,000 disease cases.
The actual number of Ebola cases in Guinea in this outbreak was fewer than 4,000.
The models described here are for an entire country and are not intended to replace
more detailed models needed for disease management describing the progress of the
disease in individual villages.

10.6 Project: Slower than Exponential Growth

We have suggested in Sect. 10.5.4 that slower than exponential growth of the number
of infectious individuals may be explained by assuming a time-dependent decrease
in the contact rate. The question of what modeling assumptions can lead to slower
than exponential growth is a complex one [13]. Another possible explanation might
be a decrease in contact rate depending on the current state of the system. If the
model system remains autonomous, growth will remain exponential so long as the
contact rate is a differentiable function of I so that the theory of linearization at
a disease-free equilibrium remains valid. However, if the rate of new infections is
a S

N
f (I) with f (I) not differentiable at I = 0, different behavior is possible.
Consider an SIR model in which the equation for I is

I ′ = β
S

N
Iα − γ I,

with 0 < α < 1. Initially, so long as S ≈ N , we approximate this equation by

I ′ = βIα − γ I. (10.40)

Question 7 Show that the basic reproduction number is

R0 = β

γ
.

Question 8 Make the change of dependent variable u = log I and derive the
differential equation satisfied by u.
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Exponential growth of I corresponds to linear growth of u. It is clear that if
α = 1, u does grow linearly.

Question 9 Determine whether the rate of growth of u is less than linear for α < 1,

either by explicit solution of the equation for u or by simulations with β > γ (so
that R0 > 1) and a range of values of α.

10.7 Project: Movement Restrictions as a Control Strategy

Cordons Sanitaire or “sanitary barriers” are designed to prevent the movement, in
and out, of people and goods from particular areas. The effectiveness of the use of
cordons sanitaire has been controversial. This policy was last implemented nearly
100 years ago [9]. In desperate attempts to control disease, Ebola-stricken countries
enforced public health officials decided to use this medieval control strategy in the
EVD hot-zone, that is, the region of confluence of Guinea, Liberia, and Sierra Leone
[30]. In this project, a framework that allows, in the simplest possible setting, the
possibility of assessing the potential impact of the use of a Cordon Sanitaire during a
disease outbreak is introduced. We consider an SIR epidemic model in two patches,
one of which has a significantly larger contact rate, with short-term travel between
the two patches. The total population resident in each patch is constant. We follow a
Lagrangian perspective, that is, we keep track of each individual’s place of residence
at all times [4, 17]. This is in contrast to an Eulerian perspective, which describes
migration between patches.

Thus we consider two patches, with total resident population sizes N1 and
N2, respectively, each population being divided into susceptibles, infectives, and
removed members. Si and Ii denote the number of susceptibles and infectives,
respectively, who are residents in Patch i, regardless of the patch in which they
are present.

Residents of Patch i spend a fraction pij of their time in Patch j , with

p11 + p12 = 1, p21 + p22 = 1.

The contact rate in Patch i is βi , and we assume β1 > β2.
Each of the p11S1 susceptibles from Group 1 present in Patch 1 can be infected

by infectives from Group 1 and from Group 2 present in Patch 1. Similarly, each of
the p12S1 susceptibles present in Patch 2 can be infected by infectives from Group
1 and from Group 2 present in Patch 2.
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Question 1 Show that the model equations are

S′
i = −pi1Si

[
p11

I1

N1
+ p12

I2

N2

]
− pi2Si

[
p21

I1

N1
+ p22

I2

N2

]

I ′
i = pi1Si

[
p11

I1

N1
+ p21

I2

N2

]
+ pi2Si

[
p21

I1

N1
+ p22

I2

N2

]
− γ Ii, i = 1, 2.

Question 2 Use the next generation matrix [38] to calculate the basic reproduction
number.

Question 3 Use the approach described in Chaps. 4 and 5 to determine the final
size relations.

Imposition of a Cordon Sanitaire amounts to replacing the fractions of normal
travel between groups by

p11 = p22 = 1, p12 = p21 = 0.

Question 4 Compare the reproduction numbers and final sizes with and without
a Cordon Sanitaire, using numerical simulations with various parameter value
choices.

The approach suggested here can be used with more detailed models for a specific
disease, such as Ebola, in which transmission from one village to another through
temporary visits is a factor [17].

10.8 Project: Effect of Early Detection

The following model for Ebola is considered in [10]:

dS

dt
= −βS

I + lJ

N
,

dE1

dt
= βS

I + lJ

N
− k1E1,

dE2

dt
= k1E1 − k2E2 − fT E2,

dI

dt
= k2E2 − (α + γ )I,

dJ

dt
= αI + fT E2 − γrJ,

dR

dt
= γ (1 − δ)I + γr(1 − δ)J,

dD

dt
= γ δI + γrδJ,

(10.41)
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where N = S +E1 +E2 + I +J +R. The variables E1 and E2 denote the numbers
of latent undetectable and detectable individuals, respectively, I is the number of
infectious individuals, J is the number of isolated infective individuals, R and D

are numbers of recovered and dead due to the disease. For the parameters, β is the
transmission rate, l is the relative transmissibility of isolated individuals, k is the
rate of entering the detectable class, k2 is the rate of becoming infective, fT is the
rate of being diagnosed, α is the rate of isolation, γ is the recovery rate, and γr is
the rate at which individuals are removed from isolation after recovery or disease
death.
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