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Foreword

The subject of infectious diseases has been one of the richest areas of application
of mathematics in biology, dating back to Sir Ronald Ross’ classic contributions to
the management of malaria at the beginning of the last century. Infectious diseases
obviously impose great burdens of morbidity and mortality on humanity, as well
as on non-human populations of importance to us; and hence, the ability to use
formal models to reduce those burdens has attracted the attention of exceptional
mathematicians, including all three of the authors of this volume. All have made
major contributions to the subject, independently and in collaboration with each
other, and the current volume profits from their complementary talents and expertise.
The authors combine broad expertise built on excellent scholarship, their own
fundamental research and masterful exposition, and I am delighted to have been
asked to write this Foreword.

The subject of mathematical epidemiology has seen great progress in the century
since Ross, as new diseases like SARS and HIV–AIDS have appeared and as
older ones, like measles and TB, have waned and waxed and re-emerged in places
where they were thought to be defeated. But our battle with infectious diseases
can never be won completely; like Lewis Carroll’s Red Queen said, we must keep
running just “to keep in the same place”; and we will need to run even faster if
we are to make progress in this perpetual struggle. Highly adaptive agents like
influenza A continue to evolve in a continual struggle with immune defenses,
fostering increased efforts to develop a universal vaccine; similarly, pathogenic
bacteria have evolved resistance to the drugs that had at first tamed them. At the
same time, a growing and increasingly mobile world population has accelerated the
spread of disease, including novel diseases that previously would have remained
endemic or died out. Climate change has added yet another challenge, as the
vectors of diseases, from insects to migrant birds, shift their ranges to carry diseases
into areas whose populations are unprepared to deal with them. As discussed in
the next paragraph, social influences raise new challenges for management and
for mathematical modeling. Even our own microbiomes have been dramatically
affected by environmental influences, antibiotic uses, and medical practices such
as C-sections, changing the background against which management must operate.
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vi Foreword

Medical science has responded brilliantly to these challenges, through the
development of new antibiotics, vaccines, and treatment protocols, guided along the
way by improved mathematical modeling. Such models have needed to address the
multi-scale dynamics of an interacting system of within-host immune dynamics, the
population-level modeling of disease spread, the dynamics of vector populations,
and the socioeconomic context within which diseases spread. The socioeconomic
issues include not only the economics of control measures but also the behavioral
responses before and during outbreaks, from vaccine hesitancy to the avoidance
of social contacts involving infectious individuals. The overuse of antibiotics and
underuse of vaccines have created new dilemmas for practitioners and new avenues
for mathematical modeling to make contributions, guiding individual decisions,
medical practice, hospital decision-making, and public policy at all levels.

This volume is a comprehensive treatment of the classical theory and modern
extensions of that theory. It is constructed as a textbook for students with solid
mathematical foundations, including problem sets that illuminate the issues. As
such, it should find wide use as the basis for beginning and advanced courses in this
important subject and serve as a complement and update to the excellent 2001 text
by Brauer and Castillo-Chavez; clearly, a lot has happened in the field in the nearly
two decades since that book appeared, and those advances are well documented
in this book. But this volume, as the earlier one, also will be a treasure trove for
mathematicians and other researchers looking for an authoritative introduction to
the literature and to open problems to the solutions of which they might contribute
their skills. It should find its way onto the shelves of every researcher interested in
the topic.

Princeton University Simon Levin
Princeton, NJ, USA



Preface

The goal of this book is to interest students of mathematics and public health
professionals in the modeling of infectious diseases transmission. We believe
that some knowledge of disease transmission models can give useful insights
to epidemiologists and that there are interesting mathematical problems in such
models. The mathematical background necessary for studying this book is a knowl-
edge of calculus, some matrix theory, and some ordinary differential equations,
specifically approximate and qualitative methods. Our emphasis is on describing
the mathematical results being used and showing how to apply them rather than
on detailed proofs. We hope that eventually the education of biologists and public
health professionals will include these mathematical topics in the first 2 years of
university so that this book can be accessible to upper-level undergraduate students.

A course based on this book should cover the first section on basic concepts and
some of the chapters on specific diseases in the second section. In addition, some
of the more advanced topics from the third section, depending on the interests of
the students and the time available, can be included. Throughout the book, there
are suggested projects giving a sense of research topics that could be attacked by
students in groups. In the first section of the book, there are also numerous exercises,
and answers to selected exercises are available. We believe that a book should go
beyond a course based on it, to lead to further reading, and the last three chapters of
the book and the epilogue are intended to suggest some topics for further thought.

In order to make the book more accessible to the readers with minimal mathemat-
ical background, we have put some mathematical review material on matrix algebra,
differential equations, and systems of differential equations into some appendices to
this book. We have also established a website

https://mcmsc.asu.edu/content/mathematical-models-epidemiology

containing review notes covering some topics in calculus, matrix algebra, and
dynamical systems (ordinary differential equations and difference equations). We
have also starred difficult exercises and difficult sections which are intended for the
readers with strong mathematical backgrounds.
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viii Preface

Stochastic disease transmission models form an important area that we have
largely omitted in order to keep the size of this book within bounds. For readers who
may wish to explore this subject, we have included some references near the end of
Chap. 1. Discrete disease transmission models are not studied in the main text, but
there are several projects introducing the subject in addition to some references near
the end of Chap. 1.

Our emphasis in this book is on relatively simple models whose goal is
to describe general qualitative behavior and establish broad principles. Public
health professionals are more concerned with detailed models to make short-term
quantitative predictions. Such detailed models are generally difficult or impossible
to solve analytically, but the relatively recent development of the availability of high-
speed computing has made detailed models available for quantitative predictions
and comparison of different possible management strategies. The emphasis in this
book is on relatively simple models, but readers should remember that there is
another important aspect of the subject.

Vancouver, BC, Canada Fred Brauer
Tempe, AZ, USA Carlos Castillo-Chavez
West Lafayette, IN, USA Zhilan Feng

The original version of this book was revised. The correction to this book is available at https://
doi.org/10.1007/978-1-4939-9828-9_17

https://doi.org/10.1007/978-1-4939-9828-9_17
https://doi.org/10.1007/978-1-4939-9828-9_17
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Part I
Basic Concepts of Mathematical

Epidemiology



Chapter 1
Introduction: A Prelude to Mathematical
Epidemiology

1.1 Introduction

Recorded history continuously documents the invasion of populations by infectious
agents, some causing many deaths before disappearing, others reappearing in
invasions some years later in populations that have acquired some degree of
immunity, due to prior exposure to related infectious pathogens. The “Spanish”
flu epidemic of 1918–1919 exemplifies the devastating impact of relatively rare
pandemics; this one was responsible for about 50,000,000 deaths worldwide, while
on the mild side of the spectrum we experience annual influenza seasonal epidemics
that cause roughly 35,000 deaths in the USA each year.

Communicable diseases have played a significant role in shaping human history.
The Black Deaths (probably bubonic plague) spread starting in 1346, first through
Asia and moving across Europe repeatedly during the fourteenth century. The Black
Death has been estimated to have caused the death of as much as one-third of the
population of Europe between 1346 and 1350. The disease reappeared regularly in
various regions of Europe for more than 300 years, a notable outbreak being that
of the Great Plague of London of 1665–1666. It gradually withdrew from Europe
afterwards.

Some diseases have become endemic (“permanently” established) in various
populations causing a variable number of deaths particularly in countries with
inefficient or resource-limited health care systems. Even within the twenty-first
century, we see that millions of people die of measles, respiratory infections,
diarrhea, and more. Individuals still die in significant numbers from diseases that
are no longer considered dangerous, diseases that are easily treated or that have been
well managed by resource-rich societies or by nations that invest in public health and
prevention systematically. Some highly prevalent old foes include malaria, typhus,
cholera, schistosomiasis, and sleeping sickness, endemic diseases in many parts of
the world; diseases that have a significant negative impact on the mean life span of
a population as well as on the economy of afflicted countries due to their impact
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on the health of the population. The World Health Organization has estimated that
in 2011 there were 1,400,000 deaths due to tuberculosis, 1,200,000 deaths due to
HIV/AIDS, and 627,000 deaths due to malaria (but other sources have estimated
the number of malaria deaths to be more than 1,000,000). In short, HIV, malaria,
and TB account for at least 9,000 deaths each day. The impact of vaccines can be
dramatic, for example, there were 2,600,000 deaths due to measles in 1980 but only
160,000 by 2011. The development and availability of the measles vaccine led to a
reduction in the number of deaths due to this childhood disease of nearly 94%.

Epidemiologists, in response to a health emergency or as a result of systematic
surveillance, first obtain and analyze observed data. They use data, observations,
science, and theory as they work at identifying a pathogen (when unknown) behind
an observed disease outbreak or as they proceed to plan or implement policies
that ameliorates its impact. Naturally, understanding the causes and modes of
transmission of each disease is central to forecasting or mitigating its impact within
and across populations at risk. Mathematical models have played a substantial role
in both short and long term planning for controlling the dynamics of a disease.

This volume provides a guided tour of the role that mathematical models have
played in epidemiology and public health policy. This tour introduces a wide range
of models and tools that have proven useful in the study of disease dynamics and
control. This book provides a framework that will position those interested in the use
of modeling and computational tools in epidemiology, public health, and related
fields, in a position to contribute to the study of the transmission dynamics and
control of contagion.

1.2 Some History

The study of infectious disease data began with the work of John Graunt (1620–
1674) in his 1662 book “Natural and Political Observations made upon the Bills of
Mortality.” The Bills of Mortality were weekly records of numbers and causes of
death in London parishes. The records, beginning in 1592 and kept continuously
from 1603 on, provided the data that Graunt used to begin to understand or identify
possible causes of observed mortality patterns. He analyzed the various causes of
death and gave a method of estimating the comparative risks of dying from various
diseases, giving the first approach to a theory of competing risks.

In the eighteenth century smallpox was endemic and, perhaps not surprisingly,
the first model in mathematical epidemiology was tied in to the work that Daniel
Bernoulli (1700–1782) carried out on estimating the impact of inoculation against
smallpox. Variolation, essentially inoculation with a mild strain, was introduced
as a way to produce lifelong immunity against smallpox, but with a small risk of
infection and death. There was heated debate about variolation, and Bernoulli was
led to study the question of whether variolation was beneficial. His approach was to
calculate the increase in life expectancy if smallpox were to be eliminated as a cause
of death. His approach to the question of competing risks led to the publication of
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a brief outline in 1760 [7] followed in 1766 by a more complete exposition [8]. His
work received a mainly favorable reception; research that has become known in the
actuarial literature rather than in the epidemiological literature. More recently his
approach has been generalized [31].

Another valuable contribution to the understanding of infectious diseases prior
to our understanding of disease transmission processes was gained from the study
of the temporal and spatial pattern of cholera cases during the 1855 epidemic in
London carried out by John Snow. He was able to pinpoint the Broad Street water
pump as the source of the infection [54, 71]. In 1873, William Budd was able to gain
a similar understanding of the spread of typhoid [17]. Statistical theory also moved
forward with William Farr’s study of statistical returns in 1840, a study that had as
its goal the discovery of the laws that underlie the rise and fall of epidemics [36].

Many of the early developments in the mathematical modeling of communicable
diseases are due to public health physicians. The first known result in mathematical
epidemiology, as noted before, is a defense of the practice of inoculation against
smallpox in 1760 by Daniel Bernoulli, a member of a famous family of mathemati-
cians (eight spread over three generations) who had been trained as a physician.
The first contributions to modern mathematical epidemiology are due to P.D.
En’ko between 1873 and 1894 [30], and the foundations of the entire approach to
epidemiology based on compartmental models were laid by public health physicians
such as Sir R.A. Ross, W.H. Hamer, A.G. McKendrick, and W.O. Kermack between
1900 and 1935, along with important contributions from a statistical perspective by
J. Brownlee.

1.2.1 The Beginnings of Compartmental Models

In order to describe a mathematical model for the spread of a communicable
disease, it is necessary to make some assumptions about the means of spreading
infection. The idea of invisible living creatures as agents of disease goes back at
least to the writings of Aristotle (384–322 BC). The existence of microorganisms
was demonstrated by van Leeuwenhoek (1632–1723) with the aid of the first
microscopes. The first expression of the germ theory of disease by Jacob Henle
(1809–1885) came in 1840 and was developed by Robert Koch (1843–1910), Joseph
Lister (1827–1912), and Louis Pasteur (1822–1875) in the late nineteenth and early
twentieth centuries. The modern view is that many diseases are spread by contact
through a virus or bacterium. We focus in this book on the problem of understanding
the spread of disease at a population level. Similar modeling approaches can be used
to study the dynamics of infection within a host for diseases including HIV. This
area is the backbone of the field of mathematical and computational immunology
and viral dynamics. An introduction to immunology may be found in the book by
Nowak and May [67].

In 1906, W.H. Hamer argued that the spread of infection should depend on the
number of susceptible individuals and the number of infective individuals [44]. He
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suggested a mass action law for the rate of new infections, and this idea has been
basic in the formulation of compartmental models since that time. It is worth noting
that the foundations of the entire approach to epidemiology based on compartmental
models were laid, not by mathematicians, but primarily by public health physicians
such as Sir R.A. Ross, W.H. Hamer, A.G. McKendrick, and W.O. Kermack between
1900 and 1935.

A particularly instructive example is the work of Ross on malaria. Sir Ronald
Ross was awarded the second Nobel Prize in Medicine in 1902 for his demonstration
of the dynamics of the transmission of malaria between mosquitoes and humans.
He discovered the malarial parasite in the gastrointestinal tract of the Anopheles
mosquito from which he was able to characterize the life cycle of malaria. He
concluded that this vector-borne disease was transmitted by the Anopheles mosquito
and in the process he developed a program for controlling or eliminating it at the
population level.

It was generally believed that, so long as mosquitoes were present in a population,
malaria could not be eliminated. Ross introduced a simple compartmental model
[69] that included mosquitoes and humans. He showed that reducing the mosquito
population below a critical level would be sufficient to eliminate malaria. This was
the first introduction of the concept of the basic reproduction number, a central
idea in mathematical epidemiology since that time. Field trials supported Ross’
conclusion leading sometimes to brilliant successes in malaria control.

The basic compartmental models to describe the transmission of communicable
diseases are contained in a sequence of three papers by W.O. Kermack and A.G.
McKendrick in 1927, 1932, and 1933 [55–57]. The first of these papers described
epidemic models.

The Kermack–McKendrick epidemic model, introduced in Chap. 2 and studied
in more detail in Chap. 4, included dependence on age of infection, that is, the
time since becoming infected, and can be used to provide a unified approach to
compartmental epidemic models.

Various disease outbreaks including the SARS epidemic of 2002–2003, the
concern about a possible H5N1 influenza epidemic in 2005, the H1N1 influenza
pandemic of 2009, and the Ebola outbreak of 2014 have reignited interest in
epidemic models, with the reformulation of the Kermack–McKendrick model by
Diekmann, Heesterbeek, and Metz [27] highlighting the importance of looking at
the foundational work. Chapter 4 contains a study of epidemic models.

In the work of Ross and Kermack and McKendrick there is a threshold quantity,
the basic reproduction number, which is now almost universally denoted by R0.
Neither Ross nor Kermack and McKendrick identified this threshold quantity or
gave it a name. It appears that the first person to name the threshold quantity
explicitly was MacDonald [60] in his work on malaria.

The basic reproduction number, R0 (referred to as the basic reproductive number
by some authors), is defined as the expected number of disease cases (secondary
infections) produced by a “typical” infected individual in a wholly susceptible
population over the full course of the disease outbreak. In an epidemic situation,
in which the time period is short enough to neglect demographic effects and all
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infected individuals recover with full immunity against reinfection, the threshold
R0 = 1 is the dividing line between the infection dying out and the onset of an
epidemic. In a situation that includes a flow of new susceptible individuals, either
through demographic effects or recovery without full immunity against reinfection,
the threshold R0 = 1 is the dividing line between an approach to a disease-free
equilibrium and an approach to an endemic equilibrium, in which the disease is
always present. This situation is studied in detail in Chap. 3.

Since 1933, there has been a great deal of work on compartmental disease
transmission models, with generalizations in many directions. In particular, it is
assumed in [55–57] that stays in compartments are exponentially distributed. In the
generalization to age of infection models in Chap. 4, we are able to assume arbitrary
distributions of stay in a compartment.

1.2.2 Stochastic Models

There are serious shortcomings in the simple Kermack–McKendrick model as a
description of the beginning of a disease outbreak. Indeed, a very different kind of
model is required since the Kermack–McKendrick compartmental epidemic model
assumes that the sizes of the compartments are large enough that the mixing of
members is homogeneous. However, at the beginning of a disease outbreak, there
is a very small number of infective individuals and the transmission of infection is
better captured if seen as a stochastic event that depends on the pattern of contacts
between members of the population; a more satisfactory description should take
such a stochastic pattern into account. We will not study stochastic models in this
volume except for two sections at the start of Chap. 4 dealing with the initial stages
of a disease outbreak.

The process chosen here to describe it is known as a Galton–Watson process;
the result was first given in [39, 77] although there was a gap in the convergence
proof. The first complete proof was given much later by Steffensen [72, 73]. The
result is now a standard theorem given in many sources on branching processes, for
example, [45], but did not appear in the epidemiological literature until later. To the
best of the authors’ knowledge, the first description in an epidemiological reference
is [62] and the first epidemiological book source is the book by O. Diekmann and
J.A.P. Heesterbeek [26] in 2000.

A stochastic branching process description of the beginning of a disease outbreak
begins with the assumption that there is a network of contacts of individuals, which
may be described by a graph with members of the population represented by vertices
and with contacts between individuals represented by edges. The study of graphs
originated with the abstract theory of Erdös and Rényi of the 1950s and 1960s [33–
35], and has become important more recently in many areas, including in the study
of social contacts, computer networks, and many other areas, as well as in the spread
of communicable diseases. We will think of networks as bi-directional, with disease
transmission possible in either direction along an edge. A brief taste of network
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models is given at the beginning of Chap. 4. It is however important to stress the
fact that this book does not get involved in the study of stochastic models or in the
study of epidemics in networks–areas that deserve their own volumes.

We consider a disease outbreak that begins with a single infected individual
(“patient zero”) who transmits infection to every individual to whom this individual
is connected, that is, along every edge of the graph from the vertex corresponding
to this individual. In other words, we assume that a disease outbreak begins when
a single infective transmits infection to all of the people with whom he or she is in
contact. Our development via branching processes is along the lines of that of [26].
Another approach, using a contact network perspective taken in [20, 65, 66] begins
with an infected edge, corresponding to a disease outbreak started by an infective
individual who passes the infection on to only one contact. This approach is the one
taken more commonly in studies of epidemics on networks. It is somewhat more
complicated and leads to somewhat different results, although the methods are quite
similar.

In a stochastic setting, it is possible to prove that there is also a number called
the basic reproduction number denoted by R0 with the properties that if R0 < 1 the
probability that the infection will die out is 1, while if R0 > 1 there is a positive
probability that the infection will persist leading to an epidemic. However, there is
also a positive probability that the infection will increase initially but will produce
only a minor outbreak dying out before triggering a major epidemic. This distinction
between a minor outbreak and a major epidemic, and the result that if R0 > 1
there may be only a minor outbreak and not a major epidemic is intrinsic in these
stochastic models and is not reflected in deterministic models, the primary theme of
this book.

A possible approach to a realistic description of an epidemic would consider the
use of a branching process model initially, making a transition to a compartmental
model when the epidemic has become established, that is, when there are enough
infectives so that the mass action mixing in the population becomes a reasonable
approximation. Another approach would be to continue to use a network model
throughout the course of the epidemic [63, 64, 76]. It is possible to formulate this
model dynamically with the limiting case of this dynamic model, as the population
size becomes very large, being the same as the compartmental model.

Past experiences and data have shown that the spread of infection in small
populations is better captured in small communities as a random process. For this
reason, stochastic models have an important role in disease transmission modeling.
The most commonly used stochastic model includes the chain binomial model of
Reed and Frost, first described in lectures in 1928 by W.H. Frost but not published
until much later [1, 78]. The Reed–Frost model was actually anticipated nearly 40
years earlier by P.D. En’ko [30]. The work of En’ko was brought to public attention
much later by K. Dietz [28]. E.B. Wilson and M.H. Burke have given a description
of Frost’s 1928 lectures with a somewhat different derivation [78]. M. Greenwood
introduced a somewhat different chain binomial model in 1931 [40]. The Reed–
Frost model has been used widely as a basic stochastic model and many extensions
have been formulated. The book [25] by D.J. Daley and J. Gani contains an account
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of some of the more recent extensions. Also, a stochastic analogue of the Kermack–
McKendrick epidemic model has been described in [6].

1.2.3 Developments in Compartmental Models

In the mathematical modeling of disease transmission, as in most other areas of
mathematical modeling, there is always a trade-off between simple, or strategic,
models, which omit most details and are designed only to highlight general
qualitative behavior, and detailed, or tactical, models, usually designed for specific
situations including short-term quantitative predictions. Detailed models are gen-
erally difficult or impossible to solve analytically and hence their usefulness for
theoretical purposes is limited, although their strategic value may be high.

For example, very simple models for epidemics predict that an epidemic will die
out after some time, leaving a part of the population untouched by disease, and this
is also true of models that include control measures. This qualitative principle is not
by itself very helpful in suggesting what control measures would be most effective
in a given situation, but it implies that a detailed model describing the situation as
accurately as possible might be useful for public health professionals. The ultimate
in detailed models are agent-based models, which essentially divide the population
into individuals or groups of individuals with identical behavior [32].

It is important to recognize that mathematical models to be used for making
policy recommendations for management need quantitative results, and that the
models needed in a public health setting require a great deal of detail in order
to describe the situation accurately. For example, if the problem is to recommend
what age group or groups should be the focus of attention in coping with a disease
outbreak, it is essential to use a model which separates the population into a
sufficient number of age groups and recognizes the interaction between different age
groups. The development of high speed computing has made it possible to analyze
highly detailed models rapidly.

The development of mathematical methods for the study of models for com-
municable diseases led to a divergence between the goals of mathematicians, who
sought broad understanding, and public health professionals, who sought practical
procedures for management of diseases. While mathematical modeling led to many
fundamental ideas, such as the possibility of controlling smallpox by vaccination
and the management of malaria by controlling the vector (mosquito) population,
the practical implementation was always more difficult than the predictions of
simple models. Fortunately, in recent years there have been determined efforts
to encourage better communication, so that public health professionals can better
understand the situations in which simple models may be useful and mathematicians
can recognize that real-life public health questions are much more complicated than
simple models.

In the study of compartmental disease transmission models, the population under
study is divided into compartments and assumptions are made about the nature
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and time rate of transfer from one compartment to another. For example, in an
SIR model, we divide the population being studied into three classes labeled S,
I , and R. We let S(t) denote the number of individuals who are susceptible to the
disease, that is, who are not (yet) infected at time t . I (t) denotes the number of
infected individuals, assumed infectious and able to spread the disease by contact
with susceptible individuals. R(t) denotes the number of individuals who have
been infected and then removed from the possibility of being infected again or
of spreading infection. In an SIS model, infectives recover with immunity against
reinfection and the transitions are from susceptible to infective to susceptible.

The rates of transfer between compartments are expressed mathematically as
derivatives with respect to time of the sizes of the compartments. Initially, we
assume that the duration of stay in each compartment is exponentially distributed,
and as a result models are formulated initially as differential equations. Models in
which the rates of transfer depend on the sizes of compartments over the past, as
well as at the instant of transfer, lead to more general types of functional equations,
such as differential–difference equations or integral equations. One way in which
models have expressed the idea of a reduction in contacts as an epidemic proceeds
is to assume a contact rate of the form βSf (I) with a function f (I) that grows more
slowly than linearly in I . Such an assumption, while not really a mechanistic model,
may give better approximation to observed data than mass action contact.

In the simple Kermack–McKendrick epidemic model there are two parameters,
the rate of new infections and the recovery rate. Often, the recovery rate for a partic-
ular disease is known. In compartmental epidemic models with more compartments,
the progression rate is more complicated but may also be known. It is possible to
estimate the basic reproduction number if these parameters can be estimated, and
there is an equation, known as the final size relation relating the basic reproduction
number to the number of individuals infected over the course of the epidemic. There
have been many presentations of this final size relation in various contexts, including
models with heterogeneity of mixing [3, 12, 13, 15, 16, 26, 27, 59].

In their later work on disease transmission models [56, 57], Kermack and
McKendrick did not include age of infection, and age of infection models were
neglected for many years. Age of infection reappeared in the study of HIV/AIDS, in
which the infectivity of infected individuals is high for a brief period after becoming
infected, then quite low for an extended period, possibly several years, before
increasing rapidly with the onset of full-blown AIDS. Thus the age of infection
described by Kermack and McKendrick for epidemics became very important in
some endemic situations; see, for example, [74, 75]. Also, HIV/AIDS has pointed
to the importance of immunological ideas in the analysis on the epidemiological
level.

Typically, there is a stochastic phase at the beginning of a disease outbreak,
followed by an exponential increase in the number of infectives, and it may be
possible to estimate this initial exponential growth rate experimentally. An estimate
of the initial exponential growth rate can be used to estimate the rate of new
infections, and this enables estimation of the basic reproduction number
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The development and analysis of compartmental models has grown rapidly
since the early models. Many of these developments are due to H.W. Hethcote
[46–50]. We describe only a few of the important developments. While there are
three basic compartmental disease transmission models, namely the SIS model,
the SIR model without births and deaths, and the SIR model with births and
deaths, each disease has its own properties which should be included in a model.
We will describe the effects of adding heterogeneity of mixing in several chapters,
including heterogeneity of mixing in Chap. 5, age structure in Chap. 13, and spatial
heterogeneity in Chaps. 14 and 15. In addition, the chapters on individual diseases
(Chaps. 7–12) include modeling aspects of the specific disease being studied.

For influenza, there is a significant fraction of the population which is infected
but asymptomatic, with lower infectivity than symptomatic individuals. There are
seasonal outbreaks which may be closely related to the strain of the previous year,
that is, modified by point mutations, or it may be less closely related or it may be
unrelated. The level of relation of two strains, as measured by the response of hosts
that have experienced a prior influenza infection, is what we refer to as strain cross-
immunity. Cross-immunity measures the level of protection earned by individuals
who were infected by a related strain in a previous year. Influenza models may
consider the effect that a partially efficacious vaccination may have before an
outbreak, as well as the role of antiviral treatment during an outbreak. Considering
multiple modes of transmission is critical when the goal is to minimize the impact
of a disease in a population. Cholera may be transmitted both by direct contact
and by contact with pathogen shed by infectives. In tuberculosis some individuals
progress rapidly to active tuberculosis, while others progress much more slowly.
Also, active-tuberculosis individuals who fail to comply with long-term treatment
schedules become prime candidates for the development of a drug-resistant strain.
In HIV/AIDS, the infectivity of an individual depends strongly on the time since
infection, while transmission depends on modes of transmission, mixing between
individuals and more. In malaria, immunity against infection is boosted by exposure
to infection or by genetics (sickle cell anemia).

1.2.4 Endemic Disease Models

The analytic approaches to models for endemic diseases and epidemics are quite
different. The analysis of a model for an endemic disease, carried out in Chap. 3,
begins with the search for equilibria, which are, by definition, constant solutions of
the model. Usually there is a disease-free equilibrium and there are one or more
endemic equilibria, with a positive number of infected individuals. The next step is
to linearize about each equilibrium and determine the stability of each equilibrium.
Usually, if the basic reproduction number is less than 1, the only equilibrium is
the disease-free equilibrium and this equilibrium is asymptotically stable. If the
basic reproduction number is greater than 1, the usual situation is that the disease-
free equilibrium is unstable and there is a unique endemic equilibrium which is
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asymptotically stable. This approach also covers diseases in which there is vertical
transmission, which is direct transmission from mother to offspring at birth [19].

However, more complicated behavior is possible. For example, if there are two
strains of the disease being studied it is common to have regions in the parameter
space in which there is an asymptotically stable equilibrium with only one of the
strains present and a region in which there is an asymptotically stable equilibrium
with both strains coexisting. Another possibility is that there is a unique endemic
equilibrium but it is unstable. In this situation, there is often a Hopf bifurcation and
an asymptotically stable periodic orbit around the endemic equilibrium. An example
of such behavior may be found in an SIRS model, with a temporary immunity period
of fixed length following recovery [51] and in an SV IR model [38]. If there is a
periodic orbit with large amplitude and a long period, data must be gathered over a
sufficiently large time interval to give an accurate picture.

Another possible behavior is a backward bifurcation. As R0 increases through
1 there is an exchange of stability between the disease-free equilibrium, which is
asymptotically stable for R0 < 1 and unstable for R0 > 1, and the endemic equi-
librium which exists if R0 > 1. The usual transition is a forward, or transcritical,
bifurcation at R0 = 1, with an asymptotically stable endemic equilibrium and an
equilibrium infective population size depending continuously on R0.

The behavior at a bifurcation may be described graphically by the bifurcation
curve, which is the graph of the infective population size I at equilibrium as a
function of the basic reproduction number R0. It has been noted [29, 42, 43, 58]
that in epidemic models with multiple groups and asymmetry between groups or
multiple interaction mechanisms it is possible to have a very different bifurcation
behavior at R0 = 1. There may be multiple positive endemic equilibria for values of
R0 < 1 and a backward bifurcation at R0 = 1. The qualitative behavior of a system
with a backward bifurcation differs from that of a system with a forward bifurcation
and the nature of these changes has been described in [11]. Since these behavioral
differences are important in planning how to control a disease, it is important to
determine whether a system can have a backward bifurcation. In the presence of two
modes of sexually transmitted HIV, it was shown that multiple endemic equilibrium
could be supported [53].

1.2.5 Diseases Transmitted by Vectors

Many diseases are transmitted from human to human indirectly, through a vector.
Vectors are living organisms that can transmit infectious diseases between humans.
Many vectors are bloodsucking insects that ingest disease-producing microorgan-
isms during blood meals from an infected (human) host, and then inject it into a
new host during a subsequent blood meal. The best known vectors are mosquitoes
for diseases including malaria, dengue fever, chikungunya, Zika virus, Rift Valley
fever, yellow fever, Japanese encephalitis, lymphatic filariasis, and West Nile fever,
but ticks (for Lyme disease and tularemia), bugs (for Chagas’ disease), flies (for
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onchocerciasis), sandflies (for leishmaniasis), fleas (for plague, transmitted by fleas
from rats to humans), and some freshwater snails (for schistosomiasis) are vectors
for some diseases.

Every year there are more than a billion cases of vector-borne diseases and more
than a million deaths. Vector-borne diseases account for over 17% of all infectious
diseases worldwide. Malaria is the most deadly vector-borne diseases, causing an
estimated 627,000 deaths in 2012. The most rapidly growing vector-borne disease
is dengue, for which the number of cases has multiplied by 30 in the last 50 years.
These diseases are found more commonly in tropical and sub-tropical regions where
mosquitoes flourish, and in places where access to safe drinking water and sanitation
systems is uncertain.

Some vector-borne diseases such as dengue, chikungunya, and West Nile virus
are emerging in countries where they were unknown previously because of global-
ization of travel and trade and environmental challenges such as climate change. A
troubling new development is the Zika virus, which has been known since 1952 but
has developed a mutation in the South American outbreak of 2015 [70] which has
produced very serious birth defects in babies born to infected mothers. In addition,
the current Zika virus can be transmitted directly through sexual contact as well
as through vectors. Chapter 6 is an introduction to the modeling of vector-borne
diseases. Chapter 11 on malaria and Chap. 12 on dengue fever and the Zika virus
describe modeling of specific vector-borne diseases.

Many of the important underlying ideas of mathematical epidemiology arose in
the study of malaria begun by Sir R.A. Ross [69]. Malaria is one example of a
disease with vector transmission, the infection being transmitted back and forth
between vectors (mosquitoes) and hosts (humans). It kills hundreds of thousands
of people annually, mostly children and mostly in poor countries in Africa.
Among communicable diseases, only tuberculosis causes more deaths. Other vector
diseases include West Nile virus, yellow fever, and dengue fever. Human diseases
transmitted heterosexually may also be viewed as diseases transmitted by vectors,
because males and females must be viewed as separate populations and disease is
transmitted from one population to the other.

Vector-transmitted diseases require models that include both vectors and hosts.
For most diseases transmitted by vectors, the vectors are insects, with a much shorter
life span than the hosts, who may be humans as for malaria or animals as for
West Nile virus, although there is malaria (not human malaria) in various animal
populations and West Nile virus has infected humans as far as Arizona in the USA.

The compartmental structure of the disease may be different in host and vector
species; for many diseases with insects as vectors an infected vector remains
infected for life so that the disease may have an SI or SEI structure in the vectors
and an SIR or SEIR structure in the hosts.
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1.2.6 Heterogeneity of Mixing

In disease transmission models not all members of the population make contacts
at the same rate. In sexually transmitted diseases there is often a “core” group
of very active members who are responsible for most of the disease cases, and
control measures aimed at this core group have been very effective in control [52].
In epidemics there are often “super-spreaders,” who make many contacts and are
instrumental in spreading disease and in general some members of the population
make more contacts than others. Chapter 5 deals with models for diseases with
heterogeneous mixing and includes description of a general method (the next
generation matrix) for determining the basic reproduction number for models with
heterogeneous mixing. To model heterogeneity in mixing we may assume that the
population is divided into subgroups with different activity levels. Formulation of
models requires some assumptions about the mixing between subgroups. There
have been many studies of mixing patterns in real populations, for example,
[9, 10, 18, 37, 68].

It has often been observed in epidemics that most infectives do not transmit infec-
tions at all or transmit infections to very few others. This suggests that homogeneous
mixing at the beginning of an epidemic may not be a good approximation.

The SARS epidemic of 2002–2003 spread much more slowly than would have
been expected on the basis of the data on disease spread at the start of the epidemic.
Early in the SARS epidemic of 2002–2003 it was estimated that R0 had a value
between 2.2 and 3.6. At the beginning of an epidemic, the exponential rate of growth
of the number of infectives is approximately (R0−1)/α, where 1/α is the generation
time of the epidemic, estimated to be approximately 10 days for SARS. This would
have predicted at least 30,000 cases of SARS in China during the first 4 months of
the epidemic. In fact, there were fewer than 800 cases reported in this time. One
explanation for this discrepancy is that the estimates were based on transmission
data in hospitals and crowded apartment complexes or in the scaling of the model
used to estimate parameters [24]. It was observed that there was intense activity in
some locations and very little in others. This suggests that the actual reproduction
number (averaged over the whole population) was much lower, perhaps in the range
1.2–1.6, and that heterogeneous mixing was a very important aspect of the epidemic.

Age is one of the most important characteristics in the modeling of populations
and infectious diseases. Individuals with different ages may have different repro-
duction and survival capacities. Diseases may have different infection rates and
mortality rates for different age groups. Individuals of different ages may also have
different behaviors, and behavioral changes are crucial in control and prevention of
many infectious diseases. Young individuals tend to be more active in interactions
with or between populations, and in disease transmissions. Age-structured models
are studied in Chap. 13.

Sexually transmitted diseases (STDs) are spread through partner interactions
with pair-formations and the pair-formations process is age-dependent in most
cases. For example, most HIV cases occur in the group of young adults.



1.3 Strategic Models and This Volume 15

Childhood diseases, such as measles, chicken pox, and rubella, are spread mainly
by contacts between children of similar ages. More than half of the deaths attributed
to malaria are in children under 5 years of age due to their weaker immune systems.
This suggests that in models for disease transmission in an age-structured population
it is necessary to allow the contact rates between two members of the population to
depend on the ages of both members. Another important motivation for using age-
structured models for childhood diseases is that vaccination is age-dependent (e.g.,
measles).

The development of age-structured models for disease transmission required
development of the theory of age-structured populations. In fact, the first models for
age-structured populations [61] were designed for the study of disease transmission
in such populations.

1.3 Strategic Models and This Volume

This book is intended for both mathematicians and public health professionals.
However, it is a book aimed primarily at practitioners who are quantitatively trained.
For readers less familiar with mathematics, we are providing a website that includes
notes on calculus, linear algebra, ODEs, and difference equations. We would like to
repeat that it is not a book about mathematics per se. Hence, mathematical rigor is
not a priority albeit we have tried to document some assertions. We wish to present
the truth and nothing but the truth, but not necessarily the whole truth. Our hope
is that public health people will be sufficiently interested to review mathematics if
necessary and make use of the book.

We do not cover stochastic models, except for some material in Sects. 4.1 and 4.2.
Some presentations of stochastic models may be found in [2, 4, 5, 25, 41].

Also, we do not cover discrete models in the main text. This is a deliberate
choice that we have made to limit the size of this volume, despite the fact that a
lot can be learned by the appropriate formulation of discrete models, which are
unfortunately often seen as a discretization of continuous time models, that is, they
are not derived directly from first principles, deviating the focus from the study
of disease dynamics to the mathematical question of whether or not it is a proper
discretization of a continuous time model. However, there are several projects that
could give an introduction to this topic, and some references are [14, 21–23, 79].

The primary goal of this volume is to cover relatively simple models to indicate
what qualitative results should be expected from more detailed tactical models. The
chapters build on the work that we have done in applying epidemiological models
in the context of specific diseases over the past 25 years—including some of our
most recent work. It is our hope that the questions and problems highlighted in this
introduction may help build collaborations between modelers, epidemiologists, and
public health experts.
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Chapter 2
Simple Compartmental Models
for Disease Transmission

Communicable diseases that are endemic (always present in a population) cause
many deaths. For example, in 2011 tuberculosis caused an estimated 1,400,000
deaths and HIV/AIDS caused an estimated 1,200,000 deaths worldwide. According
to the World Health Organization there were 627,000 deaths caused by malaria, but
other estimates put the number of malaria deaths at 1,2000,000. Measles, which is
easily treated in the developed world, caused 160,000 deaths in 2011, but in 1980
there were 2,600,000 measles deaths. The striking reduction in measles deaths is
due to the availability of a measles vaccine. Other diseases such as typhus, cholera,
schistosomiasis, and sleeping sickness are endemic in many parts of the world.
The effects of high disease mortality on mean life span and of disease debilitation
and mortality on the economy in afflicted countries are considerable. Most of these
disease deaths are in less developed countries, especially in Africa, where endemic
diseases are a huge barrier to development. A reference describing the properties of
many endemic diseases is [2].

For diseases that are endemic in some region, public health physicians would
like to be able to estimate the number of infectives at a given time as well as the
rate at which new infections arise. The effects of quarantine or vaccine in reducing
the number of victims are of importance. In addition, the possibility of defeating the
endemic nature of the disease and thus controlling or even eradicating the disease in
a population is worthy of study.

An epidemic, which acts on a short temporal scale, may be described as a sudden
outbreak of a disease that infects a substantial portion of the population in a region
before disappearing. Epidemics invariably leave part of the population untouched.
Often, epidemic outbreaks recur with intervals of several years between outbreaks,
possibly decreasing in severity as populations develop some immunity.

The “Spanish” flu epidemic of 1919–1920 caused an estimated 50,000,000 or
more deaths worldwide. The AIDS epidemic, the SARS epidemic of 2002–2003,
recurring influenza pandemics such as the H1N1 influenza pandemic of 2009–2010,
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and outbreaks of diseases such as the Ebola virus are events of concern and interest
to many people.

The essential difference between an endemic disease and an epidemic is that
in an endemic disease there is some mechanism for a flow of susceptibles into
the population being studied through births of new susceptibles, immigration of
susceptibles, recovery from infection without immunity against reinfection, or loss
of immunity of recovered individuals. This may result in a level of infection that
remains in the population. In an epidemic, there is no flow of new susceptibles
into the population and the number of infectives decreases to zero because of the
resulting scarcity of susceptibles.

There are many questions of interest to public health physicians confronted with
a possible epidemic. For example, how severe will an epidemic be? This question
may be interpreted in a variety of ways. For example, how many individuals will be
affected and require treatment? What is the maximum number of people needing
care at any particular time? How long will the epidemic last? Can an epidemic
be averted by vaccination of enough members of the population in advance of the
epidemic? How much good would quarantine of victims do in reducing the severity
of the epidemic?

The idea of invisible living creatures as agents of disease goes back at least to the
writings of Aristotle (384–322 BC) and was developed as a theory in the sixteenth
century. The existence of microorganisms was demonstrated by Leeuwenhoek
(1632–1723) with the aid of the first microscopes. The first expression of the germ
theory of disease by Jacob Henle (1809–1885) came in 1840 and was developed by
Robert Koch (1843–1910), Joseph Lister (1827–1912), and Louis Pasteur (1827–
1875) in the latter part of the nineteenth century and the early part of the twentieth
century.

The mechanism of transmission of infections is now known for most diseases.
Generally, diseases transmitted by viral agents, such as influenza, measles, rubella
(German measles), and chicken pox, confer immunity against reinfection, while
diseases transmitted by bacteria, such as tuberculosis, meningitis, and gonorrhea,
confer no immunity against reinfection. Other diseases, such as malaria, are
transmitted not directly from human to human but by vectors, agents (usually
insects) who are infected by humans and who then transmit the disease to humans.
Heterosexual transmission of HIV/AIDS is also a vector process in which transmis-
sion goes back and forth between males and females.

In this chapter, our goal is to present and analyze simple compartmental models
for disease transmission, both for endemic situations and for epidemics. Here we
seek only to introduce the idea of the basic reproduction number and how it
determines a threshold between two different outcomes. In later chapters we will
study models with more detailed structure and will include the effects of different
methods to try to control a disease.
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2.1 Introduction to Compartmental Models

We formulate our descriptions of disease transmission as compartmental models,
with the population under study being divided into compartments and with assump-
tions about the nature and time rate of transfer from one compartment to another.
We divide the population being studied into three classes labeled S, I , and R. Let
S(t) denote the number of individuals who are susceptible to the disease, that is,
who are not (yet) infected at time t . I (t) denotes the number of infected individuals,
assumed infective and able to spread the disease by contact with susceptibles. R(t)

denotes the number of individuals who have been infected and then removed from
the possibility of being infected again or of spreading infection. Removal is carried
out either through isolation from the rest of the population, or through immunization
against infection, or through recovery from the disease with full immunity against
reinfection, or through death caused by the disease. These characterizations of
removed members are different from an epidemiological perspective but are often
equivalent from a modeling point of view which takes into account only the state of
an individual with respect to the disease.

In many diseases, infectives return to the susceptible class on recovery because
the disease confers no immunity against reinfection. Such models are appropriate
for most diseases transmitted by bacterial agents or helminth agents, and most
sexually transmitted diseases (including gonorrhea, but not such diseases as AIDS
from which there is no recovery). We use the terminology SIS to describe a disease
with no immunity against reinfection, to indicate that the passage of individuals is
from the susceptible class to the infective class and then back to the susceptible
class.

We will use the terminology SIR to describe a disease which confers immunity
against reinfection, to indicate that the passage of individuals is from the susceptible
class S to the infective class I to the removed class R. Usually, diseases caused by
a virus are of SIR type.

In addition to the basic distinction between diseases for which recovery confers
immunity against reinfection and diseases for which recovered members are
susceptible to reinfection, and the intermediate possibility of temporary immunity
signified by a model of SIRS type, more complicated compartmental structure is
possible. For example, there are SEIR and SEIS models, with an exposed period
between being infected and becoming infective.

We are assuming that the disease transmission process is deterministic, that is,
that the behavior of a population is determined completely by its history and by the
rules which describe the model. In formulating models in terms of the derivatives of
the sizes of each compartment, we are also assuming that the number of members
in a compartment is a differentiable function of time. This assumption is plausible
in describing an endemic state. However, in Chap. 4 we will describe the modeling
of disease outbreaks and epidemics. At the beginning of a disease outbreak, there
are only a few infectives and the start of a disease outbreak depends on random
contacts with a small number of infectives. This will require a different approach
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that we shall study in Sect. 4.1, but for the present we begin with a description of
deterministic compartmental models.

The independent variable in our compartmental models is the time t , and the
rates of transfer between compartments are expressed mathematically as derivatives
with respect to time of the sizes of the compartments, and as a result our models are
formulated initially as differential equations. Models in which the rates of transfer
depend on the sizes of compartments over the past as well as at the instant of transfer
lead to more general types of functional equations, such as differential–difference
equations or integral equations. In this chapter, we will always assume that the
duration of stay in each compartment is exponentially distributed so that our models
will be systems of ordinary differential equations. In Chaps. 3 and 4 we will begin
the study of more general classes of models.

In order to formulate a compartmental disease transmission model, we will need
to make assumptions on the rates of flow between compartments. In the simplest
models we require expressions for the rate of being infected and the rate of recovery
from infection. The most common assumption about transmission of infection is
mass action incidence. It is assumed that in a population of size N on average an
individual makes βN contacts sufficient to transmit infection in unit time. Another
possible assumption is standard incidence, in which it is assumed that on average
an individual makes a constant number a of contacts sufficient to transmit infection
in unit time. Standard incidence is a common assumption for sexually transmitted
diseases. More realistically, one might assume that the parameters β or a are
not constants, but are functions of total population size. We will always assume
that contacts are effective. By this we mean that if there is a contact between an
infective individual and a susceptible individual, infection is always passed to the
susceptibles. However, it is possible that infectives in one compartment are less
infectious than individuals in another compartment. In such situations, we may
include a reduction factor in some contacts to model this.

With mass action incidence, (contact rate βN ) since the probability that a
random contact by an infective is with a susceptible is S/N , the number of new
infections in unit time per infective is (βN)(S/N), giving a rate of new infections
(βN)(S/N)I = βSI . Alternately, we may argue that for a contact by a susceptible
the probability that this contact is with an infective is I/N and thus the rate
of new infections per susceptible is (βN)(I/N), giving a rate of new infections
(βN)(I/N)S = βSI . Note that both approaches give the same rate of new
infections; in models with more complicated compartmental structure one approach
may be more appropriate than the other.

With standard incidence, (contact rate a) similar reasoning leads to the result that
the rate of new infections is

aS
I

N
.

If the total population size N is constant, we may use a and βN interchangeably. We
will most commonly use βN , partly for historical reasons. However, for sexually
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transmitted diseases the standard incidence form for contacts is more common.
When we study heterogeneous mixing in Chap. 5 it will be more convenient to use
the standard incidence form but it would be possible to use the mass action form
instead.

A common assumption is that infectives leave the infective class at a constant rate
αI per unit time. This assumption requires a fuller mathematical explanation, since
the assumption of a recovery rate proportional to the number of infectives has no
clear epidemiological meaning. We consider the “cohort” of members who were all
infected at one time and let u(s) denote the number of these who are still infective
s time units after having been infected. If a fraction α of these leave the infective
class in unit time then

u′ = −αu,

and the solution of this elementary differential equation is

u(s) = u(0) e−αs .

Thus, the fraction of infectives remaining infective s time units after having
become infective is e−αs , so that the length of the infective period is distributed
exponentially with mean

∫∞
0 e−αsds = 1/α, and this is what is really assumed.

This assumption is made for simplicity as it leads to ordinary differential equation
models, but in a later chapter we will study models with other distributions of the
infective period.

To see that the mean infective period is 1/α, we point out since the fraction of
infectives remaining infective s time units after being infected is e−αs , the fraction
with infective period exactly s is

− d

ds
e−αs

and the mean infective period is

∫ ∞

0
s
d

ds
e−αsds.

Integration by parts shows that this is

−
∫ ∞

0
e−αsds = 1

α
.

In this chapter, we will analyze SIS and SIR models for disease transmission,
both with and without demographics (births and natural deaths). Our goal is to
describe both endemic and epidemic situations in the simplest possible contexts.
In later chapters, we will analyze more complicated models, including more
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compartmental structure, more general distributions of stay in compartments, and
heterogeneity of mixing. In this chapter we focus on equilibrium analysis and
asymptotic behavior of models for endemic diseases and on final size relations for
epidemic models.

A constant solution y0 of a differential equation

y′ = f (y), (2.1)

meaning a solution of the equation f (y) = 0, is called an equilibrium of the
differential equation. An equilibrium y0 is said to be stable if every solution y(t)

of the differential equation (2.1) with initial value y(0) sufficiently close to y0
remains close to the equilibrium y0 for all t ≥ 0. An equilibrium is said to be
asymptotically stable if it is stable and if in addition every solution with initial
value sufficiently close to y0 approaches the equilibrium as t → ∞. We note that
in this definition, there is no specification of the meaning of “sufficiently close.”
Asymptotic stability is a local concept. An equilibrium y0 is said to be globally
asymptotically stable if it is stable and if solutions of (2.1) for all initial values y(0)
approach y0 as t → ∞. An equilibrium that is not stable is said to be unstable.
The concepts of asymptotic stability and instability are essential for the qualitative
analysis of differential equations. An important basic result is that an equilibrium y0
of a differential equation (2.1) is asymptotically stable if f ′(y0) < 0 and unstable if
f ′(y0) > 0. The case f ′(y0) = 0 is more difficult to analyze.

A central concept in both endemic and epidemic models is the basic reproduction
number, to be defined in Sect. 2.2.

In the next two sections, we will discuss models for endemic situations, and in
the following two sections we will discuss epidemic models.

2.2 The SIS Model

The basic compartmental models to describe the transmission of communicable
diseases are contained in a sequence of three papers by W.O. Kermack and A.G.
McKendrick in 1927, 1932, and 1933 [17–19].

The simplest SIS model, due to Kermack and McKendrick [18], is

S′ = −βSI + αI

I ′ = βSI − αI.
(2.2)

It is based on the following assumptions:

(i) The rate of new infections is given by mass action incidence.
(ii) Infectives leave the infective class at rate αI per unit time and return to the

susceptible class.



2.2 The SIS Model 27

(iii) There is no entry into or departure from the population.
(iv) There are no disease deaths, and the total population size is a constant N .

In an SIS model, the total population size N is equal to S + I . Later, we will
allow the possibility that some infectives recover while others die of the disease to
give a more general model. The hypothesis (iii) really says that the time scale of the
disease is much faster than the time scale of births and deaths so that demographic
effects on the population may be ignored.

Because (2.2) implies (S + I )′ = 0, the total population N = S + I is a constant.
We may reduce the model (2.2) to a single differential equation by replacing S by
N − I

I ′ = βI (N − I ) − αI = (βN − α)I − βI 2

= (βN − α)I

(

1 − I
N− α

β

)

.
(2.3)

Now (2.3) is a logistic differential equation of the form

I ′ = rI

(

1 − I

K

)

,

with r = βN − α and with K = N − α/β. Let us recall the analysis of the logistic
equation.

The logistic equation may be solved explicitly using separation of variables; the
solution satisfying the initial condition x(0) = x0 is

x(t) = Kx0e
rt

K − x0 + x0ert
= Kx0

x0 + (K − x0)e−rt
. (2.4)

The expression (2.4) for the solution of the logistic initial value problem shows
that x(t) approaches the limit K as t → ∞ if x0 > 0 provided r > 0,K > 0. If
r < 0,K < 0, x(t) approaches the limit 0 as t → ∞. This case, K < 0 arises in the
analysis of the differential equation (2.3), but does not have any biological meaning
in itself.

This qualitative result tells us that for the model (2.3), if βN − α < 0 or
βN/α < 1, then all solutions with non-negative initial values approach the limit
zero as t → ∞, (the constant solution I = N − β/α is negative), while if
βN/α > 1, then all solutions with non-negative initial values except the constant
solution I = 0 approach the limit N − α/β > 0 as t → ∞. Thus there is
always a single limiting value for I but the value of the quantity βN/α determines
which limiting value is approached, regardless of the initial state of the disease.
In epidemiological terms this says that if the quantity βN/α is less than one the
infection dies out in the sense that the number of infectives approaches zero. For
this reason the constant solution I = 0, which corresponds to S = N , is called
the disease-free equilibrium. On the other hand, if the quantity βN/α exceeds one,
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the infection persists. The constant solution I = N − α/β, which corresponds to
S = α/β, is called an endemic equilibrium.

The value of 1 for the quantity βN/α is a tipping point in the sense that the
behavior of the solution changes if this quantity passes through 1 because of some
change in the parameters of the model.

The quantity βN/α also has an epidemiological interpretation. Since βN is the
number of contacts made by an average infective per unit time and 1/α is the mean
infective period, the quantity βN/α is the number of secondary infections caused
by introducing a single infective into a wholly susceptible population. The basic
reproduction number is defined as the number of secondary infections caused by an
average infective introduced into a wholly susceptible population over the course
of the disease. The basic reproduction number is usually denoted by R0. Here, the
basic reproduction number or contact number for the disease is

R0 = βN

α
. (2.5)

In studying an infectious disease model, the basic reproduction number is a central
concept and its determination is invariably an essential first step. The value one
for the basic reproduction number defines a threshold at which the course of the
infection changes between disappearance and persistence. It is intuitively clear that
if R0 < 1 the infection should die out, while if R0 > 1 the infection should
establish itself. In more highly structured models than the simple one we have
developed here, the calculation of the basic reproduction number may be much
more complicated, but the essential concept obtains–that of the basic reproduction
number as the number of secondary infections caused by an average infective over
the course of the disease.

Since an endemic equilibrium corresponds to a long-term situation, it would be
more realistic to include demographic processes, that is, births and natural deaths,
in our model.

A simple assumption is that there is a birth rate Λ(N) depending on total
population size, and a proportional death rate μ. Just as for disease recovery rates
the assumption of a proportional death rate is equivalent to an assumption of an
exponentially distributed life span with mean 1/μ. In the absence of disease the
total population size N satisfies the differential equation

N ′ = Λ(N) − μN.

At this point, it is necessary to introduce some basic definitions and results to
describe the qualitative behavior of solutions of this differential equation, since it
is not possible to solve the differential equation analytically.

The carrying capacity of the population is the limiting population size K ,
satisfying

Λ(K) = μK, Λ′(K) < μ.
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The condition Λ′(K) < μ assures the asymptotic stability of the equilibrium
population size K. It is reasonable to assume that K is the only positive equilibrium,
so that

Λ(N) > μN

for 0 ≤ N ≤ K . For most population models,

Λ(0) = 0, Λ′′(N) ≤ 0.

However, if Λ(N) represents recruitment into a behavioral class, as would be natural
for models of sexually transmitted diseases, it would be plausible to have Λ(0) > 0,
or even to consider Λ(N) to be a constant function. If Λ(0) = 0, we require Λ′(0) >

μ because if this requirement is not satisfied there is no positive equilibrium and the
population would die out even in the absence of disease.

A model for a disease from which infectives recover with no immunity against
reinfection and that includes births and deaths is

S′ = Λ(N) − βSI − μS + αI

I ′ = βSI − αI − μI,
(2.6)

describing a population with a density-dependent birth rate Λ(N) per unit time, a
mass action contact rate, a proportional death rate μ in each class, and a recovery
rate α.

If we add the two equations of (2.6) and use N = S + I , we obtain

N ′ = Λ(N) − μN.

Thus N approaches K as t → ∞.
It is easy to verify that

R0 = βK

μ + α

because a single infective introduced into a wholly susceptible population of size K

causes βK new infections in unit time and the mean infective period corrected for
natural mortality is 1/(μ + α).

It can be shown that the endemic equilibrium of (2.6), which exists if R0 > 1,
is always asymptotically stable. If R0 < 1, the system has only the disease-
free equilibrium and this equilibrium is asymptotically stable. The qualitative
behavior of the model (2.6) is the same as the behavior of the model (2.2) without
demographics.

We were able to reduce the systems of two differential equations (2.2) to a single
equation because of the assumption that the total population S + I is constant or has
a constant limit as t → ∞. If there are deaths due to the disease this assumption is
violated, and it would be necessary to use a two-dimensional system as a model.
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Let us assume that infectives recover from infection at a rate αI , while infectives
die of disease at a rate dI . Then the model (2.6) is replaced by the model

S′ = Λ(N) − βSI − μS + αI

I ′ = βSI − (α + d)I − μI.
(2.7)

Now the equation for total population size is

N ′ = Λ(N) − μN − dI.

The model (2.7) involves the three variables S, I,N , and we may reduce it to a two-
dimensional system with variables I and N by replacing S by (N − I ) to give the
model

I ′ = βI (N − I ) − (α + d + μ)I

N ′ = Λ(N) − μN − dI.

The analysis of this model is more difficult, and rather than going through this
analysis now we will shift our attention to SIR models for which the general
approach to models involving systems of ordinary differential equations is more
readily illustrated.

2.3 The SIR Model with Births and Deaths

The SIR model of Kermack and McKendrick [18] includes births in the susceptible
class proportional to total population size and a death rate in each class proportional
to the number of members in the class. This model allows the total population
size to grow exponentially or die out exponentially if the birth and death rates are
unequal. It is applicable to such questions as whether a disease will control the size
of a population that would otherwise grow exponentially. We shall return to this
topic, which is important in the study of many diseases in less developed countries
with high birth rates. To formulate a model in which total population size remains
bounded we could follow the approach suggested by Hethcote [12] in which the
total population size N is held constant by making birth and death rates equal. Such
a model is

S′ = −βSI + μ(N − S)

I ′ = βSI − αI − μI

R′ = αI − μR.
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Because S+I+R = N and N ′ = 0, N is constant and we can view R as determined
when S and I are known. Thus we may consider the two-dimensional system

S′ = −βSI + μ(N − S) (2.8)

I ′ = βSI − αI − μI.

We shall examine a more general SIR model with births and deaths for a disease
that may be fatal to some infectives. For such a disease, the class R of removed
members should contain only recovered members, not members removed by death
from the disease. It is not possible to assume that the total population size remains
constant if there are deaths due to disease; a plausible model for a disease that may
be fatal to some infectives must allow the total population to vary in time.

With a mass action contact rate and a density-dependent birth rate we would have
a model

S′ = Λ(N) − βSI − μS

I ′ = βSI − μI − dI − αI

N ′ = Λ(N) − dI − μN.

(2.9)

If d = 0, so that there are no disease deaths, the equation for N is

N ′ = Λ(N) − μN,

so that N(t) approaches a limiting population size K provided Λ′(K) < μ so that
the equilibrium K of the equation for N is asymptotically stable.

We shall analyze the model (2.9) with d = 0 qualitatively. This qualitative
analysis depends on the ideas of equilibria and linearization of a system about
an equilibrium, a general approach dating back to the early part of the twentieth
century. In view of the remark above, our analysis will also apply to the more general
model (2.9) if there are no disease deaths. Analysis of the system (2.9) with d > 0
is much more difficult. We will confine our study of (2.9) to a description without
details.

The first stage of the analysis is to note that the model (2.9) is a properly
posed problem. A properly posed problem is a problem that has a unique solution
(so that solving the mathematical problem yields an expression that can have
epidemiological meaning), and that the solution remains non-negative (so that it
has epidemiological meaning). That is, since S′ ≥ 0 if S = 0 and I ′ ≥ 0 if I = 0,
we have S ≥ 0, I ≥ 0 for t ≥ 0 and since N ′ ≤ 0 if N = K we have N ≤ K

for t ≥ 0. Thus the solution always remains in the biologically realistic region
S ≥ 0, I ≥ 0, 0 ≤ N ≤ K if it starts in this region. By rights, we should verify such
conditions whenever we analyze a mathematical model, but in practice this step is
frequently overlooked.

Our approach will be to identify equilibria (constant solutions) and then to
determine the asymptotic stability of each equilibrium. As we have defined at the
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end of Sect. 2.1, asymptotic stability of an equilibrium means that a solution starting
sufficiently close to the equilibrium remains close to the equilibrium and approaches
the equilibrium as t → ∞, while instability of the equilibrium means that there
are solutions starting arbitrarily close to the equilibrium that do not approach it.
Equilibrium analysis of a system of two differential equations requires the idea of
linearization of a system of differential equations and some matrix algebra. To find
equilibria (S∞, I∞) we set the right side of each of the two equations equal to zero.
The second of the resulting algebraic equations factors gives two alternatives. The
first alternative is I∞ = 0, which will give a disease-free equilibrium, and the second
alternative is βS∞ = μ + α, which will give an endemic equilibrium, provided
βS∞ = μ+ α < βK . If I∞ = 0 the other equation gives S∞ = K = Λ/μ. For the
endemic equilibrium the first equation gives

I∞ = Λ

μ + α
− μ

β
.

We linearize about an equilibrium (S∞, I∞) by letting y = S − S∞, z = I − I∞,
writing the system in terms of the new variables y and z and retaining only the linear
terms in a Taylor expansion. We obtain a system of two linear differential equations,

y′ = −(βI∞ + μ)y − βS∞z

z′ = βI∞y + (βS∞ − μ − α)z.

The coefficient matrix of this linear system is

[−βI∞ − μ −βS∞
βI∞ βS∞ − μ − α

]

.

This matrix is also known as the Jacobian matrix. We then look for solutions
whose components are constant multiples of eλt ; this means that λ must be
an eigenvalue of the coefficient matrix. The condition that all solutions of the
linearization at an equilibrium tend to zero as t → ∞ is that the real part of every
eigenvalue of this coefficient matrix is negative. At the disease-free equilibrium the
matrix is

[−μ −βK

0 βK − μ − α

]

,

which has eigenvalues −μ and βK − μ − α. Thus, the disease-free equilibrium is
asymptotically stable if βK < μ + α and unstable if βK > μ + α. Note that this
condition for instability of the disease-free equilibrium is the same as the condition
for the existence of an endemic equilibrium.

In general, the condition that the eigenvalues of a 2 × 2 matrix have negative
real part is that the determinant be positive and the trace (the sum of the diagonal
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elements) be negative. Since βS∞ = μ+α at an endemic equilibrium, the Jacobian
matrix, or matrix of the linearization at an endemic equilibrium is

[−βI∞ − μ −βS∞
βI∞ 0

]

and this matrix has positive determinant and negative trace. Thus, the endemic
equilibrium, if there is one, is always asymptotically stable. If the quantity

R0 = βK

μ + α
= K

S∞

is less than one, then the system has only the disease-free equilibrium and this
equilibrium is asymptotically stable. In fact, it is not difficult to prove that this
asymptotic stability is global, that is, that every solution approaches the disease-free
equilibrium. If the quantity R0 is greater than one, then the disease-free equilibrium
is unstable, but there is an endemic equilibrium that is asymptotically stable. Again,
the quantity R0 is the basic reproduction number. It depends on the particular
disease (determining the parameter α) and on the rate of contacts, which may
depend on the population density in the community being studied. The disease
model exhibits a threshold behavior: If the basic reproduction number is less than
one, then the disease will die out, but if the basic reproduction number is greater than
one, then the disease will be endemic. Just as for the SIS model of the preceding
section, the basic reproduction number is the number of secondary infections caused
by a single infective introduced into a wholly susceptible population because the
number of contacts per infective in unit time is βK , and the mean infective period
(corrected for natural mortality) is 1/(μ + α).

There are two aspects of the analysis of the model (2.9) that are more complicated
than the analysis of (2.8). The first is in the study of equilibria. Because of the
dependence of Λ(N) on N , it is necessary to use two of the equilibrium conditions
to solve for S and I in terms of N and then substitute this into the third condition
to obtain an equation for N . Then by comparing the two sides of this equation for
N = 0 and N = K it is possible to show that there must be an endemic equilibrium
value of N between 0 and K if R0 > 1.

The second complication is in the stability analysis. Since (2.9) is a three-
dimensional system that cannot be reduced to a two-dimensional system, the
coefficient matrix of its linearization at an equilibrium is a 3 × 3 matrix and the
resulting characteristic equation is a cubic polynomial equation of the form

λ3 + a1λ
2 + a2λ + a3 = 0 .

The Routh–Hurwitz conditions [16, 22]

a1 > 0, a1a2 > a3 > 0
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are necessary and sufficient conditions for all roots of the characteristic equation to
have negative real part. A technically complicated calculation is needed to verify
that these conditions are satisfied at an endemic equilibrium for the model (2.9).

The asymptotic stability of the endemic equilibrium means that the compartment
sizes approach a steady state. If the equilibrium had been unstable, there would
have been a possibility of sustained oscillations. Oscillations in a disease model
mean fluctuations in the number of cases to be expected. If the oscillations have a
long period, then this could mean that experimental data for a short period would be
quite unreliable as a predictor of the future. Epidemiological models that incorporate
additional factors may exhibit oscillations. A variety of such situations is described
in [14, 15].

From the third equation of (2.9) we obtain

N ′ = Λ − μN − αI,

where N = S + I + R. From this, we see that at the endemic equilibrium N =
Λ/μ − αI/μ, and the reduction in the population size from the carrying capacity
K is

d

dμ
I∞ =

[
αK

μ + α
− α

β

]

.

The parameter α in the SIR model may be considered as describing the pathogenic-
ity of the disease. If α is large, it is less likely that R0 > 1. If α is small, then the
total population size at the endemic equilibrium is close to the carrying capacity K

of the population. Thus, the maximum population decrease caused by disease will
be for diseases of intermediate pathogenicity with α not close to either 0 or 1.

Numerical simulations indicate that the approach to endemic equilibrium for
an SIR model is like a rapid and severe epidemic if the epidemiological and
demographic time scales are very different. The same happens in the SIS model.
If there are few disease deaths, the number of infectives at endemic equilibrium
may be substantial, and there may be damped oscillations of large amplitude about
the endemic equilibrium. For both the SIR and SIS models we may write the
differential equation for I as

I ′ = I [β(N)S − (μ + α)] = β(N)I [S − S∞],

which implies that whenever S exceeds its endemic equilibrium value S∞, I is
increasing and epidemic-like behavior is possible. If R0 < 1 and S < K , it follows
that I ′ < 0, and thus I is decreasing. Thus, if R0 < 1, I cannot increase and no
epidemic can occur.
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2.4 The Simple Kermack–McKendrick Epidemic Model

One of the early triumphs of mathematical epidemiology was the formulation of
a simple model by Kermack and McKendrick in 1927 [17] whose predictions are
very similar to the behavior, observed in countless epidemics, of disease that invade
a population suddenly, grow in intensity, and then disappear leaving part of the
population untouched. The Kermack–McKendrick model is a compartmental model
based on relatively simple assumptions on the rates of flow between different classes
of members of the population. The SARS epidemic of 2002–2003 revived interest
in epidemic models, which had been largely ignored since the time of Kermack and
McKendrick, in favor of models for endemic diseases.

The special case of the model proposed by Kermack and McKendrick in 1927
which is the starting point for our study of epidemic models is

S′ = −βSI

I ′ = βSI − αI

R′ = αI.

(2.10)

A flow chart is shown in Fig. 2.1.
It is based on the same assumptions that were made for the SIS model of

Sect. 2.2, except that recovered infectives go to a removed class rather than returning
to the susceptible class. We will refer to this model as the simple Kermack–
McKendrick epidemic model for convenience, but we remind the reader that it is a
very special case of the actual Kermack–McKendrick epidemic model. From (2.10)
we see that N = S + I + R is constant.

The assumptions of a constant rate of contacts and of an exponentially distributed
recovery rate are unrealistically simple. More general models can be constructed
and analyzed, but our goal here is to show what may be deduced from extremely
simple models. It will turn out that many more realistic models exhibit very similar
qualitative behaviors.

Fig. 2.1 Flow chart for the SIR model (2.10)
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In our model, R is determined once S and I are known, and we can drop the R

equation from our model, leaving the system of two equations

S′ = −βSI

I ′ = βSI − αI,
(2.11)

together with initial conditions

S(0) = S0, I (0) = I0, S0 + I0 = N.

We think of introducing a small number of infectious individuals into a popu-
lation of susceptibles and ask whether there will be an epidemic. We remark that
the model makes sense only so long as S(t) and I (t) remain non-negative. Thus
if either S(t) or I (t) reaches zero we consider the system to have terminated. We
observe that S′ < 0 for all t and I ′ > 0 if and only if βS/α > 1. Thus I increases
so long as βS/α > 1 but since S decreases for all t , I ultimately decreases and
approaches zero.

The quantity R0 = βN/α determines whether there is an epidemic. If R0 <

1, the infection dies out because I ′(t) < 0 for all t , and there is no epidemic.
Ordinarily, S0 ≈ N . If the epidemic is started by a member of the population being
studied, for example by returning from travel with an infection acquired away from
home, we would have I0 > 0, S0 +I0 = N . A second way would be for an epidemic
to be started by a visitor from outside the population. In this case, we would have
S0 = N . If R0 > 1, I increases initially and this is interpreted as saying that there
is an epidemic.

Since (2.11) is a two-dimensional autonomous system of differential equations,
the natural approach would be to find equilibria and linearize about each equilibrium
to determine its stability. However, since every point with I = 0 is an equilibrium,
the system (2.11) has a line of equilibria and this approach is not applicable
(the linearization matrix at each equilibrium has a zero eigenvalue). The standard
linearization theory for systems of ordinary differential equations is not applicable,
and it is necessary to develop a new mathematical approach.

The sum of the two equations of (2.11) is

(S + I )′ = −αI.

Thus S + I is a non-negative smooth decreasing function and therefore tends to a
limit as t → ∞. Also, it is not difficult to prove that the derivative of a smooth
decreasing function which is bounded below must tend to zero, and this shows that

I∞ = lim
t→∞ I (t) = 0.

Thus S + I has limit S∞.
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Integration of the sum of the two equations of (2.11) from 0 to ∞ gives

−
∫ ∞

0
(S(t) + I (t))′dt = S0 + I0 − S∞ = N − S∞ = α

∫ ∞

0
I (t)dt.

Division of the first equation of (2.11) by S and integration from 0 to ∞ gives

log
S0

S∞
= β

∫ ∞

0
I (t)dt

= β

α
[N − S∞] (2.12)

= R0

[

1 − S∞
N

]

.

Equation (2.12) is called the final size relation. It gives a relation between the basic
reproduction number and the size of the epidemic. Note that the final size of the
epidemic, the number of members of the population who are infected over the course
of the epidemic, is N − S∞. This is often described in terms of the attack rate
(1 − S∞/N ). [Technically, the attack rate should be called an attack ratio, since it
is dimensionless and is not a rate]. The attack rate is the fraction of the population
that becomes infected over the course of the epidemic.

The final size relation (2.12) can be generalized to epidemic models with
more complicated compartmental structure than the simple SIR model (2.11),
including models with exposed periods, treatment models, and models including
quarantine of suspected individuals and isolation of diagnosed infectives. The
original Kermack–McKendrick model [17] included dependence on the time since
becoming infected (age of infection), and this includes such models. We will
describe this generalization in Chap. 4.

Integration of the first equation of (2.11) from 0 to t gives

log
S0

S(t)
= β

∫ t

0
I (t)dt

= β

α
[N − S(t) − I (t)],

and this leads to the form

I (t) + S(t) − α

β
log S(t) = N − α

β
log S0. (2.13)

This implicit relation between S and I describes the orbits of solutions of (2.11) in
the (S, I ) plane.

In addition, since the right side of (2.12) is finite, the left side is also finite, and
this shows that S∞ > 0. It is not difficult to prove that there is a unique solution of
the final size relation (2.12). To see this, we define the function
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g(x) = log
S0

x
− R0

[
1 − x

N

]
.

Then

g(0+) > 0, g(N) < 0,

and g′(x) < 0 if and only if

0 < x <
N

R0
.

If R0 ≤ 1, g(x) is monotone decreasing from a positive value at x = 0+ to a
negative value at x = N . Thus there is a unique zero S∞ of g(x) with S∞ < N . A
graph of the function g(x) is plotted in Fig. 2.2.

If R0 > 1, g(x) is monotone decreasing from a positive value at x = 0+ to a
minimum at x = N/R0 and then increases to a negative value at x = N0. Thus
there is a unique zero S∞ of g(x) with

S∞ <
N

R0
.

In fact,

g

(
S0

R0

)

= log R0 − R0 + S0

N

≤ log R0 − R0 + 1.

Since log R0 < R0 − 1 for R0 > 0, we actually have

g

(
S0

R0

)

< 0,

Fig. 2.2 Graph of the
function g(x)
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and

S∞ <
S0

R0
. (2.14)

An important question is how the basic reproduction number changes if a
parameter of the model varies. If R0, and therefore S∞, is a function of a parameter
η, implicit differentiation of the final size relation (2.12) gives

(
R0

N
− 1

S∞

)
dS∞
dη

= dR0

dη

(

1 − S∞
N

)

.

Because of (2.14), if R0 increases then S∞ decreases.
It is generally difficult to estimate the contact rate β which depends on the par-

ticular disease being studied but may also depend on social and behavioral factors.
The quantities S0 and S∞ may be estimated by serological studies (measurements
of immune responses in blood samples) before and after an epidemic, and from
these data, the basic reproduction number R0 may be estimated by using (2.12).
This estimate, however, is a retrospective one which can be derived only after the
epidemic has run its course.

In order to prevent the occurrence of an epidemic, if infectives are introduced
into a population, it is necessary to reduce the basic reproduction number R0
below one. This may sometimes be achieved by immunization, which has the
effect of transferring members of the population from the susceptible class to the
removed class and thus of reducing S(0). Immunization of some members of the
population produces a new model. If a fraction p of the population is successfully
immunized the effect is to decrease the number of susceptibles from S(0) to
S(0)(1 − p). Originally, the basic reproduction number is βN/α, but in the new
situation with a decreased number of susceptibles the basic reproduction number
would be βN(1 − p)/α. This is less than 1 if p satisfies βN(1 − p)/α < 1. This
gives 1 − p < α/βN , or

p > 1 − α

βN
= 1 − 1

R0
.

Initially, the number of infectives grows exponentially because the equation for
I may be approximated by

I ′ = (βN − α)I

and the initial growth rate is

r = βN − α = α(R0 − 1) .
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This initial growth rate r may be estimated from incidence data when an epidemic
begins. Since N and α may be measured, β may be calculated as

β = r + α

N
.

However, because of incomplete data and under-reporting of cases, this estimate
may not be very accurate. This inaccuracy is even more pronounced for an outbreak
of a previously unknown disease, where early cases are likely to be mis-diagnosed.
Because of the final size relation, estimation of β or R0 is an important question
that has been studied by a variety of approaches. Estimation of the initial growth
rate from data can provide an estimate of the contact rate β. However, this relation
is valid only for the model (2.11) and does not hold for models with different
compartmental structure, such as an exposed period.

If βS0 > α, I increases initially to a maximum number of infectives when the
derivative of I is zero, that is, when S = α/β. This maximum is given by

Imax = S0 + I0 − α

β
log S0 − α

β
+ α

β
log

α

β
, (2.15)

obtained by substituting S = α/β, I = Imax into (2.13).

Example 1 A study of Yale University freshmen [10] reported by Hethcote [13]
described an influenza epidemic with S0 = 0.911, S∞ = 0.513. Here we are
measuring the number of susceptibles as a fraction of the total population size,
or using the population size K as the unit of size. Substitution into the final size
relation gives the estimate βN/α = 1.18 and R0 = 1.18. Since we know that
1/α is approximately 3 days for influenza, we see that βN is approximately 0.39
contacts per day per member of the population.

Example 2 (The Great Plague in Eyam) The village of Eyam near Sheffield,
England suffered an outbreak of bubonic plague in 1665–1666 the source of which
is generally believed to be the Great Plague of London. The Eyam plague was
survived by only 83 of an initial population of 350 persons. As detailed records
were preserved and as the community was persuaded to quarantine itself to try to
prevent the spread of disease to other communities, the disease in Eyam has been
used as a case study for modeling [21]. Detailed examination of the data indicates
that there were actually two outbreaks of which the first was relatively mild. Thus
we shall try to fit the model (2.11) over the period from mid-May to mid-October
1666, measuring time in months with an initial population of 7 infectives and 254
susceptibles, and a final population of 83. Raggett [21] gives values of susceptibles
and infectives in Eyam on various dates, beginning with S(0) = 254, I (0) = 7,
shown in Table 2.1.

The final size relation with S0 = 254, I0 = 7, S∞ = 83 gives β/α = 6.54×10−3,
α/β = 153. The infective period was 11 days, or 0.3667 month, so that α = 2.73.
Then β = 0.0178. The relation (2.15) gives an estimate of 30.4 for the maximum
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Table 2.1 Eyam Plague data Date (1666) Susceptibles Infectives

July 3/4 235 14.5

July 19 201 22

August 3/4 153.5 29

August 19 121 21

September 3/4 108 8

September 19 97 8

October 4/5 Unknown Unknown

October 20 83 0

Fig. 2.3 The S–I plane

number of infectives. We use the values obtained here for the parameters β and α in
the model (2.11) for simulations of the phase plane, the (S, I ) plane, and for graphs
of S and I as functions of t (Figs. 2.3 and 2.4). Figure 2.5 plots these data points
together with the phase portrait given in Fig. 2.3 for the model (2.11).

The actual data for the Eyam epidemic are remarkably close to the predictions
of this very simple model. However, the model is really too good to be true. Our
model assumes that infection is transmitted directly between people. While this is
possible, bubonic plague is transmitted mainly by rat fleas. When an infected rat is
bitten by a flea, the flea becomes extremely hungry and bites the host rat repeatedly,
spreading the infection in the rat. When the host rat dies its fleas move on to other
rats, spreading the disease further. As the number of available rats decreases the fleas
move to human hosts, and this is how plague starts in a human population (although
the second phase of the epidemic may have been the pneumonic form of bubonic
plague, which can be spread from person to person). One of the main reasons for the
spread of plague from Asia into Europe was the passage of many trading ships; in
medieval times ships were invariably infested with rats. An accurate model of plague
transmission would have to include flea and rat populations, as well as movement
in space. Such a model would be extremely complicated and its predictions might
well not be any closer to observations than our simple unrealistic model. Raggett
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Fig. 2.4 Time plot of S and I

Fig. 2.5 The S–I plane, model and data

also used a stochastic model to fit the data, but the fit was rather poorer than the fit
for the simple deterministic model (2.11).

In the village of Eyam the rector persuaded the entire community to quarantine
itself to prevent the spread of disease to other communities. One effect of this policy
was to increase the infection rate in the village by keeping fleas, rats, and people in
close contact with one another, and the mortality rate from bubonic plague was
much higher in Eyam than in London. Further, the quarantine could do nothing
to prevent the travel of rats and thus did little to prevent the spread of disease to
other communities. One message this suggests to mathematical modelers is that
control strategies based on false models that do not describe the epidemiological
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situation accurately may be harmful, and it is essential to distinguish between
assumptions that simplify but do not alter the predicted effects substantially, and
wrong assumptions which make an important difference.

2.5 Epidemic Models with Deaths due to Disease

So far, we have analyzed only models with no disease deaths, for which it may be
assumed that the total population size is constant.

The assumption in the model (2.11) of a rate of contacts per infective which
is proportional to population size N , called mass action incidence or bilinear
incidence, was used in all the early epidemic models. However, it is quite unrealistic,
except possibly in the early stages of an epidemic in a population of moderate size.
It is more realistic to assume a contact rate which is a non-increasing function of
the total population size. For example, a situation in which the number of contacts
per infective in unit time is constant, called standard incidence, is a more accurate
description for sexually transmitted diseases. If there are no disease deaths, so that
the total population size remains constant, such a distinction is unnecessary.

We generalize the model (2.11) by assuming that an average member of the
population makes Nβ(N) contacts in unit time [4, 8]. It is reasonable to assume
β ′(N) ≤ 0 to express the idea of saturation in the number of contacts. Then mass
action incidence corresponds to the choice a(N) = βN , and standard incidence
corresponds to the choice a(N) = a. The assumptions a(N) = Nβ(N), a′(N) ≥ 0
imply that

β(N) + Nβ ′(N) ≥ 0.

Some epidemic models [8] have used a Michaelis–Menten type of interaction of
the form

β(N) = a

1 + bN
.

Another form based on a mechanistic derivation for pair formation [11] leads to an
expression of the form

β(N) = a

1 + bN + √
1 + 2bN

.

Data for diseases transmitted by contact in cities of moderate size [20] suggests that
data fits the assumption of a form

β(N) = aNp−1
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with p = 0.05 quite well. All of these forms satisfy the conditions β ′(N) ≤ 0 and
(2.5).

Because the total population size is now present in the model, we must include an
equation for total population size in the model. This forces us to make a distinction
between members of the population who die of the disease and members of the
population who recover with immunity against reinfection. We assume, as in the
previous chapter, a recovery rate αI and a disease death rate dI . We use S, I , and
N as variables, with N = S + I + R. We now obtain a three-dimensional model

S′ = −β(N)SI

I ′ = β(N)SI − (α + d)I

N ′ = −dI.

(2.16)

Since N is now a decreasing function, we define N(0) = N0 = S0 + I0. We also
have the equation R′ = αI , but we do not need to include it in the model since R

is determined when S, I, and N are known. We should note that if d = 0 the total
population size remains equal to the constant N , and the model (2.16) reduces to
the simpler model (2.11) with β(N) replaced by the constant β(N0).

We wish to show that the model (2.16) has the same qualitative behavior as the
model (2.11), namely that there is a basic reproduction number which distinguishes
between disappearance of the disease and an epidemic outbreak, and that some
members of the population are left untouched when the epidemic passes. These
two properties are the central features of all epidemic models.

For the model (2.16) the basic reproduction number is given by

R0 = N0β(N0)

α + d

because a single infective introduced into a wholly susceptible population makes
c(N0) = N0β(N0) contacts in unit time, all of which are with susceptibles and thus
produce new infections, and the mean infective period, corrected for mortality, is
1/(α + d).

We assume that β(0) is finite, thus ruling out standard incidence (standard
incidence does not appear to be realistic if the total population N approaches zero,
and it would be more natural to assume that c(N) grows linearly with N for small
N ). If we let t → ∞ in the sum of the first two equations of (2.16) we obtain

(α + d)

∫ ∞

0
I (s)ds = S0 + I0 − S∞ = N − S∞.

The first equation of (2.16) may be written as

−S′(t)
S(t)

= β(N(t))I (t).
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Since

β(N) ≥ β(N0),

integration from 0 to ∞ gives

log
S0

S∞
=
∫ ∞

0
β(N(t))I (t)dt

≥ β(N0)

∫ ∞

0
I (t)dt

= β(N0)(N0 − S∞)

(α + d)N0
.

We now obtain a final size inequality

log
S0

S∞
=
∫ ∞

0
β(N(t))I (t)dt

≥ β(N0)

∫ ∞

0
I (t)dt = R0

[

1 − S∞
N0

]

.

If the case fatality ratio d/(d+α) is small, the final size inequality is an approximate
equality.

It is not difficult to show that N(t) ≥ αN0/(α+d) and then a similar calculation
using the inequality β(N) ≤ β(αN0/(α + d)) < ∞ shows that

log
S0

S∞
≤ β(αN0/(α + d))

∫ ∞

0
I (t)dt,

from which we may deduce that S∞ > 0.
It is important to be able to estimate the fraction of infectives who die of disease

over the course of the epidemic. At every time, the rate of recovery is αI and the
rate of disease deaths is dI , and thus the mortality fraction at each time is

d

d + α
.

This is what is sometimes described (incorrectly because it is not a rate) as the
epidemic death rate. While the mortality fraction overall is d/(d+α), reports during
the epidemic would underestimate the mortality fraction because there may be some
infectives who would die later during the epidemic. On the other hand, for a disease
like influenza, where many cases are mild enough to go unreported, reports would
tend to overestimate the mortality fraction.
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2.6 *Project: Discrete Epidemic Models

The discrete analogue of the continuous-time epidemic model (2.11) is

Sj+1 = SjGj ,

Ij+1 = Sj

(
1 − Gj

)+ σIj , (2.17)

Gj = e−βIj /N , j = 1, 2, . . . ,

where Sj and Ij denote the numbers of susceptible and infective individuals at time
j , respectively. Here, Gj is the probability that a susceptible individual at time j

will remain susceptible to time j +1, that is, will not be infected between timej and
time j + 1, and σ = e−α is the probability that an infected individual at time j will
remain infected to time j + 1.

Assume that the initial conditions are S(0) = S0 > 0, I (0) = I0 > 0, and
S0 + I0 = N .

Exercise 1 Consider the system (2.17).

(a) Show that the sequence {Sj + Ij } has a limit

S∞ + I∞ = lim
j→∞(Sj + Ij ).

(b) Show that

I∞ = lim
j→∞ Ij = 0.

(c) Show that

log
S0

S∞
= β

∞∑

m=0

Im

N
.

(d) Show that

log
S0

S∞
= R0

[

1 − S∞
N

]

,

with R0 = β
1−σ

.
Next, consider the case that there are k infected stages and there is treatment

in some stages, with treatment rates that can be different in different stages.
Assume that selection of members for treatment occurs only at the beginning of
a stage. Let I (i)

j and T
(i)
j denote the numbers of infected and treated individuals,

respectively, in stage i (i = 1, 2, . . . , k) at time j . Let σ I
i denote the probability
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that an infected individual in the I (i) stage continues on to the next stage, either
treated or untreated, and let σT

i denote the probability that an individual in the
T (i) stage continues on to the next treated stage. In addition, of the members
leaving an infected stage I (i), a fraction pi enters treatment in T (i+1), while the
remaining fraction qi continues to I (i+1). Let mi denote the fraction of infected
members who go through the stage I (i), and ni the fraction of infected members
who go through the stage T (i). Then,

m1 = q1, m2 = q1q2, . . . , mk = q1q2 · · · qk,
n1 = p1, n2 = p1 + q1p2, . . . , nk = p1 + q1p2 + . . . + q1q2 · · · qk−1pk.

The discrete system with treatment is

Sj+1 = SjGj ,

I
(1)
j+1 = q1Sj (1 − Gj) + σ I

1 I
(1)
j ,

T
(1)
j+1 = p1Sj (1 − Gj) + σT

1 T
(1)
j (2.18)

I
(i)
j+1 = qi(1 − σ I

i−1)I
(i−1)
j + σ I

i ηiI
(i)
j ,

T
(i)
j+1 = pi(1 − σ I

i−1)I
(i−1)
j + (1 − σT

i−1)T
(i−1)
j + σT

i T
(i)
j ,

[i = 2, . . . , k, j ≥ 0], with

Gj = e
−β

∑k
i=1

(
εiI

(i)
j /N+δiT

(i)
j /N

)
,

where εi is the relative infectivity of untreated individuals at stage i and δi is
the relative infectivity of treated individuals at stage i.

(e) Show that

Rc = βN

k∑

i=1

[
εimi

1 − σ I
i

+ δini

1 − σT
i

]

and that

log
S0

S∞
= Rc

[

1 − S∞
N

]

.

2.7 *Project: Pulse Vaccination

Consider an SIR model (2.9) with Λ = μK . For measles, typical parameter choices
are μ = 0.02, β = 1800, α = 100, K = 1 (to normalize carrying capacity to 1) [9].
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Question 1 Show that for these parameter choices R0 ≈ 18 and to achieve herd
immunity would require vaccination of about 95% of the susceptible population.

In practice, it is not possible to vaccinate 95% of a population because not all
members of the population would come to be vaccinated and not all vaccinations are
successful. One way to avoid recurring outbreaks of disease is “pulse vaccination”
[1, 24, 25]. The basic idea behind pulse vaccination is to vaccinate a given fraction p

of the susceptible population at intervals of time T with T (depending on p) chosen
to ensure that the number of infectives remains small and approaches zero. In this
project we will give two approaches to the calculation of a suitable function T (p).

The first approach depends on the observation that I decreases so long as S <

Γ < (μ + α)/β. We begin by vaccinating pΓ members, beginning with S(0) =
(1 − p)Γ . From (8.7),

S′ = μK − μS − βSI ≥ μK − μS.

Then S(t) is greater than the solution of the initial value problem

S′ = μK − μS, S(0) = (1 − p)Γ.

Question 2 Solve this initial value problem and show that the solution obeys

S(t) < Γ, 0 ≤ t <
1

μ
log

K − (1 − p)Γ

K − Γ
.

Thus a suitable choice for T (p) is

T (p) = 1

μ
log

K − (1 − p)Γ

K − Γ
= 1

μ
log

[

1 + pΓ

K − Γ

]

.

Calculate T (p) for p = m/10 (m = 1, 2, . . . , 10).

The second approach is more sophisticated. Start with I = 0, S′ = μK − μS.
We let tn = nT (n = 0, 1, 2, . . . ) and run the system for 0 ≤ t ≤ t1 = T . Then we
let S1 = (1 − p)S(t1). We then repeat, i.e. for t1 ≤ t ≤ t2, S(t) is the solution of
S′ = μK − μS, S(t1) = S1, and S2 = (1 − p)S1. We obtain a sequence Sn in this
way.

Question 3 Show that

Sn+1 = (1 − p)K(1 − e−μT ) + (1 − p)Sne
−μT

and for tn ≤ t ≤ tn+1,

S(t) = K
[
1 − e−μ(t−tn)

]
+ Sne

−μ(t−tn).
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Question 4 Show that the solution is periodic if

Sn+1 = Sn = S∗ (n = 0, 1, 2, . . . )

with

S∗ = K

[

1 − peμT

eμT − (1 − p)

]

and that the periodic solution is

S(t) =
⎧
⎨

⎩

K
[
1 − peμT

eμT −(1−p)
e−μ(t−tn)

]
: tn ≤ t ≤ tn+1,

S∗ : t = tn+1

I (t) = 0.

It is possible to show by linearizing about this periodic solution that the periodic
solution is asymptotically stable if

1

T

∫ T

0
S(t) dt <

μ + ξ

β
.

If this condition is satisfied, the infective population will remain close to zero.

Question 5 Show that this stability condition reduces to

K(μT − p)(eμT − 1) + pKμT

μT [eμ − (1 − p)]
<

μ + ξ

β
.

Question 6 Use a computer algebra system to graph T (p), where T is defined
implicitly by

K(μT − p)(eμT − 1) + pKμT

μT [eμ − (1 − p)]
= μ + ξ

β
.

Compare this expression for T with the one obtained earlier in Question 2 in this
project. A larger estimate for a safe value of T would save money by allowing less
frequent vaccination pulses.

2.8 *Project: A Model with Competing Disease Strains

We model a general discrete-time SIS model with two competing strains in a
population with discrete and non-overlapping generations. This model arises from a
particular discretization in time of the corresponding SIS continuous-time stochastic
model for two competing strains.
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State Variables

Sn Population of susceptible individuals in generation n

I 1
n Population of infected individuals with strain 1 in generation n

I 2
n Population of infected individuals with strain 2 in generation n

Tn Total population in generation n

f Recruitment function

Parameters

μ Per capita natural death rate
γi Per capita recovery rate for strain i

αi Per capita infection rate for strain i

Construction of the model equations: The model assumes that (i) the disease
is not fatal; (ii) all recruits are susceptible and the recruitment function depends
only on Tn; (iii) there are no coinfections; (iv) death, infections, and recoveries
are modeled as Poisson processes with rates μ, αi, γi (i = 1, 2); (v) the time step
is measured in generations; (vi) the populations change only because of “births”
(given by the recruitment function), deaths, recovery, and infection of a susceptible
individual for each strain; (vii) individuals recover but do not develop permanent or
temporary immunity, that is, they immediately become susceptible again.

By assumption we have that the probability of k successful encounters is a
Poisson distribution, which in general has the form p(k) = e−ββk/k!, where
β is the parameter of the Poisson distribution. In our context, only one success
is necessary. Therefore, when there are no successful encounters, the expression
p(0) = e−β represents the probability that a given event does not occur. For
example, the probability that a susceptible individual does not become infective is
Prob(not being infected by strain i) = e−αiI

i
n , and, Prob(not recovering from strain

i) = e−γiI
i
n . Hence, Prob(not being infected)= Prob(not being infected by strain 1)

Prob(not being infected by strain 2) = e−α1I
1
n e−α2I

2
n .

Now the probability that a susceptible does become infected is given by 1 −
e−αiI

i
n . Then, Prob(infected by strain i) = Prob(infected). Prob(infected by strain i |

infected) =(1 − e−(α1I
1
n+α2I

2
n ))

αiI
i
n

α1I
1
n+α2I

2
n

.

(a) Using the above discussion, show that the dynamics are governed by the system

Sn+1 = f (Tn) + Sne
−μe−(α1I

1
n+α2I

2
n ) +∑2

j=1 I
j
n e

−μ(1 − e−γj ),

I 1
n+1 = α1SnI

1
n

α1I
1
n+α2I

2
n
e−μ(1 − e−(α1I

1
n+α2I

2
n )) + I 1

n e
−μe−γ1 ,

I 2
n+1 = α2SnI

2
n

α1I
1
n+α2I

2
n
e−μ(1 − e−(α1I

1
n+α2I

2
n )) + I 2

n e
−μe−γ2 .

(2.19)

(b) Show that

Tn+1 = f (Tn) + Tne
−μ,
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where

Tn = Sn + I 1
n + I 2

n . (2.20)

This equation is called the demographic equation. It describes the total popula-
tion dynamics.

(c) If we set I 1
n+1 = I 2

n+1 = 0, then model (2.19) reduces to the demographic
model

Sn = f (Sn) + Sne
μ.

and

Tn+1 = f (Tn) + Tne
−μ.

Check that this is the case.
(d) Study the disease dynamics at a demographic equilibrium, that is, at a point

where T∞ = T∞e−μ + f (T∞). Substitute Sn = T∞ − I 1
n − I 2

n where T∞ is a
stable demographic equilibrium, that is, assume T0 = T∞ to get the following
equations:

I 1
n+1 = α1I

1
n

α1I
1
n+α2I

2
n
(T∞ − I 1

n − I 2
n )e

−μ
(

1 − e−(α1I
1
n+α2I

2
n )
)

+ I 1
n e

−μe−γ1 ,

I 2
n+1 = α2I

2
n

α1I
1
n+α2I

2
n
(T∞ − I 1

n − I 2
n )e

−μ
(

1 − e−(α1I
1
n+α2I

2
n )
)

+ I 2
n e

−μe−γ2 .

(2.21)

System (2.21) describes the dynamics of a population infected with the two
strains at a demographic equilibrium.
Show that in system (2.21), if R1 = e−μT∞α1

1−e−(μ+γ1)
< 1 and R2 = e−μT∞α2

1−e−(μ+γ2)
< 1,

then the equilibrium point (0, 0) is asymptotically stable.
(e) Interpret biologically the numbers Ri , i = 1, 2.
(f) Consider f (Tn) = Λ, where Λ is a constant. Show that

Tn+1 = Λ + Tne
−μ

and that

T∞ = Λ

1 − e−μ
.

(g) Consider f (Tn) = rTn(1−Tn)/k, and show that in this case the total population
dynamic is given by

Tn+1 = rTn

(

1 − Tn

k

)

+ Tne
−μ
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and that the fixed points are

Tn
∗ = 0, Tn

∗∗ = k(r + e−μ − 1)

r
,

whenever r + e−μ > 1.
(h) Assume that one of the strains is missing, and determine the boundary equilib-

ria, that is, let I i
n = 0 for either i = 1 or 2. Equation (2.21) reduces to

In+1 = (T∞ − In)e
−μ(1 − eα1In) + Ine

−(μ+γ ).

Establish necessary and sufficient conditions for the stability and/or instability
of boundary equilibria for the system (2.21). Compare your results with
simulations of the system (2.21) and of the full system (2.19).

(i) Does the system (2.21) have endemic (I ∗
1 > 0, I ∗

2 > 0) equilibria?
(j) Simulate the full system (2.19) when the demographic equation is in the period

doubling regime, where there are orbits with periods of double the length of
periods for smaller parameter values. What are your conclusions?

References: [5, 6].

2.9 Project: An Epidemic Model in Two Patches

Consider the following SIS model with dispersion between two patches, Patch 1 and
Patch 2, where in Patch i ∈ {1, 2} at generation t , Si(t) denotes the population of
susceptible individuals; Ii(t) denotes the population of infected assumed infectious;
Ti(t) ≡ Si(t) + Ii(t) denotes the total population size. The constant dispersion
coefficients DS and DI measure the probability of dispersion by the susceptible and
infective individuals, respectively. Observe that we are using a different notation
from what we have used elsewhere, writing variables as a function of t rather than
using a subscript for the independent variable in order to avoid needing double
subscripts:

S1(t + 1) = (1 − DS)S̃1(t) + DSS̃2(t),

I1(t + 1) = (1 − DI )Ĩ1(t) + DI Ĩ2(t),

S2(t + 1) = DSS̃1(t) + (1 − DS)S̃2(t),

I2(t + 1) = DI Ĩ1(t) + (1 − DI )Ĩ2(t),
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where

S̃i (t) = fi(Ti(t)) + γiSi(t) exp

(−αiIi(t)

Ti(t)

)

+ γiIi(t)(1 − σi),

Ĩi (t) = γi(1 − exp

(−αiIi(t)

Ti(t)

)

Si(t) + γiσiIi(t)

and

0 ≤ γi, σi, αi,DS,DI ≤ 1.

Let

fi(Ti(t)) = Ti(t) exp(ri − Ti(t)),

where ri is a positive constant.

(a) Using computer explorations, determine whether it is possible to have a
globally stable disease-free equilibrium on a patch (without dispersal) where
the full system with dispersal has a stable endemic equilibrium. Do you have a
conjecture?

(b) Using computer explorations determine whether it is possible to have a globally
stable endemic equilibrium on a patch (without dispersal) where the full system
with dispersal has a stable disease-free equilibrium. Do you have a conjecture?

References:[3, 7, 23].

2.10 Project: Fitting Data for an Influenza Model

Consider an SIR model (2.11) with basic reproduction number 1.5.

1. Describe the qualitative changes in (S, I, R) as a function of time for different
values of β and α with β ∈ {0.0001, 0.0002, . . . , 0.0009}, for the initial
condition (S, I, R) = (106, 1, 0).

2. Discuss the result of part (a) in terms of the basic reproduction number (what is
β/γ ?). Use a specific disease such as influenza to provide simple interpretations
for the different time courses of the disease for the different choices of β and γ .

3. Repeat the steps in part (a) for values of R0 ∈ {1.75, 2, 2.5}, and for each value
of R0, choose the best pair of values (β, α) that fits the slope before the first
peak in the data found in Table 2.2 for reported H1N1 influenza cases in México.
(Hint: normalize the data so that the peak is 1, and then multiply the data by the
size of the peak in the simulations.)
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Table 2.2 Reported cases for H1N1-pandemic in Mexico

Day Cases Day Cases Day Cases Day Cases Day Cases Day Cases

75 2 95 4 115 318 135 83 155 152 175 328

76 1 96 11 116 399 136 75 156 138 176 298

77 3 97 5 117 412 137 87 157 159 177 335

78 2 98 7 118 305 138 98 158 186 178 330

79 3 99 4 119 282 139 71 159 222 179 375

80 3 100 4 120 227 140 73 160 204 180 366

81 4 101 4 121 212 141 78 161 257 181 291

82 4 102 11 122 187 142 67 162 208 182 251

83 5 103 17 123 212 143 68 163 198 183 215

84 7 104 26 124 237 144 69 164 193 184 242

85 3 105 20 125 231 145 65 165 243 185 223

86 1 106 12 126 237 146 85 166 231 186 317

87 2 107 26 127 176 147 55 167 225 187 305

88 5 108 33 128 167 148 67 168 239 188 228

89 7 109 44 129 139 149 75 169 219 189 251

90 4 110 107 130 142 150 71 170 199 190 207

91 10 111 114 131 162 151 97 171 215 191 159

92 11 112 155 132 138 152 168 172 309 192 155

93 13 113 227 133 117 153 126 173 346 193 214

94 4 114 280 134 100 154 148 174 332 194 237

2.11 Project: Social Interactions

Suppose we have a system with multiple classes of mathematical biology teachers
(MBT) at time t . The classes roughly capture the MBT individual attitudes toward
learning new stuff. “Reluctant” means the class of MBTs that come into the door as
new hires without a disposition to learn new stuff; the positive class corresponds
to those who join the MBTs with the right attitude; and the rest of the classes
should be self-explanatory. The total population is divided into five classes of
MBT individuals: positive (P ), reluctant (R), masterful (M), unchangeable (that
is, negative) (U ), and inactive (I ). Assume that N(t) = R(t) + P(t) + M(t) +
U(t) + I (t) and that the total number of MBTs is constant, that is, N(t) = K

μ
for

all t , where K is a constant. The model is

P ′ = qK − βP
M

K
+ δR − μP

R′ = (1 − q)K − (δ + μ)R − αR

M ′ = βP
M

K
− (γ + μ)M
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U ′ = −μU + αR

I ′ = γM − μI,

where q, β, δ, μ, γ , and α are constants and 0 ≤ q ≤ 1.

1. Interpret the parameters.
2. Look at the stability of the simplest equilibrium (your choice).
3. From R0, discuss what would be the impact of changing parameters q, γ , and δ.
4. What are your conclusions from this model?

2.12 Exercises

1. Find the basic reproduction number and the endemic equilibrium for the SIS

model

S′ = −βSI + αI

I ′ = βSI − (α + d)I,

with a death rate dI due to disease.
2. Find the basic reproduction number for the SIS model (2.7) that includes births,

natural deaths, and disease deaths. Show that the disease-free equilibrium is
asymptotically stable if and only if R0 < 1, and that if R0 > 1 there is an
asymptotically stable endemic equilibrium.

3. Modify the SIS model (2.2) to the situation in which there are two competing
strains of the same disease, generating two infective classes I1, I2 under
the assumption that coinfections are not possible. Does the model predict
coexistence of the two strains or competitive exclusion?

4.∗ A communicable disease from which infectives do not recover may be modeled
by the pair of differential equations

S′ = −βSI, I ′ = βSI.

Show that in a population of fixed size K such a disease will eventually spread
to the entire population.

5.∗ Consider a disease spread by carriers who transmit the disease without exhibit-
ing symptoms themselves. Let C(t) be the number of carriers and suppose
that carriers are identified and isolated from contact with others at a constant
per capita rate α, so that C′ = −αC. The rate at which susceptibles become
infected is proportional to the number of carriers and to the number of
susceptibles, so that S′ = −βSC. Let C0 and S0 be the numbers of carriers
and susceptibles, respectively, at time t = 0.
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(a) Determine the number of carriers at time t from the equation for C.
(b) Substitute the solution to part (a) into the equation for S and determine the

number of susceptibles at time t .
(c) Find limt→∞ S(t), the number of members of the population who escape

the disease.

6.∗ Consider a population of fixed size K in which a rumor is being spread by word
of mouth. Let y(t) be the number of people who have heard the rumor at time
t and assume that everyone who has heard the rumor passes it on to r others in
unit time. Thus, from time t to time (t +h) the rumor is passed on hry(t) times,
but a fraction y(t)/K of the people who hear it have already heard it, and thus

there are only hry(t)
(

K−y(t)
K

)
people who hear the rumor for the first time.

Use these assumptions to obtain an expression for y(t + h)− y(t), divide by h,
and take the limit as h → 0 to obtain a differential equation satisfied by y(t).

7. At 9 AM one person in a village of 100 inhabitants starts a rumor. Suppose that
everyone who hears the rumor tells one other person per hour. Using the model
of the previous exercise, determine how long it will take until half the village
has heard the rumor.

8.∗ If a fraction λ of the population susceptible to a disease that provides immunity
against reinfection moves out of the region of an epidemic, the situation may
be modeled by a system

S′ = −βSI − λS, I ′ = βSI − αI.

Show that both S and I approach zero as t → ∞.
9. Consider the basic SIR model. We now consider a vaccination class in place of

recovery:

S′(t) = μN − βS I
N

− (μ + φ)S

I ′(t) = βS I
N

− (μ + γ )I

V ′(t) = γ I + φS − μV.

(2.22)

(a) Show that dN
dt

= 0. What does this result imply?
(b) Discuss why it is enough to study the first two equations.
(c) Let R0(φ) be R0 when φ �= 0, and R0(0) be R0 when φ = 0. Compute

R0(φ). What is the value of R0(0)? Compare R0(φ) with R0(0).
(d) Compute the equilibria.
(e) Do the local stability analysis of the disease-free equilibrium state and the

endemic state.

10. In cases of constant recruitment, the limiting system as t → ∞ and the
original system usually have the same qualitative dynamics. We thus consider
our previous SIR model with vaccination (refer to problem 9) changing the
recruitment rate from the constant μN to the constant Λ. This means that a
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certain fixed number of individuals join or arrive into the susceptible class per
unit time. The model becomes

S′(t) = Λ − βS I
N

− μS

I ′(t) = βS I
N

− (μ + γ )I

V ′(t) = γ I − μV,

(2.23)

where, again, N(t) = S(t) + I (t) + V (t).

(a) What are the units of Λ,βS I
N
, μ, γ, β, and μS?

(b) Find the equation for N ′(t) where N = S + I + V , and solve this equation
for N(t). Observe that the population size for this model is not constant.

(c) Show that N(t) → Λ
μ

as t → ∞.

(d) Consider the limiting system

S′(t) = μN − βSI − μS

I ′(t) = βSI − (μ + γ )I

V ′(t) = γ I − μV.

(2.24)

Explain why it is enough to consider the first two equations as V (t) =
N − S(t) − I (t) when studying the dynamics of this limiting system, find
R0, and do the local stability analysis of the equilibria.

11. An epidemic model with two latent classes is described by the following system
of ODE’s:

S′ = Λ − βS I
N

− μS

L′
1 = pβS I

N
− (μ + k1 + r1)L1

L′
2 = (1 − p)βS I

N
− (μ + k2 + r2)L2

I ′ = k1L1 + k2L2 − (μ + r3)I,

where N = S +L1 +L2 + I. A fraction p, 0 < p < 1, goes into the first latent
class and a fraction 1 − p goes into the second latent class. The two classes
have different rates of progression to the infectious stage. Compute the basic
reproduction number R0.

12. If vaccination strategies are incorporated for newborns, we assume that not
every new birth is susceptible. Suppose that the per capita vaccination rate is
p; a newborn is vaccinated with probability p. The modified model is

S′(t) = (1 − p)μN − βS I
N

− μS

I ′(t) = βS I
N

− (μ + γ )I

V ′(t) = γ I − μV + pμN.

(2.25)
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(a) Calculate the Jacobian matrix of (2.25) at the disease-free equilibrium
points?

(b) Find the corresponding eigenvalues of the above matrix.
(c) Find the basic reproduction numbers (R0).
(d) Study the stability of the disease-free equilibrium points of model (2.25).

Although N is constant and we could reduce this to a 2-D system, derive
the stability of the full 3 × 3 system by using the Routh–Hurwitz criteria.

13. The same survey of Yale students described in Example 1, Sect. 2.4 reported
that 91.1% were susceptible to influenza at the beginning of the year and 51.4%
were susceptible at the end of the year. Estimate the basic reproduction number
and decide whether there was an epidemic.

14. What fraction of Yale students in Exercise 13 would have had to be immunized
to prevent an epidemic?

15. What was the maximum number of Yale students in Exercises 13 and 14
suffering from influenza at any time?

16. An influenza epidemic was reported at an English boarding school in 1978 that
spread to 512 of the 763 students. Estimate the basic reproduction number.

17. What fraction of the boarding school students in Exercise 16 would have had to
be immunized to prevent an epidemic?

18. What was the maximum number of boarding school students in Exercises 16
and 17 suffering from influenza at any time?

19. A disease is introduced by two visitors into a town with 1200 inhabitants. An
average infective is in contact with 0.4 inhabitants per day. The average duration
of the infective period is 6 days, and recovered infectives are immune against
reinfection. How many inhabitants would have to be immunized to avoid an
epidemic?

20. Consider a disease with βN = 0.4, 1/α = 6 days in a population of 1200
members. Suppose the disease conferred immunity on recovered infectives.
How many members would have to be immunized to avoid an epidemic?

21. A disease begins to spread in a population of 800. The infective period has an
average duration of 14 days and the average infective is in contact with 0.1
persons per day. What is the basic reproduction number? To what level must
the average rate of contact be reduced so that the disease will die out?

22. European fox rabies is estimated to have a transmission coefficient β of 80 km2

years/fox (assuming mass action incidence),and an average infective period of
5 days. There is a critical carrying capacity Kc measured in foxes per km2, such
that in regions with fox density less than Kc, rabies tends to die out, while in
regions with fox density greater than Kc, rabies tends to persist. Use a simple
Kermack–McKendrick epidemic model to estimate Kc. [Remark: It has been
suggested in Great Britain that hunting to reduce the density of foxes below the
critical carrying capacity would be a way to control the spread of rabies.]

23. A large English estate has a population of foxes with a density of 1.3 foxes/km2.
A large fox hunt is planned to reduce the fox population enough to prevent an
outbreak of rabies. Assuming that the contact number β/α is 1 km2/fox, find
what fraction of the fox population must be caught.
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24. Following a complaint from the SPCA, organizers decide to replace the fox
hunt of Exercise 23 by a mass inoculation of foxes for rabies. What fraction of
the fox population must be inoculated to prevent a rabies outbreak?

25. What actually occurs on the estate of these exercises is that 10% of the foxes
are killed and 15% are inoculated. Is there danger of a rabies outbreak?

26. Let S, I , and R represent the densities of susceptible, infected, and recovered
individuals. Suppose that recovered individuals can become susceptible again
after some time. The model equations are

dS

dt
= −βSI + θR

dI

dt
= βSI − αI

dR

dt
= αI − θR

where N = S + I + R and β, θ , and α are the infection, loss of immunity, and
recovery rates, respectively.

(a) Reduce this model to a two-dimensional system of equations. Don’t forget
to show that N is constant.

(b) Find the equilibrium points. Is there a disease-free equilibria (I = 0)? Is
there an endemic equilibria (I �= 0)? If so, when does it exist?

(c) Determine the local stability of each of the equilibrium points you found
in (b).

27. Here is another approach to the analysis of the SIR model (2.11).

(a) Divide the two equations of the model to give

I ′

S′ = dI

dS
= (βS − α)I

−βSI
= −1 + α

βS
.

(b) Integrate to find the orbits in the (S, I )-plane,

I = −S + α

β
logS + c,

with c an arbitrary constant of integration.
(c) Define the function

V (S, I ) = S + I − α

β
log S

and show that each orbit is given implicitly by the equation V (S, I ) = c

for some choice of the constant c.
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(d) Show that no orbit reaches the I -axis and deduce that S∞ =
limt→∞ S(t) > 0, which implies that part of the population escapes
infection.

28. For the model (2.16) show that the final total population size is given by

N∞ = α

α + d
N0 + d

α + d
S∞.

29. Consider the basic SIR model with disease deaths, but we now consider a
vaccination class in place of recovery:

S′(t) = μN − βS I
N

− (μ + φ)S

I ′(t) = βS I
N

− (μ + γ + δ)I

V ′(t) = γ I + φS − μV.

(2.26)

(a) Let R0(φ) be R0 when φ �= 0, and R0(0) be R0 when φ = 0. Compute
R0(φ). What is the value of R0(0)? Compare R0(φ) with R0(0).

(b) Compute the equilibria.
(c) Do the local stability analysis of the disease-free equilibrium state and the

endemic state.
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Chapter 3
Endemic Disease Models

In this chapter, we consider models for disease that may be endemic. In the
preceding chapter we studied SIS models with and without demographics and
SIR models with demographics. In each model, the basic reproduction number R0
determined a threshold. If R0 < 1 the disease dies out, while if R0 > 1 the disease
becomes endemic. The analysis in each case involves determination of equilibria
and determining the asymptotic stability of each equilibrium by linearization about
the equilibrium. In each of the cases studied in the preceding chapter the disease-free
equilibrium was asymptotically stable if and only if R0 < 1 and if R0 > 1 there was
a unique endemic equilibrium that was asymptotically stable. In this chapter, we will
see that these properties continue to hold for many more general models, but there
are situations in which there may be an asymptotically stable endemic equilibrium
when R0 < 1, and other situations in which there is an endemic equilibrium that is
unstable for some values of R0 > 1.

In Sect. 2.3 we analyzed the SIR model for diseases from which infectives
recover with immunity against reinfection:

S′ = Λ(N) − βSI − μS

I ′ = βSI − μI − αI − dI (3.1)

N ′ = Λ(N) − dI − μN.

The following basic result holds for (3.1).

Theorem 3.1 The basic reproduction number for the model (3.1) is given by

R0 = βK

μ + α
= K

S∞
.

If R0 < 1, the system has only the disease-free equilibrium and this equilibrium is
asymptotically stable.
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Here, K is the population carrying capacity and S∞ is the susceptible population
size at the endemic equilibrium. The theorem says that the disease-free equilibrium
is locally asymptotically stable. We recall that this means that solutions with initial
values close to this equilibrium remain close to the equilibrium and approach the
equilibrium as t → ∞. In fact, it is not difficult to prove that this asymptotic stability
is global, that is, that every solution approaches the disease-free equilibrium. If the
quantity R0 is greater than one, then the disease-free equilibrium is unstable, but
there is an endemic equilibrium that is (locally) asymptotically stable.

In fact, these properties hold for some endemic disease models with more
complicated compartmental structure . We will describe some examples.

3.1 More Complicated Endemic Disease Models

3.1.1 Exposed Periods

In many infectious diseases there is an exposed period after the transmission
of infection from susceptibles to potentially infective members but before these
potential infectives develop symptoms and can transmit infection. To incorporate
an exposed compartment with mean exposed period 1/κ we add an exposed class E

and use compartments S,E, I, R and total population size N = S + E + I + R to
give a generalization of the epidemic model (3.1)

S′ = Λ(N) − βSI − μS

E′ = βSI − (κ + μ)E (3.2)

I ′ = κE − (α + μ)I.

A flow chart is shown in Fig. 3.1.
The analysis of this model is similar to the analysis of (3.1), but with I replaced

by E + I . That is, instead of using the number of infectives as one of the variables
we use the total number of infected members, whether or not they are capable of
transmitting infection.

Fig. 3.1 Flow chart for the SEIR endemic model (3.2)
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3.1.2 A Treatment Model

One form of treatment that is possible for some diseases is vaccination to protect
against infection before the beginning of an epidemic. For example, this approach
is commonly used for protection against annual influenza outbreaks. A simple way
to model this would be to reduce the total population size by the fraction of the
population protected against infection.

In reality, such inoculations are only partly effective, decreasing the rate of
infection and also decreasing infectivity if a vaccinated person does become
infected. This may be modeled by dividing the population into two groups with
different model parameters which would require some assumptions about the
mixing between the two groups. This is not difficult but we will not explore this
direction until Chap. 5 on heterogeneous mixing.

If there is a treatment for infection once a person has been infected, this may be
modeled by supposing that there is a rate γ proportional to the number of infectives
at which infectives are selected for treatment, and that treatment reduces infectivity
by a fraction δ. Suppose that the rate of removal from the treated class is η. This
leads to the SIT R model, where T is the treatment class, given by

S′ = μN − βS[I + δT ] − μS

I ′ = βS[I + δT ] − (α + γ + μ)I (3.3)

T ′ = γ I − (η + μ)T .

A flow chart is shown in Fig. 3.2. In this model, we assume that the natural birth and
death rates are equal so that the total population size remains constant.

In order to calculate the basic reproduction number, we observe that an infective
in a totally susceptible population causes βN new infections in unit time, and the

Fig. 3.2 Flow chart for the SIT R endemic model (3.3)
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mean time spent in the infective compartment is 1/(α + γ + μ). In addition, a
fraction γ /(α + γ + μ) of infectives are treated because (γ + α + μ) is the rate at
which the number of infectives decreases overall while γ is the rate at which these
infectives are selected for treatment. While in the treatment stage the number of new
infections caused in unit time is δβN , and the mean time in the treatment class is
1/(η + μ). Thus

R0 = βN

α + γ + μ
+ γ

α + γ + μ

δβN

η + μ
. (3.4)

It is possible that if δ < 1 and α > η the treatment may increase the reproduction
number. However, since α > η would mean that treatment prolongs the infection,
this is quite unlikely.

The equilibrium conditions for the model (3.3) are

μN = βS[I + δT ] + μS

βS[I + δT ] = (α + γ + μ)I (3.5)

γ I = (η + μ)T .

Substitution of the last of these equilibrium conditions into the second gives

βS
δγ + η + μ

η + μ
I = (α + γ + μ)I,

and this implies that either I = 0 (disease-free equilibrium) or

βS = (α + γ + μ)(η + μ)

δγ + η + μ

(endemic equilibrium). An endemic equilibrium exists if and only if the value of S

given by this condition is less than N , and this is equivalent to R0 > 1.
The Jacobian matrix or matrix of the linearization of (3.3) at an equilibrium

(S, I, T ) is

⎡

⎣
−β(I + δT ) − μ −βS −δβS

β(I + δT ) βS − (α + γ + μ) δβS

0 γ −(η + μ)

⎤

⎦ ,

and at the disease-free equilibrium (N, 0, 0) this is

⎡

⎣
−μ −βN −δβN

0 βN − (α + γ + μ) δβN

0 γ −(η + μ)

⎤

⎦ .
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The eigenvalues of this matrix are −μ and the eigenvalues of the 2 × 2 matrix

[
βN − (α + γ + μ) δβN

γ −(η + μ)

]

.

The eigenvalues of a 2 × 2 matrix have negative real part if and only if the matrix
has negative trace and positive determinant. The condition that the determinant is
positive is

βN <
(η + μ)(α + γ + μ)

η + μ + δγ
, (3.6)

and the condition that the trace is negative is

βN < (α + γ + μ) + (η + μ). (3.7)

Then, since

(η + μ)(α + γ + μ) < (α + γ + μ)(η + μ + δγ ) + (η + μ + δγ )(η + μ),

if (3.6) is satisfied (3.7) is also satisfied. Thus the condition R0 < 1 is equivalent
to (3.6) and the asymptotic stability of the disease-free equilibrium.

To show that the endemic equilibrium is asymptotically stable if it exists, that is,
if R0 > 1, we must make use of the four conditions [26, 37] introduced in Chap. 2.
A somewhat complicated calculation shows that this is indeed the case.

3.1.3 Vertical Transmission

In some diseases, notably Chagas’ disease, HIV/AIDS, hepatitis B, and rinderpest
(in cattle), infection may be transferred not only horizontally (by contact between
individuals) but also vertically (from an infected parent to a newly born offspring)
[8]. We formulate an SIR model with vertical transmission by assuming that a
fraction q of the offspring of infective members of the population are infective at
birth. For simplicity, we assume that there are no disease deaths so that the total
population size N is constant, and our model is based on (3.1). The birth rate in
this model is Λ = μN , and we assume that births are distributed proportionally
among compartments. Thus the rate of births to infectives is μI , the rate of newborn
infectives is qμI , and the rate of newborn susceptibles is μN − qμI . This leads to
the model

S′ = μN − qμI − βSI − μS

I ′ = qμI + βSI − μI − αI.
(3.8)
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From the second equation, we see that equilibrium requires either I = 0 (disease-
free) or βS = μ(1 − q) + α. At the disease-free equilibrium, S = N, I = 0, and
the matrix of the linearization is

[−μ −qμ − βN

0 βN − μ(1 − q) − α

]

.

Thus the disease-free equilibrium is asymptotically stable if and only if

βN < μ(1 − q) + α.

This suggests that

R0 = βN + μq

μ + α
.

To see that this is indeed correct, we note that the term βN/(μ + α) represents
horizontally transmitted infections at rate βN over a death-adjusted infective period
1/(μ + α), and the term μq

μ+α
represents vertically transmitted infections per

infective. It is not difficult to verify that the endemic equilibrium, which exists if
and only if R0 > 1 is asymptotically stable.

3.2 Some Applications of the SIR Model

3.2.1 Herd Immunity

In order to prevent a disease from becoming endemic, it is necessary to reduce
the basic reproduction number R0 below one. This may sometimes be achieved
by immunization. If a fraction p of the Λ(N) newborn members per unit time of
the population is successfully immunized, the effect is to replace N by N(1 − p),
and thus to reduce the basic reproduction number to R0(1 − p). The requirement
R0(1 − p) < 1 gives 1 − p < 1/R0, or

p > 1 − 1

R0
.

A population is said to have herd immunity if a large enough fraction has been
immunized to assure that the disease cannot become endemic. The only disease
for which this has actually been achieved worldwide is smallpox for which R0
is approximately 5, so that 80% immunization does provide herd immunity, and
rinderpest, a cattle disease.

For measles, epidemiological data in the USA indicate that R0 for rural
populations ranges from 5.4 to 6.3, requiring vaccination of 81.5–84.1% of the
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population. In urban areas R0 ranges from 8.3 to 13.0, requiring vaccination of
88.0–92.3% of the population. In Great Britain, R0 ranges from 12.5 to 16.3,
requiring vaccination of 92–94% of the population. The measles vaccine is not
always effective, and vaccination campaigns are never able to reach everyone. As
a result, herd immunity against measles has not been achieved (and probably never
can be). An additional issue is that an anti-vaccination movement has developed,
partly because of a fallacious belief that there is a link between the measles-mumps-
rubella vaccine and the development of autism and partly because of a general
opposition to vaccines.

Since smallpox is viewed as more serious and requires a lower percentage of
the population be immunized, herd immunity was attainable for smallpox. In fact,
smallpox has been eliminated; the last known case was in Somalia in 1977, and
the virus is maintained now only in laboratories. The eradication of smallpox was
actually more difficult than expected because high vaccination rates were achieved
in some countries but not everywhere, and the disease persisted in some countries.
The eradication of smallpox was possible only after an intensive campaign for
worldwide vaccination [22].

3.2.2 Age at Infection

In order to calculate the basic reproduction number R0 for a disease modeled by a
system (3.1), we need to know the values of the contact rate β and the parameters
μ,K , and α. The parameters μ,K , and α can usually be measured experimentally
but the contact rate β is difficult to determine directly. There is an indirect method
of estimating R0 in terms of the life expectancy and the mean age at infection which
enables us to avoid having to estimate the contact rate. In this calculation, we will
assume that β is constant, but we will also indicate the modifications needed when
β is a function of total population size N . The calculation assumes exponentially
distributed life spans and infective periods. The result is valid so long as the life
span is exponentially distributed, but if the life span is not exponentially distributed
the result could be quite different.

Consider the “age cohort” of members of a population born at some time t0 and
let a be the age of members of this cohort. If y(a) represents the fraction of members
of the cohort who survive to age (at least) a, then the assumption that a fraction μ of
the population dies per unit time means that y′(a) = −μy(a). Since y(t0) = 1, we
may solve this first order initial value problem to obtain y(a) = e−μa . The fraction
dying at (exactly) age a is −y′(a) = μy(a). The mean life span is the average age
at death, which is

∫∞
0 a[−y′(a)]da, and if we integrate by parts we find that this life

expectancy is

∫ ∞

t0

[−ay′(a)] da = [−ay(a)]∞t0 +
∫ ∞

t0

y(a) da =
∫ ∞

t0

y(a) da.
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Since y(a) = e−μa , this reduces to 1/μ. The life expectancy is often denoted by L,
so that we may write

L = 1

μ
.

The rate at which surviving susceptible members of this cohort become infected
at age a and time t0 + a is βI (t0 + a). Thus, if z(a) is the fraction of the age cohort
alive and still susceptible at age a, z′(a) = −[μ + βI (t0 + a)]z(a). Solution of this
first linear order differential equation gives

z(a) = e−[μa+∫ a
0 βI (t0+b) db] = y(a)e− ∫ a

0 βI (t0+b) db.

The mean length of time in the susceptible class for members who may become
infected, as opposed to dying while still susceptible, is

∫ ∞

0
e− ∫ a

0 βI (t0+b)dbda,

and this is the mean age at which members become infected. If the system is at
an equilibrium I∞, this integral may be evaluated, and the mean age at infection,
denoted by A, is given by

A =
∫ ∞

0
e−βI∞a da = 1

βI∞
.

For our model the endemic equilibrium is

I∞ = μK

μ + α
− μ

β
,

and this implies

L

A
= βI∞

μ
= R0 − 1. (3.9)

This relation is very useful in estimating basic reproduction numbers. For example,
in some urban communities in England and Wales between 1956 and 1969 the
average age of contracting measles was 4.8 years. If life expectancy is assumed
to be 70 years, this indicates R0 = 15.6.

If β is a function β(N) of total population size and K is the carrying capacity,
the relation (3.9) becomes

R0 = β(K)

β(N0)

[

1 + L

A

]

.
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If disease mortality does not have a large effect on total population size, in particular
if there is no disease mortality, this relation is very close to (3.9).

The relation between age at infection and basic reproduction number indicates
that measures such as inoculations, which reduce R0, will increase the average age
at infection. For diseases such as rubella (German measles), whose effects may be
much more serious in adults than in children, this indicates a danger that must be
taken into account: While inoculation of children will decrease the number of cases
of illness, it will tend to increase the danger to those who are not inoculated or
for whom the inoculation is not successful. Nevertheless, the number of infections
in older people will be reduced, although the fraction of cases which are in older
people will increase.

3.2.3 The Inter-Epidemic Period

Many common childhood diseases, such as measles, whooping cough, chicken pox,
diphtheria, and rubella, exhibit variations from year to year in the number of cases.
These fluctuations are frequently regular oscillations, suggesting that the solutions
of a model might be periodic. This does not agree with the predictions of the
model we have been using in this section; however, it would not be inconsistent
with solutions of the characteristic equation, which are complex conjugate with
small negative real part corresponding to lightly damped oscillations approaching
the endemic equilibrium. Such behavior would look like recurring epidemics. If
the eigenvalues of the matrix of the linearization at an endemic equilibrium are
−u ± iv, where i2 = −1, then the solutions of the linearization are of the form
Be−ut cos(vt + c), with decreasing “amplitude” Be−ut and “period” 2π

v
.

For the model (3.1) we recall that at the endemic equilibrium we have

βI∞ + μ = μR0, βS∞ = μ + α

and the matrix of the linearization is

[ −μR0 −(μ + α)

μ(R0 − 1) 0

]

.

The eigenvalues are the roots of the quadratic equation

λ2 + μR0λ + μ(R0 − 1)(μ + α) = 0,

which are

λ = −μR0 ±
√
μ2R0

2 − 4μ(R0 − 1)(μ + α)

2
.
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If the mean infective period 1/α is much shorter than the mean life span 1/μ,
we may neglect the terms that are quadratic in μ. Thus, the eigenvalues are
approximately

−μR0 ± √−4μ(R0 − 1)α

2
,

and these are complex with imaginary part
√
μ(R0 − 1)α. This indicates oscilla-

tions with period approximately

2π√
μ(R0 − 1)α

.

We use the relation μ(R0 − 1) = μL/A and the mean infective period τ = 1/α to
see that the interepidemic period T is approximately 2π

√
Aτ . Thus, for example,

for recurring outbreaks of measles with an infective period of 2 weeks or 1/26
year in a population with a life expectancy of 70 years with R0 estimated as
15, we would expect outbreaks spaced 2.76 years apart. Also, as the “amplitude”
at time t is e−μR0t/2, the maximum displacement from equilibrium is multiplied
by a factor e−(15)(2.76)/140 = 0.744 over each cycle. In fact, many observations
of measles outbreaks indicate less damping of the oscillations, suggesting that
there may be additional influences that are not included in our simple model. To
explain oscillations about the endemic equilibrium a more complicated model is
needed. One possible generalization would be to assume seasonal variations in
the contact rate [13, 27]. This is a reasonable supposition for a childhood disease
most commonly transmitted through school contacts, especially in winter in cold
climates. Note, however, that data from observations are never as smooth as model
predictions and models are inevitably gross simplifications of reality which cannot
account for random variations in the variables. It may be difficult to judge from
experimental data whether an oscillation is damped or persistent.

3.2.4 “Epidemic” Approach to Endemic Equilibrium

In the model (3.1) the demographic time scale described by the birth and natural
death rates μK and μ and the epidemiological time scale described by the rate α

of departure from the infective class may differ substantially. Think, for example,
of a natural death rate μ = 1/75, corresponding to a human life expectancy of 75
years, and epidemiological parameter α = 25, describing a disease from which all
infectives recover after a mean infective period of 1/25 year, or 2 weeks. Suppose
we consider a carrying capacity K = 1000 and take β = 0.1, indicating that an
average infective makes (0.1)(1000)= 100 contacts per year. Then R0 = 4.00, and
at the endemic equilibrium we have S∞ = 250.13, I∞ = 0.40, R∞ = 749.47. This
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equilibrium is globally asymptotically stable and is approached from every initial
state.

However, if we take S(0) = 999, I (0) = 1, R(0) = 0, simulating the
introduction of a single infective into a susceptible population and solve the system
numerically we find that the number of infectives rises sharply to a maximum of 400
and then decreases to almost zero in a period of 0.4 year, or about 5 months. In this
time interval the susceptible population decreases to 22 and then begins to increase,
while the removed (recovered and immune against reinfection) population increases
to almost 1000 and then begins a gradual decrease. The size of this initial “epidemic”
could not have been predicted from our qualitative analysis of the system (3.1). On
the other hand, since μ is so small compared to the other parameters of the model,
we might consider neglecting μ, replacing it by zero in the model. If we do this, the
model reduces to the simple Kermack–McKendrick epidemic model (without births
and deaths) of Sect. 2.4.

If we follow the model (3.1) over a longer time interval we find that the
susceptible population grows to 450 after 46 years, then drops to 120 during a small
epidemic with a maximum of 18 infectives, and exhibits widely spaced epidemics
decreasing in size. It takes a very long time before the system comes close to the
endemic equilibrium and remains close to it. The large initial epidemic conforms
to what has often been observed in practice when an infection is introduced into a
population with no immunity, such as the smallpox inflicted on the Aztecs by the
invasion of Cortez.

If we use the model (3.1) with the same values of β, K , and μ, but take α = 0,
d = 25 to describe a disease fatal to all infectives, we obtain very similar results.
Now the total population is S + I , which decreases from an initial size of 1000
to a minimum of 22 and then gradually increases and eventually approaches its
equilibrium size of 250.53. Thus, the disease reduces the total population size to
one-fourth of its original value, suggesting that infectious diseases may have large
effects on population size. This is true even for populations which would grow
rapidly in the absence of infection, as we shall see in a later section (Sect. 3.7).

3.3 Temporary Immunity

In the SIR models that we have studied, it has been assumed that the immunity
received by recovery from the disease is permanent. This is not always true, as there
may be a gradual loss of immunity with time. In addition, there are often mutations
in a virus, and as a result the active disease strain is sufficiently different from the
strain from which an individual has recovered and the immunity received may wane.

Temporary immunity may be described by an SIRS model in which a rate of
transfer from R to S is added to an SIR model. For simplicity, we confine our
attention to epidemic models, without including births, natural deaths, and disease
deaths, but the analysis of models including births and deaths would lead to the
same conclusions. Thus we begin with a model
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S′ = −βSI + θR

I ′ = βSI − αI

R′ = αI − θR,

with a proportional rate θ of loss of immunity.
Since N ′ = (S + I + R)′ = 0, the total population size N is constant, and we

may replace R by N − S − I and reduce the model to a two-dimensional system

S′ = −βSI + θ(N − S − I )

I ′ = βSI − αI.
(3.10)

Equilibria are solutions of the system

βSI + θS + θI = θN

αI + θS + θI = θN,

and there is a disease-free equilibrium S = α/β, I = 0. If R0 = βN/α > 1, there
is also an endemic equilibrium with

βS = α, (α + θ)I = θ(N − S).

The matrix of the linearization of (3.10) at an equilibrium (S, I ) is

A =
[−(βI + θ) −(βS + θ)

βI βS − α

]

.

At the disease-free equilibrium A has the sign structure

[− −
0 βN − α

]

.

This matrix has negative trace and positive determinant if and only if βN < α, or
R0 < 1. At an endemic equilibrium, the matrix has sign structure

[− −
+ 0

]

.

and thus always has negative trace and positive determinant. We see from this
that, as in other models studied in this chapter, the disease-free equilibrium is
asymptotically stable if and only if the basic reproduction number is less than 1 and
the endemic equilibrium, which exists if and only if the basic reproduction number
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exceeds 1, is always asymptotically stable. However, it is possible for a different
SIRS model to have quite different behavior.

3.3.1 *Delay in an SIRS Model

We consider an SIRS model, which assumes a constant period of temporary
immunity following recovery from the infection in place of an exponentially
distributed period of temporary immunity [24]. We assume that there is a temporary
immunity period of fixed length ω, after which recovered infectives revert to the
susceptible class. The resulting model is described by the system of differential–
difference equations

S′(t) = −βS(t)I (t) + αI (t − ω)

I ′(t) = βS(t)I (t) − αI (t) (3.11)

R′(t) = αI (t) − αI (t − ω).

The equilibrium analysis of a system of differential–difference equations with a
delay ω is analogous to the equilibrium analysis of a system of ordinary differential
equations, but there are important variations. Instead of assigning an initial condition
at t = 0 it is necessary to assign initial data on the interval −ω ≤ t ≤ 0.
Equilibria of a system of differential–difference equations are constant solutions,
just as for systems of differential equations, and the process of linearization about
an equilibrium is the same.

The characteristic equation at an equilibrium is the condition that the lineariza-
tion at the equilibrium has a solution whose components are constant multiples
of eλt . In the ordinary differential equation case, this is just the equation that
determines the eigenvalues of the coefficient matrix, a polynomial equation, but
in the general case, it is a transcendental equation. The result on which our analysis
depends, which we state without proof, is that an equilibrium is asymptotically sta-
ble if all roots of the characteristic equation have negative real part, or equivalently
that the characteristic equation have no roots with real part greater than or equal to
zero [5].

In (3.11), since N = S + I + R is constant, we may discard the equation for R

and use a two-dimensional model

S′(t) = −βS(t)I (t) + αI (t − ω)

I ′(t) = βS(t)I (t) − αI (t).
(3.12)

Equilibria are given by I = 0 or βS = α. There is a disease-free equilibrium S =
N, I = 0. There is also an endemic equilibrium for which βS = α. However, the
two equations for S and I give only a single equilibrium condition. To determine the
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endemic equilibrium (S∞, I∞), we must write the equation for R in the integrated
form

R(t) =
∫ t

t−ω

αI (x)dx

to give R∞ = ωαI∞. We also have βS∞ = α, and from S∞ + I∞ + R∞ = N we
obtain

βI∞ = (βN − α)

1 + ωα
.

To linearize about an equilibrium (S∞, I∞) of (3.12) we substitute

S(t) = S∞ + u(t), I (t) = I∞ + v(t),

and neglect the quadratic term, giving the linearization

u′(t) = −βI∞u(t) − βS∞v(t) + αv(t − ω)

v′(t) = βI∞u(t) + βS∞v(t) − αv(t).

The characteristic equation is the condition on λ that this linearization has a
solution

u(t) = u0e
λt , v(t) = v0e

λt ,

and this is

(βI∞ + λ)u0 + (βS∞ − αe−λω)v0 = 0

βI∞u0 + (βS∞ − α − λ)v0 = 0,

or

det

[
λ + βI∞ βS∞ − αeλω

βI∞ βS∞ − α − λ

]

.

This reduces to

αβI∞
1 − e−ωλ

λ
= −[λ + α + βS∞ + βI∞]. (3.13)

At the disease-free equilibrium S∞ = N , I∞ = 0, this reduces to a linear equation
with a single root λ = −βN −α, which is negative if and only if R0 = βN/α < 1.

We think of ω and N as fixed and consider β and α as parameters. If α = 0 the
Eq. (3.13) is linear and its only root is −βS∞ − βI∞ < 0. Thus, there is a region in
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the (α, β) parameter space containing the β-axis, in which all roots of (3.13) have
negative real part. In order to find how large this stability region is, we make use of
the fact that the roots of (3.13) depend continuously on β and α. A root can move
into the right half-plane only by passing through the value zero or by crossing the
imaginary axis as βN and α vary. Thus, the stability region contains the β-axis and
extends into the plane until there is a root λ = 0 or until there is a pair of pure
imaginary roots λ = ±iy with y > 0. Since the left side and right side of (3.13)
have opposite sign for real λ ≥ 0, there cannot be a root λ = 0.

The condition that there is a root λ = iy is

αβI∞
1 − e−iωα

iy
= −(iy + α + βS∞ + βI∞) (3.14)

and separation into real and imaginary parts gives the pair of equations

αβ
sinωy

y
= −[α + βS∞ + βI∞], αβI∞

1 − cosωy

y
= y. (3.15)

To satisfy the first condition, it is necessary to have ωα > 1 since | sin ωy| ≤ |ωy|
for all y. This implies, in particular, that the endemic equilibrium is asymptotically
stable if ωα < 1. In addition, it is necessary to have sin ωy < 0. There is an
infinite sequence of intervals on which sin ωy < 0, the first being π < ωy < 2π .
For each of these intervals, the equations (3.15) define a curve in the (β, α) plane
parametrically with y as parameter. The region in the plane below the first of these
curves is the region of asymptotic stability, that is, the set of values of β and α for
which the endemic equilibrium is asymptotically stable. This curve is shown for
ω = 1, N = 1 in Fig. 3.3. Since R0 = βN/α > 1, only the portion of the (β, α)
plane below the line α = βN is relevant.

The new feature of the model of this section is that the endemic equilibrium is
not asymptotically stable for all parameter values. What is the behavior of the model
if the parameters are such that the endemic equilibrium is unstable? A plausible
suggestion is that since the loss of stability corresponds to a root λ = iy of the
characteristic equation there are solutions of the model behaving like the real part
of eiyt , that is, that there are periodic solutions. This is exactly what does happen
according to a very general result called the Hopf bifurcation theorem [25], which
says that when roots of the characteristic equation cross the imaginary axis a stable
periodic orbit arises.

From an epidemiological point of view periodic behavior is unpleasant. It implies
fluctuations in the number of infectives which makes it difficult to allocate resources
for treatment. It is also possible for oscillations to have a long period. This means
that if data are measured over only a small time interval the actual behavior may not
be displayed. Thus, the identification of situations in which an endemic equilibrium
is unstable is an important problem.
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Fig. 3.3 Region of
asymptotic stability for
endemic equilibria (ω = 1,
N = 1)

3.4 A Simple Model with Multiple Endemic Equilibria

In compartmental models for the transmission of communicable diseases there
is usually a basic reproduction number R0, representing the mean number of
secondary infections caused by a single infective introduced into a susceptible
population. If R0 < 1 there is a disease-free equilibrium which is asymptotically
stable, and the infection dies out. If R0 > 1 the usual situation is that there is
a unique endemic equilibrium which is asymptotically stable, and the infection
persists. Even if the endemic equilibrium is unstable, the instability commonly
arises from a Hopf bifurcation [25], described in Sect. 3.3, and the infection still
persists but in an oscillatory manner. More precisely, as R0 increases through 1 there
is an exchange of stability between the disease-free equilibrium and the endemic
equilibrium (which is negative as well as unstable and thus biologically meaningless
if R0 < 1).

There are, however, situations in which there may be more than one endemic
equilibrium even in very simple epidemic models, and we describe such a model
suggested in [42, 43]. We consider an SIS model in a population of constant total
size N with treatment of infectives, assuming that the treatment cures the infection
but that there is a maximum capacity for treatment. Thus we assume a model
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S′ = −βSI + h(I)

I ′ = βSI − αI − h(I),
(3.16)

assuming a treatment function h(I) of the form

h(I) =
{
rI, (I < I ∗)
rI ∗, (I ≥ I ∗),

in which r is a constant representing the treatment rate up to a maximum capacity
rI ∗. Since the total population size S + I is a constant N , we may replace S by
N − I and reduce the model to a single equation

I ′ = βI (N − I ) − αI − h(I) = g(I). (3.17)

There is a disease-free equilibrium I = 0, and it is easily verified that the disease-
free equilibrium is asymptotically stable if and only if R0 = βN/(α + r) < 1.

For I ≤ I ∗,

g(I) = βI (N − I ) − (α + r)I,

and an endemic equilibrium with I ≤ I ∗ is a positive solution I∞ of g(I) = 0,
namely

I∞ = N − α + r

β
= N

(

1 − 1

R0

)

,

and there is such an equilibrium if and only if

I ∗ ≥ N − α + r

β
= N

(

1 − 1

R0

)

. (3.18)

For I ≤ I ∗,

g′(I ) = β(N − 2βI − (α + r),

and g′(I∞) < 0 if and only if

N − α + r

β
< 2I∞ = 2

(

N − α + r

β

)

,

and this is equivalent to R0 > 1. Thus, the equilibrium I∞ ≤ I ∗ exists and is
asymptotically stable if and only if (3.18) is satisfied.
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Equilibria I > I ∗ are solutions of the quadratic equation

g(I) = −βI 2 + (βN − α)I − rI ∗ = 0,

which are

I = (βN−α) +√
(βN−α)2−4rβI ∗
2β

, J = (βN−α) −√
(βN − α)2−4βrI ∗

2β
.

Then J < (βN − α)/2β and I > (βN − α)/2β. For these to qualify as equilibria,
they must also be greater than I ∗ and less than N , but it is possible to choose
parameter values such that the model (3.16) has more than one endemic equilibrium.
For example, the choices

α = 0.5, r = 0.5, N = 1, I ∗ = 0.05,

so that R0 = β, give two equilibria I, J for some values of β, including some values
with R0 < 1. With these parameter values, I = J = 0.279 when β = 0.779.

An equilibrium I∞ of the differential equation I ′ = g(I) is asymptotically stable
if g′(I∞) < 0, and unstable if g′(I∞) > 0. From this, it is easy to deduce that
the equilibrium J is unstable, while the equilibrium I is asymptotically stable. If
we plot the equilibrium values as functions of β, the curve I begins at the point
(0.779, 0.279) and goes upwards to the right, while the curve J goes downward to
the right from the same starting point. Because of the choice I ∗ = 0.05, only the
portion of the J curve above the line I = 0.05 is relevant. For 0.779 ≤ R0 ≤ 1 there
are two asymptotically stable equilibria, namely 0 and I separated by an unstable
equilibrium J . For this reason, we have drawn the J curve as a dotted curve in
Fig. 3.4.

Fig. 3.4 Multiple endemic equilibria



3.5 A Vaccination Model: Backward Bifurcations 81

A bifurcation curve, a graph of equilibria as a function of the basic reproduction
number, as in Fig. 3.4, gives a good deal of information about the behavior of
endemic equilibria. We observe, for example, that in Fig. 3.4, there are endemic
equilibria for some values of the basic reproduction number less than 1, and that
there is a discontinuity in the endemic equilibria at R0 = 1.

3.5 A Vaccination Model: Backward Bifurcations

In a compartmental model, there is a bifurcation, or change in equilibrium behavior,
at R0 = 1 but the equilibrium infective population size depends continuously on
R0. Such a transition is called a forward, or transcritical, bifurcation.

The behavior at a bifurcation may be described graphically by the bifurcation
curve, which is the graph of equilibrium infective population size I as a function of
the basic reproduction number R0. For a forward bifurcation, the bifurcation curve
is as shown in Fig. 3.5.

It has been noted [14, 20, 21, 29] that in epidemic models with multiple groups
and asymmetry between groups or multiple interaction mechanisms it is possible
to have a very different bifurcation behavior at R0 = 1. There may be multiple
positive endemic equilibria for values of R0 < 1 and a backward bifurcation at
R0 = 1. This means that the bifurcation curve has the form shown in Fig. 3.4 with a
broken curve denoting an unstable endemic equilibrium that separates the domains
of attraction of asymptotically stable equilibria.

The qualitative behavior of an epidemic system with a backward bifurcation
differs from that of a system with a forward bifurcation in at least three important
ways. If there is a forward bifurcation at R0 = 1 it is not possible for a disease to
invade a population if R0 < 1 because the system will return to the disease-free
equilibrium I = 0 if some infectives are introduced into the population. On the
other hand, if there is a backward bifurcation at R0 = 1 and enough infectives are

Fig. 3.5 Forward bifurcation
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introduced into the population to put the initial state of the system above the unstable
endemic equilibrium with R0 < 1, the system will approach the asymptotically
stable endemic equilibrium.

Other differences are observed if the parameters of the system change to produce
a change in R0. With a forward bifurcation at R0 = 1 the equilibrium infective
population remains zero so long as R0 < 1 and then increases continuously as R0
increases. With a backward bifurcation at R0 = 1, there is an asymptotically stable
disease-free equilibrium so long as R0 < 1 but there is also an asymptotically stable
endemic equilibrium for some values of R0 < 1 and as R0 increases through 1 the
infective population size jumps to the positive endemic equilibrium. In the other
direction, if a disease is being controlled by means that decrease R0 it is sufficient
to decrease R0 to 1 if there is a forward bifurcation at R0 = 1 but it is necessary to
bring R0 well below 1 if there is a backward bifurcation.

These behavior differences are important in planning how to control a disease; a
backward bifurcation at R0 = 1 makes control more difficult. One control measure
often used is the reduction of susceptibility to infection produced by vaccination. By
vaccination, we mean either an inoculation that reduces susceptibility to infection
or an education program such as encouragement of better hygiene or avoidance of
risky behavior for sexually transmitted diseases. Whether vaccination is inoculation
or education, typically it reaches only a fraction of the susceptible population and is
not perfectly effective. In an apparent paradox, models with vaccination may exhibit
backward bifurcations, making the behavior of the model more complicated than
the corresponding model without vaccination. It has been argued [6] that a partially
effective vaccination program applied to only part of the population at risk may
increase the severity of outbreaks of such diseases as HIV/AIDS.

We will give a qualitative analysis of a model which may have a variable total
population size N ≤ K for which there is a possibility of a backward bifurcation.
The model we will study adds vaccination to the simple SIS model with births and
natural deaths but with no disease deaths studied in Sect. 2.2. We have considered
the model

S′ = Λ(N) − β(N)SI − μS + αI

I ′ = βSI − (μ + α)I,
(3.19)

where the population carrying capacity K is defined by Λ(K) = μK , Λ′(K) < μ

and the contact rate β(N) is a function of total population size with Nβ(N) non-
decreasing and β(N) non-increasing. We have seen that there is a disease-free
equilibrium I = 0 that is asymptotically stable if

R0 = Kβ(K)

μ + α
< 1.

If R0 > 1 the disease-free equilibrium is unstable but there is an endemic
equilibrium that is asymptotically stable.
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To the model (3.19) we add the assumption that in unit time a fraction ϕ of
the susceptible class is vaccinated. The vaccination may reduce but not completely
eliminate susceptibility to infection. We model this by including a factor σ , 0 ≤
σ ≤ 1, in the infection rate of vaccinated members with σ = 0 meaning that the
vaccine is perfectly effective and σ = 1 meaning that the vaccine has no effect. We
describe the new model by including a vaccinated class V , with

S′ = μN − β(N)SI − (μ + ϕ)S + αI

I ′ = β(N)SI + σβ(N)V I − (μ + α)I (3.20)

V ′ = ϕS − σβ(N)V I − μV

and N = S + I + V . Since N is constant, we can replace S by N − I − V to give
the equivalent system

I ′ = β [N − I − (1 − σ)V ] I − (μ + α)I

V ′ = ϕ[N − I ] − σβV I − (μ + ϕ)V
(3.21)

with β = β(N). The system (3.21) is the basic vaccination model which we will
analyze. We remark that if the vaccine is completely ineffective, σ = 1, then (3.21)
is equivalent to an SIS model. If all susceptibles are vaccinated immediately
(formally, ϕ → ∞), the model (3.21) is equivalent to

I ′ = σβI (K − I ) − (μ + α)I

which is an SIS model with basic reproduction number

R∗
0 = σβK

μ + α
= σR0 ≤ R0.

We will think of the parameters μ, α, ϕ, and σ as fixed and will view β as
variable. In practice, the parameter ϕ is the one most easily controlled, and later we
will express our results in terms of an uncontrolled model with parameters β, μ, α,
and σ fixed and examine the effect of varying ϕ. With this interpretation in mind,
we will use R(ϕ)to denote the basic reproduction number of the model (3.21), and
we will see that

R∗
0 ≤ R(ϕ) ≤ R0.

Equilibria of the model (3.21) are solutions of

βI [K − I − (1 − σ)V ] = (μ + α)I

ϕ[K − I ] = σβV I + (μ + ϕ)V .
(3.22)
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If I = 0, then the first of these equations is satisfied and the second leads to

V = ϕ

μ + ϕ
K.

This is the disease-free equilibrium.
The matrix of the linearization of (3.21) at an equilibrium (I, V ) is

[−2βI − (1 − σ)βV − (μ + α) + βK

−(ϕ + σβV )

−(1 − σ)βI

−(μ + ϕ + σβI)

]

.

At the disease-free equilibrium this matrix is

[−(1 − σ)βV − (μ + α) + βK

−(ϕ + σβV )

0
−(μ + ϕ)

]

which has negative eigenvalues, implying the asymptotic stability of the disease-free
equilibrium, if and only if

−(1 − σ)βV − (μ + α) + βK < 0.

Using the value of V at the disease-free equilibrium this condition is equivalent to

R(ϕ) = βK

μ + α
· μ + σϕ

μ + ϕ
= R0

μ + σϕ

μ + ϕ
< 1.

The case ϕ = 0 is that of no vaccination with R(0) = R0, and R(ϕ) < R0 if
ϕ > 0. We note that R∗

0 = σR0 = limϕ→∞ R(ϕ) < R0.
If 0 ≤ σ < 1 endemic equilibria are solutions of the pair of equations

β [K − I − (1 − σ)V ] = μ + α

ϕ[K − I ] = σβV I + (μ + ϕ)V .
(3.23)

We eliminate V using the first equation of (3.23) and substitute into the second
equation to give an equation of the form

AI 2 + BI + C = 0 (3.24)

with

A = σβ

B = (μ + θ + σϕ) + σ(μ + α) − σβK (3.25)

C = (μ + α)(μ + θ + ϕ)

β
− (μ + θ + σϕ)K.
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If σ = 0 (3.24) is a linear equation with unique solution.

I = K − (μ + α)(μ + ϕ)

βμ
= K

[

1 − 1

R(ϕ)

]

which is positive if and only if R(ϕ) > 1. Thus if σ = 0 there is a unique endemic
equilibrium if R(ϕ) > 1 that approaches zero as R(ϕ) → 1+ and there cannot
be an endemic equilibrium if R(ϕ) < 1. In this case, it is not possible to have a
backward bifurcation at R(ϕ) = 1.

We note that C < 0 if R(ϕ) > 1, C = 0 if R(ϕ) = 1, and C > 0 if R(ϕ) < 1.
If σ > 0, so that (3.24) is quadratic and if R(ϕ) > 1 then there is a unique positive
root of (3.24) and thus there is a unique endemic equilibrium. If R(ϕ) = 1, then
C = 0 and there is a unique non-zero solution of (3.24) I = −B/A which is positive
if and only if B < 0. If B < 0 when C = 0 there is a positive endemic equilibrium
for R(ϕ) = 1. Since equilibria depend continuously on ϕ there must then be an
interval to the left of R(ϕ) = 1 on which there are two positive equilibria

I = −B ± √
B2 − 4AC

2A
.

This establishes that the system (3.21) has a backward bifurcation at R(ϕ) = 1 if
and only if B < 0 when β is chosen to make C = 0.

We can give an explicit criterion in terms of the parameters μ, ϕ, σ for the
existence of a backward bifurcation at R(ϕ) = 1. When R(ϕ) = 1, C = 0 so
that

(μ + σϕ)βK = (μ + α)(μ + ϕ). (3.26)

The condition B < 0 is

(μ + σϕ) + σ(μ + α) < σβK

with βK determined by (3.26), or

σ(μ + α)(μ + ϕ) > (μ + σϕ) [(μ + σϕ) + σ(μ + α)]

which reduces to

σ(1 − σ)(μ + α)ϕ > (μ + σϕ)2. (3.27)

A backward bifurcation occurs at R(ϕ) = 1, with βK given by (3.26) if and
only if (3.27) is satisfied. We point out that for an SI model, where α = 0, the
condition (3.27) becomes

σ(1 − σ)μϕ > (μ + σϕ)2.
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But

(μ + σϕ)2 = μ2 + σ 2ϕ2 + 2μσϕ

> 2μσϕ > σ(1 − σ)μϕ

because σ < 1. Thus a backward bifurcation is not possible if α = 0, that is, for an
SI model. Likewise, (3.27) cannot be satisfied if σ = 0.

If C > 0 and either B ≥ 0 or B2 < 4AC, there are no positive solutions
of (3.24)and thus there are no endemic equilibria. Equation (3.24) has two positive
solutions, corresponding to two endemic equilibria, if and only if C > 0, or R(ϕ) <

1, and B < 0, B2 > 4AC, or B < −2
√
AC < 0. If B = −2

√
AC, there is one

positive solution I = −B/2A of (3.24).
If (3.27) is satisfied, so that there is a backward bifurcation at R(ϕ) = 1, there

are two endemic equilibria for an interval of values of β from

βK = (μ + α)(μ + ϕ)

μ + σϕ

corresponding to R(ϕ) = 1 to a value βc defined by B = −2
√
AC. To calculate

βc, we let x = μ + α − βK , U = μ + σϕ to give B = σx + U , βC = βKU +
(μ + α)(μ + ϕ). Then B2 = 4AC becomes

(σx + U)2 + 4βσKU − 4σ(μ + α)(μ + ϕ) = 0

which reduces to

(σx)2 − 2U(σx) +
[
U2 + 4σ(1 − σ)(μ + α)ϕ

]
= 0

with roots

σx = U ± 2
√
σ(1 − σ)(μ + α)ϕ.

For the positive root B = σx + U > 0, and since we require B < 0 as well as
B2 − 4AC = 0, we obtain βc from σx = U − 2

√
σ(1 − σ)(μ + α)ϕ so that

σβcK = σ(μ + α) + 2
√
σ(1 − σ)(μ + α)ϕ − (μ + σϕ). (3.28)

Then the critical basic reproduction number Rc is given by

Rc = μ + σϕ

μ + ϕ
· σ(μ + α) + 2

√
σ(1 − σ)(μ + α)ϕ − (μ + σϕ)

σ(μ + α)ϕ

and it is possible to verify with the aid of (3.28) that Rc < 1.
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3.5.1 The Bifurcation Curve

In drawing the bifurcation curve (the graph of I as a function of R(ϕ)), we think
of β as variable with the other parameters μ, α, σ,Q, ϕ as constant. Then R(ϕ) is
a constant multiple of β and we can think of β as the independent variable in the
bifurcation curve.

Implicit differentiation of the equilibrium condition (3.24) with respect to β gives

(2AI + B)
dI

dβ
= σI (K − I ) + (μ + α)(μ + ϕ)

β2
.

It is clear from the first equilibrium condition in (3.23) that I ≤ K and this
implies that the bifurcation curve has positive slope at equilibrium values with
2AI + B > 0 and negative slope at equilibrium values with 2AI + B < 0. If there
is not a backward bifurcation at R(ϕ) = 1, then the unique endemic equilibrium for
R(ϕ) > 1 satisfies

2AI + B =
√
B2 − 4AC > 0

and the bifurcation curve has positive slope at all points where I > 0. Thus the
bifurcation curve is as shown in Fig. 3.5.

If there is a backward bifurcation at R(ϕ) = 1, then there is an interval on which
there are two endemic equilibria given by

2AI + B = ±
√
B2 − 4AC.

The bifurcation curve has negative slope at the smaller of these and positive slope
at the larger of these. Thus the bifurcation curve is as shown in Fig. 3.4.

The condition 2AI + B > 0 is also significant in the local stability analysis
of endemic equilibria. An endemic equilibrium of (3.21) is (locally) asymptotically
stable if and only if it corresponds to a point on the bifurcation curve at which the
curve is increasing. To prove this, we observe that the matrix of the linearization
of (3.21) at an equilibrium (I, V ) is

[−2βI − (1 − σ)βV − (μ + α) + βK

−(ϕ + σβV )

−(1 − σ)βI

−(μ + ϕ + σβI)

]

.

Because of the equilibrium conditions (3.23), the matrix at an endemic equilibrium
(I, V ) is

[ −βI

−(ϕ + σβV )

−(1 − σ)βI

−(μ + ϕ + σβI)

]

.
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This has negative trace, and its determinant is

σ(βI)2 + βI (μ + ϕ) − (1 − σ)ϕβI − (1 − σ)βV · σβI
= βI

[
2σβI + (μ + σϕ) + σ(μ + α) − σβK

]

= βI [2AI + B].

If 2AI + B > 0, that is, if the bifurcation curve has positive slope, then the
determinant is positive and the equilibrium is asymptotically stable. If 2AI +B < 0
the determinant is negative and the equilibrium is unstable. In fact, it is a saddle
point. A saddle point in the plane is an equilibrium at which the linearization has
one positive eigenvalue and one negative eigenvalue. This means that there are
two orbits approaching the saddle point called stable separatrices and two orbits
going out from the saddle point, called unstable separatrices. Because orbits cannot
cross the separatrices, the stable separatrices divide the plane into two regions and
divide the plane into two domains of attraction. The stable separatrices in the (I, V )

plane separate the domains of attraction of the other (asymptotically stable) endemic
equilibrium and the disease-free equilibrium.

3.6 *An SEIR Model with General Disease Stage
Distributions

The ODE models considered in earlier parts of the chapter, except the SIRS model
in Sect. 3.3, assume exclusively that the durations of disease stages (e.g., latent and
infectious stages) are exponentially distributed. This assumption, while making the
models and their analyses easier, is not biologically realistic for most infectious
diseases. A more appropriate distribution is the gamma distribution, for which the
probability of remaining in the stage is given by

pn(s) =
n−1∑

k=0

(nθs)ks−nθs

k! (3.29)

where 1/θ is the mean of the distribution and n is the shape parameter. The
exponential distribution is the special case when n = 1. The other extreme case
is when n → ∞, which corresponds to a fixed duration. Figure 3.6 illustrates the
gamma distribution for various n values. Let 1/κ and 1/α denote the mean latent
and infectious periods, and let m and n denote the shape parameter for the latent and
infectious stages, respectively. It has been reported [44] that for measles

1/κ = 8, 1/α = 5, m = n = 20,
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Fig. 3.6 Depictions of the survival probability (3.29) for the infectious period (left) and the
probability density function (right) with different shape parameter values (n). The special case
of n = 1 gives the exponential distribution. The mean infectious period (1/θ) is chosen to be 1
week

and for smallpox

1/κ = 14, 1/α = 8.6, m = 40, n = 4.

There are other cases where the disease stage durations do not fit well by
the standard family distributions. Epidemiological models with non-exponential
distributions such as the gamma distribution have been previously studied (see, for
example, [23, 30, 31]. In these studies, the authors discussed various drawbacks
associated with the exponential distribution assumption. For example, it is pointed
out that constant recovery is a poor description of real-world infections, and they
show that in models with more realistic distributions of disease stages less stable
behavior may be expected and disease persistence may be diminished [23, 30].
In [18] it was demonstrated that when control measures such as quarantine and
isolation are considered, models with exponential and gamma distributions may
generate contradictory evaluations on control strategies. Thus, it will be helpful to
have mathematical results for models that allow arbitrary distributions. This is the
goal of this section.

Let PE, PI : [0,∞) → [0, 1] describe the durations of the exposed (latent) and
infective stages, respectively. That is, Pi(s) (i = E, I ) gives the probability that the
disease stage i lasts longer than s time units (or the probability of being still in the
same stage at stage age s). Then, the derivative −Ṗi(s) (i = E, I ) gives the rate
of removal from the stage i at stage age s by the natural progression of the disease.
These duration functions have the following properties:

Pi(0) = 1, Ṗi(s) ≤ 0,
∫ ∞

0
Pi(s)ds < ∞, i = E, I.



90 3 Endemic Disease Models

For the vital dynamics, we use the simplest function e−μt for the probability
of survival (because our focus is on the effect of arbitrary distribution for disease
stages). Let the numbers of initial susceptible and removed individuals be S0 >

0 and R0 > 0 respectively. Let E0(t)e
−μt and I0(t)e

−μt be the non-increasing
functions that represent the numbers of individuals that were initially exposed and
infective, respectively, and are still alive and in the respective classes at time t . E(0)
and I (0) are constants representing the number of individuals in the E and I classes,
respectively, at time t = 0. Let Ĩ0(t) denote those initially infected who have moved
into the I , and are still alive at time t . Consider the force of infection λ(t) that takes
the form

λ(t) = c
I (t)

N
. (3.30)

Then the number of individuals who became exposed at some time s ∈ (0, t) and
are still alive and in the E class at time t is

E(t) =
∫ t

0
λ(s)S(s)PE(t − s)e−μ(t−s)ds + E0(t)e

−μt ,

and the number of infectious individuals at time t is

I (t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)]PI (t − τ)e−μ(t−s)dsdτ + I0(t)e

−μt + Ĩ0(t).

Assume that the recruitment rate is μN and they all enter the S class. Then the
SEIR model reads

S(t) =
∫ t

0
μNe−μ(t−s)ds −

∫ t

0
λ(s)S(s)e−μ(t−s)ds + S0e

−μt ,

E(t) =
∫ t

0
λ(s)S(s)PE(t − s)e−μ(t−s)ds + E0(t)e

−μt ,

I (t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)]PI (t − τ)e−μ(t−s)dsdτ + Ĩ (t),

(3.31)

where λ(t) is given in (3.30), and X̃(t) = X0(t)e
−μt + X̃0(t) (X = Q, I,H,R).

It can be shown that under standard assumptions on initial data and parameter
functions the system (3.31) has a unique non-negative solution defined for all
positive time.

When specific distributions are assumed for functions PE and PI the sys-
tem (3.31) might be simplified. In particular, under the exponential distribution
assumption (EDA) and gamma distribution assumption (GDA) the system can be
reduced to be ODE systems, which will be referred to as the exponential distribution
model (EDM) and gamma distribution model (GDM), respectively. This allows the
examination of how the distribution assumptions may affect the model predictions.
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Let

a(τ) = e−μτ

∫ τ

0
[−ṖE(τ − u)]PI (u)du. (3.32)

The reproduction number is given by

Rc =
∫ ∞

0
ca(τ)dτ. (3.33)

To see the biological meaning of the expression (3.33) and to simplify the
notation in later sections we introduce the following quantities:

TE =
∫ ∞

0
[−ṖE(s)]e−μsds, TI =

∫ ∞

0
[−ṖI (s)]e−μsds,

DE =
∫ ∞

0
PE(s)e−μsds, DI =

∫ ∞

0
PI (s)e

−μsds.

(3.34)

TE , TI represent, respectively, the probability that exposed individuals survive
and become infectious, and the probability that infectious individuals survive and
become recovered. DE represents the mean sojourn time (death-adjusted) in the
exposed stage, and DI represents the mean sojourn time (death-adjusted) in the
infectious stage. Using (3.34) we can rewrite Rc in (3.33) as

Rc = c

∫ ∞

0
a(τ)dτ = cTEk

DIl . (3.35)

System (3.31) always has the disease-free equilibrium (DFE), and an endemic
equilibrium may exist depending on the value of R0 as described below. The proof
of the result can be found in [18].

Result For System (3.31), the DFE is a global attractor if Rc < 1 and unstable if
Rc > 1, in which case an endemic equilibrium exists and is stable.

To compare the model behavior under different stage distributions, let PE and
PI be the gamma distributions with the duration functions PE(s) = pm(s, κ) and
PI (s) = pn(s, α), with mean 1/κ and 1/α, respectively. When m = n = 1, where m

and n are the shape parameters, PE and PI are exponential distributions the general
model (3.31) has the usual form of the standard SEIR model:

S′ = μN − cS I
N

− μS,

E′ = cS I
N

− (κ + μ)E,

I ′ = κE − (α + μ)I.

(3.36)

For other integers m and n, then the integral equation model (3.31) can be
reduced to an ordinary differential equation model. It has been noted that the use
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of the gamma distribution pn(s, θ) for a disease stage, e.g., the exposed stage, is
equivalent to assuming that the entire stage is replaced by a series of n sub-stages,
and each of the sub-stages is exponentially distributed with the removal rate nθ

and the mean sojourn time T/n, where T = 1/θ is the mean sojourn time of the
entire stage (see, for example, [23, 30, 32]). This approach of converting a gamma
distribution to a sequence of exponential distributions is known as the “linear chain
trick”. In this case, the general model (3.31) reduces to the following ODEs:

S′ = μN − cS I
N

− μS,

E′
1 = cS I

N
− (mκ + μ)E1,

E′
j = mκEj−1 − (mκ + μ)Ej , j = 2, · · · ,m,

I ′
1 = mκEm − (nα + μ)I1,

I ′
j = nαIj−1 − (nα + μ)Ij , j = 2, · · · , n,
with I = ∑n

j=1 Ij .

(3.37)

From the formula (3.35) we get the reproduction number for system (3.37):

Rc = (mκ)m

(μ + mκ)m

c

μ + nα

n−1∑

j=0

(nα)j

(μ + nα)j
. (3.38)

The qualitative behavior of the two systems (3.36) and (3.37) is the same due
to the results stated above. For the quantitative behavior, some differences exist.
For example, Fig. 3.7 illustrates that the model with gamma distributions tend
to generate a lower frequency in oscillations than the model with exponential
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Fig. 3.7 Comparison of simulations of the SEIR model with exponential and gamma distribu-
tions (3.36) and (3.37). Plot in (a) is for the case when the initial fraction of infectious individuals
is higher (0.0015) while in (b) it is lower (0.0001). We observe in (a) that the solution of the
model with gamma distribution has much lower magnitude in the oscillation than the solution of
the model with exponential distribution, whereas in (b) it is opposite. However, in both (a) and (b)
the frequency of the oscillation is lower for the gamma distribution model than for the exponential
distribution model. The parameter values used are 1/κ = 2 (day), 1/α = 7 (day), 1/μ = 15
(year). This is more appropriate for modeling school entry and exit. The values of c is chosen so
that R0 = 2
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distributions. As for the magnitude of oscillations, either model can have a higher
magnitude than the other depending on the initial conditions.

3.6.1 *Incorporation of Quarantine and Isolation

As pointed out earlier, the model with gamma distributions for disease stages (3.37)
has similar qualitative behavior as the model with exponential distributions (3.36).
As will be shown in this section, when control measures with quarantine and
isolation are considered, models with exponential and gamma distributions can
generate very different quantitative outcomes, including contradictory evaluations
regarding control strategies.

Let ρ denote the isolation efficiency with ρ = 1 representing complete
effectiveness. Thus, when ρ < 1 the isolated individuals can transmit the infection
with a reduced infectivity 1 − ρ. The force of infection is

λ(t) = c
I (t) + (1 − ρ)H(t)

N
. (3.39)

Let k(s), l(s): [0,∞) → [0, 1] denote, respectively, the probabilities that
exposed, infective individuals have not been quarantined, isolated at stage age s.
Hence, 1 − k(s) =: k̄(s), 1 − l(s) =: l̄(s) give the respective probabilities of being
quarantined, isolated before reaching stage age s. Assume that k(0) = l(0) = 1,
k̇(s) ≤ 0 and l̇(s) ≤ 0. Consider the simpler case when the survivals from
quarantine and isolation are described by the exponential functions

k(s) = e−χs, l(s) = e−φs (3.40)

with χ and φ being constants, we have

E0(t) = E(0)e−(χ+α)t , I0(t) = I (0)e−(φ+δ)t , etc. (3.41)

The model with general distributions as well as quarantine and isolation is

S(t) =
∫ t

0
μNe−μ(t−s)ds −

∫ t

0
λ(s)S(s)e−μ(t−s)ds + S0e

−μt ,

E(t) =
∫ t

0
λ(s)S(s)PE(t − s)k(t − s)e−μ(t−s)ds + E0(t)e

−μt ,

Q(t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−PE(τ−s)k̇(τ−s)]PE

(
t−τ

∣
∣τ−s

)
e−μ(t−s)dsdτ+Q̃(t),

I (t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ−s)k(τ−s)]PI (t−τ)l(t − τ)e−μ(t−s)dsdτ+Ĩ (t),
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H(t) =
∫ t

0

∫ u

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)k(τ − s)][−PI (u − τ)l̇(u − τ)]

×PI

(
t − u

∣
∣u − τ

)
e−μ(t−s)dsdτdu

+
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)k̄(τ − s)]PI (t − τ)e−μ(t−s)dsdτ+H̃ (t),

R(t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)][1 − PI (t − τ)]e−μ(t−s)dsdτ + R̃(t),

(3.42)

where λ(t) is given in (3.39) and X̃(t) = X0(t)e
−μt + X̃0(t) (X = Q, I,H,R).

Again X̃(t) → 0 as t → ∞.
Let

a1(τ ) = e−μτ

∫ τ

0
[−ṖE(τ − u)k(τ − u)]PI (u)l(u)du,

a2(τ ) = e−μτ

∫ τ

0
[−ṖE(τ − u)k(τ − u)]PI (u)l̄(u)du,

a3(τ ) = e−μτ

∫ τ

0
[−ṖE(τ − u)k̄(τ − u)]PI (u)du,

(3.43)

where k̄(s) = 1 − k(s), l̄(s) = 1 − l(s). Let

A(τ) = a1(τ ) + (1 − ρ)

[

a2(τ ) + a3(τ )

]

.

Then, the reproduction number is

Rc = c

∫ ∞

0
A(τ)dτ. (3.44)

We can also rewrite R0 in the following form:

Rc = RI + RIH + RQH , (3.45)

where

RI = c

∫ ∞

0
a1(τ )dτ = cTEk

DIl ,

RIH = (1 − ρ)c

∫ ∞

0
a2(τ )dτ = (1 − ρ)cTEk

(DI − DIl ),

RQH = (1 − ρ)c

∫ ∞

0
a3(τ )dτ = (1 − ρ)c(TE − TEk

)DI .
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and

TE =
∫ ∞

0
[−ṖE(s)]e−μsds, TEk

=
∫ ∞

0
[−ṖE(s)k(s)]e−μsds,

TI =
∫ ∞

0
[−ṖI (s)]e−μsds, TIl =

∫ ∞

0
[−ṖI (s)l(s)]e−μsds,

DE =
∫ ∞

0
PE(s)e−μsds, DEk

=
∫ ∞

0
PE(s)k(s)e−μsds,

DI =
∫ ∞

0
PI (s)e

−μsds, DIl =
∫ ∞

0
PI (s)l(s)e

−μsds.

(3.46)

The three components, RI ,RIH ,RQH in Rc represent contributions from the
I class and from the H class through isolation and quarantine, respectively. TE

and TEk
represent, respectively, the probability and the “quarantine-adjusted”

probability that exposed individuals survive and become infectious. TI and TIl

represent, respectively, the probability and the “isolation-adjusted” probability
that infectious individuals survive and become recovered. DE and DEk

represent,
respectively, the mean sojourn time (death-adjusted) and the “quarantine-adjusted”
mean sojourn time (death-adjusted as well) in the exposed stage. DI and DIl

represent, respectively, the mean sojourn time (death-adjusted) and the “isolation-
adjusted” mean sojourn time (death-adjusted as well) in the infectious stage.

For system (3.42), the same results as for system (3.31) holds, i.e., the DFE is
a global attractor if Rc < 1 and unstable if Rc > 1, in which case an endemic
equilibrium exists and is stable.

3.6.2 *The Reduced Model of (3.42) Under GDA

Again let PE and PI be the gamma distributions with the duration functions
PE(s) = pm(s, κ) and PI (s) = pn(s, α), with mean 1/κ and 1/α, respectively.
Then using the functions k(s) and l(s) given in (3.40) we can differentiate the
equations in system (3.42) and obtain the following system of ordinary differential
equations

S′ = μN − cS
I + (1 − ρ)H

N
− μS,

E′
1 = cS

I + (1 − ρ)H

N
− (χ + mκ + μ)E1,

E′
j = mκEj−1 − (χ + mκ + μ)Ej , j = 2, · · · ,m,

Q′
1 = χE1 − (mκ + μ)Q1,

Q′
j = χEj + mκQj−1 − (mκ + μ)Qj , j = 2, · · · ,m,

I ′
1 = mκEm − (φ + nα + μ)I1, (3.47)
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I ′
j = nαIj−1 − (φ + nα + μ)Ij , j = 2, · · · , n,
H ′

1 = mκQm + φI1 − (nα + μ)H1,

H ′
j = nαHj−1 + φIj − (nα + μ)Hj , j = 2, · · · , n,

R′ = nαIn + nαHn − μR,

with I =
n∑

j=1

Ij , H =
n∑

j=1

Hj .

In the special case when m = n = 1, the system (3.47) reduces to:

S′ = μN − cS
I+(1−ρ)H

N
− μS,

E′ = cS
I+(1−ρ)H

N
− (χ + κ + μ)E,

Q′ = χE − (κ + μ)Q,

I ′ = κE − (φ + α + μ)I,

H ′ = κQ + φI − (α + μ)H.

(3.48)

From the formula (3.45) we get the reproduction number for system (3.47):

Rc = (mκ)m

(μ + mκ)m

c

μ + nδ

n−1∑

j=0

(nα)j

(μ + nα)j

[

1 − ρ

(

1 − (μ + mκ)m

(μ + mκ + χ)m

μ + nα

μ + nα + φ

∑n−1
j=0

(nα)j

(μ+nα+φ)j

∑n−1
j=0

(nα)j

(μ+nα)j

)]

,

(3.49)
with the derivatives

∂Rc

∂χ
= −cρ

m(mκ)m

(μ + mκ + χ)m+1

n−1∑

j=0

(nα)j

(μ + nα + φ)j+1 < 0, (3.50)

∂Rc

∂φ
= −cρ

(mκ)m

(μ + mκ + χ)m

n−1∑

j=0

(j + 1)(nα)j

(μ + nα + φ)j+2 < 0. (3.51)

3.6.3 *Comparison of EDM and GDM

In this section, we show that when the GDA is used to replace the EDA, model
predictions regarding the effectiveness of disease intervention policies may be
different both quantitatively and qualitatively. We illustrate this by comparing the
two models, GDM (3.47) and EDM (3.48). Two criteria are used in the comparison.
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One is the impact of control measures described by χ and φ on the reduction in the
magnitude of Rc and the other one is the reduction in the number of cumulative
infections C at the end of an epidemic (the final epidemic size).

From (3.49) to (3.51) we know that the reproduction number Rc for GDM
decreases with increasing χ and φ. Similarly, using the formula (3.45) we get the
reproduction number for the EDM, Rc = RI + RIH + RQH , where

RI = cκ

(μ + κ + χ)(μ + α + φ)
,

RIH = (1 − ρ)cκ

μ + κ + χ

(
1

μ + α
− 1

μ + α + φ

)

,

RQH = (1 − ρ)c

(
κ

μ + κ
− κ

μ + κ + χ

)
1

μ + α
,

which can be written in a simpler form as:

Rc = κ

μ + κ

c

μ + α

[

1 − ρ

(

1 − μ + κ

μ + κ + χ

μ + α

μ + α + φ

)]

. (3.52)

The derivatives of Rc with respect to the control parameters are

∂Rc

∂χ
= −cρ

κ

(μ + κ + χ)2

1

μ + α + φ
< 0,

∂Rc

∂φ
= −cρ

κ

μ + κ + χ

1

(μ + α + φ)2 < 0.

Hence, the reproduction number Rc for EDM also decreases as the control
parameters χ and φ increase. Therefore, both models seem to work well when
the impact of each individual control measure is considered. When we try to
compare model predictions of combined control strategies, however, inconsistent
predictions by the two models are observed. For example, in Fig. 3.8a, b, Rc for
both models is plotted either as a function of φ for a fixed value of χ = 0.05, or
as a function of χ for a fixed value φ = 0.05, or as a function of both χ and φ

with χ = φ. For any vertical line except the one at 0.1, the three curves intersect
the vertical line at three points that represent three control strategies. The order
of these points (from top to bottom) determines the order of effectiveness (from
low to high) of the corresponding control strategies since a larger Rc value will
most likely lead to a higher disease prevalence. The order of these three points
(labeled by a circle, a triangle, and a square) predicted by the EDM and the GDM is
clearly different for the selected parameter sets, suggesting conflict assessments of
interventions between the two models. These conflict assessments are also shown
when we compare the C values. For example, Fig. 3.8a shows that the strategy
corresponding to χ = 0.3, φ = 0.05 (indicated by the triangle) is more effective
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Fig. 3.8 Comparison of the EDM and the GDM on the impact of various control measures. (a)
and (b) are plots of the reproduction number Rc as functions of control measures (χ and φ) for the
EDM and GDM, respectively

than the strategy corresponding to χ = 0.05, φ = 0.3 (indicated by the solid
circle). However, Fig. 3.8b shows the opposite, i.e., the strategy corresponding to
χ = 0.3, φ = 0.05 (indicated by the triangle) is less effective than the strategy
corresponding to χ = 0.05, φ = 0.3 (indicated by the solid circle). The parameter
values used in Fig. 3.8 are c = 0.2, ρ = 0.8, κ = 1/7, and α = 1/10,
corresponding to a disease with a latency period of 1/κ = 7 days and an infectious
period of 1/α = 10 days (e.g., SARS).

To examine in more detail the quantitative differences between the two models
we conducted intensive simulations of the EDM and the GDM for various control
measures, some of which are illustrated in Fig. 3.9. In this figure, the parameters
for gamma distributions are m = n = 3, E and I represent the fraction of latent
and infectious fractions E = (E1 + E2 + E3)/N and I = (I1 + I2 + I3)/N ,
respectively. The latent and infectious periods are κ = 1/7 and α = 1/10. The
cumulative infection is calculated by integrating the incidence function, i.e.,

C(t) =
∫ t

0
cS(s)

[
I (s) + (1 − ρ)H(s)

]
/Nds

where H = H1 + H2 + H3. Figure 3.9a, b is for Strategy I which implements
quarantine alone with χ = 0.07, and Fig. 3.9c, d is for Strategy II which implements
isolation alone with φ = 0.06. The effectiveness of these control measures is
reflected by the corresponding C(t) values. According to Fig. 3.9a, c, the EDM
predicts that Strategy II is more effective than Strategy I as the number C of
cumulative infections (fractions) under Strategy II is 30% lower than the C value
under Strategy I (notice that C ≈ 0.3 and C ≈ 0.2 under strategies I and II,
respectively). However, according to Fig. 3.9b, d, the GDM predicts that Strategy
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Fig. 3.9 Comparison of control strategies and evaluations given by the exponential distribution
model (EDM) and the gamma distribution model (GDM) with m = n = 3. Two strategies
represented by χ and φ are compared: Strategy I involves quarantine alone (χ = 0.07 and φ = 0)
while Strategy II involves isolation alone (χ = 0 and φ = 0.06). Other parameter values used are
1/κ = 7 (day), 1/α = 10 (day), 1/μ = 75 (year), and c = 0.2. The time unit is day

II is less effective than Strategy II as the number C of cumulative infections under
Strategy I is 30% lower than the C value under Strategy II (notice that C ≈ 0.23
and C ≈ 0.36 under strategies I and II, respectively). Obviously, in this example,
the predictions by the EDM and by the GDM are inconsistent.

One of the main reasons for the discrepancy between models with exponential
and gamma distributions is the memoryless property of the exponential distribution.
This can be made more transparent by examining the expected remaining sojourns
from the distributions. Under the gamma distribution pn(s, θ) (or simply denoted
by pn(s)) with n ≥ 2, the expected remaining sojourn at stage age s is

Mn(s) =
∫ ∞

0

pn(t + s)

pn(s)
dt = 1

pn(s)

∫ ∞

s

pn(t)dt = 1

nθ

∑n−1
k=0

∑k
j=0

(nθs)j

j !
∑n−1

k=0
(nθs)k

k!
.

After checking M ′
n(s) < 0 and lims→∞ Mn(s) → T/n where T = 1/θ , we know

that Mn(s) strictly decreases with stage age s, and that when s is large the expected
remaining sojourn can be as small as T/n. Hence, the expected remaining sojourn
in a stage is indeed dependent on the time already spent in the stage. Therefore, the
gamma distribution pn(s) for n ≥ 2 provides a more realistic description than the
exponential distribution p1(s) for which M1(s) = T for all s.
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3.7 Diseases in Exponentially Growing Populations

Many parts of the world experienced very rapid population growth in the eighteenth
century. The population of Europe increased from 118 million in 1700 to 187 million
in 1800. In the same time period the population of Great Britain increased from 5.8
to 9.15 million, and the population of China increased from 150 to 313 million
[33]. The population of English colonies in North America grew much more rapidly
than this, aided by substantial immigration from England, but the native population,
which had been reduced to one tenth of their previous size by disease following the
early encounters with Europeans and European diseases, grew even more rapidly.
While some of these population increases may be explained by improvements in
agriculture and food production, it appears that an even more important factor was
the decrease in the death rate due to diseases. Disease death rates dropped sharply
in the eighteenth century, partly from better understanding of the links between
illness and sanitation and partly because the recurring invasions of bubonic plague
subsided, perhaps due to reduced susceptibility. One plausible explanation for these
population increases is that the bubonic plague invasions served to control the popu-
lation size, and when this control was removed the population size increased rapidly.

In developing countries it is quite common to have high birth rates and high
disease death rates. In fact, when disease death rates are reduced by improvements
in health care and sanitation it is common for birth rates to decline as well, since
families no longer need to have as many children to ensure that enough children
survive to take care of the older generations. Again, it is plausible to assume that
population size would grow exponentially in the absence of disease but is controlled
by disease mortality.

The SIR model with births and deaths of Kermack and McKendrick [28]
includes births in the susceptible class proportional to population size and a natural
death rate in each class proportional to the size of the class. Let us analyze a model
of this type with birth rate r and a natural death rate μ < r . For simplicity we
assume the disease is fatal to all infectives with disease death rate α, so that there is
no removed class and the total population size is N = S + I . Our model is

S′ = r(S + I ) − βSI − μS

I ′ = βSI − (μ + α)I.
(3.53)

From the second equation we see that equilibria are given by either I = 0 or βS =
μ + α. If I = 0, the first equilibrium equation is rS = μS, which implies S = 0
since r > μ. It is easy to see that the equilibrium (0,0) is unstable. What actually
would happen if I = 0 is that the susceptible population would grow exponentially
with exponent r − μ > 0. If βS = μ + α, the first equilibrium condition gives

r
μ + α

β
+ rI − (μ + α)I − μ(μ + α)

β
= 0 ,
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which leads to

(α + μ − r)I = (r − μ)(μ + α)

β
.

Thus, there is an endemic equilibrium provided r < α + μ, and it is possible to
show by linearizing about this equilibrium that it is asymptotically stable. On the
other hand, if r > α +μ there is no positive equilibrium value for I . In this case we
may add the two differential equations of the model to give

N ′ = (r − μ)N − αI ≥ (r − μ)N − αN = (r − μ − α)N

and from this we may deduce that N grows exponentially. For this model, either
we have an asymptotically stable endemic equilibrium or population size grows
exponentially. In the case of exponential population growth we may have either
vanishing of the infection or an exponentially growing number of infectives.

If only susceptibles contribute to the birth rate, as may be expected if the disease
is sufficiently debilitating, the behavior of the model is quite different. Let us
consider the model

S′ = rS − βSI − μS = S(r − μ − βI)

I ′ = βSI − (μ + α)I = I (βS − μ − α)
(3.54)

which has the same form as the Lotka–Volterra predator–prey model of population
dynamics. This system has two equilibria, obtained by setting the right sides of
each of the equations equal to zero, namely (0, 0) and an endemic equilibrium
((μ + α)/β, (r − μ)/β). It turns out that the qualitative analysis approach we have
been using is not helpful as the equilibrium (0, 0) is unstable and the eigenvalues
of the coefficient matrix at the endemic equilibrium have real part zero. In this
case the behavior of the linearization does not necessarily carry over to the full
system. However, we can obtain information about the behavior of the system by a
method that begins with the elementary approach of separation of variables for first
order differential equations. We begin by taking the quotient of the two differential
equations and using the relation

I ′

S′ = dI

dS

to obtain the separable first order differential equation

dI

dS
= I (βS − μ − α)

S(r − βI)
.

Separation of variables gives

∫ ( r

I
− β

)
dI =

∫ (

β − μ + α

S

)

dS .
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Integration gives the relation

β(S + I ) − r log I − (μ + α) log S = c

where c is a constant of integration. This relation shows that the quantity

V (S, I ) = β(S + I ) − r log I − (μ + α) log S

is constant on each orbit (path of a solution in the (S, I ) plane). Each of these orbits
is a closed curve corresponding to a periodic solution.

We may view the model as describing an epidemic initially, leaving a susceptible
population small enough that infection cannot establish itself. Then there is a steady
population growth until the number of susceptibles is large enough for an epidemic
to recur. During this growth stage the infective population is very small and random
effects may wipe out the infection, but the immigration of a small number of infec-
tives will eventually restart the process. As a result, we would expect recurrent epi-
demics. In fact, bubonic plague epidemics did recur in Europe for several hundred
years. If we modify the demographic part of the model to assume limited population
growth rather than exponential growth in the absence of disease, the effect would
be to give behavior like that of the model studied in the previous section, with an
endemic equilibrium that is approached slowly in an oscillatory manner if R0 > 1.

3.8 Project: Population Growth and Epidemics

When one tries to fit epidemiological data over a long time interval to a model, it
is necessary to include births and deaths in the population. Throughout the book
we have considered population models with birth and death rates that are constant
in time. However, population growth often may be fit better by assuming a linear
population model with a time-dependent growth rate, even though this does not
have a model-based interpretation. There could be many reasons for variations in
birth and death rates; we could not quantify the variations even if we knew all of
the reasons. Let r(t) = dN

dt
/N denote the time-dependent per capita growth rate. To

estimate r(t) from linear interpolation of census data, proceed as follows:

1. Let Ni and Ni+1 be the consecutive census measurements of population size
taken at times ti and ti+1, respectively. Let ΔN = Ni+1 − Ni , Δt = ti+1 − ti ,
and δN = N(t + δt) − N(t).

2. If ti ≤ t ≤ ti+1, ΔN
Δt

= δN
δt

, then we make the estimate r(t) ≈ ΔN
ΔtN(t)

.
3. A better approximation is obtained by replacing N(t) by N(t + δt/2). Why?

Show that in this case, r(t) ≈ ( δt2 + N(t)Δt
ΔN

)−1.
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Table 3.1 Population data growth for the USA

Year Population size Year Population size Year Population size

1700 250,888 1800 5,308,483 1900 75,994,575

1710 331,711 1810 7,239,881 1910 91,972,266

1720 466,185 1820 9,638,453 1920 105,710,620

1730 629,445 1830 12,866,020 1930 122,775,046

1740 905,563 1840 17,069,453 1940 131,669,275

1750 1,170,760 1850 23,192,876 1950 151,325,798

1760 1,593,625 1860 31,443,321 1960 179,323,175

1770 2,148,076 1870 39,818,449 1970 203,302,031

1780 2,780,369 1880 50,155,783 1980 226,542,199

1790 3,929,214 1890 62,947,714 1990 248,718,301

– – – – 2000 274,634,000

Fig. 3.10 Observed death
rate (filled circle) and the best
fit obtained with the
function (3.55)

Question 1 Use the data of Table 3.1 to estimate the growth rate r(t) for the
population of the USA.

Figure 3.10 shows the time evolution of the USA mortality rate. This mortality
rate is fit well by

μ = μ0 + μ0 − μf

1 + e
(t−t ′1/2)/Δ

′ (3.55)

with μ0 = 0.01948, μf = 0.008771, t ′1/2 = 1912, and Δ′ = 16.61. Then the
“effective birth rate” b(t) is defined as the real birth rate plus the immigration rate.
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Question 2 Estimate b(t) using r(t) = b(t) − μ(t), with r(t) found in Question 1.

Consider an SEIR disease transmission model. We assume that:

(a) An average infective individual produces β new infections per unit of time when
all contacts are with susceptibles but that otherwise, this rate is reduced by the
ratio S/N .

(b) Individuals in the exposed class E progress to the infective class at the per capita
rate k.

(c) There is no disease-induced mortality or permanent immunity, and there is a
mean infective period of 1/γ .

We define γ = r + μ. The model becomes:

dS

dt
= bN − μS − βS

I

N
,

dE

dt
= βS

I

N
− (k + μ)E,

dI

dt
= kE − (r + μ)I,

dR

dt
= rI − μR.

(3.56)

Question 3

(a) Show that the mean number of secondary infections (belonging to the exposed
class) produced by one infective individual in a population of susceptibles is
Q0 = β/γ .

(b) Assuming that k and μ are time-independent, show that R0 is given by Q0f ,
where f = k/(k + μ). What is the epidemiological interpretation of Q0f ?

The usual measure of the severity of an epidemic is the incidence of infective
cases. The incidence of infective cases is defined as the number of new infective
individuals per year. If we take 1 year as the unit of time, the incidence of infective
cases is given approximately by kE. The incidence rate of infective cases per
100,000 population is given approximately by 105 kE/N .

Tuberculosis (TB) is an example of a disease with an exposed (noninfective)
stage. Infective individuals are called active TB cases. Estimated incidence of active
TB in the USA was in a growing phase until around 1900 and then experienced
a subsequent decline. The incidence rate of active TB exhibited a declining trend
from 1850 (see Table 3.2 and Fig. 3.11). The proportion of exposed individuals who
survive the latency period and become infective is f = k

k+μ
. The number f will be

used as a measure of the risk of developing active TB by exposed individuals.

Question 4 Assume that the mortality rate varies according to the expression (3.55),
and that the value of b found in Question 2 is used. Set γ = 1 years−1 and β =
10 years −1, both constant through time. Simulate TB epidemics starting in 1700
assuming constant values for f . Can you reproduce the observed trends (Table 3.2)?
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Table 3.2 Reported incidence and incidence rate (per 100,000 population) of active TB

Year Incidence rate Incidence Year Incidence rate Incidence

1953 53 84,304 1976 15 32,105

1954 49.3 79,775 1977 13.9 30,145

1955 46.9 77,368 1978 13.1 28,521

1956 41.6 69,895 1979 12.6 27,769

1957 39.2 67,149 1980 12.3 27,749

1958 36.5 63,534 1981 11.9 27,337

1959 32.5 57,535 1982 11 25,520

1960 30.8 55,494 1983 10.2 23,846

1961 29.4 53,726 1984 9.4 22,255

1962 28.7 53,315 1985 9.3 22,201

1963 28.7 54,042 1986 9.4 22,768

1964 26.6 50,874 1987 9.3 22,517

1965 25.3 49,016 1988 9.1 22,436

1966 24.4 47,767 1989 9.5 23,495

1967 23.1 45,647 1990 10.3 25,701

1969 19.4 39,120 1992 10.5 26,673

1970 18.3 37,137 1993 9.8 25,287

1971 17.1 35,217 1994 9.4 24,361

1972 15.8 32,882 1995 8.7 22,860

1973 14.8 30,998 1996 8 21,337

1974 14.2 30,122 1997 7.4 19,885

1975 15.9 33,989 1998 6.8 18,361

It is not possible to obtain a good fit of the data of Table 3.2 to the model (3.56).
It is necessary to use a refinement of the model that includes time-dependence in the
parameters, and the next step is to describe such a model. The risk of progression
to active TB depends strongly on the standard of living. An indirect measure of the
standard of living can be obtained from the life expectancy at birth. The observed
life expectancy for the USA is approximated well by the sigmoid shape function

τ = τf + (τ0 − τf )

1 + exp[(t − t1/2)/Δ] , (3.57)

shown in Fig. 3.12. Here τ0 and τf are asymptotic values for life expectancy; t1/2 =
1921.3 is the time by which life expectancy reaches the value (τ0 + τf )/2; and
Δ = 18.445 determines the width of the sigmoid.

Assume that the risk f varies exactly like life expectancy, that is, assume that f
is given by

f (t) = ff + (fi − ff )

1 + exp[(t − t1/2)/Δ] . (3.58)
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Fig. 3.11 Incidence of active
TB

Fig. 3.12 Observed average
life expectancy at birth (filled
circle) and its best fit
(continuous line) using
expression (3.57)

We refine the model (3.56) by replacing the parameter k by the variable
expression μf (t)/(1 − f (t)) and k + μ by μ/(1 − f (t)), obtained from the
relation f = k/(k + μ). Since the time scale of the disease is much faster than
the demographic time scale, the recovery rate r is approximately equal to γ . This
gives the model
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dS

dt
= b(t)N − μ(t)S − βS

I

N
,

dE

dt
= βS

I

N
− μ(t)

1 − f (t)
E,

dI

dt
= μ(t)f (t)

1 − f (t)
E − γ I,

dR

dt
= γ I − μ(t)R.

(3.59)

Question 5 Simulate TB epidemics starting in 1700 using the model (3.59) with
γ = 1 years−1 and β = 10 years−1, both constant, and with μ(t) given
by (3.55) and f (t) given by (3.58). Find values of f0 and ff for which an accurate
reproduction of the observed TB trends (Table 3.2) is achieved.

References: [1–4, 9–11, 15, 16, 38–41].

3.9 *Project: An Environmentally Driven Infectious Disease

Consider an environmentally driven infectious disease such as cholera and toxo-
plasmosis (a parasite disease caused by T. gondii). For this type of disease, the
transmission occurs when susceptible hosts have contacts with a contaminated
environment, and the rate of environment contamination is dependent on both the
number of infected hosts and the average pathogen load within an infected host.
One way to model the transmission dynamics for such a disease is to consider both
the disease transmission at the population level and the infection process within the
hosts. The following model couples a simple within-host system for cell–parasite
interactions (e.g., see [34–36]) and an endemic SI model with an interaction with a
contaminated environment:

Ṫ = Λ − kV T − mT,

Ṫ ∗ = kV T − (m + d)T ∗,

V̇ = g(E) + pT ∗ − cV,

Ṡ = μ(S + I ) − λES − μS,

İ = λES − μI,

Ė = θ(V )I (1 − E) − γE.

(3.60)

Here, the variables for the within-host system T = T (t), T ∗ = T ∗(t), and V =
V (t) are the densities of healthy cells, infected cells, and parasite load, respectively.
S = S(t) and I = I (t) denote the numbers of susceptible and infective individuals
at time t , respectively. Λ denotes the recruitment rate of cells; k is the per-capita
infection rate of cells; m and d are the per-capita background and infection-induced
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cell mortalities, respectively; p denotes the parasite production rate by an infected
cell and c is the within-host clearance rate of pathogens.

The variables S(t) and I (t) denote the numbers of susceptible and infective
hosts at time t , and E(t) ( 0 ≤ E ≤ 1) represents the level of environmental
contamination at time t , or the concentration of the pathogen per unit area of a
region being considered. The parameter λ denotes the per-capita infection rate of
hosts in a contaminated environment; μ denotes per-capita birth and natural death
rate of hosts; and γ denotes the rate of pathogen clearance in the environment.

The function g(E) in the V equation represents an added rate in the change
of parasite load due to the continuous ingestion of parasites by the host from a
contaminated environment, and is assumed to have the following properties:

g(0) = 0, g(E) ≥ 0, g′(E) > 0, g′′(E) ≤ 0. (3.61)

One of the simplest forms for g(E) is the linear function g(E) = aE, where a is a
positive constant. Other forms of g(E) include g1(E) = aE/(1 + bE) with a and b

being positive constants and g2(E) = aEq (q < 1).
For the analysis of the coupled model (3.60), a commonly used approach is to

consider that the within-host system (consisting of the T , T ∗, and V equations)
occurs on a much faster time scale than the between-host system (consisting of S, I ,
and E equations), which allows the substitution of a stable equilibrium of the fast-
system (treating the slow-variables as constant) into the slow-system and study the
lower-dimensional slow system (see, e.g., [7, 12, 17, 19]). The system for the fast
variables is

Ṫ = Λ − kV T − mT

Ṫ ∗ = kV T − (m + d)T ∗
V̇ = g(E) + pT ∗ − cV,

(3.62)

and the system for the slow variables is

Ṡ = μ(S + I ) − λES − μS,

İ = λES − μI,

Ė = θIV (1 − E) − γE.

(3.63)

Question 1 Consider the fast system (3.62). The within-host reproduction number
Rw (w for within) is given by

Rw = kpT0

c(m + d)
(3.64)

where T0 = Λ/μ.
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(a) Let E > 0 be a constant. Show that (3.62) has a unique biologically feasible
equilibrium (which depends on E) Ũ (E) = (T̃ (E), T̃ ∗(E), Ṽ (E)).

(b) Show that the unique equilibrium Ũ (E) = (T̃ (E), T̃ ∗(E), Ṽ (E)) of (3.62) is
globally, asymptotically stable.
Hint: Consider the following Lyapunov function

L (T , T ∗, V ) = T̃

(
T

T̃
− log

T

T̃
− 1

)

+ T̃ ∗
(
T ∗

T̃ ∗ − log
T ∗

T̃ ∗ − 1

)

+m + d

p
Ṽ

(
V

Ṽ
− log

V

Ṽ
− 1

)

.

Consider the case when Rw > 1. It can be verified that Ṽ (0) = limE→0 Ṽ (E) > 0.
Note that the total population of hosts N = S + I remains constant for all t >

0. Thus, the fast system (3.62) can be reduced to a two-dimensional system (by
ignoring the S equations). Note also that Ũ is g.a.s. in the fast system. We can
replace the fast variable V in (3.62) by Ṽ (E) and study the following fast system

İ = λE(N − I ) − μI,

Ė = θI Ṽ (E)(1 − E) − γE.
(3.65)

The reproduction number for the between-host system, which is denoted by Rb (b
for between) and defined as

Rb = θṼ (0)

μ

λN

γ
. (3.66)

Therefore, Rb represents the number of secondary infections through the environ-
ment by one infected individual during the entire infectious period in a completely
susceptible host population and environment.

Let Ŵ = (Î , Ê) denote a biologically feasible equilibrium for (3.65). Show that
Î = λÊN/(λÊ+μ) and Ê is a solution of the equation F(E) = G(E), 0 < E < 1,
where

F(E) = 1 − E

c

[

g(E) + pm

m + d

(
T0 − T̃ (E)

)]

,

G(E) = γE

θN
+ μγ

θλN
.

(3.67)

Equivalently, Ê is a zero of the function H(E) = F(E) − G(E) with 0 < E < 1.

(a) Let Ŵ0 = (0, 0) denote the infection-free equilibrium of (3.65). Show that Ŵ0
locally asymptotically stable when Rb < 1 and unstable when Rb > 1.
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Fig. 3.13 Plot of the function
H(E) for different Rb value
between 0.75 and 2. A zero of
H(E) in (0, 1) corresponds to
positive equilibrium of the
slow system (3.65)
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(b) Show that it is possible for the equation H(E) = F(E) − G(E) = 0 to have 0,
1, or 2 solutions in (0, 1).
Hint: Show first that H ′′(E) > 0 for 0 < E < 1.

(c) Figure 3.13 illustrates a numerical plot of the function H(E) for various Rb

(by varying λ) values between 0.75 and 2. Other parameter values used are:
Λ = 6 × 103, k = 1.5 × 10−6, m = 0.3, d = 0.2, a = 4 × 105, c = 50,
Rw0 = 1.09 (p = 908), N = 104, μ = 4×10−4, θ = 1×10−10, and γ = 0.02.
What do you observe? How does the number of solutions of H(E) = 0 depend
on Rb?

(d) From the plot in part (c) we can observe that there exists a lower bound RbL ∈
(0, 1) such that for all Rb ∈ (RbL, 1), the equation H(E) = F(E)−G(E) = 0
has two solutions in (0, 1), which correspond to two positive equilibria Ŵi =
(Îi , Êi) (i = 1, 2) with Î2 > Î1. In this case, prove analytically that Ŵ2 is
locally asymptotically stable and Ŵ1 is unstable. (Hint: Check the sign of the
eigenvalues of the Jacobian matrix at Ŵ ).

(e) For the full system (3.60), conduct numerical simulations to confirm the results
stated in parts (a)–(d), which are obtained by separating the fast and slow
systems.

(i) Reproduce the Fig. 3.14 (left) by plotting the fraction of infected I (t)/N vs.
time with several sets of initial conditions. Use the same parameter values as in
Part (c) except that p = 850 (corresponding to Rb = 0.37 < 1), a = 5 × 105,
λ = 5.5 × 10−4, and γ = 0.015.

(ii) Reproduce the phase portrait shown in Fig. 3.14 (right), which illustrates one
fast variable (V ) and one slow variable (E). Use the same parameter values as
in Part (c) except that p = 103 (corresponding to Rb > 1) and a = 4 × 104.
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Fig. 3.14 Left: Time plot of the full system (3.60) for Rb ∈ (RbL, 1), in which case there are two
stable equilibria, one with the infection-free and one with positive infection level. Right: Phase
portrait of the full system (3.60) for Rb > 1, in which case there is a unique stable equilibrium

3.10 *Project: A Two-Strain Model with Cross Immunity

This project concerns a two-strain model with cross immunity. Divide the popula-
tion into ten different classes: susceptibles (S), infected with strain i (Ii), primary
infection), isolated with strain i (Qi), recovered from strain i (Ri , as a result of
primary infection), infected with strain i (Vi , secondary infection), given that the
population had recovered from strains j �= i, and recovered from both strains (W ).
Let A denote the population of non-isolated individuals and let βiS(Ii+Vi)

A
be the

rate at which susceptibles become infected with strain i. That is, the ith (i �= j )
incidence rate is assumed to be proportional to both the number of susceptibles
and the available modified proportion of i-infectious individuals, (Ii+Vi)

A
. Let σij

denote a measure of the cross-immunity provided by a prior infection with strain i

to exposure with strain j (i �= j ). Consider the following model

dS

dt
= Λ −

2∑

i=1

βiS
(Ii + Vi)

A
− μS,

dIi

dt
= βiS

(Ii + Vi)

A
− (μ + γi + δi)Ii ,

dQi

dt
= δiIi − (μ + αi)Qi,

dRi

dt
= γiIi + αiQi − βjσijRi

(Ij + Vj )

A
− μRi, j �= i

dVi

dt
= βiσijRj

(Ii + Vi)

A
− (μ + γi)Vi, j �= i

dW

dt
= ∑2

i=1 γiVi − μW,

A = S + W +∑2
i=1(Ii + Vi + Ri).

(3.68)
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The basic reproduction number for strain i is

Ri = βi

μ + γi + δi
, i = 1, 2.

Assume that σ12 = σ21 = σ . The values of reproduction numbers Ri and the cross-
immunity levels σ determine the existence and stability of equilibrium points of the
system (3.68). Let Ei denote the boundary equilibria where only strain i is present
(i = 1, 2).

Question 1 Consider the case when changes in Ri are due to changes in βi . Let
f (R1) and g(R2) be the two functions given by

f (R1) = R1

1 + σ(R1 − 1)
(

1 + δ2
μ+γ2

) (
1 − μ(μ+α1)

(μ+γ1)(μ+α1)+α1δ1

) (3.69)

and

g(R2) = R2

1 + σ(R2 − 1)
(

1 + δ1
μ+γ1

) (
1 − μ(μ+α2)

(μ+γ2)(μ+α1)+α2δ2

) , (3.70)

and let σ ∗
1 and σ ∗

2 be the critical values such that

f ′(R1) ≡ ∂f (R1, σ )

∂R1

∣
∣
∣
σ ∗

1

= 0, g′(R2) ≡ ∂g(R2, σ )

∂R2

∣
∣
∣
σ ∗

2

= 0. (3.71)

Determine the properties of f and g and sketch these functions in the R1 − R2
plane.

Question 2

(a) Determine the region(s) in the R1 − R2 plane for the existence of E1 and E2.
(b) Determine the conditions for the stabilities of E1 and E2.

3.11 Exercises

1. Consider the following SEIR model with disease-induced mortality:

dS

dt
= μN − βS

I

N
− μS,

dE

dt
= βS

I

N
− (κ + μ)E,
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dI

dt
= κE − (γ + μ + δ)I,

dR

dt
= γ I − μR,

N = S + E + I + R,

where δ denotes the per capita rate of disease related death.

(a) Compute the basic reproduction number R0.
(b) Does the system have an endemic equilibrium? If yes, find the condition in

terms of R0.
(c) Show that the endemic equilibrium is locally asymptotically stable whenever

it exists.
(d) Reduce the system to a three-dimensional system by introducing fractions

u = S/N , x = E/N , y = I/N , z = R/N .

2. Show that the endemic equilibrium of (3.3) is asymptotically stable if R0 > 1.
3. Consider a population in which a fraction p ∈ (0, 1) of newborns are successfully

vaccinated and assume permanent immunity after infection and vaccination.
Assume that infectious individuals are treated at a per capita rate r . Let Rc

denote the control reproduction number such that the disease-free equilibrium
is locally asymptotically stable when Rc < 1. Consider a disease for which
β = 0.86, γ = 1/14 days−1, μ = 1/75 years−1. Use the following SIR model
to calculate the threshold immunity level pc such that Rc < 1 for p > pc.

dS

dt
= μN(1 − p) − βS

I

N
− μS,

dI

dt
= βS

I

N
− (γ + μ + r)I,

dR

dt
= μNp + (γ + r)I − μR,

N = S + I + R.

(a) Find pc in the absent of treatment (i.e., r = 0).
(b) Find pc when r = 0.2.
(c) Plot pc as a function of r .
(d) Plot Rc as a function of p and r

(e) Plot several contour curves of Rc in the (p, r) plane including the curve for
Rc = 1.

4. Consider the SIRS model (3.10).

(a) Find the expression for the fraction I ∗/N of the infected individuals at the
endemic equilibrium.

(b) Explore the dependence of I ∗/N on the immunity loss (θ ), particularly in
the two extreme cases when the immunity period is very short or very long.
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5.∗ Consider the SIR model with delay (3.12).

(a) Find the endemic equilibrium.
(b) Let β = 0.86 and α = 1/14. Determine the threshold value ωc such that

the stability of the endemic equilibrium switches its stability.

6. Consider the vaccination model (3.21).

(a) Verify that Rc < 1 whenever there is a backward bifurcation.
(b) Show how to choose ϕ to make Rc < R0, assuming that all parameters other

than ϕ are kept fixed.
(c) Is it possible to improve the vaccine (decrease σ ) enough to make Rc < R0,

assuming all parameters other than σ are kept fixed?

7.∗ Consider the model with a gamma distribution (3.47) and the exponential
distribution (3.48). Compare the behavior of the two models under the scenarios
specified below. Assume that all parameters have the same values as in Fig. 3.10
except the control parameters χ and ϕ.

(a) χ = ϕ = 0. Do you observe any differences in the disease prevalence
between the two models? Explain why or why not.

(b) Compare the two models under two strategies. Strategy I: χ = 0.08 and
ϕ = 0, Strategy II: χ = 0 and ϕ = 0.08. Do you observe any differences in
the disease prevalence between the two models? Explain why or why not.
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Chapter 4
Epidemic Models

In this chapter we describe models for epidemics, acting on a sufficiently rapid time
scale that demographic effects, such as births, natural deaths, immigration into and
emigration out of a population may be ignored. The prototype epidemic model is
the simple Kermack–McKendrick model studied in Sect. 2.4.

We have established that the simple Kermack–McKendrick epidemic model

S′ = −βSI

I ′ = βSI − αI
(4.1)

has the basic properties:

1. There is a basic reproduction number R0 such that if R0 < 1, the disease dies
out while if R0 > 1 there is an epidemic.

2. The number of infectives always approaches zero and the number of susceptibles
always approaches a positive limit S∞ as t → ∞.

3. There is a relation

log
S0

S∞
= R0

[

1 − S∞
N

]

(4.2)

between the reproduction number and the final size of the epidemic which is an
equality if there are no disease deaths.

We will extend this model to models with more compartments and general
distributions of stay in a compartment, for which these properties also hold, but
we begin this chapter by presenting a more realistic description of the beginning of
a disease outbreak than the compartmental approach. We will assume throughout
this chapter that there are no disease deaths; the effects of including disease deaths
in an epidemic model are the same as those described for the Kermack–McKendrick
model with disease deaths in Sect. 2.5.
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4.1 A Branching Process Disease Outbreak Model

The Kermack–McKendrick compartmental epidemic model assumes that the sizes
of the compartments are large enough that the mixing of members is homogeneous,
or at least that there is homogeneous mixing in each subgroup if the population is
stratified by activity levels. However, at the beginning of a disease outbreak, there
is a very small number of infective individuals and the transmission of infection
is a stochastic event depending on the pattern of contacts between members of the
population; a description should take this pattern into account.

Our approach will be to give a stochastic branching process description of the
beginning of a disease outbreak to be applied so long as the number of infectives
remains small, distinguishing a (minor) disease outbreak confined to this stage from
a (major) epidemic, which occurs if the number of infectives begins to grow at an
exponential rate. Once an epidemic has started we may switch to a deterministic
compartmental model, arguing that in a major epidemic, contacts would tend to
be more homogeneously distributed. Implicitly, we are thinking of an infinite
population, and by a major epidemic, we mean a situation in which a nonzero
fraction of the population is infected, and by a minor outbreak, we mean a situation
in which the infected population may grow but remains a negligible fraction of the
population.

There is an important difference between the behavior of branching process
models and the behavior of models of Kermack–McKendrick type, namely that,
as we shall see in this section, for a stochastic disease outbreak model if R0 < 1
the probability that the infection will die out is 1, but if R0 > 1 there is a positive
probability that the infection will increase initially but will produce only a minor
outbreak and will die out before triggering a major epidemic.

We describe the network of contacts between individuals by a graph with
members of the population represented by vertices and with contacts between
individuals represented by edges. The study of graphs originated with the abstract
theory of Erdös and Rényi of the 1950s and 1960s [13–15]. It has become important
in many areas of application, including social contacts and computer networks, as
well as the spread of communicable diseases. We will think of networks as bi-
directional, with disease transmission possible in either direction along an edge.

An edge is a contact between vertices that can transmit infection. The number of
edges of a graph at a vertex is called the degree of the vertex. The degree distribution
of a graph is {pk}, where pk is the fraction of vertices having degree k. The degree
distribution is fundamental in the description of the spread of disease.

We think of a small number of infectives in a population of susceptibles large
enough that in the initial stage we may neglect the decrease in the size of the
susceptible population. Our development begins along the lines of that of [12]
and then develops along the lines of [10, 32, 34]. We assume that the infectives
make contacts independently of one another and let pk denote the probability
that the number of contacts by a randomly chosen individual is exactly k, with∑∞

k=0 pk = 1. In other words, {pk} is the degree distribution of the vertices of
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the graph corresponding to the population network. For the moment, we assume
that every contact leads to an infection, but we will relax this assumption later.

It is convenient to define the generating function

G0(z) =
∞∑

k=0

pkz
k.

Since
∑∞

k=0 pk = 1, this power series converges for 0 ≤ z ≤ 1, and may be
differentiated term by term. Thus

pk = G
(k)
0 (0)

k! , k = 0, 1, 2, · · · .

It is easy to verify that the generating function has the properties

G0(0) = p0, G0(1) = 1, G′
0(z) > 0, G′′

0(z) > 0.

The mean degree, which we denote by 〈k〉 or z1, is

〈k〉 =
∞∑

k=1

kpk = G′
0(1).

More generally, we define the moments

〈kj 〉 =
∞∑

k=1

kjpk, j = 1, 2, · · · ∞.

When a disease is introduced into a network, we think of it as starting at a vertex
(patient zero) who transmits infection to every individual to whom this individual
is connected, that is, along every edge of the graph from the vertex corresponding
to this individual. We may think of this individual as being inside the population,
as when a member of a population returns from travel after being infected, or as
being outside the population, as when someone visits another population and brings
back an infection. For transmission of disease after this initial contact, we need
to use the excess degree of a vertex. If we follow an edge to a vertex, the excess
degree of this vertex is one less than the degree. We use the excess degree because
infection cannot be transmitted back along the edge whence it came. The probability
of reaching a vertex of degree k, or excess degree (k − 1), by following a random
edge is proportional to k, and thus the probability that a vertex at the end of a random
edge has excess degree (k−1) is a constant multiple of kpk with the constant chosen
to make the sum over k of the probabilities equal to 1. Then the probability that a
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vertex has excess degree (k − 1) is

qk−1 = kpk

< k >
.

This leads to a generating function G1(z) for the excess degree

G1(z) =
∞∑

k=1

qk−1z
k−1 =

∞∑

k=1

kpk

< k >
zk−1 = 1

< k >
G′

0(z),

and the mean excess degree, which we denote by < ke >, is

< ke > = 1

< k >

∞∑

k=1

k(k − 1)pk

= 1

< k >

∞∑

k=1

k2pk − 1

< k >

∞∑

k=1

kpk

= < k2 >

< k >
− 1 = G′

1(1).

We let R0 = G′
1(1), the mean excess degree. This is the mean number of secondary

cases caused by patient zero over the course of the outbreak and is the basic
reproduction number as usually defined; the threshold for an epidemic is determined
by R0. The quantity < ke >= G′

1(1) is sometimes written in the form

< ke >= G′
1(1) = z2

z1
,

where z2 = ∑∞
k=1 k(k − 1)pk =< k2 > − < k > is the mean number of second

neighbors of a random vertex. We note that R0 depends not only on the mean degree
but also on its variance.

Our next goal is to calculate the probability that the infection will die out and
will not develop into a major epidemic, proceeding in two steps. First we find the
probability that a secondary infected vertex (a vertex which has been infected by
another vertex in the population) will not spark a major epidemic. The computations
are performed on a branching approximation to an actual epidemic valid only at the
beginning of the epidemic. In an actual epidemic some contacts are “wasted” on
individuals who have already been infected.

Suppose that the secondary infected vertex has excess degree j . We let zn denote
the probability that this infection dies out within the next n generations. For the
infection to die out in n generations each of the j secondary infections coming
from the initial secondary infected vertex must die out in (n − 1) generations. The
probability of this is zn−1 for each secondary infection, and the probability that
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all secondary infections will die out in (n − 1) generations is z
j

n−1. Now zn is the
sum over j of these probabilities, weighted by the probability qj of j secondary
infections. Thus

zn =
∞∑

j=0

qj z
j

n−1 = G1(zn−1), z0 = 0.

We assume G1(0) ≥ 0 so that there is an interval 0 < z ≤ w on which G1(z) ≥
z;w is the smallest positive solution of z = G1(z) and zn < w. If G1(0) = 0, then
q0 = 0, and p1 = 0. Thus the assumption G1(0) > 0 is that the contact graph has
no vertices with only one edge.

The sequence zn is an increasing sequence and has a limit z∞, which is the
probability that this infection will die out eventually. Then z∞ is the limit as n → ∞
of the solution of the difference equation

zn = G1(zn−1), z0 = 0.

Thus z∞ must be an equilibrium of this difference equation, that is, a solution of
z = G1(z). Since w is the smallest positive solution of z = G1(z), z ≤ G1(z) ≤
G1(w) = w for 0 ≤ z ≤ w. It follows by induction that

zn ≤ w, n = 0, 1, · · · ∞.

From this we deduce that

z∞ = w.

The equation G1(z) = z has a root z = 1 since G1(1) = 1. Because the function
G1(z)−z has a positive second derivative, its derivative G′

1(z)−1 is increasing and
can have at most one zero. This implies that the equation G1(z) = z has at most two
roots in 0 ≤ z ≤ 1. If R0 < 1 the function G1(z) − z has a negative first derivative

G′
1(z) − 1 ≤ G′

1(1) − 1 = R0 − 1 < 0

and the equation G1(z) = z has only one root, namely z = 1. On the other hand, if
R0 > 1 the function G1(z) − z is positive for z = 0 and negative near z = 1 since
it is zero at z = 1 and its derivative is positive for z < 1 and z near 1. Thus in this
case the equation G1(z) = z has a second root z∞ < 1.

This root z∞ is the probability that an infection transmitted along one of the
edges at the initial secondary vertex will die out, and this probability is independent
of the excess degree of the initial secondary vertex. It is also the probability that an
infection originating outside the population, such as an infection brought into the
population under study from outside, will die out.
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Next, we calculate the probability that an infection originating at a primary
infected vertex, such as an infection introduced by a visitor from outside the
population under study, will die out. The probability that the disease outbreak will
die out eventually is the sum over k of the probabilities that the initial infection in
a vertex of degree k will die out, weighted by the degree distribution {pk} of the
original infection, and this is

∞∑

k=0

pkz
k∞ = G0(z∞).

To summarize this analysis, we see that if R0 < 1, the probability that the
infection will die out is 1. On the other hand, if R0 > 1, there is a solution z∞ < 1 of

G1(z) = z

and there is a probability 1−G0(z∞) > 0 that the infection will persist, and will lead
to an epidemic. However, there is a positive probability G0(z∞) that the infection
will increase initially but will produce only a minor outbreak and will die out before
triggering a major epidemic. This distinction between a minor outbreak and a major
epidemic, and the result that if R0 > 1, there may be only a minor outbreak and
not a major epidemic are aspects of stochastic models not reflected in deterministic
models.

If contacts between members of the population are random, corresponding to the
assumption of mass action in the transmission of disease, then the probabilities pk

are given by the Poisson distribution

pk = e−cck

k!
for some constant c [9, pp. 142–143]. The generating function for the Poisson
distribution is ec(z−1). Then G1(z) = G0(z), and R0 = c, so that

G1(z) = G0(z) = eR0(z−1).

The commonly observed situation that most infectives do not pass on infection
but there are a few “super-spreading events” [35] corresponds to a probability
distribution that is quite different from a Poisson distribution, and could give a quite
different probability that an epidemic will occur. For example, if R0 = 2.5 the
assumption of a Poisson distribution gives z∞ = 0.107 and G0(z∞) = 0.107, so
that the probability of an epidemic is 0.893. The assumption that nine out of ten
infectives do not transmit infection while the tenth transmits 25 infections gives

G0(z) = (z25 + 9)/10, G1(z) = z24, z∞ = 0, G0(z∞) = 0.9,



4.1 A Branching Process Disease Outbreak Model 123

from which we see that the probability of an epidemic is 0.1. Another example,
possibly more realistic, is to assume that a fraction (1−p) of the population follows
a Poisson distribution with constant r while the remaining fraction p consists of
super-spreaders each of whom makes L contacts. This would give a generating
function

G0(z) = (1 − p)er(z−1) + pzL

G1(z) = r(1 − p)er(z−1) + pLzL−1

r(1 − p) + pL
,

and

R0 = r2(1 − p) + pL(L − 1)

r(1 − p) + pL
.

For example, if r = 2.2, L = 10, p = 0.01, numerical simulation gives

R0 = 2.5, z∞ = 0.146,

so that the probability of an epidemic is 0.849.
These examples demonstrate that the probability of a major epidemic depends

strongly on the nature of the contact network. Simulations suggest that for a given
value of the basic reproduction number the Poisson distribution is the one with the
maximum probability of a major epidemic.

It has been observed that in many situations there is a small number of long range
connections in the graph, allowing rapid spread of infection. There is a high degree
of clustering (some vertices with many edges) and there are short path lengths. Such
a situation may arise if a disease is spread to a distant location by an air traveler.
This type of network is called a small world network. Long range connections in a
network can increase the likelihood of an epidemic dramatically.

4.1.1 Transmissibility

Contacts do not necessarily transmit infection. For each contact between individual
of whom one has been infected and the other is susceptible, there is a probability
that infection will actually be transmitted. This probability depends on such factors
as the closeness of the contact, the infectivity of the member who has been
infected, and the susceptibility of the susceptible member. We assume that there is
a mean probability T , called the transmissibility, of transmission of infection. The
transmissibility depends on the rate of contacts, the probability that a contact will
transmit infection, the duration time of the infection, and the susceptibility. Until
now we have assumed that all contacts transmit infection, that is, that T = 1.
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In this section, we will continue to assume that there is a network describing the
contacts between members of the population whose degree distribution is given by
the generating function G0(z), but we will assume in addition that there is a mean
transmissibility T .

When disease begins in a network, it spreads to some of the vertices of the
network. Edges that are infected during a disease outbreak are called occupied, and
the size of the disease outbreak is the cluster of vertices connected to the initial
vertex by a continuous chain of occupied edges.

The probability that exactly m infections are transmitted by an infective vertex
of degree k is

(
k

m

)

T m(1 − T )k−m.

We define Γ0(z, T ) be the generating function for the distribution of the number
of occupied edges attached to a randomly chosen vertex, which is the same as the
distribution of the infections transmitted by a randomly chosen individual for any
(fixed) transmissibility T . Then

Γ0(z, T ) =
∞∑

m=0

[ ∞∑

k=m

pk

(
k

m

)

T m(1 − T )(k−m)

]

zm

=
∞∑

k=0

pk

[
k∑

m=0

(
k

m

)

(zT )m(1 − T )(k−m)

]

(4.3)

=
∞∑

k=0

pk[zT + (1 − T )]k = G0(1 + (z − 1)T ).

In this calculation we have used the binomial theorem to see that

k∑

m=0

(
k

m

)

(zT )m(1 − T )(k−m) = [zT + (1 − T )]k.

Note that

Γ0(0, T ) = G0(1−T ), Γ0(1, T ) = G0(1) = 1, Γ ′
0(z, T ) = TG′

0(1+(z−1)T ).

For secondary infections we need the generating function Γ1(z, T ) for the
distribution of occupied edges leaving a vertex reached by following a randomly
chosen edge. This is obtained from the excess degree distribution in the same way,

Γ1(z, T ) = G1(1 + (z − 1)T )
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and

Γ1(0, T ) = G1(1−T ), Γ1(1, T ) = G1(1) = 1, Γ ′
1(z, T ) = TG′

1(1+(z−1)T ).

The basic reproduction number is now

R0 = Γ ′
1(1, T ) = TG′

1(1).

The calculation of the probability that the infection will die out and will not
develop into a major epidemic follows the same lines as the argument for T = 1.
The result is that if R0 = TG′

1(1) < 1, the probability that the infection will die
out is 1. If R0 > 1 there is a solution z∞(T ) < 1 of

Γ1(z, T ) = z,

and a probability 1 − Γ0(z∞(T ), T ) > 0 that the infection will persist, and will
lead to an epidemic. However, there is a positive probability Γ1(z∞(T ), T ) that the
infection will increase initially but will produce only a minor outbreak and will die
out before triggering a major epidemic.

Another interpretation of the basic reproduction number is that there is a critical
transmissibility Tc defined by

TcG
′
1(1) = 1.

In other words, the critical transmissibility is the transmissibility that makes the
basic reproduction number equal to 1. If the mean transmissibility can be decreased
below the critical transmissibility, then an epidemic can be prevented.

The measures used to try to control an epidemic may include contact interven-
tions, that is, measures affecting the network such as avoidance of public gatherings
and rearrangement of the patterns of interaction between caregivers and patients
in a hospital, and transmission interventions such as careful hand washing or face
masks to decrease the probability that a contact will lead to disease transmission.

4.2 Network and Compartmental Epidemic Models

Compartmental models for epidemics are not suitable for describing the beginning
of a disease outbreak because they assume that all members of a population are
equally likely to make contact with a very small number of infectives. Thus, as we
have seen in the preceding section, stochastic branching process models are better
descriptions of the beginning of an epidemic. They allow the possibility that even if
a disease outbreak has a reproduction number greater than 1, it may be only a minor
outbreak and may not develop into a major epidemic. One possible approach to a
more realistic description of an epidemic would be to use a branching process model
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initially and then make a transition to a compartmental model when the epidemic has
become established and there are enough infectives that mass action mixing in the
population is a reasonable approximation. Another approach would be to continue
to use a network model throughout the course of the epidemic. In this section we
shall indicate how a compartmental approach and a network approach are related.
The development is taken from [30, 31, 43].

We assume that there is a known static configuration model (CM) network in
which the probability that a node u has degree ku is P(ku). We let G0(z) denote the
probability generating function of the degree distribution,

G0(z) =
∞∑

k=0

pkz
k,

with mean degree 〈k〉 = G′
0(1).

The per-edge contact rate from an infected node is assumed to be β, and
it is assumed that infected nodes recover at a rate α. We use an edge-based
compartmental model because the probability that a random neighbor is infected is
not necessarily the same as the probability that a random individual is infected. We
let S(t) denote the fraction of nodes that are susceptible at time t, I (t) the fraction
of nodes that are infective at time t , and R(t) the fraction of nodes that are recovered
at time t . It is easy to write an equation for R′, the rate at which infectives recover.
If we know S(t), we can find I (t), because a decrease in S gives a corresponding
increase in I . Since

S(t) + I (t) + R(t) = 1,

we need only find the probability that a randomly selected node is susceptible.
We assume that the hazard of infection for a susceptible node u is proportional

to the degree ku of the node. Each contact is represented by an edge of the network
joining u to a neighboring node. We let ϕI denote the probability that this neighbor
is infective. Then the per-edge hazard of infection is

λE = βϕI .

Assuming that edges are independent, u’s hazard of infection at time t is

λu(t) = kuλE(t) = kuβϕI (t).

Consider a randomly selected node u and let θ(t) be the probability that a random
neighbor has not transmitted infection to u at time t . Then the probability that u

is susceptible is θku . Averaging over all nodes, we see that the probability that a
random node u is susceptible is

S(t) =
∞∑

k=0

P(k)[θ(t)]k = G0(θ(t)). (4.4)
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We break θ into three parts,

θ = ϕS + ϕI + ϕR,

with ϕS the probability that a random neighbor v of u is susceptible, ϕI the
probability that a random neighbor v of u is infective but has not transmitted
infection to u, and ϕR the probability that a random neighbor v has recovered
without transmitting infection to u. Then the probability that v has transmitted
infection to u is 1 − θ .

Since infected neighbors recover at rate α, the flux from ϕI to ϕR is αϕI . Thus

ϕ′
R = αϕI .

It is easy to see from this that

R′ = αI. (4.5)

Since edges from infected neighbors transmit infection at rate β, the flux from
ϕI to (1 − θ) is βϕI . Thus

θ ′ = −βϕI . (4.6)

To obtain ϕ′
I we need the flux into and out of the ϕI compartment. The incoming flux

from ϕS results from infection of the neighbor. The outgoing flux to ϕR corresponds
to recovery of the neighbor without having transmitted infection, and the outgoing
flux to (1−θ) corresponds to transmission without recovery. The total outgoing flux
is (α + β)ϕI .

To determine the flux from ϕS to ϕI , we need the rate at which a neighbor changes
from susceptible to infective. Consider a random neighbor v of u; the probability
that v has degree k is kp(k)/〈k〉. Since there are (k − 1) neighbors of v that could
have infected v, the probability that v is susceptible is θk−1. Averaging over all k,
we see that the probability that a random neighbor v of u is susceptible is

ϕS =
∞∑

k=0

kp(k)

〈k〉 θk−1 = G′
0(θ)

G′
0(1)

. (4.7)

To calculate ϕR , we note that the flux from ϕI to ϕR and the flux from ϕI to (1−θ)

are proportional with proportionality constant α/β. Since both ϕR and (1 − θ) start
at zero,

ϕR = α

β
(1 − θ). (4.8)
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Now, using (4.6)–(4.8), and

ϕI = θ − ϕS − ϕR,

we obtain

θ ′ = −βϕI = −βθ + βϕS + βϕR = −βθ + β
G′

0(θ)

G′
0(1)

+ α(1 − θ). (4.9)

We now have a dynamic model consisting of Eqs. (4.4), (4.5), (4.9), and S + I +
R = 1. We wish to show a relationship between this set of equations and the simple
Kermack–McKendrick compartmental model (4.1). In order to accomplish this, we
need only show under what conditions we would have S′ = −βSI .

Differentiating (4.4) and using (4.6), we obtain

S′ = G′
0(θ)θ

′ = −G′
0(θ)βϕI .

Consider a large population with N members, each making C ≤ N − 1 contacts, so
that

S = θC, G′
0(θ) = CS

θ
S′(θ),

and

S′ = −βCS
ϕI

θ
.

We now let C → ∞ (which implies N → ∞) in such a way that

β̂ = βC

remains constant. Then

S′ = −β̂
ϕI

θ
.

We will now show that

ϕI

θ
≈ 1,

and this will yield the desired approximation

S′ = −β̂SI. (4.10)

The probability that an edge to a randomly chosen node has not transmitted
infection is θ (assuming that the given target node cannot transmit infection), and
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the probability that in addition it is connected to an infected node is ϕI . Because
β̂ = βC is constant and therefore bounded as C grows, only a fraction no greater
than a constant multiple of I/C of edges to the target node may have transmitted
infection from a node that is still infected. For large values of C, ϕI is approximately
I . Similarly, θ is approximately 1 as C → ∞. Thus ϕI /θ ≈ I as C → ∞. This
gives the desired approximate equation for S. The result remains valid if all degrees
are close to the average degree as the average degree grows.

The edge-based compartmental modeling approach that we have used can be
generalized in several ways. For example, heterogeneity of mixing can be included.
In general, one would expect that early infections would be in individuals having
more contacts, and thus that an epidemic would develop more rapidly than a mass
action compartmental model would predict. When contact duration is significant,
as would be the case in sexually transmitted diseases, an individual with a contact
would play no further role in disease transmission until a new contact is made, and
this can be incorporated in a network model.

The network approach to disease modeling is a rapidly developing field of study,
and there will undoubtedly be fundamental developments in our understanding of
the modeling of disease transmission. Some useful references are [6, 27–29, 32–
34, 39]

In the remainder of this chapter, we assume that we are in an epidemic situation
following a disease outbreak that has been modeled initially by a branching process.
Thus we return to the study of compartmental models. We will study models
having more compartmental structure than the simple Kermack–McKendrick SIR

epidemic model (4.1).

4.3 More Complicated Epidemic Models

4.3.1 Exposed Periods

In many infectious diseases there is an exposed period after the transmission
of infection from susceptibles to potentially infective members but before these
potential infectives develop symptoms and can transmit infection. To incorporate
an exposed period with mean exposed period 1/κ we add an exposed class E and
use compartments S,E, I, R and total population size N = S + E + I + R to give
a generalization of the epidemic model (4.1)

S′ = −βSI

E′ = βSI − κE (4.11)

I ′ = κE − αI.

A flow chart is shown in Fig. 4.1.
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Fig. 4.1 Flow chart for the SEIR model (4.11)

In this model there are two infected compartments, namely E and I with
different infectivities. The parameter β represents the rate of effective contacts. The
infectivity of a member of E is zero, and therefore contacts between members of
S and members of E do not produce new infections. The analysis of this model is
similar to the analysis of (4.1), but with I replaced by E + I . That is, instead of
using the number of infectives as one of the variables we use the total number of
infected members, whether or not they are capable of transmitting infection.

For the model (4.11) it is no longer possible to distinguish whether there is an
epidemic or not by determining whether the number of infectives grows or decreases
initially. A more general characterization is given by whether the equilibrium with
all members of the population susceptible is unstable (epidemic) or asymptotically
stable (no epidemic). We will use a situation in which the disease-free equilibrium
is unstable as our definition of an epidemic.

For the model (4.11), the matrix of the linearization at the equilibrium S =
N,E = 0, I = 0 is

⎡

⎣
0 0 −βN

0 −κ βN

0 κ −α

⎤

⎦ .

The eigenvalues of this matrix are zero and the eigenvalues of the 2 × 2 matrix are

[−κ βN

κ −α

]

.

The zero eigenvalue corresponds to movement along the line of equilibria. The
other two eigenvalues have negative real part, corresponding to stability of the
equilibrium with respect to solutions starting near the equilibrium but not on the line
of equilibria, and failure of an epidemic to develop (since the trace of the matrix is
negative) if and only if the determinant of the matrix is positive. The determinant is
κ(α − βN), and this is positive if and only if R0 < 1.

If there is an epidemic, the initial exponential growth rate is the largest eigenvalue
of the matrix, and this is the largest root of the quadratic characteristic equation

λ2 + (α + κ)λ − κ(βN − α) = 0.
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Since the constant term in this equation is negative if R0 > 1, there is one negative
and one positive root, and the positive root is

λ = −(α + κ) +√
(α − κ)2 + 4κβN

2
.

This is the initial exponential growth rate; note that it is not the same as the initial
exponential growth rate for the SIR model (4.1). The effect of an exposed period is
to decrease the initial exponential growth rate.

4.3.2 A Treatment Model

One form of treatment that is possible for some diseases is vaccination to protect
against infection before the beginning of an epidemic. For example, this approach
is commonly used for protection against annual influenza outbreaks. A simple way
to model this would be to reduce the total population size by the fraction of the
population protected against infection.

In reality such inoculations are only partly effective, decreasing the rate of
infection and also decreasing infectivity if a vaccinated person does become
infected. This may be modeled by dividing the population into two groups with
different model parameters which would require some assumptions about the
mixing between the two groups. This is not difficult but we will not explore this
direction until Chap. 5 on heterogeneous mixing.

If there is a treatment for infection once a person has been infected, this may
be modeled by supposing that a fraction γ per unit time of infectives is selected
for treatment, and that treatment reduces infectivity by a fraction δ. Thus effective
contacts between members of S and members of T would produce only δ new
infections per contact. Suppose that the rate of removal from the treated class is
η. This leads to the SIT R model, where T is the treatment class, given by

S′ = −βS[I + δT ]
I ′ = βS[I + δT ] − (α + γ )I (4.12)

T ′ = γ I − ηT .

A flow chart is shown in Fig. 4.2.
It is reasonable to assume that treatment does not slow recovery, so that η ≥ α.

Also, since the total time in the infectious and treatment stages should not be greater
than the mean infective period, we should expect that

1

α
≥ 1

γ
+ 1

η
.
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Fig. 4.2 Flow chart for the SIT R model (4.12)

It is not difficult to prove, much as was done for the model (4.1) that

S∞ = lim
t→∞ S(t) > 0, lim

t→∞ I (t) = lim
t→∞ T (t) = 0.

In order to calculate the basic reproduction number, we may argue that an
infective in a totally susceptible population causes βN new infections in unit time,
and the mean time spent in the infective compartment is 1/(α + γ ). In addition, a
fraction γ /(α+γ ) of infectives are treated. While in the treatment stage the number
of new infections caused in unit time is δβN , and the mean time in the treatment
class is 1/η. Thus R0 is

R0 = βN

α + γ
+ γ

α + γ

δβN

η
. (4.13)

It is also possible to establish the final size relation (4.2) by means very similar
to those used for the simple model (4.1). We integrate the first equation of (4.12) to
obtain

log
S0

S∞
=
∫ ∞

0
β[I (t) + δT (t)]dt.

Integration of the third equation of (4.12) gives

γ

∫ ∞

0
I (t)dt = η

∫ ∞

0
T (t)dt.
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Integration of the sum of the first two equations of (4.12) gives

N − S∞ = (α + γ )

∫ ∞

0
I (t)dt.

Combination of these three equations and (4.13) gives (4.2).
For the model (4.12), the matrix of the linearization at the equilibrium S =

N, I = 0, T = 0 is

⎡

⎣
0 −βN −δβN

0 βN − (α + γ ) δβN

0 γ −η

⎤

⎦ .

The eigenvalues of this matrix are zero and the eigenvalues of the 2 × 2 matrix are

[
βN − (α + γ ) δβN

γ −η

]

.

The nonzero eigenvalues have negative real part, corresponding to stability of the
equilibrium and failure of an epidemic to develop if and only if the determinant of
the matrix is positive and the trace is negative. The determinant is

−βN(η + δγ ) + η(α + γ ),

which is positive if and only if R0 < 1, and this condition implies that the trace is
negative.

If there is an epidemic, the initial exponential growth rate is the largest eigenvalue
of the matrix, and this is the largest root of the quadratic characteristic equation

λ2 + [βN − (α + γ + η)]λ + βN(η + δγ ) − η(α + γ ) = 0.

Since the constant term in this equation is negative if R0 > 1, there is one negative
and one positive root, and the positive root is the initial exponential growth rate.
Notice that this rate depends on the treatment rate.

4.3.3 An Influenza Model

In some diseases, such as influenza, at the end of a stage individuals may proceed
to one of two stages. There is a latent period after which a fraction p of latent
individuals L proceeds to an infective stage I , while the remaining fraction (1 − p)

proceeds to an asymptomatic stage A, with infectivity reduced by a factor δ and a
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Fig. 4.3 Flowchart for the influenza model (4.14)

different period 1/η. The influenza model of [3, 5] is

S′ = −βS[I + δA]
L′ = βS[I + δA] − κL

I ′ = pκL − αI

A′ = (1 − p)κL − ηA

(4.14)

and

R0 = βN

[
p

α
+ δ(1 − p)

η

]

.

A flow chart is shown in Fig. 4.3.
The same approach used in earlier examples leads to the same final size

relation (4.2).
The model (4.14) is an example of a differential infectivity model. In such

models, also used in the study of HIV/AIDS [23], individuals enter a specific group
when they become infected and stay in that group over the course of the infection.
Different groups may have different parameter values. For example, for influenza
infective and asymptomatic members may have different infectivities and different
periods of stay in the respective stages.

4.3.4 A Quarantine–Isolation Model

For an outbreak of a new disease, where no vaccine is available, isolation of
diagnosed infectives and quarantine of people who are suspected of having been
infected (usually by tracing of contacts of diagnosed infectives) are the only control
measures available. We formulate a model to describe the course of an epidemic,
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originally introduced for modeling the SARS epidemic of 2002–2003 [19], when
control measures are begun under the assumptions:

1. Exposed members may be infective with infectivity reduced by a factor εE, 0 ≤
εE < 1.

2. Exposed members who are not isolated become infective at rate κE .
3. We introduce a class Q of quarantined members and a class J of isolated

(hospitalized) members and exposed members are quarantined at a proportional
rate γQ in unit time (in practice, a quarantine will also be applied to many
susceptibles, but we ignore this in the model). Quarantine is not perfect, but
reduces the contact rate by a factor εQ. The effect of this assumption is that
some susceptibles make fewer contacts than the model assumes.

4. Infectives are diagnosed at a proportional rate γJ per unit time and isolated.
Isolation is imperfect, and there may be transmission of disease by isolated
members, with an infectivity factor of εJ .

5. Quarantined members are monitored and when they develop symptoms at rate
κQ they are isolated immediately.

6. Infectives leave the infective class at rate αI and isolated members leave the
isolated class at rate αJ .

These assumptions lead to the SEQIJR model [19]

S′ = −βS[εEE + εEεQQ + I + εJ J ]
E′ = βS[εEE + εEεQQ + I + εJ J ] − (κE + γQ)E

Q′ = γQE − κJQ (4.15)

I ′ = κEE − (αI + γJ )I

J ′ = κQQ + γJ I − αJ J.

The model before control measures are begun is the special case

γQ = γJ = κQ = αJ = 0, Q = J = 0

of (4.15). It is the same as (4.11).
A flow chart is shown in Fig. 4.4.
We define the control reproduction number Rc to be the number of secondary

infections caused by a single infective in a population consisting only of susceptibles
with the control measures in place. It is analogous to the basic reproduction number
but instead of describing the very beginning of the disease outbreak it describes the
beginning of the recognition of the epidemic. The basic reproduction number is the
value of the control reproduction number with

γQ = γJ = κQ = αJ = 0.
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Fig. 4.4 Flowchart for the SEQIJR model (4.15)

We have already calculated R0 for (4.11) and we may calculate Rc in the same
way but using the full model with quarantined and isolated classes. We obtain

Rc = βNεE

D1
+ βNκE

D1D2
+ εQβNεEγQ

D1κQ
+ εJ βNκEγJ

αJD1D2
+ εJ βNγQ

αJD1
,

where D1 = γQ + κE and D2 = γJ + αI .
Each term of Rc has an epidemiological interpretation. The mean duration in E

is 1/D1 with contact rate βεE , giving a contribution to Rc of βNεE/D1. A fraction
κE/D1 goes from E to I , with contact rate β and mean duration 1/D2, giving a
contribution of βNκE/D1D2. A fraction γQ/D1 goes from E to Q, with contact
rate εEεQβ and mean duration 1/κQ, giving a contribution of εEεQβNγQ/D1κQ.
A fraction κEγJ /D1D2 goes from E to I to J , with a contact rate of εJ β and a mean
duration of 1/αJ , giving a contribution of εJ βNκEγJ /αJD1D2. Finally, a fraction
γQ/D1 goes from E to Q to J with a contact rate of εJ β and a mean duration
of 1/αJ giving a contribution of εJ βNγQ/D1αJ . The sum of these individual
contributions gives Rc.

In the model (4.15) the parameters γQ and γJ are control parameters which
may be chosen in the attempt to manage the epidemic. The parameters εQ and εJ
depend on the strictness of the quarantine and isolation processes and are thus also
control measures in a sense. The other parameters of the model are specific to the
disease being studied. While they are not variable, their measurements are subject
to experimental error.

The linearization of (4.15) at the disease-free equilibrium (N, 0, 0, 0, 0) has
matrix

⎡

⎢
⎢
⎣

εEβN − (κE + γQ) εEεQβ βN εJ βN

γQ −κQ 0 0
κE 0 −(αI + γJ ) 0
0 κQ γJ −αJ

⎤

⎥
⎥
⎦ .
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The corresponding characteristic equation is a fourth degree polynomial equation
whose leading coefficient is 1 and whose constant term is a positive constant
multiple of 1 − Rc, thus positive if Rc < 1 and negative if Rc > 1. If Rc > 1
there is a positive eigenvalue, corresponding to an initial exponential growth rate
of solutions of (4.15). If Rc < 1 it is possible to show that all eigenvalues of
the coefficient matrix have negative real part, and thus solutions of (4.15) die out
exponentially [42].

In order to show that analogues of the relation (4.2) and S∞ > 0 derived for the
model (4.1) are valid for the management model (4.15), we begin by integrating the
equations for S +E,Q, I, J, of (4.15) with respect to t from t = 0 to t = ∞, using
the initial conditions

S(0) + E(0) = N(0) = N, Q(0) = I (0) = J (0) = 0 .

We continue by integrating the equation for S and then an argument similar to the
one used for (4.1) but technically more complicated may be used to show that S∞ >

0 for the treatment model (4.15) and also to establish the final size relation

log
S0

S∞
= Rc

[

1 − S∞
N

]

.

Thus the asymptotic behavior of the management model (4.15) is the same as that
of the simpler model (4.1).

In the various compartmental models that we have studied, there are significant
common features. This suggests that compartmental models can be put into a more
general framework. In fact, this general framework is the age of infection epidemic
model originally introduced by Kermack and McKendrick in [24]. We will explore
this generalization in Sect. 4.5.

4.4 An SIR Model with a General Infectious Period
Distribution

In the simple model (4.1) studied in Sect. 2.4 we have assumed that the infective
period is exponentially distributed . Now let us consider an SIR epidemic model
in a population of constant size N with mass action incidence in which P(s) is the
fraction of individuals who are still infective at time s after having become infected.
The model is

S′ = −βS(t)I (t)

I (t) = I0(t) +
∫ t

0
[−S′(t − s)]P(s) ds.

(4.16)
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Here, I0(t) is the number of individuals infective initially at t = 0 who are still
infective at time t . Then

I0(t) ≤ (N − S0)P (t),

because if all initial infectives were newly infected we would have equality in this
relation, and if some initial infectives had been infected before the starting time
t = 0, they would recover earlier.

We assume that P(s) is a non-negative, non-increasing function with P(0) =
1. We assume also that the mean infective period

∫∞
0 P(s)ds is finite. Since a

single infective causes βN new infections in unit time and
∫∞

0 P(s)ds is the mean
infective period, it is easy to calculate

R0 = βN

∫ ∞

0
P(s) ds.

In this model it would be possible to assume that not all contacts by infectives
with susceptibles lead to new infections. This could be achieved by incorporating a
reduction factor δ in the equation for S and in the distribution P . Since S is a non-
negative decreasing function, it follows as for (4.1) that S(t) decreases to a limit S∞
as t → ∞, but we must proceed differently to show that I (t) → 0. This will follow
if we can prove that

∫ t

0 I (s) ds is bounded as t → ∞. We have

∫ t

0
I (s) ds =

∫ t

0
I0(s) ds +

∫ t

0

∫ s

0
[−S′(s − u)]P(u)duds

≤ (N − S0)

∫ t

0
P(s)ds +

∫ t

0

∫ t

u

[−S′(s − u)]dsP (u)du

≤ (N − S0)

∫ t

0
P(s)ds +

∫ t

0
[S0 − S(t − u)]P(s)ds

≤ N

∫ t

0
P(s)ds.

Since
∫∞

0 P(s)ds is assumed to be finite, it follows that
∫ t

0 I (s) ds is bounded, and
thence that I (t) → 0.

Now integration of the first equation in (4.16) from 0 to ∞ gives

log
S0

S∞
= β

∫ ∞

0
I (s)ds < ∞,

and this shows that S∞ > 0.
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If all initially infected individuals are newly infected, so that I0(t) = (N −
S0)P (t), integration of the second equation of (4.16) gives

∫ ∞

0
I (s) ds =

∫ ∞

0
I0(s) ds +

∫ ∞

0

∫ s

0
[−S′(s − u)]P(u)duds

= (N − S0)

∫ ∞

0
P(u)du +

∫ ∞

0

∫ ∞

u

[−S′(s − u)]dsP (u)du

= (N − S0)

∫ ∞

0
P(u)du +

∫ ∞

0
[S0 − S∞]P(u)du

= (N − S∞)

∫ ∞

0
P(u)du

= R0

[

1 − S∞
N

]

,

and this is the final size relation, identical to (4.2). If there are individuals who were
infected before time t = 0, a positive term

(N − S0)

∫ ∞

0
P(t)dt −

∫ ∞

0
I0(t)dt

must be subtracted from the right side of this equation.
The generalization to arbitrary infective periods in this section is a component

of the age of infection epidemic model of [24], which also incorporates general
compartmental structures. The examples of this section and the previous section are
all special cases of the age of infection model.

4.5 The Age of Infection Epidemic Model

The general epidemic model described by Kermack and McKendrick [24] included
a dependence of infectivity on the time since becoming infected (age of infection).
We let S(t) denote the number of susceptibles at time t and let ϕ(t) be the total
infectivity at time t , defined as the sum of products of the number of infected
members with each infection age and the mean infectivity for that infection age. We
assume that on average, members of the population make a constant number βN of
contacts in unit time. We let B(s) be the fraction of infected members remaining
infected at infection age s and let π(s) with 0 ≤ π(s) ≤ 1 be the mean infectivity
(if infected) at infection age s. Then we let

A(s) = π(s)B(s),
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the mean infectivity of members of the population with infection age s including
those who are no longer infectious. Here, the factor π must include the probability
that a contact will produce a new infection. We assume that there are no disease
deaths, so that the total population size is a constant N .

Since −S′(t − s) is the number of new infections at time (t − s) and A(s) is the
remaining infectivity of these new infections at time t (infection age (s)), the total
infectivity at time t is

ϕ(t) =
∫ ∞

0
[−S′(t − s)]A(s)ds.

It is assumed that the disease outbreak begins at time t = 0, so that S(u) = N for
u < 0. There may be a discontinuity in S(u) at u = 0 corresponding to an initial
infective distribution.

We may write the age of infection epidemic model as

S′ = −βSϕ (4.17)

ϕ(t) =
∫ ∞

0
[−S′(t − s)]A(s)ds =

∫ ∞

0
βS(t − s)ϕ(t − s)A(s)ds.

The parameter β continues to represent the rate of effective contacts, and the
transmission probability is contained in ϕ. The basic reproduction number is

R0 = βN

∫ ∞

0
A(s)ds. (4.18)

We may write the model in a single equation

S′(t) = βS(t)

∫ ∞

0
A(s)S′(t − s)ds.

There is an invasion criterion. Initially, in a fully susceptible population when
S(t) is close to S0 = N , we may replace S(t) by its initial value N in this single
equation, giving a linear equation. The condition that this linear equation have a
solution S(t) = Nert is

1 = βN

∫ ∞

0
A(s)e−rsds. (4.19)

The result that the initial exponential growth rate in an epidemic is given by the
solution of (4.19) was given in [20, 36] and later in [44]. It allows us to estimate the
basic reproduction number for an epidemic, provided we know not only the mean
infective period but also the distribution of infective periods. This result is valid for
age of infection epidemic models, and thus is applicable to compartmental models
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that can be interpreted in an age of infection context, that is, provided we are able
to calculate the infectivity function A(s).

Combination of the relations (4.18) and (4.19) gives a relation between the initial
exponential growth rate r and the basic reproduction number R0, namely

R0 =
∫∞

0 A(s)ds
∫∞

0 e−rsA(s)ds
.

Then R0 > 1 if and only if r > 0.
This relation provides a means to estimate the basic reproduction number

from measurements of the initial exponential growth rate provided the infectivity
distribution is known. We define an epidemic as a situation in which for the model
we have r > 0, so that initially the solution grows exponentially.

Division of the model equation (4.17) by S(t) and integration with respect to t

from 0 to ∞ gives, with an interchange of order of integration gives

log
S0

S∞
=
∫ ∞

0
[S(−s) − S∞]A(s)ds.

Since we are assuming S(−s) = N if s > 0, we have

log
S0

S∞
=
∫ ∞

0
[N − S∞]A(s)ds,

and then we obtain the final size relation

log
S0

S∞
= R0

[

1 − S∞
N

]

.

The final size relation is sometimes presented in the form

log
S0

S∞
= R0

[

1 − S∞
S0

]

, (4.20)

see for example [4, 12, 22], since normally S(0) ≈ N . This form would also
represent the final size relation for an epidemic started by someone outside the
population under study, so that S0 = N, I0 = 0.

4.5.1 A General SEIR Model

We consider an SEIR model with general distributions of stay in both the exposed
and infective period. The model is related to the model (3.31), which also includes
births and natural deaths. Suppose the fraction of exposed individuals who are still
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in the exposed class s time units after being exposed is PE(s) and the fraction
of individuals who are still in the infectious class s time units after entering the
infectious class is PI (s), with PE(s), PI (s) non-negative, non-increasing functions
such that

PE(0) = PI (0) = 1,
∫ ∞

0
PE(s)ds < ∞,

∫ ∞

0
PI (s)ds < ∞.

Then PE and PI represent survival probabilities in the classes E and I , respectively.
The probability density function for E, which will appear in the model, is

q(τ) = −P ′
E(τ).

We assume that E0 newly exposed members enter the exposed class at time t = 0.
Then

S′ = −βSI

E(t) = E0PE(t) +
∫ t

0
[−S′(u)]PE(t − u)du.

In this equation we are assuming that all effective contacts transmit infection.
Differentiation of the equation for E(t) gives

E′(t) = E0P
′
E(t) − S′(t) +

∫ t

0
[−S′(u)]P ′

E(t − u)du,

and this shows that the input to the infectious stage at time t is

−E0P
′
E(t) −

∫ t

0
[−S′(u)]P ′

E(t − u)du.

If we assume that S′(u) = 0 for u < 0 and that S′(u) has a jump of −E0 at u = 0,
then we may write the equation for E(t) as

E(t) =
∫ ∞

0
[−S′(s)]PE(t − s)ds.

From the equation for E(t), we see that the output from E to I is

−E0P
′
E(t) −

∫ t

0
[−S′(s)]P ′

E(t − s)ds = −
∫ ∞

0
[−S′(s)]P ′

E(t − s)ds.
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Then

I (t) = −
∫ ∞

0

∫ ∞

0
S′(s)P ′

E(t − s − u)PI (u)duds

−
∫ ∞

0

∫ ∞

0
[−S′(s)]P ′

E(t − s − u)PI (u)duS
′(s)ds.

We now have

I (t) =
∫ ∞

0
[−S′(s)]AI (t − s)ds,

with

AI (z) = −
∫ ∞

0
P ′
E(z − v)PI (v)dv.

Then the model is

S′ = −βSI

E(t) =
∫ ∞

0
[−S′(s)]PE(t − s)ds

I (t) =
∫ ∞

0
[−S′(s)]AI (t − s)ds,

(4.21)

which is in age of infection form with Φ = I and A(z) = AI (z). Then

R0 = βN

∫ ∞

0
A(z)dz

= −βN

∫ ∞

0

∫ z

0
P ′
E(z − u)PI (u)dudz

= βN

∫ ∞

0
PI (u)du,

(4.22)

using − ∫∞
0 P ′

E(v)dv = PE(0) − PE(∞) = 1.
The initial exponential growth rate of the general SEIR model (4.21) satisfies

βN

∫ ∞

0
e−rs

∫ s

0
[−P ′

E(s − u)]PI (u)duds = 1,
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which reduces to

1 = βN

∫ ∞

0
q(v)e−rvdv

∫ ∞

0
e−ruPI (u)du

= βN

[

1 − r

∫ ∞

0
e−rvPE(v)dv

] ∫ ∞

0
e−ruPI (u)du,

(4.23)

with the aid of integration by parts.
It is important to remember that in this example we are assuming that effective

contacts transmit new infections. We have not allowed for reductions in infectivity
or susceptibility, but it would be possible to include these factors into the model.
From (4.23) we see that the effect of an exposed period is to decrease the initial
exponential growth rate. It also indicates that the result of using the relation (4.19)
depends on knowledge of the compartmental structure of the model.

4.5.2 A General Treatment Model

Consider the treatment model (4.12) of Sect. 4.3. We now extend this to an age of
infection model with general infective and treatment staged distributions. Assume
that the distribution of infective periods is given by PI (τ), and the distribution of
periods in treatment is given by PT (τ). Then the SIT R model becomes

S′(t) = −βS(t)[I (t) + δT (t)]

I (t) = I0PI (t) +
∫ t

0
[−S′(t − σ)]e−γ σPI (σ ) dσ (4.24)

T (t) =
∫ ∞

0
γ I (t − σ)PT (σ ) dσ,

and

ϕ(t) = I (t) + δT (t).

Assuming that S(u) has a jump of −I0 at u = 0, we may write the equation for I as

I (t) = −
∫ ∞

0
[−S′(t − s)]e−γ sPI (s)ds.

Substituting the expression for I into the equation for T , we obtain

T (t) =
∫ ∞

0
γ

∫ ∞

0
[−S′(t − s − σ)]e−γ sPI (s)PT (σ )dsdσ

=
∫ ∞

0
γ

∫ ∞

0
[−S′(t − s − σ)]PT (σ )dσe−γ sPI (s)ds
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=
∫ ∞

0
γ

∫ ∞

s

[−S′(t − v)]PT (v − s)dve−γ sPI (s)ds

=
∫ ∞

0
[−S′(t − v)]γ

∫ v

0
PT (v − s)e−γ sPI (s)dsdv

=
∫ ∞

0
[−S′(t − v)]A(v)dv,

with

A(v) =
∫ v

0
γPT (v − s)e−γ sPI (s)ds.

Writing

ϕ(t) = I (t) + δT (t),

we now have the model (4.24) in age of infection form (without transmission
probabilities),

S′(t) = −βS(t)ϕ(t)

ϕ(t) = −
∫ ∞

0
[−S′(t − s)] [e−γ sPI (s) + δA(s)

]
ds.

(4.25)

From this we see that

R0 = βN

∫ ∞

0

[
e−γ sPI (s) + δA(s)

]
ds

= βN

∫ ∞

0
e−γ sPI (s)ds + βNδγ

∫ ∞

0

∫ s

0
PT (s − u)duds].

With exponentially distributed infective and treatment periods, PI (s) =
e−αs, PT (s) = e−ηs we calculate R0, obtaining

R0 = βN

∫ ∞

0
e−(α+γ )τ dτ

[

1 + δγ

∫ ∞

0
e−ητ dτ

]

= βN

α + γ

[

1 + δγ

η

]

,

the same result as (4.13).
An arbitrary choice of treatment period distribution with mean 1/η does not

affect the quantity R0, but different infective period distributions may have a
significant effect. For example, let us take γ = 1 and assume the mean infective
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period is 1. Then, with an exponential distribution, PI (τ) = e−τ ,

∫ ∞

0
e−τP (τ) dτ =

∫ ∞

0
e−2τ dτ = 1

2
.

With an infective period of fixed length 1,

∫ ∞

0
e−τPI (τ ) dτ =

∫ 1

0
e−τ dτ = (1 − e−1) = 0.632.

Thus a model with an infective period of fixed length would lead to a basic
reproduction number more than 25% higher than a model with an exponentially
distributed infective period that has the same mean.

4.5.3 A General Quarantine/Isolation Epidemic Model

To cope with a disease outbreak for which there is no (as yet) known treatment,
the only methods available are isolation of diagnosed infective and quarantine of
suspected exposed members of the population. This approach was used during the
SARS epidemic of 2003, and modeled in [19]. An SEIR model with general exposed
and infective periods as well as quarantine and isolation has been analyzed in [47].
While the model in [47] was deterministic, the analysis was from a probabilistic
point of view. Here we add quarantine and isolation to the model (4.21) and derive
some of the results of [47] from a compartmental approach. The model is related
to the model (3.42), which includes births and natural deaths, and is more general
because it does not assume that quarantine and isolation are perfectly effective.

We move members from the exposed class to a quarantine class Q at rate ψ

and from the infective class to an isolated (hospitalized) class H at rate ϕ. For
simplicity, we assume that both quarantine and isolation are perfectly effective,
so that no infections are transmitted from either quarantined or isolated members.
Then we need not include Q or H in the model unless we wish to track the number
of individuals quarantined and isolated. We need only adjust the model (4.21) to
include the removals. With quarantine but not yet isolation, the new equation for E
is

E(t) = E0e
−ψtPE(t) +

∫ t

0
[−S′(s)]e−ψ(t−s)PE(t − s)ds.

The input to I at time u becomes

E0qE(u) +
∫ u

0
[−S′(τ )]e−ψ(u−τ)qE(u − τ)dτ.
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Now, I (t) is given by

I (t) = E0

∫ t

0
qE(u)e−ψ(t−u)PI (t − u)du

+E0

∫ t

0
[−S′(s)]qE(u − s)E−ψ(u−s)dsPI (t − u)du.

The first term in this expression may be written as I0(t), and the second term may
be simplified, using interchange of the order of integration in the iterated integral
much as in the previous section, to yield

∫ t

0
[−S′(s)]T (t − s)ds

with

T (v) =
∫ v

0
qE(y)e−ψyPI (v − y)dy.

Then the model is

S′ = −βSI

E(t) = E0e
−ψtPE(t) +

∫ t

0
[−S′(s)]e−ψ(t−s)PE(t − s)ds

I (t) = I0(t) +
∫ t

0
[−S′(s)]T (t − s)ds.

If we add isolation at a rate ϕ of infectives, we obtain

I (t) = e−ϕt I0(t) +
∫ t

0
[−S′(s)]e−ϕ(t−s)T (t − s)ds,

and the quarantine/isolation model is

S′ = −βSI

E(t) = E0e
−ψtPE(t) +

∫ t

0
[−S′(s)]e−ψ(t−s)PE(t − s)ds

I (t) = E0e
−ϕt I0(t) +

∫ t

0
[−S′(s)]e−ϕ(t−s)T (t − s)ds.

(4.26)
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The reproduction number is now a control reproduction number Rc(ψ, ϕ),
depending on the control parameters ψ and ϕ,

Rc(ψ, ϕ) = βN

∫ ∞

0
e−ϕτ T (τ )dτ

= βN

∫ ∞

0
e−ϕτE0

∫ τ

0
q(y)e−ψyPI (τ − y)dydτ

= βN

∫ ∞

0
e−ψyq(y)

[∫ ∞

y

e−ϕ(τ−y)PI (τ − y)dτ

]

dy

= βN

∫ ∞

0
e−ψyq(y)dy

∫ ∞

0
e−ϕuPI (u)du.

If we know the functions PI and q, we may calculate the sensitivity of R0 to
the quarantine and isolation rates and thus compare quarantine and isolation as
management strategies. In [47], this expression is written in terms of the Laplace
transforms of q and PI ,

Rc(ψ, ϕ) = βNE0Lq(ψ)LPI
(ϕ).

By comparison of the mean infectivity functions of the models (4.21) and (4.26),
we see that the effect of quarantine and/or isolation on an SEIR model is to decrease
the initial exponential growth rate.

As suggested by these examples, there are general methods for calculation
of integrals involving A(τ) without the necessity of calculating the function A

explicitly [7, 48].
A naive view of epidemic models suggests that if we know the basic reproduction

number, we can determine the size of an epidemic. There are several quite different
problems with this view. We have seen that estimation of the basic reproduction
number from early observed data depends on the structure of the model being
assumed. For example, if there is an exposed period, the initial exponential growth
rate is less than if infected individuals become infectious immediately but this does
not affect the basic reproduction number. This implies that an estimate of the basic
reproduction number from the initial exponential growth rate will be too small. A
second problem is that in an epidemic, early data may be incomplete and inaccurate,
and its use may lead to a poor estimate of the reproduction number.

4.6 The Gamma Distribution

There is ample evidence that exponential distributions of stay in compartments are
much less realistic than gamma distributions [16, 17, 26, 46]. This has already been
suggested in Sect. 3.6. A gamma distribution P(τ) with parameter n and period 1/α
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can be represented as a sequence of n exponential distributions Pi(τ ) with period
1/nα. Thus an SIR epidemic model with a gamma distribution for the infectious
period may be represented by the system

S′ = −βSI

I ′
1 = βSI − nαI1

I ′
j = nαIj−1 − nαIj , j = 2, 3, · · · , n.

(4.27)

We may view this as an age of infection model

S′ = −βSI

I (t) = I0(t) +
∫ t

0
[−S′(t − τ)]P(τ)dτ,

(4.28)

in which P(τ) represents the fraction of infectives with infection age τ .
To use the age of infection interpretation, we need to determine the kernel P(τ)

in order to calculate its integral. We let uk(τ ) be the fraction of infected members
with infection age τ in the k-th subinterval. Then

u′
1 = −nαu1, u1(0) = 1

u′
j = nαuj−1 − nαuj , uj (0) = 0, j = 2, 3, · · · , n. (4.29)

It is easy to solve this system of differential equations recursively, and we obtain

uk(τ ) = (nα)k−1

(k − 1)! τ
k−1e−nατ , k = 1 · · · n.

This gives the desired kernel

P(τ) =
n∑

k=1

uk(τ ) =
n∑

k=1

(nα)(k−1)

(k − 1)! τ (k−1)e−nατ . (4.30)

In order to evaluate the integral
∫∞

0 P(τ)dτ , we start with the integration formula

∫
tk−1e−ct dt = −1

c
tk−1e−ct + k − 1

c

∫
tk−2e−ct dt, (4.31)

obtained using integration by parts; then with limits of integration 0 to ∞ and c =
nα, we obtain

∫ ∞

0
tk−1e−nαtdt = k − 1

nα

∫ ∞

0
tk−2e−nαtdt,
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which leads by induction to the formula

∫ ∞

0
tk−1e−nαtdt = (k − 1)!

(nα)k−1 · 1

nα
. (4.32)

Combination of (4.30), (4.32) gives

∫ ∞

0
P(τ)dτ =

n∑

k=1

1

nα
= 1

α
.

The mean infective period is independent of n but a larger value of n gives a smaller
variance. The limiting case as n → ∞ is an infective period of fixed length 1/α. In
practice, infective periods often are bunched closer together than would be predicted
by an exponential distribution and it is common to choose a gamma distribution with
a value of n corresponding to the observed distribution.

We will need to use the value of
∫∞

0 e−λτP (τ)dτ. To evaluate this integral, we
have

∫ ∞

0
e−λτ uk(τ )dτ = (nα)k−1

(k − 1)!
∫ ∞

0
τ k−1e−(λ+nα)τ dτ = (nα)k−1

(λ + nα)k
,

using (4.32). From this we obtain

∫ ∞

0
e−λτP (τ)dτ =

n−1∑

k=0

(nα)k−1

(λ + nα)k
= 1

(λ + nα)

n−1∑

k=0

nα

λ + nα
. (4.33)

But this is a geometric series, whose sum is

1

λ + nα

1 −
(

nα
λ+nα

)n

1 − nα
λ+nα

=
1 −

(
nα

λ+nα

)n

λ
.

We now have the formula

∫ ∞

0
e−λτP (τ)dτ =

1 −
(

nα
λ+nα

)n

λ
. (4.34)

The limiting case as n → ∞ of a gamma distribution is a distribution

P(t) = 1 (0 ≤ t ≤ 1

α
), P (t) = 0 (t >

1

α
),
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for which

∫ ∞

0
e−λtP (t)dt = 1 − e−λ/α

γ
.

Then

1

α + γ
n

<
1 − e−γ /α

λ
. (4.35)

It is possible to show, by use of L’Hôpital’s rule that

lim
n→∞

(
nα

λ + nα

)n

= e−λ/α,

and this implies that the limiting value as n → ∞ of the integral
∫∞

0 e−λτP (τ)dτ

for a gamma distribution with parameter n is the integral corresponding to the
limiting distribution.

4.7 Interpretation of Data and Parametrization

We have carried out qualitative analysis of various disease transmission models in
terms of the parameters of the model. In modeling a specific disease outbreak it
is necessary to assign values to the parameters of the model in order to estimate
the effects of possible control measures. For an epidemic disease, we ignore
demographic quantities. If we have information about the duration of infection in an
individual, we need to estimate the contact rate and the rates of transitions between
compartments in order to be able to estimate the basic reproduction number and then
to analyze the qualitative behavior of the model. However, different assumptions
about the compartmental structure of the model and about the transition rates
between compartments would lead to different results.

In an epidemic situation we may be able to estimate the contact rate from the
initial exponential growth rate. For example, in the simplest possible epidemic
model, the Kermack–McKendrick model with no disease deaths

S′ = −βSI

I ′ = βSI − αI
(4.36)

initially (or as long as S remains close to the total population size N ), I (t) may be
approximated by e(βN−α)t . Thus the initial exponential growth rate is approximately
βN − α. If we plot observed values of log I (t) as a function of t , we would expect
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that the graph, after an initial stochastic phase would be a straight line, until S/N
becomes significantly less than 1 and the graph bends downward.

Let us suppose that we can estimate the slope r of this line. Then the value of
r gives an estimate of βN − α. From this, we obtain an estimate for the basic
reproduction number

R0 = βN

α
≈ r + α

α
= r

α
+ 1. (4.37)

4.7.1 Models of SIR Type

In the simple Kermack–McKendrick epidemic model (4.36) we assume that the
infectious period is exponentially distributed with mean 1/α. In practice, the period
of stay in the infectious class usually has a smaller variance than an exponential
distribution.

As we have suggested in Sect. 4.6, a gamma distribution is likely to be much more
realistic than an exponential distribution for stay in a compartment [16, 17, 26, 46].
A gamma distribution P(τ) with parameter n and period 1/α can be represented
as a sequence of n exponential distributions Pi(τ ) with period 1/nα. Then an
SIR epidemic model with a gamma distribution for the infectious period may
be represented by the system (4.27). We used the formula (4.30) to evaluate the
integrals

∫ ∞

0
P(τ)dτ =

n∑

k=1

1

nα
= 1

α
,

and

∫ ∞

0
e−rτ P (τ)dτ =

1 −
(

nα
r+nα

)n

r
. (4.38)

The limiting case as n → ∞ of a gamma distribution is a distribution

P(t) = 1 (0 ≤ t ≤ 1

α
), P (t) = 0 (t >

1

α
),

for which

∫ ∞

0
e−rtP (t)dt = 1 − e−r/α

α
.
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Then

1

α + γ
n

<
1 − e−γ /α

r
. (4.39)

It is possible to show, by use of L’Hôpital’s rule that

lim
n→∞

(
nα

r + nα

)n

= e−r/α,

and this implies that the limiting value as n → ∞ of the integral
∫∞

0 e−rτ P (τ)dτ

for a gamma distribution with parameter n is the integral corresponding to the
limiting distribution.

As we have seen in Sect. 4.4, for an age of infection SIR model with an
infectious period distribution given by a function P(τ), the basic reproduction
number is given by

R0 = βN

∫ ∞

0
P(τ)dτ, (4.40)

while the initial exponential growth rate λ satisfies

βN

∫ ∞

0
e−rτ P (τ)dτ = 1. (4.41)

Elimination of βN between the Eqs. (4.40) and (4.41) gives a formula for the basic
reproduction number determined by the initial exponential growth rate r and the
distribution P(τ),

R0 =
∫∞

0 P(τ)dτ
∫∞

0 e−rτ P (τ)dτ
. (4.42)

If we assume that the mean infective period
∫∞

0 P(τ)dτ is known and the
initial exponential growth rate can be measured, we may use the relation (4.42) to
calculate the basic reproduction number for various choices of the infectious period
distribution. As more information about the infectious period distribution becomes
known, it is possible to obtain more refined estimates of the reproduction number.

Thus, for example, the choice of an exponentially distributed infective period
P(τ) = e−ατ gives

∫ ∞

0
e−λτ dτ = 1

λ + α
,R0 = 1 + r

α
.
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The choice of a fixed length infective period gives

r

∫ ∞

0
e−rτ dτ = 1 − e−r/α

r
, R0 = /α(1 − e−r/α).

For a gamma distribution with parameter n,
∫ ∞

0
e−τP (τ)dτ = 1 −

(
nα

r + nα

)n

, R0 = 1

1 − ( nα
r+nα

)n
.

4.7.2 Models of SEIR Type

Now suppose we assume a simple SEIR model,

S′ = −βSI

E′ = βSI − κE (4.43)

I ′ = κE − αI.

The exponential growth rate for this model is

r = −(α + κ) +√
(α − κ)2 + 4κβN

2
,

and this yields the estimate

βN = α + r2

κ
+ r

α + κ

κ
. (4.44)

Observe that this estimate for βN is larger than the estimate obtained for the SIR

model and therefore the assumption of an SEIR model leads to a larger estimate than
the SIR model for R0 = βN/α. A given exponential growth rate in an SEIR model
corresponds to a larger reproduction number than in an SIR model.

Example 1
Consider the data given in Table 2.2 in Sect. 2.10 for reported H1N1 influenza

cases in México. We plot log I (t) as a function of t , obtaining the graph shown in
Fig. 4.5. This graph, after an initial stochastic phase, appears to exhibit linear growth
from day 97 to day 117, with a slope of 0.22. The data is for influenza, which we
assume to be described by and SEIR model with an exposed period of 1.9 days
followed by an infectious period of 4.1 days. The relation (4.45) with the values

α = 1/4.1, κ = 1/1.9, r = 0.22

yields β = 0.65, and then R0 = β/α = 2.67.
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Fig. 4.5 Influenza cases in Mexico

It is important to note that this estimate depends not only on the initial
exponential growth rate but also on the compartmental structure assumed for the
model and on the transition rates between compartments.

We may write a general SEIR model in age of infection form,

S′ = −βSϕ

ϕ(t) = ϕ0(t) +
∫ t

0
βS(t − τ)ϕ(t − τ)A(τ)dτ,

where A(τ) is the mean infectivity of an infected individual, whether exposed or
infective, at infection age τ .

If we separate infected individuals into exposed and infective, and think of an
exposed period distribution PE and an infectious period distribution PI , the model
is the SEIR model of Sect. 4.5.1

S′ = −βSI

E(t) = E0PE(t) +
∫ t

0
[−S′(u)]PE(t − u)du (4.45)

I (t) = I0(t) −
∫ t

0
[−S′(u)]

[∫ t

u

P ′
E(v − u)PI (t − v)dv

]

du.
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This is of age of infection form with mean infectivity

A(t − u) = −
∫ t

u

P ′
E(v − u)PE(t − v)dv

and
∫ ∞

0
A(τ)dτ =

∫ ∞

0
PI (τ)dτ.

Also,

∫ ∞

0
e−rτA(τ)dτ = −

∫ ∞

0
P ′
E(v)e−rvdv

∫ ∞

0
e−ruPI (u)du

=
[

1 − r

∫ ∞

0
e−rvPE(v)dv

] ∫ ∞

0
e−ruPI (u)du,

and we may use this relation to calculate R0 for a variety of choices of PE and PI ,
including gamma distributions and periods of fixed length.

With exponentially distributed exposed and infectious periods, we obtain

R0 = 1 + r

α
+ r

κ
+ r2

ακ
,

while for exposed and infective periods of fixed lengths we obtain

R0 = rer/κ

α(1 − e−r/α)
> er/κ.

It is possible to show that the basic reproduction number corresponding to fixed
exposed and infective periods is always larger than the basic reproduction number
corresponding to exponentially distributed exposed and infectious periods, and the
basic reproduction number corresponding to exposed and infectious periods both
having gamma distributions is between these two values.

4.7.3 Mean Generation Time

In a simple epidemic model, if we know the contact rate and the infective period,
then we may be able to determine the basic reproduction number. As we have seen
in the previous section, knowledge of the initial exponential growth rate, which may
sometimes be observed experimentally leads to information about the contact rate.
Another quantity which may sometimes be observed experimentally, is the mean
generation time, meaning roughly the mean time between a primary case and a
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secondary case caused by this primary case. This quantity has been given various
definitions, not all equivalent. Another term often used to describe this idea is the
serial interval.

The mean generation time is defined [18, 40] as the mean time from infection
to the onset of infectiousness. It may be estimated from data early in a disease
outbreak [40, 44, 45]. If we assume that the rate of secondary infections caused
by an individual is proportional to the infectiousness of the individual [37], then
the rate of secondary infections caused at infection age τ is proportional to A(τ).
This assumption would be valid only early in an epidemic when the depletion of
the susceptible population would be negligible and the number of infectives is a
sufficiently small fraction of the total population size that a susceptible is at risk of
infection only from a single infective. Thus the distribution of new infections caused
at infection age τ is

A(s)
∫∞

0 A(s)ds
,

whose mean is

TG =
∫∞

0 sA(s)ds
∫∞

0 A(s)ds
, (4.46)

and this is the mean generation time. We should note that this describes the time
interval between successive infections, but what may be observed is the time interval
between development of clinical symptoms, which is not the same thing, but we may
hope that it is a reasonable approximation.

In order to calculate the mean generation time for the general SEIR model (4.45),
we use (4.46) with

A(s) = AI (s) = −
∫ s

0
P ′
E(s − u)PI (u)du.

As we have seen in the calculations for the model (4.45),
∫∞

0 A(s)ds =∫∞
0 PI (s)ds. We have also,

∫ ∞

0
sA(s)ds = −

∫ ∞

0

∫ s

0
sP ′

E(s − u)PI (u)dsdu (4.47)

= −
∫ ∞

0

[∫ ∞

u

sP ′
E(s − u)ds

]

PI (u)du.

But

−
∫ ∞

u

sE′
Q(s − u)ds = −

∫ ∞

0
(u + v)P ′

E(v)dv = u +
∫ ∞

0
PE(v)dv,
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using integration by parts. Thus (4.47) becomes

∫ ∞

0
sA(s)ds =

∫ ∞

0
uPI (u)du +

∫ ∞

0
PI (u)du

∫ ∞

0
PE(v)dv.

This shows that the mean generation time for the SEIR model (4.45) is

TG =
∫∞

0 uPI (u)du
∫∞

0 PI (u)du
+
∫ ∞

0
PE(u)du.

Note that this is the sum of the mean period of stay in the exposed stage and a
quantity depending on the infective period distribution. It is easy to calculate that in
the case of an exponential distribution with mean 1/α this quantity is 1/α, the mean
infective period, while in the case of a constant infectious period of length 1/α this
quantity is 1/2α, half the mean infective period. In general, for an SEIR model the
mean generation time is equal to the sum of the mean exposed period and a quantity
depending on the distribution of the infective period.

It is convenient to define the mean exposed time TE and the mean infective time
TI . For the general SEIR model (4.45) that we have been studying, we have

TE = 1

κ
, TI = 1

α
.

For exponentially distributed exposed and infective periods,

TG = TE + TI ,

and we may write

R0 = 1 + r
1

κ
+ r

1

α
+ r2 1

κα
= 1 + rTE + rTI + r2TE(TG − TE).

For exposed and infective periods of fixed length,

TG = TE + 1

2
TI ,

and we have

R0 =
r
α
er/κ

1 − e−r/α
=

r
α
er/κ+r/2α

er/2α − e−r/2α =
r
α
erTG

2 sinh(r/2α)
.

Since sinh x > x for x > 0, we obtain the bound

R0 < erTG. (4.48)
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For a model with an exposed period having a gamma distribution with parameter
m and an infective period having a gamma distribution with parameter n it is
possible to show that the corresponding reproduction number, which we denote by
R(m,n)

0 , is

R(m,n)
0 = r

(
r

κm
+ 1

)m

α
[
1 − ( r

αn
+ 1)−n

] . (4.49)

It is possible to show that R(m,n)
0 is an increasing function of both m and n, and

that as m, n → ∞,R(m,n)
0 approaches the reproduction number corresponding to

exposed and infective periods of fixed length.

4.8 *Effect of Timing of Control Programs on Epidemic
Final Size

To explore the influence of seasonally forced transmission in disease control and
the epidemic final size of influenza, we consider an extension of the standard SIR
epidemic model by incorporating a periodic function c(t) for the transmission rate
as well as drug treatment and/or vaccination.

When model parameters vary with time, analytic results on final size will be
very difficult to obtain. Most results are based on numerical simulations. The
example presented here with periodic transmission rate examines the potential
negative effect of vaccination and/or treatment uses depending on the timing of
implementation. These scenarios are based on the consideration that vaccines and
antiviral drugs may not be available at the beginning of an epidemic. We focus on
three important measures when assessing the effect of a control program: (a) peak
size of the epidemic curve (the maximum number of infections during the course
of a pandemic); (b) peak time (the time at which the peak occurs); and (c) final
size (the total number of infections at the end of a pandemic). Main objectives of
effective control strategies should include lowering the peak size to keep demand
for facilities below available supply, lowering the final size to reduce morbidity, and
delaying the peak to provide more time for response.

Unlike in the case of constant parameters, where vaccination and treatment will
always help reduce morbidity, the case of a periodic transmission rate c(t) may
generate non-intuitive results. That is, the model can exhibit outcomes in which
an increased use of vaccination or antiviral drugs will lead to a higher morbidity.
To demonstrate this, we first consider the following epidemic model with time-
dependent infection rate

dS

dt
= −c(t)

SI

N

dI

dt
= c(t)

SI

N
− αI,

(4.50)
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where

c(t) = c0
[
1 + ε cos(2πt/365)

]

with the initial conditions

S(t0) = (1 − ϕ0)(N − I0), I (t0) = I0, R(t0) = 0. (4.51)

The parameter ε denotes the magnitude of the seasonal forcing and the period is
assumed to be 1 year. We do not include vaccinated individuals in the R class
because the value of R(t) at the end of the disease outbreak will be used to measure
the final epidemic size. Notice that the initial time t0 represents the time at which
the vaccination program starts. Some simulation results are presented in Fig. 4.6.

Fig. 4.6 Plots of epidemic curves and cumulative infections for different t0 values. These plots
show the dramatic effect that the start time of an epidemic (t0) can have on its progression in a
periodic environment given by the SIR model (4.50) with initial conditions (4.51). From the plots
in (a) and (c) we observe that when t0 = 30, vaccination reduced both the peak size and the peak
time although there is not much delay in the peak time. However, plots in (b) and (d) show that,
although the size of the first epidemic peak is reduced, a second (and higher) peak is also generated.
More significantly, the final epidemic size is increased, showing the sensitivity of the behavior of
the epidemic to t0
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In Fig. 4.6, both the epidemic curve and curve representing the cumulative
infections are plotted. For the transmission function c(t), the parameter values used
are those of an H1N1-like disease with c0 = 0.5 and ε = 0.35. We assume 1/α = 3
days. These values are also used in other figures except when specified differently.
The figure shows two sets of simulations corresponding to two different times t0 of
initial introduction of pathogens. One case is for t0 = 30 and the other is for t0 = 40,
and for demonstration purposes the vaccination level is chosen to be ϕ0 = 0.1.

Some interesting observations can be made from Fig. 4.6. We can first compare
the outcomes between the model without vaccination (the solid curves) and the
model with vaccination (the dashed curves). It demonstrates the dependence of the
model outcomes on the time of introduction (t0) of initial infections. Particularly,
we observe that although the peak and final sizes are both decreased for the case of
t0 = 30, the case of t0 = 40 differs significantly. Although the first wave is reduced,
the second wave is also generated; and moreover, the final epidemic size is even
higher than that without vaccination, demonstrating a scenario in which the use of
vaccine may have an adverse effect.

4.9 Directions for Generalization

A fundamental assumption in the model (4.1) is homogeneous mixing, that all
individuals are equivalent in contacts. A more realistic approach would include
separation of the population into subgroups with differences in behavior. For
example, in many childhood diseases the contacts that transmit infection depend
on the ages of the individuals, and a model should include a description of the
rate of contact between individuals of different ages. Other heterogeneities that
may be important include activity levels of different groups and spatial distribution
of populations. Network models may be formulated to include heterogeneity of
mixing, or more complicated compartmental models can be developed.

An important question which should be kept in mind in the formulation of
epidemic models is the extent to which the fundamental properties of the simple
model (4.1) carry over to more elaborate models.

4.10 Some Warnings

An actual epidemic differs considerably from the idealized model (4.1) or (4.17).
Some notable differences are:

1. When it is realized that an epidemic has begun, individuals are likely to modify
their behavior by avoiding crowds to reduce their contacts and by being more
careful about hygiene to reduce the risk that a contact will produce infection.

2. If a vaccine is available for the disease which has broken out, public health
measures will include vaccination of part of the population. Various vaccination
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strategies are possible, including vaccination of health care workers and other
first line responders to the epidemic, vaccination of members of the population
who have been in contact with diagnosed infectives, or vaccination of members
of the population who live in close proximity to diagnosed infectives.

3. Isolation may be imperfect; in-hospital transmission of infection was a major
problem in the SARS epidemic.

4. In the SARS epidemic of 2002–2003, in-hospital transmission of disease from
patients to health care workers because of imperfect isolation accounted for many
of the cases. This points to an essential heterogeneity in disease transmission
which must be included whenever there is any risk of such transmission.

4.11 *Project: A Discrete Model with Quarantine
and Isolation

Project 1 This project concerns a general single-outbreak discrete epidemic model
involving arbitrarily distributed stage-duration distributions for the latent and the
infectious stages. Clarity is added to model derivation by making use of a proba-
bilistic perspective. Hence, we let X and Y represent the time an individual spends
in latent (E,Q) and infectious (I,H ) classes, respectively. Similarly, we denote by
Z the time at which an exposed individual is quarantined (from E to Q), and W

the time at which an infected individual is isolated (from I to H ). X, Y , Z, and W

must take values on {1, 2, 3, . . . } and their dynamics are assumed to be governed by
underlying probabilistic processes. It is understood that the distribution of waiting
time in each of the above classes can be described by probability distributions
associated with the random variables X, Y , Z, and W :

pi = P(X > i) probability of remaining latent i steps after entering E,

qi = P(Y > i) probability of remaining infectious i steps after entering I ,

ki = P(Z > i) probability of not quarantined i steps after entering E,

li = P(W > i) probability of not isolated i steps after entering I .

(4.52)

Assume that p0 = q0 = k0 = l0 = 1, meaning that the latency, infectious,
quarantine , and isolation periods last at least one time step. For ease of description,
we introduce the following notation:

An the input to E at time n (new infections),
Bn the input to I at time n,
Cn the input to Q at time n,
Dn the input to H from Q at time n,
Fn (= Bn + Dn) the total input to infectious class at time n.

A transition diagram using the above notation is shown in Fig. 4.7.
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Fig. 4.7 Transition diagram
for the model with arbitrarily
distributed stage durations
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Using the above notation the model with arbitrarily distributed stage durations
can be written as:

Sn+1 = SnGn, Gn = e− β
N

[In+(1−ρ)Hn],
En+1 = An+1 + Anp1k1 + · · · + A1pnkn + A0pn+1kn+1,

Qn+1 = Anp1(1 − k1) + · · · + A1pn(1 − kn) + A0pn+1(1 − kn+1),

In+1 = Bn+1 + Bnq1l1 + · · · + B1qnln,

Hn+1 = Fn+1 + Fnq1 + · · · + F1qn − In+1, n = 0, 1, 2, · · · ,

(4.53)

where An, Bn, Cn, and Dn are given by

An+1 = Sn(1 − Gn) = Sn − Sn+1, n ≥ 0, with A0 = E0,

Bn+1 = An(1 − p1) + An−1(p1 − p2)k1 + · · · + A1(pn−1 − pn)kn−1

+A0(pn − pn−1)kn, with B0 = 0, k0 = 1,

Cn+1 = En − En+1 + An+1 − Bn+1, with C0 = 0,

Dn+1 = Qn − (Qn+1 − Cn+1).

(4.54)

The initial conditions in model (4.53) are S0, E0 > 0 and I0 = Q0 = H0 = R0 = 0.

Question 1 Show that the control reproduction number Rc is given by

Rc = RI + RIH + RQH , (4.55)

where

RI = βTEk
DIl ,

RIH = β(1 − ρ)TEk
(DI − DIl ),

RQH = β(1 − ρ)(1 − TEk
)DI .

(4.56)

Here, DE = E(X) and DI = E(Y ) are the mean sojourn times in the exposed
and infectious stages, respectively. DEk

and DIl denote the “quarantine-adjusted”
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and “isolation-adjusted” mean sojourn times in the exposed and infective stages,
respectively, given by

DEk
= E(X ∧ Z) =

∞∑
j=0

P(X ∧ Z > j) = 1 +
∞∑
j=1

pjkj ,

DIl = E(Y ∧ W) =
∞∑
j=0

P(Y ∧ W > j) = 1 +
∞∑
j=1

qj lj .

TEk
denotes the proportion of individuals in the E class who become infective

before going to the Q class, i.e., the event E → I occurs before E → Q. This
quantity is given by

TEk
= P(X ≤ Z) =

∞∑

j=1

(pj−1 − pj )kj−1.

The three quantities in (4.56) represent the stage-specific reproduction numbers
representing, respectively, the average number of secondary infections produced by
individuals in the I stage, in the H stage with quarantine (QH ) and without (IH ).

Question 2 Let Rc be as given in (4.55). Show that the epidemic final size generated
by the dynamics of model (4.53) satisfies the following final size relationship:

log
S0

S∞
=
(

1 − S∞
N

)

Rc. (4.57)

Question 3 Consider the case where the distributions in (4.52) are geometric.
Assume that X ∼ Geom(α), Y ∼ Geom(δ), Z ∼ Geom(γ ), and W ∼ Geom(σ ).
That is,

pi = αi, qi = δi, ki = γ i, li = σ i, i = 0, 1, 2, . . . .

In this case, the transition diagram 4.7 can be replaced by that shown in Fig. 4.8

Fig. 4.8 Transition diagram
for the model with geometric
stage distributions
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Show that under this assumption, the general model (4.53) simplifies to

Sn+1 = SnGn

En+1 = (1 − Gn)Sn + αγEn

Qn+1 = α(1 − γ )En + αQn

In+1 = (1 − α)En + δσIn

Hn+1 = (1 − α)Qn + δ(1 − σ)In + δHn, n = 0, 1, 2, 3, · · · .

(4.58)

Note that the system (4.58) has the same form as the usually considered model
with constant probabilities for transitions between stages. We refer to this model
as the geometric distribution model (GDM). The questions below concern the
GDM (4.58).

(a) Determine the quantities DE , DI , DEk
, DIl , and TEk

.
(b) Compute RI , RIH , RQH , and the control reproduction number Rc.

Question 4 We can examine how different distribution assumptions may influence
the values of the reproduction number Rc given in (4.55) and (4.56). Particu-
larly, the reduction in Rc by quarantine and isolation can be different under
different distribution assumptions. To examine this, we can consider two specific
distributions, geometric distribution assumption (GDA) and Poisson distribution
assumption (PDA). For the purpose of comparison, we take Xg and Xp with mean
μ1 and Yg and Yp with mean μ2 (the subscripts g and p represent geometric and
Poisson, respectively). The quarantine (Z) and isolation (W ) are assumed to have
geometric distributions with parameters γ or σ , respectively. Consider the parameter
values β = 0.75, ρ = 0.95, μ1 = 5, μ2 = 10. Compare two strategies: Strategy
I corresponds to γ = 0.5 and σ = 0.8 and Strategy II corresponds to γ = 0.8
and σ = 0.5. Figure 4.9 plots the control reproduction number Rc vs γ or σ . The
left figure is for Rc,g (i.e., when X and Y are geometric distributions) and the right
figure is for Rc,p (i.e., when X and Y are Poisson distributions). Figure 4.9 shows
reduction in Rc under Strategy I (represented by a dot on the dashed curve) and
Strategy II (represented by a solid square on the solid curve).

(a) Reproduce Fig. 4.9.
(b) Under the GDA, which of the strategies I and II is more effective in reducing

the control reproduction number?
(c) Under the PDA, which of the strategies I and II is more effective in reducing

the control reproduction number?
(d) Do the two distribution assumptions generate the same assessment? Why or

why not?
(e) The formula (4.57) holds for arbitrarily distributed latent and infectious periods.

Because reductions of Rc by quarantine and isolation depend on distribution
assumptions, compare the effects of these control measures on the epidemic
final size under the GDA and PDA.
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Fig. 4.9 Comparison of the GDM and PDM in terms of their evaluations on various control
measures when the corresponding control reproduction numbers, Rc,g and Rc,p are used. The
two control strategies considered are represented by γ = 0.5 and σ = 0.8 (labeled with a dot on
the dashed curve) and by γ = 0.8 and σ = 0.5 (labeled with a solid square on the solid curve)

Project 2 Consider the epidemic model (4.26), which includes general distribu-
tions for the latent and infectious stages with survival function Pi(s) (i = E, I ),
as well as a control measures quarantine and isolation represented by parameters ψ

and ϕ. The model also assumes that the isolation is 100% effective, i.e., the isolated
individuals do not contribute to the disease transmission. Let qi(s) = −P ′

i (s)

(i = E, I ). The corresponding reproduction number is

Rc(ψ, ϕ) = βN

∫ ∞

0
e−ψyqE(y)dy

∫ ∞

0
e−ϕuPI (u)du, (4.59)

or in terms of the Laplace transforms of qE and PI

Rc(ψ, ϕ) = βNLqE (ψ)LPI
(ϕ). (4.60)

In the more general case of imperfect isolation, the isolation may not be 100%
effective. Let σ denote the isolation efficiency for isolated individuals with 0 ≤ σ ≤
1. Then the effective transmission rate for the isolated (or hospitalized) individuals
(H ) is reduced to (1 − σ)β. In this case, the S equation in (4.26) becomes

S′ = −βS[I + (1 − σ)H ]. (4.61)

Question 1 Let μI denote the mean infective period, i.e., μI = ∫∞
0 PI (s)ds. Show

that the formula (4.60) can be extended to be a function of ψ, ϕ, and σ as below:

Rc(ψ, ϕ, σ ) = (1 − σ)βNLqE (ψ)μI + σβNLqE (ψ)LPI
(ϕ). (4.62)



4.12 Project: Epidemic Models with Direct and Indirect Transmission 167

Question 2 Ifthe stage durations are both gamma distributed with shape parameters
kE ≥ 1 and kI ≥ 1, i.e.,

qi(s, μi, ki) = 1

Γ (ki)

ki

μi

( ki

μi

s
)ki−1

e
− ki

μi
s
, s > 0, i = E, I.

(a) Show that in the absence of quarantine (i.e., φ = 0) the control reproduction
number is

Rc(0, ϕ, σ ) = (1 − σ)βNμI + σβN

ϕ

[

1 −
(

1 + μI

kI
ϕ

)−kI
]

. (4.63)

(b) Let βN = 0.5. Plot Rc(0, ϕ, σ ) given in (4.63) for various sets of values of
kE = kI = k, μI , and σI . For example, k = 1, 2, 4, μI = 3, 5, 8, and
σ = 0.1, 0.5, 0.8, 1. Summarize the observations from these plots in terms of
the dependence of Rc on the shape parameter, mean period of infection, and
isolation efficiency.

(c) Let kE = kI = k. Note that k = 1 corresponds to an exponentially distributed
stage, which is the most commonly assumed distribution. For the two values
k = 1 and 4, draw the contour plots of Rc(0, ϕ, σ ) in the (ϕ, σ ) plane showing
a few contour curves including the one corresponding to Rc(0, ϕ, σ ) = 1.
Other parameter values are βN = 0.5, μI = 3, σ = 1. Discuss the observed
difference from the contour plots between the cases of k = 1 and k = 4 in terms
of the threshold values of ϕ for which Rc(0, ϕ, σ ) = 1.

4.12 Project: Epidemic Models with Direct and Indirect
Transmission

Some diseases may be spread in more than one manner. For example, cholera may
be spread by person to person transmission but may also be transmitted indirectly
through a pathogen released by infectives through a medium such as contaminated
water [38, 41].

Consider an epidemic model with direct (person to person) and indirect (through
a medium such as contaminated water) transmission. To a simple SIR model we add
a pathogen B shed by infectives. We assume that the infectivity of the pathogen is
proportional to its concentration, suggesting mass action transmission. The resulting
model is

S′ = −β1SI − β2SB

I ′ = β1SI + β2SB − γ I (4.64)

R′ = γ I

B ′ = rI − δB,
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with initial conditions

S(0) = S0, I (0) = I0, B(0) = B0,

in a population of constant total size N = S0 + I0, with R(0) = 0. In general,
N = S + I +R. In this model r represents the rate at which an infectious individual
sheds pathogen and δ represents the rate at which the pathogen loses infectivity.

Question 1 Show that the basic reproduction number

R0 = β1N

γ
+ rβ2N

γ δ
.

In this expression, the first term represents secondary infections caused directly
by a single infective introduced into a wholly susceptible population, infecting
βN susceptibles in unit time for a time period 1/γ . The second term represents
secondary infections caused indirectly through the pathogen since a single infective
sheds a quantity r of pathogen in unit time for a time period 1/γ and this pathogen
infects βN susceptibles in unit time for a time period 1/δ.

Question 2 Derive the final size relation

log
S0

S∞
=
(

β1 + β1Nr

γ δ

)[

1 − S∞
N

]

+ β1
B0

δ

= R0

[

1 − S∞
N

]

+ β1
B0

δ
.

(4.65)

This implies S∞ > 0.

In order to cover such generalizations of the model (4.1) as multiple infective
stages and arbitrary distributions of stay in a stage, we give an age of infection
model

S′(t) = −S(t)[β1ϕ(t) + β2B(t)]

ϕ(t) = ϕ0(t) +
∫ t

0
[−S′(t − τ)]P(τ)dτ (4.66)

B(t) = B0(t) +
∫ t

0
rϕ(t − τ)Q(τ)dτ.

In this model, ϕ(t) represents the total infectivity of individuals with age of infection
t , ϕ0(t) represents the total infectivity at time t of individuals who were already
infected at time t = 0, B0(t) represents the pathogen concentration at time t

remaining from pathogen concentration that was already present at time t = 0,
P(τ) represents the mean infectivity of individuals at age of infection τ , normally
the product of the fraction of infectives still infective at age of infection τ and the
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relative infectivity at that infection age, and Q(τ) represents the fraction of pathogen
remaining τ time units after having been shed by an infective. The function Q is
monotone non-increasing with Q(0) = 1,

∫∞
0 Q(τ)dτ < ∞. Since infectivity of

an individual may depend on the age of infection of the individual, the function P

is not necessarily non-increasing, but we assume
∫∞

0 P(τ)dτ < ∞.

Question 3 Show that for the model (4.66), the basic reproduction number is

R0 = β1N

∫ ∞

0
P(τ)dτ + rβ2N

∫ ∞

0
P(τ)dτ

∫ ∞

0
Q(τ)dτ.

In this expression, the first term represents new infection transmitted directly by
a single infectious individual inserted into a totally susceptible population, while
the second term represents secondary infections caused by this individual indirectly
through shedding of pathogen.

Question 4 Obtain the final size relation

log
S0

S∞
= R0

[
S0 − S∞

N

]

+ β1

∫ ∞

0
ϕ0(t)dt

+rβ2

∫ ∞

0
Q(t)dt

∫ ∞

0
ϕ0(t)dt + β2

∫ ∞

0
B0(t)dt.

(4.67)

If all infections at time zero have infection age zero, then

ϕ0(t) = [N − S0]P(t),

∫ ∞

0
ϕ0(t)dt = [N − S0]

∫ ∞

0
P(t)dt,

and if the entire pathogen concentration at time zero has infection age zero, then

B0(t) = B0Q(t),

∫ ∞

0
B0(t)dt = B0

∫ ∞

0
Q(t)dt

with some constant B0. In this case, the final size relation (9.10) takes the form

log
S0

S∞
= R0

[

1 − S∞
N

]

+ β2B0

∫ ∞

0
Q(t)dt. (4.68)

The final size relation has a term arising from an initial pathogen concentration that
tends to decrease S∞.

In general, because Q is monotone non-increasing,

∫ ∞

0
B0(t)dt ≤ B0

∫ ∞

0
Q(t)dt.
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If P is monotone non-increasing,

∫ ∞

0
ϕ0(t)dt ≤ [N − S0]

∫ ∞

0
P(t)dt.

If P is not monotone, which may occur, for example, if there is an exposed stage
followed by an infective stage with higher infectivity, this is not necessarily true.
However, if there are no infectives initially, so that the epidemic is started by the
pathogen, then ϕ0(t) = 0 and S0 = N . Then (4.67) remains valid without the need
to assume that P is monotone.

These results have been established only for a constant rate of pathogen shedding.
If the rate of pathogen depends on the age of infection, the equation for B in the
model (4.66) should be replaced by an equation

B(t) = B0(t) +
∫ t

0
r(t − τ)ϕ(t − τ)Q(τ)dτ.

It is not possible to treat the corresponding model as an age of infection model, but
we can view it as a staged progression model.

We consider an epidemic with progression from S through k infected stages
I1, I2, · · · , Ik , as analyzed in [7], but with the addition of a pathogen. We assume
that in stage j the relative infectivity is εj , the distribution of stay in the stage is
given by Pj with Pj (0) = 1,

∫∞
0 Pj (t)dt < ∞, and Pj monotone non-increasing,

so that the infectivity of an individual in stage j is Aj(τ) = εjPj (τ ). There are
no disease deaths and the total population size N is constant. We assume initial
conditions

S(0) = 0, I1(0) = I0, I2(0) = I3(0) = · · · = Ik(0) = 0, R(0) = 0.

The total infectivity is given by

ϕ(t) =
k∑

j=1

εj Ij (t).

We let Bj (t) be the quantity of pathogen shed by infectives in the stage Ij and let
Qj denote the distribution of stay of pathogen shed by infectives in this stage, with
Qj(0) = 1,

∫∞
0 Qj(t)dt < ∞, and Qj monotone non-increasing. We let rj be the

shedding rate in this stage. We also define the total quantity of pathogen,

B(t) =
k∑

j=1

Bj (t).

Then

Bj (t) = B0
j (t) +

∫ t

0
rj Ij (t − τ)Qj (τ)dτ. (4.69)
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Question 5 Show that the basic reproduction number is

R0 = β1N

k∑

j=1

εj

∫ ∞

0
Pj (t)dt + β2N

k∑

j=1

rj

∫ ∞

0
Pj (t)dt

∫ ∞

0
Qj(t)dt.

Question 6 For simplicity, we assume that all individuals infected at time zero have
infection age zero for t = 0, and also that there is a new quantity of pathogen B0
introduced at time zero, so that B0(t) = B0Q(t). Obtain the final size relation

log
S0

S∞
= β1

k∑

j=1

εj

∫ ∞

0
Pj (t)dt[N − S∞]

+β2

k∑

j=1

rj

∫ ∞

0
Pj (t)dt

∫ ∞

0
Qj(t)dt[N − S∞]

+β2B0

∫ ∞

0
Q(t)dt (4.70)

= R0

[

1 − S∞
N

]

+ β2B0

∫ ∞

0
Q(t)dt.

References [8]. Other sources of information about cholera include [1, 2, 11, 21,
25, 38, 41].

4.13 Exercises

1. Show that it is not possible for a major epidemic to develop unless at least one
member of the contact network has degree at least 3.

2. What is the probability of a major epidemic if every member of the contact
network has degree 3?

3. Show that if G1(0) = 0, then

(a) G′
1(0) ≤ 0

(b) G1(z) < z for 0 ≤ z ≤ 1
(c) z∞ = 0
(d) R0 > 1

4. Consider a truncated Poisson distribution, with

pk =
{

e−cck

k! , k ≤ 10,
0, k > 10.

Estimate (numerically) the probability of a major epidemic if c = 1.5.



172 4 Epidemic Models

5. Show that the probability generating function for an exponential distribution,
given by

pk = (1 − e−1/r )e−k/r ,

is

G0(z) = 1 − e−1/r

1 − ze−1/r
.

6. A power law distribution is given by

pk = Ck−α.

For what values of α is it possible to normalize this (i.e., choose C to make∑
pk = 1)?

7. Consider a network in which the contacts between members of the population
are random. Assume that the fraction of vertices having degree k, or the
probabilities pk are given by the Poisson distribution pk = ecck/k!, where
c = R0 = 3. Let P denote the probability of a minor outbreak.

(a) Determine the equation that can be used to solve for P.
(b) Find P.
(b) Find the probability of a major epidemic.

8. Compare the qualitative behaviors of the models

S′ = −βSI, I ′ = βSI − αI,

and

S′ = −βSI, E′ = βSI − κE, I ′ = κE − αI,

with

βN = 1/3, α = 1/6, κ = 1/2, S(0) = 999, I (0) = 1.

These models represent an SIR epidemic model and an SEIR epidemic model
respectively with a mean infective period of 6 days and a mean exposed period
of 2 days. Do numerical simulations to decide whether the exposed period
affects the behavior of the model noticeably.

9. Consider three basic epidemic models—the simple SIR model,

S′ = −βSI,

I ′ = βSI − αI,
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the SEIR model with some infectivity in the exposed period,

S′ = −β[S(I + εE],
E′ = β[S(I + εE] − κE,

I ′ = κE − αI,

and the SIR model with treatment,

S′ = −βS(I + δT ),

I ′ = βS(I + δT ) − (α + ϕ)I,

T ′ = ϕI − ηT .

Use the parameter values

βN = 1

3
, α = 1

4
, ε = 1

2
, κ = 1

2
, δ = 1

2
, η = 1

4
, ϕ = 1,

and the initial values

S(0) = 995, E(0) = 0, I (0) = 5, T (0) = 0.

For each model,

(a) Calculate the reproduction number and the epidemic final size.
(b) Do some numerical simulations to obtain the epidemic size by determining

the change in S, the maximum number of infectives by measuring I , and
the duration of the epidemic.

10. Consider the treatment model (4.12). Assume that βN = 860, δ = 0.5, η =
1/10, and S0 = N − 1.

(a) Explore numerically how the final epidemic size can be affected by the
treatment effort (measured by the parameter γ ). Plot the relationship.

(b) Determine the final epidemic size without treatment.
(c) Is it possible to reduce the final size by 50% by increasing γ ? If yes, find

that γ value.

11. For the model (4.15), what should be the constraints on parameter values so
that passage from E to Q to J to R is at least as rapid as the passage from E to
I to R, and the passage from I to J to R is at least as rapid as the passage from
I to R?

12. Consider the model (4.15) with quarantine and isolation. Assume that βN =
860, κE = 1/4, αI = 1/10, εE = 0.4, εQ = 0.1, εJ = 0.6.
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(a) In the absence of control (i.e., γQ = γJ = κQ = αJ = 0), what is the final
epidemic size?

(b) Plot the final size as a function of γQ and γJ .
(c) Is it possible to reduce the final size by 50% by increasing γQ and/or γJ ?

If yes, identify one pair of values of γQ and γJ to achieve the goal.

13. Formulate an SEIRT model, that is, a model with both an exposed class and a
treatment class

(a) Draw a flow chart and calculate the basic reproduction number
(b) Determine the final size relation

14. Consider an SIR model in which a fraction θ of infectives is isolated in a
perfectly quarantined class Q with standard incidence (meaning that individuals
make a contacts in unit time of which a fraction I/(N −Q) is infective), given
by the system

S′ = −βNS
I

N − Q
,

I ′ = βNS
I

N − Q
− (θ + α)I,

Q′ = θI − γQ,

R′ = αI + γQ.

(a) Find the equilibria.
(b) Find the basic reproduction number R0.
(c) For parameters, take α = 0.1, θ = 1, 2, 4, γ = 0.2. Sketch the phase plane

of the system and observe what is happening.

15. Isolation/quarantine is a complicated process because we don’t live in a perfect
world. In hospitals, patients may inadvertently or deliberately break from
isolation and in the process have casual contacts with others including medical
personnel and visitors. Taking this into account, we are led to the model

S′ = −βNS
[I + ρτQ]
N − σQ

,

I ′ = βNS
[I + ρτQ]
N − σQ

− (θ + α)I,

Q′ = θI − γQ,

R′ = αI + γQ.

(a) Determine all the parameters in the system and define each parameter.
(b) Show that the population is constant.
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(c) Find all equilibria.
(d) Find the reproduction number R0.
(e) Describe the asymptotic behavior of the model, including its dependence

on the basic reproduction number.

16. Formulate a model analogous to (4.12) for which treatment is not started
immediately, but begins at time τ > 0. Can you say anything about the
dependence of the reproduction number on τ?

17. In the simple SIR model (4.1) it is assumed that all effective contacts between
susceptibles and infectives lead to new infections. Suppose, however, that only a
fraction δ of contacts by infectives actually transmit disease and only a fraction
σ of contacts of susceptibles actually lead to new infections. This would lead
to a model

S′ = −δσβSI

I ′ = δσβSI − αI.

Find the basic reproduction number and the final size relation for this model.
18. Consider the model in Sect. 4.4 and assume that P(τ) has the value 1 if 0 ≤

τ ≤ T and 0 otherwise.

(a) Calculate the basic reproduction number
(b) Plot the final epidemic size for several different values of T .

19. Consider the model in Sect. 4.4 and assume that P(τ) follows a gamma
distribution with mean equal to 10 and shape parameter equal to n.

(a) Plot final epidemic size for n = 1, 3, 5, 7, 9.
(b) Does the final size change with n? If yes, what is the observed pattern of

the change?

20. The quarantine–isolation model (4.26) is not quite in the age of infection form
that we have been studying in this section because of the initial terms in the
equations. Transform it to age of infection form by incorporating the initial
terms into infinite integrals and calculate the control reproduction number from
this form.

21. Determine the initial exponential growth rate for the model (4.11) by interpret-
ing it as an age of infection model.

22. Determine the initial exponential growth rate for the model (4.12) by interpret-
ing it as an age of infection model.

23. Determine the initial exponential growth rate for the general treatment
model (4.24) of Sect. 4.5.

24. Consider the model (4.23) with A(τ) = e−0.1τ .

(a) Determine the critical value of ac such that there is an epidemic if a > ac
and no epidemic if a < ac.

(b) Is there an epidemic for a = 1.5? If yes, find the exponential grow rate of
the epidemic.
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25. Find the solution of the system (4.29).
26. Verify the relation (4.30).
27. Verify the Eq. (4.32).
28. Determine the mean generation time for an SEIR model with an infectious

period having a gamma distribution with parameter n.
29. Establish the relation (4.49).
30. Consider the model (4.50) with initial conditions given in (4.51) with t0 = 30.

The parameter values c0, ε, and α are the same as those used in Fig. 4.6. Make
plots similar to those in Fig. 4.6 under the following scenarios.

(a) Plot the epidemic curves for three values of vaccination fraction p: 0.05,
0.1, and 0.15. Compare the shape of each epidemic curve with that for the
case of no vaccination (i.e., p = 0).

(b) Plot the cumulative cases for p = 0.05, 0.1, and 0.15. Compare each case
with the case of no vaccination.

(c) How many epidemic waves do you observe in each of the three cases?
(d) Is it true that the higher the fraction of people vaccinated the lower the final

size will be?

31. Repeat Exercise 30 but for t0 = 40. Describe the qualitative differences in
epidemic curves and cumulative cases between the case t0 = 30 and the case
t0 = 40? What are the implications of these differences for public health policy
decisions?
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Chapter 5
Models with Heterogeneous Mixing

5.1 A Vaccination Model

To cope with annual seasonal influenza epidemics there is a program of vaccination
before the “flu” season begins. Each year a vaccine is produced aimed at protecting
against the three influenza strains considered most dangerous for the coming season.
We formulate a model to add vaccination to the simple SIR model under the
assumption that vaccination reduces susceptibility (the probability of infection if
a contact with an infected member of the population is made).

We consider a population of total size N and assume that a fraction γ of this
population is vaccinated prior to a disease outbreak. Thus we have unvaccinated and
vaccinated sub-populations of sizes NU = (1 − γ )N and NV = γN , respectively.
We assume that vaccinated members have susceptibility to infection reduced by a
factor σ, 0 ≤ σ ≤ 1, with σ = 0 describing a perfectly effective vaccine and σ = 1
describing a vaccine that has no effect. We assume also that vaccinated individuals
who are infected have infectivity reduced by a factor δ and both vaccinated and
unvaccinated individuals have a recovery rate α. The number of contacts in unit time
per member is aU for unvaccinated individuals and aV for vaccinated individuals.
These may be equal.

In this chapter we will study models in which there is more than one susceptible
or infective compartment, and it is convenient to formulate such models using the
number of contacts in unit time instead of the number of contacts multiplied by
the total population size. Thus, for example, instead of writing the simple epidemic
model as

S′ = βSI, I ′ = βSI − αI,
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we would write it as

S′ = −aS
I

N
, I ′ = aS

I

N
− αI.

We let SU , SV , IU , IV denote the number of unvaccinated susceptibles, the
number of vaccinated susceptibles, the number of unvaccinated infectives, and the
number of vaccinated infectives, respectively. The resulting model is

S′
U = −aUSU

[
IU

NU

+ δ
IV

NV

]

S′
V = −σaV SV

[
IU

NU

+ δ
IV

NV

]

(5.1)

I ′
U = aUSU

[
IU

NU

+ δ
IV

NV

]

− αIU

I ′
V = σaV SV

[
IU

NU

+ δ
IV

NV

]

− αIV .

The initial conditions prescribe SU(0), SV (0), IU (0), IV (0), with

SU(0) + IU (0) = NU, SV (0) + IV (0) = NV .

Since the infection now is beginning in a population which is not fully sus-
ceptible, we speak of the control reproduction number Rc rather than the basic
reproduction number. However, as we will soon see, calculation of the control
reproduction number will require a more general definition and a considerable
amount of technical computation. The computation method is applicable to both
basic and control reproduction numbers. We will use the term reproduction number
to denote either a basic reproduction number or a control reproduction number. We
are able to obtain final size relations without knowledge of the reproduction number
but these final size relations do contain information about the reproduction number,
and more.

Since SU and SV are decreasing non-negative functions they have limits SU(∞)

and SV (∞), respectively, as t → ∞. The sum of the equations for SU and IU
in (5.1) is

(SU + IU )′ = −αIU ,

from which we conclude, just as in the analysis of the simple SIR model in Sect. 2.4,
that IU (t) → 0 as t → ∞, and that

α

∫ ∞

0
IU (t)dt = NU − SU(∞). (5.2)
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Similarly, using the sum of the equations for SV and IV , we see that IV (t) → 0 as
t → ∞, and that

α

∫ ∞

0
IV (t)dt = NV − SV (∞). (5.3)

Integration of the equation for SU in (5.1) and use of (5.2), (5.3) gives

log
SU(0)

SU (∞)
= aU

[∫ ∞

0
IU (t)dt + δ

∫ ∞

0
IV (t)dt

]

= aU

α

[

1 − SU(∞)

NU

]

+ δaU

α

[

1 − SV (∞)

NV

]

.

(5.4)

A similar calculation using the equation for SV gives

log
SV (0)

SV (∞)
= σaV

α

[

1 − SU(∞)

NU

]

+ δσaV

α

[

1 − SV (∞)

NV

]

. (5.5)

This pair of Eqs. (5.4) and (5.5) are the final size relations. They make it possible to
calculate SU(∞), SV (∞) if the parameters of the model are known.

It is convenient to define the matrix

R =
[
R11 R12

R21 R22

]

=
[

aU
α

δaU
α

σaV
αU

δσaV
αV

]

.

The element Rij can be interpreted as the average number of susceptibles of group
i infected by an infective of type j over its infectious period.

Then the final size relations (5.4), (5.5) may be written as

log
SU(0)

SU (∞)
= R11

[

1 − SU(∞)

NU

]

+ R12

[

1 − SV (∞)

NV

]

log
SV (0)

SV (∞)
= R21

[

1 − SU(∞)

NU

]

+ R22

[

1 − SV (∞)

NV

]

.

(5.6)

The matrix R is closely related to the reproduction number. In the next section we
describe a general method for calculating reproduction numbers that will involve a
matrix which is similar to this matrix.
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5.2 The Next Generation Matrix and the Basic Reproduction
Number

Up to this point, we have calculated reproduction numbers by following the
secondary cases caused by a single infective introduced into a population. However,
if there are sub-populations with different susceptibility to infection, as in the
vaccination model introduced in Sect. 5.1, it is necessary to follow the secondary
infections in the sub-populations separately, and this approach will not yield the
reproduction number. It is necessary to give a more general approach to the meaning
of the reproduction number, and this is done through the next generation matrix
[18, 19, 45]. The underlying idea is that we must calculate the matrix whose
(i, j) entry is the number of secondary infections caused in compartment i by an
infected individual in compartment j . We will follow the development in [45, 46]
for ordinary differential equation models, even though the approach of [18, 19] is
more general.

In a compartmental disease transmission model, we sort individuals into com-
partments based on a single, discrete state variable. A compartment is called a
disease compartment if the individuals therein are infected. Note that this use of the
term disease is broader than the clinical definition and includes stages of infection
such as exposed stages in which infected individuals are not necessarily infective.
Suppose there are n disease compartments and m non-disease compartments, and
let x ∈ Rn and y ∈ Rm be the sub-populations in each of these compartments.
Further, we denote by Fi the rate at which secondary infections increase the ith

disease compartment and by Vi the rate at which disease progression, death, and
recovery decrease the ith compartment, that is, Vi is the net outflow from the i th
compartment due to disease progression, death, and recovery, with inflow from other
compartments yielding a negative contribution. The compartmental model can then
be written in the form

x′
i = Fi (x, y) − Vi (x, y), i = 1, . . . , n,

y′
j = gj (x, y), j = 1, . . . , m.

(5.7)

Note that the decomposition of the dynamics into F and V and the designation
of compartments as infected or uninfected may not be unique; different decompo-
sitions correspond to different epidemiological interpretations of the model. The
definitions of F and V used here differ slightly from those in [45].

The derivation of the basic reproduction number is based on the linearization
of the ODE model about a disease-free equilibrium. We make the following
assumptions:

• Fi (0, y) = 0 and Vi (0, y) = 0 for all y ≥ 0 and i = 1, . . . , n.
• The disease-free system y′ = g(0, y) has a unique equilibrium that is asymp-

totically stable, that is, all solutions with initial conditions of the form (0, y)
approach a point (0, yo) as t → ∞. We refer to this point as the disease-free
equilibrium.
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The first assumption says that all new infections are secondary infections arising
from infected hosts; there is no immigration of individuals into the disease
compartments. It ensures that the disease-free set, which consists of all points of
the form (0, y), is invariant. That is, any solution with no infected individuals at
some point in time will be free of infection for all time. The second assumption
ensures that the disease-free equilibrium is also an equilibrium of the full system.

Next, we further assume that

• Fi (x, y) ≥ 0 for all non-negative x and y and i = 1, . . . , n.
• Vi (x, y) ≤ 0 whenever xi = 0, i = 1, . . . , n.
•
∑n

i=1 Vi (x, y) ≥ 0 for all non-negative x and y.

The reasons for these assumptions are that the function F represents new
infections and cannot be negative, each component, Vi , represents a net outflow
from compartment i and must be negative (inflow only) whenever the compartment
is empty, and the sum

∑n
i=1 Vi (x, y) represents the total outflow from all infected

compartments. Terms in the model leading to increases in
∑n

i=1 xi are assumed to
represent secondary infections and therefore belong in F .

Suppose that a single infected person is introduced into a population originally
free of disease. The initial ability of the disease to spread through the population
is determined by an examination of the linearization of (5.7) about the disease-free
equilibrium (0, yo). It is easy to see that the assumption Fi (0, y) = 0,Vi (0, y) = 0
implies

∂Fi

∂yj
(0, yo) = ∂Vi

∂yj
(0, yo) = 0

for every pair (i, j). This implies that the linearized equations for the disease
compartments, x, are decoupled from the remaining equations and can be written as

x′ = (F − V )x, (5.8)

where F and V are the n × n matrices with entries

F = ∂Fi

∂xj
(0, yo) and V = ∂Vi

∂xj
(0, yo).

Because of the assumption that the disease-free system y′ = g(0, y) has a
unique asymptotically stable equilibrium, the linear stability of the system (5.7)
is completely determined by the linear stability of the matrix (F − V ) in (5.8).

The number of secondary infections produced by a single infected individual can
be expressed as the product of the expected duration of the infective period and
the rate at which secondary infections occur. For the general model with n disease
compartments, these are computed for each compartment for a hypothetical index
case. The expected time the index case spends in each compartment is given by
the integral

∫∞
0 φ(t, x0) dt , where φ(t, x0) is the solution of (5.8) with F = 0
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(no secondary infections) and non-negative initial conditions, x0, representing an
infected index case:

x′ = −V x, x(0) = x0. (5.9)

In effect, this solution shows the path of the index case through the disease
compartments from the initial exposure through death or recovery with the ith

component of φ(t, x0) interpreted as the probability that the index case (introduced
at time t = 0) is in disease state i at time t . The solution of (5.9) is φ(t, x0) =
e−V tx0, where the exponential of a matrix is defined by the Taylor series

eA = I + A + A2

2
+ A3

3! + · · · + Ak

k! + · · · .

This series converges for all t and
∫∞

0 φ(t, x0) dt = V −1x0 (see, for example,
[29]). The (i, j) entry of the matrix V −1 can be interpreted as the expected time
an individual initially introduced into disease compartment j spends in disease
compartment i.

The (i, j) entry of the matrix F is the rate at which secondary infections are
produced in compartment i by an index case in compartment j . Hence, the expected
number of secondary infections produced by the index case is given by

∫ ∞

0
Fe−V tx0 dt = FV −1x0.

Following Diekmann and Heesterbeek [18], the matrix KL = FV −1 is referred to
as the next generation matrix with large domain for the system at the disease-free
equilibrium. The (i, j) entry of K is the expected number of secondary infections
in compartment i produced by individuals initially in compartment j , assuming, of
course, that the environment seen by the individual remains homogeneous for the
duration of its infection.

Shortly, we will describe some results from matrix theory which imply that the
matrix, KL = FV −1 is non-negative and therefore has a non-negative eigenvalue,
R0 = ρ(FV −1), such that there are no other eigenvalues of K with modulus
greater than R0 and there is a non-negative eigenvector ω associated with R0 [7,
Theorem 1.3.2]. This eigenvector is in a sense the distribution of infected individuals
that produces the greatest number, R0, of secondary infections per generation.
Thus, R0 and the associated eigenvector ω suitably define a “typical” infective
and the basic reproduction number can be rigorously defined as the spectral radius
of the matrix, KL. The spectral radius of a matrix KL, denoted by ρ(KL), is the
maximum of the moduli of the eigenvalues of KL. If KL is irreducible, then R0 is a
simple eigenvalue of KL and is strictly larger in modulus than all other eigenvalues
of KL. However, if KL is reducible, which is often the case for diseases with
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multiple strains, then KL may have several positive real eigenvectors corresponding
to reproduction numbers for each competing strain of the disease.

We have interpreted the reproduction number for a disease as the number
of secondary infections produced by an infected individual in a population of
susceptible individuals. If the reproduction number R0 = ρ(FV −1) is consistent
with the differential equation model, then it should follow that the disease-free
equilibrium is asymptotically stable if R0 < 1 and unstable if R0 > 1.

This is shown through a sequence of lemmas.
The spectral bound (or abscissa) of a matrix A is the maximum real part of all

eigenvalues of A. If each entry of a matrix T is non-negative we write T ≥ 0 and
refer to T as a non-negative matrix. A matrix of the form A = sI − B, with B ≥ 0,
is said to have the Z sign pattern. These are matrices whose off-diagonal entries are
negative or zero. If in addition, s ≥ ρ(B), then A is called an M-matrix. Note that in
this section, I denotes an identity matrix, not a population of infectious individuals.
The following lemma is a standard result from [7].

Lemma 5.1 If A has the Z sign pattern, then A−1 ≥ 0 if and only if A is a non-
singular M-matrix.

The assumptions we have made imply that each entry of F is non-negative and
that the off-diagonal entries of V are negative or zero. Thus V has the Z sign
pattern. Also, the column sums of V are positive or zero, which, together with the Z
sign pattern, implies that V is a (possibly singular) M-matrix [7, condition M35 of
Theorem 6.2.3]. In what follows, it is assumed that V is non-singular. In this case,
V −1 ≥ 0, by Lemma 5.1. Hence, KL = FV −1 is also non-negative.

Lemma 5.2 If F is non-negative and V is a non-singular M-matrix, then R0 =
ρ(FV −1) < 1 if and only if all eigenvalues of (F − V ) have negative real parts.

Proof Suppose F ≥ 0 and V is a non-singular M-matrix. By the proof of
Lemma 5.1, V −1 ≥ 0. Thus, (I − FV −1) has the Z sign pattern, and by
Lemma 5.1, (I − FV −1)−1 ≥ 0 if and only if ρ(FV −1) < 1. From the equalities
(V −F)−1 = V −1(I −FV −1)−1 and V (V −F)−1 = I +F(V −F)−1, it follows
that (V −F)−1 ≥ 0 if and only if (I−FV −1)−1 ≥ 0. Finally, (V −F) has the Z sign
pattern, so by Lemma 5.1, (V − F)−1 ≥ 0 if and only if (V − F) is a non-singular
M-matrix. Since the eigenvalues of a non-singular M-matrix all have positive real
parts, this completes the proof. ��
Theorem 5.1 Consider the disease transmission model given by (5.7). The disease-
free equilibrium of (5.7) is locally asymptotically stable if R0 < 1, but unstable if
R0 > 1.
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Proof Let F and V be defined as above, and let J21 and J22 be the matrices of partial
derivatives of g with respect to x and y evaluated at the disease-free equilibrium.
The Jacobian matrix for the linearization of the system about the disease-free
equilibrium has the block structure

J =
[
F − V 0
J21 J22

]

.

The disease-free equilibrium is locally asymptotically stable if the eigenvalues of
the Jacobian matrix all have negative real parts. Since the eigenvalues of J are those
of (F − V ) and J22, and the latter all have negative real parts by assumption, the
disease-free equilibrium is locally asymptotically stable if all eigenvalues of (F−V )

have negative real parts. By the assumptions on F and V , F is non-negative and
V is a non-singular M-matrix. Hence, by Lemma 5.2 all eigenvalues of (F − V )

have negative real parts if and only if ρ(FV −1) < 1. It follows that the disease-free
equilibrium is locally asymptotically if R0 = ρ(FV −1) < 1.

Instability for R0 > 1 can be established by a continuity argument. If R0 ≤
1, then for any ε > 0, ((1 + ε)I − FV −1) is a non-singular M-matrix and,
by Lemma 5.1, ((1 + ε)I − FV −1)−1 ≥ 0. By the proof of Lemma 5.2, all
eigenvalues of ((1 + ε)V − F) have positive real parts. Since ε > 0 is arbitrary,
and eigenvalues are continuous functions of the entries of the matrix, it follows
that all eigenvalues of (V − F) have non-negative real parts. To reverse the
argument, suppose all the eigenvalues of (V − F) have non-negative real parts.
For any positive ε, (V + εI − F) is a non-singular M-matrix, and by the proof of
Lemma 5.2, ρ(F (V + εI)−1) < 1. Again, since ε > 0 is arbitrary, it follows that
ρ(FV −1) ≤ 1. Thus, (F − V ) has at least one eigenvalue with positive real part if
and only if ρ(FV −1) > 1, and the disease-free equilibrium is unstable whenever
R0 > 1. ��

These results validate the extension of the definition of the reproduction number
to more general situations. In the vaccination model (5.1) of Sect. 5.1 we calculated
a pair of final size relations which contained the elements of a matrix K . This matrix
is precisely the next generation matrix with large domain KL = FV −1 that has been
introduced in this section.

Example 1 Consider the SEIR model with infectivity in the exposed stage,

S′ = − a

N
S(I + εE)

E′ = a

N
S(I + εE) − κE

I ′ = κE − αI

R′ = αI.

(5.10)
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Here the disease states are E and I ,

F =
[
εEa + Ia

0

]

and

F =
[
εa a

0 0

]

, V =
[

κ 0
−κ α

]

, V −1 =
[

1/κ 0
1/α 1/α

]

.

Then we may calculate

KL = FV −1 =
[εa

κ
+ a

α

a

α
0 0

]

.

It is clear that since R0 is equal to the trace of FV −1,

R0 = εa

κ
+ a

α
,

the element in the first row and first column of FV −1. If all new infections are in a
single compartment, as is the case here, the basic reproduction number is the trace
of the matrix FV −1.

In general, it is possible to reduce the size of the next generation matrix with
large domain to the number of state at infection [18]. The states at infection are
those disease states in which there can be new infections. Suppose that there are n

disease states and k states at infection with k < n. Then we may define an auxiliary
n × k matrix P in which each column corresponds to a state at infection and has 1
in the corresponding row and 0 elsewhere. Then the next generation matrix is the
k × k matrix

K = PT KLP.

It is easy to show, using the fact that PPT KL = KL, that the n×n matrix KL and the
k × k matrix K have the same non-zero eigenvalues and therefore the same spectral
radius. Construction of the next generation matrix which has lower dimension than
the next generation matrix with large domain may simplify the calculation of the
basic reproduction number.

In Example 1 above, the only disease state at infection is E, the matrix P is

[
1
0

]

,
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and the next generation matrix K is the 1 × 1 matrix

K =
[εa

κ
+ a

α

]
.

5.2.1 Some More Complicated Examples

The next generation approach is very general and can be applied to models with
heterogeneous mixing and control measures applied differently in different groups.

Example 2 Consider the vaccination model (5.1) of Sect. 5.1. The disease states are
IU and IV . Then

F =
[
aU(IU + δIV )

σaV (IU + δIV

]

and

F =
[

aU
NU

N
δaU

NU

N

σaV
NV

N
σδaV

NV

N

]

, V =
[
αU 0
0 αV

]

.

It is easy to see that the next generation matrix with large domain is the matrix K

calculated in Sect. 5.1. Since each disease state is a disease state at infection, the next
generation matrix is K , the same as the next generation matrix with large domain.
As in Example 1, the determinant of K is zero and K has rank 1. Thus the control
reproduction number is the trace of K ,

Rc = aU

αU

NU

N
+ δσ

aV

αV

NU

N
.

5.3 Heterogeneous Mixing

In disease transmission models not all members of the population make contacts
at the same rate. In sexually transmitted diseases there is often a “core” group
of very active members who are responsible for most of the disease cases, and
control measures aimed at this core group have been very effective in control [27].
In epidemics there are often “super-spreaders”, who make many contacts and are
instrumental in spreading disease and in general some members of the population
make more contacts than others. Recently there has been a move to complicated
network models for simulating epidemics [23, 24, 32–34, 38]. These assume
knowledge of the mixing patterns of groups of members of the population and
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make predictions based on simulations of a stochastic model. A basic description
of network models may be found in [44]. While network models can give very
detailed predictions, they have some serious disadvantages. For a detailed network
model, simulations take long enough to make it difficult to examine a significant
range of parameter values, and it is difficult to estimate the sensitivity with respect
to parameters of the model. The theoretical analysis of network models is a very
active and rapidly developing field [38–40].

However, it is possible to consider models more realistic than simple compart-
mental models but simpler to analyze than detailed network models. To model
heterogeneity in mixing we may assume that the population is divided into
subgroups with different activity levels. We will analyze an SIR model in which
there are two groups with different contact rates. The approach extends easily to
models with more compartments, such as exposed periods or a sequence of infective
stages and also to models with an arbitrary number of activity levels. In this way,
we may hope to give models intermediate between the too simple compartmental
models and the too complicated network models.

In this section, we describe the formulation of models for two groups with
different activity levels and give the main results for the simplest compartmental
epidemic models. The analysis of models of the same type with more complicated
compartmental structure is given in [11] and the analysis of models with more
groups is given in [12]. There is no problem, other than technical calculation
difficulties, in extending everything in this section to an arbitrary number of sub-
populations.

Consider two sub-populations of constant sizes N1, N2, respectively, each
divided into susceptibles, infectives, and removed members with subscripts to
identify the sub-population. In this section, we will assume that the number of
contacts per member in unit time is a constant. Suppose that each group i member
makes ai contacts sufficient to transmit infection in unit time, and that the fraction
of contacts made by a member of group i that is with a member of group j is
pij , (i, j = 1, 2). Then

pi1 + pi2 = 1, i = 1, 2.

We assume that all contacts between a susceptible and an infective transmit infection
to the susceptible. Suppose the mean infective period in group i is 1/αi. We assume
that there are no disease deaths, so that the population size of each group is constant.

A two-group SIR epidemic model is

S′
i = −aiSi

[

pi1
I1

N1
+ pi2

I2

N2

]

I ′
i = aiSi

[

pi1
I1

N1
+ pi2

I2

N2

]

− αiIi, i = 1, 2.

(5.11)
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The initial conditions are

Si(0) + Ii(0) = Ni, i = 1, 2.

The two-group model includes two possibilities. It may describe a population
with groups differing by activity levels and possibly by vulnerability to infection.
For an epidemic model, in which we assume the time scale is short enough that
members do not age over the course of the epidemic, the grouping could be by
age. However, for a longer term disease transmission model with age-dependent
transmission it would be necessary to take into account the fact that the ages of
members of the population change over the course of the disease and use a different
type of model, to be studied in Chap. 13.

The two-group model (5.11) assumes the same infectivities and susceptibilities
in each group. A more general model would be

S′
i = −σiaiSi

[

δ1pi1
I1

N1
+ δ2pi2

I2

N2

]

I ′
i = σiaiSi

[

δ1pi1
I1

N1
+ δ2pi2

I2

N2

]

− αiIi, i = 1, 2.

(5.12)

This is just the model (5.11) with the addition of susceptibility factors σ1, σ2 for
susceptibles in the two groups and infectivity factors δ1, δ2 for infectives in the two
groups. As before a1, a2 are effective contact rates, and this model adds transmission
probabilities to (5.11).

It is not possible to calculate the reproduction number for the two-group
model (5.11) directly by counting secondary infections. It is necessary to use the
next generation matrix approach of [45] described in Section 5.2 and calculate the
reproduction number as the largest eigenvalue of the matrix FV −1, where

F =
⎡

⎢
⎣

p11a1 p12a1
N1

N2

p21a2
N2

N1
p22a2

⎤

⎥
⎦ , V =

[
α1 0
0 α2

]

.

Then

FV −1 =
⎡

⎢
⎣

p11a1

α1

p12a1

α2

N1

N2
p21a2

α1

N2

N1

p22a2

α2

⎤

⎥
⎦ .

The eigenvalues of the matrix FV −1 are the roots of the quadratic equation

λ2 −
(
p11a1

α1
+ p22a2

α2

)

λ + (p11p22 − p12p21)
a1a2

α1α2
= 0. (5.13)
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The basic reproduction number R0 is the larger of these two eigenvalues,

R0 =
p11a1

α1
+ p22a2

α2
+
√(

p11a1

α1
− p22a2

α2

)2

+ 4
p12p21a1a2

α1α2

2
.

In order to obtain a more useful expression for R0, it is necessary to make some
assumptions about the nature of the mixing between the two groups. The mixing is
determined by the two quantities p12, p21 since p11 = 1 − p12 and p22 = 1 − p21.

There has been much study of mixing patterns, see, for example, [8, 9, 13]. One
possibility is proportionate mixing, that is, that the number of contacts between
groups is proportional to the relative activity levels. In other words, mixing is
random but constrained by the activity levels [42]. Under the assumption of
proportionate mixing,

pij = ajNj

a1N1 + a2N2
,

and we may write

p11 = p21 = p1, p12 = p22 = p2,

with p1 + p2 = 1. In particular,

p11p22 − p12p21 = 0,

and thus

R0 = a1
p1

α1
+ a2

p2

α2
.

Another possibility is preferred mixing [42], in which a fraction πi of each
group mixes randomly with its own group and the remaining members mix
proportionately. Thus, preferred mixing is given by

p11 = π1 + (1 − π1)p1, p12 = (1 − π1)p2

p21 = (1 − π2)p1, p22 = π2 + (1 − π2)p2,
(5.14)

with

pi = (1 − πi)aiNi

(1 − π1)a1N1 + (1 − π2)a2N2
, i = 1, 2.

Proportionate mixing is the special case of preferred mixing with π1 = π2 = 0.



192 5 Models with Heterogeneous Mixing

It is also possible to have like-with-like mixing, in which members of each group
mix only with members of the same group. This is the special case of preferred
mixing with π1 = π2 = 1. For like-with-like mixing,

p11 = p22 = 1, p12 = p21 = 0.

Then the roots of (5.13) are a1/α1 and a2/α2, and the reproduction number is

R0 = max
{ a1

α1
,
a2

α2

}
.

By calculating the partial derivatives of pij (i, j = 1, 2) with respect to π1 and
π2, we may show that p11 and p22 increase when either π1 or π2 is increased, while
p12 and p21 decrease when either π1 or π2 is increased. From this, we may see
from the general expression for R0 that increasing either of the preferences π1, π2
increases the basic reproduction number.

We may follow the analysis of the SIR model (5.11) to obtain the basic
reproduction number for the SIR model (5.12) with susceptibility and infectivity
reduction factors

R0 =

2∑

i=1

σiδi
piiai

αi

+
√(

σ1δ1
p11a1

α1
− σ2δ2

p22a2

α2

)2

+ 4σ1δ2σ2δ1
p12p21a1a2

α1α2

2
.

In the special case of proportionate mixing, where p11p22−p12p21 = 0, this reduces
to

R0 =
2∑

i=1

σiδi
piiai

αi

.

The vaccination model of Sect. 5.1 is an example of a two-group model of the
form (5.12), with

σ1 = σ2 = δ1 = 1, δ2 = δ.

It is easy to show [11] that, just as for a one-group model [10],

S1 → S1(∞) > 0, S2 → S2(∞) > 0,

as t → ∞.
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Example 1 Consider a two-group SEIR model,

S′
i = −aiSi

[
pii

Ii
Ni

+ pij
Ij
Nj

]

E′
i = aiSi

[
pii

Ii
Ni

+ pij
Ij
Nj

]
− κiEi

I ′
i = κiEi − αiIi

R′
i = αiIi, i, j = 1, 2, i �= j.

(5.15)

The disease states are Ei and Ii (i = 1, 2).

Now

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1p11I1 + a1p12I2
N1

N2
0

a2p21I1
N2

N1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 a1p11 0 a1p12
N1

N2
0 0 0 0

0 a2p21
N2

N1
0 a2p22

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and

V =

⎡

⎢
⎢
⎣

κ1 0 0 0
−κ1 α1 0 0

0 0κ2 0
0 0 −κ2 α2

⎤

⎥
⎥
⎦ , V −1 =

⎡

⎢
⎢
⎢
⎣

1
κ1

0 0 0
1
α1

1
α1

0 0

0 0 1
κ2

0

0 0 1
α2

1
α2

⎤

⎥
⎥
⎥
⎦

.

Then we may calculate

KL = FV −1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1
p11

α1
a1

p11

α1
a1

p12

α1

N1

N2
a1

p12

α1

N1

N2
0 0 0 0

a2
p21

α1

N2

N1
a2

p21

α1

N2

N1
a2

p22

α2
a2

p22

α2
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

In this example, it is advantageous to construct the next generation matrix by
reducing the next generation matrix with large domain KL. In order to do this, we
use the auxiliary matrix

E =

⎡

⎢
⎢
⎣

1 0
0 0
0 1
0 0

⎤

⎥
⎥
⎦
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to construct the next generation matrix

K = ET KLE =
⎡

⎢
⎣

p11a1

α1

p12a1

α2

N1

N2
p21a2

α1

N2

N1

p22a2

α2

⎤

⎥
⎦ . (5.16)

This is the same matrix as the next generation matrix obtained for the two-group
SIR model (5.11) introduced in this section.

For a one-group epidemic model there is a final size relation that makes it
possible to calculate the size of the epidemic from the reproduction number
[10, 35]. There is a corresponding final size relation for the two-group model (5.1),
established in much the same way, combining expressions for the integrals of (S1 +
I1)

′, (S2 + I2)
′, (S1)

′/S1, (S2)
′/S2). This relation does not involve the reproduction

number explicitly but still makes it possible to calculate the size of the epidemic
from the model parameters.

The final size relation for the model (5.11) is the pair of equations

log
Si(0)

Si(∞)
= ai

[
pii

αi

(

1 − Si(∞)

Ni

)

+ pij

αj

(

1 − Sj (∞)

Nj

)]

, i, j = 1, 2, i �= j.

(5.17)

Just as with the vaccination model (5.1), the final size relation may be written in
terms of the matrix

R =
[
R11 R12

R21 R22

]

=
[

a1p11
α1

a1p12
α2

a2p21
α1

a2p22
α2

]

.

The matrix R is similar to the next generation matrix K (and therefore has the
same eigenvalues), since

R = T −1KT,

where

T =
[
N1 0
0 N2

]

.

The final size relation makes it possible to calculate S1(∞) and S2(∞) and thence
the number of disease cases

[N1 − S1(∞)] + [N2 − S2(∞)].
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The final size relation takes a simpler form if the mixing is proportionate. With
proportionate mixing, since

p11 = p21 = p1, p12 = p22 = p2,

(5.17) implies

a2 log
S1(0)

S1(∞)
= a1 log

S2(0)

S2(∞)
,

and we may write the final size relations as

log
S1(0)

S1(∞)
= a1p1

α1

[

1 − S1(∞)

N1

]

+ a1p2

α2

[

1 − S2(∞)

N2

]

,

[
S1(∞)

S1(0)

]a2

=
[
S2(∞)

S2(0)

]a1

.

(5.18)

We recall that in the case of proportionate mixing

R0 = p1a1

α1
+ p2a2

α2
.

The second equation of (5.18) implies that if a1 > a2, then

1 − S1(∞)

S1(0)
> 1 − S2(∞)

S2(0)
,

that is, the attack ratio is greater in the more active group.
It is not difficult to show that the final size relations (5.18) give a unique set

of final numbers of susceptibles in each group. The final size relation can also be
obtained in a similar way for more complicated compartmental models [4–6].

The model can be extended easily to an arbitrary number of groups with different
activity levels. It is also important to be able to describe models with more stages in
the progression through compartments, and models in which there are differences
between groups in susceptibility. For example, influenza has two characteristics not
included in the model (5.11) that are of importance. There is a latent period between
infection and the development of infectivity and influenza symptoms. Also, only a
fraction of latent members develop symptoms, while the remainder go through an
asymptomatic stage in which there is some infectivity. Another important aspect is
treatment, which could be directed at either or both group, and could be used for
making decisions on how to target groups for treatment. A natural way to proceed
in this direction is to build an age of infection model for populations with multiple
groups.
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Example 2 Consider a two-group endemic SIR model with preferential mixing and
group-targeted vaccination:

dSi

dt
= μNi(1 − φi) − (λi(t) + μ)Si,

dIi

dt
= λi(t)Si − (α + μ)Ii,

dRi

dt
= μNiφi + αIi − μRi, i = 1, 2,

(5.19)

where Ni = Si + Ii + Ri . Here, λi represents the force of infection for susceptibles
in group i given by

λi = aiσ

n∑

j=1

pij

Ij

Nj

, (5.20)

where ai denotes the average number of contacts an individual in sub-population
i has per unit of time (which represents the activity level of group i), and σ is the
probability of infection per contact when the contact is with an infectious individual,
φi denotes the proportion of susceptibles in group i vaccinated (and removed) when
entering the population. The fraction Ij /Nj gives the probability that a contact is
with an infectious individual in sub-population j . The contact matrix (pij ) has the
same form as the preferential mixing considered earlier with

pij = πiδij + (1 − πi)pj , i, j = 1, 2. (5.21)

The parameter πi is the fraction of contacts with individuals in the same sub-
population, δij is the Kronecker delta (i.e., 1 when i = j and 0 otherwise), and

pj = (1 − πj )ajNj

(1 − π1)a1N1 + (1 − π2)a2N2
, j = 1, 2.

Clearly, unless all the sub-groups are isolated (i.e., no interactions between the
groups), there must be some i with πi < 1.

For each sub-population i, if all contacts are with people within the same group
(i.e., pii = 1 and pij = 0 for i �= j ), then the basic and control reproduction
numbers for group i are, respectively,

R0i = σai

μ + α
, Rvi = R0i (1 − φi), i = 1, 2. (5.22)

When there are contacts between sub-populations, i.e., pii < 1 or πi < 1 for some
i, we can derive the basic and control reproduction numbers for the metapopulation.
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These reproduction numbers will be functions of R0i or Rvi . The next generation
matrix Kv (v for vaccination) is

Kv =
(

Rv1p11 Rv1p12

Rv2p21 Rv2p22

)

. (5.23)

The control reproduction number Rv for the metapopulation is given by

Rv = 1

2

[
A + D +

√
(A − D)2 + 4BC

]
, (5.24)

where

A = R01p11(1 − φ1), B = R01p12(1 − φ1),

C = R02p21(1 − φ2),D = R02p22(1 − φ2),

and R0i (i = 1, 2) are given in (5.22). If φ1 = φ2 = 0, then Rv reduces to

R0 = 1

2

[
R01p11 + R02p22 +

√
(R01p11 − R02p22)2 + 4R01p12R02p21

]
.

To study the effects of vaccination strategies, assume that R0 > 1 in the absence
of vaccination and

R01 > 1, R02 > 1. (5.25)

Let

Ω = {(φ1, φ2)| 0 ≤ φ1 < 1, 0 ≤ φ2 < 1}. (5.26)

Then each point (φ1, φ2) ∈ Ω represents a vaccination strategy.
Because we are interested in the case when the two groups are not isolated, either

π1 < 1 or π2 < 1. This will be assumed for the results below. It can be shown that,
for each fixed (φ1, φ2) ∈ Ω , Rv increases with both π1 and π2, i.e.,

∂Rv

∂π1
> 0,

∂Rv

∂π2
> 0 for all (π1, π2) ∈ Ω. (5.27)

For each fixed (π1, π2), there are different combinations of φ1 and φ2 that can reduce
Rv to be below 1. For ease of presentation, consider the simpler case in which

π1 = π2 = π,
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and consider Rv = Rv(π) as a function of π . Then, for each fixed π ∈ [0, 1), the
curve determined by Rv(π) = 1 divides the region Ω into two parts: one is the
region

Ωπ = {(φ1, φ2)| 0 ≤ Rv(π) < 1, (φ1, φ2) ∈ Ω, 0 ≤ π < 1},

which includes all points above the curve (see Fig. 5.1), and another is the region

Dπ = {(φ1, φ2)| Rv(π) > 1, (φ1, φ2) ∈ Ω, 0 ≤ π < 1},

which includes all points below the curve. It can be shown that the region Ωπ

decreases as π increases and reduces to the region Ω∗ as π → 0, while the region
Dπ decreases as π decreases and reduces to the region D∗ as π → 1 (see Fig. 5.1).
All these curves intersect at a single point (φ1c, φ2c) with

φ1c = 1 − 1

R01
, φ2c = 1 − 1

R02
. (5.28)

We observe from Fig. 5.1 that the region Ω∗ (lighter-shaded) is determined by
the two inequalities

φ1c < φ1 < 1, φ2c < φ2 < 1, (5.29)

where φ1c and φ2c are defined in (5.28). For region D∗ (darker-shaded), the upper
bound is determined by the line

φ2 = −A φ1 + B, (5.30)

Fig. 5.1 Plot showing the
regions Ω∗ and D∗. Several
curves of Rv(π) = 1 for
different π values are also
shown, with the dashed
curves corresponding to
0 < π < 1, the thin solid
lines (boundary of Ω∗)
corresponding to π = 1, and
the thick line corresponding
to π = 0 (the upper bound of
the region D∗). The arrows
indicate the direction of
change of the curve
Rv(π) = 1 as π increases
from 0 to 1. All of the
Rv(π) = 1 curves intersect at
the single point (φ1c, φ2c).
Source: [15]
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where

A = R01a1N1

R02a2N2
,

B = (R01 − 1)a1N1 + (R02 − 1)a2N2

R02a2N2
.

(5.31)

The two regions intersect at the point (φ1c, φ2c).
This result suggests that there is a “lower bound” for vaccination efforts

(φ1, φ2), above which the infection can be eradicated regardless of mixing patterns.
Similarly, it provides an “upper bound” for vaccination efforts (φ1, φ2), below
which the infection cannot be eradicated regardless of mixing patterns (see the
definitions for φ∗

1 and φ∗
2 defined in (5.32) and see Fig. 5.2 for an illustration

of the lower and upper bound). For an “intermediate level” vaccination strategy
(φ1, φ2), mixing parameters π1 and π2 can play an important role in influencing the
effect of vaccination strategies on reducing Rv . Thus, when designing vaccination
strategies, one should take into consideration mixing patterns within and between
sub-populations.

For given πi (i = 1, 2), it can be shown that ∂Rv

∂φi
< 0. When the curve Rv = 1

lies between regions D∗ and Ω∗, the curve intersects the φ1-axis and φ2-axis at
(φ∗

1 , 0) and (0, φ∗
2 ), respectively, where

φ∗
1 = 1 − 1 − R02p22

R01p11(1 − R02p22) + R01R02p12p21
,

φ∗
2 = 1 − 1 − R01p11

R02p22(1 − R01p11) + R22R01p12p21
.

(5.32)

Because R0i > 1 for i = 1, 2, it is possible that R01p11 > 1 and/or R02p22 > 1.
Thus, it is possible that φ∗

1 > 1 and/or φ∗
2 > 1. When φ∗

1 > 1, we know from
∂Rv/∂φ1 < 1 that Rv > 1 for any vaccination strategy (φ1, 0). Thus, it is
impossible to eradicate the infection if only sub-population 1 is vaccinated.

The results described above are based on the control reproduction number.
Figure 5.2 shows some simulation results illustrating the effect of vaccination on
the prevalence of infection. Different preference levels are used: π1 = 0.2 and
π2 = 0.4, i.e., group 2 has a higher preference contacting people in its own
group. Other parameter values used are σ = 0.03, α = 0.15 (an infective period
of about 6 days), and a1 = 12, a2 = 8, μ = 0.00016 (a duration of 17 years
in school). These values correspond to R01 = 2.4 and R02 = 1.6. The initial
conditions are x1(0) = S1(0)/N1(0) = 0.4, y1(0) = I1(0)/N1(0) = 0.00002,
x2(0) = S2(0)/N2(0) = 0.6, y2(0) = I2(0)/N2(0) = 0.00002. For this set of
parameters, φ∗

1 = 0.77 and φ∗
2 � 1. Figure 5.2a is for a vaccination strategy (φ1, 0)

with φ1 = 0.2 < φ∗
1 , for which the infection persists (Rv = 1.8 > 1), while

Fig. 5.2b is for a vaccination strategy (φ1, 0) with φ1 = 0.8 > φ∗
1 , in which case the

infection dies out (Rv = 0.97 < 1).
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Fig. 5.2 When φ∗
1 < 1 and φ∗

2 > 1, the disease is eventually eradicated if the vaccination is
applied to sub-population 1 alone at a level above φ∗

1 . (a) (φ1, φ2) = (0.2, 0) and φ1 < φ∗
1 =

0.77, the disease persists (Rv = 1.8); (b) (φ1, φ2) = (0.8, 0) and φ1 > φ∗
1 = 0.77, the disease

eventually disappears (Rv = 0.97). Source: [15]
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Fig. 5.3 The figure on the left shows observed patterns of contacts between age groups [41]. The
lighter areas correspond to higher level of contacts. The figure on the right shows schematic contact
matrices illustrating the main and off-diagonals representing contacts among contemporaries,
between children and parents, and vice versa

Example 3 This example considers a more general preferential mixing function
than the one given in (5.21). This is motivated by the observed mixing pattern
shown in Fig. 5.3. Figure 5.3 illustrates the recently collected data reported in [41],
which reveals the preferential mixing between parents and children in addition to
that among contemporaries.

In the case of n groups, the similar function as (5.21) can be written as

pij = πiδij + (1 − πi)pj , i, j = 1, 2, · · · , n, j �= i (5.33)
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with

pi = (1 − πi)aiNi∑n
k=1(1 − πk)akNk

, i = 1, 2, · · · , n.

Here, ai’s are the contact rates, δij ’s are the Kronecker delta (i.e., δij = 1 if i = j

and δij = 0 if i �= j ).
To capture the feature shown in Fig. 5.3 (left), Glasser et al. in [25] extended the

mixing function (5.33) to include not only the preference along the diagonal but also
along the sub- and super-diagonals as indicated in Fig. 5.3 (right). The function is
described by

pij = φij +
(

1 −
3∑

l=1

πli

)
pj , pj =

(
1 −∑3

l=1 πli

)
ajNj

∑n
k=1

(
1 −∑3

l=1 πlk

)
akNk

(5.34)

with

φij =
{
δijπ1i + δi(j+G)π2i , i ≥ G,

δijπ1i + δi(j−G)π3i , i ≤ L − G.
(5.35)

G is the generation time (i.e., average age at which women bear children), L is
longevity (i.e., average expectation of life at birth), and L > G. The parameters ε1i–
ε3i represent the fractions of contacts reserved for contemporaries, children (j−G),
and parents (j +G), respectively, and the corresponding delta function is defined as

δi(j±G) =
{

1 if i = j ± G,

0 otherwise.
(5.36)

Only people whose ages equal or exceed G can have children, and only those whose
ages equal to or less than L−G can have parents, but people aged at least G but not
more than L − G can have both children and parents.

Denote the preferential vectors by Πl = (πl1, πl2, · · · , πln), l = 1, 2, 3. When
Π2 = Π3 = 0, the expression (5.34) reduces to the formula (5.33). For ease of
notation, we mix indices and real numbers, but if age classes are 0–4, 5–9, · · · and
G = 25 years, for example, by i > G we mean i > class 5. Notice that the non-zero
elements of Π2 and Π3 are related. If G = 25 years, for example, then

aiNiπ2i = ajNjπ3j , i = 6, 7, · · · , j = i − 5.

Notice also that 0 ≤ ∑3
l=1 πli < 1.
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The mixing function was further extended in [25] to replace the delta functions
in (5.36) by Gaussian kernels. Delta formulations are convenient mathematically,
but do not allow the age range of one’s contemporaries to vary as one ages
(e.g., the range narrows perceptively among adolescents), much less differences
between the age ranges of one’s contemporaries and one’s parents or children. By
virtue of secular patterns in childbearing, moreover, the age ranges of parents and
children may change with age. But the Gaussian formulation allows such variation,
reproducing the essential features of these observations. Figure 5.4 demonstrates the
comparison between observed mixing patterns (left panel) and the model outcomes
(right panel) using the extended mixing functions.

5.3.1 *Optimal Vaccine Allocation in Heterogeneous
Populations

One of the significant benefits of models with heterogeneous mixing is that it
provides an approach to identifying optimal allocation of vaccines in a metapop-
ulation, particularly when resources are limited. Consider a metapopulation with
n sub-populations connected by heterogeneous mixing, which is described by an
n × n matrix P = (pij ) for i, j = 1, 2, · · · , n. The following model is studied in
[21, 26, 43]:

dSi

dt
= (1 − φi)θNi − (λi + θ)Si

dIi

dt
= λiSi − (γ + θ)Ii

dRi

dt
= φiθNi + γ Ii − θRi

Ni = Si + Ii + Ri

λi = σai

n∑

j=1

pij Ij /Nj , i = 1, 2, . . . , n,

(5.37)

where φi are proportions immunized at entry into sub-population i, γ is the per-
capita recovery rate, θ is the per-capita rate for entering and leaving sub-population
i so that the population size Ni remains constant. The function λi is the force
of infection, i.e., per-capita hazard rate of infection of susceptible individuals in
sub-population i, in which σ is the probability of infection upon contacting an
infectious person, ai is the average contact rate (activity) in sub-population i, pij

is the proportion of ith sub-population’s contacts that are with members of j th sub-
population, and Ij /Nj is the probability that a randomly encountered member of
sub-population j is infectious. A similar model with two-level mixing is studied in
[22].
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Fig. 5.4 Comparison of the mixing patterns generated by the four empirical studies (top to
bottom): [17, 41, 47, 49] (left panel) and the fitted model (5.34) and (5.35) (right panel).
Interpolating functions are fitted to geometric means of corresponding row- and column-elements
of the mixing matrix Source: [25]
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The mixing matrix P can incorporate heterogeneities in contact rate (ai),
population size (Ni), preference for mixing within the same sub-population (πi), etc.
Because of these heterogeneities, the optimal combination of vaccination coverages
φi is unlikely to be homogeneous. Typically, the matrix P has to satisfy the
following conditions of [14]:

pij ≥ 0, i, j = 1, . . . , n,
n∑

j=1

pij = 1, i = 1, . . . , n,

aiNipij = ajNjpji, i, j = 1, . . . , n.

(5.38)

A commonly used non-homogeneous mixing function that satisfies conditions
in (5.38) is the preferred mixing function of [30] given by

pij = πiδij + (1 − πi)
(1 − πj )ajNj∑n
k=1(1 − πk)akNk

, i, j = 1, . . . , n, (5.39)

where πi ∈ [0, 1] is the fraction of contacts of group i that is reserved for itself
(preferential mixing), whereas the complement (1 − πi) is distributed among all
sub-populations in proportion to the unreserved contacts, including i (proportionate
mixing). We refer to the mixing given by (5.39) as Jacquez-type preferred mixing.
Two extreme cases of (5.39) are the proportionate mixing when πi = 0 and the
isolated mixing (i.e., no interactions between sub-populations) when πi = 1.

For model (5.37), the basic and effective sub-population reproduction numbers,
denoted, respectively, by R0i and Rvi , for sub-population i (i = 1, 2, . . . , n) are
given by

R0i = ρai, Rvi = R0i (1 − φi), i = 1, 2, . . . , n, (5.40)

where

ρ = σ

γ + θ
.

The next generation matrix (NGM) corresponding to this metapopulation model is

Kv =

⎛

⎜
⎜
⎜
⎝

Rv1p11 Rv1p12 · · · Rv1p1n

Rv2p21 Rv2p22 · · · Rv2p2n
...

. . .
...

Rvnpn1 Rvnpn2 · · · Rvnpnn

⎞

⎟
⎟
⎟
⎠

. (5.41)

Then the effective reproduction number for the metapopulation is given as

Rv = r(Kv),



5.3 Heterogeneous Mixing 205

which is the spectral radius (and the dominant eigenvalue, by the Perron–Frobenius
Theorem) of the non-negative matrix Kv . Let φ = (φ1, φ2, · · · , φn). Naturally,
Rv = Rv(φ) is a function of φ. The total number of vaccine doses, denoted by
η, is η = ∑n

i=1 φiNi . For demonstration purposes, we will assume that vaccine
efficacy is 100%. We focus on identifying the most efficient allocation of vaccine
φ = (φ1, φ2, · · · , φn) ∈ [0, 1]n for reducing Rv with limited vaccine doses η or
using fewest doses to achieve Rv < 1 (to prevent outbreaks). More specifically, we
consider the following two constrained optimization problems:

(I) Minimize Rv = Rv(φ), subject to �(φ) :=
n∑

i=1

φiNi = η, for φ ∈ [0, 1]n.

(II) Minimize η =
n∑

i=1

φiNi , subject to Rv(φ) ≤ 1, for φ ∈ [0, 1]n.

Consider the optimization problem only for the case of R0 = Rv(0) ≥ 1, as there
will be no outbreak if R0 < 1. If a solution to Problem (I) exists for a given value
of η, let Φ∗ = Φ∗(η) and Rv{min}(η) denote the optimal vaccination allocation and
corresponding minimum reproduction number, , respectively. Let

Ω
(n)
φ (η) :=

{
(φ1, φ2, · · · , φn) : �(φ) = η

}
.

Then, for the solution Φ∗ to be feasible, we need to have

Φ∗(η) = (φ∗
1 (η), φ

∗
2 (η), · · · , φ∗

n(η)) ∈ [0, 1]n,
Rv{min}(η) = min

Ω
(n)
φ (η)∩[0,1]n

Rv = Rv

∣
∣
Φ∗(η). (5.42)

An optimal solution Φ∗(η) to Problem (I) that lies in the interior of the unit
hypercube must satisfy the following equations:

∇Rv

∣
∣
Φ∗(η) = λ̃∇� = λ̃(N1, · · · , Nn), Φ∗(η) ∈ (0, 1)n,

�
∣
∣
Φ∗(η) =

n∑

i=1

φ∗
i (η)Ni = η,

(5.43)

where the constant λ̃ is the Lagrange multiplier.
Similarly, if an optimal solution to Problem (II) exists, it is useful practically

to have an explicit expression or estimate of the bounds for the minimum vaccine
doses needed, which we denote by η∗. The significance of η∗ is that it is the
smallest number of vaccination doses that can prevent outbreaks under an optimal
vaccination policy.



206 5 Models with Heterogeneous Mixing

To find η∗, notice that Rv(φ) is a monotonically decreasing function of φi , and
thus, a decreasing function of η = ∑n

i=1 φiNi . Therefore, the inequality constraint
Rv(φ) ≤ 1 can be replaced by an equality constraint Rv(φ) = 1, and thus,

η∗ = min
{Rv(φ)=1}∩[0,1]n

�(φ).

It follows that η∗ is the minimum of η ∈ [0, N] such that Rv{min}(η) = 1 and can
be found by solving the equation:

Rv{min}(η∗) = Rv

∣
∣
P ∗(η∗) = 1. (5.44)

Before we present the results of optimal solutions for Problems (I) and (II), we
state the following important results, which is proved in [43], regarding the bounds
for the effective reproduction number Rv for general mixing matrices (not just
Jacquez-type preferred mixing given in (5.39)).

Theorem 5.2 (Bounds for Rv(φ)) Let P be a non-negative, invertible, irreducible
matrix such that −P−1 is essentially non-negative and the conditions (5.38) are
satisfied. Then

(a) The lower and upper bounds of Rv(φ) are

n∑

i=1

ωiRvi ≤ Rv ≤ max{Rv1, . . . ,Rvn}, where ωi = aiNi∑n
k=1 akNk

.

(5.45)

(b) The lower and upper bounds of Rv(φ) correspond to the cases of proportionate
mixing and isolated mixing, respectively.

For the optimal solutions of Problems (I) and (II), it is shown in [43] that for the
case of n = 2 explicit expressions for Φ∗ and η∗ are possible, and for the case of
n > 2 their upper and lower bounds can be obtained.

For ease of presentation, introduce the following notation:

κ1 := p22

√
N1N2R02 − N2

√
p12p21R01R02,

κ2 := p11

√
N1N2R01 − N1

√
p12p21R01R02,

η0 := N − κ1N1 + κ2N2

max{κ1, κ2} .

(5.46)

For the mixing given in (5.39), it is easy to verify the following fact:

|P | =
∣
∣
∣
∣
p11 p12

p21 p22

∣
∣
∣
∣ = π1π2 + π1(1 − π2)

2a2N2 + π2(1 − π1)
2a1N1

(1 − π1)a1N1 + (1 − π2)a2N2
> 0, (5.47)

provided that πi ∈ (0, 1), ai > 0, and Ni > 0, i = 1, 2.
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Theorem 5.3 (Optimal Solution to Problem (I) When n = 2) Consider Rv =
Rv(φ1, φ2) as a function of φ1 and φ2, and let η0 and κi be given in (5.46). Assume
that condition (5.47) holds.

(a) For a given value of η, the optimal point Φ∗(η) exists and lies in the interior of
the unit square if and only if

η0 < η < N and κi > 0 for i = 1, 2. (5.48)

(b) For each η0 < η < N , the explicit formulae for P ∗(η) and Rv{min}(η) are
given by

Φ∗(η) = (1, 1) − N − η

κ1N1 + κ2N2
(κ1, κ2) (5.49)

Rv{min}(η) = |P |R01R02

√
N1N2

N − η

κ1N1 + κ2N2
. (5.50)

(c) If 0 < η < η0, the minimum point Φ∗(η) is one of the boundary points
(η/N1, 0) or (0, η/N2) and hence

Rv{min}(η) = min{Rv(η/N1, 0),Rv(0, η/N2)}.

For the general case of n > 2, Theorem 5.2 can be used to derive the lower
and upper bounds for the minimum reproduction number Rv{min}(η). To facilitate
biological interpretations, introduce the following notation:

fi := Ni/N, 1 ≤ i ≤ n Population fraction of sub-population i;
U :=

n∑

i=1

(1 − φi)fi Population fraction unvaccinated;

R̂0 :=
n∑

i=1

R0ifi Population weighted reproduction number;

R�
0 :=

( n∑

i=1

1

R0i
fi

)−1
Harmonic mean of R0i weighted by

sub-population fractions fi;
R̃0 := min

i
R2

0i/R̂0 Analogous to a scaled reproduction number.

(5.51)

The following results provide the lower and upper bounds for the minimum
Rv{min}(η) in Problem (I):

Theorem 5.4 Assume that the conditions of Theorem 5.2 hold. Let η < N , and let
U , R̂0, R�

0 , and R̃0 be defined in (5.51).
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(a) The bounds of Rv{min}(η) for φ ∈ Ω
(n)
p (η) ∩ [0, 1]n are

R̃0 U ≤ Rv{min}(η) ≤ R�
0 U . (5.52)

(b) If R0i > 1 for all i, then

η∗
N

≤ 1 − 1

R�
0
. (5.53)

Remarks The bounds for the optimal solutions have clear biological meanings
based on the biological interpretations of the quantities in (5.51). (i) Note that R�

0
and R̃0 are weighted basic reproduction numbers, and the factor U is the fraction of
the overall population that remains susceptible. In light of this, we see that the lower
and upper bounds for Rv{min}(η) in (5.52) take the familiar form of an effective
reproduction number. (ii) For the upper bound of η∗, if ai = a are all the same, we
have R�

0 = R0, in which case the upper bound in (5.53) becomes 1 − 1/R0. This
is similar to the usual formula for the critical vaccination fraction φc = 1 − 1/R0,
for which the number of vaccinated is ηc = φcN = N(1 − 1/R0).

Although various observations about the effect of mixing on reproduction
numbers have been made in previous studies, the result stated in Theorem 5.2
provided a definitive lower and upper bounds corresponding to the proportionate
and the isolated mixing (a rigorous proof can be found in [43]) for a large class of
mixing matrix P (not just Jacquez-type). Using a model metapopulation composed
of a city and several villages, May and Anderson [36, 37] showed that heterogeneity
in relevant sub-population characteristics also increased Rv . Hethcote and van
Ark [28] argued that person-to-person contact rates in densely populated urban
areas should be no more than twice those in sparsely populated rural ones. This
change in parameter values diminished the apparent effect of heterogeneity. The
facts that population heterogeneities tend to increase R0 and that models assuming
proportionate mixing generate lower values of R0 have been suggested by other
researchers [1, 3, 20].

Example 4 Figure 5.5 illustrates an example from [21], which extends May and
Anderson’s [36] conclusion that “under a uniformly applied immunization program,
the overall fraction that must be immunized is larger than would be estimated
by (incorrectly) assuming the population to be homogeneously mixed.” Consider
Rv = Rv(φ1, φ2) as a function of vaccination coverage (φ1, φ2). The two contour
plots of Rv are for the cases of (a) homogeneous contacts (a1 = a2 = 10) and (b)
heterogeneous contacts (a1 = 8, a2 = 12), while other parameters are the same
for the two sub-populations (N1 = N2, π1 = π2 = 0.6, σ = 0.05, γ = 1/7,
θ = 1/(365 × 70)). Note that the total number of vaccine doses is given by
φ1N1 + φ2N2. Because N1 = N2, a vaccination pair (φ1, φ2) that minimizes the
total doses if and only if it minimizes the quantity φ1 + φ2. The thicker curve is
the contour for Rv = 1. The thick dashed line with slope −1 is φ1 + φ2 = c for a
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Fig. 5.5 Contour plots of Rv as a function of φ1 and φ2 for (a) homogeneous population (a1 = a2)
and (b) heterogeneous population (a1 �= a2). For both plots, π1 = π2 and N1 = N2. The thick
solid curve represents the contour Rv = 1. The thin and thick dashed lines correspond to φ1 = φ2
and φ + φ2 = 2 × 0.74, respectively. All points (φ1, φ2) on the line φ1 + φ2 = c for a constant
c > 0 correspond to the same total vaccination doses. Source: [21]

constant c > 0. It shows in (a) that Rv(0.74, 0.74) = 1 and that Rv(φ1, φ2) > 1
for all other pairs (φ1, φ2) with φ1 + φ2 = 2 × 0.74. This suggests that the
optimal allocation is the homogeneous coverage φ1 = φ2. However, the plot in
(b) shows a very different result. Particularly, among all pairs (φ1, φ2) on the line
φ1 + φ2 = 2 × 0.74, some can make Rv(φ1, φ2) < 1. In fact, there is one point
(φ1c, φ2c) at which the minimum Rv(φ1c, φ2c) = 0.86 is achieved. This suggests
that, in a non-homogeneous population, uniform coverage (equal φi for all i) may
not be the most efficient.

5.4 A Heterogeneous Mixing Age of Infection Model

The basic age of infection model extends the simple SIR epidemic model by
allowing an arbitrary number of stages in the model and arbitrary distributions
of stay in each stage. However, it does not include the possibility of subgroups
with different activity levels and heterogeneous mixing between subgroups. This
possibility can be included in a heterogeneous mixing age of infection model. As
in homogeneous mixing models, the age of infection approach is more general
than simpler models in several respects. Age of infection models allow arbitrary
distributions of stay in compartments and arbitrary sequences of compartments. In
addition, they allow variable infectivity. This can be included in the kernel A(s)

which leads to the infectivity function ϕ(t) describing infectivity rather than simply
counting the number of infectives.
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As in the previous section, we consider two sub-populations of sizes N1, N2,
respectively, each divided into susceptibles and infected members with subscripts to
identify the sub-population. Suppose that Ai(s) is the mean infectivity of individuals
who have been infected s time units previously, and that a1, a2 are the contact rates
of the two sub-populations. It is necessary to describe also the mixing between the
two groups. Suppose that the fraction of contacts made by a member of group i that
is with a member of group j is pij , i, j = 1, 2. Then

p11 + p12 = p21 + p22 = 1.

A two-group model may describe a population with groups differing by activity
levels and possibly by vulnerability to infection, so that a1 �= a2 but A1(s) = A2(s).
It may also describe a population with one group which has been vaccinated against
infection, so that the two groups have the same activity level but different disease
model parameters. In this case, a1 = a2 but A1(τ ) �= A2(τ ). In this model, any
differences between groups in susceptibility or infectivity are included in the factors
A1(s), A2(s).

An age of infection model with two subgroups is

S′
i = −aiSi

[
pii

Ni

ϕi + pij

Nj

ϕj

]

ϕi(t) =
∫ ∞

0
[−S′

i (t − τ)]Ai(τ)dτ, i, j = 1, 2, i �= j.

Here, ϕi(t) is the total infectivity of infected members of group i (i = 1, 2).
As for the homogeneous mixing model, we may write this model using only the

equations for Si ,

S′
i (t) = −aiSi(t)

[
pii

Ni

∫ ∞

0
Ai(s)S

′
i (t − s)ds + pij

Nj

∫ ∞

0
Aj(s)S

′
j (t − s)ds

]

,

i, j = 1, 2, i �= j.

(5.54)

The next generation matrix is

P =
[

a1p11
∫∞

0 A1(τ )ds a1p12
N1
N2

∫∞
0 A2(s)ds

a2p21
N2
N1

∫∞
0 A1(s)ds a2p22

∫∞
0 A2(s)ds

]

.

The matrix P is similar to the matrix Q = R−1PR, with

R =
[
N1 0
0 N2

]
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and

Q =
[
a1p11

∫∞
0 A1(s)ds a1p12

∫∞
0 A2(s)ds

a2p21
∫∞

0 A1(s)ds a2p22
∫∞

0 A2(s)ds

]

.

Thus R0 is the largest root of

det

[
a1p11

∫∞
0 A1(s)ds − λ a1p12

∫∞
0 A2(s)ds

a2p21
∫∞

0 A1(s)ds a2p22
∫∞

0 A2(s)ds − λ

]

= 0. (5.55)

In order to obtain an invasion criterion, initially when S1(t) is close to S1(0) =
N1 and S2(t) is close to S2(0) = N2, we replace S1(t) and S2(t) by N1, N2,
respectively, to give a linear system, and the condition that this linear system has
a solution Si(t) = Nie

rt (i = 1, 2) is

1 = aipi1

∫ ∞

0
e−rsA1(s)ds + aipi2

∫ ∞

0
e−rsA2(s)ds, i = 1, 2. (5.56)

The initial exponential growth rate is the solution r of the equation

det

[
a1p11

∫∞
0 e−rsA1(s)ds − 1 a1p12

∫∞
0 e−rsA2(s)ds

a2p21
∫∞

0 e−rsA1(s)ds a2p22
∫∞

0 e−rsA2(s)ds − 1

]

= 0. (5.57)

In the special case of proportionate mixing, in which p11 = p21, p12 = p22, so
that p12p21 = p11p22, the basic reproduction number is given by

R0 = a1p11

∫ ∞

0
A1(s)ds + a2p22

∫ ∞

0
A2(s)ds,

and Eq. (5.57) reduces to

a1p11

∫ ∞

0
e−rsA1(s)ds + a2p22

∫ ∞

0
e−rsAi(s)ds = 1. (5.58)

There is an epidemic if and only if R0 > 1.
In the special case in which the two groups have the same infectivity distribution

but may have different activity levels and possibly vulnerability to infection, so that
A1(s) = A2(s) = A(s), R0 is the largest root of

det

[
a1p11

∫∞
0 A(s)ds − λ a1p12

∫∞
0 A(s)ds

a2p21
∫∞

0 A(s)ds a2p22
∫∞

0 A(s)ds − λ

]
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and the initial exponential growth rate is the solution r of the equation

det

[
a1p11

∫∞
0 e−rsA(s)ds − 1 a1p12

∫∞
0 e−rsA(s)ds

a2p21
∫∞

0 e−rsA(s)ds a2p22
∫∞

0 e−rsA(s)ds − 1

]

= 0. (5.59)

Comparing Eqs. (5.55) and (5.59), we see that each of R0/
∫∞

0 A(τ)dτ and
1/
∫∞

0 e−rτA(τ)dτ is the largest eigenvalue of the matrix

[
a1p11 a1p12

a2p21 a2p22

]

,

the largest root of the equation

x2 − (a1p11 + a2p22)x + a1a2(p11p22 − p12p21) = 0.

Thus

R0∫∞
0 A(s)ds

= 1
∫∞

0 e−rsA(s)ds
,

which implies the same relation as for the homogeneous mixing model. Thus, if
we assume heterogeneous mixing, we obtain the same estimate of the reproduction
number from observation of the initial exponential growth rate, and this conclusion
remains valid for an arbitrary number of groups with different contact rates. The
estimate of the basic reproduction number from the initial exponential growth rate
does not depend on heterogeneity of the model. This result does not generalize to
the case A1(s) �= A2(s), but it does remain valid for an arbitrary number of groups
with different contact rates.

5.4.1 The Final Size of a Heterogeneous Mixing Epidemic

With homogeneous mixing, knowledge of the basic reproduction number translates
into knowledge of the final size of the epidemic. However, with heterogeneous
mixing, even in the simplest case of proportionate mixing, the size of the epidemic
is not determined uniquely by the basic reproduction number.

For the heterogeneous mixing model (5.54) there is a pair of final size relations.
We divide the equation for S1 in (5.54) by Si(t) and integrate with respect to t from
0 to ∞. Much as in the derivation of the final size relation for the homogeneous
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mixing model we obtain a pair of final size relations which may be solved for S1(∞)

and S2(∞):

log
Si(0)

Si(∞)
=

2∑

j=1

[

ai
pij

Nj

(
Nj − Sj (∞)

)
∫ ∞

0
Aj(s)ds

]

, i = 1, 2. (5.60)

The system of equations (5.60) has a unique solution (S1(∞), S2(∞)). In order
to prove this, we define

gi(x1, x2) = log
Si(0)

xi
− ai

2∑

j=1

pij

[

1 − xj

Nj

] ∫ ∞

0
Aj(s)ds.

A solution of (5.60) is a solution (x1, x2) of the system

gi(x1, x2) = 0, i = 1, 2.

For each x2, g1(0+, x2) > 0, g1(S1(0), x2) < 0. Also, as a function of x1, g1(x1, x2)

either decreases or decreases initially and then increases to a negative value when
x1 = S1(0). Thus for each x2 < S2(0), there is a unique x1(x2) such that
g1(x1(x2), x2) = 0. Also, since g1(x1, x2) is an increasing function of x2, the
function x1(x2) is increasing. Now, since g2(x1, 0+) > 0, g2(x1, S2(0)) < 0,
there exists x2 such that g2(x1(x2), x2) = 0. Also, g2(x1(x2), x2) either decreases
monotonically or decreases initially and then increases to a negative value when
x2 = S2(0). Therefore this solution is also unique. This implies that

(x1(x2), x2)

is the unique solution of the final size relations.
Numerical simulations indicate that models with heterogeneous mixing may give

very different epidemic sizes than models with the same basic reproduction number
and homogeneous mixing. The reproduction number of an epidemic model is not
sufficient to determine the size of the epidemic if there is heterogeneity in the model.
We conjecture that for a given value of the basic reproduction number the maximum
epidemic size for any mixing is obtained with homogeneous mixing.

Assume that the parameters N1, N2,
∫∞

0 A(τ)dτ remain fixed and attempt to
minimize S1(∞) + S2(∞) as a function of a1, a2 (with a1, a2 constrained to
keep p1a1 + p2a2 = k fixed and p1, p2 as specified by proportionate mixing).
Homogeneous mixing corresponds to a1 = a2.

The constraint relating a1, a2 implies that

da2

da1
= 2a1 − k

k − 2a2
· N1

N2
;
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when a1 = a2 = k we have

da2

da1
= −N1

N2
.

Also, when a1 = a2,

p1 = N1

N1 + N2
, p2 = N2

N1 + N2
,

S1

N1
= S2

N2
,

dp1

da1
= N1

kN
.

If we differentiate with respect to a1, we can calculate that

d[S1(∞) + S2(∞)]
da1

= 0

when a1 = a2. We believe that a1 = a2 is the only critical point of S1(∞) +
S2(∞), although we have not been able to verify this analytically. If a1 = a2 is
the only critical point of S1(∞) + S2(∞), this critical point must be a minimum.
We conjecture that this result is also valid if we allow arbitrary mixing, that is, we
conjecture that for a given value of the basic reproduction number the maximum
epidemic size for any mixing is obtained with homogeneous mixing.

While we have confined the description of the heterogeneous mixing situation to
a two-group model, the extension to an arbitrary number of groups is straightfor-
ward. We suggest that in advance planning for a pandemic, the number of groups to
be considered for different treatment rates should determine the number of groups
to be used in the model. On the other hand, the number of groups to be considered
should also depend on the amount and reliability of data, and these two criteria may
be contradictory. A model with fewer groups and parameters chosen as weighted
averages of the parameters for a model with more groups may give predictions that
are quite similar to those of the more detailed models. We suggest also that use of
the final size relations for a model with total population size assumed constant is a
good time-saving procedure for making predictions if the disease death rate is small.

We have seen that in the case of homogeneous mixing, knowledge of the
initial exponential growth rate and the infective period distribution is sufficient to
determine the basic reproduction number and thence the final size of an epidemic. In
the case of heterogeneous mixing, knowledge of the initial exponential growth rate
and the infective period distribution is sufficient to determine the basic reproduction
number, but not to determine the final size of the epidemic.

This raises the question of what additional information that may be measured at
the start of a disease outbreak would suffice to determine the epidemic final size if
the mixing is heterogeneous.

We assume that A1(s), A2(s), and the mixing matrix

M =
[
p11 p12

p21 p22

]
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are known. The next generation matrix is

K =
[
a1

p11
N1

∫∞
0 A1(s)ds a1

p12
N2

∫∞
0 A2(s)ds

a2
p21
N1

∫∞
0 A1(s)ds a2

p22
N2

∫∞
0 A2(s)ds

]

,

and R0 is the largest (positive) eigenvalue of this matrix. There is a corresponding
eigenvector with positive components

u =
[
u1

u2

]

.

Since the components of this eigenvector give the proportions of infective cases
in the two groups initially, it is reasonable to hope to be able to determine this
eigenvector from early outbreak data.

The general final size relation is

log
Si(0)

Si(∞)
=

2∑

j=1

[

aipij

(
1 − Sj (∞)

Nj

) ∫ ∞

0
Aj(s)ds

]

, i = 1, 2.

These equations may be solved for S1(∞), S2(∞) if the contact rates a1, a2 can be
determined from the available information.

The condition that the vector u with components (u1, u2) is an eigenvector of the
next generation matrix corresponding to the eigenvalue R0 is

ai
(
pi1u1 + pi2u2

)
∫ ∞

0
Ai(s)ds = R0ui, i = 1, 2,

and since it is assumed that the function A(τ), the vector u, and the mixing matrix
(pij ) are known these equations determine a1 and a2.

In vector notation, if we define the column vector

a =
[
a1

a2

]

and the row vectors

Mj = [
pj1 pj2

]
,

we have

aj = R0

Mju
∫∞

0 Aj(s)ds
uj .
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When these values are substituted into the final size system, S1(∞) and S2(∞) may
be determined. This argument extends easily to models with an arbitrary number of
activity groups.

In real-life applications, there are usually many groups, and the final size of an
epidemic is obtained most efficiently by numerical simulations. The results obtained
here are more likely to be useful in theoretical applications, such as comparisons of
different control strategies.

One may think of the case a1 �= a2, A1(s) = A2(s) as a model for a disease with
heterogeneous mixing but not treatment and the case a1 = a2, A1(s) �= A2(s) as a
model for a disease in which the mixing is homogeneous but treatment that changes
the infective period distribution has been applied to a part of the population. Of
course, if the treatment also includes quarantine that also changes the contact rate,
the case a1 �= a2, A1(s) �= A2(s) would be appropriate.

We suggest that in advance planning for a pandemic, the number of groups to
be considered for different treatment rates should determine the number of groups
to be used in the model. On the other hand, the number of groups to be considered
should also depend on the amount and reliability of data, and these two criteria may
be contradictory. A model with fewer groups and parameters chosen as weighted
averages of the parameters for a model with more groups may give predictions that
are quite similar to those of the more detailed models. We suggest also that use of
the final size relations for a model with total population size assumed constant is a
good time-saving procedure for making predictions if the disease death rate is small.

5.5 Some Warnings

An actual epidemic differs considerably from the idealized models such as (5.1) as
well as the extensions considered later. Some notable differences are:

1. When it is realized that an epidemic has begun, individuals are likely to modify
their behavior by avoiding crowds to reduce their contacts and by being more
careful about hygiene to reduce the risk that a contact will produce infection.

2. If a vaccine is available for the disease which has broken out, public health
measures will include vaccination of part of the population. Various vaccination
strategies are possible, including vaccination of health care workers and other
first line responders to the epidemic, vaccination of members of the population
who have been in contact with diagnosed infectives, or vaccination of members
of the population who live in close proximity to diagnosed infectives.

3. Diagnosed infectives may be hospitalized, both for treatment and to isolate
them from the rest of the population. Isolation may be imperfect; in-hospital
transmission of infection was a major problem in the SARS epidemic.

4. Contact tracing of diagnosed infectives may identify people at risk of becoming
infective, who may be quarantined (instructed to remain at home and avoid
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contacts) and monitored so that they may be isolated immediately if and when
they become infective.

5. In some diseases, exposed members who have not yet developed symptoms
may already be infective, and this would require inclusion in the model of new
infections caused by contacts between susceptibles and asymptomatic infectives
from the exposed class.

6. In the SARS epidemic of 2002–2003 in-hospital transmission of disease from
patients to health care workers or visitors because of imperfect isolation
accounted for many of the cases. This points to an essential heterogeneity in
disease transmission which must be included whenever there is any risk of such
transmission.

5.6 *Projects: Reproduction Numbers for Discrete Models

This project concerns the computation of the reproduction number for discrete
models using the approach of the next generation matrix. A formula for the
reproduction number R (either R0 or RC) is derived by adopting the method used
in [2] based on the next generation matrix approach. That is, in the discrete-time
case

R = �(F (I − T )−1), (5.61)

where � represents the spectral radius, F is the matrix associated with new
infections, and T is the matrix of transitions with �(T ) < 1 (see [2, 16, 31, 48]).
Here F and T are calculated on the infected variables only evaluated at the disease-
free equilibrium, and the Jacobian on these variables is F + T , which is assumed to
be irreducible.

Consider the simple discrete SEIR model with geometric distributions for the
latent and infectious period with parameters α and δ (α < 1, δ < 1), respectively.
This is equivalent to assuming constant transition probabilities 1 − α and 1 − δ per
unit time from E to I and from I to R, respectively. The model reads

Sn+1 = Sne
−β

In
N ,

En+1 = Sn(1 − e−β
In
N ) + αEn

In+1 = (1 − α)En + δIn, n = 1, 2, · · · .
(5.62)

For system (5.62), the matrices associated with new infections and transitions are

F =
[

0 β

0 0

]

and T =
[

α 0
1 − α δ

]

,
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respectively. Then �(T ) = max{α, δ} < 1; thus,

R = �(F (I − T )−1) = β

1 − δ
. (5.63)

Question 1 Extend the model (5.62) by incorporating isolation or hospitalization of
infectious individuals. For the extended model, compute the reproduction number
using the formula (5.61).

Question 2 Extend the model (5.62) by considering different transmission rates
βi for individuals in different infectious stages Ii (i = 1, 2, · · · ). Use the
formula (5.61) to compute the reproduction number for the extended model.

Project 2 Consider next the case when the infective period follows an arbitrary
discrete (bounded) distribution, which is denoted by Y . Let qi = P(Y > i) and
P(Y = i) = qi−1 − qi . It is easy to see that qi is a decreasing function, i.e., qi ≥
qi+1. In fact, q0 = 1 and qm = 0 for all m ≥ M , where M is the maximum number
of units of time that an individual takes to recover.

Because the geometric is the only memoryless discrete distribution, when other
distributions are considered it is necessary to keep track of the past in order to know
the values at the present. In fact, it is impossible to use the next generation matrix
approach directly because the disease stages (S,E, and I ) at time n + 1 cannot be
written in the form

[ En+1, In+1, Sn+1 ]T = M
(
[ En, In, Sn ]T

)
,

where M : R
3 → R

3. To overcome this difficulty we can consider multiple
I stages, similar to the approach known as the “linear chain trick” used in
continuous models to convert a gamma distribution to a sequence of exponential
distributions. Thus, we introduce the subclasses I (1), I (2), · · · , I (M) (see Fig. 5.6).
The superscript i corresponds to the time since becoming infectious. Notice that
these subclasses I (i) are different from those in the negative binomial model because

Fig. 5.6 A transition diagram for the case when the stage duration of the infective period has
an arbitrary bounded distribution with upper bound M . The superscript i is the stage age in the
infectious period and individuals in I (i) (for all i) can enter the recovered class R with a certain
probability
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here an individual can only stay in I (i) for one unit of time, and must go to either
the I (i+1) class with probability qi or the recovered class R with probability 1 − qi .

From Fig. 5.6 the model equations can be written as

Sn+1 = Sne
−∑M

i=1 βi
I
(i)
n
N ,

En+1 = Sn

[

1 − e−∑M
i=1 βi

I
(i)
n
N

]

+ αEn,

I
(1)
n+1 = (1 − α)En, I

(2)
n+1 = q1I

(1)
n , I

(j)

n+1 = qj−1
qj−2

I
(j−1)
n , 3 ≤ j ≤ M,

(5.64)

where βi denote the transmission rates at the infective stage i, 1 ≤ i ≤ M . As qi
is the probability that an infective individual remains infective i time units after
becoming infective, the transition probability from I

(2)
n to I

(3)
n+1 is given by the

probability that an infective individual is still infective two time units after becoming
infectious given that the person remained infective one time unit ago, i.e., q2/q1.
This explains the I

(3)
n+1 equation and similarly I

(j)

n+1 equations for 3 ≤ j ≤ M .

Question 1 For the case when transmission rates βi are stage-dependent, show that

R0 = �(F (I − T )−1) =
M∑

i=1

βiqi−1. (5.65)

Question 2 Derive R0 from its biological definition. Hint: Using the fact that the
distribution Y has an upper bound M and that for a given function f

M∑

m=1

P(Y = m)f (m) = E(f (Y )).

The reproduction number from the biological definition (with f (m) = ∑m
i=1 βi) is

R =
M−1∑

i=0
βi+1qi .

The formula (5.63) can also be applied to models with various heterogeneities.
Consider a model that includes two sub-populations, female and male populations,
with heterogeneous mixing (i.e., no sexual contacts between individuals of the same
sex). Assume that the infective periods for female and male populations follow
arbitrary discrete (bounded) distributions denoted by Yf and Ym, respectively. Here
the subscripts f and m stand for female and male, respectively. Let qf,i = P(Yf >

i) and qm,i = P(Ym > i) with qf,0 = qm,0 = 1, and the upper bounds for the two
distributions (i.e., the maximum numbers of units of time that an individual takes to
recover) be Mw for w = f,m.
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The model equations are

Sw,n+1 = Sw,ne
−∑Mw̃

i=1 βw̃,i I
(i)

w̃,n
/N

,

Ew,n+1 = Sw,n

[
1 − e

−∑Mw̃
i=1 βw̃,i I

(i)

w̃,n
/N ]+ αwEw,n,

I
(1)
w,n+1 = (1 − αw)Ew,n, I

(2)
w,n+1 = qw,1I

(1)
w,n,

I
(j)

w,n+1 = qw,j−1

qw,j−2
I
(j−1)
w,n , 3 ≤ j ≤ Mw, for w = f,m.

Here w̃ represents the opposite sex of w, i.e., f̃ = m, m̃ = f . The constant β
f̃ ,i

(βm̃,i) represents the infection rate to a female (male) transmitted by infectious male
(female) individuals with stage age i.

Question 3 Show that the reproduction number is given by

R = �(F (I − T )−1) =

√√
√
√
√
( Mf∑

i=1

βf,i qf,i−1

)( Mm∑

i=1

βm,iqm,i−1

)

. (5.66)

The square root in (5.66) is a consequence of the fact that the secondary infections
need to be computed from one female (male) to other females (males) through the
male (female) population.

Hint: Consider the order of variables:

(Ef,n, I
(1)
f,n, I

(2)
f,n, · · · , I

(Mf )

f,n , Em,n, I
(1)
m,n, I

(2)
m,n, · · · , I (Mm)

m,n ).

First show that

F(I − T )−1 =
[

0 Fm(I − Tm)−1

Ff (I − Tf )
−1 0

]

,

where

Fw(I − Tw)−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Mw∑

i=1

βw,iqw,i−1

Mw∑

i=1

βw,iqw,i−1 · · · βw,Mw

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, w = f,m.

References: [2, 16, 31, 48].
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5.7 *Project: Modeling the Synergy Between HIV and HSV-2

Consider the following model for HSV-2, which includes a male population
(specified by subscript m) and a female population with two sub-groups representing
low-risk and high-risk groups (specified by subscripts f1 and f2, respectively):

dSi

dt
= μiNi − λi(t)Si − μiSi,

dAi

dt
= λi(t)Si + γi(θi)Li − (ωi + θi + μi)Ai,

dLi

dt
= (ωi + θi)Ai − (

γi(θi) + μi

)
Li, i = m, f1, f2,

(5.67)

where λi(t) (i = m, f1, f2) are the force of infection functions given by

λm(t) =
2∑

i=1

bmciβfim

Afi

Nfi

,

λfj
(t) = bfj

βmfj

Am

Nm

, j = 1, 2,

(5.68)

and Ni = Si + Ai + Li, i = m, f1, f2. Each group i (i = m, f1, f2) is
divided into three subgroups: susceptible (Si), infected with acute HSV-2 only (Ai),
infected with latent HSV-2 only (Li). The population within each group is assumed
to be homogeneous in the sense that individuals have the same infective period,
duration of immunity, contact rate, and so on. A transition diagram between these
epidemiological classes within group i is depicted in Fig. 5.7.

For each sub-population i (i = f1, f2,m) there is a per-capita recruitment rate
μi into the susceptible group. For all classes there is a constant per-capita rate μi

of exiting the sexually active population. Thus, the total population Ni in group i

remains constant for all time. Susceptible people in group i acquire infection with
HSV-2 at the rate λi(t). Upon being infected with HSV-2, people in group i enter
the class Ai . These individuals become latent Li at the constant rate ωi (an average
duration in Ai is 1/ωi). Following an appropriate stimulus in individuals with latent
HSV-2, reactivation may occur at the rate γi . Finally, the antiviral treatment rate for
the Ai individuals is denoted by θi . Because antiviral medications will also suppress

Fig. 5.7 A transition diagram for HSV-2 for subgroup i (i = m, f1, f2)
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reactivation of latent HSV-2, we assume that the reactivation rate of people with
latent HSV-2 γi is a decreasing function of θi , denoted by γi(θi).

For the forces of infection λi(t) (i = m, f1, f2), bi is the rate at which individuals
in group i acquire new sexual partners (also referred to as contact rates), and cj
denotes the probability that a male chooses a female partner in group j (j = f1, f2).
Then c1 + c2 = 1. For ease of notation, let

c1 = c, c2 = 1 − c.

Overall, the number of female partners in groups j (j = 1, 2) that males acquire
should be equal to the number of male partners that females in groups j acquire.
These observations lead to the following balance conditions:

bmcNm = bf1Nf1 , bm(1 − c)Nm = bf2Nf2 . (5.69)

To ensure that constraints in (5.69) are satisfied, we assume in numerical simulations
that bm and c are fixed constants with bf1 and bf2 being varied according to
Nm,Nf1 , and Nf2 . The parameters βim(βmi), i = f1, f2 are the HSV-2 transmission
probabilities per partner between females infected with acute HSV-2 in group i

and susceptible males (between males infected with acute HSV-2 and susceptible
females in group i).

Question 1 Let Rmfjm denote the average number of secondary male infections
generated by one male individual through females in group fj (j = 1, 2). Show
that

Rmfjm =
√

bfj
βmfj

ωm + θm + μm

· Pm · bmcjβfjm

ωfj
+ θfj

+ μfj

· Pfj
, j = 1, 2

with Pi (i = m, f1, f2) representing the probability that an individual of group i is
in the acute stage (A), which is given by

Pi =
(
ωi + θi + μi

)(
γi(θi) + μi

)

[
γ L
i (θi) + ωi + θi + μi

]
μi

, i = m, f1, f2. (5.70)

Question 2 Let R denote the overall reproduction number for the entire population.

(a) Show that

R =
√(

Rmf1m

)2 +
(
Rmf2m

)2
, (5.71)

where Rmfjm (j = 1, 2) are given in Question 1.
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(b) Provide a biological interpretation of the expression on the right-hand side of
Eq. (5.71).

Question 3 Let E0 denote the disease-free equilibrium of the system (5.67), and let
E∗ denote an endemic equilibrium.

(a) Show that E0 is locally asymptotically stable when R < 1 and unstable when
R > 1.

(b) Choose the function for γ (θ) to be in the following form: γi(θi) =
γi(0)αi/(αi + θi). Show via numerical simulations that E∗ exists and is
locally asymptotically stable when R > 1. One case to consider is when
c > 0.5, e.g., c = 0.9 (90% of male contacts are with the low-risk female
group). Because of the constraint (5.69), bi and Ni are not independent.
Choose bm = 0.1, bf1 = 0.0901, bf2 = 9.01 (so that bf2/bf1 = 100),
Nm = Nf1 + Nf2 = 107 (e.g., Nf1 = 9.9889 × 106, Nf2 = 1.1099 × 104).
Consider the case when treatment is absent, i.e., θ = 0. Other parameter values
are ω = 2.5, γm(0) = 0.436, γf1 = γf2 = 0.339, αi = 2. The time unit is
month.

(c) Explore numerically the effect of treatment θ . Consider various scenarios such
as treatment in only one subgroup (male, low-risk female or high-risk female
group). Summarize the observed outcomes in terms of effect of treatment on
the prevalence of HSV-2.

5.8 Project: Effect of Heterogeneities on Reproduction
Numbers

Consider the metapopulation model (5.37), which includes vaccination coverage
φ = (φ1, φ2, · · · , φn) in the n sub-populations. As pointed out in Sect. 5.3.1 that
several types of heterogeneities including the activity (ai), sub-population size
(Ni), and preference for mixing within the sub-population (πi) may affect the
optimal vaccination strategy. In this project, we examine in more details how these
heterogeneities may affect Rv for the case of n = 2, and how to choose (φ1, φ2)

to reduce Rv below a certain level. For example, Fig. 5.8 illustrates the different
parameter regions in the (φ1, φ2) plane in which Rv < 1 in the cases of (a)
proportionate mixing (π1 = π2 = 0) and (b) preferential mixing (πi > 0).

For Questions 1–3 below, let σ = 0.05, γ = 1/7.

Question 1 For the cases in (a) and (b) below, determine the values of the basic
reproduction number R0 for each case. Describe how preferential mixing and
heterogeneous activity may influence the effect of heterogeneity in activity on R0.
Let N1 = N2 = 500. Determine the values of R0 for each case.
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Fig. 5.8 Plots of Rv as a function of φ1 and φ2 for (a) proportionate mixing (πi = 0, no
preference) and (b) preferential mixing (πi > 0). Values at or below their intersection with the
dark plane, Rv = 1, are combinations of φi(i = 1, 2) at which population-immunity attains or
exceeds this threshold

(a) Homogeneous activity: a1 = a2 = 10 (a1 + a2 = 20).

(i) No preference: π1 = π2 = 0.
(ii) Homogeneous preference: π1 = π2 = 0.5.

(iii) Heterogeneous preference: π1 = 0.25, π2 = 0.75 and π1 = 0.75, π2 =
0.25.

(b) Heterogeneous activity: a1 = 8 and a2 = 12 (a1 + a2 = 20).
Repeat (i)–(iii) in (a).

Question 2 Same as in Question 1 but consider heterogeneities in both activity ai
and population size Ni . Given that N1 + N2 = N = 1000 and a1 = 5, a2 = 10.
Repeat (i)–(iii) in Question 1(a) for the following two cases:

(a) Homogeneous population size: N1 = N2 = 0.5N.

(b) Heterogeneous population size: N1 = 0.1N and N2 = 0.9N.

Question 3 Consider the effective reproduction number Rv(φ1, φ2) as a function
of vaccination coverage (φ1, φ2).

(a) Find the optimal solution Φ∗ = (φ∗
1 , φ

∗
2 ) for the following set of parameter

values: π1 = π2 = 0.3, a1 = 15, a2 = 12, N1 = 1100, N2 = 900. The given
number of vaccine doses is φ1N1 + φ2N2 = 990.

(b) What is the minimum value Rv{min} = Rv(Φ
∗)?
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Chapter 6
Models for Diseases Transmitted
by Vectors

6.1 Introduction

Many diseases are transmitted from human to human indirectly, through a vector.
Vectors are living organisms that can transmit infectious diseases between humans.
Many vectors are bloodsucking insects that ingest disease-producing microorgan-
isms during blood meals from an infected (human) host, and then inject it into a
new host during a subsequent blood meal. The best known vectors are mosquitoes
for diseases including malaria, dengue fever, chikungunya, Zika virus, Rift Valley
fever, yellow fever, Japanese encephalitis, lymphatic filariasis, and West Nile fever,
but ticks (for Lyme disease and tularemia), bugs (for Chagas’ disease), flies (for
onchocerciasis), sandflies (for leishmaniasis), fleas (for plague, transmitted by fleas
from rats to humans), and some freshwater snails (for schistosomiasis) are vectors
for some diseases.

Every year there are more than a billion cases of vector-borne diseases and more
than a million deaths. Vector-borne diseases account for over 17% of all infectious
diseases worldwide. Malaria is the most deadly vector-borne diseases and caused an
estimated 627,000 deaths in 2012. The most rapidly growing vector-borne disease
is dengue, for which the number of cases has multiplied by 30 in the last 50 years.
These diseases are found more commonly in tropical and sub-tropical regions where
mosquitoes flourish and in places where access to safe drinking water and sanitation
systems is uncertain.

Some vector-borne diseases, such as dengue, chikungunya, and West Nile virus
, are emerging in countries where they were unknown previously because of
globalization of travel and trade and environmental challenges such as climate
change.

Many of the important underlying ideas of mathematical epidemiology arose
in the study of malaria begun by Sir. R.A. Ross [16]. Malaria is one example of
a disease with vector transmission, the infection being transmitted back and forth
between vectors (mosquitoes) and hosts (humans). It kills hundreds of thousands of
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people annually, mostly children and mostly in poor countries in Africa. Among
communicable diseases, only tuberculosis causes more deaths. We will analyze
some models for malaria in a later chapter. Other vector diseases include West
Nile virus and HIV with heterosexual transmission, yellow fever, and dengue fever
(which will also be studied in a later chapter).

Vector-transmitted diseases require models that include both vectors and hosts.
For most diseases transmitted by vectors, the vectors are insects, with a much shorter
life span than the hosts, who may be humans as for malaria or animals as for West
Nile virus. For heterosexually transmitted human diseases, transmission goes back
and forth between males and females rather than between two different species, but
a model still requires two separate groups.

The compartmental structure of the disease may be different in host and vector
species; for many diseases with insects as vectors an infected vector remains
infected for life so that the disease may have an SI or SEI structure in the vectors
and an SIR or SEIR structure in the hosts. We will describe vector models with
SEIR structure in the host species and SEI structure in the vector species, but the
analysis of other types of vector-transmitted diseases is similar. The models are of
the same type as those studied in Chaps. 2–4, but have a more complicated structure
because they involve two different species.

6.2 A Basic Vector Transmission Models

Ross received the second Nobel Prize in Medicine for demonstrating the vector
transmission nature of malaria, and he then constructed a model in 1909 that
predicted the possibility of controlling malaria by decreasing the mosquito popu-
lation size below a threshold value. This prediction was borne out in practice, but
controlling the mosquito population size is very difficult because of the ability of
mosquitoes to adapt to pesticides. Malaria remains a very dangerous disease.

We describe a basic model for a vector-transmitted disease, in which we assume
throughout that vectors satisfy a simple SEI model, with no recovery from
infection, and the hosts satisfy a simple SEIR model. This model is a template
for vector disease transmission models for many specific diseases. We are thinking
of mosquitoes as vectors, and because a mosquito lifetime is much shorter than that
of the human hosts we must include demographics in the vector population. The
model includes both epidemic and endemic situations.

We consider a constant total population size Nh of hosts (humans), divided into
Sh susceptibles, Eh exposed members, Ih infectives, and Rh removed members.
There is a birth rate Λh in the susceptible class and a proportional natural death rate
μh in each class. Exposed hosts proceed to the infective class at rate ηh and infected
hosts recover at rate γ .

There is a constant birth rate μNv of vectors in unit time and a proportional vector
death rate μ in each class, so that the total vector population size Nv is constant.
The vector population is divided into Sv susceptibles, Ev exposed members, and Iv
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infectives. Exposed vectors move to the infected class at rate ηv and do not recover
from infection. For simplicity, we assume that there are no disease deaths of either
hosts or vectors.

We assume that the mosquito biting rate is proportional to the size Nh of the
host population. Thus an average mosquito makes bNh bites in unit time. The total
number of mosquito bites in unit time is bNhNv and the number of bites received
by an average host in unit time is bNv . We assume that fvh is the probability that
a bite transmits infection from vector to host and fhv is the probability that a bite
transmits infection from host to vector. We define

βh = bfvhNv, βv = bfhvNh.

If we eliminate b from these two equations, we obtain a balance relation

fvhβhNv = fhvβvNh. (6.1)

In many models for vector-transmitted diseases, the vector population size is much
larger than the host population size but the two contact rates βh and βv are of the
same order of magnitude, suggesting that fhv >> fvh.

Then the number of new infective hosts in unit time is

bfvhNvSh

Iv

Nv

= βhSh

Iv

Nv

.

A similar argument shows that the number of new mosquito infections is

βvSv

Ih

Nh

.

The model is

S′
h = Λ(Nh) − βhSh

Iv

Nv

− μhSh

E′
h = βhSh

Iv

Nv

− (ηh + μh)Eh

I ′
h = ηhEhIv − (γ + μh)Ih (6.2)

S′
v = μvNv − βvSv

Ih

Nh

− μvSv

E′
v = βvSv

Ih

Nh

− (ηv + μv)Ev

I ′
v = ηvEv − μvIv.

The corresponding epidemic model is (6.2) with Λ(Nh) = μh = 0.
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6.2.1 The Basic Reproduction Number

The basic reproduction number is defined as the number of secondary disease cases
caused by introducing a single infective host into a wholly susceptible population
of both hosts (humans) and vectors (mosquitoes). For the model (6.2) this may
be calculated directly. There are two stages. First, the infective human infects
mosquitoes, at a rate βv for a time 1/(γ +μh). This produces βv/(γ +μh) infected
mosquitoes, of whom a fraction ηv/(ηv + μv) proceeds to become infective.

The second stage is that these infective mosquitoes infect humans at a rate βh

for a time 1/μv , producing βh/μv infected humans per mosquito. The net result of
these two stages is

βh

γ + μh

ηv

ηv + μv

βv

μv

= βvβh

ηv

(ηv + μv)(γ + μh)μv

infected humans, and this is the basic reproduction number R0.
We could also calculate the basic reproduction number by using the next

generation matrix approach [21]. This would give the next generation matrix

K

[
0 βv

ηv
μv(μv+ηv)

βh
1

γ+μh
0

]

.

The basic reproduction number is the positive eigenvalue of this matrix,

R0 =
√
βhβv

ηv

μv(γ + μh)(μv + ηv)
.

In this calculation, the transition from host to vector to host is considered as two
generations. In studying vector-transmitted diseases it is common to consider this
as one generation and use the value that we obtained by our direct approach

R0 = βhβv

ηv

μv(γ + μh)(μv + ηv)
. (6.3)

This choice is made in [4, 10] and is the choice that we make because it conforms to
the result obtained by direct calculation, without using the next generation approach.
However, other references, including [13], use the square root form, and it is
important to be aware of which form is being used in any study. The two choices
have the same threshold value.

In fact, different expressions are possible for the next generation matrix. This is
shown in [6]. Using the next generation matrix approach but considering only host
infections as new infections and vector infections as transitions, we would obtain
the form (6.3).
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6.2.2 The Initial Exponential Growth Rate

In order to determine the initial exponential growth rate from the model, a quantity
that can be compared with experimental data, we linearize the model (6.2) about the
disease-free equilibrium Sh = Nh,Eh = Ih = 0, Sv = Nv,Ev = Iv = 0. If we let
y = Nh − Sh, z = Nv − Sv , we obtain the linearization

y′ = βvIv − μhy

E′
h = βvIv − (η + μh)Eh

I ′
h = ηEh − (γ + μh)Ih

z′ = −μvz + βhIh

Ev = βhIh − (μv + ηv)Ev

I ′
v = ηvEv − μvIv.

(6.4)

The corresponding characteristic equation is

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ 0 0 0 0 βv

0 −(λ + ηh + μh) 0 0 0 βv

0 ηh −(λ + γ + μh) 0 0 0

0 0 −βh −(λ + μv) 0 0

0 0 −βh 0 −(λ + μv + ηv) 0

0 0 0 0 ηv −(λ + μv)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0.

Solutions of the linearization (6.4) are linear combinations of exponential functions
whose exponents are the roots of the characteristic equation (the eigenvalues of the
coefficient matrix of (6.4)).

We can reduce this equation to a product of two factors and a fourth degree
polynomial equation

λ(λ+μv)det

⎡

⎢
⎢
⎢
⎣

−(λ + ηh + μh) 0 0 βv

ηh −(λ + γ + μh) 0 0
0 βh −(λ + μv + ηv) 0
0 0 ηv −(λ + μv)

⎤

⎥
⎥
⎥
⎦

= 0.

The initial exponential growth rate is the largest root of this fourth degree
equation, which reduces to

g(λ) = (λ + ηh)(λ + γ + μh)(λ + μv + ηv)(λ + μv) − βhβvηhηv = 0. (6.5)

Since g(0) < 0 if R0 > 1, and since g(λ) is positive for large positive λ and
g′(λ) > 0 for positive λ, there is a unique positive root of the equation g(λ) = 0,
and this is the initial exponential growth rate. The initial exponential growth rate
may be measured experimentally, and if the measured value is ρ, then from (6.5) we
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obtain

(ρ + ηh)(ρ + γ )(ρ + μv + ηv)(ρ + μv) = βhβvηhηv = R0ηhμvγ (μv + ηv).

From this, we obtain

R0 = (ρ + ηh)(ρ + γ )(ρ + μv + ηv)(ρ + μv)

ηhμvγ (μv + ηv)
. (6.6)

This gives a way to estimate the basic reproduction number from measurable
quantities. In addition, the balance relation (6.1) allows us to calculate the values
of βh and βv separately, which makes it possible to simulate the model.

The same reasoning may be used for a short term epidemic model in which we
ignore demographics in the host population. The results would be the same except
that Λ(Nh) and μh would be replaced by zero.

By linearizing the system (6.2) at an equilibrium it is possible to show that the
disease-free equilibrium is asymptotically stable if and only if R0 < 1 and that the
endemic equilibrium exists only if R0 > 1 and is asymptotically stable.

6.3 Fast and Slow Dynamics

In vector-borne disease transmission models in which the vector is an insect, the
vector time scale is often much faster than the host time scale. In such models it
is possible to consider two separate time scales [3]. We can make a quasi-steady-
state hypothesis assuming that the vector population sizes remain almost constant
[17]. We treat the vector population sizes as constants which depend on the host
population sizes and approximate the system by a host model, which has fewer
equations than the full system but may be more complicated in form.

We describe the process in an SIR/SI epidemic model which is somewhat
simpler than (6.2). Consider a host population with total population size Nh, and no
demographics, and a vector population with birth and death rates μv and constant
total population size Nv . We assume mass action contact rate with contact rates
βh, βv , recovery rate γ for the host species and no recovery for the vector species.

The resulting model is

dSh

dt
= −βhSh

Iv

Nv

dIh

dt
= βhSh

Iv

Nv

− γ Ih
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dSv

dt
= μvNv − βvSv

Ih

Nh

− μvSv

dIv

dt
= βvSv

Ih

Nh

− μvIv.

Because Sv + Iv is a constant Nv , we can reduce this model to a three-dimensional
problem,

dSh

dt
= −βhSh

Iv

Nv

dIh

dt
= βhSh

Iv

Nv

− γ Ih (6.7)

dIv

dt
= βv(Nv − Iv)

Ih

Nh

− μvIv.

In order to obtain the basic reproduction number, we observe that a single
infective host infects

βh

γ

vectors in a wholly susceptible population of vectors, and each of these infects

βv

μv

hosts in a wholly susceptible host population. Thus the number of secondary
infections caused by an infective host (and also the number of secondary vector
infections caused by an infective vector) is given by

R0 = βhβv

γμv

.

However, one could also argue that the transition from host to vector to host should
be viewed as two generations, and it may be more reasonable to say that

R0 =
√

βhβv

γμv

.

With either choice, the transition is at R0 = 1.
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It is possible to prove that there is an epidemic if and only if R0 > 1.
A model for dengue fever of the form (6.7) has been studied in [15]. In terms of

the above model, with time measured in days, this model has parameter values with
μh much smaller than μv and βh much smaller than βv , expressing the fact that the
vector dynamics are much faster than the host dynamics, and this suggests a model

dSh

dt
= −βhSh

Iv

Nv

dIh

dt
= βhSh

Iv

Nv

− αIh (6.8)

ε
dIv

dt
= βv(Nv − Iv)

Ih

Nh

− μvIv,

with ε a small positive constant.
Other models describing two time scales may be found in [18, 19]. In fact,

such a form is valid for all vector disease transmission models in which the vector
population size is much greater than the host population size. We assume that
Nh << Nv , and we let

ε = Nh

Nv

<< 1. (6.9)

Then, if we replace Nh by εNv (6.7) becomes

dSh

dt
= −βhShIv

dIh

dt
= βhShIv − αIh (6.10)

ε
dIv

dt
= βv(Nv − Iv)

Ih

Nv

− Nh

Nv

μvIv.

For differential equations or systems of differential equations which depend on
a parameter there is a general theorem to the effect that solutions are continuous
functions of the parameter on any finite interval. However, if a derivative is
multiplied by a parameter which may be allowed to tend to zero, this is not
necessarily true. Such a situation is called a singular perturbation. Many problems
in the biological sciences involve actions on very different time scales, and these
may lead to a rapid change in some of the variables on a very short initial time
interval, while other variables act more slowly.
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6.3.1 Singular Perturbations

Singular perturbation problems arise in models (systems of differential equations)
containing a small parameter ε, of the form

ε
dy

dτ
= f (y, z, ε), y(0) = y0 (6.11)

dz

dτ
= g(y, z, ε), z(0) = z0

with solution (y(τ, ε), z(τ, ε)). There is a corresponding reduced system obtained
by setting ε = 0,

f (y, z, 0) = 0 (6.12)

dz

dτ
= g(y, z, 0), z(0) = z0

with solution (y0(τ ), z0(τ )).

Since ε is assumed to be small, the form (6.11) suggests that the y reaction time
is much faster than the z reaction time. Thus y goes to its equilibrium value rapidly,
and at its equilibrium f (y, z, 0) = 0. Then we might expect that the reduced
problem (6.12) is a good approximation to the full problem (6.11) after a short
initial time interval near τ = 0 during which y moves to its equilibrium value. In
applications one often makes a quasi-steady-state hypothesis that y remains almost
constant, so that dy

dτ
≈ 0. This hypothesis is expressed as f (y, z, 0) = 0; in singular

perturbation language the hypothesis is just that the full problem is approximated
by the reduced problem.

Because (6.12) is a first-order differential equation (which requires one initial
condition to identify a unique solution) and (6.11) is a two-dimensional system
(requiring two initial conditions for a unique solution) we must expect to lose
an initial condition in the reduction, and this suggests that the solutions of (6.12)
and (6.11) (each derived on a different time scale) may not agree close to τ = 0.
Because y(τ, ε) (the solution to the full problem) and y0(τ ) (the solution to the
reduced problem) do not match at τ = 0, we should expect that y(τ, ε) changes
rapidly for t close to 0. It is possible to analyze this by making a change of
independent variable to change from the slow time scale to the fast time scale.
However, since our interest is mainly in the long-term behavior of the system we
do not explore this further here.

If the partial derivative fy(y, z, 0) �= 0 we may solve the equation f (y, z, 0) = 0
for y as a function of z, y = φ(z). Thus the reduced system (6.12) is equivalent to
the first-order initial value problem

dz

dτ
= g(φ(z), z, 0), z(0) = z0. (6.13)
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Then we have the solution of (6.12) with z0(τ ) the solution of (6.13) and y0(τ ) =
φ(z0(τ )), and y0(0) = φ(z0). If y0 �= φ(z0) it is not possible for the solution
of the reduced problem (6.12) to satisfy the two initial conditions of the full
problem (6.11). The solution (y0(τ ), z0(τ )) of the reduced problem is called the
outer solution. In order to use the solution of the reduced problem (6.12) as an
approximation to the solution of the full problem (6.11), we would need a result to
the effect that for each t away from t = 0 the solution of the reduced problem (6.12)
is the limit as ε → 0 of the solution of the full problem (6.11).

A change of time scale τ = εt transforms the system (6.11) to the system

dy

dt
= f (y, z, ε), y(0) = y0 (6.14)

dz

dt
= εg(y, z, ε), z(0) = z0.

The second equation of (6.14) says that the second variable z remains almost
constant on a large t-interval corresponding to a small τ -interval. This suggests
considering the initial value problem

dy

dt
= f (y, z0, 0), y(0) = y0, (6.15)

called the boundary layer system, as an approximation valid on a small t-interval
called the boundary layer.

The mathematical treatment of singular perturbations began in the 1940s from
the perspective of asymptotic expansions. A few years later the qualitative result
which justifies the use of the reduced system as an approximation to the full system
was obtained independently in the USA and the Soviet Union [12, 20].

Theorem 6.1 (Levinson–Tihonov) Suppose that

1. f, g are smooth functions,
2. the equation f (y, z, 0) = 0 can be solved for y as a smooth function of z, y =

φ(z),
3. the reduced system (6.12) has a solution on an interval 0 ≤ τ ≤ T ,
4. the boundary layer system (6.15) has an asymptotically stable equilibrium.

Then y(τ, ε) → y0(τ ), z(t, ε) → z0(τ ) as ε → 0+ for 0 < τ ≤ T . The
convergence of y is non-uniform at τ = 0.

There is an extension of this result to infinite time intervals [9]

Theorem 6.2 Suppose, in addition to the hypotheses of the Levinson–Tihonov
theorem that the reduced system (6.12) has a solution which is asymptotically stable
and that the boundary layer system (6.15) has a solution which is asymptotically
stable uniformly in z0. Then the convergence is uniform on closed subsets of
0 < t < ∞.
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The essential content of these results is that if ε is sufficiently small the solution
of the reduced system is a good approximation to the solution of the singularly
perturbed system except very close to t = 0. The relation f (y, z, 0) = 0 is
called the quasi-steady-state. Close to τ = 0 the solution of the boundary layer
system (6.15) describes the behavior of solutions. Thus the analysis of a singular
perturbation problem can be decomposed into the analysis of two simpler problems,
namely the boundary layer system and the reduced problem. Curiously, in fluid
dynamic applications the focus of attention has been on the boundary layer system,
whereas in most biological applications the primary interest has been in the long-
term behavior, that is, the reduced problem.

The underlying idea in a singular perturbation problem is that there are two
different time scales inherent in the problem, and this makes it possible to analyze
the problem separately on each time scale. The reduction in dimension because of
this separation simplifies the analysis. The singular perturbation idea will be applied
to the malaria model of Sect. 11.3 which includes epidemiological and genetic
processes that occur on very different time scales.

6.4 A Vector-Borne Epidemic Model

We begin with the epidemic model (6.10), which is in singular perturbation form.
The quasi-steady-state, which is the case ε = 0 of the equation for Iv in (6.10), is
given by the equation

βv(Nv − Iv)
Ih

Nv

= Nh

Nv

μvIv.

This expresses Iv as a function of the other variables as

Iv = βvNvIh

βvIh + μvNh

. (6.16)

We substitute this form for Iv into the equations for Sh and Ih to give the reduced
equation

S′
h = −βhSh

βvIh

βvIh + μvNh

(6.17)

I ′
h = βhSh

βvIh

βvIh + μvNh

− αIh.

This approach gives a way to formulate models for vector-transmitted diseases
which consist of a system involving only the host variables. While this system is
two-dimensional and the original system is three-dimensional, it does have a more
complicated form.
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6.4.1 A Final Size Relation

Addition of the first two equations of (6.17) (or (6.10)) gives

(Sh + Ih)
′ = −αhIh.

Thus Sh + Ih is a decreasing non-negative function and tends to a limit as t → ∞.
Also, its derivative tends to zero, so that Ih(t) → 0 as t → ∞. Integration of this
equation with respect to t from 0 to ∞ gives

Nh − Sh(∞) = α

∫ ∞

0
Ih(t)dt. (6.18)

Division of the first equation of (6.17) by Sh and integration gives

log
Sh(0)

Sh(∞)
= βhβv

∫ ∞

0

Ih(t)

μvNh + βvIh(t)
dt.

Since

μvNh ≤ μvNh + βvIh ≤ (μv + βv)Nh,

we obtain

log
Sh(0)

Sh(∞)
≤ βhβv

μvNh

∫ ∞

0
Ih(t)dt

= βhβv

μvα
[Nh − Sh(∞)]

= R0

[

1 − Sh(∞)

Nh

]

, (6.19)

and

log
Sh(0)

Sh(∞)
≥ βhβv

(μv + βv)Nh

∫ ∞

0
Ih(t)dt

= μv

μv + βv

R0

[

1 − Sh(∞)

Nh

]

. (6.20)

Combining (6.19) and (6.20) we obtain the two-sided estimate final size relation

μv

μv + βv

R0

[

1 − Sh(∞)

Nh

]

≤ log
Sh(0)

Sh(∞)
≤ R0

[

1 − Sh(∞)

Nh

]

. (6.21)
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This final size estimate gives upper and lower bounds for Sh(∞). Further informa-
tion about this topic may be found in [1, 2].

6.5 *Project: An SEIR/SEI Model

Consider the SEIR/SEI epidemic model

S′
h = −βvShIv − μhSh (6.22)

E′
h = βvShIv − (ηh + μh)Eh

I ′
h = ηhEh − (α + μh)Ih

S′
v = μvNv − βhSvIh − μvSv

E′
v = βhSvIh − (ηv + μv)Ev

I ′
v = ηvEv − μvIv.

Assume that the vector dynamics are much faster than the host dynamics.

Question 1 Determine the basic reproduction number of the system (6.22).

Question 2 Consider the model (6.22) as a two time scale system and find the quasi-
steady-state.

Question 3 Obtain a final size relation for the model (6.22).

6.6 *Project: Models for Onchocerciasis

Onchocerciasis, also known as “River Blindness” is a vector-borne disease that
affects the skin and eyes of humans. It is endemic in parts of Africa, Yemen, and
Central America, and is especially prevalent in sub-Saharan Africa. It is transmitted
by Onchocerca volvulus, a parasitic worm whose life cycle includes five larval
stages, including a stage that requires a human host and another stage that requires
a black fly host.

The peak biting time for black flies is during the daylight hours, and the black
flies remain near their breeding sites on well-oxygenated water. Thus communities
on the river’s edge are most at risk. The vector stage is very complicated, and it
would be difficult to include all of its stages in a model. We will assume a constant
total vector population size with an SI model for vectors.

The standard medication for treatment of onchocerciasis is ivermectin [8]; oral
administration kills larvae rapidly but does not kill the adult worms. However, it
does reduce their reproductive rate for several months [5, 14]. Ivermectin treatment
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is available to a fraction p of the population, limited by restrictions on who can
receive the medication, limited health care, and willingness to participate.

For humans we assume a model of SEIR type but with infectives divided into
those who do not participate in treatment (I), participants who are not yet being
treated (P), and infectives who have received ivermectin treatment (M). We let H =
P + M , the population of infected hosts who are currently or will eventually be
treated.

Because the total human population size N = S+E+I +H and the total vector
population size F = U + V are constants, we do not need differential equations
for S and U . The effective human population size is W = I + P + (1 − ν)M =
I + H − νM , where ν is the relative decrease in infectivity of a medicated host
compared to an untreated host. In reality, ν is 1 shortly after treatment but falls
gradually to about 0.35. We will take ν to have a constant value of 0.6. We assume
proportional death rates μ for hosts and d for vectors a rate σ of progression from
exposed to infective stage for hosts. The rates of progression from E to P and I

are pσ and qσ , respectively, where q = 1 − p. The progression rate from the
premedication class P to the medicated class M is ϕ. Since infected humans recover
only through the death of all adult worms, there is a rate of recovery of all infected
host classes γ . With time measured in years, approximate parameter values are

μ = 0.02, d = 12, σ = 1, p = 0.65, ϕ = 2, ν = 0.6, γ = 0.8.

The values of the contact rate β and the infection rate α are difficult to measure.
Since N is constant, we can omit S = N − E − I − R from the model.

The model is

dE

dt
= βSV − (σ + μ)E

dI

dt
= qσE − (γ + μ)I

dH

dt
= pσE − (γ + μ)H (6.23)

dM

dt
= ϕH − (ϕ + γ + μ)M

dV

dt
= α(F − V )W − dV.

The parameters α and β can be estimated from known endemic fractions of
infected humans and vectors in the absence of ivermectin treatment. Field estimates
from Cameroon suggest

α = 1.08

N
, β = 0.3

F
.
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Question 1 Use the next generation matrix to obtain an expression for the basic
reproduction number R0 and estimate a numerical value for R0 using the given
parameter values.

Question 2 We rescale the system (6.23) with respect to the constant total host
population size N and the constant total vector population size F . We make the
substitutions

S = Nx,E = Ny, I = Ni,H = Nh,M = Nm,V = Fv,W = Fw.

Obtain the resulting system, with a = α/d,

dy

dt
= βxv − (σ + μ)y

di

dt
= qσy − (γ + μ)i

dh

dt
= pσy − (γ + μ)h (6.24)

dm

dt
= ϕh − (ϕ + γ + μ)m

1

d

dv

dt
= aw(1 − v) − v.

Question 3 Rescale the system (6.24) further by making a change of independent
variable τ = (γ + μ)t.

Question 4 The model (6.24) has different time scales for vectors and hosts. We
may view it as a singular perturbation and approximate it by letting 1/d → 0. There
is a quasi-steady state given by aw(1 − v) − v = 0 or

v = aw

1 + aw
, (6.25)

and the model is given by the first four equations of (6.24) together with (6.25).
The error in this approximation to (6.24) is in the boundary layer close to t =
0. Show that the reduced model has a disease-free equilibrium y = 1, i = h =
m = 0. Determine the basic reproduction number R0 and show that the disease-
free equilibrium is asymptotically stable if R0 < 1. Show that there is an endemic
equilibrium which is asymptotically stable if R0 > 1.

In practice, delivery of ivermectin is administered at fixed intervals. This suggests
that a pulse vaccination model would be appropriate, and this would admit the
possibility of stable periodic orbits. However, we do not explore this generalization
here.

References: [7, 11].



244 6 Models for Diseases Transmitted by Vectors

6.7 Exercises

1. Consider the model

S′
h = Λh(Nh) − βhShIv − μhSh

I ′
h = βhShIv − (μh + αh)Ih

S′
v = Λv(Nv) − βhSvIh − μvSv

I ′
v = βvSvIh − μvIv,

a simple model for malaria with a host species (h) and a vector species (v) under
the assumptions Λi(Nh) = μiNi , i = h, v, and αh = 0.

(a) Derive the expression of R0.
(b) Find all possible equilibrium points.
(c) Find the conditions (in terms of R0) under which an endemic equilibrium

exists.
(d) Determine the critical value of βvc such that R0 < 1 for all βv < βvc.

2. Consider the model

S′
h = −βhShIv

I ′
h = βhShIv − αhIh

S′
v = Λv(Nv) − βvSvIh − μvSv − σSv

I ′
v = βvSvIh − μvIv − σSv,

describing a vector-borne SIR/SI epidemic model that includes removal of
vectors at rate σ . Calculate the basic reproduction number.

3. Formulate a model for a vector-borne epidemic with a rate of treatment of
infective hosts, and calculate its reproduction number.
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Models for Specific Diseases



Chapter 7
Models for Tuberculosis

In this chapter we describe several models for tuberculosis (TB). The disease is
endemic in many areas of the world. The models in this chapter will be extensions of
the standard SIR or SEIR type of endemic models presented in Chap. 3. Depending
on the typical characteristics of a specific disease, various modifications of the
standard models will be considered.

According to the recent WHO report [25], there were 8.6 million new TB
cases in 2012 and 1.3 million TB deaths. TB remains a major global health
problem and is the leading cause of death by an infectious disease, after the human
immunodeficiency virus (HIV). It is reported that about three million people who
developed TB in 2012 were missed by national notification systems. Key actions
needed to detect people with the illness and ensure that they get the right treatment
and care include: expanded services (including rapid tests) throughout health
systems bolstered by the support of nongovernmental organizations, community
workers, and volunteers to diagnose and report cases.

A typical epidemiological feature associated with TB is its long period of latency.
As pointed out by G.W. Comstock, “tuberculosis is an infectious disease with an
incubation period from weeks to a lifetime.” Figure 7.1 illustrates that TB has a long
and variable period of latency. Treating a patient with an active TB is more difficult
and requires a much longer time to complete the treatment than treating a latent TB
infection (LTBI). This makes it important to identify and treat latent people before
they develop the disease. One of the approaches to achieve this is through screening.
However, such screening programs require resources. An optimal control problem
can be formulated using mathematical models for TB.

Figure 7.2 shows the data from observation in adolescents who had developed
clinical tuberculosis following primary infection [24]. It suggests that among the
10% of latent individuals who eventually develop active TB, around 60% will do so
during the first year post-infection. The rest will develop active TB in either 2 years
(20%), 5 years (15%), 20 years (5%), or even longer.
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Fig. 7.1 A diagram showing
the progression from latent to
active TB during the period of
infection (adopted from www.
biomerieux-Řdiagnos6cs.
com). It shows that only
about 10% of latently infected
will develop active TB and
5% of those will stay in the
latent stage for long time

Fig. 7.2 An example of
distribution of progression
from latent to active TB [24]

The good news is that latent and active TB can be treated with antibiotics. The
bad news is that its treatment has side effects (sometimes quite serious) and takes
a long time. Carriers of the tubercle bacillus who have not developed TB disease
can be treated with a single drug INH; unfortunately, it must be taken religiously
for 6 months [6]. Treatment for those with active TB requires the simultaneous
use of three drugs for a period of about 9 months. Lack of compliance with these
drug treatments (a very serious problem) may lead to not only a relapse but also to
the development of multidrug-resistant TB (MDR-TB)—one of the most serious

www.biomerieux-�diagnos6cs.com
www.biomerieux-�diagnos6cs.com
www.biomerieux-�diagnos6cs.com


7.1 A One-Strain Model with Treatment 251

public health problems facing society today. According to the WHO report [25],
globally in 2012, approximately 450,000 people developed MDR-TB and there were
approximately 170,000 deaths from MDR-TB. An individual can become infected
with the resistant strain of TB in two ways, one is the so-called primary resistance
which is obtained by direct transmission from someone with resistant TB, and the
other is the acquired resistance which is developed from the sensitive TB due to
incomplete or inappropriate treatment. This also creates a challenge for designing
treatment policy, and should be incorporated in the modeling of optimal control
for TB.

In this chapter we present several TB models that can be used to study the above
mentioned problems. We begin with a relatively simple TB model with a single
strain, and then extend it to include both drug-sensitive and drug-resistant strains.
The two-strain model will be further extended to include two control measures
representing “case-finding” (i.e., identifying people with LTBI) and “case-holding”
(i.e., making sure the treatment of active TB infections is complete) and study the
optimal control strategies.

7.1 A One-Strain Model with Treatment

Because there is no permanent immunity and an individual after treatment for
TB can still become infected with possibly reduced susceptibility, we divide the
population into four epidemiological classes: susceptible (S), latently infected (L),
infectious (I), and treated (T). Assume that latent and infectious individuals are
treated at rates r1 and r2, respectively, and latent individuals develop active TB at
rate κ . The model reads

S′ = μN − cS
I

N
− μS + r1L + r2I,

L′ = cS
I

N
+ c∗T I

N
− (κ + r1 + μ)L,

I ′ = κL − (r2 + μ)I,

T ′ = r1L + r2I − c∗T I

N
− μT,

(7.1)

where N = S + L + I + T is the total population, which will remain constant for
all time due to the balanced birth and natural death rate μ. The parameters c and
c∗ denote the average numbers of susceptible and treated individuals, respectively,
infected by one infective individual per unit of time. If the treated individuals have
a reduced susceptibility to infection, then c∗ < c.
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The dynamics of system (7.1) is standard in the sense that the disease will either
go extinct or persist depending on whether the reproduction number

R0 = cκ

(κ + r1 + μ)(r2 + μ)
(7.2)

is less or greater than 1. It is clear from (7.2) that R0 is a decreasing function of
treatment rates r1 and r2. The effect of treatment on the disease prevalence can be
examined by considering the fraction of infectives I/N at the endemic equilibrium
in the case R0 > 1. In the simpler case when c = c∗, the equilibrium value of I/N
is given by

I ∗

N∗ = κ

κ + r2 + μ

(
1 − 1

R0

)
, (7.3)

which is a decreasing function of r1 and r2 as well. This shows that in the absence
of the resistant strain, treatment is beneficial in reducing the disease burden. This is
not the case when a resistant strain is considered, as shown in the two-strain model
presented next.

7.2 A Two-Strain TB Model

As mentioned earlier, treatment of active TB may take as long as 12 months,
and lack of compliance with these treatments may lead to the development of
antibiotic resistant TB. The one-strain model (7.1) can be extended to include
both drug-sensitive (DS) and drug-resistant (DR) strains of TB, with possible
development of resistance due to treatment failure. A transition diagram between the
epidemiological classes is shown in Fig. 7.3. The latent and infectious individuals
with sensitive TB are denoted by L1 and I1, respectively. Two additional classes are
included for the resistant strain, i.e., the latent and infectious classes with resistant
strain denoted by L2 and I2, respectively. The sensitive and resistant strains will be
referred to as strain 1 and 2, respectively. Because it is very hard to cure a patient
with resistant TB, we ignore the treatment of the resistant strain. Furthermore,
assume that I2 individuals can infect S,L1, and T individuals. The λ functions
represent the forces of infection, which are given by

λi(t) = ci
Ii

N
, λ∗

1(t) = c∗
1
I1

N
, i = 1, 2,

where c1 and c∗
1 have the meaning as c and c∗ in the one-strain model (7.1); c2 is

similar to c1 but for the resistant strain; ri (i = 1, 2) and μ are the same as in (7.1);
κi denotes the progression rate from latent to infectious stage of strain i.
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Fig. 7.3 A diagram for the
two-strain TB model showing
transitions between the
epidemiological classes. The
thicker arrow and the rate qr2
represent the development of
resistant TB due to the failure
of treatment for infections
with the sensitive strain. The
birth and death rates are
omitted

The additional parameters are related to treatment failure and the development of
resistant TB. For example, p + q denotes the proportion of those treated infectious
individuals who did not complete their treatment, where the proportion p modifies
the rate that departs from the sensitive TB latent class; qr2I1 gives the rate at which
individuals develop resistant TB because they did not complete the treatment of
active TB. Therefore, p ≥ 0, q ≥ 0 and p + q ≤ 1. From the disease transmission
diagram (see Fig. 7.3) we can write the following system of ordinary differential
equations:

S′ = μN − c1S
I1

N
− c2S

I2

N
− μS,

L′
1 = c1S

I1

N
− (μ + κ1)L1 − r1L1 + pr2I1 + c∗

1T
I1

N
− c2L1

I2

N
,

I ′
1 = κ1L1 − μI1 − r2I1,

L′
2 = qr2I1 − (μ + κ2)L2 + c2(S + L1 + T )

I2

N
,

I2 = κ2L2 − μI2,

T ′ = r1L1 + (1 − p − q)r2I1 − c∗
1T

I1

N
− c2T

I2

N
− μT,

(7.4)

where N = S + L1 + I1 + T + L2 + I2 is the total population, which remains
constant.

The detailed analysis of the model (7.4) is presented in [4]. System (7.4) has up to
four possible equilibria denoted by E0 (infection-free), E1 (only the sensitive strain
is present), E2 (only the resistant strain is present), and E∗ (coexistence of both
strains). The existence of these equilibria depends on the reproduction numbers for
the sensitive and resistant strains, which are given by

RS =
(
c1 + pr2

μ + r2

)(
κ1

μ + κ1 + r1

)

(7.5)
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and

RR =
(
c2

μ

)(
κ2

μ + κ2

)

, (7.6)

respectively.
The dynamics of system (7.4) are dramatically different for the cases q = 0

and q > 0 (development of resistant TB due to treatment failure), particularly in
terms of the number of equilibria and their stability, as well as the likelihood for
coexistence of both strains. In addition to the reproduction numbers, there are two
functions, RR = f (RS) and RR = g(RS), which divide the parameter region in
the (RS,RR) plane into sub-regions for the stability of equilibria:

f (RS) = 1

1 + 1−RS

(RS−AB)(1+1/B)

g(RS) = 1
C

(
AB + C − 1 ±√

(AB + C − 1)2 + 4(RS − AB)C
)
,

(7.7)

for RS ≥ 1 where

A = pr2

μ + κ1 + r1
, B = κ1

μ + d1 + r2
, C = μ

μ + κ1 + r1
.

The properties of f and g include

f (1) = g(1) = 1, f (RS) < g(RS) for RS > 1

(see Fig. 7.4). The two curves of f and g and the lines Ri = 1 (i = S,R) divide
the first quadrant of the (RS,RR) plane into either four regions in the case q = 0
(see Fig. 7.4a) or three regions in the case q > 0 (see Fig. 7.4b). The stability results
for system (7.4) in the case of q = 0 and q > 0 are summarized in Theorems 7.1
and 7.2, respectively.

Theorem 7.1 Assume q = 0. Let Regions I–IV be as in Fig. 7.4a.

(a) The disease-free equilibrium E0 is g.a.s. if (RS,RR) is in Region I .
(b) For RS > 1, the boundary equilibrium E1 is locally asymptotically stable if

(RS,RR) is in Region II and unstable in Regions III and IV .
(c) For RR > 1, the boundary equilibrium E2 is locally asymptotically stable if

(RS,RR) is in Region IV and unstable if in Regions II and III .
(d) The coexistence equilibrium E∗ exists and is locally asymptotically stable if

(RS,RR) is in Region III .

When q > 0, the equilibrium E1 (sensitive strain only) is never stable, and the
coexistence region III is much larger than that in the case of q = 0, as stated in the
following theorem and illustrated in Fig. 7.4b.
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Fig. 7.4 (a) A bifurcation diagram for the system in the case q = 0. There are four Regions
I , II , III , and IV in the parameter space (RS,RR). In Region I , E0 is a global attractor and
other equilibria are unstable when they exist. In Regions II and IV , E∗ does not exist, while
E1 and E2 are locally asymptotically stable, respectively. In Region III , E∗ exists and is locally
asymptotically stable . (b) A bifurcation diagram for the system in the case q > 0. There are three
Regions I , III , and IV in the parameter space (RS,RR) (E1 does not exist), in which E0, E2,
and E∗ are stable, respectively

Fig. 7.5 Phase portraits of solutions to (7.4) in the case of q = 0. The choice of parameter values
gives a fixed value RS = 3.45. In (a) RR = 2 and (RS,RR) ∈ IV. In (b) RR = 2.4 and
(RS,RR) ∈ III. In (c) RR = 1.2 and (RS,RR) ∈ II. A circle indicates a stable equilibrium, and
a triangle indicates an unstable equilibrium

Theorem 7.2 Assume that q > 0. Let Regions I–III be as in Fig. 7.4b.

(a) The disease-free equilibrium E1 is g.a.s. if RS < 1 and RR < 1 (Region I ).
(b) For RR > 1, the boundary equilibrium E2 is locally asymptotically stable if

RS < 1 or if RS > 1 and RR > g(RS) (Region IV ). E2 is unstable if RS > 1
and RR < g(RS) (Region III ).

(c) The equilibrium E3 exists and is locally asymptotically stable iff RS > 1 and
RR < g(RS) (Region III ).

Figure 7.5 shows some simulation results of the model in the case of q = 0,
illustrating the disease outcomes for (RS,RR) in different regions as shown in
Fig. 7.4a. In this figure, the parameter values used are μ = 0.143, c1 = 13, κ1 =
1, q = 0, p = 0.5, r1 = 1, r2 = 2, κ2 = 1. For this set of values, RS = 3.45.
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Figure 7.5a–c corresponds to different values of RR (or equivalently c2), for which
(RS,RR) is in Regions IV , III , and II , respectively.

These results demonstrate that lack of drug treatment compliance by TB patients
may have an important implication for the maintenance of antibiotic resistant
strains. To make the role of antibiotic resistance transparent, we first studied a
special version of our two-strain model with two competing strains of TB: the
typical strain plus a resistant strain that was not the result of antibiotic resistance
(q = 0). In this last situation, we found that coexistence is possible but rare while
later we noticed that coexistence is almost certain when the second strain is the
result of antibiotic resistance. In our two-strain model there is a superinfection-like
term c2L1I2/N . Is this necessary to obtain the coexistence result because it is well
known that superinfection can cause coexistence (see [16, 18])? The answer is no. In
fact, it can be shown that in the absence of the superinfection-like term coexistence
is still almost the rule when the second strain is the result of antibiotic resistance
(see Fig. 7.4).

7.3 Optimal Treatment Strategies

Analysis of the two-strain model in Sect. 7.2 demonstrated that treatment may
facilitate the spread of resistant TB and increase the level of TB prevalence. Thus,
the effort levels devoted to treating latent and infectious TB individuals may lead to
different outcomes.

Let u1(t) and u2(t) denote the time-dependent control efforts, which represent
the fractions of individuals in L1 and I1 classes receiving prophylaxis and drug
treatment, respectively, at time t . The state system with controls u1(t) and u2(t)

reads:

S′ = μN − c1S
I1

N
− c2S

I2

N
− μS,

L′
1 = c1S

I1

N
− (μ + κ1)L1 − u1(t)r1L1

+(1 − u2(t))pr2I1 + c∗
1T

I1

N
− c2L1

I2

N
,

I ′
1 = κ1L1 − μI1 − r2I1,

L′
2 = (1 − u2(t))qr2I1 − (μ + κ2)L2 + c2(S + L1 + T )

I2

N
,

I2 = κ2L2 − μI2,

T ′ = u1(t)r1L1 + [
1 − (

1 − u2(t)
)
(p + q)

]
r2I1 − c∗

1T
I1

N
− c2T

I2

N
− μT,

(7.8)

with initial values S(0), L1(0), I1(0), L2(0), I2(0), T (0).
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The control functions, u1(t) and u2(t), are bounded, Lebesgue integrable func-
tions. The “case-finding” control, u1(t), represents the fraction of typical TB
latent individuals that is identified and will be put under treatment (to reduce the
number of individuals that may be infectious). The coefficient, 1 −u2(t), represents
the effort that prevents the failure of the treatment in the typical TB infectious
individuals (to reduce the number of individuals developing resistant TB). When
the “case-holding” control u2(t) is near 1, there is low treatment failure and high
implementation costs.

Our objective function to be minimized is

J (u1, u2) =
tf∫

0

[
L2(t) + I2(t) + B1

2
u2

1(t) + B2

2
u2

2(t)
]
dt, (7.9)

where we want to minimize the latent and infectious groups with resistant-strain
TB while also keeping the cost of the treatments low. We assume that the costs of
the treatments are nonlinear and take quadratic form here. The coefficients, B1 and
B2, are balancing cost factors due to size and importance of the three parts of the
objective functional. We seek to find an optimal control pair, u∗

1 and u∗
2, such that

J (u∗
1, u

∗
2) = min

Ω
J(u1, u2), (7.10)

where Ω = {(u1, u2) ∈ L1(0, tf ) | ai ≤ ui ≤ bi, i = 1, 2} and ai and bi, i = 1, 2,
are fixed positive constants.

The necessary conditions that an optimal pair must satisfy come from Pontrya-
gin’s maximum principle [19]. This principle converts (7.8)–(7.10) into a problem
of minimizing pointwise a Hamiltonian, H , with respect to u1 and u2:

H = L2 + I2 + B1

2
u2

1 + B2

2
u2

2 +
6∑

i=1

λigi, (7.11)

where gi is the right-hand side of the differential equation of the ith state variable.
By applying Pontryagin’s maximum principle [19] and the existence result for the
optimal control pairs from [13], we know that there exists an optimal control pair u∗

1,
u∗

2 and corresponding solution, S∗, L∗
1, I ∗

1 , L∗
2, I ∗

2 , and T ∗, that minimizes J (u1, u2)

over Ω . Furthermore, there exist adjoint functions, λ1(t), . . . , λ6(t), such that

λ′
1 = λ1(c1

I ∗
1

N
+ c∗

1
I ∗

2

N
+ μ) + λ2(−c1

I ∗
1

N
) + λ4(−c∗

1
I ∗

2

N
),

λ′
2 = λ2(μ + κ1 + u1(t)r1 + c∗

1
I ∗

2

N
) + λ3(−κ1) + λ4(−c∗

1
I ∗

2

N
) + λ6(−u∗

1(t)r1),

λ′
3 = λ1(c1

S∗

N
) + λ2(−c1

S∗

N
− (1 − u∗

2(t))pr2 − c2
T ∗

N
) + λ3(μ + r2)
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+ λ4(−(1 − u∗
2(t))qr2) + λ6(−(1 − (1 − u∗

2(t))(p + q))r2 + c2
T ∗

N
),

λ′
4 = −1 + λ4(μ + κ2) + λ5(−κ2),

λ′
5 = −1 + λ1(c

∗
1
S∗

N
) + λ2(c

∗
1
L∗

1

N
) − λ4(β

∗ S∗ + L∗
1 + T ∗

N
) + λ5μ + λ6(c

∗
1
T ∗

N
),

λ′
6 = λ2(−c2

I ∗
1

N
) + λ4(−c∗

1
I ∗

2

N
) + λ6(c2

I ∗
1

N
+ c∗

1
I ∗

2

N
+ μ), (7.12)

with transversality conditions

λi(tf ) = 0, i = 1, . . . , 6 (7.13)

and N = S∗ + L∗
1 + I ∗

1 + L∗
2 + I ∗

2 + T ∗. Moreover, the characterization holds:

u∗
1(t) = min

(
max(a1,

1
B1

(λ2 − λ6)r1L
∗
1), b1

)

u∗
2(t) = min

(
max(a2,

1
B2

(λ2p + λ4q − λ6(p + q)r2I
∗
1 )), b2

)
.

(7.14)

Due to the a priori boundedness of the state and adjoint functions and the
resulting Lipschitz structure of the ODEs, we obtain the uniqueness of the optimal
control for small tf . The uniqueness of the optimal control follows from the
uniqueness of the optimality system, which consists of (7.8) and (7.12)–(7.14).
There is a restriction on the time interval in order to guarantee the uniqueness of
the optimality system. This smallness restriction on the length on the time interval
is due to the opposite time orientations of (7.8), (7.12), and (7.13); the state problem
has initial values and the adjoint problem has final values. This restriction is very
common in control problems (see [12, 15]).

The optimal treatment is obtained by solving the optimality system, consisting
of the state and adjoint equations. An iterative method is used for solving the
optimality system. We start to solve the state equations with a guess for the
controls over the simulated time using a forward fourth-order Runge–Kutta scheme.
Because of the transversality conditions (7.13), the adjoint equations are solved by a
backward fourth-order Runge–Kutta scheme using the current iteration solution of
the state equations. Then, the controls are updated by using a convex combination of
the previous controls and the value from the characterizations (7.14). This process is
repeated and iteration is stopped if the values of unknowns at the previous iteration
are very close to the ones at the present iteration.

For the figures presented here, we assume that the weight factor B2 associated
with control u2 is greater than or equal to B1 which is associated with control u1.
This assumption is based on the following facts: The cost associated with u1 will
include the cost of screening and treatment programs, and the cost associated with
u2 will include the cost of holding the patients in the hospital or sending people
to watch the patients to finish their treatment. Treating an infectious TB individual
takes longer (by several months) than treating a latent TB individual. In these three
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Fig. 7.6 The optimal control strategy for the case of B1 = 50 and B2 = 500

figures, the set of the weight factors, B1 = 50 and B2 = 500, is chosen to illustrate
the optimal treatment strategy. Other epidemiological and numerical parameters are
presented in [14].

In the top frame of Fig. 7.6, the controls, u1 (solid curve) and u2 (dashdot curve),
are plotted as a function of time. In the bottom frame, the fractions of individuals
infected with resistant TB, (L2 + I2)/N , with control (solid curve) and without
control (dashed curve) are plotted. Parameters N = 30,000 and β∗ = 0.029 are
chosen. Results for other parameters are presented in [14]. To minimize the total
number of the latent and infectious individuals with resistant TB, L2 + I2, the
optimal control u2 is at the upper bound during almost 4.3 years and then u2 is
decreasing to the lower bound, while the steadily decreasing value for u1 is applied
over the most of the simulated time, 5 years. The total number of individuals L2 +I2
infected with resistant TB at the final time tf = 5 (years) is 1123 in the case with
control and 4176 without control, and the total number of cases of resistant TB
prevented at the end of the control program is 3053 (= 4176 − 1123).

In Fig. 7.7, the controls, u1 and u2, are plotted as a function of time for
N = 6000, 12,000, and 30,000 in the top and bottom frame, respectively. Other
parameters except the total number of individuals and c∗

1 = 0.029 are fixed for
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Fig. 7.7 The controls, μ1 and μ2, are plotted as a function of time for N =
6000, 12,000, and 30,000 in the top and bottom frame, respectively

these three cases. These results show that more effort should be devoted to “case-
finding” control u1 if the population size is small, but “case-holding” control u2 will
play a more significant role if the population size is big. Note that, in general, with
B1 fixed, as B2 increases, the amount of u2 decreases. A similar result holds if B2
is fixed and B1 increases.

In conclusion, our optimal control results show how a cost-effective combination
of treatment efforts (case holding and case finding) may depend on the population
size, cost of implementing treatments controls, and the parameters of the model. We
have identified optimal control strategies for several scenarios. Control programs
that follow these strategies can effectively reduce the number of latent and infectious
resistant-strain TB cases.

7.4 Modeling of the Long and Variable Latency of TB

As indicated in Figs. 7.1 and 7.2, the latent period of TB can range from a couple of
years to lifetime. One of the approaches to incorporate this feature is to divide latent
individuals into two classes based on the rates of progression to the disease stage,
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Fig. 7.8 A transition
diagram of TB with fast and
slow progressions [3]

with one class having a faster progression than the other. For example, based on the
transition diagram shown in Fig. 7.8, Blower et al. considered the following model
in [3]:

S′ = Λ − cSI − μS,

L′ = (1 − p)cSI − (κ + r1 + μ)L,

I ′ = pcSI + κL − (r2 + μ + d)I,

C′ = r1L − μC,

T ′ = r2I − μT,

(7.15)

which includes five epidemiological classes: susceptible (S), latently infected (L),
infectious (I ), effectively chemoprophylaxed (C), and effectively treated (T ). The
model assumes that a fraction p of the newly infected individuals will become
infectious within 1 year (fast progression,p ≈ 0.05), while the remaining 1 − p

fraction of newly infected individuals will enter the latent stage first and develop
active TB at a rate κ (slow progression, approximately 1/20 (years)). The model
suggests that for fast progression, an infected individual enters the infectious class I

immediately. The parameters r1 and r2 denote the rates of prophylaxis and treatment,
respectively. The per-capita natural and disease mortalities are μ and d, respectively.

The control reproduction number of the model (7.15) is

RC = Rfast
C + Rslow

C , (7.16)

where

Rfast
C =

(cpΛ

μ

)( 1

r2 + μ + d

)
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Fig. 7.9 Plots of the curve RC = 1 for severity levels of mild, moderate, and severe, which
correspond to the basic reproduction number R0 values of 4, 9, and 17, respectively [3]

and

Rslow
C =

(c(1 − p)Λ

μ

)( κ

r1 + κ + μ

)( 1

r2 + μ + d

)

represent the reproduction numbers associated with the fast and slow paths,
respectively. The formula (7.16) can be used to evaluate the possibility to eradicate
tuberculosis either by treatment alone or by a combination of treatment and
chemoprophylaxis, as demonstrated in Fig. 7.9 (adopted from [3]).

To investigate the role of treatment failure for drug-sensitive (DS) cases in the
prevalence of drug-resistant (DR) TB, Blower et al. [3] extended the one-strain TB
model (7.15) to include a drug-resistant strain as follows:

S′ = Λ −
(
cSIS + cRIR

)
S − μS,

L′
S = (1 − p)cSISS − (r1 + κ + μ)LS,

I ′
S = pcSISS + κLS − (r2 + μ + d)IS,

C′
S = r1LS − μCS,

T ′
S = r2(1 − q)IS − μTS,

L′
R = (1 − p)cRIRS − (κ + μ)LR,

I ′
R = pcRIRS + qr2IS + κLR − (r2δ + μ + d)IR,

T ′
R = δr2TR − μTR,

(7.17)
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where the epidemiological classes associated with the DS and DR tuberculosis are
indicated by the subscripts S and R, respectively. The parameter q represents the
fraction of treatment failure for DS tuberculosis that leads to the development of
DR tuberculosis, and the parameter δ denotes the relative effectiveness of treatment
for a resistant case.

Blower et al. [3] showed that the model (7.17) can help gain insights into the
impact of treatment failure (q) on the development of DR tuberculosis.

Another approach to incorporate the long and variable latency is to consider
an arbitrarily distributed latency, in which case the model consists of a system of
integro-differential equations. Examples can be found in [10, 11]. It is shown in
[10] that the model with a distributed latency has the same dynamical behavior as the
ODE model, although it can provide a more detailed description for the reproduction
number as it involves a more realistic distribution of the latent period. The model
considered in [11] includes both DS and DR strains with infection age-dependent
progression (e.g., the progression distribution shown in Fig. 7.2).

7.5 Backward Bifurcation in a TB Model with Reinfection

As mentioned earlier, the latent period of TB can be as long as many years and even
lifetime. Re-exposure to TB bacilli through repeated contacts with individuals with
active TB may accelerate the progression of LTBI towards active TB, and exogenous
reinfection (i.e., acquiring a new infection from another infected individual) may
occur. To investigate the impact of exogenous reinfection in the spread and control
of TB, we can extend the one-strain model (7.1) by incorporating the exogenous
reinfection. It is demonstrated in [9] that exogenous reinfection may play a
fundamental role in the transmission dynamics and the epidemiology of TB at
the population level. Particularly, the model is capable of exhibiting a backward
bifurcation, i.e., a stable endemic equilibrium can exist even when the reproduction
number is less than 1. Although some studies (e.g., see [23]) find that, for parameter
values in a certain range, the onset of the backward bifurcation is unlikely to occur,
other scenarios are possible in which the conditions for backward bifurcation can
be satisfied. In either case, it is helpful to know that exogenous reinfection may play
an important role in TB dynamics, which can be critical for the design of control
programs for TB.

An extension of the one-strain model (7.1) when reinfection is included takes the
form:

S′ = μN − cS
I

N
− μS,

L′ = cS
I

N
+ c∗T I

N
− pcL

I

N
− (κ + μ)L,

I ′ = pcL
I

N
+ κL − (r + μ)I,

T ′ = rI − c∗T I

N
− μT .

(7.18)
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The model (7.18) ignores the treatment of latent individuals and only infectious
individuals may receive treatment at the rate r . The parameter p is a factor
reflecting the difference between primary infections (infection from susceptibles)
and exogenous reinfections (infection from latent individuals). A value of p ∈
(0, 1) implies that a primary infection provides some degree of cross-immunity to
exogenous reinfections. Other parameters have the same meaning as in (7.1).

The reproduction number for (7.18) is

R0 = cκ

(κ + μ)(r + μ)
. (7.19)

The usual result that the disease-free equilibrium is locally asymptotically stable
when R0 < 1 still holds. However, the usual result that there is no endemic
equilibrium when R0 < 1 no longer holds. To show that an endemic equilibrium
may exist when R0 < 1, consider the simpler case when c∗ = c. Let U∗ =
(S∗, L∗, I ∗, T ∗) denote an endemic equilibrium, i.e., I ∗ > 0. Let x = I ∗/N , then

S∗

N
= μ

μ + cx∗ ,
L∗

N
= (μ + r)x∗

κ + pcx∗ ,
T ∗

N
= rx

μ + cx
,

and x∗ is a solution of the quadratic equation

Ax2 + Bx + C = 0, (7.20)

where

A = pR0, B = (1 + p + Q)DE − pR0, C = DEQ
( 1

R0
− 1

)
,

and DE = κ/(μ+κ) and Q = κ/(μ+r). Note that DE < 1 denotes the probability
that a latent individual survives and becomes infective. Let

Rp = 1

p

(
DE(1 + p − Q) + s

√
DEQ(p − pDE − DE)

)
(7.21)

and

p0 = (1 + Q)DE

1 − DE

. (7.22)

Then Rp < 1 if p > p0, and B2 −4AC > (=, <) 0 if R0 > (=, <) Rp, in which
case Eq. (7.20) has two (one, none) positive solutions x± (see [9] for more detailed
proofs). This establishes the following result:
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Fig. 7.10 The left plot is a depiction of the backward bifurcation for the model with rein-
fection (7.18). The I ∗ component of an equilibria is plotted as a function of R0. The curve
demonstrates that there are two positive steady states for Rp < R0 < 1. The solid part of the
curve corresponds to the stable steady state (SSS) and the dashed part corresponds to the unstable
steady state (USS). The right figure shows the numerical solutions of system (7.18) for parameter
values in the region where the backward bifurcation occurs (Rp < R0 < 1 and p > p0).
The number of infectious individuals I (t) is plotted. It illustrates that, depending on the initial
conditions, the solution will converge to either the infection-free equilibrium (the solid curves) or
the stable positive equilibrium (dashed curves)

Theorem 7.3 Let R0, Rp, and p0 be as defined in (7.19), (7.21), and (7.22).

(a) If R0 > 1, then system (7.18) has exactly one endemic equilibrium and it is
locally asymptotically stable

(b) If R0 < 1, then the disease-free equilibrium is locally asymptotically stable
Moreover,

(i) for each p > p0 there exists a positive constant Rp < 1 such that
system (7.18) has exactly two (one, none) positive equilibria when R0 >

( =, <) Rp. In the case of two positive equilibria, the one with large
(smaller) I ∗ component is stable (unstable), as depicted in Fig. 7.10 (left).

(ii) for p = (<)p0, system (7.18) has exactly one (no) positive equilibrium.

Numerical simulations of the model (7.18) confirm the backward bifurcation.
Figure 7.10 (right) shows the I component of the solutions with different initial
values in the case p > p0 and Rp < R0 < 1. We observe that solutions with
initial I values near 0 converge to the disease-free steady state (see the solid curves),
whereas other solutions converge to the endemic steady state with a larger I value
(see the dashed curves).

7.6 Other TB Models with More Complexities

The models considered above assume homogeneity in several aspects including
mixing and age structure of the population. In many cases, the problems under
investigation require the consideration of some of the heterogeneities. For example,
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in [1] TB models involving non-homogeneous mixing that incorporates “household”
contacts and age-dependent mixing are considered to assess the possible causes for
the observed historical decline of tuberculosis notifications. In [5], an age-structured
TB model is used to study optimal age-dependent vaccination strategies ψ(a),
where a denotes the chronological age of an individual. One of the optimal control
problems is to minimize the reproduction number corresponding to ψ(a), Rψ , under
the constraint on the cost C(ψ) < C∗, where C∗ is a fixed constant. Results suggest
that the optimal vaccination strategy is either a one-age strategy (vaccinate every
one at a single age A determined by the parameter and parameter functions in the
model) or two-age strategy (vaccinate the population at two fixed ages A1 and A2
determined by model parameters).

Models with multiple resistant strains have been used to answer various questions
associated with the establishment and spread of drug-resistant TB. Blower and Chou
[2] use a model with three strains of resistant TB to study how to effectively control
MDR-TB in “hot zones” (i.e., areas that have > 5% prevalence of MDR-TB). The
findings of the model suggest that the levels of MDR are driven by case-finding
rates, cure rates, and amplification probabilities (the probability that a case will
develop further resistance during treatment). In [7], heterogeneity in the relative
fitness of MDR strains is incorporated in a TB model. The model includes two
resistant strains (one is more fit than the other), as well as a drug-sensitive strain, and
is used to study the impact of initial fitness estimates on the emergence of MDR-TB.
The model results show that “even when the average relative fitness of MDR strains
is low and a well-functioning control program is in place, a small sub-population
of a relatively fit MDR strain may eventually outcompete both the drug-sensitive
strains and the less fit MDR strains.”

A two-strain TB model with reinfection is considered in [21] to study the role of
reinfection in the transmission dynamics of drug-resistant TB and the coexistence of
sensitive and resistant strains of TB. In [17] multiple sub-populations are considered
with one sub-population being genetically susceptible to TB. Different strategies
involving treatment of latent TB infections and active TB disease are examined and
in different populations are examined. Results from the model analysis suggest that
the presence of a genetically susceptible sub-population dramatically alters effects
of treatment. To study the impact of treatment failure and its influence in the criteria
for the control of drug-resistant TB, a model with multiple stages of treatment failure
with different probabilities of leading to resistant TB is considered in [8]. Model
results indicate that case detection and treatment can be a critical factor in the control
of MDR-TB.

To explore the influence of HIV on TB prevalence, models including the
interaction between TB and HIV can be used, in which case the model analysis can
be very challenging due to the possible coinfections of TB and HIV. For example,
a model incorporating both TB and HIV with multiple stages of HIV is studied in
[20]. The model results suggest that “an HIV epidemic can significantly increase the
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frequency and severity of tuberculosis outbreaks, but that this amplification effect of
HIV on tuberculosis outbreaks is very sensitive to the tuberculosis treatment rate.”
Another model that includes both TB and HIV is studied in [22]. The model results
suggest that the accelerated progression from LTBI to active TB in individuals co-
infected with HIV can have a significant influence in TB prevalence.

7.7 Project: Some Calculations for the Two-Strain Model

Exercise 1 Derive the formulas of the reproduction numbers RS and RR given
in (7.5) and (7.6), respectively, for the two-strain TB model (7.4) by considering the
stability of the disease-free equilibrium

E0 = (
S(0), L

(0)
1 , I

(0)
1 , L

(0)
2 , I

(0)
2 , T (0)) = (N, 0, 0, 0, 0, 0).

The Jacobian a E0 is

J (E0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−μ 0 −c1 0 −c2 0
0 −(μ + κ1 + r1) c1 + pr2 0 0 0
0 κ1 −(μ + r2) 0 0 0
0 0 qr2 −(μ + κ2) c2 0
0 0 0 κ2 −μ 0
0 r1 (p + q)r2 0 0 −μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Clearly, J (E0) has the negative eigenvalues μ with multiplicity 2, and other
eigenvalues are given by the eigenvalues of J1 and J2, where

J1 =
[−(μ + κ1 + r1) c1 + pr2

κ1 −(μ + r2)

]

, J2 =
[−(μ + κ2) c2

κ2 −μ

]

.

Show that J1 has negative eigenvalues if and only if RS < 1 and J2 has negative
eigenvalues if and only if RR < 1.

Exercise 2 Consider the two-strain TB model (7.4) and conduct numerical simula-
tions of the system for parameter values specified below. Given the parameter values
μ = 0.0143 (or 1/μ = 70), c1 = 13, κ1 = κ2 = 1, r1 = 1, r2 = 2, q = 0, p = 0.5.
Choose the values of c2 such that

(a) E1 is stable;
(b) E2 is stable;
(c) E∗ is stable.
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Exercise 3 Similar to Exercise 2 but for the case when q > 0. Given the same
values for other parameters as in Exercise 2, and choose the values of c2 such that

(a) E2 is stable;
(b) E∗ is stable.

7.8 Project: Refinements of the One-Strain Model

The model (7.1) is a one-strain model for TB, which assumes that infected people
stay in the latent stage L before entering the infective stage I . The model (7.15)
includes fast and slow progression (represented by p and 1 − p, respectively),
which assumes that with fractions 1 − p and p infected individuals will enter the
latent L and infectious I stages, respectively. In both models, the stage duration is
assumed to be exponentially distributed with parameter k. That is, the probability
that an infected individual has not become infective s units of time after infection is
e−ks . This assumption may not be appropriate for TB due to the long and variable
latency, as shown in Figs. 7.1 and 7.2. To examine whether or not a model with
a more realistic assumption on the distribution of latent period, we can consider
a model in which the exponential survival function e−ks is replaced by a general
distribution p(s), as described below.

Let p(s) be a function representing the proportion of those individuals latent at
time t and who, if alive, are still infected (but not infectious) at time t + s. Then
−ṗ(τ ) is the rate of removal of individuals from E class into I class τ units of time
after becoming latent. Assume that

p(s) ≥ 0, ṗ(s) ≤ 0, p(0) = 1,
∫ ∞

0
p(s)ds < ∞.

Let S(t), E(t), I (t), and T (t) denote the number of individuals in the susceptible,
latent, infectious, and treated classes, respectively. Consider the following model
with p(s) being the arbitrary distribution of the latent stage:

S′ = Λ − cS I
N

− μS,

E(t) = E0(t) +
∫ t

0

[
cS(s) + c∗T (s)

] I (s)

N(s)
p(t − s)e−(μ+r1)(t−s)ds,

I (t) =
∫ t

0

∫ τ

0

[
cS(s) + c∗T (s)

] I (s)

N(s)
e−(μ+r1)(τ−s)

×[−ṗ(τ − s)e−(μ+r2)(t−τ)]ds dτ + I0e
−(μ+r2)t + I0(t),

T ′ = r1E + r2I − c∗T I
N

− μT,

N = S + E + I,

(7.23)
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where E0(t) denotes those individuals in E class at time t = 0 and still in the
latent class, I0(t) denotes those initially in class E who have moved into class I and
are still alive at time t , and I0e

−(μ+r2)t with I0 = I (0) represents those who are
infective at time 0 and are still alive and in I class. E0(t) and I0(t) are assumed to
have compact support (that is, they vanish for large enough t). All other parameters
have the same meanings as in model (7.1).

Question 1 Derive the formula below for the reproduction number R0

R0 = c

∫ ∞

0
a(τ)dτ, (7.24)

where a(u) is defined by

a(t − s) =
∫ t

s

e−(μ+r1)(τ−s)[−ṗ(τ − s)e−(μ+r2)(t−τ)]dτ.

Provide biological interpretations for the a(u) and the factors in the expression of
a(u).

Question 2 Show that the disease will die out if R0 < 1 and persist if R0 > 1.

Question 3 Find all biologically feasible steady-state solutions of the model (7.23).
Determine the condition for the existence of a coexistence steady state (i.e., I > 0
and J > 0).

Question 4 For each steady state, identify the conditions under which the steady
state is locally asymptotically stable.

Question 5 Does the model with a more realistic distribution for the latent stage
provide new qualitative behavior of the disease dynamics in comparison with the
ODE model (7.1)? Identify the additional insights that the model (7.23) can provide.

7.9 Project: Refinements of the Two-Strain Model

Model (7.4) is a two-strain model for TB with drug-sensitive and drug-resistant
strains. In this model, the latent stages for both strain are assumed to be exponen-
tially distributed with parameters κ1 and κ2. The long and variable latency for the
sensitive strain make this assumption unrealistic (the latent period for the resistant
strain is much shorter). The model below is an alternative two-strain model with
distributed delay in latency, in which p(θ) is used to describe the progression from
latent stage to infectious stage and θ is the age of infection (time since becoming
infected):
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dS

dt
= μN − (μ + λ1(t) + λ2(t)) S + (1 − r)χ

∫ ∞

0
p(θ)i(θ, t)dθ,

∂i

∂t
+ ∂i

∂θ
+ μ i(θ, t) + (1 − r + qr)χp(θ)i(θ, t) = 0, (7.25)

dJ

dt
= λ2(t)S − μJ + qrχ

∫ ∞

0
p(θ)i(θ, t)dθ,

i(0, t) = λ1(t)S(t), S(0) = S0 > 0, i(θ, 0) = i0(θ) ≥ 0, J (0) = J0 > 0.

S(t) is the number of susceptibles at time t ; i(θ, t) denotes the density of infection
age θ individuals with the drug-sensitive strain at time t ; J (t) is the number of
infected individuals with a drug-resistant strain at time t ; and N = S+I +J , where

I (t) =
∫ ∞

0
i(θ, t)dθ

is the total number of individuals infected with the sensitive strain. The function
p(θ) (0 ≤ p(θ) ≤ 1) is assumed constant in time and is based on experimental data
(e.g., the distribution in Fig. 7.2). Note that p(θ)i(θ, t) represents the age density of
infectious individuals. The transmission rates of sensitive and resistant strains are

λ1(t) = c1

N(t)

∫ ∞

0
p(θ)i(θ, t)dθ and λ2(t) = c2

J (t)

N(t)
, (7.26)

respectively, with c1 and c2 being the per-capita transmission rates of the sensitive
and resistant strains. The rate at which sensitive-strain-infected individuals leave
the i class due to treatment is (1 − r + qr)χp(θ), where χ denotes the treatment
rate for individuals with drug-sensitive TB. The factor (1 − r + qr) introduces the
effect of incomplete treatment: a fraction r of the treated individuals with sensitive
TB do not recover due to incomplete treatment, and the remaining fraction 1 − r

is actually cured and becomes susceptible again. Moreover, among the individuals
who do not finish their treatment, a fraction q of them will develop drug-resistant
TB and the remaining fraction will remain latent. The per-capita birth and natural
death rates are assumed to be the same and equal to μ. In this model, for simplicity,
treated individuals are assumed to have the same susceptibility.

Question 1 Let v(t) = i(0, t) = λ1(t)S(t). Show that system (7.25) is equivalent
to the following system, which is easier to analyze:
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v(t) =
N(t) − J (t) −

∫ t

0
K0(θ)v(t − θ)dθ

N(t)

∫ t

0
K1(θ)v(t − θ)dθ + F̃1(t),

dJ

dt
= β2

(

N(t) − J (t) −
∫ t

0
K0(θ)v(t − θ)dθ

)
J (t)

N(t)

−mJ(t) +
∫ t

0
K2(θ)v(t − θ)dθ + F̃2(t),

dN

dt
= b(N)N(t) − μN(t) − δJ (t),

(7.27)

where F̃i(t) involve parameters and initial condition with limt→∞ F̃i(t) = 0, i =
1, 2, and

K0(θ) = e
−μθ−

∫ θ

0
(1 − r + qr)χp(s)ds

,

K1(θ) = β1p(θ)K0(θ) = − β1

χ(1 − r + qr)

(
d

dθ
K0(θ) + μK0(θ)

)

,

K2(θ) = qrχp(θ)K0(θ) = − qr

(1 − r + qr)

(
d

dθ
K0(θ) + μK0(θ)

)

.

(7.28)

Question 2 Let R1 and R2 denote the reproduction numbers for the sensitive and
resistant strains. Derive a formula for R1 and R2.

Question 3 Explore how the existence and stability of steady states of the
model (7.25) depend on R1 and R2.

Question 4 Does the model with a more realistic distribution for the latent stage
for the sensitive strain provide new qualitative behavior of the disease dynamics in
comparison with the ODEs model (7.4)? Identify the additional insights that the
model (7.25) may provide.
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Chapter 8
Models for HIV/AIDS

8.1 Introduction

Acquired immunodeficiency syndrome (AIDS) was first identified as a new disease
in the homosexual community in San Francisco in 1981. The human immunod-
eficiency virus (HIV) was identified as the causative agent for AIDS in 1983.
The disease has several very unusual aspects. After the initial infection, there
are symptoms, including headaches and fever for 2 or 3 weeks. Transmissibility
is high for about 2 months, and then there is a very long latent period during
which transmissibility is low. At the end of this latent period, which may last 10
years, transmissibility rises, signaling the development of full-blown AIDS. In the
absence of treatment, AIDS is invariably fatal. Now, HIV can be treated with a
combination of highly active antiretroviral therapy (HAART) drugs, which both
reduce the symptoms and prolong the period of low infectivity. While there is still
no cure for AIDS, treatment has made it no longer a necessarily fatal disease. To
describe the variation of infectivity for HIV, one possibility would be to use a
staged progression model, with multiple infective stages having different infectivity.
Another possibility would be to use an age of infection model.

HIV is transmitted in many ways, the most common of which are sexual
contact, either heterosexual or homosexual, shared drug injection needles, and
contaminated blood transfusions. Vertical transmission from mother to child is also
possible. In the past, transfusions of contaminated blood were another source of
disease transmission, but in developed countries screening of blood since 1985 has
eliminated blood transfusions as a transmission mode.

A full model for HIV/AIDS should include a variety of transmission modes, and
might take into account of many factors including the level of sexual activity, drug
use, condom use, and the sexual contact network, resulting in large scale systems
with many parameters that need to be estimated from data. Models were developed
first for homosexual transmission. In this chapter, we will consider not only models
for disease transmission in a homosexual community (the current terminology is
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men having sex with men, or MSM), but also models that include heterosexual
transmission through female sex workers. We also consider modes that include the
joint disease dynamics of HIV and TB and the synergy between HIV and HSV-2.

The identification of the human immunodeficiency virus [11, 55, 56, 58, 107]
captured the attention of theoreticians and modelers as AIDS became one of the
most feared diseases nearly three decades ago. Most of the initial modeling contri-
butions focused on the study of the transmission dynamics of HIV at the population
level since little was known about the epidemiology of HIV and, as expected,
modeling was carried out first under simple settings and crude assumptions [3–
7, 10, 19, 26, 32–35, 46, 48, 49, 57, 59, 65, 67–71, 75, 76, 79, 81, 88, 95–97, 102, 103].
An overview of the “state of the art” on the transmission dynamics of HIV modeling
in the 1980’s is found in [30], the review papers [97, 99], or in the books [8, 30, 63].

The modeling studies in [32–35, 67, 102, 103] focused on the impact that changes
in the pool of susceptibles, disease-induced mortality, heterogeneous mixing,
vertical transmission, asymptomatic carriers, variable infectivity, and incubation
(or latent) and infective periods may have on the dynamics of sexually transmitted
HIV. Efforts to model the risk of infection from sexual partner selection or from
within and between group mixing became central to the research of various
groups studying HIV dynamics. Other studies focused on the role of gender, core
populations, and heterogenous mixing contact rates on HIV dynamics. These were
naturally involved in the development of sexual-behavior surveys and data collection
on sexual and “dating” activity, as well as on the mathematical modeling and
analysis of heterogenous “mixing” frameworks (see [20, 21, 23, 24, 27, 28, 36–
39, 41, 47, 78, 93]). The overview in [83] highlights the potential role of sexual
activity and drinking on the dynamics of STDs [47, 65, 66, 93] and while the
adaptive dynamics generated by changing behaviors in response, to a multitude of
factors, were rarely explored, some earlier attempts were also carried out as a result
of the HIV pandemic [22, 60].

As described in these historical papers [3–5], knowledge of these periods was
quickly identified as critical to the initial efforts to predict the dynamics of HIV.
In [35] it is observed that: “The duration of the latent period is thought to be a
few days to a few weeks [3–5], and while the duration of the infectious period is
not yet known, those individuals that develop full-blown AIDS have an average
incubation period estimated variously at 35–47 months [88], 66 months [3], and as
high as 96 months [81].” This estimate is continually being revised as information
and experience accumulate. However, even the most conservative estimate suggests
that it may be reasonable to approximate the infectious period by the incubation
period; that is, to assume a negligible latent period. Pickering et al. [88] stress that
the ability to transmit HIV is not constant, as individuals are most infectious 3–16
months following exposure, and recent studies [58, 77, 94] report the existence of
two peaks of infectiousness, one taking place a few weeks after exposure and the
other before the onset of “full-blown” AIDS.

In the context of the dynamics of a homosexually-active homogeneously-mixing
population, the reproduction number is given by R0 = λC(T )D, where λ denotes
the probability of transmission per partner, C(T ) the mean number of sexual
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partners an average individual has per unit time when the population density is
T , and D the death-adjusted mean infective period (see [35]). Since HIV is a
slow disease, if R0 ≤ 1 it will die out while if R0 ≥ 1 it will persist in the
presence of a small number of infected/infective individuals. The mathematical
analysis and numerical simulations in [35] suggest that whenever the incubation
period distribution is exponential the reproduction number R0 is a global bifurcation
parameter (transcritical bifurcation), that is, as R0 crosses 1 a global transfer of
stability from the disease-free state to the endemic equilibrium takes place, and vice
versa. Local results do not depend on the distribution of times spent in the infective
categories (the survivorship functions). Keeping a suite of parameters fixed [35]
allowed for the comparison of the exponential incubation period distribution versus
a piecewise constant survivorship (individuals remain infective for a fixed length
of time). It was found that for “. . . some realistic parameters we can see (at least
in these cases) that the reproduction numbers corresponding to these two extreme
cases do not differ by more than 18% whenever the two distributions have the same
mean [35].”

The inclusion of heterogeneity via the introduction of a large number of
subgroups limited the forecasting capability of these models due to factors that
included increased levels of uncertainty (more parameters). The use of multi-
group models raised the expected modeling and parameter estimation challenges
[20, 21, 23, 24, 27, 28, 36–38, 41, 65, 66, 93]. In addition, the analyses of some of
these models generated novel dynamic behavior, questioning, possibly for the first
time in epidemiology, the centrality of the role of the basic reproduction number
in the identification and development of control, or education, or intervention
measures. For example, the natural asymmetry present in disease transmission as
a result of prevalent alternative modes of sexual engagement proved to be capable
of giving rise to the existence of multiple equilibria [33, 34, 67]; an unexpected
outcome at that time.

8.2 A Model with Exponential Waiting Times

A single homosexually-active population is divided into three classes. S denoting
the number of susceptible individuals, I infective individuals, and A former I -
individuals who have developed full-blown AIDS (see Fig. 8.9). We assume that all
HIV-infected individuals will eventually develop full-blown AIDS (unless they die
first from other causes). This, unfortunately, may be the most realistic as evidence
accumulates that AIDS is a progressive disease. Later, we will suggest a project to
develop a model under the assumption that some fraction of infected individuals
will escape progression to full-blown AIDS. Originally, a latent class (i.e., those
exposed individuals that are not yet infectious) was not included because it was
believed then that the time spent in that class is short. It is further assumed that
individuals who develop full-blown AIDS are no longer actively infective, that is,
that they have no sexual contacts; it is also assumed that infected individuals become
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infective immediately. Finally, it is assumed that infective individuals acquire AIDS
at the constant rate αI per unit time and become sexually inactive at the constant
rate α per unit time. Therefore, 1/(μ + αI ) gives the mean incubation period and
1/(μ + α) gives the mean sexual life expectancy.

The introduction of the model requires additional definitions. Λ will denote the
constant recruitment rate into the susceptible class (individuals who are sexually
active); μ the constant per-capita natural mortality rate; d the per-capita constant
disease-induced mortality due to AIDS. The function C(T ) models the mean
number of sexual partners an average individual has per unit time when the
population density is T ; λ (a constant) denotes the average sexual risk per infected
partner; λ is often thought as the product iφ [68], where φ is the average number
of contacts per sexual partner and i the conditional probability of infection from
a sexual contact when the latter is infected. Kingsley et al. [72] had presented (not
surprising) evidence that the probability of seroconversion (infection) increases with
the number of infected sexual partners. Hence, λC(T ) models the transmission rate
per unit time per infected partner when the size of the sexually active population
is T . Using the modeling framework published in [3, 4] with the help of Fig. 8.1,
we arrive at the following epidemiological model [35] for sexually transmitted HIV
under the assumption of exponential waiting times in the infection classes.

dS(t)

dt
= Λ − λC(T (t))

S(t)I (t)

T (t)
− μS(t)

dI (t)

dt
= λC(T (t))

S(t)I (t)

T (t)
− (αI + μ)I (t) (8.1)

dA(t)

dt
= αI I (t) − (α + μ)A(t)

where

T = I + S. (8.2)

The fraction I/T can be thought of as representing the fraction of contacts that
a susceptible individual has with a randomly selected infective individual. Here
λC(T )SI/T denotes the number of newly-infected individuals per unit time since

Λ

μ μ μ

αI

d
λC(T )S

I

T
AIS

Fig. 8.1 Flow diagram: single group model in the case when all infected people will progress to
AIDS
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individuals in classes A are sexually inactive. A plausible assumption for modeling
C(T ) would be to assume that it is approximately linear for small T approaching
a saturation level for large values of T [62]. Here, it is assumed that C(T ) is a
differentiable and increasing function of T (except when noted). Anderson et. al. [4]
observe that C(T ), the mean number of sexual partners per unit time, underestimates
the importance of highly active individuals and that consequently, modifications
should be made to this framework in order to properly account for their role.

The analysis of the system (8.1) found in [35] makes the following assumptions
concerning C(T ):

C(T ) > 0, C′(T ) ≥ 0, (8.3)

with prime denoting the derivative with respect to T . The dynamics of S and I are
independent of A (by construction). The system is well-posed, that is, if S(0) ≥ 0,
I (0) ≥ 0, A(0) ≥ 0 then a unique solution exists with S(t) ≥ 0, I (t) ≥ 0, A(t) ≥ 0
for t ≥ 0.

As it is the case with most of the epidemiological systems addressed in this book,
system (8.1) always has the disease-free equilibrium given by

(S, I, A) =
(
Λ

μ
, 0, 0

)

, (8.4)

and under certain assumptions it also supports a unique endemic equilibrium.
The stability of the disease-free equilibrium (8.4) is determined by the non-

dimensional ratio

R0 = λ

(
1

σI

)

C

(
Λ

μ

)

, (8.5)

that is, by the basic reproduction number. In the definition of R0, σI = αI + μ,
and R0 denotes the number of secondary infections generated by a single infective
individual in a population of susceptibles at a demographic steady state. R0 is given
by the product of the three factors (epidemiological parameters): λ (the probability
of transmission per partner), C(Λ/μ) (the mean number of sexual partners that an
average susceptible individual has per unit time when everybody in the population
is susceptible), and

D =
(

1

σI

)

. (8.6)

The death-adjusted mean infective period is D = DI with DI denoting the death-
adjusted mean infectious period 1/σI of the I class. The use of the dimensionless
ratio, R0 = λC(Λ/μ)D leads to the following result [35]:

Theorem 8.1 If R0 < 1 then the equilibrium (Λ/μ, 0, 0) of the system (8.1) is
globally asymptotically stable.
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That is, every solution of (8.1) (S(t), I (t), A(t)) with S(0) ≥ 0, I (0) ≥ 0,
A(0) ≥ 0 tends to (Λ/μ, 0, 0) as t → +∞. That is, the condition R0 ≤ 1 is
sufficient to guarantee that the disease will eventually die out in this population.

An endemic equilibrium (S∗, I ∗, A∗) of (8.1) satisfies

Λ =
[
Λ − μS∗

σI

− μ

]

S∗, I ∗ = Λ − μS∗

αI + μ
, A∗ = αI

αI + μ
I ∗.

In [35] it has also been established (following some of the same arguments used in
other chapters) that:

Theorem 8.2 If R0 > 1, there is a unique endemic equilibrium (S∗, I ∗, A∗),
which is locally asymptotically stable, and the disease-free state (Λ/μ, 0, 0) is
unstable.

We can summarize the situation (full details of all proofs are in [35]) as follows:
The disease-free state of system (8.1) is globally asymptotically stable when R0 > 1
and unstable if R0 > 1. When R0 > 1, this system has a unique locally
asymptotically stable endemic equilibrium. There is a transfer of stability to the
endemic state as R0 crosses one. Further, when R0 > 1 it was shown, as one would
expect, that the endemic equilibrium is also globally asymptotically stable.

The reproduction number (R0) increases proportionately with the transmission
probability and the average number of sexual partners; it may also increase in
proportion to the rate of recruitment of individuals to the susceptible class through
C(T ). R0 is an increasing function of the mean infective period D and may be a
decreasing function of the mortality rate (depending on the functional expression
for C(T )).

8.3 An HIV Model with Arbitrary Incubation Period
Distributions

The use of exponential waiting distributions in the I class corresponds to the
requirement that the per-capita removal rate from the I class (by the development
of full-blown AIDS symptoms) into the A class is constant. It would be clearly
an improvement in the model of Sect. 8.2 if we were to move from constant to
variable removal rates and this is what we do in this section (the ideas follow
those in [19, 35]). Hence, it is still assumed that individuals become immediately
infective (that is, we continue to neglect the latent period) and continue to divide the
at risk population into the three classes: S, I , and A. The parameters λ = iφ, Λ,
μ, d, and p have the same meaning as in Sect. 8.2; however, the removal rates are
modified through the introduction of the function PI (s) representing the proportion
of individuals who become I−infective at time t and that, if alive, are still infective
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at time t +s (survive as infective). The survivorship function PI is non-negative and
non-increasing, and PI (0) = 1. It is further assumed that

∫ ∞

0
PI (s)ds < ∞,

and thus, −ṖI (x) is the rate of removal of individuals from the class I into the class
A, x time units after infection.

The number of new infections occurring at time x is λC(T (x)S(x)I (x)/T (x)

where we have kept the meaning of C(T ), I , and T as in Sect. 8.2. The rate of
change in the susceptible class is given now by the expression:

dS(t)

dt
= Λ − λC(T (t))S(t)

I (t)

T (t)
− μS(t), (8.7)

with
∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(t−x)PI (t − x)dx

representing the number of individuals who have been infected from time 0 to t and
are still in class I . The discount factor exp(−μ(t − x)) takes into account removals
due to deaths by natural causes (not HIV). Hence, if I0(t) denotes individuals in
class I at time t = 0 that are still infective at time t then the total number of
infectives at time t is given by

I (t) = I0(t) +
∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(t−x)PI (t − x)dx, (8.8)

where I0(t) is assumed (for biological and mathematical reasons) to have compact
support (vanishing for large enough t).

The expression for A(t) turns out to be the sum of three terms: A0e
−(μ+d)t , where

A0 = A(0), representing individuals who had full-blown AIDS at time zero and are
still alive; A0(t) representing individuals initially in class I who moved into class
A and are still alive at time t ; and those who joined the I class after time t = 0 (see
below). We assume that A0(t) approaches zero as t approaches infinity. The term
representing infected individuals “born” after time t = 0 is given by

∫ τ

0

{∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(τ−x)[−ṖI (τ − x)e−(μ+d)(t−τ)]dx

}

dτ,

where −ṖI (τ − x), denotes the rate of removal from the class I at time τ or (τ − x)

units after infection. Therefore

A(t) =p

∫ τ

0

{∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(t−x)[−ṖA(τ − x)e−(t−τ)]dx

}

dτ

+ A0e
−(μ+d)t + A0(t). (8.9)
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The model given by equations (8.7) is a system of nonlinear integral equations.
The standard results on well-posedness for these systems, as found in [82] guarantee
the existence and uniqueness of solutions and their continuous dependence on
parameters. The proof of positivity is given in [32].

The basic reproduction number R0) of the system (8.7) is given by

R0 = λC

(
Λ

μ

)∫ ∞

0
PI (x)e

−μxdx, (8.10)

where
∫ ∞

0
PI (x)e

−μxdx,

is the death-adjusted mean infective period, D. If PI (x) = e−αI x then (8.10) reduces
to (8.5). We also observe that as before

DI =
∫ ∞

0
PI (s)e

−μsds

denotes the mean infective periods of the class I .
System (8.7) with I0(t) = 0 always has the equilibrium

(S, I ) =
(
Λ

μ
, 0

)

, (8.11)

but no other constant solutions. However, since I0(t) must be zero for large t , one
would expect, under appropriate assumptions, that (Λ/μ, 0) will be an attractor or
“asymptotic equilibrium” as t → +∞. The following results have been shown in
[32, 35].

Theorem 8.3 The infection-free state (Λ/μ, 0) of the limiting system (8.7) is a
global attractor; that is, limt→+∞(S(t), I (t)) = (Λ/μ, 0) for any positive solution
of system (8.7) as long as R0 ≤ 1.

Theorem 8.4 The infection-free state of system (8.7) is unstable when R0 > 1 and
there exists a constant W ∗ > 0, such that, any positive solution (S(t), I (t)) of (8.7)
satisfies lim supt→+∞ I (t) ≥ W ∗.

In other words, if R0 > 1 the disease-free state (8.4) cannot be an attractor of any
positive solution. That is, every solution has at least approximately W ∗ infectives
(this W ∗ is the same as that in the statement of Theorem 8.5 below) for a sequence
of times t tending to +∞ and if S(t), I (t) approach nonzero constants as t → +∞,
when R0 > 1 then the results in [82] guarantee that these constants must satisfy
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the limiting system associated with (8.7), which is given by the following set of
equations:

dS

dt
= Λ − λC(T (t))S(t)

I (t)

T (t)
− μS(t) (8.12)

I (t) =
∫ t

0
λC(T (x))S(x)

I (x)

T (x)
e−μ(t−x)PI (t − x)dx.

The limiting system (8.12) is an autonomous system for which we have
established the following result:

Theorem 8.5 If R0 > 1 the limiting system (8.12) has a unique positive equilib-
rium S∗, I ∗. If in addition (d/dT )(C(T )/T ) ≤ 0, then this endemic equilibrium is
locally asymptotic.

Theorem 8.5 indicates that there is a switch of stability from (Λ/μ, 0) to (S∗, I ∗)
as R0 crosses 1. We also conjecture but have not proved that the asymptotic
dynamics of system (8.7) and the limiting system (8.12) agree. An alternative
approach can be found in [61]. The proofs of these results can be found in [35].

8.4 An Age of Infection Model

The model presented here is developed in [103]. We consider a homogeneously-
mixing male homosexual population with infected members stratified by infection
age (time since having been infected). We divide the population into three com-
partments: S (uninfected, but susceptible), I (HIV infected but with minimal or no
symptoms), and A (fully developed AIDS). We assume members of the class A are
no longer sexually active, and we let T = S + I be the size of the sexually active
population.

We let t denote time and τ denote age of infection, and we stratify the infected
population by writing

I (t) =
∫ ∞

0
i(t, τ )dτ,

where i(t, τ ) denotes the infection age density at time t . We assume:

• the mean number of sexual contacts per individual in unit time is a,
• there is a mean transmission rate λ(τ) at which a typical susceptible individual

contracts the infection by contact with an infected individual of infection age τ ,
• there is a rate α(τ) of leaving the sexually active population (because of

progression to AIDS) that depends on the age of infection,
• there is a constant rate of recruitment Λ into the sexually active population,
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• there is a constant rate μ of departure of uninfected members from the sexually
active population,

• there is a constant death rate ν from full-blown AIDS.

Under these assumptions, the fraction of members remaining in the class I τ time
units after having been infected is

P(τ) = e−μτ−∫ τ
0 α(σ)dσ .

Then

i(t, τ ) = i(t − τ, 0)P (τ).

We define the total infectivity at time t ,

W(t) = W0(t) +
∫ t

0
λ(τ)i(t, τ )dτ = W0(t) +

∫ t

0
λ(τ)i(t − τ, 0)P (τ)dτ,

where W0(t) is the infectivity at time t of those individuals who were infected at
time t = 0. Then the rate of new infections in unit time is

B(t) = i(t, 0) = a
S(t)

T (t)
W(t),

and

W(t) = W0(t) +
∫ t

0
λ(τ)P (τ)B(t − τ)dτ.

We will take a to be constant, but one could assume more generally that a is a
function of the total sexually active population size T .

These assumptions lead to the model

S′(t) = Λ − B(t) − μS(t)

W(t) = W0(t) +
∫ t

0
λ(τ)P (τ)B(t − τ)dτ (8.13)

B(t) = a
S(t)

T (t)
W(t)

I (t) = I0(t) +
∫ t

0
B(t − τ)P (τ)dτ.
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Since we wish to study equilibria and their stability, we consider the limit system
of (8.13), namely

S′(t) = Λ − B(t) − μS(t)

W(t) =
∫ ∞

0
λ(τ)P (τ)B(t − τ)dτ (8.14)

B(t) = a
S(t)

T (t)
W(t)

I (t) =
∫ ∞

0
B(t − τ)P (τ)dτ.

In order to obtain an expression for the number of active AIDS cases, not part
of the model since individuals in the class A are assumed not to have any further
sexual contacts, but included because it provides a relation that may be compared
with data, we differentiate the equation

I (t) =
∫ t

0
B(s)P (t − s)ds

of (8.14), using

P ′(u) = −[μ + α(u)]P(u).

We obtain

I ′(t) = B(t) − μI (t) −
∫ t

0
B(s)α(t − s)P (t − s)ds.

The input to the AIDS class A is

∫ t

0
B(s)α(t − s)P (t − s)ds.

Thus the number of active AIDS cases is given by

A′(t) =
∫ ∞

0
α(t − s)P (t − s)B(s)ds − νA(t).

Analysis of the model (8.14) would be considerably simpler if we had assumed
mass action incidence rather than standard incidence, because use of standard
incidence brings T (t) = S(t)+I (t) into the model. However, mass action incidence
is much less plausible for sexual transmission models than standard incidence. For
the model it is not difficult to show that the basic reproduction number is given by

R0 = a

∫ ∞

0
λ(τ)P (τ)dτ,
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and that there is a disease-free equilibrium S = Λ/μ, I + B = W = 0 which
is asymptotically stable if R0 < 1. Calculation of the endemic equilibrium is
more difficult, but it is possible to show that there is an endemic equilibrium that
is asymptotically stable at least for values of R0 larger than 1 but close to 1. For
larger values of R0 the endemic equilibrium may be unstable, and there may be a
Hopf bifurcation [64] and sustained oscillatory solutions of the model.

8.5 *HIV and Tuberculosis: Dynamics of Coinfections

HIV diminishes the ability of the immune system to respond to invasions by
infectious agents such as M. tuberculosis. Furthermore, as HIV infection progresses,
immunity often declines with patients becoming more susceptible to typical or rare
infections. In wealthier societies HIV and TB treatments are common; these drugs
have altered significantly the joint dynamics of TB and HIV.

The modeling literature on the independent dynamics of HIV or TB is quite
extensive. TB efforts include, for example, [9, 18, 40, 42, 43, 50, 51, 89] while
HIV/AIDS include [31, 63, 80, 103] to name a few more. TB/HIV coinfection
modeling efforts have also been published. Kirschner [73] developed an immuno-
logical model describing HIV-1 and TB coinfections within a host. Naresh et al. [86]
introduced a model involving a population sub-divided into four epidemiological
classes: susceptible, TB infective, HIV infective, and those with AIDS; a model
focusing on the transmission dynamics of HIV and treatable TB in variable size
populations. Schulzer et al. [101] looked at HIV/TB joint dynamics using actuarial
methods. West and Thompson [105] introduced models for the joint dynamics of
HIV and TB that were explored via numerical simulations; their main goal was to
estimate parameters and use their estimates to forecast the future transmission of
TB in the United States. Porco et al. [90] looked, using a discrete event simulation
model, at the impact of HIV on the probability and expected severity of TB
outbreaks. Additional efforts include those in [91, 98].

A system of differential equations is used in [92] to model the joint dynamics
of TB and HIV. The total population is divided into the following epidemiological
subgroups: S, susceptible; L, latent with TB; I , infectious with TB; T , successfully
treated with TB; J1, HIV infectious; J2, HIV infectious and TB latent; J3, infectious
with both TB and HIV; and A, “full-blown” AIDS. The compartmental diagram in
Fig. 8.2 illustrates the flow of individuals as they face the possibility of acquiring
specific-disease infections or even coinfections.

The TB/HIV model is given by the following systems of eight ordinary differen-
tial equations:
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Fig. 8.2 Transition diagram between classes for the dynamics of TB and HIV coinfections. The
force of infection for TB is λT = c(I +J3)/N , and the force of infection for HIV is λH = σJ ∗/R,
where J ∗ = J1 + J2 + J3

TB :

dS

dt
= Λ − cS

I + J3

N
− σS

J ∗

R
− μS

dL

dt
= c(S + T )

I + J3

N
− σL

J ∗

R
− (μ + k + r1)L

dI

dt
= kL − (μ + d + r2)I

dT

dt
= r1L + r2I − cT

I + J3

N
− σT

J ∗

R
− μT,

(8.15a)

HIV :

dJ1

dt
= σ(S + T )

J ∗

R
− cJ1

I + J3

N
− (α1 + μ)J1 + r∗J2

dJ2

dt
= σL

J ∗

R
+ cJ1

I + J3

N
− (α2 + μ + k∗ + r∗)J2

dJ3

dt
= k∗J2 − (α3 + μ + d∗)J3

dA

dt
= α1J1 + α2J2 + α3J3 − (μ + f )A,

(8.15b)
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Table 8.1 Definition of parameters and state variables used in the TB/HIV model (8.15)

Symbol Definition

N Total population

R Total active population (= N − I − J3 − A = S + L + T + J1 + J2)

J ∗ Individuals with HIV who have not developed AIDS (= J1 + J2 + J3)

Λ Constant recruitment rate

c Transmission rate of TB

σ Transmission rate of HIV

μ Per-capita natural death rate

k Per-capita TB progression rate for individuals not infected with HIV

k∗ Per-capita TB progression rate for individuals infected also with HIV

d Per-capita TB-induced death rate

d∗ Per-capita HIV-induced death rate

f Per-capita AIDS-induced death rate

r1 Per-capita latent TB treatment rate for individuals with no HIV

r2 Per-capita active TB treatment rate for individuals with no HIV

r∗ Per-capita latent TB treatment rate for individuals with also HIV

αi Per-capita AIDS progression rate for individuals in the Ji (i = 1, 2, 3)

where

N = S + L + I + T + J1 + J2 + J3 + A,

R = N − I − J3 − A = S + L + T + J1 + J2,

J ∗ = J1 + J2 + J3.

(8.16)

The variable R here collects non-infectious “circulating” individuals, that is,
those who do not have active TB or AIDS. Definitions of model parameters are
collected in Table 8.1.

The modeling assumptions include: homogenous mixing; HIV positive and TB
infective (J3) showing severe HIV symptoms cannot be effectively treated for active
TB; TB infections are only acquired through contacts with TB infectious individuals
(I and J3); and individuals may acquire HIV infections only through contacts with
HIV infectious individuals (J ∗ group). Further, the “probability” of infection per
contact is assumed to be the same for T and S classes (β and λ). Furthermore, I
(TB infectious), J3 (TB and HIV infectious), and A (AIDS) individuals are too ill to
remain sexually active and, consequently, they do not transmit HIV through sexual
activity. Hence, R ≡ N − I − J3 −A and the HIV incidence is modeled by σJ ∗/R
(see [29, 74, 108]).

The probability of having a contact with HIV infectious individuals is modeled as
J ∗/R and the number of new HIV infections in a unit time is therefore σSJ ∗/R [IV
drug injections, vertically-transmitted HIV (children of birth), or HIV transmission
via breast feeding, forms of HIV transmission are ignored]. The most drastic in
this model comes from the incorporation of sexual transmission as an indirect risk
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factor, a function of HIV prevalence. Further, demographic changes are ignored
or alternatively, it is assumed that the time scale under consideration is such that
changes in population size are not too significant.

The TB control reproduction number (under treatment) is given by the expression

R1 = ck

(μ + k + r1)(μ + d + r2)
(8.17)

while the HIV reproduction number is

R2 = σ

α1 + μ
. (8.18)

R1 is the product of the average number of susceptible infected by one TB
infective individual over its effective infective period, c/(μ+d+r2), and the fraction
of the population that survives the TB latent period, k/(μ + k + r1). R1 denotes
the number of secondary TB infectious cases generated by a typical TB infective
individual during its effective infective period if introduced in a population of mostly
TB-susceptible individuals, in a population where TB treatment is accessible. R2 is
the HIV reproduction number in a TB-free society, the number of secondary HIV
infections produced by an HIV infectious (but not TB-infected) individual during
its infectious period if introduced in a population of HIV-susceptible individuals (in
a TB-free world). The reproduction numbers do not involve the parameters tied in
to the dynamics of TB-HIV coinfection, that is, k∗ and α3.

Consequently, the reproduction number for system (8.15) under TB treatment is
given by

R = max{R1,R2}.

We have shown in [92] that TB and HIV will die out if R < 1 while either or both
diseases may become endemic if R > 1.

In [92], it was shown that system (8.15) is well-posed, that is, solutions that start
in this octant where all the variables are non-negative stay there. It was also shown
that system (8.15) has three possible non-negative boundary equilibria: the disease-
free equilibrium (DFE) or E0, the TB-only (HIV-free) equilibrium or ET , and the
HIV-only (TB-free) equilibrium or EH . The components of E0 are

S0 = Λ

μ
, L0 = I0 = T0 = J01 = J02 = J03 = A0 = 0.

The ET components are

ST = Λ

μ + cIT /NT

, LT = IT

R1b
, IT = NT (R1 − 1)

R1 + R1a
, TT = (r1L + r2IT )ST

Λ
,

J1T = J2T = J3T = AT = 0,
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where

NT = Λ

μ + d(R1 − 1)/(R1 + R1a)
,

with

R1a = c

μ + k + r1
, R1b = k

μ + d + r2
. (8.19)

The EH components are

SH = Λ

μR2 + α1(R2 − 1)
, LH = IH = TH = 0,

J1H = (R2 − 1)SH , J2H = J3H = 0, AH = α1J1H

μ + f
.

The following results were established in [92]:

Theorem 8.6 The disease-free equilibrium E0 is locally asymptotically stable if
R < 1, and it is unstable if R > 1.

Theorem 8.7 The HIV-free equilibrium ET is locally asymptotically stable if R1 >

1 and R2 < 1.

We observe that EH may not be locally asymptotically stable under the con-
ditions R1 < 1 and R2 > 1. Our numerical studies show that when R1 < 1
and R2 > 1 it is possible that the equilibrium EH is unstable and TB can coexist
with HIV [92]. Further, whenever both reproduction numbers are greater than 1,
that is, R1 > 1 and R2 > 1, ET and EH both exist and E0 is unstable. Our
numerical studies show that all three boundary equilibria are unstable and solutions
converge to an interior equilibrium point. Furthermore, partial analytical results and
numerical simulations support the existence of an interior equilibrium Ê when both
reproduction numbers, R1 and R2, are greater than 1. The numerical simulations
of the system further suggest that the interior equilibrium is LAS in most cases
although the possibility of stable periodic solutions seems likely [92].

When both reproduction numbers are greater than 1, i.e., R1 > 1 and R2 > 1,
ET and EH both exist and E0 is unstable. In this case, the numerical simulations of
the model show that it is possible that all three boundary equilibria are unstable and
solutions converge to an interior equilibrium point. Although explicit expressions
for an interior equilibrium are very difficult to compute analytically, we have
managed to obtain some relationships that can be used to determine the existence of
an interior equilibrium.
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Let Ê = (Ŝ, L̂, Î , Ĵ1, Ĵ2, Ĵ3, Â) denote an interior equilibrium with all compo-
nents positive, and let x and y denote the fractions:

x = Î + Ĵ3

N̂
> 0 and y = Ĵ ∗

R̂
> 0. (8.20)

Note that x and y correspond to the levels of disease prevalence for TB and HIV,
respectively.

By setting the right-hand-side of the system (8.15) equal to zero we can obtain
the following two equations for x and y:

x = xF(x, y),

y = yG(x, y),
(8.21)

where

F(x, y) = c

N̂

[ kŜ

(μ + d + r2)B1
+ k∗

Δ2Δ3

( Ŝσy

B1
+ Ĵ1

)]
,

G(x, y) = σ

R̂

{ 1

B2

(
Ŝ + T̂ + r∗L̂

Δ2

)(
1 + cx

Δ2

[
1 + k∗

Δ3

])
+ L̂

Δ2

[
1 + k∗

Δ3

]}
,

(8.22)

in which

Ŝ = Λ

μ + cx + σy
, L̂ = cΛ

B1(μ + cx + σy)
x, Î = k

μ + d + r2
L̂,

T̂ = r1 + r2k
μ+d+r2

cx + σy + μ
L̂, Ĵ1 =

(
Ŝ + T̂ + r∗L̂

Δ2

)
σy

B2
, Ĵ2 = L̂σy + Ĵ1cx

Δ2
,

Ĵ3 = k∗(L̂σy + Ĵ1cx)

Δ2Δ3
, Â = 1

μ + f

(
α1Ĵ1 + α2Ĵ2 + α3Ĵ3

)
,

(8.23)

and

Δ2 = α2 + μ + k∗ + r∗,
Δ3 = α3 + μ + d,

B1 = σy + μ + k + r1 − cx(r1 + r2k
μ+d+r2

)

cx + σy + μ

≥ σy + μ + k + r1 − (r1 + k)

> 0,

B2 = cx(α1 + μ + k∗)
Δ2

+ α1 + μ.

(8.24)
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Fig. 8.3 Contour plots showing the intersection points of the curves F(x, y) = 1 (dashed curve)
and G(x, y) = 1 (solid curve) for various values of R2 with R1 being fixed at 1.5 (c = 12). The
values of R2 in (A)–(C) are 3.6, 4.6, and 7, respectively (corresponding to λσ = 0.41, 0.52,
and 0.8). The axes are x = (I + J3)/N and y = J ∗/R, representing the factors in the

incidence functions for TB and HIV, respectively. The intersection (x̂, ŷ) = (
Î+Ĵ3

N̂
, Ĵ ∗

R̂
) determines

components of the interior equilibrium Ê if 0 < x̂ < 1 and ŷ > 0

Note that x > 0 and y > 0, Eq. (8.21) reduces to

F(x, y) = 1, G(x, y) = 1, (8.25)

and an intersection of the two curves determined by Eq. (8.25), denoted by x̂ and
ŷ, corresponds to a coexistence equilibrium of TB and HIV. We can consider x̂ as
a measure for the TB prevalence. The intersection property of the two curves given
by F(x, y) = 1 and G(x, y) = 1 are illustrated in Fig. 8.3.

Figure 8.3 plots the intersection point (x̂, ŷ) of the contour plots of F(x, y) = 1
(dashed curve) and G(x, y) = 1 (solid curve) for several values of R2 with R1
being fixed (R1 = 1.5 corresponding to c = 12). Again, an interior equilibrium
Ê can be determined by x̂ and ŷ if 0 < x̂ < 1 and ŷ > 0. This figure illustrates
how x̂ changes with increasing R2. We have chosen k∗ = 5k (i.e., the progression
rate to active TB in individuals with both latent TB and HIV is five times higher
than that in individuals with latent TB only), α3 = 5α1 (i.e., the progression to
AIDS in individuals with active TB is five times higher than that in individuals
without TB). For this set of parameter values, the values of R2 in Fig. 8.3A–C
are 3.6, 4.6, and 7, respectively. It shows that when R2 increases from 3.8 to
4.6, the F(x, y) = 1 curve does not change much while the right-end of the
G(x, y) = 1 curve moves to the right of the F = 1 curve. This leads to an
intersection point of the two curves (see (A) and (B)), which corresponds to an
interior equilibrium Ê. When R2 is further increased to 7, the G(x, y) = 1 curve
changes from decreasing to increasing (see (C)). Although there is still a unique
intersection point, the y = Ĵ ∗/R̂ component may become greater than 1. This is still
biologically feasible as J/R can exceed 1 (see (C)). The intersection points in (A)-

(C) are (x̂, ŷ) = (
Î+Ĵ3

N̂
, Ĵ ∗

R̂
) = (0.15, 0.07), (0.25, 0.4), (0.33, 1.25), respectively.

We observe that x̂ increases with R2 from 0.15 to 0.33. This implies that the
prevalence of HIV may have significant impact on the infection level of TB.
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Fig. 8.4 Time plots of prevalence of TB and HIV. The TB curves (solid) represent the fraction of
active TB ((I + J3)/N ), and the HIV curve (dashed) represents the activity-adjusted fraction of
HIV (J ∗/R)

Figure 8.4 examines changes in infection levels over time. It plots the time series
of [I (t) + J3(t)]/N(t) (fraction of active TB) and J ∗(t)/R(t) (activity-adjusted
fraction of HIV infectious) for fixed R1 and various R2. The top two figures are for
the case when the reproduction number for TB is less than 1 (R1 = 0.96 < 1 or
c = 7.5), and the reproduction number for HIV is R2 = 0.9 < 1 (or σ = 0.105) in
(a) and R2 = 1.3 > 1 (or σ = 0.15) in (a). It illustrates in Fig. 8.4a that TB cannot
persist if R2 < 1. However, if R2 > 1 then it is possible that TB can become
prevalent even if R1 < 1 (see Fig. 8.4b). The bottom two figures are for the case
when the reproduction number of TB is greater than 1 (R1 = 1.2, or c = 9.1), and
R2 = 2 (or σ = 0.23) in (c) and R2 = 3 (or σ = 0.34) in (d). It demonstrates that
an increase in R2 will lead to an increase in the level of TB prevalence as well. All
other parameters are the same as in Fig. 8.3 except that k∗ = 3k.

Another way to look at the role of HIV on TB dynamics is to compare the
outcomes between the cases where HIV is absent or present (instead of varying
the value of R2). This result is presented in Fig. 8.5. The reproduction numbers are
identical in Fig. 8.5A, B: R1 = 0.98 < 1 (c = 7.7) and R2 = 1.2 > 1 (σ = 0.137).
Other parameter values are the same as in Fig. 8.4 except that k∗ = k. The variables
plotted are (I + J2)/N and J ∗/N . Figure 8.5A is for the case when HIV is absent
by letting J ∗(0) = 0. It shows that TB cannot persist. In Fig. 8.5B, the initial value
of HIV is positive (i.e., J ∗(0) > 0). It shows that both TB and HIV coexist.

Examples of other mathematical models on dynamics of TB/HIV coinfections
include [73, 86, 90, 91, 101].
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Fig. 8.5 For the plot in (A), HIV is absent by letting J ∗(0) = 0. It shows that TB cannot persist.
In (B), the initial value of HIV is positive (i.e., J ∗(0) > 0). It shows that both TB and HIV will
coexist

8.6 *Modeling the Synergy Between HIV and HSV-2

The example presented in this section considers the synergy between HIV and
HSV-2. One of the questions that is of interest for public health officials is how
treatment of HSV-2 may influence the prevalence and control of HIV.

Several mathematical models have been developed to investigate the transmission
dynamics of HSV-2 (e.g., [17, 53, 87, 100] and references therein) and HIV (e.g.,
[12–14, 44, 84, 85] and references therein). To our knowledge, however, there
have only been a few modeling studies of the epidemiological synergy between
HSV-2 and HIV. Using the individual-based model STDSIM, White et al. [106]
studied the population-level effect of HSV-2 therapy on the incidence of HIV in
sub-Saharan Africa. Foss et al. [54] developed a dynamic HSV/HIV model to
estimate the contribution of HSV-2 to HIV transmission from clients to female sex
workers in southern India and the maximum potential impact of “perfect” HSV-2
suppressive therapy on HIV incidence. Blower and Ma [16] used a transmission
model that specifies the dynamics of HIV and HSV-2 to predict the effect of a high-
prevalence HSV-2 epidemic on HIV incidence. Abu-Raddad et al. [1] constructed
a deterministic compartmental model to describe HIV and HSV-2 transmission
dynamics and their interaction. However, the model studied in [16] does not
include heterogeneity in sexual activity and assumes that individuals mix randomly,
whereupon each infective individual is equally likely to spread the disease to all
others. Also, gender is not incorporated into the models studied by either [16] or
[1]. The models in [54, 106] incorporate various heterogeneities, including gender
and/or age, but not sexual activity, and only numerical simulations are conducted.

Gender may be an important factor in modeling the epidemiological synergy
between HSV-2 and HIV as shown in the meta-analysis of several studies that
male parameters differ from the corresponding female parameters. For example, the
male-to-female HSV-2 transmission probability is greater than the female-to-male
transmission probability [45, 104], and thus the risk of female-to-male transmission
per sex act is less than the risk of male-to-female transmission [84, 85]. Thus, to fully
understand the epidemiological synergy between HSV-2 and HIV and to investigate
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measures for controlling these sexually transmitted diseases, it is important to
analyze models that consider heterogeneities in sexual activity, mixing within and
between different activity groups and genders.

In [2, 52], a model incorporating both HIV and HSV-2 infections was analyzed.
The model considers one male population and multiple female populations based
on their activity levels with variable male preferences to different female groups.
Results from the model demonstrate that the heterogeneity in activity levels and
male preference in mixing may play an important role in model outcomes. More
details of the model analysis are presented below.

Consider a population consisting of sexually active female and male individuals.
Consider the case in which the female population is divided into subgroups based
on levels of sexual activity (e.g., number of partners) with a low-risk group (e.g.,
members of the general population) and a high-risk group (e.g., sex workers), while
all individuals in the male population have the same activity level. These sub-
populations are labeled by the subscripts f1, f2,m, which denote low- and high-risk
females and males, respectively. Let Ni denote the population sizes of groups i,
where i = m, f1, f2. The population in each group is assumed to be homogeneous
in the sense that individuals have the same infectious period, duration of immunity,
contact rate, and so on. We divide the progression of HIV into two stages, acute
infection and AIDS. Similarly, HSV-2 is represented by acute and latent infection
stages. Because individuals infected with HIV alone or HSV-2 alone can become
coinfected with both HIV and HSV-2, each group i (i = m, f1, f2) is further divided
into seven epidemiological classes or subgroups: susceptible, infected with acute
HSV-2 only (Ai), infected with latent HSV-2 only (Li), infected with HIV only
(Hi), infected with HIV and acute HSV-2 (Pi), infected with HIV and latent HSV-2
(Qi) and AIDS (Di). A transition diagram between these epidemiological classes
within group i is depicted in Fig. 8.6.

Fig. 8.6 Transition diagram of the coupled dynamics between HIV and HSV-2. The top row
includes classes infected with HSV-2 only, and the bottom row includes classes infected with either
HIV only or coinfected with HIV and HSV-2
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For each sub-population i (i = f1, f2,m) there is a per-capita recruitment rate
μi into the susceptible group. For all classes there is a constant per-capita rate μi

of exiting the sexually active population. Thus, the total population Ni in group i

remains constant for all time. Susceptible people in group i acquire infection with
HSV-2 or HIV at the rate λA

i (t) or λH
i (t), respectively. Upon being infected with

HSV-2, people in group i enter the class Ai (infected with acute HSV-2 only).
These individuals become latent Li at the constant rate ωA

i (an average duration
in Ai is 1/ωA

i ). Following an appropriate stimulus in individuals with latent HSV-
2, reactivation may occur [17]. We assume that people with latent HSV-2 only
reactivate at the rate γ L

i . Individuals with HIV are assumed to develop AIDS at
the rate dH

i . Let δAi and δLi denote the enhanced susceptibility to HIV infection
for individuals in group i with acute or latent HSV-2 infection. Classes Pi and Qi

are similar to Ai and Li , respectively, except that Ai and Li denote individuals
with HSV-2 only whereas Pi and Qi denote individuals with coinfections. The
difference in stage durations is indicated by the superscripts (e.g., 1/γ L

i for the

L class and 1/γQ
i for the Q class). Finally, the antiviral treatment rates for the

Ai and Pi individuals are denoted by θA
i and θ

Q
i , respectively. Because antiviral

medications will also suppress reactivation of latent HSV-2, we assume that the
reactivation rate of people with latent HSV-2 γ L

i (or γQ
i ) is a decreasing function of

θA
i (or θP

i ), denoted by γ L
i (θA

i ) (or γQ
i (θP

i )). The sources for most of the parameter
values are from [1, 53] (see [52] for more details).

Based on Fig. 8.6, Alvey et al. [2] studied the following model:

dSi

dt
= μiNi − (λA

i (t) + λH
i (t))Si − μiSi,

dAi

dt
= λA

i (t)Si + γ L
i (θA

i )Li − δAi λH
i (t)Ai − (ωA

i + θA
i + μi)Ai,

dLi

dt
= (ωA

i + θA
i )Ai − δLi λ

H
i (t)Li − (γ L

i (θA
i ) + μi)Li,

dHi

dt
= λH

i (t)Si − δHi λA
i (t)Hi − (μi + dH

i )Hi,

dPi

dt
= δAi λH

i (t)Ai + δHi λA
i (t)Hi + γ

Q
i (θP

i )Qi − (ωP
i + θP

i + μi + dP
i )Pi,

dQi

dt
= δLi λ

H
i (t)Li + (ωP

i + θP
i )Pi − (γ

Q
i (θP

i ) + μi + d
Q
i )Qi, i = m, f1, f2,

(8.26)

where the functions λ
j
i (t) represent the forces of infection given below. Let bi

(i = m, f1, f2) be the rate at which individuals in group i acquire new sexual
partners (also referred to as contact rates), and let cj denote the probability that
a male chooses a female partner in group j (j = f1, f2). Then c1 + c2 = 1. For
ease of notation, let

c1 = c, c2 = 1 − c.
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Overall, the number of female partners in groups j (j = f1, f2) that males
acquire should be equal to the number of male partners that females in groups j

acquire. These observations lead to the following balance conditions:

bmcNm = bf1Nf1 , bm(1 − c)Nm = bf2Nf2 . (8.27)

To ensure that constraints in (8.27) are satisfied, we assume in numerical simulations
that bm and c are fixed constants with bf1 and bf2 being varied according to Nm,Nf1 ,
and Nf2 .

The force of infection functions can be expressed as

λH
m (t) =

2∑

i=1

bmciβ
H
fim

Hfi
+ δPfi

Pfi
+ δ

Q
fi
Qfi

Nfi

,

λH
fj
(t) = bfj

βH
mfj

Hm + δPmPm + δ
Q
mQm

Nm

, j = 1, 2,

λA
m(t) =

2∑

i=1

bmciβ
A
fim

Afi
+ σP

fi
Pfi

Nfi

,

λA
fj
(t) = bfj

βA
mfj

Am + σP
m Pm

Nm

, j = 1, 2,

(8.28)

where

Ni = Si + Ai + Li + Hi + Pi + Qi, i = m, f1, f2

denotes the total population size of group i. In (8.28), βH
im (βH

mi), i = f1, f2 are
the HIV transmission probabilities per partner between females infected with HIV
in group i and susceptible males (between males infected with HIV and susceptible
females in group i); βA

im (βA
mi), i = f1, f2 are the HSV-2 transmission probabilities

per partner between females infected with acute HSV-2 in group i and susceptible
males (between males infected with acute HSV-2 and susceptible females in group
i); δPi and δ

Q
i (i = m, f1, f2) are the enhanced HIV infectiousness of coinfected

individuals, and σP
i (i = m, f1, f2) are the enhanced HSV-2 infectiousness of

coinfected individuals.

8.6.1 Reproduction Numbers for Individual Diseases

For each of the two diseases, we can compute the reproduction number in the
absence of the other disease. Let RA

0 and RH
0 denote these reproduction numbers

for HSV-2 and HIV, respectively. Due to the loop between the symptomatic and
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asymptomatic stages of HSV-2, the derivation of analytical expression for RA
0 for

model (8.26) is not straightforward. A detailed derivation of the following formula
for RA

0 can be found in [2, 52]:

RA
0 =

√(
RA

mf1m

)2 +
(
RA

mf2m

)2
, (8.29)

where

RA
mfjm

=
√√
√
√

bfj
βA
mfj

ωA
m + θA

m + μm

· PA
m ·

bmcjβ
A
fjm

ωA
fj

+ θA
fj

+ μfj

· PA
fj
, j = 1, 2

with PA
i (i = m, f1, f2) representing the probability that an individual of group i is

in the acute stage (A), which is given by

PA
i =

(
ωA

i + θA
i + μi

)(
γ L
i (θA

i ) + μi

)

[
γ L
i (θA

i ) + ωA
i + θA

i + μi

]
μi

, i = m, f1, f2. (8.30)

The formulas for PA
i in (8.30) can be explained as follows. Let

p = ωA
i + θA

i

ωA
i + θA

i + μi

, q = γ L
i

γ L
i + μi

,

where p represents the probability that an individual moves from the acute stage
(A) to the latent stage (L), and q represents the probability that an individual moves
from L to A. Thus, the probability that an individual is in the acute stage within the
A � L loop is

∞∑

k=1

(pq)k =
(
ωA

i + θA
i + μi

)(
γ L
i + μi

)

(
γ L
i + ωA

i + θA
i + μi

)
μi

= PA
i .

Notice that in the formula for RA
0 the balance conditions in (8.27) have been used.

Other factors in RA
mfim

(i = 1, 2) also have clear biological interpretations:

• bfj
βA
mfj

is the number of new infections that a male will cause in females of
group j (j = 1, 2) per unit of time;

• bmcjβ
A
fjm

is the number of new infections that a female in group j (j = 1, 2)
will cause in males per unit of time;

• 1
ωA
i +θA

i +μi
(i = m, f1, f2) represents the mean time that an individual in group i

remains infected (i.e., in either A or L).
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Thus,
√

RA
mfjm

represents the average secondary HSV-2 male infections by one

male individual through females in group j (j = 1, 2) while in the infectious stage
(A) in a completely susceptible population. The square root is associated with the
fact that we need to consider both the male-to-female and female-to-male processes
to obtain the number of secondary infections. The overall reproduction number RA

0
is an average of RA

mfim
(i = 1, 2).

Let RH
0 denote the basic reproduction number for HIV in the absence of HSV-2.

Then

RH
0 =

√(
RH

mf1m

)2 +
(
RH

mf2m

)2
,

where

RH
mfjm

=
√√
√
√

bfj
βH
mfj

dH
m + μm

·
bmcjβ

H
fjm

dH
fj

+ μfj

, j = 1, 2.

The biological meanings of RH
mf1m

and RH
mf2m

can be explained in the similar way

as those of RA
mf1m

and RA
mf2m

. It is clear that RH
0 represents the average secondary

HIV male infections by one male individual (through both female groups) during
the whole HIV infective period in a completely susceptible population.

8.6.2 Invasion Reproduction Numbers

Let RH
A denote the invasion reproduction number for HIV in a population where

the HSV-2 infection is already established at the endemic equilibrium, which is
denoted by EA

∂ . The nonzero components of EA
∂ are S0

i , A
0
i , and L0

i , representing
the density of susceptible, acute HSV-2, and HSV-2 latent, respectively, in group i.
Let N0

i = S0
i + A0

i + L0
i . For ease of notation, let

λA0
m = bm

2∑

i=1

ciβ
A
fjm

A0
fj

N0
fj

, λA0
fj

= bfj
βA
mfj

A0
m

N0
m

, j = 1, 2

and

di =
(

1, δPi , δ
Q
i

)
, x0

i =
(
S0
i , δ

A
i A0

i , δ
L
i L

0
i

)T
, i = m, f1, f2.

Note that the system (8.26) has 9 infected variables with HIV (Hi, Pi,Qi, i =
m, f1, f2). Consider the HIV-free equilibrium EA

∂ of system (8.26). The matrices
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FH and V H (corresponding to the new infection and remaining transfer terms,
respectively) are given by

FH =

⎛

⎜
⎜
⎜
⎝

0 FH
f1m

FH
f2m

FH
mf1

0 0

FH
mf2

0 0

⎞

⎟
⎟
⎟
⎠

, V H =

⎛

⎜
⎜
⎜
⎝

V H
m 0 0

0 VH
f1

0

0 0 VH
f2

⎞

⎟
⎟
⎟
⎠

, (8.31)

where

FH
fjm

= bmcjβ
H
fjm

x0
m

N0
m

dfj
, FH

mfj
= bfj

βH
mfj

x0
fj

N0
fj

dm, j = 1, 2

and

VH
i =

⎛

⎜
⎜
⎜
⎝

(μi + dH
i + δHi λA0

i ) 0 0

−δHi λA0
i ωP

i + θP
i + μi + dP
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⎞
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⎠

,

(8.32)

for i = m, f1, f2. Then, the next generation matrix for HIV, denoted by KH , can be
expressed by

KH = FH (V H )−1

=

⎛

⎜
⎜
⎜
⎝

0 FH
f1m

(V H
f1

)−1 FH
f2m

(V H
f2

)−1

FH
mf1

(V H
m )−1 0 0

FH
mf2

(V H
m )−1 0 0

⎞

⎟
⎟
⎟
⎠

:= (
kij
)

9×9,
(8.33)

where the entries kij of the matrix KH can be found in the Appendix A of [52].
Noting that Rank(KH ) = 2 and that the sum of the diagonal elements in matrix

KH is zero, it follows from Vieta’s formulas that if the numbers of susceptible
people and those with acute and latent HSV-2 in group i are S0

i , A
0
i , L

0
i , respectively,

the reproduction number for HIV infection is given by

RH
A = RH

A (S0
i , A

0
i , L

0
i , 0, 0, 0) := ρ(KH ) = √−E2(KH )

=

√√
√
√
√

3∑

i=1

9∑

j=4

kij kji ,
(8.34)
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Fig. 8.7 Numerical solutions
of the system (8.26) for the
case when RA

0 > 1,RH
0 < 1,

and RH
A > 1. The dashed and

solid curves represent levels
of HIV infections with and
without HSV-2 present,
respectively. It shows that
even when the basic
reproduction number for HIV
RH

0 is less than 1, HIV can
still persist if the invasion
reproduction number RH

A is
greater than 1

where ρ(KH ) represents the spectral radius of the matrix KH and E2(KH ) is the
sum of all the 2 × 2 principal minors of matrix KH . It is shown in [52] that invasion
is possible if and only if RH

A > 1.
Similarly, an invasion reproduction number RA

H for HSV-2 to invade a population
in which HIV is present (see [52]). Detailed results on the existence and local
stability of the boundary equilibria can also be found in [52].

8.6.3 Influence of HSV-2 on the Dynamics of HIV

Figure 8.7 illustrates the result of numerical simulations showing how the joint
disease dynamics of HIV and HSV-2 may depend on the basic and invasion
reproduction numbers. It is for the case when enhancement of HIV by HSV-2 is
relatively strong with RA

0 > 1,RH
0 < 1, and RH

A > 1. It shows that while HIV
can invade and persist in the presence of HSV-2 (the dashed curve), it dies out in the
absence of HSV-2 (the solid curve), suggesting that HSV-2 infection can favor the
invasion of HIV.

8.7 An HIV Model with Vaccination

Blower et al. [15] studied model for HIV with live attenuated HIV vaccines
(LAHVs). Consider two viral strains, one wild strain and one vaccine strain.
Divide the total population into the following epidemiological classes: susceptible
individuals (S), unvaccinated individuals infected with the wild-type HIV (Iw) or
the vaccine strain (either by vaccination or by transmission) (Iv) or dually infected
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with both strains (Ivw), and individuals with AIDS (A). The model consists of the
following ordinary differential equations:

S′ = (1 − p)π − (cλv + cλW + μ)S,

I ′
v = pπ + cλvS − (1 − ψ)cλwIv − (νv + μ)Iv,

I ′
w = cλwS − (νw + μ)Iw,

I ′
vw = (1 − ψ)cλwIv − (νvw + μ)Ivw,

A′ = νwIw + νvIv + νvwIvw − (μA + μ)A,

(8.35)

where λv and λw are per-capita risks of infection with the vaccine and wild-type
strains, respectively, given by

λv = βv

Iv

NSA

, λw = βw

Iw + gIvw

NSA

,

and NSA = X + Iv + Iw + Ivw denotes the number of sexually active population.
Other parameters include: βv and βw are infection rates for vaccine and wild-
type strains, respectively, p is the fraction of new susceptibles vaccinated, π is the
number of new susceptibles that join the sexually active population per unit time,
c is the average rate of acquiring new sex partners, 1/μ is the average period of
acquisition of new sex partners, 1/μA is the average survival time with AIDS, ψ
denotes the degree of protection that the vaccine provides against infection with
the wild-type strain, ν is the progression rate to AIDS in individuals infected with
the LAHV strain (νv), the wild-type strain (νw), or both strains (νvw), 1/μA is the
average survival time from AIDS to death. The disease progression rates are related
by the expression νvw = δνw, where δ specifies the vaccine-induced degree of
reduction in the wild-type disease progression rate.

A time-dependent uncertainty analysis of model (8.35) can be used [15] to
predict the potential impact of LAHVs on the annual AIDS death rate, as illustrated
in Fig. 8.8. It shows the result of infection with the wild-type strain of HIV for
Zimbabwe (A) and Thailand (B), and the result of the LAHV strain for Zimbabwe
(C) and Thailand (D). Parameter values used include the following probability
density functions (pdfs): 1/μA (pdf: 9 months to 1 year to 18 months), βw (pdf: 0.05
to 0.1 to 0.2), βv = αβw where α (range of pdf: (0.001, 0.1)), νw (pdf: range from
50% progression to AIDS in 7.5 years to 50% progression in 10 years). Consider
a mass vaccination campaign (with follow-up programs) that would vaccinate
anywhere from 80% to 95% of susceptibles with p (range of pdf: (0.8, 0.95)), ψ
(range of pdf: (0.5, 0.95)), δ (range of pdf: (0.1, 1)). The population size of sexually
active adults are chosen to be 5,560,000 (Zimbabwe), 34,433,00 (Thailand).
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Fig. 8.8 Simulation results of model (8.35). It plots annual AIDS deaths (per 100,000 individuals)
for Zimbabwe (A), Thailand (B), Zimbabwe (C), and Thailand (D). Source: [15]

8.8 A Model with Antiretroviral Therapy (ART)

A mathematical model with antiretroviral therapy (ART) is considered in [25] to
study the effect of ART on risk behaviors and sexually transmitted infections (STI).
Individuals are divided into two risk groups i = 1, 2, with s = 1 for STI+ and
s = 0 for STI-. The population size for fix i and s is divided into the following
epidemiological classes: susceptible to HIV (Sis), untreated HIV+ (Iu

is), untreated
with AIDS (Au

is), treated HIV+ (I τ
is), treated with AIDS (Aτ

is). The group sizes are

Nis = Sis + Iu
is + I τ

is + Aτ
is, i = 1, 2, s = 0, 1.

The per-capita rates of STI and HIV infection of a susceptible individual in risk
group i are denoted by ξi(t) and λis(t), respectively, and are given by

ξi(t) = θi
∑

j

ρij

Nj1∑
s Njs

, i = 1, 2, (8.36)

λi0(t) = βi

2∑

j=1

ρij

∑
s

(
Iu
js + (1 − η)(I τ

js + Aτ
js)
)

∑
s Njs

, λi1 = 3λi0, i = 1, 2,

(8.37)
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where θi and βi are transmission rates of STI and HIV, respectively, for susceptibles
of risk level i, ρij represents the sexual mixing between types i and j individual
(e.g., proportionate mixing), η1 represents the reduction in HIV infectiousness due
to treatment with ART.

The following model is a simplified version of the model considered in [25]:

dSis

dt
= Λi − (λis(t) + μ)Sis + (1 − s)

[− ξi(t)Si0 + δSi1
]+ s

[
ξi(t)Si0 − δSi1

]
,

dIu
is

dt
= λis(t)Sis − (γ u + μ + rh)Iu

is

+ωIτ
is + (1 − s)

[− ξi(t)I
u
i0 + δIu

i1

]+ s
[
ξi(t)I

u
i0 − δIu

i1

]

dI τ
is

dt
= rhIu

is − (γ τ + μ + ω)I τ
is

+(1 − s)
[− ξi(t)I

τ
i0 + δI τ

i1

]+ s
[
ξi(t)I

τ
i0 − δI τ

i1

]
(8.38)

dAu
is

dt
= γ uIu

is − (αu + μ + ra)Au
is + ωAτ

is + (1 − s)δAu
i1 − sδAu

i1

dAτ
is

dt
= γ τ I τ

is − (ατ + μ + ω)Aτ
is

+raAu
is + (1 − s)

[− ξi(t)A
τ
i0 + δAτ

i1

]+ s
[
ξi(t)A

τ
i0 − δAτ

i1

]
,

where i = 1, 2, s = 0, 1, Λi is the recruitment rate to group i (i = 1, 2), γ u

and γ τ are the rates of progression to AIDS for untreated and treated individuals,
respectively, αu and ατ are the rates of AIDS mortality for untreated and treated
individuals, respectively, δ is the recovery rate from the STI infection, η represents
the reduction in HIV infectiousness as a result of ART, w is the withdraw rate
from treatment, ra and rh are treatment coverage rates of AIDS and HIV-positive
individuals, respectively, 1/μ represents the average duration of sexually active life.

A more general model is studied in [25], in which a detailed model analysis
is presented to demonstrated the impact of the wide-scale use of ART on HIV
transmission.

8.9 Project: What If Not All Infectives Progress to AIDS?

In the model (8.1) it is assumed that all HIV-infected individuals eventually progress
to full-blown AIDS, as this appears to be the case. Suppose, however, that only a
fraction p, 0 < p < 1 progress to AIDS while the remaining infectives remain in
this class until they are no longer sexually active. In addition to the classes S, I , and
A, a model must now also include a class Y of infective individuals that will not
develop full-blown AIDS and a class Z of former Y -individuals who are no longer
sexually active. The corresponding model is
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Fig. 8.9 Flow diagram; single group model for the case when only a fraction of infected people
will progress to AIDS

dS(t)

dt
= Λ − λC(T (t))

S(t)W(t)

T (t)
− μS(t)

dI (t)

dt
= λpC(T (t))

S(t)W(t)

T (t)
− (αI + μ)I (t)

dY (t)

dt
= λ(1 − p)C(T (t))

S(t)W(t)

T (t)
− (αY + μ)Y (t) (8.39)

dA(t)

dt
= αI I (t) − (d + μ)A(t)

dZ(t)

dt
= αYY (t) − μZ(t)

where

W = I + Y and T = W + S. (8.40)

A flow diagram is shown in Fig. 8.9.
It is further assumed that individuals who develop full-blown AIDS are no longer

actively infective, that is, that they have no sexual contacts; it is also assumed
that infected individuals become immediately infective. Finally, it is assumed that
individuals in this population become sexually inactive or acquire AIDS at the
constant rates αY and αI (respectively) per unit time. Therefore, 1/(μ + αI ) gives
the average or mean incubation period with the fraction 1/(μ + αY ) denoting the
average or mean sexual life expectancy. For simplicity, we assume αI = αY , but it
is possible to extend the model to the case αi �= αY .



304 8 Models for HIV/AIDS

As before, the function C(T ) models the mean number of sexual partners an
average individual has per unit time when the population density is T ; λ (a constant)
denotes the average sexual risk per infected partner; λ is often thought as the product
iφ [68], where φ is the average number of contacts per sexual partner and i the
conditional probability of infection from a sexual contact when the latter is infected.
Kingsley et al. [72] had presented (not surprising) evidence that the probability of
seroconversion (infection) increases with the number of infected sexual partners.
Hence, λC(T ) models the transmission rate per unit time per infected partner when
the size of the sexually active population is T . We continue to assume

C(T ) > 0, C′(T ) ≥ 0, (8.41)

Question 4 Show that for the model (8.39) the basic reproduction number is given
by

R0 = λ

(
p

σI

+ 1 − p

σY

)

C

(
Λ

μ

)

, (8.42)

where σI = αI + μ, σY = αY + μ.
R0 is given by the product of the three factors (epidemiological parameters): λ

(the probability of transmission per partner), C(Λ/μ) (the mean number of sexual
partners that an average susceptible individual has per unit time when everybody in
the population is susceptible), and

D =
(

p

σI

+ 1 − p

σY

)

. (8.43)

The death-adjusted mean infective period is D = pDI + (1 − p)DY with DI and
DY denoting the death-adjusted mean infective periods, 1/σI and 1/σY of the I and
Y classes, respectively.

Question 5 Show that if R0 < 1, the disease-free equilibrium (Λ/μ, 0, 0) of the
system (8.39) is asymptotically stable, and if R0 > 1 there is a unique endemic
equilibrium (S∗, I ∗, Y ∗), which is locally asymptotically stable, and the disease-
free state (Λ/μ, 0, 0) is unstable.

Next, we allow arbitrary incubation period distributions by introducing two
functions PI (s) and PY (s) representing the proportion of individuals who become
I - or Y -infective at time t and that, if alive, are still infective at time t +s (survive as
infectious). PI and PY , survivorship functions, are non-negative and non-increasing,
and PI (0) = PY (0) = 1. It is further assumed that

∫ ∞

0
PI (s)ds < ∞,

∫ ∞

0
PY (s)ds < ∞,
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and thus, −Ṗ (x) and −ṖY (x) are the rates of removal of individuals from classes I

and Y into classes A and Z, x time units after infection.

Question 6 Derive the corresponding model and determine its basic reproduction
number.
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Chapter 9
Models for Influenza

9.1 Introduction to Influenza Models

Influenza causes more morbidity and more mortality than all other respiratory
diseases together. There are annual seasonal epidemics that cause about 500, 000
deaths worldwide each year. During the twentieth century there were three influenza
pandemics. The World Health Organization estimates that there were 40, 000, 000–
50, 000, 000 deaths worldwide in the 1918 pandemic, 2, 000, 000 deaths worldwide
in the 1957 pandemic, and 1, 000, 000 deaths worldwide in the 1968 pandemic.
There has been concern since 2005 that the H5N1 strain of avian influenza could
develop into a strain that can be transmitted readily from human to human and
develop into another pandemic, together with a widely held belief that even if this
does not occur there is likely to be an influenza pandemic in the near future. More
recently, the H1N1 strain of influenza did develop into a pandemic in 2009, but
fortunately its case mortality rate was low and this pandemic turned out to be much
less serious than had been feared. There were 18,500 confirmed deaths, but the
actual number of deaths caused by the H1N1 influenza may have been as many as
200,000. This history has aroused considerable interest in modeling both the spread
of influenza and comparison of the results of possible management strategies.

Vaccines are available for annual seasonal epidemics. Influenza strains mutate
rapidly, and each year a judgment is made of which strains of influenza are most
likely to invade. A vaccine is distributed that protects against the three strains
considered most dangerous. However, if a strain radically different from previously
known strains arrives, vaccine provides little or no protection and there is danger
of a pandemic. As it would take at least 6 months to develop a vaccine to protect
against such a new strain, it would not be possible to have a vaccine ready to protect
against the initial onslaught of a new pandemic strain. Attempts are underway to try
to develop a more universal vaccine.
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Antiviral drugs are available to treat pandemic influenza, and they may have
some preventive benefits as well, but such benefits are present only while antiviral
treatment is continued.

Various kinds of models have been used to describe influenza outbreaks. Many
public health policy decisions on coping with a possible influenza pandemic are
based on construction of a contact network for a population and analysis of
disease spread through this network. This analysis consists of multiple stochastic
simulations requiring a substantial amount of computer time. In advance of an
epidemic it is not possible to know its severity, and it would be necessary to make
estimates for a range of reproduction numbers. Also, model parameters for the
H1N1 influenza pandemic of 2009, especially the susceptibility to infection for
different age groups, were significantly different from those for seasonal epidemics.
In advance of an anticipated pandemic it may be more appropriate to use simpler
models until enough data are acquired to facilitate parameter estimation. Early
estimation of model parameters is extremely important for coping with a serious
epidemic, and one of the outcomes of the H1N1 influenza pandemic of 2009 was
development of new methods, mainly based on network models, to achieve this.

Our approach is to begin with simple models and to add more structure later as
more information is obtained. When an epidemic does begin, plans for management
strategies need to be very detailed, and use of the simple models we describe here
should be restricted to advance planning and broad understanding.

We begin this chapter by developing a simple compartmental influenza transmis-
sion model and then augmenting it to include both pre-epidemic vaccination and
treatment during an epidemic. We will also describe some ways in which the model
can be modified to be more realistic, though more complicated. The development
follows the treatment in [6, 7]. We will describe the models and the results of
their analyses, but omit proofs in order to focus attention on the applications of
the models. Many of the results may be found in earlier chapters.

9.2 A Basic Influenza Model

Since influenza epidemics usually come and go in a time period of several months,
we do not include demographic effects (births and natural deaths) in our model.
Our starting point is the simple SIR model. Two aspects of influenza that are
easily added are that there is an incubation period between infection and the
appearance of symptoms, and that a significant fraction of people who are infected
never develop symptoms but go through an asymptomatic period, during which
they have some infectivity, and then recover and go to the removed compartment
[35]. Thus a model should contain the compartments S (susceptible), L (latent),
I (infective), A (asymptomatic), and R (removed). Specifically, we make the
following assumptions:

1. There is a small number I0 of initial infectives in a population of constant total
size N .
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2. The number of contacts in unit time per individual is a constant multiple β of
total population size N .

3. Latent members (L) are not infective.
4. A fraction p of latent members proceed to the infective compartment at rate κ ,

while the remainder goes directly to an asymptomatic infective compartment
(A), also at rate κ .

5. There are no disease deaths; infectives (I ) recover and leave the infective
compartment at rate α, and go to the removed compartment (R).

6. Asymptomatics have infectivity reduced by a factor δ, and go to the removed
compartment at rate η.

These assumptions lead to the model

S′ = −Sβ(I + δA)

L′ = Sβ(I + δA) − κL

I ′ = pκL − αI

A′ = (1 − p)κL − ηA

R′ = αI + ηA

(9.1)

with initial conditions

S(0) = S0, L(0) = 0, I (0) = I0, A(0) = 0, R(0) = 0, N = S0 + I0.

In analyzing this model we may remove one variable since N = S +L+ I +A+R

is constant. It is usually convenient to remove the variable R. It is possible to
show that the model (9.1) is properly posed in the sense that all variables remain
non-negative for 0 ≤ t < ∞. A flow diagram for the model (9.1) is shown in
Fig. 9.1. The model (9.1) is the simplest possible description for influenza having
the property that there are asymptomatic infections. The question that should be
in the back of our minds is whether it is a sufficiently accurate description for its
predictions to be useful.

The model (9.1), like the other models that we will introduce later, consists
of a system of ordinary differential equations. The number of susceptibles in the
population tends to a limit S∞ as t → ∞ and the final size relation may be used
to find this limit without the need to solve the system of differential equations. It is
more realistic to assume saturation of contacts and that β is a function of the total
population size N . In general, the final size relation is an inequality. If there are no
disease deaths, N is constant and β is constant even with saturation of contacts. If
the disease death rate is small, it appears that the final size relation is very close to
an equality and it is reasonable to assume that β is constant and use the final size
relation as an equation to solve for S∞.

We may use the next generation matrix approach of [48] to calculate the basic
reproduction number

R0 = βN

[
p

α
+ δ(1 − p)

η

]

. (9.2)
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Fig. 9.1 Diagram for the basic influenza model (9.1)

A biological interpretation of this basic reproduction number is that a latent
member introduced into a population of N susceptibles becomes infective with
probability p, in which case he or she causes βN/α infections during an infective
period of length 1/α, or becomes asymptomatic with probability 1 − p, in which
case he or she causes δβN/η infections during an asymptomatic period of length
1/η.

The final size relation is given by

log
S0

S∞
= R0

[

1 − S0

N

]

. (9.3)

A very general form of the final size relation that is applicable to each of the models
in this chapter is derived in Sect. 4.5. The final size relation shows that S∞ > 0. This
means that some members of the population are not infected during the epidemic.
The size of the epidemic, the number of (clinical) cases of influenza during the
epidemic, is

I0 + S0 − S∞ = N − S∞,

and the number of symptomatic cases is

I0 + p(S0 − S∞).

If there are disease deaths, with a disease survival rate f and a disease death rate (1−
f ) among infectives (assuming no disease deaths of asymptomatics), the number of
disease deaths is

I0 + (1 − f )p(S0 − S∞).

While mathematicians view the basic reproduction number as central in studying
epidemiological models, epidemiologists may be more concerned with the attack
rate, as this may be measured directly. For influenza, where there are asymptomatic
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cases, there are two attack rates. One is the clinical attack rate, which is the fraction
of the population that becomes infected, defined as

1 − S∞
N

.

There is also the symptomatic attack rate, defined as the fraction of the population
that develops disease symptoms, defined as

p

[

1 − S∞
N

]

.

The attack rates and the basic reproduction number are connected through the final
size relation (9.3). If we know the parameters of the model we can calculate R0
from (9.2) and then solve for S∞ from (9.3).

We apply the model (9.1) using parameters appropriate for the 1957 influenza
pandemic as suggested by [35]. The latent period is approximately 1.9 days and the
infective period is approximately 4.1 days, so that

κ = 1

1.9
= 0.526, α = η = 1

4.1
= 0.244.

We also take

p = 2/3, δ = 0.5, f = 0.98.

As in [35] we consider a population of 2000 members, of whom 12 are infective
initially. In [35] a symptomatic attack rate was assumed for each of the four age
groups, and the average symptomatic attack rate for the entire population was 0.326.
This implies S∞ = 1022. Then we obtain

R0 = 1.37

from (9.3). Now, we use this in (9.2) to calculate

βN = 0.402.

We will use these data as baseline values to estimate the effect that control measures
might have had. The number of clinical cases is 978 (including the initial 12),
the number of symptomatic cases is 664, again including the original 12, and the
number of disease deaths is approximately 13.

The model (9.1) can be adapted to describe management strategies for both
annual seasonal epidemics and pandemics.
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9.2.1 Vaccination

To cope with annual seasonal influenza epidemics, there is a program of vaccination
before the “flu” season begins. Each year a vaccine is produced aimed at protecting
against the three influenza strains considered most dangerous for the coming season.
We formulate a model to add vaccination to the model described by (9.1) under the
assumption that vaccination reduces susceptibility (the probability of infection if
a contact with an infected member of the population is made). In addition, if we
assume that vaccinated members who develop infection are less likely to transmit
infection, more likely not to develop symptoms, and are likely to recover more
rapidly than unvaccinated members.

These assumptions require us to introduce additional compartments into the
model to follow treated members of the population through the stages of infection.
We use the classes S,L, I,A,R as before and introduce ST , the class of treated sus-
ceptibles, LT , the class of treated latent members, IT , the class of treated infectives,
and AT , the class of treated asymptomatics. In addition to the assumptions made in
formulating the model (9.1) we also assume

• A fraction γ of the population is vaccinated before a disease outbreak and
vaccinated members have susceptibility to infection reduced by a factor σS .

• There are decreases σI and σA, respectively, in infectivity in IT , and AT ; it is
reasonable to assume

σI < 1, σA < 1.

• The rates of departure from LT , IT , and AT are κT , αT , and ηT , respectively. It
is reasonable to assume

κ ≤ κT , α ≤ αT , η ≤ ηT .

• The fractions of members recovering from disease when they leave I and IT are
f and fT , respectively. It is reasonable to assume f ≤ fT . In our analysis we
will take f = fT = 1 (no disease deaths).

• Vaccination decreases the fraction of latent members who will develop symptoms
by a factor τ , with 0 ≤ τ ≤ 1.

For convenience we introduce the notation

Q = I + δA + σI IT + δσAAT . (9.4)

The resulting model is

S′ = −SβQ

S′
T = −σSST βQ

L′ = SβQ − κL
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Fig. 9.2 Transition diagram
corresponding to the
vaccination model (9.5)

L′
T = σSST βQ − κT LT

I ′ = pκL − αI (9.5)

I ′
T = τpκT LT − αT IT

A′ = (1 − p)κL − ηA

A′
T = (1 − pτ)κT LT − ηT AT

R′ = αI + αT IT + ηA + ηT AT .

The initial conditions are

S(0) = (1 − γ )S0, ST (0) = γ S0, I (0) = I0, N = S0 + I0,

L(0) = LT (0) = IT (0) = A(0) = AT (0) = 0

corresponding to pre-epidemic treatment of a fraction γ of the population. A flow
diagram for the model (9.5) is shown in Fig. 9.2.

Since the infection now is beginning in a population which is not fully sus-
ceptible, we speak of the control reproduction number Rc rather than the basic
reproduction number. A computation using the next generation matrix leads to the
control reproduction number

Rc = (1 − γ )Ru + γRv,

with

Ru = Nβ
[p

α
+ δ(1 − p)

η

] = R0,

Rv = σSNβ
[pτσI

αT

+ δ(1 − pτ)σA

ηT

]
.

(9.6)
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Then Ru is a reproduction number for unvaccinated people and Rv is a reproduction
number for vaccinated people. There is a pair of final size relations for the two final
sizes S(∞) and ST (∞) in terms of the group sizes Nu = (1 − γ )N,Nv = γN ,
namely

log
(1 − γ )S0

S∞
= Ru

[

1 − S∞
Nu

]

+ Rv

[

1 − ST (∞)

Nv

]

,

log
γ S0

ST (∞)
= σSRu

[

1 − S∞
Nu

]

+ Rv

[

1 − ST (∞)

Nv

]

.

(9.7)

The number of symptomatic disease cases is

I0 + p[(1 − γ )S0 − S(∞)] + pτ [γ S0 − ST (∞)],

and the number of disease deaths is

(1 − f )[I0 + p(1 − γ )S0 − S(∞)] + (1 − fT )pτ [γ S0 − ST (∞)].

These may be calculated with the aid of (9.7). By control of the epidemic we mean
vaccinating enough people (i.e., taking γ large enough) to make Rc < 1. We use
the following parameters, suggested in [35] and [22],

σS = 0.3, σI = σA = 0.2, κT = 0.526, αT = ηT = 0.323, τ = 0.4.

With these parameter values,

Ru = 1.373, Rv = 0.047.

In order to make Rc = 1, we need to take γ = 0.28. This is the fraction of the
population that needs to be vaccinated to head off an epidemic.

We may solve the pair of final size equations with S(0) = (1 − γ )S0, ST (0) =
γ S0 for S(∞), ST (∞) for different values of γ . We do this for the parameter values
suggested above and we obtain the results shown in Table 9.1, giving the treatment
fraction γ , the number of untreated susceptibles S(∞) at the end of the epidemic,
the number of treated susceptibles ST (∞) at the end of the epidemic, the number of
treated cases of influenza I0 + p[(1 − γ )S0 − S(∞)], and the number of untreated
cases (γ S0 − ST (∞)]. The results indicate the benefits of pre-epidemic vaccination
of even a small fraction of the population in reducing the number of influenza cases.
They also demonstrate the advantage of vaccination to an individual. The attack rate
in the vaccinated portion of the population is much less than the attack rate in the
unvaccinated portion of the population.
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Table 9.1 Effect of vaccination

Fraction treated S∞ ST (∞) Untreated cases Treated cases

0 1015 0 660 0

0.05 1079 84 552 4

0.1 1149 174 439 7

0.15 1224 271 323 7

0.2 1305 375 201 6

0.25 1395 487 76 3

0.3 1391 596 13 0

9.3 Antiviral Treatment

If no vaccine is available for a strain of influenza it would be possible to use an
antiviral treatment. However, antiviral treatment affords protection only while the
treatment is continued and is more expensive. In addition, antivirals are in short
supply and expensive, and treatment of enough of the population to control an
anticipated epidemic may not be feasible. A policy of treatment aimed particularly
at people who have been infected or who have been in contact with infectives once
a disease outbreak has begun may be a more appropriate approach. This requires
a model with treatment rates for latent, infective, and asymptomatically infected
members of the population that we construct building on the structure used for
vaccination in (9.5).

Antiviral drugs have effects similar to vaccines in decreasing susceptibility to
infection and decreasing infectivity, likelihood of developing symptoms, and length
of infective period in case of infection. However, they are likely to be less effective
than a well-matched vaccine, especially in the reduction of susceptibility.

Treatment may be given to diagnosed infectives. In addition, one may treat
contacts of infectives who are thought to have been infected. This is modeled by
treating latent members. In practice, some of those identified by contact tracing and
treated would actually be susceptibles, but we neglect this in the model. Although
we have allowed treatment of asymptomatics in the model, this is unlikely to
be done, and we will describe the results of the model under the assumption
ϕA = θA = 0. However, for generality we retain the possibility of antiviral
treatment of asymptomatics in the model. If treatment is given only to infectives,
the compartments LT ,AT are empty and may be omitted from the model.

We add to the model (9.5) antiviral treatment of latent, infective, and asymp-
tomatically infected members of the population, but we do not assume an initial
treated class. In addition to the assumptions made earlier we also assume

• There is a treatment rate ϕL in L and a rate θL of relapse from LT to L, a
treatment rate ϕI in I and a rate θI of relapse from IT to I , and a treatment
rate ϕA in A and a rate θA of relapse from AT to A.
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The resulting model is

S′ = −βSQ

L′ = βSQ − κL − ϕLL + θLLT

L′
T = −κT LT + ϕLL − θLLT

I ′ = pκL − αI − ϕI I + θI IT

I ′
T = pτκT LT − αT IT + ϕI I − θI IT

A′ = (1 − p)κL − ηA − ϕAA + θAAT

A′
T = (1 − pτ)κT LT − ηT AT + ϕAA − θAAT

N ′ = −(1 − f )αI − (1 − fT )αT IT ,

(9.8)

with Q as in (9.4). The initial conditions are

S(0)= S0, I (0) = I0, L(0)=LT (0)= IT (0)=A(0)=AT (0) = 0, N = S0+I0.

A flow diagram for the model (9.8) is shown in Fig. 9.3.
The calculation of Rc for the antiviral treatment model (9.8) is more complicated

than for models considered previously, but it is possible to show that Rc = RI +RA

with

RI = Nβ

ΔIΔL

[

(αT + θI + σIϕI )pκ(κT + θL) + (θI + σI (α + ϕI ))pτκT φL

]

RA = δNβ

ΔL

[
(1 − p)κ(κT + θL)

η
+ σA(1 − pτ)κT ϕL

ηT

]

, (9.9)

Fig. 9.3 Treatment model (9.8)
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where

ΔI = (α + ϕI )(αT + θI ) − θIϕI

ΔL = (κ + ϕL)(κT + θL) − θLϕL.

The final size equation is

log
S0

S∞
= Rc

[

1 − S∞
S0

]

+ βI0(αT + θI + σIϕI )

ΔI

. (9.10)

The number of people treated is

∫ ∞

0
[ϕLL(t) + ϕI I (t)]dt

and the number of disease cases is

I0 +
∫ ∞

0
[pκL(t) + pτκT LT ]dt

which can be evaluated in terms of the parameters of the model. The number of
people treated and the number of disease cases are constant multiples of S0 − S∞
plus constant multiples of the (presumably small) number of initial infectives. Since
the expressions in terms of S0 − S∞ and I0 are more complicated than in the cases
of no treatment or vaccination, we have chosen to give these numbers in terms of
integrals.

There is an important consequence of the calculation of the number of disease
cases and treatments that is not at all obvious. If Rc is close to 1 or ≤ 1, S0 − S∞
depends very sensitively on changes in I0. For example, in a population of 2000
with R0 = 1.5, a change in I0 from 1 to 2 multiplies S0 − S∞ and therefore
treatments and cases by 1.4 and a change in I0 from 1 to 5 multiplies S0 − S∞ and
therefore treatments and cases by 3. Thus, numerical predictions in themselves are
of little value. However, comparison of different strategies is valid, and the model
indicates the importance of early action while the number of infectives is small.

In the special case that treatment is applied only to infectives, Rc is given by the
simpler expression

Rc = Nβ

[
p(αT + θI + σIϕI )

ΔI

+ δ(1 − p)

η

]

.

The number of disease cases is I0 + p(S0 − S∞), and the number of people treated
is

ϕI (αT + θI )

ΔI

[I0 + p(S0 − S∞)].



322 9 Models for Influenza

Since the infective period is short, antiviral treatment would normally be applied as
long as the patient remains infective. Thus we assume θI = 0, and these relations
become even simpler. The control reproduction number is

Rc = Nβ

[
p(αT + σIϕI )

αT (α + ϕI )
+ δ(1 − p)

η

]

, (9.11)

and the number of people treated is

ϕI

α + ϕI

[I0 + p(S0 − S∞)]. (9.12)

Since the basic reproduction number of a future pandemic cannot be known in
advance, it is necessary to take a range of contact rates in order to make predictions.
In particular, we could compare the effectiveness in controlling the number of
infections or the number of disease deaths of different strategies such as treating
only infectives, treating only latent members, or treating a combination of both
infective and latent members. In making such comparisons, it is important to take
into account that treatment of latent members must be supplied for a longer period
than for infectives. In case of a pandemic, there are also questions of whether
the supply of antiviral drugs will be sufficient to carry out a given strategy. For
this reason, we must calculate the number of treatments corresponding to a given
treatment rate. It is possible to do this from the model; the result is a constant
multiple of I0 plus a multiple of S0 − S∞.

The results of such calculations appear to indicate that treatment of diagnosed
infectives is the most effective strategy [6, 7]. However, there are other consid-
erations that would go into any policy decision. For example, a pandemic would
threaten to disrupt essential services and it could be decided to use antiviral drugs
prophylactically in an attempt to protect health care workers and public safety
personnel. A study including this aspect based on the antiviral treatment model
given here is reported in [26].

For simulations, we use the initial values

S0 = 1988, I0 = 12,

the parameters of Sect. 9.1, and for antiviral efficacy we assume

σS = 0.7, σI = σA = 0.2,

based on data reported in [50].
We simulate the model (9.8) with θI = 0, assuming that treatment continues

for the duration of the infection. We assume that 80% of diagnosed infectives are
treated within 1 day. Since the assumption of treatment at a constant rate ϕI implies
treatment of a fraction 1 − exp(−ϕI t) after a time t , we take ϕI to satisfy

1 − e−ϕI = 0.8,
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Table 9.2 Control by
antiviral treatment

βN R0 Rc Disease cases Treatments

0.402 1.37 0.92 64 56

0.435 1.49 1.00 130 113

0.5 1.71 1.15 373 314

0.7 2.39 1.61 865 751

or ϕI = 1.61. We use different values of βN , corresponding to different values of
R0, and use (9.10) and (9.11), obtaining the results shown in Table 9.2.

We calculate from (9.11) that Rc = 1 for an attack rate of 39%. This is the
critical attack rate beyond which treatment at the rate specified cannot control the
pandemic.

9.4 Seasonal Influenza Epidemics

There are annual influenza outbreaks, usually in the fall and winter. Currently,
the annual influenza outbreak is the subtype H3N2, coexisting with the subtype
H1N1. Influenza A viruses are divided into subtypes identified by two proteins
on the surface of the virus, namely hemagglutinin (HA) and neuraminidase (NA).
The designation H3N2 means an influenza A virus that has an HA3 protein and
an NA2 protein. An influenza virus undergoes antigenic drift, rapid minor genetic
variation in a currently circulating subtype. Recovery from an influenza virus
confers immunity against reinfection, but antigenic drift means that a later contact
with an influenza virus of the same subtype will mean only partial immunity against
infection. Until now, we have studied influenza epidemics in isolation, but if there
is a seasonal outbreak of a strain that has been occurring for several seasons part of
the population will have some cross-immunity protecting against another infection.
Models for recurring seasonal outbreaks taking this into account have been analyzed
by Andreasen et al. [3, 4]. Thus we now assume that at the beginning of a seasonal
influenza outbreak individuals have a level of cross-immunity depending on the
most recent outbreak, up to a maximum of n seasons.

We assume that cross-immunity reduces both susceptibility to infection and
infectivity in case of infection. At the beginning of a seasonal outbreak, we
assume that all hosts are susceptible and we let Ni denote the number of hosts
whose last infection occurred i seasons ago and we include in Nn all who have
never been infected. We are dividing the total population into n sub-populations
(N1, N2, · · · , Nn) representing the distribution of cross immunities at the start of a
seasonal epidemic. The (constant) total population size is

N =
n∑

i=1

Ni.

For simplicity, we assume that during a seasonal epidemic the model is a simple
SIR model, ignoring the latent period and the existence of asymptomatic cases.
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Thus for each class i we have Ii infectious and Ri recovered individuals. The
transmission dynamics are given by the system

S′
i = −σiSiβ

n∑

j=1

τj Ij

I ′
i = σiSiβ

n∑

j=1

τj Ij − αIi (9.13)

R′
i = αIi .

Here α is the recovery rate, β is the transmission coefficient in the absence of
cross-immunity, σi is the relative susceptibility of individuals whose last infection
occurred i seasons ago, and τi is the relative infectivity of individuals whose last
infection occurred i seasons ago. It is reasonable to assume that cross-immunity
fades with time, so that

0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σn = 1, 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn = 1.

If we define the total infectivity

ϕ(t) =
n∑

j=1

τj Ij ,

we may rewrite the model (9.13) as

S′
i = −σiβSiϕ

I ′
i = σiβSiϕ − αIi .

(9.14)

There is a disease-free equilibrium Si = Ni, Ii = 0(i = 1, 2, · · · , n).
The next generation matrix is

K = β

α

⎡

⎢
⎢
⎢
⎣

σ1N1τ1 σ2N1τ1 · · · σnN1τ1

σ2N2τ1 σ2N2τ2 · · · σnN2τ2
...

...
. . .

...

σnNnτ1 σnNnτ2 · · · σnNnτn

⎤

⎥
⎥
⎥
⎦

.

Now, if P is the diagonal matrix with diagonal entries σiNi, 1 ≤ i ≤ n,
the matrix P−1KP similar to K has every row β/α multiplied by (σ1τ1N1, σ2τ2N2,

· · · , σnτnNn) and therefore has rank 1. This implies that all but one of the
eigenvalues of K are zero, and the remaining eigenvalue is equal to the trace
of K . From this we conclude that the spectral radius of K is equal to the trace of K
and the control reproduction number of the cross-immunity model (9.14) is
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RS = β

α

n∑

i=1

σ1τ1Ni. (9.15)

If there were no cross-immunity, the basic reproduction number would be

R0 = βN

α
.

Because (Si + Ii)
′ = −αIi , we can deduce as in Sect. 2.4 that

lim
t→∞ Ii(t) = 0, lim

t→∞ Si(t) = Si(∞),

and

α

∫ ∞

0
Ii(t)dt = Ni − Si(∞),

using Si(0) + Ii(0) = Ni. Integration of the first equation of (9.14) gives

log
Ni

Si(∞)
= βσi

∫ ∞

0
ϕ(t)dt

= βσi

n∑

j=1

τj

∫ ∞

0
Ij (t)dt (9.16)

= β

α
σi

n∑

j=1

τj [Nj − Sj (∞)]

= σi

n∑

j=1

τj
βNj

α

[

1 − Sj (∞)

Nj

]

.

We can write this final size relation in terms of the single unknown Sn(∞) because
from (9.14) and σn = 1 we have

S′
i

Si

= σi

S′
n

Sn

,

and integration gives

Si(∞)

Ni

=
[
Sn(∞)

Nn

]σi

. (9.17)

Substitution of (9.17) into (9.16) gives a relation for Sn(∞), namely
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log
Nn

Sn(∞)
= σn

n∑

j=1

τj
βNj

α

[

1 −
(
Sn(∞)

Nn

)σj
]

.

Then (9.17) gives solutions for Si(∞), i = 1, . . . , n − 1.

9.4.1 Season to Season Transition

The above analysis traces the development of a seasonal epidemic. We assume that
at the beginning of the next season’s epidemic, the final compartment sizes give the
separation of the population into new cross-immunity groups (N∗

1 , N
∗
2 , . . . , N

∗
n ).

The individuals who were infected during the previous season’s epidemic form the
new group N∗

1 , and the remaining individuals from Ni move to N∗
i+1. Thus

N∗
1 = N −

n∑

i=1

Si(∞)

N∗
j = Sj−1(∞), j = 2, · · · , n − 1

N∗
n = Sn−1(∞) + Sn(∞).

This relation describes the transition from one seasonal epidemic to the next. The
severity of one season’s epidemic affects the cross-immunity for the next season’s
epidemic. If the seasonal epidemic 1 year is severe, then because there is more cross-
immunity the next year it is reasonable to expect a less severe epidemic the next year.

9.5 Pandemic Influenza

In some years, there is an immunological change that produces a new subtype. Such
a change is called an antigenic shift, and is usually a result of recombination of
gene segments from viruses circulating in humans with virus segments from avian
viruses. Since this subtype is new, humans have little or no immunity against it,
and the result often is a pandemic. For example, the H1N1 subtype emerged in the
pandemic influenza of 1918 and circulated until 1957. In the pandemic of 1957
a new subtype, H2N2, emerged and replaced H1N1. In the pandemic of 1968,
H3N2 replaced the prevailing subtype H2N2. In 1977, H1N1 was reintroduced and
has been circulating along with H3N2 since then. A natural question is whether
a new pandemic strain will replace the currently circulating subtype or coexist
with it. To study this question, we must model a pandemic following a seasonal
influenza outbreak and then model the next seasonal outbreak. This is necessary
because there may be some cross-immunity between the seasonal and pandemic
subtypes. The interplay between seasonal and pandemic influenza has been studied
by Asaduzzaman et al. [8].
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9.5.1 A Pandemic Outbreak

We begin by assuming that there has been a seasonal influenza epidemic and that at
the end of this epidemic the population of total size N is divided into cross-immunity
sub-populations with respect to the seasonal epidemics of sizes (N1, N2, · · · , Nn).
We assume that there is a cross-immunity between the pandemic strain and the
seasonal strain, for individuals in the population who have recovered from the
seasonal strain in the previous n seasonal outbreaks reducing susceptibility by a
factor ρ, (0 ≤ ρ ≤ 1). Thus ρ = 0 corresponds to full cross-immunity and ρ = 1
corresponds to no cross-immunity. Then the model for pandemic influenza is

S′
i = −ρβ̃SiI, i = 1, 2, · · · , n − 1

S′
n = −β̃SnI

I ′ = β̃
[
ρ(S1 + S2 + · · · + Sn−1) + Sn

]
I − αI.

(9.18)

If there were no cross-immunity, the basic reproduction number would be

R̃0 = β̃N

α
, (9.19)

where β̃ is the pandemic contact rate.
An analysis very similar to that of Sect. 9.5 shows that the pandemic reproduction

number is

RP = β̃

α

[
ρ(N1 + N2 + · · · + Nn−1) + Nn

]
= ρβ̃N

α
+ (1 − ρ)β̃Nn

α
,

an increasing function of ρ. If RP > 1, there will be a pandemic.
We assume that the pandemic would invade if there were no cross-immunity, that

is,

R̃0 > 1.

Also, again much as in Sect. 9.5, we obtain a final size relation

log
Nn

Sn(∞)
= β̃N

α

[

1 −
∑n

i=1 Si(∞)

N

]

Si(∞)

Ni

=
[
Sn(∞)

Nn

]ρ
, i = 1, · · · , n − 1.

(9.20)

This relation gives the cross-immunity distribution for the pandemic. When we
model the seasonal epidemic following the pandemic, we will need this result
in order to distinguish between individuals susceptible to the seasonal influenza
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virus having cross-immunity to the pandemic strain and individuals without cross-
immunity.

9.5.2 Seasonal Outbreaks Following a Pandemic

In order to model a seasonal outbreak following a pandemic, because of cross-
immunity between the seasonal and pandemic viruses, we must divide each of the
subgroups (N1, N2, · · · , Nn) into two parts, depending on whether the members of
the group were infected by the pandemic. Now, we let Mi denote the individuals
whose most recent seasonal infection was i seasons ago and who escaped the
pandemic, and let M̃i denote the individuals whose most recent seasonal infection
was i seasons ago and who were infected in the pandemic. Then Ni = Mi +M̃i . We
denote by Si the number of individuals in Mi susceptible to the seasonal influenza
(who escaped the pandemic influenza) and by S̃i the number of individuals in Mi

susceptible to the seasonal influenza (infected by the pandemic). Taking into account
the cross-immunity of individuals in Mi and again defining the total infectivity

ϕ(t) =
n∑

j=1

τj Ij ,

we obtain the model

S′
i = −σiβSiϕ

S̃′ = −ρσiS̃iϕ (9.21)

I ′
i = σiβ(Si + ρS̃i)ϕ − αIi .

The calculation of the reproduction number is again much the same as in Sect. 9.4,
and yields the result

R = β

α

n∑

i=1

σiτi(Mi + ρM̃i).

In order to evaluate this, we need to determine Mi and M̃i from the final size
relation (9.20). We have Mi = Si(∞), M̃i = Ni − Si(∞), so that

Mi + ρM̃i = Mi(1 − ρ) + ρNi,

with Si(∞) given by (9.20). If we let x = Sn(∞)
Nn

, then (9.20) gives
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− log x = β̃

α
[N −

n∑

i=1

Si(∞)] (9.22)

= β̃N

α

[

1 − N1S
ρ
n + N2S

ρ
n + · · · + NnS

ρ
n

NN
ρ
n

]

= β̃N

α
[1 − xρ].

Consider the function

f (x) = log x + β̃N

α
[1 − xρ] = log x + R̃0[1 − xρ],

where R̃0 is given by (9.19). A solution x of (9.22) is epidemiologically meaningful
only if x < 1; otherwise, the pandemic does not invade. The value x = 1 is always
a root of (9.22); the pandemic invades if and only if there is a second root less than
1. The function f (x) is negative for x close to 0. If ρR̃ < 1, f (x) is monotone
increasing for 0 < x ≤ 1 and therefore there is no second root of (9.22) less than
1. Thus, if ρR̃0 < 1, the pandemic does not invade. On the other hand, if ρR̃0 >

1, f ′(1) < 0, and there must be a second root of (9.22). The pandemic invades if
and only if ρR̃0 > 1.

Now, the reproduction number is

R = β

α

n∑

i=1)

σiτi[(1 − ρ)Nix
ρ + ρNi]

= β

α
(1 − ρ)

n∑

i=1

σiτiNix
ρ + β

α
ρ

n∑

i=1

σiτiNi.

(9.23)

If R, with x given as a function of ρ by (9.22), is greater than 1, then the pandemic
and seasonal strains will coexist, but if R < 1, then the pandemic strain will replace
the seasonal strain.

We assume that the seasonal epidemic would take place if there were no
pandemic strain present, that is,

RS > 1.

For ρ = 1 (no cross-immunity) we have

R = RS > 1,

and this means that the pandemic and seasonal strains coexist. For ρ = 1/R̃0,
x = 1, and
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R = β

α

n∑

i=1

σiτiNi = RS > 1,

and the pandemic and seasonal strains coexist.
Numerical simulations indicate that R < 1 for some values of ρ between 1/R̃0

and 1, which implies that for some values of ρ the pandemic strain will replace the
seasonal strain.

9.6 The Influenza Pandemic of 2009

In the spring of 2009 a new strain (H1N1) of influenza A was developed, apparently
first in Mexico, and spread rapidly through much of the world. Initially, it was
thought that there was no resistance to this strain, although it developed later that
people who were old enough to have been exposed to similar strains in the 1950s
appeared to be less susceptible than younger people. It also appeared initially that
this strain had a high case fatality rate, but it was learned later that since many cases
were mild enough not to be reported the early data were weighted towards severe
cases. The case fatality rate was actually lower than for most seasonal influenza
strains.

Management of the H1N1 influenza pandemic of 2009 made use of mathemat-
ical models and the experience gained from previous epidemics, but also exposed
some gaps between a well-developed mathematical theory of epidemics and real-
life epidemics, notably in the acquisition of reliable data early in the pandemic,
understanding of spatial spread of a pandemic, and the development of multiple
epidemic waves.

There are important differences in the kinds of models of value to different
types of scientists. There are strategic disease transmission models aimed at the
understanding of broad general principles, and tactical models with the goal of
helping make decisions in specific and detailed situations on short-term policies. A
model that predicts how many people will become ill in an anticipated epidemic is
quite different from a model that helps to identify which subgroups of a population
should have highest priority for preventive vaccination with an uncertain prediction
of how much vaccine will be available in a given time frame.

9.6.1 A Tactical Influenza Model

There was a second wave of infections in the 2009 H1N1 influenza pandemic, just
as in several previous influenza pandemics. As soon as possible, during the first
wave, work began on the development of a vaccine matched to the virus to be used
to combat the expected second wave [41]. Since a vaccine requires at least 6 months
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for development, and the second wave could begin within 6 months of the first wave,
there was an urgent need to prepare a vaccine distribution strategy.

In this section, we describe the model of [18] as an example of a tactical model.
This model was used by the BC Center for Disease Control in making planning
decisions for vaccination distribution during the second wave of the 2009 H1N1
influenza pandemic. Because of the need to make such decisions rapidly, the
development and application of the model was more urgent than the writing of the
paper that described the work, and use of the results preceded the write-up. In a
pandemic, there is still much to be done after the model has been developed and
applied, and frequently there is no time to explore basic theoretical questions that
may arise in the study. Ideally, these questions can be studied in more depth after the
urgency of coping with a pandemic has passed, and this is an opportunity to return
to more general strategic models.

Infection rates in an influenza epidemic depend strongly on the (demographic)
age of the individuals in contact. This dependence of transmission and infection
rates on age (the age profile) may vary significantly between locations and from year
to year for seasonal epidemics. Also, the age profile in a pandemic is probably unlike
that for seasonal epidemics. For this reason, real-time planning during an epidemic
must make use of surveillance data obtained as soon as possible after the epidemic
has begun. The data gathered during the first wave in the spring of 2009 were used
to project the age profile to be expected in the second wave. A compartmental
model with 6 compartments in each of the 40 population subgroups, covering 8
age classes and 5 activity levels using this age profile and existing estimates of
the Vancouver contact network structure, was developed to project the results of
different vaccination strategies.

The analysis of the model was carried out using numerical simulations, because
comparisons of different strategies, including numerical estimates of disease cases
and vaccine quantities required, were needed quickly and because general theoret-
ical analysis of this high-dimensional system would have been too complicated.
The numerical simulations indicated that a good estimate of the epidemic peak
would be essential for making policy decisions on vaccination strategies. In a
pandemic situation, delays in vaccine production may mean that vaccination cannot
be started until an epidemic is already underway, and the model suggested that an
early start to vaccine distribution makes a big difference in the effectiveness of
the vaccination program. This raises a general theoretical question of the relation
between the starting time of vaccination and the effectiveness of the vaccination
program. Future theoretical study of models of this type would be very useful for
planning vaccination strategies for epidemics in the future.

9.6.2 Multiple Epidemic Waves

During the 1918 “Spanish flu” pandemic, North America and much of Western
Europe experienced two waves of infection with the second wave more severe than
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the first [20, 21]. Unlike seasonal influenza epidemics, which occur at predictable
times each year, influenza pandemics are often shifted slightly from the usual
“influenza season” and have multiple waves of varying severity. This suggests a
modeling question that does not arise with seasonal influenza. During a first wave of
a pandemic it should be possible to isolate virus samples and begin development of a
vaccine matched to the virus in time to allow vaccination against the virus that could
help to manage a second wave. One question that arises is prediction of the timing
of a second wave. This is not yet possible because there is not yet a satisfactory
explanation of the causes of a second wave. One suggestion that has been made
is that transmissibility of virus varies seasonally, and this has been used to try to
predict whether an endemic disease will exhibit seasonal outbreaks [44, 45]. The
same approach can be used to formulate an SIR epidemic model with a periodic
contact rate that can exhibit two epidemic waves [12]. However, the behavior of
such a model depends strongly on the timing of the epidemic. If we assume that the
contact rate is highest in the winter, lowest in the summer, and varies sinusoidally
with a period of 1 year, we could use a simple SIR model with a variable contact
rate. With N as the (constant) total population size, this suggests a model

S′ = −β(t)
SI

N

I ′ = β(t)
SI

N
− αI,

(9.24)

where

β(t) = β

[

1 + c cos

(
π(t + t0)

180

)]

,

with parameter values

α = 0.25, β = 0.45, c = 0.45,

N = 1000, S0 = 999, I0 = 1, t0 = 85, 90, 95.

The choice of t0 determines where in the oscillation of β(t) the epidemic begins,
because at the start of the epidemic (t = 0)

β(0) = β

[

1 + c cos

(
πt0

180

)]

.

Thus t0 is the number of days after the maximum transmissibility that the epidemic
begins. By numerical integration of (9.24), we obtain the following three epidemic
curves (giving the number of infective individuals as a function of time), with the
same parameters except that by varying t0 the starting date of the epidemic is moved
5 days later from one curve to the next.
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Fig. 9.4 Top: A one-wave
epidemic curve, t0 = 85.
Middle: A two-wave
epidemic curve, first wave
more severe, t0 = 90.
Bottom: A two-wave
epidemic curve, second wave
more severe, t0 = 95

An interpretation of these curves is that if the epidemic begins when the contact
rate is decreasing and is close to its minimum value and the contact rate is relatively
small over the course of the epidemic, the wave may end while there are still enough
susceptibles to support a second wave when the contact rate increases, as in Fig. 9.4
(middle and bottom plots). However, if the epidemic begins earlier it may continue
until enough individuals are infected that a second wave cannot be supported even
when the contact rate becomes large, as in the top plot of Fig. 9.4.

Simulations indicate that for the model (9.24) with the parameter values used
here there is a small window of starting times corresponding to the interval 90 ≤
t0 ≤ 110 for which a second wave is possible. The nature of the epidemic curves
indicates that the behavior depends critically on timing and this means that such a
model is not suitable for precise predictions. Note that there may be a single wave
or two waves, and if there are two waves either one may be more severe. Not only
does the prediction depend on the timing of the introduction of infection, but this
timing is stochastic, and by its very nature unpredictable. It depends on mutations
of the virus and importations of new cases.

We have here a strategic model that predicts the possibility of a second wave,
but this is not sufficient to be confident about using it to advise policy, because we
do not have enough evidence to be sure about the cause of a second wave. Before
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we could make predictions we need more evidence about factors that could cause
a second wave and more detailed tactical models, including sensitivity analysis.
Another factor that has been suggested as a possible explanation for a second
epidemic wave is coinfection with other respiratory infections that might increase
susceptibility, and some experimental data would be needed that might confirm or
deny that either seasonal variation in transmission or coinfection, or both, could
explain multiple pandemic waves. In the H1N1 influenza pandemic of 2009, there
were some concerns about the development of drug resistance as a consequence of
antiviral treatment. While this did not appear to have widespread consequences, in
a more severe disease outbreak in which more patients receive antiviral treatment
there could be major effects. The modeling of drug resistance effects in an influenza
pandemic has begun [1, 5, 36, 42, 43], but much more needs to be understood. A full
analysis of the development of drug resistance will require nested models including
immunological in-host aspects as well as effects on the population level.

Data from the 1918 pandemic indicate clearly that behavioral response, both
individual and public health measures, had significant effects on the outcome of
the epidemic [9]. Incorporating behavioral responses is a new aspect of epidemic
modeling, and there is much to be learned about the factors that influence behavioral
responses when a disease outbreak begins.

9.6.3 Parameter Estimation and Forecast of the Fall Wave

The model predictions included in this section are presented in [47]. With the
recognition of a new, potentially pandemic strain of influenza A(H1N1) in April
2009, the laboratories at the US CDC and the World Health Organization (WHO)
dramatically increased their testing activity from week 17 onwards (week ending 2
May 2009), as can be seen in Fig. 9.5. In this analysis, we use the extrapolation of a
model fitted to the confirmed influenza A(H1N1)v case counts during summer 2009
to predict the behavior of the pandemic during autumn 2009.

The following model with seasonally forced transmission is used:

S′ = −β(t)
SI

N

I ′ = β(t)
SI

N
− αI,

(9.25)

where N = 305,000,000 denote the total population in the United States (US). The
R equation is omitted as it can be determined by R = N − S − I . The transmission
rate is chosen to be

β(t) = β0 + β1 cos(πt/180), (9.26)
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Fig. 9.5 Influenza-positive tests reported to the US CDC by US WHO/NERVSS-collaborating
laboratories, national summary, United States, 2009 until 26 September

where β0 and β1 are constants to be estimated from data. Assume that I (t0) = 1,
where t0 is the initial time, which is another parameter to be estimated from data.
The parameter α is chosen so that the infective period is 1/α = 3 days.

The three parameters (β0, β1, t0) were estimated using the data shown in
Fig. 9.5 on influenza-positive tests reported to the US CDC by US WHO/NREVSS-
collaborating laboratories, national summary, United States, 2009 until 26 Septem-
ber. To avoid bias due to increased testing for H1N1 around week 16, only data
from week 21 to 33 (from 24 May to 22 August 2009) were used. From the
past experience with influenza, the lower and upper bounds were chosen to be
β0 ∈ (0.92α, 2.52α) and β1 ∈ (0.05α, 0.8α), and t0 ∈ (−8, 10) (weeks relative
to the beginning of 2009). The best estimates were determined by fitting the model
to data, and the parameter values that provided the best Pearson chi-square statistics
are listed in Table 9.3.

Using the estimated parameter values, forecast of the time and size of the fall
wave was produced by simulating the model under two scenarios: one is without
vaccination and the other included the planned CDC vaccination program, which
would begin with six to seven million doses being delivered by the end of the
first full week in October (week 40), with 10–20 million doses being delivered
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Table 9.3 Estimates of
parameters for the 2009
H1N1 model

Parameter Value 95% confidence interval

β0 1.56 (1.43, 1.77)

β1 0.54 (0.39, 0.54)

t0 24 February (8 February, 7 March)

Fig. 9.6 Prediction for the 2009 H1N1 pandemic in the US using model (9.25)

weekly thereafter. It is assumed that for healthy adults, full immunity to H1N1
influenza is achieved about 2 weeks after vaccination with one dose of vaccine
[30, 37]. For simulations of the model when vaccinations are incorporated, the
number of susceptible individuals in the simulations was decreased according to
the appropriate proportion of immune due to vaccination. The simulation outcomes
are presented in Fig. 9.6.

In Fig. 9.6, the curves associated with the darker and lighter areas correspond to
the cases of with and without vaccination. The model predicts that in the absence
of vaccine, the peak wave of infection will occur near the end of October in week
42 (95% CI: week 39, 43). By the end of 2009, the model predicts that a total of
63% of the population will have been infected (95% CI: 57%, 70%). For the case
when the planned vaccination program is considered, the model results suggest that
a relative reduction of about 6% in the total number of people infected with influenza
A(H1N1)v virus by the end of the year 2009 (95% CI: 1%, 17%).

The most striking feature of the model is that it accurately predicted the peak
time of the pandemic. According to CDC 2009 H1N1 confirmed case count data
(see [17]), the peak of the fall wave was reached at the end of October (which is
between weeks 42 and 43, see the left-hand plot in Fig. 9.7), which is consistent with
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Fig. 9.7 The left figure illustrates the CDC 2009 confirmed H1N1 count data (the error bars
represent variations calculated by the proposers that account for US regional variability in the
timing of the pandemic). The right figure shows predictions by our model in [47]

our model result. It is worth noting that the model used in the analysis is a simple
SIR model with a seasonally forced infection rate. Although further examinations
are certainly needed to study the applicability of the modeling approach to general
scenarios, the model results in this analysis demonstrated clearly the advantage and
capability of mathematical models in understanding disease dynamics.

9.7 *An SIQR Model with Multiple Strains with
Cross-Immunity

It was during the Black Death in the twentieth century in Venice that a system of
quarantine was first put in operation. It demanded ships to lay at anchor for “40
days” (in Latin “quaranti giorni”) before sailors and guests could come on land.
Quarantine is often thought of as a policy that separates individuals who may have
been exposed to a contagious agent regardless of symptoms. Isolation is, generally
speaking, considered a severe form of quarantine, often put in place in response to
high morbidity and mortality. Quarantine was used extensively in the treatment and
control of tuberculosis in Europe first and later, at end of the nineteenth century, in
the USA. The emergence of SARS in 2003 re-instated the world’s interests in the
concepts of Isolation and Quarantine (Q & I), the only initial methods available of
disease control [11, 19].

The concepts of Q & I have multiple working meanings and uses. Hence,
selecting a definition depends on the disease, the suspected level of risk that it
poses to others, the means and modes of transmission, and the system’s knowledge
and experience with the infectious agent. Regardless of the definition used, one
of the challenges associated with Q & I strategies is that there is hardly any
reliable assessments of their population level efficacy. There are no effective
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quantitative frameworks that account for direct and indirect economic losses and/or
the costs associated with the implementation of Q & I strategies (but see [14, 27–
29, 33, 34, 38, 40]).

Critical to any method of assessment comes from the fact that dynamic models
that include the Q & I classes disease must be prepared to account for their
sometimes destabilizing impact on the disease dynamics (sustained oscillations).
The introduction of Q & I classes can generate the kind of dynamics where assessing
the effectiveness of interventions may be difficult. Feng et al. showed in [24, 25], for
example, that the incorporation of a quarantine or isolation class (Q) was enough
to destabilize the unique disease endemic equilibrium in a susceptible–infected–
recovered (SIR) model. These results were confirmed by Hethcote and collaborators
[31] using alternative SIQR modeling frameworks.

Tracing exposed individuals, assuming that a test exists that determines if an
individual is infected or not, and their contacts, would make it possible to quarantine
or isolate diagnosed infectives, a first step towards assessing the impact of Q & I
[15]. Models are used to address questions like: What impact will placing a fixed
proportion of individuals living in the “neighborhood” of an index case in quarantine
have on disease control? We observe that when large numbers are involved, the costs
and challenges become immense. Should isolated individuals be kept at their homes
or moved to designated quarantine facilities?

In [39] a two-strain influenza model is studied to investigate competitive
outcomes (mediated by cross-immunity) that result from the interactions between
two strains of influenza A in a population where sick individuals may be quarantined
or isolated. The inclusion of a quarantined class makes the model analysis much
more challenging due to the presence of sustained oscillations and possible other
bifurcations. To make the analysis more transparent, an SIQR model with a single
strain is presented first.

9.7.1 *An SIQR Model with a Single Infectious Class

In this section, results in [24] and [25] are revisited in order to highlight the impact of
the inclusion of quarantine and/or isolation classes in generating sustained periodic
solutions from SIQR epidemic models.

Let S(t), I (t), Q(t), and R(t) denote the susceptible, infective, quarantined, and
recovered classes, respectively, and let N = S+I+Q+R denote the total population
size. Model parameters are: μ, the per-capita rates for birth and death; γ , the rate
at which infected individuals are isolated (quarantined); δ, recovery rate; and β, the
transmission rate. The SIQR model can be formulated as follows:



9.7 *An SIQR Model with Multiple Strains with Cross-Immunity 339

dS

dt
= μN − βS

I

N − Q
− μS,

dI

dt
= βS

I

N − Q
− (μ + γ )I,

dQ

dt
= γ I − (μ + δ)Q,

dR

dt
= δQ − μR

(9.27)

with appropriate initial conditions.
What makes the above model “distinct” is that the incidence rate now accounts

for the possibility that a large number of individuals (those in the Q class) do not
participate (by request, mandate, or personal decision) in the transmission process.
Hence, the “random mixing” of infected proportion with other individuals is I

N−Q

rather than I
N

.
The basic reproduction number for the above SIQR model is

R0 = β

μ + γ
. (9.28)

It was shown in [25] that the disease-free equilibrium is globally asymptotically
stable when R0 < 1. However, for R0 > 1, the behavior of model solutions is very
different from the standard SIR model. That is, the unique endemic equilibrium,
denoted by E∗, can become unstable due to the appearance of stable periodic
solution via a Hopf bifurcation [32]. Notice from (9.28) that R0 is independent of
the isolation period 1/δ. A bifurcation analysis using δ as the bifurcation parameter
shows that E∗ is asymptotically stable when the quarantine period is either very
large or very small.

To facilitate the analysis, consider the following equivalent system with re-scaled
parameters:

dI

dτ
=
(

1 − I + R

N − Q

)

I − (ν + θ)I,

dQ

dτ
= θI − (ν + α)Q,

dR

dτ
= αQ − νR,

(9.29)
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where τ = βt and

ν = μ

β
, θ = γ

β
, α = δ

β
.

The S equation has been eliminated as N is constant and S = N − I − Q − R.
Note that the scaled parameter representing the isolation period is α. Based on the
system (9.29), the following result on the possibility of periodic solutions via Hopf
bifurcation was established in [25]:

Theorem 9.1 There is a function, αc(ν), defined for small ν > 0,

αc(ν) = θ2(1 − θ) + O(ν1/2),

such that there are two critical values αc1 and αc2 with the following properties:

(a) The endemic equilibrium is locally asymptotically stable if 1/α < 1/αc1(ν) or
1/α > 1/αc2(ν) and unstable if 1/αc1(ν) < 1/α < 1/αc2(ν), as long as 1/α is
close to the critical values.

(b) Hopf bifurcations occur at α = αci(ν) (i = 1, 2), leading to stable periodic
solutions near the bifurcation points.

Further, at the bifurcation point corresponding to αc1, the length of periods can
be approximated by the formula

T ≈ 2π

(1 − θ)1/2ν1/2 ≈ 2π

(θy∗)1/2,

where y∗ = I ∗/(N − Q∗) is the proportion of infectious individuals at the endemic
equilibrium scaled by the active population, N − Q.

With parameter values relevant to scarlet fever, numerical simulations of the
model confirm the occurrence of two Hopf bifurcation points, which are illustrated
in Fig. 9.8. The right plot in Fig. 9.8 shows two Hopf bifurcation points (labeled by
HB) occurring for values of the average quarantine periods in two distinct ranges
near 1/αci (i = 1, 2). The plot on the left shows the enlarged portion near the lower
bifurcation point 1/αc1, with the curves labeled with SP representing the maximum
and minimum of the stable periodic solutions. The solid and dashed curves labeled
by SSS and USS represent stable steady state and unstable steady state (showing
the I ∗ component of the endemic equilibrium E∗), respectively.

It was pointed out in [24, 25] that only the region near the lower critical
point 1/αc1 is relevant for childhood diseases, and that the data on the length of
reported isolation periods during the 1897–1978 scarlet fever epidemics in England
and Wales [2] were very close to the range that supports periodic solutions for
model (9.29) near 1/αc1.
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Fig. 9.8 The plot on the right is a bifurcation diagram based on numerical simulations of the
system (9.29) with parameter values relevant to scarlet fever. The solid and dashed curves (labeled
by SSS and USS) represent the fraction of the I components when the endemic equilibrium E∗ is
stable and unstable, respectively, depending on the value of the isolation period 1/α. The right plot
shows two Hopf bifurcation points, αc1 and αc2, labeled by HB. An enlarged version of the right
HB is shown on the left. The solid curves labeled with sp illustrate the maximum and minimum of
the stable periodic solutions

Several extensions of the model (9.27) have been considered including [23, 31,
49]. For example, the model in [23] reads

dS

dt
= μN − βS

I

N − σQ
− β̂S

(1 − σ)Q

N − σQ
− μS,

dI

dt
= βS

I

N − σQ
+ β̂S

(1 − σ)Q

N − σQ
− (γ + κ + μ)I,

dQ

dt
= γ I − (δ + μ)Q,

dR

dt
= κI + δQ − μR.

(9.30)

In (9.30), individuals in the I class can recover without going through the Q class.
In addition, the degree of effectiveness (i.e., reducing the movement of quarantined
individuals) is considered through the use of the parameter σ with σ = 1 and 0 cor-
responding to a perfect and ineffective quarantine/isolation, respectively. It is shown
in [23] that the likelihood for the existence of sustained oscillations depends on σ .

Because Hopf bifurcations are local properties, and because the bifurcation
diagram generated by numerical simulations in Fig. 9.8 seems to suggest that the
periods of the periodic solutions for parameters away from the Hopf bifurcation
points become very large, it indicates the possibility for a homoclinic bifurcation.
This is explored in [51]. It was shown in [51] that a center manifold reduction
of the system (9.27) at a bifurcation point has the normal form x′ = y, y′ =
axy+bx2y+O(4), indicating a bifurcation of codimension greater than two. Here,
x and y are variables after several changes of variables from the system (9.29). By
considering an unfolding of the normal form, it was shown that a perturbed system
can indeed generate a homoclinic bifurcation. This is illustrated in Fig. 9.9.
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Fig. 9.9 Numerical simulations of a perturbed system of the normal form reduction from the
system (9.29). The four plots correspond to four sets of parameter values near the homoclinic
bifurcation. As the parameter values change, the interior equilibrium E∗ changes from stable to
unstable leading to the appearance of a stable periodic solution (see plots (a) and (b)), and that
a homoclinic bifurcation occurs as parameter values change from (b) to (d), in which case, a
homoclinic solution exists (see (c))

The four sub-figures a–d in Fig. 9.9 demonstrate trajectories of the perturbed
system for four sets of parameter values. It shows first that the stability of E∗
switches from stable to unstable with the appearance of a stable periodic solution
(see a and b). As parameter values continue to change from b to c, the system
undergoes a homoclinic bifurcation, in which case, the stable periodic solution
expends its magnitude and eventually disappears after reaching the saddle point
(see b–d) and a homoclinic orbit appears (see c).

9.7.2 *The Case of Two Strains with Cross-Immunity

The SIQR model (9.27) can be extended to include two pathogen strains. The
description of the two-strain model requires the division of the population into ten
different classes: susceptibles (S), infected with strain i (Ii , primary infection),
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isolated with strain i (Qi), recovered from strain i (Ri , as a result of primary
infection), infected with strain i (Vi , secondary infection), given that the population
had recovered from strains j �= i, and recovered from both strains (W ). The
population is assumed to mix randomly, except that the mixing is impacted by the
process of quarantine/isolation [15, 25, 31]. Using the flow diagram in Fig. 9.10,
we arrive at the model

dS

dt
= Λ −

2∑

i=1

βiS
(Ii + Vi)

A
− μS,

dIi

dt
= βiS

(Ii + Vi)

A
− (μ + γi + δi)Ii,

dQi

dt
= δiIi − (μ + αi)Qi,

dRi

dt
= γiIi + αiQi − βjσijRi

(Ij + Vj )

A
− μRi, j �= i

dVi

dt
= βiσijRj

(Ii + Vi)

A
− (μ + γi)Vi, j �= i, i, j = 1, 2

dW

dt
= ∑2

i=1 γiVi − μW,

A = S + W +∑2
i=1(Ii + Vi + Ri),

(9.31)

Fig. 9.10 Schematic diagram of the dynamics in host exposed to two co-circulating influenza
strains. Λ is the rate at which individuals are born into the population, βi denotes the transmission
coefficient for strain i, μ is the per-capita mortality rate, δi is the per-capita isolation rate for strain
i, γi denotes the per-capita recovery rate from strain i, αi is the per-capita rate at which individuals
leave the isolated class as a result of infection with strain i, and σij is the relative susceptibility to
strain j for an individual that has been infected with and recovered from strain i (i �= j ). σij = 0
corresponds to total cross-immunity, while σij = 1 indicates no cross-immunity between strains.
The protection is said to be strong if 0 ≤ σij � 1, and weak if 0 � σij ≤ 1
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where A denotes the population of non-isolated individuals and βiS(Ii+Vi)
A

models
the rate at which susceptibles become infected with strain i. That is, the ith (i �= j )
incidence rate is assumed to be proportional to both the number of susceptibles and
the available modified proportion of i-infectious individuals, (Ii+Vi)

A
. The parameter

σij is a measure of the cross-immunity provided by a prior infection with strain i to
exposure with strain j (i �= j ). It is assumed that σij ∈ [0, 1]. Model (1) includes
the models in [13, 16]. The omission of the Q classes in earlier work precludes the
possibility of sustained oscillations (see [13, 16]) in the absence of population (age)
structure.

System (9.31) has at least four equilibria. Analysis of the local stability of the
trivial equilibrium (absence of disease) helps identify conditions under which the
“flu” can invade. Hence, we first focus on establishing the conditions that make it
impossible (at least locally) for both strains to invade a disease-free population,
simultaneously. In the analytical results obtained here it is assumed that σ12 =
σ21 = σ .

The basic reproduction number for the two strains is

Ri = βi

μ + γi + δi
.

Using the perturbation technique based on the fact that μ is a much smaller
parameter than other parameters, we can identify two curves in the (R1,R2) plane
that determine the stability of the non-trivial equilibria. Let f (R1) and g(R2) be
two functions defined by

f (R1) = R1

1 + σ(R1 − 1)
(

1 + δ2
μ+γ2

) (
1 − μ(μ+α1)

(μ+γ1)(μ+α1)+α1δ1

) (9.32)

and

g(R2) = R2

1 + σ(R2 − 1)
(

1 + δ1
μ+γ1

) (
1 − μ(μ+α2)

(μ+γ2)(μ+α1)+α2δ2

) . (9.33)

Let R∗
i = Ri (i = 1, 2) evaluated at μ = 0. Then the following result holds.

Theorem 9.2 There exists a function α1c(μ) defined for small μ > 0 by

α1c(μ) = δ1

R∗
1
(1 − 1

R∗
1
) + O(μ1/2),

with the following properties: (i) The boundary endemic equilibrium E1 is locally
asymptotically stable if R2 < f (R1) and α1 < α1c(μ), and unstable if R2 >

f (R1) or α1 > α1c(μ). (ii) When R2 < f (R1), periodic solutions arise at
α1 = α1c(μ) via Hopf bifurcation for small enough μ > 0. The period can be
approximated by
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T = 2π

|�ω2,3| ≈ 2π
(
(γ1 + δ1)(R

∗
1 − 1)

) 1
2 μ1/2

.

Because we have focused on the symmetric case, an analogous result for the
second boundary equilibrium E2 can be stated immediately. That is, the boundary
endemic equilibrium E2 is locally asymptotically stable if R1 < g(R2) and α2 <

α2c(μ). It becomes unstable if R1 > g(R2) or α2 > α2c(μ). A summary of the
stability results as presented in Theorem 9.2 for strain 1 is obtained for strain 2
by replacing the parameter indices 1’s with 2’s and replacing f (R1) with g(R2).
Functions f (R1) and g(R2) help determine the stability and coexistence regions
for strains 1 and 2. In fact, changes in the regions of stability for a single and both
strains can be illustrated by varying the coefficient of cross-immunity. For instance,
from (9.32) we can compute the value of σ at which

f ′(R1) ≡ ∂f (R1, σ )

∂R1

∣
∣
∣
σ ∗

1

= 0, (9.34)

namely

σ ∗
1 = 1

(
1 + δ2

μ+γ2

) (
1 − μ(μ+α1)

(μ+γ1)(μ+α1)+α1δ1

) .

Hence, for all R1 > 1,

f ′(R1) > (< or =) 0, f (R1) > (< or =) 1 if σ < (> or =) σ ∗
1 .

These properties can be easily checked by noticing from (9.32) that

f (R1) = R1

1 + σ
σ ∗

1
(R1 − 1)

and f ′(R1) =
1 − σ

σ ∗
1

(
1 + σ

σ ∗
1
(R1 − 1)

)2 .

Using the symmetry between two strains, we can show that similar properties
hold for another threshold value σ ∗

2 (interchanging the subscripts 1 and 2 in the
expression of σ ∗

1 ) and a function R1 = g(R2). The properties of f and g are
illustrated in Fig. 9.11. The first two plots in Fig. 9.11 are for the special case when
the two strains have identical parameter values (σ ∗

1 = σ ∗
2 = σ ∗), whereas the

last two plots are for the case σ ∗
1 �= σ ∗

2 . R2 < f (R1) is a necessary condition
for the stability of strain 1 (either a stable boundary endemic equilibrium E1 or
the equilibrium associated with strain 1 oscillations). Hence, E2 is unstable when
R2 > f (R1). Similarly, E1 is unstable when R1 > g(R2). Hence, coexistence is
expected when R2 > f (R1) and R1 > g(R2).

Figure 9.12 depicts the stability of the equilibria and periodic solutions when
(R1,R2) lies in Regions I and III. It illustrates how the stabilities of equilibria and
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Fig. 9.11 Bifurcation diagrams in the (R1,R2) plane for various combination of σ1 and σ2 values
in relation to the threshold levels of σ ∗

1 and σ ∗
2 (cross-immunity). Regions I–III denote the

existence and stability of E1, E2, and coexistence, respectively

Fig. 9.12 Depiction of the stability properties of equilibria and periodic solutions for parameter
values in different regions. A solid circle represents a stable boundary (strain 1 only) equilibrium.
A solid square represents an unstable boundary (strain 2 only) equilibrium. A star represents a
stable interior (coexistence of both strains) equilibrium. A solid (dashed) closed orbit represents a
stable (unstable) period solution

periodic orbits change their stability when the parameters α1 and α2 change their
values crossing the critical points αic (i = 1, 2).

The focus of this study is on the time evolution of influenza A in a non-fixed
landscape driven by tight coevolutionary interactions (that is, interactions where the
fate of the host and the parasite are intimately connected) between human hosts and
competing strains. The process is mediated by intervention (behavioral changes) and
cross-immunity. In other words, the nature of the invading landscape (susceptible
host) changes dynamically from behavioral changes (isolation, short time scale) and
past immunological experience (cross-immunity, long time scale).

The “partial” herd immunity generated by past history of invasions on the host
population can have a huge impact on the quantitative dynamics of the “flu” at the
population level. The assumption that σ12 = σ21 = σ for i �= j naturally results
in a dynamic landscape that is not too different (in the oscillatory regime) than
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the one observed on single-strain models with isolation [25, 31]. That is, a lack of
heterogeneity in cross-immunity results in a system “more or less” driven (in the
oscillatory regime) by the process of isolation.

The results show that multiple strain coexistence is highly likely for antigenically
distinct (weak cross-immunity) strains and not for antigenically similar under
symmetric cross-immunity (“competitive exclusion” principle [10]) . As the levels
of cross-immunity weaken, the likelihood of sub-threshold coexistence increases.
However, “full” understanding of the evolutionary implications that result from
human host and influenza virus interactions may require the study of systems
that incorporate additional mechanisms such as seasonality in transmission rates,
age structure, individual differences in susceptibility or infectiousness, and the
possibility of coinfections. Thacker [46] notes that the observed seasonality of
influenza in temperate zones may be the key to observed patterns of recurrent
epidemics. Superinfection may also be a mechanism worth consideration, even
though studies in [46] show that it is only moderately possible for young individuals
to become infected with two different strains in one “flu” season.

9.8 Exercises

1. Write the basic influenza model of Sect. 9.2 as an age of infection model and
calculate its basic reproduction number.

2. Write the vaccination model of Sect. 9.2.1 as an age of infection model and
calculate its reproduction number. [Warning: In order to do this, you will need
to formulate a heterogeneous mixing age of infection model because vaccinated
and unvaccinated individuals have different infectivities and susceptibilities.]

In the analysis of seasonal and pandemic influenza in this chapter, we have
used simple SIR models. However, influenza has a more complicated structure,
with exposed periods and asymptomatics. The obvious way to include this more
complicated structure would be to use age of infection models.

3. Formulate an age of infection model analogous to the seasonal epidemic
model (9.13), and calculate its reproduction number and final size relation.

4. Formulate an age of infection model analogous to the pandemic influenza
model (9.18), and calculate its reproduction number and final size relation.

5. Formulate an age of infection model analogous to the combined
seasonal/pandemic influenza model (9.21) and calculate its reproduction
number.

6. Consider the model (9.14) in Sect. 9.4. Choose parameters to make the basic
reproduction number equal to 1.5, take σi = 1−qi , where q = 0.75, and τi = 1.
Simulate the model and determine the final sizes.

7. Use the final sizes obtained from Exercise 6 as initial sizes and repeat the
simulation. Repeat this several times to see if the final sizes approach limits.
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8. Use the limiting final sizes obtained in Exercise 7 as initial sizes and simulate the
model (9.18) of Sect. 9.5 with parameters giving a basic reproduction number of
2. Determine the final size of the pandemic.

9. Simulate the model (9.21) of Sect. 9.5 for various values of ρ between 0 and 1.
For which values do seasonal and pandemic strains coexist and for which values
does the pandemic strain replace the seasonal strain? (References: [3, 4, 8].)
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Chapter 10
Models for Ebola

Another important infectious disease is Ebola virus disease (EVD). Ebola hemor-
rhagic fever is a very infectious disease with a case fatality rate of more than 70%.
It was first identified in 1976 in the Democratic Republic of Congo and there have
been more than a dozen serious outbreaks since then. The most serious outbreak to
date occurred in 2014 in Guinea, Liberia, and Sierra Leone and caused more than
10,000 deaths. Response to this epidemic included the development of vaccines to
combat the disease, currently being used to combat the most recent outbreak in the
Democratic Republic of Congo.

A distinctive feature of the Ebola virus is much disease transmission occurs
through contact with bodily fluids at funerals of Ebola victims. Many mathematical
models have been used to study its disease transmission dynamics. Most of these
studies have focused on estimating the basic and effective reproduction numbers
of EVD, assessing the rate of growth of an epidemic outbreak, evaluating the
effect of control measures on the spread of EVD, and conducting more theoretical
investigations on how model assumptions may affect model outcomes (see, for
example, [1, 3, 7, 8, 11, 18, 23, 25–27, 29, 31, 35, 36, 40]). Although some of
these models have provided useful information and better understanding of EVD
dynamics and evaluation of control programs, most of these models failed to provide
reasonable projections for the 2014 outbreak in West Africa. It is important to
examine the reasons for this, including the underlying assumptions made in these
models. In this chapter, we describe several models for Ebola.

10.1 Estimation of Initial Growth and Reproduction
Numbers

Estimation of the basic and effective reproduction numbers for EVD has been
conducted for both the 2014 outbreaks in West Africa and some of the outbreaks
in the past (see, for example, [1, 11, 23, 25, 36]). In [11], a standard SEIR model
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is used for estimating R0 and exploring the effect of timing of the intervention
on the epidemic final size. Let S(t), E(t), I (t), and R(t) denote the number of
susceptible, exposed, infective, and removed individuals at time t (the dot denotes
time derivatives), and let C(t) denote the cumulative number of Ebola cases
from the time of onset of symptoms. Assume that exposed individuals undergo
an average incubation period (asymptomatic and uninfectious) of 1/k days before
progressing to the infective class I . Infective individuals move to the R-class (death
or recovered) at the per-capita rate γ . The model reads

S′ = −βS(t)I (t)/N

E′ = βS(t)I (t)/N − kE(t)

I ′ = kE(t) − γ I (t)

R′ = γ I (t)

C′ = kE(t).

(10.1)

The model (10.1) predicts initial exponential growth of the number of infectives,
but in fact the initial growth rate is less than exponential. One way to modify the
model to allow this is to assume behavioral changes including education of hospital
personnel and community members on the use of strict barrier nursing techniques
(i.e., protective clothing and equipment, patient management), and the rapid burial
or cremation of patients who die from the disease. It is assumed that the net effect
is a reduced transmission rate β from β0 to β1 < β0. To take into consideration that
the impact of the intervention is not instantaneous, the transmission rate is assumed
to decrease gradually from β0 to β1 according to

β(t) =
{
β0 t < τ

β1 + (β0 − β1)e
−q(t−τ) t ≥ τ

where τ is the time at which interventions start and q controls the rate of the
transition from β0 to β1. Another interpretation of the parameter q can be given
in terms of th = log(2)

q
, the time to achieve β(t) = β0+β1

2 .
The basic reproduction number R0 corresponds to β0. If R0 can be estimated

from data, then β0 can be determined using the relation R0 = β0/γ . For estimating
R0, consider the E and I equations in (10.1) and the corresponding Jacobian matrix
J at the disease-free equilibrium

J =
(−k β

k −γ

)

.

The characteristic equation is given by

r2 + (k + γ )r + (γ − β)k = 0, (10.2)
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Fig. 10.1 (Top) Cumulative number of cases (log-lin scale) during the exponential growth phase
of the Congo 1995 epidemic as identified by the date of start of interventions (09 May 1995
[24]). The model-free initial growth rate of the number of cases for Congo 1995 is 0.07 (linear
regression); (bottom) estimated distribution of R0 from our uncertainty analysis (see text). R0 lies
in the interquartile range (IQR) (1.66–2.28) with a median of 1.89. Notice that 100% of the weight
lies above R0 = 1

and the dominant eigenvalue r represents the early-time and per-capita free growth
of the outbreak. Replacing the β in (10.2) by γR0 and solving for R0, we obtain

R0 = 1 + r2 + (k + γ )r

kγ
.

Using the time series y(t) (before intervention) of the cumulative number of cases
and assuming exponential growth (y(t) ∝ ert ) an estimate of r can be obtained,
as shown in Fig. 10.1 (top). The estimate of the initial rate of growth r for the
Congo 1995 epidemic is r = 0.07 day−1. Based on this fixed r and Monte Carlo
sampling of size 105 from the distributed epidemic parameters (1/k and 1/γ ) [5],
a distribution of R0 can be obtained as demonstrated in Fig. 10.1 (bottom), which
shows that the distribution lies in the interquartile range (IQR) (1.66–2.28) with a
median of 1.89.

Similar estimates for Congo 1995 data can be obtained. The estimated parameter
values are listed in Table 10.1.
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Table 10.1 Parameter definitions and baseline estimates obtained from the best fit of the model
equations (10.1) to the epidemic-curve data of the Congo 1995 and Uganda 2000 outbreaks

Congo 1995 Uganda 2000

Parameter Definition Estim. SD Estim. SD

β0 Pre-interventions transmission rate (days−1) 0.33 0.06 0.38 0.24

β1 Post-interventions transmission rate (days−1) 0.09 0.01 0.19 0.13

th Time to achieve β0+β1
2

(days) 0.71 (0.02, 1.39) 0.11 (0, 0.87)

1/k Mean incubation period (days) 5.30 0.23 3.35 0.49

1/γ Mean infectious period (days) 5.61 0.19 3.50 0.67

The parameters are 0 < β < 1, 0 < q < 100, 1 < 1/k < 21, 3.5 < 1/γ < 10.7

We use the model (10.1) to evaluate intervention strategies, including surveil-
lance and placement of suspected cases in quarantine for 3 weeks (the maximum
estimated length of the incubation period). The effectiveness of interventions can
be quantified in terms of the reproduction number Rp after interventions are
implemented. For the case of Congo Rp = 0.51 (SD 0.04) and Rp = 0.66 (SD
0.02) for Uganda. Furthermore, the time to achieve a transmission rate of β0+β1

2 (th)
is 0.71 (95% CI (0.02, 1.39)) days and 0.11 (95% CI (0, 0.87)) days for the cases of
Congo and Uganda, respectively, after the time at which interventions begin.

Using the parameter values estimated from early growth, the model (10.1) can
be used to simulate the Ebola outbreaks in Congo (1995) and Uganda (2000).
Figure 10.2 illustrates results via Monte Carlo simulations of the stochastic model
corresponding to (10.1) [33], which is constructed by considering three events:
exposure, infection, and removal. The transition rates are defined as

Event Effect Transition rate

Exposure (S, E, I, R) → (S-1, E+1, I, R) β(t)SI/N

Infection (S, E, I, R) → (S, E-1, I+1, R) kE

Removal (S, E, I, R) → (S, E, I-1, R+1) γ I

Figure 10.2 illustrates that there is very good agreement between the mean of
the stochastic simulations and the reported cases. The empirical distribution of the
epidemic final sizes for the cases of Congo 1995 and Uganda 2000 is given in
Fig. 10.3.

The epidemic final size is sensitive to the start time of interventions τ . Numerical
solutions (deterministic model) show that the epidemic final size grows exponen-
tially fast with the initial time of interventions. For instance, for the case of Congo,
the model predicts that there would have been 20 more cases if interventions had
started 1 day later, as shown in Fig. 10.4.

As for most outbreaks, the initial growth of the outbreaks in Congo 1995 and
Uganda 2000 is exponential. However, it is discussed that for the 2014 outbreaks in
West Africa there are significant differences in the growth patterns of EVD cases at
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Time Time

Fig. 10.2 Comparison of the cumulative number of Ebola cases during the Congo 1995 and
Uganda 2000 Ebola outbreaks, as a function of the time of onset of symptoms. Circles are the
data. The solid line is the average of 250 Monte Carlo replicates and the error bars represent
the standard error around the mean from the simulation replicates using our parameter estimates
(Table 10.1). For the case of Congo 1995, simulations were begun on 13 Mar 1995. A reduction
in the transmission rate β due to the implementation of interventions occurs on 09 May 1995 (day
56) [24]. For the case of Uganda 2000, simulations start on 27 August 2000 and interventions take
place on 22 October 2000 (day 56) [41]

Fig. 10.3 The epidemic final size distributions for the cases of Congo 1995 and Uganda 2000
obtained from 250 Monte Carlo replicas. Crosses (X) represent the epidemic final size from data
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Fig. 10.4 Sensitivity of the final epidemic final size to the starting time of interventions. The
negative numbers represent number of days before the actual reported intervention date and
positive numbers represent a delay after the actual reported intervention date (τ = 0)

the scale of the country, district, and other sub-national administrative divisions. It is
illustrated that the cumulative number of EVD cases in a number of administrative
areas of Guinea, Sierra Leone, and Liberia is best approximated by polynomial
rather than exponential growth over several generations of EVD. It is also observed
that, when data are aggregated nationally, or across the broader West Africa region,
total case counts show periods of approximate exponential growth.

Temporal evolution of the effective reproduction number of Ebola is studied
in [36]. In this study, a simple SEIR model with standard incidence is used in
combination with the limited existing data to determine whether the transmission
rate of Ebola has been changing over time in West Africa. To this end, piece-
wise exponential curves were fit to the time series of outbreak data to estimate the
temporal evolution of the effective reproduction number of the disease. Instead of
R0, the study focuses on assessing the time evolution of the effective reproduction
number denoted by Reff , which is a dynamic estimate of the average number of
secondary cases per infectious case in a population composed of both susceptible
and non-susceptible individuals during the course of an outbreak. The SEIR model
and its linearization about this temporary “equilibrium” are used to determine the
predicted local rate of exponential rise of the epidemic curve, ρeff . For the SEIR
model, this is related to Reff by

Reff =
(

1 + ρeff

γ

)(

1 + ρeff

κ

)

, (10.3)
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Fig. 10.5 Time series of incidence of EVD cases in West Africa

where 1/κ and 1/γ are the average incubation and infective periods of the
disease, respectively. With estimates of ρeff from piecewise exponential rise fits
to the incidence data from an outbreak (along with estimates of the incubation and
infective periods of the disease), ρ can be estimated (Fig. 10.5), and then Eq. (10.3)
can be used to obtain estimates of the temporal behavior of Reff (Fig. 10.6), in
essence approximating the temporal behavior with a piece-wise step-function.

Figure 10.5 shows time series of recorded average number of new EVD cases
per day during the initial phase of the 2014 West African outbreak, for Guinea,
Sierra Leone, and Liberia (dots). The green lines show a selection of the piece-
wise exponential fits to the data (not all fits are shown to clarify the presentation); a
moving window of groups of ten contiguous points are taken at a time, and the rate
of exponential rise estimated for those ten points. The results for the estimations of
the exponential rise for the full set of piece-wise fits are shown in Fig. 10.6. Shown
in red is the fitted exponential rise from July 1st onwards.
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Fig. 10.6 Estimated rates of exponential rise from piece-wise exponential fits

In Fig. 10.6, estimated rates of exponential rise from piece-wise exponential fits
to the average daily EVD incidence data, as shown in Fig. 10.5; a moving window
of groups of ten contiguous incidence data time series points are taken at a time,
and the rate of exponential rise estimated for those ten points. The dates shown on
the x axis are the last date in each contiguous set of ten points, and the vertical
error bars denote the 95% confidence interval. The horizontal black line shows the
estimated rate of rise of an exponential fit to the incidence time series from July 1st
to September 8th, with the black dotted lines indicating the 95% confidence interval.

10.1.1 Early Detection

The effect of early detection on Ebola control is studied in [10]. The model considers
six epidemiological classes: susceptible individuals (S), latent undetectable individ-
uals (E1), latent detectable individuals (E2), infectious symptomatic individuals (I ),
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isolated individuals (J ), and individuals removed from isolation after recovery or
disease-induced death (P ), P = R + D, where R is the recovered class and D is
the death-induced class. Susceptible individuals become infected and latent through
contact with an infectious individual at the per-capita rate (I + lJ ) = N , where β

is the mean transmission rate per day, l is defined as the relative transmissibility of
isolated individuals, i.e., it is a measure of the effectiveness of isolation of infective
individuals, and N is the total population size. Latent undetectable individuals (E1)
enter the latent detectable class E2 at a rate k1, and become infectious symptomatic
at a rate k2. A fraction of the latent detectable individuals are diagnosed (i.e., by
RT-PCR), pT = fT = (fT + k2), and become isolated. We assume that the latent
detectable class represents individuals with a viral load above the detection limit of
the specific diagnostic test. Infective individuals are isolated at a rate α, or they are
removed after recovery or disease-induced death at a rate γ . Similarly, individuals
are removed from isolation after recovery or disease-induced death, but at a rate γr .
The model reads

S′ = −βS
I + lJ

N

E′
1 = βS

I + lJ

N
− k1E1

E′
2 = k1E1 − k2E2 − fT E2

I ′ = k2E2 − (α + γ )I

J ′ = αI + fT E2 − γrJ

R′ = γ (1 − δ)I + γr(1 − δ)J

D′ = γ δI + γrδJ

N = S + E1 + E2 + I + J + R.

(10.4)

The analysis suggests that the impact of early diagnosis of pre-symptomatic
infections is strongly dependent on the effectiveness of isolation of infective
individuals in health-care settings. For instance, with an isolation effectiveness of
50% and with an average time of 3 days from the onset of symptoms to isolation,
the attack rate (total number of Ebola cases/population size) remains essentially
unchanged as the rate of pre-symptomatic case detection increases (Fig. 10.7).
In contrast, early detection of pre-symptomatic individuals can have a significant
impact on the transmission dynamics of Ebola if the effectiveness of isolating
infective cases is at least 60%. Even at this level of isolation, at least 50% of
pre-symptomatic cases would need to be detected in the community, a scenario
difficult to achieve with limited resources. When the effectiveness of isolation is
increased to 65%, detecting about 25% of pre-symptomatic cases is predicted to
lead to epidemic control, i.e., the effective reproduction number is reduced below
the epidemic threshold.
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Fig. 10.7 Predictions of the effect of diagnosing pre-symptomatic individuals on the attack rate
of the Ebola epidemic. The mean time from onset of symptoms to isolation was set at 3 days

10.2 Evaluations of Control Measures

One of the typical characteristics for EVD is that significant transmissions can
occur by infectious individuals after death but before burial. Also, no effective
drugs or vaccine were available for the outbreak in West Africa. The main control
measures include isolation, hospitalization, contact tracing, and safe burial. Several
mathematical models have been used to assess the effectiveness of these control
measures (e.g., [3, 7, 26, 27, 35, 40]). Most of the models in these studies use SEIR
type of models with various modifications. One of the EVD models on which many
other models are based is the one considered in Legrand et al. [26], which will be
discussed in more detail in the next section.

A model considered in [7] has the following form (with modified notation):

S′ = −βS(Ih + Iu)/N

E′ = βS(Ih + Iu)/N − αE

I ′
h = pαE − δhIh

I ′
u = (1 − ρ)αE − δuIu

H ′ = δhIh,

(10.5)

where N is the total population size and is assumed to be constant. In this model, two
separate compartments for infective individuals are considered, namely infective
individuals which will be hospitalized/reported (Ih) and infectious individuals
which will not be hospitalized and unreported (Iu). The H compartment represents
the cumulative hospitalized/reported cases (so it includes those who are recovered
after being hospitalized). The model (10.5) also assumes that individuals in both Ih
and Iu have the same transmission rate β, p is the fraction of hospitalized cases,
1/δh is time from infectiousness (symptom) onset until hospitalization/isolation
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Fig. 10.8 A transition
diagram for model (10.5) H

U
ES

Iu

Ih

and reporting, and 1/δu is the mean infective period for an unhospitalized case.
A transition diagram of the model is depicted in Fig. 10.8.

For model (10.5), the reproduction number is given by

Re = R0

(

p
δu

δh
+ 1 − p

)

,

where R0 = β/δu is the basic reproduction number. An extension of the
model (10.5) is also considered in [7] to take into consideration contact tracing.

The following deterministic model is considered in [25].

S′ = −R0δSI/N,

E′
1 = R0δSI/N − mαE1,

E′
i = mα(Ei−1 − Ei), i = 2, · · · ,m

I ′ = mαEm − δI,

R′ = δI.

(10.6)

In model (10.6), the stage distribution of the latent stage is assumed to be gamma
with the shape parameter equal to m, which leads to a division of the exposed class
E into m sub-classes with mean duration 1/(mα). By examining the model fit to the
weekly case reports in Guinea, Liberia, and Sierra Leone from the WHO situation
report dated from 1 October 2014 (http://www.who.int/csr/disease/ebola/situation-
reports/en/), the authors pointed out that fitting of such deterministic models to
cumulative incidence data can lead to bias and pronounced underestimation of the
uncertainty associated with model parameters.

The models (10.5) and (10.6) ignored the special characteristic associated with
the fact that significant transmissions can occur by those who are dead but not yet
buried. This is considered in the Legrand model, which is discussed in detail next.

http://www.who.int/csr/disease/ebola/situation-reports/en/
http://www.who.int/csr/disease/ebola/situation-reports/en/
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10.3 The Legrand Model and Underlying Assumptions

Many mathematical models have been used for the recent epidemics of Ebola in
West Africa. However, the success of these models in the case of the 2014 Ebola
outbreak in West Africa was very limited. As pointed out in [8], “mathematical
models have failed to accurately project the outbreak’s course.” Although various
reasons may explain why “on-the-ground data contradict the projections of pub-
lished models,” including incomplete and unreliable data on Ebola epidemiology
(especially in the hardest-hit areas) and lack of empirical data on how disease-
control measures quantitatively affect Ebola transmission, it is important to examine
the appropriateness of assumptions made in the models on which the projections
are based. This is the objective of this section. There have been various modeling
approaches, including deterministic and stochastic models, or relatively simple
models consisting of ordinary differential equations (ODEs) and more complicated
agent-based models, among others. Many of the ODE models are variations of the
model studied by the Legrand model (10.7). It has been pointed out that some of
the assumptions made in the Legrand model may not have clear justifications (e.g.,
[35]). Thus, it is important to examine the critical assumptions made in this model
and better understand their possible impact on model outcomes.

10.3.1 The Legrand Model

The Legrand et al. model [26] consists of a system of ordinary differential equations
with six compartments representing the epidemiological classes of susceptible (S),
exposed (E), infective (I ), hospitalized (H ), dead but not yet buried (D), and
removed (R). The transition diagram of the model is depicted in Fig. 10.9.

Fig. 10.9 A transition diagram for the model in Legrand et al. [26]
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The model presented by Legrand et al. [26] reads

dS

dt
= − 1

N
S(βI I + βHH + βDD)

dE

dt
= 1

N
S(βI I + βHH + βDD) − αE

dI

dt
= αE − (γhθ1 + γi(1 − θ1)(1 − δ1) + γd(1 − θ1)δ1)I

dH

dt
= γhθ1I − (γdhδ2 + γih(1 − δ2))H

dD

dt
= γd(1 − θ1)δ1I + γdhδ2H − γfD

dR

dt
= γi(1 − θ1)(1 − δ1)I + γih(1 − δ2)H + γfD.

(10.7)

The parameters βI , βH , and βD denote the transmission rates in the I , H , and D

classes, respectively; let 1/α be the mean latent period; and let 1/γf be the mean
time between death and burial.

The three key parameters that are in the Legrand model (10.7), θ1, δ1, and δ2,
do not have direct biological meaning but are computed based on the probabilities
of hospitalization and of disease-induced mortality with or without hospitalization.
For example, the fraction of infective people hospitalized is

p = γhθ1

γhθ1 + γi(1 − θ1)(1 − δ1) + γd(1 − θ1)δ1
, (10.8)

and the probabilities of death with (fh) and without hospitalization (fi) are given
by

fh = γdhδ2

γdhδ2 + γih(1 − δ2)

fi = γdδ1

γi(1 − δ1) + γdδ1
.

(10.9)

If we assume fi = fh = f , then θ1, δ1, and δ2 can be determined in terms of p and
f using (10.8) and (10.9).

In addition, the Legrand model imposes the following constraints:

1

γi
= 1

γh
+ 1

γih
and

1

γd
= 1

γh
+ 1

γdh
, (10.10)
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and assumes that hospitalization does not affect the time from onset to recovery
or from onset to death. Other assumptions made in model (10.7) are associated
with exponential waiting times. It is assumed that, after entering the infective class
I , individuals can leave due either to hospitalization (entering H ) or recovery
without being hospitalized (entering R from I ) or death without being hospitalized
(entering D from I ) with average waiting times 1/γh, 1/γi , 1/γd , respectively. Or
equivalently, after onset, individuals enter the H , R, and D classes at constant rates
γh, γi , and γd , respectively. Their model assumes that the overall rate of leaving the
I class, denoted by Δ, is a weighted average of the three rates γh, γi , and γd as

Δ = θ1γh + (1 − θ1)δ1γd + (1 − θ1)(1 − δ1)γi, (10.11)

where θ1 is the proportion of cases hospitalized, and δ1 is a coefficient that is
determined such that

δ1γd

δ1γd + (1 − δ1)γi

is equal to case fatality (i.e., the proportion of cases that die).

10.3.2 A Simpler System Equivalent to the Legrand Model

It is shown in [18] that the Legrand model (10.7) is equivalent to the following
model:

dS

dt
= − 1

N
S(βI I + βHH + βDD),

dE

dt
= 1

N
S(βI I + βHH + βDD) − αE,

dI

dt
= αE − γ I,

dH

dt
= pγ I − ωH,

dD

dt
= (1 − p)f γ I + fωH − γfD,

dR

dt
= (1 − p)(1 − f )γ I + (1 − f )ωH,

(10.12)

where

1

γ
= p

1

γIH
+ (1 − p)f

1

γID
+ (1 − p)(1 − f )

1

γIR
,

1

ω
= f

1

ωHD

+ (1 − f )
1

ωHR

.

(10.13)
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Using the following connections between parameters in (10.12) and the Legrand
model (10.7):

γIR = γi, γIH = γh, γID = γd,

the conditions in (10.13) can be written as

1

γ
= p

1

γh
+ (1 − p)fi

1

γd
+ (1 − p)(1 − fi)

1

γi
,

1

ω
= fh

1

γdh
+ (1 − fh)

1

γih
,

(10.14)

and the constraints (10.10) becomes

1

γIR
= 1

γIH
+ 1

ωHR

,
1

γID
= 1

γIH
+ 1

ωHD

. (10.15)

The only minor difference between the two models is where to move the buried
(whether or not to R), which does not affect the dynamic behavior of the model.

10.4 *Models with Various Assumptions on Stage Transition
Times

In the Legrand model (10.7) or the equivalent model (10.12), it is not clear what
underlying assumptions have been made regarding the distributions of waiting times
for epidemiological processes including the time from onset to recovery (transition
from I to R), to hospitalization (transition from I to H ), and to death (transition
from I to D). For ease of reference, we refer to these three transitions as IR,
IH, and ID, respectively. In addition, the two possible transitions for hospitalized
individuals, recovery or death, are denoted by HR and HD. In this section, we
derive three integro-differential equations models under different assumption on
those transition times and compare the difference in the model outcomes.

Let TP , TL, and TM denote random variables for the waiting times associated
with IR, IH, and ID, and let the associated survival functions be denoted by
P(t), L(t), and M(t), respectively. The mean duration of these transitions are,
respectively, E[TP ], E[TL], and E[TD]. Similarly, let DHR and DHD denote the
mean duration from hospitalization to recovery or death, respectively. For ease of
comparison between models presented in this paper, we list in Table 10.2 some
of the quantities that play common roles and have clear biological meaning in
these models. Several of these quantities should have values that are independent of
model assumptions, including the mean duration (absent intervention) from onset to
recovery E[TP ], the probability of hospitalization p, and the probability of death f .
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Table 10.2 Definition of symbols commonly used in the models in this section

Symbol Definition

TP , TL, TM Random variables for the waiting times in I before moving to R, H , D,
respectively

XI Random variable for the overall time spent in the I compartment

XH Random variable for the overall time spent in the H compartment

Pi(s) Probability that a living individual remains infectious s units of time since
onset

for models I, II, III when i = 1, 2, 3, respectively. That is, P
[
TPi

> s
] = Pi(s)

Li(s) Probability of a living individual not being hospitalized s units of time since
onset

for models I, II when i = 1, 2, respectively. That is, P
[
TLi

> s
] = Li(s)

M1(s) Probability of surviving the disease s units of time since onset for model I.
That is,

P
[
TM1 > s

] = M1(s)

Q3(s) Probability of not having recovered s time units after being hospitalized for
model III

E[TP ] Mean duration from onset to recovery (absent intervention or death)

E[TL] Mean duration from onset to hospitalization (given hospitalized and not dead)

E[TM ] Mean duration between onset and death (absent intervention or recovery)

E[XI ] Mean duration in the I compartment (hospitalization and death included)

E[XH ] Mean duration in the H compartment (death included)

DHR Mean duration from hospitalization to recovery

DHD Mean duration from hospitalization to death

γIR = 1/E[TP ]
γIH = 1/E[TL]
γID = 1/E[TM ]
ωHR = 1/DHR , per-capita rate of transition from H to R if the transition is

exponential

ωHD = 1/DHD , per-capita rate of transition from H to D if the transition is
exponential

p Proportion hospitalized (dependent on control effort)

f Probability of death (with or without hospitalization)

γ = 1/E[XI ], per-capita rate of exiting I if XI is exponential

If the transitions IR, IH, and ID are assumed to be independent in the Legrand
model and the waiting times are all exponentially distributed with mean durations
1/γIR, 1/γIH , and 1/γID , respectively, then the mean overall time spent in the I

compartment is

E
[

min {TP , TL, TM} ] =
∫ ∞

0
P(t)L(t)M(t)dt = 1

γIR + γIH + γID
.
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Thus, the overall rate of exiting I is γIR + γIH + γID , which is not a weighted
average given by Δ in (10.11) for the Legrand model. This implies that the Legrand
model has made different assumptions on these transitions.

In the formulation of the integro-differential equations models, we will adopt
probabilistic terminology to facilitate the interpretation of these models, and focus
on the following three scenarios:

(I) Assume that the three transitions IR, IH, and ID are independent and the
waiting times are described by the survival functions P1(s), L1(s), and M1(s),
respectively, where s represents the time-since-onset. It is also assumed that
hospitalization does not affect the time from onset to recovery or death.

(II) The two transitions IR and ID are combined and described by a single survival
function P2(s), with a fraction 1−f of the exiting individuals recovering (and
the fraction f dying). The transition IH is independent of IR and ID and the
waiting time is described by the survival function L2(s). Similar to model I,
it is also assumed that hospitalization does not affect the time from onset to
recovery or probability of death.

(III) All three transitions (IH, IR, and ID) are combined and described by a single
survival function P3(s), with a fraction p of the exiting individuals being
hospitalized and a fraction 1 − f (respectively, f ) of the non-hospitalized
individuals recovering (respectively, dying). The two transitions HR and HD
are combined and the waiting time is described by a single survival function
Q3(s) with a fraction 1 − f (or f ) of the exiting individuals recovering (or

dying). P3 and Q3 are assumed to be independent. Unlike models I and II, in
which the time from onset to hospitalization is tracked due to the independent
stage distributions, in model III a constraint must be imposed so that the time
between onset and hospitalization plus the time between hospitalization and
recovery (or death) equals the time between onset and recovery (or death).

To focus on the general waiting time for the infective stage and its influence on
model formulation when hospitalization is considered, assume simpler distributions
for other stages including the latent stage and the duration between death and burial.
That is, the E and D stages are assumed to have exponential distributions with
constant rates α and γf . As the models are derived under arbitrary distributions
for the waiting times of key disease stages, they consist of systems of integro-
differential equations. It shows that these systems reduce to ODE systems when
the arbitrary stage distributions are replaced by gamma or exponential distributions.
Detailed derivations of the systems of integral equations are provided in Feng et al.
(2016).
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The model I, which corresponds to the scenario (I) described above, assumes
independent IR, IH, and ID processes. Let TP1 , TL1 , and TM1 denote random
variables for the independent waiting times of IR, IH, and ID, respectively, that
are described by the following survival functions:

• P1(s): Probability that a living individual remains infectious s units of time since
onset (governing both IR and HR).

• L1(s): Probability of a living individual not being hospitalized s units of time
since onset (governing the IH transition).

• M1(s): Probability of surviving the disease s units of time since onset (governing
both ID and HD).

Figure 10.10 depicts the transitions between epidemiological classes for the model
under scenario (I). All variables and parameters have the same meanings as
before unless otherwise stated. The diagram in (a) depicts transitions between
compartments when stage durations for the IR, IH, and ID transitions are arbi-
trarily described by the survival functions P1(t), L1(t), and M1(t). The dotted
rectangle around the I and H compartments indicates that individuals in these two
compartments are being tracked for their time-since-onset using the same survival

(a) Arbitrary distributions

(b) Gamma distributions

Fig. 10.10 Transition diagram for Model I when TP1 , TL1 , and TM1 are arbitrary (a), or
gamma/exponential (b). The corresponding survival functions are P1(t) (red), L1(t) (green), and
M1(t), respectively
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function P1(t), i.e., the time elapsed in I before entering H is taken into account
when determining the time between entering H and recovery. The diagram in
(b) illustrates the effect of the “linear chain trick” when P1(t) follows a gamma
distribution, and L1(t) and M1(t) follow exponential survival functions.

The model with the general stage distributions P1, L1, and M1 consists of the
following system of integro-differential equations:

dS

dt
= −λ(t)S,

dE

dt
= λ(t)S − αE,

I (t) =
∫ t

0
αE(s)P1(t − s)L1(t − s)M1(t − s)ds + I (0)P1(t)L1(t)M1(t),

H(t) =
∫ t

0
αE(s)P1(t − s)M1(t − s)

[
1 − L1(t − s)

]
ds

+I (0)P1(t)M1(t)
[
1 − L1(t)

]
, (10.16)

D(t) =
∫ t

0

[∫ τ

0
αE(s)P1(τ − s)gM1(τ − s)ds + I (0)P1(τ )gM1(τ )

]

e−γf (t−τ)dτ,

R(t) =
∫ t

0

[∫ τ

0
αE(s)gp1

(τ − s)M1(τ − s)ds + I (0)gp1
(τ )M1(τ )

]

dτ,

where λ(t) is given by

λ(t) = βI I + βHH + βDD

N
, (10.17)

The initial condition is (S(0), E(0), I (0),H(0),D(0), R(0)) = (S0, E0, I0, 0,
0, 0), where S0 and E0 are positive constants. Notice that in system (10.16), the
probability distributions for TP1 , TL1 , and TM1 are arbitrary.

Consider the case when TP1 follows a gamma distribution with shape and rate
parameters (n, nγ1) (where n ≥ 1 is an integer), and TL1 and TM1 follow exponential
distributions with parameters χ1 and μ, respectively (which are gamma distributions
with shape parameter 1). That is,

P1(t) = Gn
nγ1

(t) =
n∑

j=1

(nγ1t)
j−1e−nγ1t

(j − 1)! ,

L1(t) = G1
χ1
(t) = e−χ1t ,

M1(t) = G1
μ(t) = e−μt .

(10.18)
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Then, it is shown in [18] that (10.16) is equivalent to the following system of ODEs:

dS

dt
= − 1

N
S
(
βI

n∑

j=1

Ij + βH

n∑

j=1

Hj + βDD
)
,

dE

dt
= 1

N
S
(
βI

n∑

j=1

Ij + βH

n∑

j=1

Hj + βDD
)

− αE,

dI1

dt
= αE − (nγ1 + χ1 + μ)I1,

dIj

dt
= nγ1Ij−1 − (nγ1 + χ1 + μ)Ij , for j = 2, . . . n,

dH1

dt
= χ1I1 − (nγ1 + μ)H1,

dHj

dt
= χ1Ij + nγ1Hj−1 − (nγ1 + μ)Hj , for j = 2, . . . n,

dD

dt
= μ

n∑

j=1

Ij + μ

n∑

j=1

Hj − γfD,

dR

dt
= nγ1In + nγ1Hn.

(10.19)

In the special case when n = 1 (i.e., P1 is also an exponential distribution), the
model (10.19) simplifies to

dS

dt
= − 1

N
S(βI I + βHH + βDD),

dE

dt
= 1

N
S(βI I + βHH + βDD) − αE,

dI

dt
= αE − (γ1 + χ1 + μ)I,

dH

dt
= χ1I − (γ1 + μ)H,

dD

dt
= μI + μH − γfD,

dR

dt
= γ1I + γ1H.

(10.20)
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Note that in model (10.20) the per-capita transition rates from I to R and from
H to R are both equal to γ1, from which we have γIR = ωHR . This means that
the constraints in (10.15) for model (10.12) cannot be satisfied. Thus, model I
cannot be equivalent to the Legrand model. This suggests that Legrand et al. did not
assume that the three transitions of IR, IH, and ID were described by independent
exponential distributions and that the overall waiting time in the I compartment was
the minimum of these three exponential waiting times.

When P1, L1, and M1 are exponential with the respective parameters γ1, χ1, and
μ, because of the assumption in model I that the three transitions IR, IH, and ID
are independent, the overall waiting time in the I compartment is also exponential
with the rate constant γ1 + χ1 + μ. From the definition of these parameters, we
can link them to the general parameters (i.e., independent of model assumptions) in
Table 10.2. There might be multiple ways of making the connections. One example
is the following: For example,

1

γ1
= 1

γIR
= E[TP1], f = μ

γ1 + μ
, p = χ1

γ1 + χ1 + μ
, (10.21)

where γIR , f , and p are parameters that are independent of models. From the
relations in (10.21) we can express the rates γ1, χ1, and μ in terms of only γIR ,
p, and f :

γ1 = γIR, χ1 = γIR
p

(1 − f )(1 − p)
, μ = γIR

f

1 − f
. (10.22)

Reproduction Numbers for Models (10.16), (10.19), and (10.20)

Based on the biological meaning of RC , we obtain the following expression for

R
general
C1 for model (10.16) under general stage distributions:

R
general
C1 = βIE

(
min

{
TP1, TL1 , TM1

})

+βH

[
E
(
min

{
TP1 , TM1

})− E
(
min

{
TP1, TL1 , TM1

})]+ βD
1
γf

pM,

(10.23)

where

E
(
min

{
TP1, TL1 , TM1

}) =
∫ ∞

0
P1(t)L1(t)M1(t)dt
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represents the average time spent in the I compartment, and

E
(
min

{
TP1, TM1

}) =
∫ ∞

0
P1(t)M1(t)dt

represents the average total time spent in the I and H compartments.
For the model (10.19) with gamma distribution,

RGamma
C1 = βI

χ1 + μ

[

1 −
(

nγ1

nγ1 + χ1 + μ

)n]

+βH

μ

[
χ1

χ1 + μ
+ μ

χ1 + μ

(
nγ1

nγ1 + χ1 + μ

)n

−
(

nγ1

nγ1 + μ

)n]

+βD

γf

[

1 −
(

nγ1

nγ1 + μ

)n]

.

(10.24)

For the model (10.20) with exponential distribution,

R
Exp
C1 = βI

γ1 + χ1 + μ
+ βH

γ1 + μ

χ1

γ1 + χ1 + μ
+ βD

γf

μ

γ1 + μ

= βI

γ1 + χ1 + μ
+ βHp

γ1 + μ
+ βDf

γf
.

(10.25)

Next, consider different assumptions on the transition processes. In model I, the
three transitions IR, IH, and ID are assumed to be independent, in which case the
three transitions “compete” for individuals in the I class. Another scenario is to
consider only two independent transitions, one being hospitalization and the other
combining recovery and death for those who are not hospitalized. In this case, we
have two survival probability functions:

• P2(s): Probability of still being infectious and alive s time units after onset
(governing all four transitions IR, ID, HR, and HD).

• L2(s): Probability of not being hospitalized s time units after onset (governing
the IH transition).

Assume that, for those who exit I without being hospitalized, a fixed fraction 1 − f

(or f ) will recover (or die) an assumption of Legrand model. Assume also that
individuals in I and H classes have the same probability of death (f ), also as
assumed in the Legrand model. The transition diagram is depicted in Fig. 10.11a.
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(a) Arbitrary distributions

(b) Gamma distributions

Fig. 10.11 A transition diagram for model II when TP2 and TL2 are arbitrary distributions (a)
and when they are gamma or exponential (b). In (a), the recovery/death (red) and hospitalization
(green) transitions are governed by the survival functions P2 and L2. In (b), the recovery/death
(red) and hospitalization (green) transitions are indicated by the same colors as in (a)

Model II has the form

dS(t)

dt
= −λ(t)S(t),

dE(t)

dt
= λ(t)S(t) − αE(t),

I (t) =
∫ t

0
αE(s)P2(t − s)L2(t − s)ds + I (0)P2(t)L2(t),

H(t) =
∫ t

0
αE(s)P2(t − s)

[
1 − L2(t − s)

]+ I (0)P2(t)
[
1 − L2(t)

]
,

D(t) = f

∫ t

0

[∫ τ

0
αE(s)gP2(τ − s)ds + I (0)gP2(τ )

]

e−γf (t−τ)dτ,

R(t) = (1 − f )

∫ t

0

[∫ τ

0
αE(s)gP2(τ − s)ds + I (0)gP2(τ )

]

dτ.

(10.26)
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The function λ(t) is the same as in model I and given in (10.17). We can reduce
the integral equations in (10.26) to the ODEs given below:

dS

dt
= − 1

N
S
(
βI

n∑

j=1

Ij + βH

n∑

j=1

Hj + βDD
)
,

dE

dt
= 1

N
S
(
βI

n∑

j=1

Ij + βH

n∑

j=1

Hj + βDD
)

− αE,

dI1

dt
= αE − (nγ2 + χ2)I1,

dIj

dt
= nγ2Ij−1(t) − (nγ2 + χ2)Ij , for j = 2, . . . n,

dH1

dt
= χ2I1 − nγ2H1,

dHj

dt
= χ2Ij + nγ2Hj−1 − nγ2Hj , for j = 2, . . . n,

dD

dt
= f nγ2In + f nγ2Hn − γfD,

dR

dt
= (1 − f )nγ2In + (1 − f )nγ2Hn.

(10.27)

The reproduction numbers RC2 for model II also have different forms than those
for model I. In the case of general distributions,

R
general
C2 = βIE

(
min

{
TP2 , TL2

})+ βH

[
E
(
TP2

)− E
(
min

{
TP2, TL2

})]

+βD
1
γf

[f (1 − pH2) + fpH2] .

(10.28)

When P2 is a gamma distribution,

RGamma
C2 = βI

1

χ2

[

1 −
(

nγ2

nγ2 + χ2

)n]

+βH

[
1

γ2
− 1

χ2

[

1 −
(

nγ2

nγ2 + χ2

)n]]

+ βD

f

γf
. (10.29)
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When P2 is exponential, the model (10.27) becomes

dS

dt
= − 1

N
S(βI I + βHH + βDD),

dE

dt
= 1

N
S(βI I + βHH + βDD) − αE,

dI

dt
= αE − (γ2 + χ2)I,

dH

dt
= χ2I − γ2H,

dD

dt
= f γ2I + f γ2H(t) − γfD(t),

dR

dt
= (1 − f )γ2I + (1 − f )γ2H.

(10.30)

The formula for RC2 in (10.28) simplifies to

R
Exp
C2 = βI

γ2 + χ2
+ pβH

γ2
+ fβD

γf
. (10.31)

As in model I, there can be multiple choices for linking the parameter γ2 to the
common parameters. For example,

1

γ2
= (1 − f )

1

γIR
+ f

1

γID
,

where 1/γID denotes the average time from onset to death. Also, p = χ2/(γ2 +χ2).
Thus,

γ2 = 1

(1 − f )/γIR + f/γID
, χ2 = γ2p

1 − p
. (10.32)

Another set of possible assumptions that are different from models I and II
is to consider two independent distributions for the waiting times in I and H

compartments, denoted by TP3 and TQ3 , with survival functions

• P3(s): Probability of remaining in the I class s units of time since onset
(governing the transitions IR, IH, and ID).

• Q3(s): Probability remaining in the H class s units of time after being hospital-
ized (governing the HR and HD transitions).

Let p3(t) = −P ′
3(t) and q3(t) = −Q′

3(t) denote the probability density functions.
P3 describes the waiting time for the combined transitions, IR, IH, and ID. Assume
that among the individuals exiting the I class, fractions of p, (1−p)f , (1−p)(1−f )

will be hospitalized, non-hospitalized and dead, and non-hospitalized and recovered,
respectively (0 ≤ p, f < 1). Q3 describes the waiting time for the combined two
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(a) Arbitrary distributions

(b) Gamma distributions

Fig. 10.12 A transition diagram for model III when TP3 and TQ3 are arbitrary distributions (a)
and when they are gamma or exponential (b)

transitions, HR and HD, and we assume that fractions 1−f and f of the hospitalized
individuals recover or die, respectively. A transition diagram is shown in Fig. 10.12.

In this case, model III consists of the following system of integro-differential
equations:

S′(t) = −λ(t)S(t), E′(t) = λ(t)S(t) − αE(t),

I (t) =
∫ t

0
αE(s)P3(t − s)ds + I (0)P3(t),

H(t) =
∫ t

0
p

[∫ s

0
αE(τ)p3(s − τ)dτ + I (0)p3(s)

]

Q3(t − s)ds

D′(t) = (1 − p)f

[∫ t

0
αE(s)p3(t − s)ds + I (0)p3(t)

]

+f

∫ t

0

[

p

∫ s

0
αE(τ)p3(s − τ)dτ + pI (0)p3(s)

]

q3(t − s)ds − γfD(t),

R′(t) = (1 − p)(1 − f )

[∫ t

0
αE(s)p3(t − s))ds + I (0)p3(t)

]

+(1 − f )

∫ t

0

[

p

∫ s

0
αE(τ)p3(s − τ)dτ + pI (0)p3(s)

]

q3(t − s)ds.

(10.33)
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Note that it is easier in this case to write equations for D′ and H ′ than for D and H .
Assume that TP3 and TQ3 follow gamma distributions with shape parameters n

and m respectively, i.e., the survival functions are given by

P3(t) = Gn
nγ3

(t) =
n∑

j=1

[nγ3(t − s)] j−1e−nγ3(t−s)

(j − 1)! ,

Q3(t) = Gm
mω3

(t) =
m∑

j=1

[mω3(t − s)] j−1e−mω3(t−s)

(j − 1)! .

(10.34)

Then, the system (10.33) reduces to the following system of ODEs:

dS

dt
= − 1

N
S
(
βI

n∑

j=1

Ij + βH

m∑

j=1

Hj + βDD
)
,

dE

dt
= 1

N
S
(
βI

n∑

j=1

Ij + βH

m∑

j=1

Hj + βDD
)

− αE,

dI1

dt
= αE − nγ3I1,

dIk

dt
= nγ3Ik−1 − nγ3Ik, k = 2, . . . , n

dH1

dt
= pnγ3In − mω3H1,

dHk

dt
= mω3Hk−1 − mω3Hk, k = 2, . . . , m

dD

dt
= (1 − p)f nγ3In + fmω3Hn − γfD,

dR

dt
= (1 − p)(1 − f )nγ3In + (1 − f )mω3Hm.

(10.35)

A transition diagram under the gamma distributions for TP3 and TQ3 , for the ODE
model (10.35) is shown in Fig. 10.12b. We observe a major difference between this
figure and Fig. 10.10b or Fig. 10.11b in the recovery rates from In and Hm, which
have different values here. A similar difference exists in the transition rates from Ij
to Ij+1 (j = 1, · · · , n − 1) and from Hj to Hj+1 (j = 1, · · · ,m − 1).



378 10 Models for Ebola

In the special case when n = m = 1 (i.e., P3 and Q3 are exponential), the ODE
model (10.35) simplifies to

dS

dt
= − 1

N
S(βI I + βHH + βDD),

dE

dt
= 1

N
S(βI I + βHH + βDD) − αE,

dI

dt
= αE − γ3I,

dH

dt
= pγ3I − ω3H,

dD

dt
= (1 − p)f γ3I + fω3H − γfD,

dR

dt
= (1 − p)(1 − f )γ3I + (1 − f )ω3H.

(10.36)

Notice that, if we ignore the last term in the R equation in the equivalent Legrand
model (10.12) (this term indicates that the R class includes those buried), the
model (10.36) is identical to the model (10.12) when the subscript “3” is dropped;
that is, when γ3 and ω3 are defined as follows:

1

γ3
= p

γIH
+ (1 − p)f

γID
+ (1 − p)(1 − f )

γIR
,

1

ω3
= f

ωHD

+ 1 − f

ωHR

,

(10.37)

together with the constraints

1

γIR
= 1

γIH
+ 1

ωHR

,
1

γID
= 1

γIH
+ 1

ωHD

. (10.38)

The reproduction number RC3 for model III can be derived using the same
approach as for models I and II. Because the derivations are similar, we omit the
details, and present the formula only for the special case when P3 and Q3 are both
exponential, i.e., P3 = G1

γ3
and Q3 = G1

ω3
(see (10.34)). In this case, the formula

for RC3 for the ODE model (10.35) is independent of m and n, and is given by

R
Exp
C3 = βI

γ3
+ p

βH

ω3
+ f

βD

γf
, (10.39)

where γ3 and ω3 are given in (10.37).
Note that the main difference between models I, II, and III lies in the assumptions

on the underlying biological processes, particularly the sojourn distributions for
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various stage transitions, which are described by functions L(t), P(t), M(t), and
Q(t). The fact that the Legrand model can only be obtained from model III, not from
models I and II, identifies the specific assumptions made in the Legrand model in
terms of these sojourn distributions. For example, our analyses suggest the following
assumptions made in the Legrand model:

(a) The overall sojourn in the I stage is assumed to be exponentially distributed
with the average duration 1/γ , which is further assumed to be the specific
weighted average of 1/γIR , 1/γIH , and 1/γID as given in (10.13), where 1/γIR ,
1/γIH , and 1/γID are the respective average stage duration of the IR, IH, and ID
transitions. However, from model I we see that if the IR, IH, and ID transitions
follow independent exponential distributions with parameters γIR , γIH , and
γID , then the overall sojourn in the I stage is exponentially distributed with
the parameter γ = γIR + γIH + γID with the average duration

1

γ
= 1

γIR + γIH + γID
,

which differs from (10.13).
(b) The distributions for the I and H stages are independent (see P3(t) and Q3(t)).

This implies that the average time spent in the H stage before recovery or death
(1/ω3) does not depend on the average time spent in the I stage before recovery
or being hospitalized or dying (1/γ3). Under this assumption, the time spent in
H before recovery (1/γHR) does not take into consideration the time spent in
I before being hospitalized (1/γIH ) . Because of this independence, the model
needs to impose a constraint to link these two durations (see (10.10)).

Difference in Evaluations by Models I, II, and III

Among the three ODE models (10.20), (10.30), and (10.36), which are reduced
from the models I, II, and III with general distributions, the only model that can
match the Legrand model is (10.36), for which the assumptions include: (i) the
waiting times of the three transitions IR, IH, and ID are not independent and
(ii) the overall waiting time in the I compartment is a weighted average of the
mean durations (1/γIR , 1/γIH , and 1/γID) for the three transitions with weights
determined by the probabilities of hospitalization p and death f , as described in
(10.14). By examining the ODE model (10.20), we found that, if the waiting times
of the three transitions IR, IH, and ID are independent and exponentially distributed
(with parameters γ1, χ1, and μ), then the overall waiting time in I should be an
exponential distribution with the parameter γ1 +χ1 +μ. That is, the average overall
waiting time should be 1/(γ1 + χ1 + μ), not a weighted average such as the ones
in (10.14).

Formulas for the control reproduction numbers RCi (i = 1, 2, 3) for the three
general models provide a means of examining the influence of assumptions on
model outcomes. For example, consider the three control reproduction numbers
RCi (i = 1, 2, 3), which are given in (10.25), (10.31), and (10.39) corresponding to
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Fig. 10.13 Plots of the basic reproduction numbers (a) and control reproduction numbers (b) for
the three models. In (a), R0 is plotted as a function of f for model I (thin solid), model II (dashed),
and model III (thick solid). The parameter values are chosen such that all three R0i have the same
value 1.8 at f = 0.7 (note that p = 0). In (b), RCi is plotted as a function of p and f for models
I—III. Other parameter values are given in the text

the three ODE models (10.20), (10.30), and (10.36), respectively. In the absence
of hospitalization (i.e., p = 0), these RCi reduce to the corresponding basic
reproduction numbers R0i (i = 1, 2, 3). Figure 10.13 illustrates the difference
between the basic and control reproduction numbers of the three models for a given
set of parameter values, mostly based on the Ebola outbreak in West Africa in 2014.
We fix all parameters except βi (i = I,H,D) and f . Then, for a fixed value of
f0 = 0.7, we estimate βi (i = I,H,D) from a given value of R0 (assumed to
be the same for all three models). If we further assume that βH = βD = 0.3βI ,
then we can get a unique value for βI for fixed R0. Once we have the value of
βi , we have three functions of f , R0i (f ) (i = 1, 2, 3). For Fig. 10.13a, we used
the common value of R0(f0) = 1.8. The three curves are for model I (the thin
solid curve), model II (the dashed curve), and model III ( the think curve). For the
selected set of parameter values, the R0 curves for models II and III overlap. The
decreasing property of these curves represents the fact that higher disease mortality
decreases R0i (f ), which is expected because the assumption that βD < βI . An
interesting observation is that the dependence of the basic reproduction number on
disease death f is more dramatic in model I than models II and III, particularly for
smaller f values. For smaller values of f , model I tends to generate the highest R0,
while for larger f values, model III provides higher R0. Other parameter values
used are (time in days): 1/γIR = 18, 1/γf = 2, 1/α = 9. Parameters such as μ, χi

(i = 1, 2) are calculated based on their relationships with the common parameters.
For model III, additional parameter values include 1/γIH = 7, 1/γID = 8, which
can be used to determine γ3 and ω3 from (10.37).

When control is considered (p > 0), the dependence of RCi on p and f is
illustrated in Fig. 10.13b. We observe that, for the given set of parameter values,
model I (the darker surface with mesh) generates higher RC values than models
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II (the lighter surface) and III (the darker surface with no mesh) for smaller p

and f , while model III provides the higher values for larger values of p and/or
f . The differences in R0 and RC between the three models indicate that model
predictions about and evaluations of the effectiveness of control measures could be
very different as well. Figure 10.14 shows numerical simulation results of the three
ODE models (10.20), (10.30), and (10.36), which are reduced from the models
I, II, and III, and presented in columns 1, 2, and 3, respectively. The A, B, and
C panels correspond to three sets of (p, f ) values: (p, f ) = (0, 0.7) (top panel),
(p, f ) = (0.3, 0.5) (middle panel), and (p, f ) = (0.4, 0.7) (bottom panel). The
top panel (A1–A3) is for the case of no hospitalization (p = 0). We observe that
models II and III generate similar epidemic curves (fractions of infected individuals
(E + I +H)/N), including peak sizes, times to peak, duration of epidemic (which
lead to similar epidemic final sizes). Model I shows a higher peak size and an earlier
time to peak. The middle panel (B1–B3) is for the case when the hospitalization is
p = 0.3, and we observe that model I has the highest peak size while model II
has the lowest. This is in agreement with the relative magnitudes of the control

Fig. 10.14 Numerical simulations of the three ODE models (10.20), (10.30), and (10.36), which
are reduced from the models I, II, and III, respectively. The fractions of infected individuals (E +
I+H)/N and death (D/N ) are plotted over a time period of 1000 days. Three sets of (p, f ) values
are used: (p, f ) = (0, 0.7) (top row), (p, f ) = (0.3, 0.5) (middle row), and (p, f ) = (0.4, 0.7)
(bottom row). Parameter values are the same as in Fig. 10.13
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reproduction numbers RCi , as the point (p, f ) = (0.3, 0.5) lies in the region where
RC1 > RC3 > RC2 (see Fig. 10.13). For the bottom panel (C1–C3), because the
point (p, f ) = (0.4, 0.7) lies in the region where RC3 > RC1 > RC2, we observe
that model III generates the highest peak size while model II again has the lowest.

10.5 Slower than Exponential Growth

It has been standard practice in analyzing disease outbreaks to formulate a dynam-
ical system as a deterministic compartmental model, then to use observed early
outbreak data to fit parameters to the model, and finally to analyze the dynamical
system to predict the course of the disease outbreak and to compare the effects of
different management strategies. In general, such models predict an initial stochastic
stage (while the number of infectious individuals is small), followed by a period
of exponential growth. Measurement of this early exponential growth rate is an
essential step in estimating contact rate parameters for the model. A thorough
description of the analysis of compartmental models may be found in [21].

However, instances have been noted where the growth rate of an epidemic
is clearly slower or faster than exponential. For example, [13], the 2013–2015
epidemic in West Africa has been viewed as a composition of locally asynchronous
outbreaks at local levels displaying sub-exponential growth patterns during several
generations. Specifically, if I (t) is the number of infectious individuals at time t ,
a graph of log I (t) against t is a straight line if the growth rate is exponential, and
for some disease outbreaks this has not been true. One of the earliest examples
[16] concerns the growth of HIV/AIDS in the USA, and a possible explanation
might be the mixture of short-term and long-term contacts. This could be a factor in
other diseases where there are repeated contacts in family groups and less frequent
contacts outside the home.

During the 2013–2015 Ebola epidemic in West Africa, in the country of Liberia,
which has a total population size of 4,300,000, there were 10,678 suspected,
probable, and confirmed cases of disease as of September 3, 2015 [32]. An SIR
model for the whole country would have predicted more than 1,500,000 cases. This
discrepancy cannot be explained by the assumption of control measures. In order
to make plausible predictions of the effects of large-scale epidemics, it is necessary
to use a phenomenological model based on observations in the early stages of the
epidemic rather than to try to fit a mechanistic model. Some phenomenological
models that have been used to good effect have been the generalized Richards
model, the “generalized growth model,” and the IDEA model.
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10.5.1 The Generalized Richards Model

Perhaps the first attempt to fit early epidemic data is the Richards model [34]. This
is a modification of the logistic population growth model, described in [22]

I ′(t) = rI

[

1 −
(

I

K

)a]

.

In this model, I represents the cumulative number of infected individuals at time t ,
K is the carrying capacity or total case number of the outbreak, r is the per-capita
growth rate of the infected population, and a is an exponent of deviation from the
standard logistic model. The basic premise of the model is that the incidence curve
has a single turning point tm. The analytic solution of the model is

I (t) = K
[
1 + e−r(t−tm)

]1/a .

10.5.2 The Generalized Growth Model

It has been pointed out [12–15, 39] that a so-called general growth model of the
form

C′(t) = rC(t)p,

where C(t) is the number of disease cases occurring up to time t , and p, 0 ≤ p ≤ 1,
is a “deceleration of growth” parameter, has exponential solutions if p = 1 but
solutions with polynomial growth if 0 < p < 1. This is not and does not claim
to be a mechanistic epidemic model, but it has proved to be remarkably successful
for fitting epidemic growth and predicting the course of an epidemic. For example,
it has provided much better estimates of epidemic final size than the exponential
growth assumption for the Ebola epidemic of 2014. However, it assumes a sustained
increase in the number of disease cases and cannot capture the later decline in the
number of new infections. Such phenomenological models are particularly likely
to be suitable in situations where it is difficult to construct a mechanistic approach
because of multiple transmission routes, interactions of spatial influences, or other
aspects of uncertainty.
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10.5.3 The IDEA Model

Another direction that would be well worth further exploration would be contact
rates decreasing in time because of individual behavioral changes in response to a
disease outbreak. A contact rate which is a decreasing function of time can certainly
lead to early epidemic growth slower than exponential. A step in this direction has
been initiated in a discrete model [19] that has been applied to an Ebola model in
[20].

The IDEA model [19, 20, 37] is a discrete model that assumes damping
of recruitment of new infections because of spontaneous or planned behavioral
changes. It is assumed that the time interval in the model is equal to the duration
of infection, so that the number of infective individuals at each stage is equal to the
number of new infections. The resulting model is

It =
[

R0

(1 + d)t

]t
.

Here, d is a discount factor describing the recruitment damping.
A variety of epidemiological situations in which slower than exponential epi-

demic growth might be possible have been described. Ultimately, the challenge for
epidemiological modeling would be to determine which of these situations allow
slower than exponential growth by deriving and analyzing mechanistic models to
describe each of these situations. This is an important new direction for epidemic
modeling. Some suggestions include metapopulation models with spatial structure
including cross-coupling and mobility, clustering in spatial structure, dynamic
contacts, agent-based models with differences in infectivity and susceptibility of
individuals, and reactive behavioral changes early in a disease outbreak. It may well
turn out that slower than exponential growth may be ruled out in some cases but
is possible in others. For example, heterogeneity of mixing in a single location can
be modeled by an autonomous dynamical system and the linearization theory of
dynamical systems at an equilibrium shows that early epidemic growth for such a
system is always exponential. On the other hand, metapopulation models may well
allow many varieties of behaviors.

An important broader question is the matter of what information influences the
behavior of people during a disease outbreak, and how to include this in a model. A
recent book [28] describes some studies in this direction.

10.5.4 Models with Decreasing Contact Rates

There is anecdotal evidence that in an outbreak of a disease considered very serious
there is early action to decrease the risk of being infected by decreasing contact rates.
This early action may begin even before government efforts to combat the disease.
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Since Ebola is a very serious disease, with case fatality rates of 70% or more, it is
reasonable to assume a decreasing contact rate. This has been suggested in [1, 2].
In [1], an SIR model is assumed with a contact rate that decreases exponentially in
time, and observations are used to estimate the rate of decrease. In [6], such a model
is used to estimate the final size of an Ebola epidemic over a country using early
growth rate data and this yields early final size estimates that are much closer to the
eventual outbreak data than estimates assuming a constant contact rate. For example,
for the 2014-5 Ebola outbreak in Guinea, a country with a total population size of
10,589,000 the assumption of a constant contact rate corresponding to R0 = 1.5
led to an estimate of more than 9,000,000 cases over the whole country, while a
decreasing contact rate assumption led to an estimate of about 27,000 disease cases.
The actual number of Ebola cases in Guinea in this outbreak was fewer than 4,000.
The models described here are for an entire country and are not intended to replace
more detailed models needed for disease management describing the progress of the
disease in individual villages.

10.6 Project: Slower than Exponential Growth

We have suggested in Sect. 10.5.4 that slower than exponential growth of the number
of infectious individuals may be explained by assuming a time-dependent decrease
in the contact rate. The question of what modeling assumptions can lead to slower
than exponential growth is a complex one [13]. Another possible explanation might
be a decrease in contact rate depending on the current state of the system. If the
model system remains autonomous, growth will remain exponential so long as the
contact rate is a differentiable function of I so that the theory of linearization at
a disease-free equilibrium remains valid. However, if the rate of new infections is
a S

N
f (I) with f (I) not differentiable at I = 0, different behavior is possible.
Consider an SIR model in which the equation for I is

I ′ = β
S

N
Iα − γ I,

with 0 < α < 1. Initially, so long as S ≈ N , we approximate this equation by

I ′ = βIα − γ I. (10.40)

Question 7 Show that the basic reproduction number is

R0 = β

γ
.

Question 8 Make the change of dependent variable u = log I and derive the
differential equation satisfied by u.
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Exponential growth of I corresponds to linear growth of u. It is clear that if
α = 1, u does grow linearly.

Question 9 Determine whether the rate of growth of u is less than linear for α < 1,
either by explicit solution of the equation for u or by simulations with β > γ (so
that R0 > 1) and a range of values of α.

10.7 Project: Movement Restrictions as a Control Strategy

Cordons Sanitaire or “sanitary barriers” are designed to prevent the movement, in
and out, of people and goods from particular areas. The effectiveness of the use of
cordons sanitaire has been controversial. This policy was last implemented nearly
100 years ago [9]. In desperate attempts to control disease, Ebola-stricken countries
enforced public health officials decided to use this medieval control strategy in the
EVD hot-zone, that is, the region of confluence of Guinea, Liberia, and Sierra Leone
[30]. In this project, a framework that allows, in the simplest possible setting, the
possibility of assessing the potential impact of the use of a Cordon Sanitaire during a
disease outbreak is introduced. We consider an SIR epidemic model in two patches,
one of which has a significantly larger contact rate, with short-term travel between
the two patches. The total population resident in each patch is constant. We follow a
Lagrangian perspective, that is, we keep track of each individual’s place of residence
at all times [4, 17]. This is in contrast to an Eulerian perspective, which describes
migration between patches.

Thus we consider two patches, with total resident population sizes N1 and
N2, respectively, each population being divided into susceptibles, infectives, and
removed members. Si and Ii denote the number of susceptibles and infectives,
respectively, who are residents in Patch i, regardless of the patch in which they
are present.

Residents of Patch i spend a fraction pij of their time in Patch j , with

p11 + p12 = 1, p21 + p22 = 1.

The contact rate in Patch i is βi , and we assume β1 > β2.
Each of the p11S1 susceptibles from Group 1 present in Patch 1 can be infected

by infectives from Group 1 and from Group 2 present in Patch 1. Similarly, each of
the p12S1 susceptibles present in Patch 2 can be infected by infectives from Group
1 and from Group 2 present in Patch 2.
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Question 1 Show that the model equations are

S′
i = −pi1Si

[

p11
I1

N1
+ p12

I2

N2

]

− pi2Si

[

p21
I1

N1
+ p22

I2

N2

]

I ′
i = pi1Si

[

p11
I1

N1
+ p21

I2

N2

]

+ pi2Si

[

p21
I1

N1
+ p22

I2

N2

]

− γ Ii, i = 1, 2.

Question 2 Use the next generation matrix [38] to calculate the basic reproduction
number.

Question 3 Use the approach described in Chaps. 4 and 5 to determine the final
size relations.

Imposition of a Cordon Sanitaire amounts to replacing the fractions of normal
travel between groups by

p11 = p22 = 1, p12 = p21 = 0.

Question 4 Compare the reproduction numbers and final sizes with and without
a Cordon Sanitaire, using numerical simulations with various parameter value
choices.

The approach suggested here can be used with more detailed models for a specific
disease, such as Ebola, in which transmission from one village to another through
temporary visits is a factor [17].

10.8 Project: Effect of Early Detection

The following model for Ebola is considered in [10]:

dS

dt
= −βS

I + lJ

N
,

dE1

dt
= βS

I + lJ

N
− k1E1,

dE2

dt
= k1E1 − k2E2 − fT E2,

dI

dt
= k2E2 − (α + γ )I,

dJ

dt
= αI + fT E2 − γrJ,

dR

dt
= γ (1 − δ)I + γr(1 − δ)J,

dD

dt
= γ δI + γrδJ,

(10.41)
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where N = S +E1 +E2 + I +J +R. The variables E1 and E2 denote the numbers
of latent undetectable and detectable individuals, respectively, I is the number of
infectious individuals, J is the number of isolated infective individuals, R and D

are numbers of recovered and dead due to the disease. For the parameters, β is the
transmission rate, l is the relative transmissibility of isolated individuals, k is the
rate of entering the detectable class, k2 is the rate of becoming infective, fT is the
rate of being diagnosed, α is the rate of isolation, γ is the recovery rate, and γr is
the rate at which individuals are removed from isolation after recovery or disease
death.
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Chapter 11
Models for Malaria

Malaria is one of the most important diseases transmitted by vectors. The vectors
for many vector-transmitted diseases are mosquitoes or other insects which tend to
be more common in warmer climates. One influence of climate change in coming
years may be to extend the regions where mosquitoes can thrive and thus to cause
the spread of vector-transmitted diseases geographically.

11.1 A Malaria Model

As we have remarked earlier, many of the important underlying ideas of mathemati-
cal epidemiology arose in the study of malaria begun by Sir R.A. Ross [11]. Malaria
is one example of a disease with vector transmission, the infection being transmitted
back and forth between vectors (mosquitoes) and hosts (humans). It kills nearly
1,000,000 people annually, mostly children and mostly in poor countries in Africa.

We begin with a basic vector transmission model, namely the model (6.2) of
Sect. 6.2 reduced by assuming both hosts and vectors satisfy SIR structure. For
simplicity, we assume that there are no disease deaths of either hosts or vectors so
that the two populations have constant total sizes Nh,Nv , respectively. The resulting
model is

S′
h = Λh − βhSh

Iv

Nv

− μhSh

I ′
h = βhSh

Iv

Nv

− (μh + γh)Ih

S′
v = Λv − βvSv

Ih

Nh

− μvSv

I ′
v = βvSv

Ih

Nh

− (μv + γv)Iv.

(11.1)
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There is always a disease-free equilibrium (Nh, 0, Nv, 0), and there may also be
an endemic equilibrium with the infective population sizes of both species positive.
At an endemic equilibrium,

βhShIv = (γh + μh)IhNv

βvSvIh = (γv + μv)Ih

Λh = Sh

(

μh + βh

Iv

Nv

)

Nh

Λv = Sv

(

μv + βv

Ih

Nh

)

.

In applying the next generation matrix approach to determine the basic reproduction
number, we obtain

F =
[

0 βh
Nh

Nv

βv
Nv

Nh
0

]

, V =
[
γh + μh 0

0 γv + μv

]

.

This leads to

FV −1 =
⎡

⎢
⎣

0
βh

Nh
Nv

γv+μv

βv
Nv
Nh

γh+μh
0

⎤

⎥
⎦ .

This would imply that

R0 =
√

βhβv

(γv + μv)(γh + μh)
.

However, this approach views the transition from host to vector to host as two
generations, and it may be more reasonable to say that

R0 = βhβv

(γv + μv)(γh + μh)
. (11.2)

With either choice, the transition is at R0 = 1. Since a single infectious host infects

βv
Nv

Nh

μh + γh
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vectors in a completely susceptible vector population, and each of these infects

βh
Nh

Nv

μv + γv

hosts in a completely susceptible host population. Thus, the number of secondary
host infections caused by an infective host (and also the number of secondary vector
infections caused by an infective vector) is given by (11.2), and this is a valid choice
for R0. The other choice is also a valid choice and it is essential to check which
form is used in a given work.

By linearizing the system (11.1) at an equilibrium , it is possible to show that
the disease-free equilibrium is asymptotically stable if and only if R0 < 1 and
that the endemic equilibrium exists only if R0 > 1 and is asymptotically stable.
Because (11.1) is a four-dimensional system, this requires showing that the roots
of a fourth degree polynomial have negative real parts, and this is technically
complicated.

For malaria, with humans as hosts and mosquitoes as vectors, we modify the
vector transmission model (6.2) in two ways. Since infected mosquitoes remain
infected for life and do not recover, we take γv = 0. Also,

βh = bThv, βv = bTvh,

where b is the biting rate, the number of bites made by a mosquito in unit time, Thv

is the probability that a bite by an infected mosquito will infect a susceptible human,
and Tvh is the probability that a bite by a susceptible mosquito of an infected human
will infect the mosquito. This gives the model

S′
h = Λh − bThvSh

Iv

Nv

− μhSh

I ′
h = bThvSh

Iv

Nv

− (μh + γh)Ih

S′
v = Λv − bTvhSv

Ih

Nh

− μvSv

I ′
v = bTvhSv

Ih

Nh

− μvIv.

(11.3)

This is basically the original model of Ross [11], with modifications added by
MacDonald [8–10]. It is known as the Ross–MacDonald model, and it has remained
the basic malaria model ever since its development.

If we write the basic reproduction number in terms of the mosquito biting rate,
we obtain

R0 = b2ThvTvh

μv(γh + μh)
. (11.4)
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Thus, the basic reproduction number depends on the ratio of vector population
size to host population size, increases with the vector population size but decreases
with the host population size. For the infection to spread, there must be enough
vectors that frequently a single host may be bitten at least twice—once by an
infected vector to infect the host and a second time to transmit infection to another
vector.

Macdonald [10] speaks of a stability index, aTvh/μv , which is very difficult to
estimate in any particular situation, but gives some indication of the qualitative
behavior of a malaria model. Large values of the stability index indicate “stable
malaria,” which suggests that malaria would be endemic, while small values of the
stability index in a region suggest that it is more likely that there will be epidemic
outbreaks. Estimates of the stability index in various regions have ranged from 0.5
to 5.0.

Dr. Ross was awarded the second Nobel Prize in Medicine for his demonstration
of the dynamics of the transmission of malaria between mosquitoes and humans. His
work received immediate acceptance in the medical community, but his deduction
that malaria could be controlled by controlling mosquitoes was dismissed on the
grounds that it would be impossible to rid a region of mosquitoes completely and
that in any case, mosquitoes would soon re-invade the region. Ross then formulated
a mathematical model [11] predicting that malaria outbreaks could be avoided if the
mosquito population could be reduced below a critical threshold level, and this is
in fact, the first instance of the idea of the basic reproduction number in modeling
disease transmission.

Field trials supported Ross’s conclusions and led to sometimes brilliant successes
in malaria control. A notable example is the draining of swamps in the Galilee region
in Israel to reduce mosquito habitat. Unfortunately, the Garki project provides a
dramatic counterexample. This project worked to eradicate malaria from a region
temporarily. However, people who have recovered from an attack of malaria have a
temporary immunity against reinfection. Thus, elimination of malaria from a region
leaves the inhabitants of this region without immunity when the campaign ends, and
the result can be a serious outbreak of malaria.

While the model (11.3) describes the basic properties of malaria quite well, it
ignores important aspects that could be added. For example, including an incubation
period for the mosquito population would give considerably better quantitative
agreement with data. Another extension would include seasonality in mosquito
population density.

The model (11.3) assumes that infected humans are not subject to further
infection, but there is evidence to indicate that “superinfection” may be an important
phenomenon. MacDonald’s 1957 model [10] included successive infections waiting
to express themselves when the previous infection ends. While this addition does
not affect the qualitative behavior, it does affect quantitative results.

Immunity to malaria acquired by repeated exposure to malaria has the effect,
in regions in which malaria is endemic, of causing most cases of malaria to be in
children. Modeling this would require inclusion of age structure, as well as including
acquired immunity that is boosted by reinfection. One way to model this would be
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to assume that there is an immune period of fixed length following recovery in the
absence of exposure but that if a person is exposed again during a fixed period
following the loss of immunity the immunity is not lost [7, p. 179]. A description of
various extensions of the basic Ross–MacDonald model may be found in [3, 13]

Controlling malaria by controlling mosquito populations is a fine theoretical
solution. However, mosquitoes adapt very rapidly to insecticides and control
methods must be revised frequently in practice. Malaria remains one of the diseases
causing the largest number of deaths worldwide.

11.2 Some Model Refinements

The model (11.3) is a basic model which has been the standard model for many
years. As we have pointed out in the preceding section, there are many possible
refinements. In this section, we give a little more detail of some of these refinements.

11.2.1 Mosquito Incubation Periods

The basic malaria model (11.3) gives a good description of malaria infection dynam-
ics, but some of its quantitative predictions are quite different from observations.
Some of these differences can be resolved by taking into account the incubation
period for mosquitoes [10, 11]. The most elementary model including an incubation
period assumes an exposed period with an exponential rate of moving from exposed
to infectious mosquitoes,

S′
h = Λh − bThvSh

Iv

Nv

− μhSh

I ′
h = bThvSh

Iv

Nv

− (μh + αh)Ih

S′
v(t) = Λv − bTvhSv

Ih

Nh

− μvSv(t)

E′
v(t) = bTvhSv

Ih

Nh

− (μ + κv)Ev

I ′
v(t) = κEv − μvIv.

(11.5)

To determine the basic reproduction number of the model (11.5), we use the next
generation matrix method with disease states (Ih, Ev, Iv). We have

F =
⎡

⎢
⎣

0 0 bThv
Nh

Nv

bTvh
Nv

Nh
0 0

0 0 0

⎤

⎥
⎦ , V =

⎡

⎣
μh + γh 0 0

0 μv + κv 0
0 0 μv

⎤

⎦
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This leads to

FV −1 =
⎡

⎢
⎣

0 bTvh
Nh

Nv

κv
μh(μv+κv)

bThv
Nh

Nv

1
μv

bTvh
Nv

Nh

1
μh+γh

0 0

0 0 0

⎤

⎥
⎦ ,

from which we derive

R0 = b2TvhThv

κv

μh(μh + γh)(μv + κv)
.

In fact, the model (11.3) was modified by assuming that infection in mosquitoes
has an incubation period of fixed length τ [10, 11]. This gives a model

S′
h = Λh − bThvSh

Iv

Nv

− μhSh

I ′
h = bThvSh

Iv

Nv

− (μh + γh)Ih

S′
v(t) = Λv − bTvhSv(t)

Ih

Nh

− μSv(t)

E′
v(t) = bTvhSv(t)

Ih

Nh

− e−μτ bTvhSv(t − τ)
Ih

Nh

I ′
v(t) = e−μτ bTvhSv(t − τ)

Ih

Nh

− μvIv.

(11.6)

For this model,

R0 = e−μτ b2ThvTvh

μv(γh + μh)
.

As in the preceding section, it would be possible to use the square root as the basic
reproduction number.

11.2.2 Boosting of Immunity

Another property of malaria is that the immunity obtained by recovery from
infection is not permanent. Recovery brings temporary immunity and this immunity
is boosted by exposure to further infection. This may be described by the following
model. We divide the host population into three compartments, S the number of
uninfected members, I the number of infected individuals, and R the number of
removed individuals with immunity. We assume that susceptible individuals become
infected at a rate h. They then recover at a rate r to become immune. There is a rate
of reversion from immune to susceptible γ , chosen so that the average period of
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immunity corresponds to an assumption that immunity lasts until the occurrence of
a gap of τ years without exposure [1–3].

Then

γ (h) = he−hτ

1 − e−hτ
. (11.7)

To establish the relation (11.7), we let p = e−hτ be the probability of infection after
time τ and q = 1 − p be the probability of infection after time τ . Then γ (h), the
rate of loss of immunity, is hp/q, and this establishes (11.7).

The loss of immunity has been observed frequently. In regions where there
have been mosquito control programs that reduced malaria cases, one effect of
terminating a control program has been an increase in malaria cases because of
the loss of immunity since there was less boosting of immunity. The mean period of
immunity may be estimated from observation, and the relation (11.7) gives the rate
of reversion to susceptibility as a function of the rate of developing infection.

11.2.3 Alternative Forms for the Force of Infection

Several forms for the force-of-infection for malaria models are considered in [4].
We denote the transmission rates from humans to mosquitoes and from mosquitoes
to humans by

λh = Thvbh(Nh,Nv)
Iv

Nv

and λv = Tvhbv(Nh,Nv)
Ih

Nh

, (11.8)

respectively, where

bh = b(Nh,Nv)

Nh

, bv = b(Nh,Nv)

Nv

,

and b(Nh,Nv) denotes the total number of mosquito bites on humans given by

b = σvNvσhNh

σvNv + σhNh

= σvσh

σv(Nv/Nh) + σh

Nv. (11.9)

Depending on the sizes of the human and mosquito populations, the biting rates bh
and bv can take several limiting forms, as summarized in Table 11.1.
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Table 11.1 Number of mosquito bites on humans in the force-of-infection functions (11.8)

bh bv b

General model σvσhNv

σv(Nv/Nh) + σh

σvσhNh

σv(Nv/Nh) + σh

σvNvσhNh

σv(Nv/Nh) + σh

As Nh → ∞ or Nv → 0 σvNv

Nh

σv
σvNv

As Nh → 0 or Nv → ∞ σh
σhNh

Nv

σhNh

11.3 *Coupling Malaria Epidemiology and Sickle-Cell
Genetics

Although the population dynamics of malaria and the population genetics of the
sickle-cell genes occur on very different time scales, it is straightforward to develop
an appropriate model relating these. The high mortality associated with malaria
has led to strong historical selection for resistance, and hence for single major
genes conferring resistance in heterozygotes, despite the associated burden borne
by homozygotes. The foundation is the classical Ross–MacDonald model for the
spread of malaria, expanded to include the relevant genetic structure of the host.

Let Sh1 denote the density of uninfected humans of genotype AA. Similarly,
Sh2 denotes the population density of genotype AS. Furthermore, let Ih1 and Ih2
represent the population densities of infected individuals of each genotype. We
ignore SS individuals; high mortality rates from sickle-cell disease are typical in
countries with high transmission rates of falciparum malaria, so these individuals
rarely reach reproductive maturity. An extended model including the SS individuals
can be studied using similar methods but it is very difficult to interpret the threshold
conditions due to the complexity of the model. Finally, let z be the fraction of
mosquitoes that are transmitting malaria. The fraction of the AS individuals in the
population is

w = Sh2 + Ih2

Nh

where Nh = Sh1 + Ih1 + Sh2 + Ih2 is the total human population density. The
frequency of the S gene is denoted by q = w/2 and the frequency of the A gene is
denoted by p = 1 − q.

Let B(N) denote the human per-capita birth rate, possibly density dependent
(e.g., logistic growth), with a constant per-capita natural mortality of μh. To couple
ecology and evolution, we make two assumptions. First, we assume that the ratio of
mosquitoes to humans is a constant, c. This is a standard assumption in the modeling
of malaria (ever since the original Ross–MacDonald model). Any other assumption
about variability in the ratio of mosquitoes to humans (Nv/Nh) would need to be
justified.
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Second, we assume that the fraction of each genotype born into the population
Pi is given by

P1 = p2, P2 = 2pq.

The transmission of malaria between humans and mosquitoes is governed by some
basic epidemiological parameters. The human biting rate is denoted by b, and
average life of an infected mosquito is 1/μv . The probability that a human develops
a parasitemia from a bite is denoted Thvi ; we assume that Thv1 ≥ Thv2 . The disease
induced death rate is denoted by ρi , and we assume that ρ1 � ρ2. In addition, we
consider that AS individuals may die faster than AA individuals from causes other
than malaria, and the excess rate of mortality for AS individuals is ν. The probability
that a mosquito acquires plasmodium from biting an individual of type i is denoted
by Tvhi

. The average time until a victim of malaria recovers, denoted by 1/γhi , may
be different in AA and AS individuals.

The changes in population density of each genotype with each infection status
are described by a set of five coupled ordinary differential equations:

S′
hi = PiB(N)N − miShi − bThvi czShi + γhiIhi,

I ′
hi = bThvi czShi − (mi + γhi + ρhi)Ihi,

z′ = (1 − z)
(
bTvh1

Ih1

Nh

+ bTvh2

Ih2

Nh

)
− μvz, i = 1, 2,

(11.10)

where m1 = μh and m2 = μh + ν. More detailed analysis of the model (11.10) can
be found in [5, 6].

It is both mathematically convenient and biologically relevant to introduce new
variables for prevalence of malaria infections in each genotype, xi = ui/N and
yi = vi/N , as well as the frequency of the S-gene, w = x2 + y2 = 2q. The
equations in the new variables are derived from the original (11.10) using the chain
rule. We note for clarification that

x1 + y1 + x2 + y2 = 1 and x1 + y1 = 1 − w.

We also introduce notation to reduce the number of parameters, βhi = bThvi c, βvi =
bTvhi

, i = 1, 2. Then, we obtain the following system equivalent to (11.10) in the
terms that describe important epidemiological, demographic, and population genetic
quantities, y1, y2, z, w, and Nh:
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y′
1 = βh1z(1 − w − y1) − (m1 + γh1 + ρh1)y1 − y1N

′
h/Nh,

y′
2 = βh2z(w − y2) − (m2 + γh2 + ρh2)y2 − y2N

′
h/Nh,

z′ = (1 − z)(βv1y1 + βv2y2) − μvz,

w′ = P2B(N) − ρh2y2 − m2w − wN ′
h/Nh,

N ′
h = Nh ((P1 + P2)B(N) − m1(1 − w) − m2w − ρh1y1 − ρh2y2) .

(11.11)

Although most of the equations assume a general birth function B(N), our
detailed mathematical analysis for the specific case in which B(N) is a density
dependent per-capita birth function, B(N) = B0(1 −N/K), where B0 is a constant
(the maximum birth rate when population size is small) and K is approximately the
density dependent reduction in birth rate.

The relevant parameters vary across many orders of magnitude. For example,
the demographic parameters (B0 and mi) and the genetic parameters (ρhi) are on
the order of 1/decades, and the malaria disease parameters (βhi , γhi , βvi , and μv)
are on the order of 1/days. Hence, although the malaria disease dynamics and the
changes in genetic composition are two coupled processes, the former occurs on a
much faster time scale than the latter. Let mi = εm̃i, ρhi = ερ̃hi , and B0 = εB̃0
with ε > 0 being small. We can use this fact to simplify the mathematical analysis
of the full model with the use of singular perturbation techniques, which allows us
to separate the time scales of the different processes. By letting ε = 0, we obtain
the following system for the fast dynamics:

y′
1 = βh1z(1 − y1 − w) − γh1y1,

y′
2 = βh2z(w − y2) − γh2y2,

z′ = (1 − z)(βv1y1 + βv2y2) − μvz,

(11.12)

which describes the epidemics of malaria for a given distribution of genotypes
determined by w. Here, on the fast time scale, w is considered as a parameter. On the
fast time scale, the basic reproduction number of malaria disease can be calculated
as the leading eigenvalue of the next generation matrix:

R0 = R1(1 − w) + R2w, (11.13)

where Ri = βhiβvi

γhiμv
, i = 1, 2 involves parameters associated with malaria

transmission between mosquitoes and humans of genotype i. In fact, Ri (or
√

Ri)
is the basic reproduction number when the population consists of entirely humans
of genotype i. It can be shown that, when R0 < 1, the disease-free equilibrium
of the system (11.12) is locally asymptotically stable; and when R0 > 1, the
system (11.12) has a unique non-trivial equilibrium E∗ = (y∗

1 , y
∗
2 , z

∗) given by
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y∗
1 = Qh1z

∗

1 + Qh1z∗ (1 − w), y∗
2 = Qh2z

∗

1 + Qh2z∗ w, (11.14)

where Qhi = βhi/γhi for i = 1, 2, and z∗ is a solution of the equation

k0z
2 + k1z + k2 = 0, (11.15)

with

k0 = Th1Th2 + R1Th2(1 − w) + R2Th1w,

k1 = Th1 + Th2 + R1(1 − Th2)(1 − w) + R2(1 − Th1)w,

k2 = 1 − R0.

(11.16)

It can be shown that Eq. (11.15) has a positive solution only if R0 > 1. When
R0 < 1, note that k2 = 1 − R0 > 0 and k1 > 0; it follows that Eq. (11.15) has no
positive solution. Hence, E∗ is not biologically feasible.

If R0 > 1, then k2 = 1 − R0 < 0. It is easy to show that k0 > 0 as 0 < w < 1.
Hence, Eq. (11.15) has a unique positive solution z∗. Let h(z) denote the function
of z given by the left-hand side of (11.15). Notice that h(0) = k2 < 0, h(1) =
1 + Th1Th2 + Th1 + Th2 > 0, and h(z∗) = 0. Hence, 0 < z∗ < 1. From (11.14)
we also have that 0 < y∗

i < 1, i = 1, 2. It follows that an endemic equilibrium
E∗ = (y∗

1 , y
∗
2 , z

∗) exists and is unique.
For the stability of E∗, it can be shown that all eigenvalues of the Jacobian matrix

at E∗ have negative real part if and only if the following expression:

λ =:
√[

βh1(1 − w − y∗
1 )

βv1y
∗
1 + βv2y

∗
2 + μv

] [
βv1(1 − z∗)
βh1z∗ + γh1

]

+
[

βh2(w − y∗
2 )

βv1y
∗
1 + βv2y

∗
2 + μv

] [
βv2(1 − z∗)
βh2z∗ + γh2

]

is less than 1 (see [5] for more details). Using the following Equalities:

z∗
1 = βv1y

∗
1 + βv2y

∗
2

βv1y
∗
1 + βv2y

∗
2 + μv

= γh1y
∗
1

βh1(1 − w − y∗
1 )

,

z∗
2 = βv1y

∗
1 + βv2y

∗
2

βv1y
∗
1 + βv2y

∗
2 + μv

= γh2y
∗
2

βh2(w − y∗
2 )

,
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and noticing that βhiz
∗ + γhi > γhi , i = 1, 2, and that 0 < z∗ < 1, we get

λ2 <
γh1y

∗
1

βv1y
∗
1 + βv2y

∗
2

βv1(1 − z∗)
γh1

+ γh2y
∗
2

βv1y
∗
1 + βv2y

∗
2

βv2(1 − z∗)
γh2

= 1 − z∗ < 1.

It follows that λ < 1 and that E∗ is locally asymptotically stable.
Using the re-scaled time τ = εt , we can re-write the full system (11.11) as

ε
dy1

dτ
= βh1z(1 − y1 − w) − γh1y1 − εy1

(
(m̃1 − m̃2)w

+ ρ̃h1(1 − y1) − ρ̃h2y2 + (P1 + P2)B̃(Nh)
)
,

ε
dy2

dτ
= βh2z(w − y2) − γh2y2 − εy2

(
(m̃1 − m̃2)(w − 1)

− ρ̃h1y1 + ρ̃h2(1 − y2) + (P1 + P2)B̃(Nh)
)
,

ε
dz

dτ
= (1 − z)(βv1y1 + βv2y2) − μvz,

dw

dτ
= ((1 − w)P2 − wP1)B̃(Nh) + (m̃1 − m̃2)w(1 − w)

+ ρ̃h1wy1 − ρ̃h2(1 − w)y2,
dNh

dτ
= Nh

(
(P1 + P2)B̃(Nh) − m̃1(1 − w) − m̃2w − ρ̃h1y1 − ρ̃h2y2

)
.

(11.17)

This system has a two-dimensional slow manifold:

M = {(y1, y2, z, w,Nh) : y1 = y∗
1 (w,Nh), y2 = y∗

2 (w,Nh), z = z∗(w,Nh)},
which is normally hyperbolically stable as it consists of a set of such equilibria of
the fast system (11.12). Here y∗

1 and y∗
2 are given in (11.14). The slow dynamics on

M is described by the equations

dw

dτ
= ((1 − w)P2 − wP1) B(Nh) + (m̃1 − m̃2)w(1 − w)

+ ρ̃h1wy∗
1 − ρ̃h2(1 − w)y∗

2 ,
dNh

dτ
= Nh

(
(P1 + P2) B̃(Nh) − m̃1(1 − w) − m̃2w − ρ̃h1y

∗
1 − ρ̃h2y

∗
2

)
.

(11.18)

Define the fitness of the S-gene by

F =
( 1

w

dw

dτ

)
,

which represents the initial per-capita growth of the S-gene. Then the following
formula can be derived:

(
1

w

dw

dτ

) ∣∣
∣
∣
w=0

= (m̃1 + W1ρ̃h1) − (m̃2 + W2ρ̃h2) , (11.19)
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where

W1 = Qh1
(
R1 − 1

)

(
1 + Qh1

)
R1

, W2 = Qh2
(
R1 − 1

)

(
1 + Qh1

)
R1 + Qh1 − Qh2

. (11.20)

Let

σi = m̃i + Wiρ̃hi . (11.21)

Then σi ≥ 0 is the total per-capita death rate of type i individuals weighted by
Wi , which depends only on malaria epidemiological parameters. The biological
interpretation of F suggests that, when the S-gene is initially introduced into a
population, it may or may not establish itself depending on whether the fitness is
positive or negative, which is equivalent to whether σ2 < σ1 or σ2 > σ1. This
is indeed confirmed by both analytical and numerical studies of the slow system.
Figure 11.1a shows a bifurcation diagram of the slow dynamics with σ1 and σ2 being
the bifurcation parameters. In Fig. 11.1, B̃∗

1 is a constant larger than the maximum
per-capita birth rate B̃ (=B/ε); σ2 = h(σ1) is a decreasing function satisfying

Fig. 11.1 Phase portraits (a) of the slow system in the (σ1, σ2) plane. Plots (b)–(e) illustrate the
phase portraits of the slow system for (σ1, σ2) in different regions
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h(B̃) = B̃ and h(B̃∗) = 0. Some of the results from this bifurcation diagram are
summarized as follows:

Case 1: σ2 < σ1 (Positive Fitness)

(a) If σ1 ≤ B̃, or B̃ < σ1 < B̃∗ and σ2 < h(σ1), then there is a unique interior
equilibrium E∗ = (w∗, Nh∗) that is globally asymptotically stable (g.a.s.),

(b) If b̃ < σ1 < B̃∗ and σ2 > h(σ1), then the population will be wiped out (due to
the death rates being too much higher than the “birth” rate) with the fraction of
AS individuals tending to a positive constant as t → ∞.

Case 2: σ2 > σ1 (Negative Fitness)

The fraction of AS individuals will tend to zero as t → ∞, whereas the total
population size will tend to either K (when σ2 is small) or zero (when σ2 is
large).

In either case, the system (11.18) has neither periodic solutions nor homoclinic
loops.

An analytic proof of these results can be found in [6]. We point out that Case 1(b)
is due to the standard incidence form of infection rate used in the z equation. Similar
scenarios have been observed in other population models, and such scenarios may
not be present if the mass action form is used. The standard incidence form is
more appropriate if the number of contacts is relatively constant, independent of
density. Figure 11.1b–e demonstrates some numerical calculations of solutions of
the system (11.18) for (σ1, σ2) in different regions. It shows a couple of possible
scenarios when σ1 < σ2. It is interesting to notice that it is possible for the system to
have two locally asymptotically stable equilibria. One is the boundary equilibrium
at which Nh > 0 and w = 0, and the other is one of the two interior equilibria. The
regions of attraction of the two stable equilibria are divided by the separatrix formed
by the stable manifold of the unstable interior equilibrium. This type of bi-stability
can occur in several different ways. There are also cases when the system (11.18)
has none, or one, or two equilibria on the positive w-axis. It shows that, if w(0) is
small, i.e., the initial population size of AS individuals is small, then the S-gene will
be extinct due to a negative fitness. However, if for some reason (e.g., immigration
of AS individuals) w suddenly becomes large (large enough to be on the right side
of the separatrix), then the S-gene will be able to establish itself, even though the
fitness is negative.

These results can be used to study questions related to the evolution of associated
traits. We see from above that whether or not the S-gene can invade and establish
itself in a population is determined by whether the fitness coefficient is positive or
negative. Recall that the fitness is given by the difference σ1 − σ2, where the total
death rate σi is a sum of weighted death rates mi and ρhi (see (11.21)) with the
weight Wi given by (11.20). The quantity Wi contains all the malaria transmission
parameters.



11.3 *Coupling Malaria Epidemiology and Sickle-Cell Genetics 405

In [12], an extension of model (11.10) is considered by including a class with
asymptomatic malaria. It assumes that among all malaria infections, the proportion
k is assumed to be symptomatic, while a proportion, 1 − k, is asymptomatic. It is
assumed that a proportion f of individuals who experience symptomatic infections
receives antimalarial therapy. It is known that sickle-cell traits protect individuals
against symptomatic but not against asymptomatic infections [14, 15]. Thus, we let
1 − ζ denote the level of protection against symptomatic infections among the sub-
population of individuals with sickle-cell traits. Furthermore, 1/γh is used to denote
the average infective period of symptomatic patients, and the malaria-induced death
rate is denoted by ρhi (ρh1 � ρh2). Let Mhi denote symptomatically infected or
treated individuals of type i, and let Ahi denote asymptomatically infected hosts
of type i. For treated individuals, the average infective period of symptomatic
patients can be shortened to 1/γhT and disease mortality is reduced to ρhT . With or
without treatment, infections do not confer permanent immunity, allowing repeated
infections.

The model reads

dSh1

dt
= P1B(Nh)Nh − βhSh1z + γh(Ih1 + Ah1) + γhT Mh1 − μh1Sh1,

dSh2

dt
= P2B(Nh)Nh − [ζk + (1 − k)]βhSh2z + γh(Ih2

+ Ah2) + γhT Mh2 − μh2Sh2,

dIh1

dt
= k(1 − f )βhSh1z − (γh + μh1 + ρh1)Ih1,

dI2

dt
= ζk(1 − f )βhSh2z − (γh + μh2 + ρh2)Ih2,

dMh1

dt
= kfβhSh1z − (γhT + μh1 + ρhT 1)Mh1,

dMh2

dt
= ζkfβhSh2z − (γhT + μh2 + ρhT 2)Mh2,

dAh1

dt
= (1 − k)βhSh1z − (γh + μh1)Ah1,

dAh2

dt
= (1 − k)βhSh2z − (γh + μh2)Ah2,

dz

dt
= βv(Ih1 + Ih2 + Ah1 + Ah2 + δMh1 + δMh2)(1 − z)

Nh

− μvz,

(11.22)

where Nh = ∑2
i=1 Shi + Ihi + Mhi + Ahi and B(Nh) = B0(1 − Nh/K).
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Similarly to the analysis of the system (11.10), it can be shown that on the fast
time scale, the basic reproduction number of malaria disease can be calculated as
the leading eigenvalue of the next generation matrix:

Rc =(1 − g)

(
βvβh

μvγh

)

+ g

(
βvβh(1 − k(1 − ζ ))

μvγh

)

=(1 − g)R1 + gR2.

(11.23)

Here Ri (i = 1, 2) is defined as Ri = QvQhi, where

Qv = βv

μv

, Qh1 = βh

γh
, and Qh2 = βh(1 − k(1 − ζ ))

γh
.

It can be shown that E0 is locally asymptotically stable if Rc < 1 and unstable if
Rc > 1.

The model can be used to explore the influence of S-gene frequency on the
malaria epidemic. To assess how the frequency of the S-gene g influences the
overall endemic level of malaria, we examined how the reproduction number
of malaria (Rc) changes when g is varied (Fig. 11.2). In general, the disease
prevalence increases with Rc. It is also worth noting that Rc = (1 − g)R1 + gR2
where R1 and R2 are contributions from non-carriers and carriers of sickle-
cell disease, respectively (see (11.23)). As a result, R1 is greater than R2 in the
presence of the S-gene, and Rc decreases with the frequency of the S-gene (g).
This proves that the overall prevalence of malaria infection decreases with an
increasing number of individuals who have the sickle-cell trait. However, this effect
is stronger on symptomatic infections than on asymptomatic infections (Fig. 11.2).
Nevertheless, the relative prevalence of asymptomatic infections among sickle-

Fig. 11.2 Impact of sickle-cell trait on the epidemiology of malaria as the frequency of AS

individuals (g) was varied (solid: ζ = 0.6; dashed: ζ = 0.4; dotted: ζ = 0.2). The left figure
plots the prevalence of symptomatic ((I ∗

h1 + I ∗
h2)/N

∗
h , blue) and asymptomatic ((A∗

h1 + A∗
h2)/N

∗
h ,

black) malaria infection for different ζ . The figure on the right plots the relative prevalence of
asymptomatic AA individuals and asymptomatic AS individuals compared to all symptomatic
individuals (shown as A∗

h1/(I
∗
h1 + I ∗

h2) in green and A∗
h2/(I

∗
h1 + I ∗

h2) in magenta)
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Fig. 11.3 The left figure is a plot of the level curves of the control reproduction number (Rc)
when the proportion of symptomatic infection (k) and the proportion of treatment (f ) are varied.
The figure on the right is a plot of R0 vs relative efficacy against symptomatic infection among
individuals of type 2 compared to individuals of type 1, and the proportion of asymptomatic
infection

cell carriers increased with the frequency of the S-gene(Fig. 11.2). Specifically,
the relative prevalence of asymptomatic infections with sickle-cell trait, compared
to symptomatic infections among both the carriers and non-carriers of sickle-cell
disease, increased from 0.12 to 0.59 as the frequency of the S-gene increased
from 0.10 to 0.40. This increase occurred partially because the sickle-cell trait
does not provide protection against asymptomatic malaria. This pattern was more
pronounced when the relative susceptibility of sickle-cell carriers to malaria (ζ )
decreased (Fig. 11.2).

Figure 11.2 demonstrates how various factors may influence the disease dynam-
ics. The effects on Rc can be examined using the formula given in (11.23). This is
shown in Fig. 11.3, which shows how Rc changes as the probability of treatment
(f ) or the proportion of symptomatic infection (k) varies. We observe that the value
of Rc was more sensitive to the changes in the proportion of k than to changes in the
treatment probability f . Furthermore, when the proportion of symptomatic infection
(k) is relatively low, increasing treatment rate is unlikely to be effective in lowering
the burden of malaria. Given that the asymptomatic infection of malaria is common
in malaria-endemic regions, our result indicates that the effect of treatment might
be limited. In addition, strong selection of sickle-cell traits (i.e., lower value of ζ ) is
likely to reduce the impact of treatment on reducing the prevalence of malaria.
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Chapter 12
Dengue Fever and the Zika Virus

12.1 Dengue Fever

While there have been cases of probable dengue fever more than 1000 years ago,
the first recognized dengue epidemics occurred in Asia, Africa, and North America
in the 1780s. There have been frequent outbreaks since then, and the number
of reported cases has been increasing rapidly recently. According to the World
Health Organization, approximately 50,000,000 people worldwide are infected with
dengue. Symptoms may include fever, headaches, joint and muscle pain, and nausea,
but many cases are very mild. There is no cure for dengue fever, but most patients
recover with rest and fluids. There are at least four different strains of dengue fever,
and there is some cross-immunity between strains. Dengue fever is transmitted
by the mosquito aedes aegypti, and most control strategies are aimed at mosquito
control.

Dengue, a re-emerging vector-borne disease, is caused by members of the
genus Flavivirus in the family Flaviviridae with four active antigenically distinct
serotypes, DENV-1, DENV-2, DENV-3, and DENV-4 [15]. The pathogenicity
of dengue can range from asymptomatic, mild dengue fever (DF), to dengue
hemorrhagic fever (DHF), and dengue shock syndrome (DSS) [15, 23]. Although
infection with a dengue serotype does not usually protect against other serotypes,
it is believed that secondary infections with a heterologous serotype increase the
probability of DHF and DSS [10, 22]. According to the World Health Organization,
40% of the global population is at risk for dengue infection with an estimate of
50–100 million infections yearly including 500,000 cases of DHF. It has been
estimated that about 22,000 deaths, mostly children under 15 years of age, can
be attributed to DHF [46]. In the United States, approximately 5% or more of
the Key West population in Florida was exposed to dengue during the 2009–
2010 outbreak [11] while the Hawaii Department of Health reported 190 cases
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during the 2015 outbreak on Oahu, the first outbreak since 2011. Since dengue is
not endemic in Hawaii, health authorities have suggested that the recent outbreak
may have been started by infected visitors [25]. Dengue is highly prevalent and
endemic in Southeast Asia, which has experienced a 70% increase in cases since
2004 [29]; Mexico, also an endemic country, reported over a million cases of DF
and more than 17,000 cases of DHF [21, 33] during the 2002 outbreak. Dengue
is transmitted primarily by the vector Ae. aegypti, which is now found in most
countries in the tropics [24, 37]. The secondary vector, Ae. albopictus, has a range
reaching farther north than Ae. aegypti with eggs better adapted to subfreezing
temperatures [26, 33]. Differences in susceptibility and transmission of dengue
infection [3, 27, 42] raise the possibility that some serotypes are either more
successful at invading a host population, or more pathogenic, or both [30]. DENV-
2 is the most associated with dengue outbreaks involving DHF and DSS cases
[32, 38, 48], followed by DENV-1 and DENV-3 viruses [4, 24, 32]. While infection
with any of the four dengue serotypes could lead to DHF, the rapid displacement of
DENV-2 American by DENV-2 Asian genotype has been linked to major outbreaks
with DHF cases in Cuba, Jamaica, Venezuela, Colombia, Brazil, Peru, and Mexico
[31, 32, 38, 39, 41, 48]. A possible mechanism involved in the dispersal and
persistence of DENV-2 in nature is vertical transmission (transovarial transmission)
via Ae. aegypti. Advances in molecular biology have been used to show that vertical
transmission involving Ae. aegypti and Ae. albopictus is possible in captivity and
in the wild [3, 8, 12, 20, 34, 40]. Thus, assessing transmission dynamics and
pathogenicity between the DENV-2 American and Asian genotypes’ differences is
one of the priorities associated with the study of the epidemiology of dengue. In
short, dengue has an increasing recurrent presence putting a larger percentage of
the global population at risk of dengue infection, a situation that has become the
norm due to the growth of travel and tourism between endemic and non-endemic
regions.

The potential role of vertical transmission in dengue endemic regions or in
fluctuating environments has been explored in [1, 18, 36]. The role of host movement
has also been explored in the context of dengue [2] in a formulation that does not
account for the effective population size.

The model (6.2) in Chapter 6 is a generic model for vector-transmitted diseases.
For any specific disease, it is necessary to modify this model to incorporate
properties of the disease not included in the generic model.

Suppose we assume that the mosquito population is in equilibrium, so that the
mosquito birth rate is βvNv . We assume also vertical transmission for mosquitoes.
The birth rate of mosquitoes is μvNv , of which μvIv are born to infective mother
mosquitoes, and we assume that a fraction q of these are born infective. Then a
model describing the dynamics of DENV-2 is given by the following system of
differential equations:
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S′
h = μhNh − βhSh

Iv

Nv

− μhSh

E′
h = βhSh

Iv

Nv

− (ηh + μh)Eh

I ′
h = ηhEh − (γ + μh)Ih

S′
v = μv(Nv − qIv) − βvSv

Ih

Nh

− μvSv

E′
v = βvSv

Ih

Nh

− (ηv + μv)Ev

I ′
v = qμvIv + ηvEv − μvIv.

(12.1)

This model is the same as the basic vector transmission model (6.2) in Chapter 6
except that the birth rate of susceptible hosts is now μhNh and vertical transmission
of hosts is added. In the absence of selection, that is, differences in birth and death
rate and in the absence of vertical transmission, the model (12.1) turns out to be
equivalent to a model considered by Chowell et al. in [13]. Model (12.1) is well
defined supporting a sharp threshold property, namely, the disease dies out if the
basic reproduction number R0 is less than unity and persists whenever R0 > 1.

12.1.1 Calculation of the Basic Reproduction Number

We calculate the basic reproduction number for the model (12.1) in two stages, as
we did for the model (6.2) in Sect. 6.2.

In the first stage, an infective mosquito infects humans at a rate βNh/Nv for a
time 1/μv , producing βNh/Nvμv infected humans per mosquito.

In the second stage, an infective human infects mosquitoes, at a rate βvNv/Nh

for a time 1/(μh + γ ). This produces βvNv/Nh(γ + μh) infected mosquitoes, of
whom a fraction ηv/(ηv + μv) proceeds to become infective.

The net result of these two stages is

Rv = βvNv

Nh

1

μh + γ

ηv

ηv + μv

ηh

ηh + μh

1

μv

= βhβv

1

μh + γ

ηv

ηv + μv

ηh

ηh + μh

1

μv

(12.2)

infected vectors. In addition, an infective mosquito produces

Rd = qμv (12.3)
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infective mosquitoes through vertical transmission, giving a total basic reproduction
number

R0 = Rv + Rd (12.4)

= βhβv

1

μh + γ

ηv

ηv + μv

ηh

ηh + μh

1

μv

+ qμv.

We could also calculate the basic reproduction number by using the next gener-
ation matrix approach [45]. If we interpret only human infections as new infections
and consider vector infections as transitions, we would obtain the same result.

12.2 A Model with Asymptomatic Infectives

Many cases of dengue are very mild and may not be reported. We can incorporate
this in a model by assuming that a fraction p of exposed members become infective
while the remainder of the exposed class go to an asymptomatic stage with lower
infectivity and possibly more rapid recovery. We have already described a model
with such transitions in influenza models in Sect. 9.2. We consider a model including
this structure, namely

S′
h = μhNh − βhSh

Iv

Nv

− μhSh

E′
h = βhSh

Iv

Nv

− (ηh + μh)Eh

I ′
h = pηhEh − (γ + μh)Ih (12.5)

A′
h = (1 − p)ηhEh − (κ + μh)Ah

S′
v = μv(Nv − qIv) − βvSv

Ih + δAh

Nh

− μvSv

E′
v = βvSv

Ih + δAh

Nh

− (ηv + μv)Ev

I ′
v = qμv + ηvEv − μvIv.

Here, δ is the infectivity reduction factor for asymptomatics, and κ is the recovery
rate for asymptomatics.

12.2.1 Calculation of the Basic Reproduction Number

We calculate the basic reproduction number for the model (12.5) in two stages, as
we did for the model (12.1) in the previous section.
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In the first stage, an infective mosquito infects humans at a rate βNh/Nv for
a time 1/μv , producing βNh/Nvμv infected humans per mosquito. A fraction
ηh/(ηh + μh) of these proceed to an infective stage, with

pβh

Nh

μvNv

ηh

ηh + μh

going to Ih and

(1 − p)βh

Nh

μvNv

ηh

ηh + μh

going to Ah. In the second stage, an infective human infects mosquitoes, at a rate
βvNv/Nh for a time 1/(μh + γ ). An asymptomatic infects mosquitoes at a rate
δβvNv/Nh for a time 1/(μh + κ). A fraction ηv/(ηv + μv) of each of these groups
develop into infective mosquitoes. Thus, the second stage produces

βv

Nv

Nh

ηv

ηv + μv

[
p

μh + γ
+ δ(1 − p)

μh + κ

]

infected mosquitoes.
The net result of these two stages is

Rv = βh

Nh

μvNv

ηh

ηh + μh

βv

Nv

Nh

ηv

ηv + μv

[
p

μh + γ
+ δ(1 − p)

μh + κ

]

(12.6)

infected mosquitoes. In addition, an infective mosquito produces

Rd = qμv (12.7)

infective mosquitoes through vertical transmission, giving a total basic reproduction
number

R0 = Rv + Rd . (12.8)

Again, we could also calculate the basic reproduction number by using the next
generation matrix approach [45]. If we interpret only human infections as new
infections and consider vector infections as transitions, we would obtain the same
result, but if we interpreted both human and vector infections we would obtain a
different version of the basic reproduction number

R∗ = 1

2

[

Rd +
√

R2
d + 4Rv

]

.
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12.3 The Zika Virus

The Zika virus, a mosquito borne arbovirus, was first identified in Uganda in 1947.
Similar to the dengue and chikungunya viruses, Zika is primarily spread by the
mosquito, Aedes aegypti. Recent outbreaks of Zika disease have occurred in Yap
Island in the Pacific in 2007 [16] and in French Polynesia in 2013–2014 [28]. Since
2015, Zika has spread through much of South America, Central America, and the
Caribbean, where the Aedes aegypti species is endemic, recently reaching pandemic
levels in 2016. While the reasons for the explosive spread of the disease in the
Americas are still unclear, the rapid urbanization in countries with under-developed
infrastructure for surveillance and vector control probably plays a role.

Zika disease is usually asymptomatic, and typically is mild even with a clinical
presentation. Its symptoms are similar to those of dengue and chikungunya virus
infections. However, the disease has been linked to an apparent increased risk of the
neurological disorder Guillain–Barré syndrome, and also to neonate microcephaly.
The latter is of particular concern, because pregnant women may not even know they
have been infected, and the damage to their unborn infants may result in subsequent
lifelong disabilities. There is currently no vaccine or specific treatment for Zika
infection, leaving control of the vector populations and avoidance through the use
of mosquito repellents as the only means to control the spread of the disease.

For the Zika virus, it has been established that in addition to vector transmission
of infection there may also be direct transmission through sexual contact. The Zika
virus is the first example of an infection that can be transferred both directly and
through a vector, and it is important to include direct transmission (in this case
sexual transmission) in a model. Estimation of the basic reproduction number is
particularly difficult for Zika because of the difficulty in estimating the relative
importance of transmission through vectors and direct transmission through sexual
contact. A vaccine is being developed for the Zika virus, and analysis of the question
of whether this vaccine can control an outbreak is contained in [44].

12.4 A Model with Vector and Direct Transmission

We approach the question of formulating a model for the Zika virus by beginning
with the basic vector transmission model (6.2) and adding direct host to host
transmission. We add to the model (6.2) a term αSh

Ih
Nh

describing a rate α of
movement from S to E. Also, we consider a single outbreak model, and omit
demographic terms and vertical transmission in the host population.

This leads to the following model [9]:

S′
h = −βhSh

Iv

Nv

− αSh

Ih

Nh

E′
h = βhSh

Iv

Nv

+ αSh

Ih

Nh

− ηhEh
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I ′
h = ηhEh − γ Ih (12.9)

S′
v = μvNv − μvSv − βvSv

Ih

Nh

E′
v = βvSv

Ih

Nh

− (μv + ηv)Ev

I ′
v = ηvEv − μvIv.

The rate α is an average over the human population; if transmission is possible only
from male to female this is incorporated into α.

To calculate the basic reproduction number R0, we use the same direct approach
as that used in Section 6.2. If there is sexual transmission, this operates independent
of the host–vector interaction, and produces α cases in unit time for a time 1/γ ,
adding a simple term α/γ to the reproduction number

R0 = βhβv

ηv

μvγ (μv + ηv)
+ α

γ
. (12.10)

We define

Rv = βhβv

ηv

μvγ (μv + ηv)
, (12.11)

the vector transmission reproduction number, and

Rd = α

γ
, (12.12)

the direct transmission reproduction number, so that

R0 = Rv + Rd .

If we use the next generation matrix approach, using the same approach as that
used in Sect. 12.1.1, we form the matrix product KL = FV −1 with

F =

⎡

⎢
⎢
⎢
⎣

0 α 0 βh
Nh

Nv

0 0 0 0
0 βv

Nv

Nh
0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎦

, V =

⎡

⎢
⎢
⎣

ηh 0 0 0
−ηh γ 0 0

0 0 μv + ηv 0
0 0 −ηv μv

⎤

⎥
⎥
⎦ .

Then the next generation matrix with large domain is

KL =

⎡

⎢
⎢
⎢
⎣

α
γ

α
γ

βh
Nh

Nv

ηv
μv(μv+ηv)

βh
Nh

Nv

1
μv

0 0 0 0

βv
Nv

Nh

1
γ

βv
Nv

Nh

1
γ

0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎦

.
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The next generation matrix K is the 2 × 2 matrix

K =
[

α
γ

βh
Nh

Nv

ηv
μv(μv+ηv)

βv
Nv

Nh

1
γ

0

]

.

The positive eigenvalue of this matrix is

λ = α

2γ
+ 1

2

√
α2

γ 2 + 4Rv

= 1

2

[

Rd +
√

R2
d + 4Rv

]

.

We may calculate that λ = 1 if and only if

Rv + Rd = 1.

We now have two potential expressions for the basic reproduction number, namely
Rv + Rd , with Rv and Rd given by (12.11) and (12.12) respectively, and

R∗ = 1

2

[

Rd +
√

R2
d + 4Rv

]

.

Different expressions are possible for the next generation matrix and these may
lead to different expressions for the basic reproduction number. This is shown in
[14].

The expression Rv + Rd appears to us to be a more natural form than R∗, and
we choose to use this for the basic reproduction number. It can be obtained from
the following expression for the next generation matrix. We consider only human
infections as new infections, and take

F =

⎡

⎢
⎢
⎢
⎣

0 α 0 βh
Nh

Nv

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎦

, V =

⎡

⎢
⎢
⎢
⎣

ηh 0 0 0
−ηh γ 0 0

0 −βv
Nv

Nh
μv + ηv 0

0 0 −ηv μv

⎤

⎥
⎥
⎥
⎦

.

Then

V −1 =

⎡

⎢
⎢
⎢
⎢
⎣

1
ηh

0 0 0

[2pt] 1
γ

1
γ

0 0

βv
Nv

Nh

1
γ (μv+ηv)

βv
Nv

Nh

ηv
γ (μv+ηv)

1
μv+ηv

0

βv
Nv

Nh

ηv
μvγ (μv+ηv)

βv
Nv

Nh

ηv
μvγ (μv+ηv)

ηv
μv(μv+ηv)

1
μ

⎤

⎥
⎥
⎥
⎥
⎦

.
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Since only the first row of F has non-zero entries, the same is true of FV −1, and
from this we can deduce that the only non-zero eigenvalue of FV −1 is the entry in
the first row, first column of FV −1, and this is

α

γ
+ βhβv

ηv

μvγ (μv + ηv)
= Rd + Rv = R0.

If we use this somewhat unorthodox approach to the next generation matrix for
the model (6.2), we obtain the form Rv , with no square root, for the reproduction
number. We now have two viable expressions for the basic reproduction number,
namely R∗ and R0, both derived from a next generation matrix approach but with
different separations. We have chosen to use R0 for the basic reproduction number
because it is more readily interpreted as a number of secondary infections. Other
sources, including [19], use R∗. In studying data for epidemic models that include
vector transmission it is absolutely vital to specify exactly which form is being used
for the basic reproduction number.

12.4.1 The Initial Exponential Growth Rate

In order to determine the initial exponential growth rate from the model, a quantity
that can be compared with experimental data, we linearize the model (12.9) about
the disease-free equilibrium S = Nh,Eh = Ih = 0, Sv = Nv,Ev = Iv = 0. If we
let y = Nh − S, z = Nv − Sv , we obtain the linearization

y′ = βhNh

Iv

Nv

+ αIh

E′
h = βhNh

Iv

Nv

+ αIh − ηhEh

I ′
h = ηhEh − γ Ih

z′ = −μvz + βvNv

Ih

Nh

Ev = βvNv

Ih

Nh

− (μv + ηv)Ev

I ′
v = ηvEv − μvIv.

(12.13)

The corresponding characteristic equation is

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ 0 α 0 0 βh
Nh

Nv

0 −(λ + ηh) α 0 0 βh
Nh

Nv

0 ηh −(λ + γ ) 0 0 0
0 0 βv

Nv

Nh
−(λ + μv) 0 0

0 0 βv
Nv

Nh
0 −(λ + μv + ηv) 0

0 0 0 0 ηv −(λ + μv)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0.
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We can reduce this equation to a product of two factors and a fourth degree
polynomial equation

λ(λ + μv)det

⎡

⎢
⎢
⎢
⎣

−(λ + ηh) α 0 βh
Nh

Nv

ηh −(λ + γ ) 0 0
0 βv

Nv

Nh
−(λ + μv + ηv) 0

0 0 ηv −(λ + μv)

⎤

⎥
⎥
⎥
⎦

= 0.

The initial exponential growth rate is the largest root of this fourth degree
equation, which reduces to

g(λ) =(λ + ηh)(λ + γ )(λ + μv + ηv)(λ + μv) − βhβvηvηv (12.14)

− ηhα(λ + μv)(λ + μv + ηv) = 0.

The largest root of this equation is the initial exponential growth rate, and this may
be measured experimentally. If the measured value is ρ, then from (12.14) we obtain

(ρ + ηh)(ρ + γ )(ρ + μv + ηv)(ρ + μv) − βhβvηhηv

−ηhα(ρ + μ + v)(ρ + μv + ηv) = 0.
(12.15)

From (12.15) we can see that ρ = 0 corresponds to R0 = 1, confirming that our
calculated value of R0 has the proper threshold behavior.

Equation (12.15) determines the value of βhβv , and we may then calculate R0,
provided we know the value of α. However, this presents a major problem. In [19]
it is suggested that the contribution of sexual disease transmission is small, based
on estimates of sexual activity and the probability of disease transmission. Since the
probability of sexual transmission of a disease depends strongly on the particular
disease, this estimate is quite uncertain. Estimates based on a possible imbalance
between male and female disease prevalence are also quite dubious. Most Zika cases
are asymptomatic or quite light but the risks of serious birth defects means that
diagnosis of Zika is much more important to women than to men. If there are more
female than male cases, it is not possible to distinguish between additional cases
caused by sexual contact and cases identified by higher diagnosis rates. To the best
of our knowledge, there is not yet a satisfactory resolution of this problem.

What would be required would be another quantity which can be determined
experimentally and can be expressed in terms of the model parameters. In the
absence of further information, all we can accomplish is to estimate reproduction
numbers for various choices of α and βhβv that satisfy (12.15). We use the param-
eter values [43] obtained for the 2015 Zika outbreak in Barranquilla, Colombia,
including an analysis of the exponential rise in confirmed Zika cases identified by
the Colombian SIVIGILA surveillance system up to the end of December, 2015.

κ = 1/7 γ = 1/5 ηv = 1/9.5 μv = 1/13,



12.5 A Second Zika Virus Model 419

Table 12.1 Reproduction
number values

α βhβv Rd Rv R0 R∗ S∞
0 0.243 0 4.86 4.86 2.185 14

0.1 0.184 0.5 3.69 4.19 2.187 24

0.2 0.125 1.0 2.51 3.51 2.16 45

0.3 0.0665 1.5 1.335 2.835 2.13 79

0.4 0.0076 2.0 0.152 2.152 2.074 166

0.413 0 2.065 0 2.065 2.065 185

and the estimated measurement ρ = 0.073. With these values we have

11βhβv + 6.48α = 2.676.

To satisfy this equation, we must have 0 ≤ α ≤ 0.413. We then calculate R0 and
R∗ for several values of α in this range, assuming population sizes of 1000 humans
and 4000 mosquitoes. We obtain the results summarized in Table 12.1.

We observe that R∗ is not very sensitive to changes in the direct contact rate
while R0 is quite sensitive to changes in α. We have also shown the results of
simulations of the model (12.9) showing how the epidemic size depends on α. These
simulations suggest that the epidemic final size does vary considerably, and without
some way of estimating how many disease cases arise from direct contact we are
unable to estimate the epidemic final size.

12.5 A Second Zika Virus Model

A model for the Zika virus with somewhat more detail than the model (12.9) has
been described in [19]. This model includes the assumption that many Zika cases
are asymptomatic, and has two infectious stages acute and convalescent. The model
takes the form

S′
h = −abSh

Iv

Nh

− βSh

κEh + Ih1 + τIh2

Nh

E′
h = θ

[

abSh

Iv

Nh

+ βSh

κEh + Ih1 + τIh2

Nh

]

− νhEh

I ′
h1 = νhEh − γh1Ih1

I ′
h2 = γh1 − γh2Ih2

A′
h = (1 − θ)

[

bSh

Iv

Nh

+ βSh

κEh + Ih1 + τIh2

Nh

]

− γhAh

R′
h = γh2 + γhAh

S′
v = μvNv − μvSv − ac

SvηAh + Ih1

Nh

E′
v = acSv

ηAh + Ih1

Nh

− (μv + νv)Ev

I ′
v = νvEv − μvIv.

(12.16)
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Table 12.2 Model parameters

Parameter Description Value

a Mosquito biting rate 0.5

b Transmission probability, vector to human 0.4

c Transmission probability, human to vector 0.5

η Transmission probability, asymptomatic humans to vector 0.1

β Transmission probability, human to human 0.1

κ Relative transmission probability, exposed to infective 0.6

τ Relative transmission probability, convalescent to asymptomatic 0.3

θ Proportion of symptomatic infections 18

m Ratio of mosquitoes to humans 5

1/νh Human incubation period (days) 5

1/νv Mosquito incubation period (days) 10

1/γh1 Acute phase duration (days) 5

1/γh2 Convalescent period duration (days) 20

1/γh Asymptomatic infection duration (days) 7

1/μv Mosquito lifetime (days) 14

The reproduction numbers for this model are

Rd = βκθ

νh
+ βθ

γh1
+ βτθ

γh2
, Rv =

(
a2bηcθ

νhμv

+ a2bcθ

γh1μv

)
ηv

ηv + μv

.

Parameter values were chosen to fit vector transmission data for Brazil, El
Salvador, and Colombia up to February 2016. For direct (sexual) transmission of
infection, parameters were chosen with an assumed probability of transmission of
infection per sexual contact, but this assumption might be questionable (Table 12.2).

With these parameter values, this model yielded estimates of

Rd = 0.136, Rv = 3.842,

so that

R0 = 3.973, R∗ = 2.055.

However, there are indications that the number of cases of Zika due to sexual
contacts may be considerably higher. Perhaps, the value of β should be larger.



12.6 Project: A Dengue Model with Two Patches 421

12.6 Project: A Dengue Model with Two Patches

When dengue fever invades a location, it tends to move from one patch to another.
To describe this, we consider a model for DENV-2 in two separate patches, with
movement between the patches. The single patch model (12.1) is the building block
for the two-patch model. Within each patch, in the absence of host mobility, dengue
dynamics are modeled via the system (12.1). We consider an epidemic model in two
patches, one of which has a significantly larger contact rate, with short term travel
between the two patches. The total population resident in each patch is constant. We
follow a Lagrangian perspective, that is, we keep track of each individual’s place
of residence at all times [6, 17]. It is assumed that vectors do not move between
patches since the vectors Ae. aegypti and Ae. albopictus do not travel more than few
tens of meters over their lifetime [2, 47]; moving 400–600 meters at most [7, 35],
respectively. In short, we neglect vector dispersal.

Thus we consider two patches, with total resident population sizes N1 and
N2 respectively, each population being divided into susceptibles, infectives, and
removed members. Si and Ii denote the number of susceptibles and infectives
respectively who are residents in Patch i, regardless of the patch in which they are
present.

The host residents of Patch 1, population size Nh,1, spends, on average, p11
proportion of its time in their own Patch 1 and p12 proportion of its time visiting
Patch 2. Residents of Patch 2, population of size Nh,2, spend p22 proportion of their
time in Patch 2 while spending p21 = 1 − p22 visiting Patch 1. Thus, at time t , the
effective population in Patch 1 is p11Nh,1 + p21Nh,2 and the effective population in
Patch 2 is p12Nh,1 + p22Nh,2. The susceptible population of Patch 1 (Sh,1) could
be infected by a vector in either Patch 1 (Iv,1) or Patch 2 by (Iv,2), depending on
which patch they are located in at the time of infection. Thus, the dynamics of the
susceptible population in Patch 1 are given by

Ṡh,1 = μhNh,1 − βhSh,1

2∑

j=1

ajp1j
Iv,j

p1jNh,1 + p2jNh,2
− μhSh,1. (12.17)

The effective infectious population in Patch 1 is p11Ih,1+p21Ih,2 and, consequently,
the proportion of infectious individuals in Patch 1, is

p11Ih,1 + p21Ih,2

p11Nh,1 + p21Nh,2
.

The dynamics of susceptible mosquitoes in Patch 1 are modeled as follows:

Ṡv,i = μv(Nv,i − qIv,i) − βvSv,1
p11Ih,1 + p21Ih,2

p11Nh,1 + p21Nh,2
− μvSv,1. (12.18)
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Question 1 Show that the dynamics of DENV-2, with the host moving between
patches, is given by the system

S′
h,i = μhNh,i − βhSh,i

2∑

j=1

ajpij

Iv,j

p1jNh,1 + p2jNh,2
− μhSh,i

E′
h,i = βhSh,i

2∑

j=1

ajpij

Iv,j

p1jNh,1 + p2jNh,2
− (μh + ηh)Eh,i

I ′
h,i = ηhEh,i − (μh + γi)Ih,i

S′
v,i = qμv(Nv,i − qIv,i) − βvSv,i

∑2
j=1 pjiIh,j

∑2
k=1 pkiNh,k

− μvSv,i

E′
v,i = βvSv,i

∑2
j=1 pjiIh,j

∑2
k=1 pkiNh,k

− (μv + ηv)Ev,i

I ′
v,i = ηvEh,i + (1 − q)μvIv,i , i = 1, 2.

(12.19)

Question 2 Determine the basic reproduction number of the model (12.19).

Question 3 Obtain a pair of final size relations for the model (12.19).
The results of this project, together with appropriate data, can be used to estimate

the spread of dengue from one community to another [5].

12.7 Exercises

1.∗ Use the next generation matrix to calculate the basic reproduction number of
the model (12.1).

2.∗ Use the next generation matrix to calculate the basic reproduction number of
the model (12.5).

3. If Rv and Rd are two non-negative numbers, show that 1
2

[

Rd +
√

R2
d + 4Rv

]

is equal to 1 if and only if Rd + Rv = 1.
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Part III
More Advanced Concepts



Chapter 13
Disease Transmission Models with Age
Structure

13.1 Introduction

Age is one of the most important characteristics in the modeling of populations
and infectious diseases. Because age groups frequently mix heterogeneously it may
be appropriate to include age structure in epidemiological models. While there are
other aspects of heterogeneity in disease transmission models, such as behavioral
and spatial heterogeneity, age structure is one of the most important aspects of
heterogeneity in disease modeling. As references for the mathematical details, we
suggest [1, Chapters 9 and 13], [21, Part III], [22, 23, Chapter 19], [28, Section 10.9],
[32, Chapter 22]. Some applications may be found in [2, 4, 9, 13, 15, 21, 24, 25, 27,
34, 35].

Childhood diseases, such as measles, chicken pox, and rubella, are spread mainly
by contacts between children of similar ages. More than half of the deaths attributed
to malaria are in children under 5 years of age due to their weaker immune
systems. This suggests that in models for disease transmission in an age structured
population it may be advisable to allow the contact rates between two members of
the population to depend on the ages of both members.

Sexually transmitted diseases (STDs) are spread through partner interactions
with pair-formations, and the pair formations are age-dependent in most cases. For
example, most AIDS cases occur in the group of young adults. More instances of
age dependence may be found in [1].

A description of age structured disease transmission requires an introduction
to age structured population models. In fact, the first models for age structured
populations [26] were designed for the study of disease transmission in such
populations. Therefore, we begin with a brief description of some aspects of age
structured population models.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
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In this chapter, we discuss some structured models that have been used in ecology
and epidemiology. Some topics are included in projects. References to the literature
indicate where more detailed discussions can be found. We have chosen applications
that do not demand a sophisticated mathematical background and that yet give a
feeling for some active areas of research.

13.2 Linear Age Structured Models

It was a physician, Lieut. Col. A.G. McKendrick (1926), who first introduced age
into the description of the dynamics of a one-sex population. The linear theory
is based on the McKendrick equation [26], which is most often referred to as the
Von Foerster (1959) equation since McKendrick’s earlier work was not well known.
Fortunately, the contributions of McKendrick have been made available widely to
the scientific community [21]. The McKendrick model assumes that the female
population can be described by a density function ρ(a, t) of chronological age a

and time t , both to be measured on the same scale. Then, N(a, t) = ∫ a

0 ρ(σ, t)dσ

is the number of individuals of ages in the interval [0, a] at time t , and P(t) =∫∞
0 ρ(σ, t)dσ is the total population size at time t .

Let β(a) ≥ 0 denote the per-capita age specific fertility rate. Then the total
number of births at time t is

B(t) =
∫ ∞

0
β(a)ρ(a, t)da, (13.1)

and the total number of births in the interval [t, t + h](h > 0) is given by

∫ t+h

t

∫ ∞

0
β(a)ρ(a, t)dads =

∫ t+h

t

B(s)ds.

Let μ(a) ≥ 0 denote the per-capita age specific death rate. Then the probability that
an individual will survive from birth to age a is

π(a) = e− ∫ a
0 μ(α)dα.

Note that, for each s ∈ [t, t + h], the total number of individuals of age less than or
equal to a+s who die at time t+s is

∫ a+s

0 μ(σ)ρ(σ, t+s)dσ . Thus, the total number
of individuals of age less than or equal to a + u− t who die at time u ∈ [t, t + h] is
given by (letting u = s + t):

∫ t+h

t

∫ a+u−t

0
μ(σ)ρ(σ, u)dσdu =

∫ h

0

∫ a+s

0
μ(σ)ρ(σ, t + s)dσds.
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Assume also that the only changes in the population size from time t to t + h are
due to births and deaths. Then

N(a + h, t + h) − N(a, t) =
∫ t+h

t

B(s)ds −
∫ h

0

∫ a+s

0
μ(σ)ρ(σ, t + s)dσds.

(13.2)

The next step is to divide (13.2) by h and let h → 0. In this process, we will need
to make use of differentiation of an integral. The basic rule for this is that if

F(a, x) =
∫ a

0
f (ξ, x)dξ,

then the partial derivatives of F are given by

Fa(a, x) = f (a, x), Fx(a, x) =
∫ a

0
fx(ξ, x)dξ.

Since

N(a+h, t+h)−N(a, t) = [N(a+h, t+h)−N(a, t+h)]+[N(a, t+h)−N(a, t)],

the limit as h → 0 of the left side of (13.2) divided by h is

Na(a, t) + Nt(a, t) = ρ(a, t) +
∫ a

0
ρt (α, t)dα.

Thus, we obtain the following from the left-hand side:

lim
h→0

N(a + h, t + h) − N(a, t + h) + N(a, t + h) − N(a, t)

h

= Nt(a, t) + Na(a, t) =
∫ a

0
ρt (σ, t)dσ + ρ(a, t).

(13.3)

The limit as h → 0 of the right-hand side of (13.2) divided by h, again using
differentiation of the integral, leads to

B(t) −
∫ a

0
μ(σ)ρ(σ, t)dσ. (13.4)

Combining (13.3)–(13.4), we obtain

∫ a

0
ρt (σ, t)dσ + ρ(a, t) = B(t) −

∫ a

0
μ(σ)ρ(σ, t)dσ. (13.5)
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Differentiation of (13.5) with respect to a yields

ρt (a, t) + ρa(a, t) = −μ(a)ρ(a, t). (13.6)

Assume that the initial age distribution as ρ(a, 0) = ρ0(a) and that the gender ratio
is one to one. Note that ρ(0, t) also represents the total number of births at time t ,
i.e.,

ρ(0, t) = B(t).

Then, we arrive at the following partial differential equation with initial and
boundary conditions:

ρt (a, t) + ρa(a, t) = −μ(a)ρ(a, t),

ρ(0, t) =
∫ ∞

0
β(a)ρ(a, t)da = B(t),

ρ(a, 0) = ρ0(a).

(13.7)

13.3 The Method of Characteristics

System (13.7) can be solved by the method of characteristics. That is, we can solve
for ρ(a, t) along the characteristics lines a = t + c, where c is a constant. Let ωc

denote the cohort function tracking through time of those individuals whose age is
c at t = 0, which is defined as:

ωc(t) = ρ(t + c, t), for t > tc

where tc = max(0,−c). Note that

dωc

dt
= ∂ρ

∂a

da

dt
+ ∂ρ

∂t

dt

dt
= ∂ρ

∂a
+ ∂ρ

∂t
,

thus, (13.7) can be rewritten as

dωc(t)

dt
= −μ(t + c)ωc(t), t ≥ tc,

whose solution is

ωc(t) = ωc(tc) exp

[

−
∫ t

tc

μ(s + c)ds

]

, for t > tc. (13.8)
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Therefore, the solution to (13.7) can be written as:

ρ(a, t) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ0(a − t) exp

[

−
∫ t

0
μ(s + a − t)ds

]

, a ≥ t

B(t − a) exp

[

−
∫ a

0
μ(s)ds

]

, a < t.

(13.9)

Note that B(t) is given in (13.1), which depends on ρ(a, t).

13.4 Equivalent Formulation as an Integral Equation Model

Substituting (13.9) into (13.1) yields

B(t) =
∫ t

0
β(a)B(t − a)e− ∫ a

0 μ(s)dsda +
∫ ∞

t

ρ0(a − t)e− ∫ t
0 μ(a−t+s)dsda.

(13.10)

Let

F(t) =
∫ ∞

t

ρ0(a − t)e− ∫ t
0 μ(a−t+s)dsda, K(a) = β(a)e− ∫ a

0 μ(s)ds = β(a)π(a).

Then, substituting the expressions for F and K into (13.10) and making a change of
variable a = t − u, we obtain the renewal equation:

B(t) = F(t) +
∫ t

0
K(t − u)B(u)du, (13.11)

which was initially derived by Sharpe and Lotka [31].
Using the notation of convolution, we can rewrite Eq. (13.11) in the form

B(t) = F(t) + (K ∗ B)(t). (13.12)

Let f̂ (p) = ∫∞
0 e−psf (s)ds denote the Laplace transform of the function f (t).

Then, from Eq. (13.12) we have

B̂(p) = F̂ (p) + B̂(p)K̂(p).

Solving for B̂(p) we get

B̂(p) = F̂ (p)

1 − K̂(p)
.
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Because K̂(p) and F̂ (p) are analytic functions, the properties of B̂(p) are deter-
mined by the roots of 1 − K̂(p), or solutions of

K̂(p) =
∫ ∞

0
β(a)π(a)e−pada = 1 (13.13)

for p ∈ C. Equation (13.13) is called the Lotka characteristic equation for the
renewal equation (13.11).

For p ∈ R, from dK̂
dp

< 0 we know that K̂(p) decreases monotonically. Note

that, since K̂(p) → 0 as p → ∞, Eq. (13.13) has a unique solution, which we
denote by p∗, with the property that

p∗ > 0 if K̂(0) > 1
p∗ < 0 if K̂(0) < 1.

For p = u + iv ∈ C, note that K̂(p) = ∫∞
0 β(a)π(a)e−(u+iv)ada = 1. Thus,

∫ ∞

0
β(a)π(a)e−uacos(va)da = 1,

∫ ∞

0
β(a)π(a)e−uasin(va)da = 0.

From |cos(va)| ≤ 1 and K̂ ′(u) < 0 for all u ∈ R, we know that u ≤ p∗. Therefore,
p∗ is the dominant root (greatest modulus) of K̂(p). That is, all solutions of K̂(p) =
1 have real part less than or equal to p∗.

It can be shown that

B(t) = B0e
p∗t (1 + Ω(t)), (13.14)

where B0 > 0 and limt→∞ Ω(t) = 0 (see, e.g., [22]).
Therefore, the sign of p∗ determines the asymptotic behavior of the solution

B(t), and thus of ρ(a, t). From (13.9) and (13.14), we know that ρ(a, t) has the
following asymptotic property:

lim
t→∞ ρ(a, t) = lim

t→∞B0e
p∗(t−a)π(a). (13.15)

Define

R = K̂(0) =
∫ ∞

0
β(a)π(a)da,

which is the expected number of offspring for each individual during a lifetime. The
results above show that B(t) → 0 (∞) as t → ∞ if and only if R < 1 (> 1).

Recall that P(t) = ∫∞
0 ρ(a, t)da denotes the total number of individuals at time

t . A stable age distribution (or persistent age distribution) is defined to be a solution
ρ(a, t) for which ρ(a, t)/P (t) is independent of time t . It follows from (13.15) that
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asymptotically every solution given in (13.9) tends to a stable age distribution as
t → ∞.

13.5 Equilibria and the Characteristic Equation

For system (13.7), a steady-state, or an equilibrium distribution, ρ∗(a), is a time-
independent solution. That is, ρ∗(a) satisfies the equations:

dρ∗(a)
da

= −μ(a)ρ∗(a),

ρ∗(0) =
∫ ∞

0
β(a)ρ∗(a)da.

(13.16)

For the linear system (13.16), the only equilibrium is ρ∗(a) = 0, and the
linearization at this equilibrium is the same as (13.7). For the stability of ρ∗(a) = 0,
consider the separable solution of the form

ρ(a, t) = A(a)ept (13.17)

with A(a) > 0. The stability of ρ∗(a) is determined by the sign of p. From the
second equation in (13.7) we have

A(0) =
∫ ∞

0
β(a)A(a)da =: B1. (13.18)

Substitution of (13.17) into the first equation in (13.7) yields

dA(a)

da
= −(p + μ(a))A(a).

Solving for A(a) and and using A(0) = B1 we have:

A(a) = B1π(a)e−pa, (13.19)

where π(a) = e− ∫ a
0 μ(s)ds . Using the definition of B1 in (13.18) with A(a) replaced

by the expression in (13.19), we obtain:

B1 =
∫ ∞

0
β(a)A(a)da =

∫ ∞

0
B1β(a)π(a)e−pada.
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Since B1 �= 0, dividing both sides of the above equation by B1 we obtain the
following equation which p must satisfy:

∫ ∞

0
β(a)π(a)e−pada = 1. (13.20)

System (13.20) is the same characteristic equation as (13.13).
Note that the left-hand side of (13.20) is the same as the function K̂(p) defined

in (13.13). Thus, p > 0 (=,< 0) if and only if R = K̂(0) > 1 (=,< 1). Therefore,
the steady-state ρ∗(a) = 0 is locally asymptotically stable if and only if R < 1.

13.6 The Demographic Model with Discrete Age Groups

Partition the age interval into a finite number n of subintervals [a0, a1), [a1, a2), . . .,
[an−1, an), where a0 = 0 and an ≤ ∞. Denote the number of individuals with ages
in interval [ai−1, ai] by Hi(t), so that Hi(t) = ∫ ai

ai−1
ρ(t, a)da, i = 1, . . . , n. Then

integrating the partial differential equation in (13.7) from a0 to a1, we have

dH1(t)

dt
+ ρ(t, a1) − ρ(t, a0) +

∫ a1

a0

μ(a, P )ρ(t, a)da = 0. (13.21)

Assume that individuals with ages in each interval have the same vital rates such
that β(a, P ) = βi , μ(a, P ) = μi , for a in [ai−1, ai], i = 1, . . . , n. Here βi and
μi are age-independent, but may be density-dependent. Then, in the age interval
[0, a1], we have

ρ(t, 0) =
n∑

1

βi Hi(t),

∫ a1

a0

μ ρ(t, a)da = μ1 H1(t),

which leads to

dH1

dt
=

n∑

1

βi Hi − (m1 + μ1)H1. (13.22)

Here m1 is the progression rate from groups 1 to 2, defined by m1 = ρ(t, a1)/H1(t),
and we assume it is time-independent.

Integrating the partial differential equation in (13.24) from ai−1 to ai for
2 ≤ i ≤ n, we have

dHi

dt
= mi−1 Hi−1 − (mi + μi)Hi, i = 2, . . . , n, (13.23)

where mi is the age progression rate from groups i to i+1, and we let mn = 0. Then
the system in (13.7) is reduced to a system of n ordinary differential equations.
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13.7 Nonlinear Age Structured Models

In the models considered in previous sections, the birth and death rates were linear,
and this implies that total population size either grows exponentially (if q > 0),
dies out exponentially (if q < 0), or remains constant (if q = 0). In studying
models without age structure, we considered situations in which populations have
a carrying capacity that is approached as t → ∞. In order to allow this possibility
for age-structured models we must assume some non-linearity. We now consider
the possibility of birth and death moduli of the form β(a, P (t)) and μ(a, P (t)),
depending on total population size. A variant, which can be developed by analogous
methods, would be to allow the birth modulus (and possibly also the death modulus)
to depend on the density ρ(a, t). We will consider only the continuous case because
the methods of linear algebra methods used to treat the linear discrete case have no
direct adaptation to the nonlinear discrete model.

If the birth and death moduli are allowed to depend on total population size, the
description of the model must include P(t). Thus, the full model is now

ρa(a, t) + ρt (a, t) + μ(a, P (t))ρ(a, t) = 0

B(t) = ρ(0, t) =
∫ ∞

0
β(a, P (t))ρ(a, t)da

P (t) =
∫ ∞

0
ρ(a, t)da

ρ(a, 0) = φ(a).

(13.24)

We can transform the problem just as in the linear case by integrating along
characteristics. Using the notation

μ∗(α) = μ(α, P (t − a + α)),

the same calculations lead to

ρ(a, t) =
{
B(t − a)e− ∫ a

0 μ∗(α)dα for t ≥ a

φ(a − t)e− ∫ a
a−t μ

∗(α)dα for t < a.
(13.25)

Substituting these expressions into (13.24), we obtain a pair of functional equations
for B(t) and P(t), whose solution gives an explicit solution for ρ(a, t), namely

B(t) = b(t) +
∫ t

0
β(a, P (t))e− ∫ a

0 μ∗(α)dαB(t − a)da,

P (t) = p(t) +
∫ t

0
e− ∫ a

0 μ∗(α)dαB(t − a)da,
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where

b(t) =
∫ ∞

t

β(a, P (t))φ(a − t)e− ∫ a
a−t μ

∗(α)dαda,

p(t) =
∫ ∞

t

φ(a − t)e− ∫ a
a−t μ

∗(α)dαda.

It is reasonable to assume that
∫∞

0 φ(a)da < ∞ and that the functions β(a, P ) and
μ(a, P ) are continuous and non-negative. Under these hypotheses it is easy to verify
that b(t) and p(t) are continuous and non-negative and tend to zero as t → ∞ with
b(0) > 0 and p(0) > 0. It is possible to prove that a unique continuous non-negative
solution exists on 0 ≤ t < ∞ if supa≥0,P≥0 β(a, P ) < ∞. This model is due to
Gurtin and MacCamy [18].

If ρ(a, t) = ρ(a) is an equilibrium age distribution, then

P(t) =
∫ ∞

0
ρ(a)da =: P and B(t) =

∫ ∞

0
β(a, P )ρ(a)da =: B

are constant. In this case, the McKendrick equation becomes an ordinary differential
equation

ρ′(a) + μ(a, P )ρ(a) = 0, ρ(0) = B,

whose solution is

ρ(a) = Be− ∫ a
0 μ(α,P )dα.

Let

π(a, P ) = e− ∫ a
0 μ(α,P )dα (13.26)

denote the probability of survival from birth to age a when the population size is the
constant P . Then

ρ(a) = Bπ(a, P ). (13.27)

From B = ∫∞
0 β(a, P )ρ(a)da and (13.27), we obtain

B = B

∫ ∞

0
β(a, P )π(a, P )da.

Thus, for an equilibrium age distribution with birth rate B, the population size P

must satisfy the equation

R(P ) =
∫ ∞

0
β(a, P )π(a, P )da = 1, (13.28)
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in which case the birth rate is given by

B = P
∫∞

0 π(a, P )da
.

The quantity R(P ) defined in (13.28) is called the reproduction number, which
represents the expected number of offspring that an individual has over a lifetime
when the total population size is P .

Example 1 Suppose that β is independent of age and is a function of P only. Then

B(t) =
∫ ∞

0
β(P (t))ρ(a, t)da = β(P (t))

∫ ∞

0
ρ(a, t)da

= P(t)β(P (t)).

(13.29)

If we define g(P ) = Pβ(P ), then the problem is reduced to a single functional
equation for P(t):

P(t) = p(t) +
∫ t

0
e− ∫ a

0 μ∗(α)dαg(P (t − a))da

together with this explicit formula for B(t) given in (13.29).

13.8 Age-Structured Epidemic Models

Consider an age-structured SIR model. Let s(t, a), i(t, a), r(t, a) represent the age
densities of susceptible, infective, and removed members, respectively, so that the
total numbers of individuals in the respective classes are

S(t) =
∫ ∞

0
s(a, t)da, I (t) =

∫ ∞

0
i(a, t)da, R(t) =

∫ ∞

0
r(a, t)da.

The age density of the total population is

ρ(a, t) = s(a, t) + i(a, t) + r(a, t),

and the total population size is

P(t) = S(t) + I (t) + R(t) =
∫ ∞

0
ρ(a, t)da.

Then, the model is described by the following system of equations:

st (a, t) + sa(a, t) = − (μ(a) + λ(a, t)) s(a, t)

it (a, t) + ia(a, t) = λ(a, t)s(a, t) − (μ(a) + γ (a)) i(a, t),

rt (a, t) + ra(a, t) = −μ(a)r(a, t) + γ (a)i(a, t),

(13.30)
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where λ(a, t) is the per-capita infection rate, which may have various forms depend-
ing on the assumption about mixing. One possible form focuses on intracohort
mixing:

λ(a, t) = c(a)i(a, t),

corresponding to the assumption that infection can be transmitted only between
individuals of the same age. Another possible form is the intercohort mixing :

λ(a, t) =
∫ ∞

0
b(a, α)i(α, t)dα,

where b(a, α) denotes the rate of infection from contacts between an infective of
age α and a susceptible of age a. For intercohort mixing, it is common to assume
that the mixing function has a separable form:

b(a, α) = b1(a)b2(α).

Other parameter functions in (13.30) are μ(a) and γ (a), which represent the age-
dependent per-capita natural death and recovery rates. The initial conditions are

s(a, 0) = s0(a), i(a, 0) = i0(a), r(a, 0) = 0, (13.31)

where s0(a) and i0(a) are the initial distributions of susceptibles and infectives,
respectively. The boundary conditions involve the birth or renewal condition. Under
the assumption that all newborns are susceptible, the total number of newborns is

s(0, t) =
∫ ∞

0
β(a, P (t))ρ(a, t)da, (13.32)

with i(0, t) = r(0, t) = 0.

13.8.1 *Age-Dependent Vaccination in Epidemic Models

In many cases, age-structured models are more appropriate to consider than models
without an age structure. For example, if transmission is highly age-dependent due
to a higher activity in certain age groups, it might be useful to identify the age
groups to target for more effective disease control strategies such as vaccination. The
model and results presented below are taken from [10]. It concerns age-dependent
vaccination strategies for TB.

Divide the population into susceptible, vaccinated, latent, infective, and treated
classes, where s(t, a), v(t, a), l(t, a), i(t, a), and j (t, a) denote the associated
density functions with these respective epidemiological age-structure classes, and
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n(t, a) = s(t, a) + v(t, a) + l(t, a) + i(t, a) + j (t, a). Assume that all newborns
are susceptible and that the mixing between individuals is proportional to their
age-dependent activity level. Assume also that an individual may become infected
only through contact with infectious individuals, that vaccination is partially
effective (i.e., vaccinated individuals can become infected again but with a reduced
susceptibility), that only susceptibles will be vaccinated. The dynamics are governed
by the following initial boundary value problem:

(
∂

∂t
+ ∂

∂a

)

s(t, a) = −β(a)c(a)B(t)s(t, a) − μ(a)s(t, a) − ψ(a)s(t, a),

(
∂

∂t
+ ∂

∂a

)

v(t, a) = ψ(a)s(t, a) − μ(a)v(t, a) − δβ(a)c(a)B(t)v(t, a),

(
∂

∂t
+ ∂

∂a

)

l(t, a) = β(a)c(a)B(t)(s(t, a) + σj (t, a) + δv(t, a))

−(k + μ(a))l(t, a),

(
∂

∂t
+ ∂

∂a

)

i(t, a) = kl(t, a) − (r + μ(a))i(t, a),

(
∂

∂t
+ ∂

∂a

)

j (t, a) = ri(t, a) − σβ(a)c(a)B(t)j (t, a) − μ(a)j (t, a),

(13.33)
where

B(t) =
∫ ∞

0

i(t, a′)
n(t, a′)

p(t, a, a′)da′,

with initial and boundary conditions:

s(t, 0) = Λ, v(t, 0) = l(t, 0) = i(t, 0) = j (t, 0) = 0,
s(0, a) = s0(a), v(0, a) = v0(a), l(0, a) = l0(a), i(0, a) = i0(a),

j (0, a) = j0(a).

The function p represents the mixing between susceptible individuals of age a and
infectious individual of age a′, and is assumed to have the form of proportionate
mixing:

p(t, a, a′) = c(a′)n(t, a′)
∫∞

0 c(u)n(t, u)du
.

Λ is the recruitment/birth rate (assumed constant); β(a) is the age-specific (average)
probability of becoming infected through contact with infectious individuals; c(a) is
the age-specific per-capita contact/activity rate; μ(a) is the age-specific per-capita
natural death rate (all of these functions are assumed to be continuous and to be
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zero beyond some maximum age); k is the per-capita rate at which individuals leave
the latent class by becoming infectious; r is the per-capita treatment rate; σ and δ

are the reductions in risk due to prior exposure to TB and vaccination, respectively,
0 ≤ σ ≤ 1, 0 ≤ δ ≤ 1; and p(t, a, a′) gives the probability that an individual
of age a has contact with an individual of age a′ given that it has a contact with a
member of the population. Proportionate mixing has also been used in other studies
including [3, 8, 11, 16, 20].

Using the approach of [11], we assume that p(t, a, a′) = p(t, a′) as explicitly
described above. The initial age distributions are assumed to be known and to be
zero beyond some maximum age. The model (13.33) is well-posed and the proof is
similar to that found in [8].

Notice that n(t, a) satisfies the following equations:

(
∂

∂t
+ ∂

∂a

)

n(t, a) = −μ(a)n(t, a),

n(t, 0) = Λ, n(0, a) = n0(a) = s0(a) + v0(a) + l0(a) + i0(a) + j0(a).

Using the method of characteristic curves we can solve for n explicitly:

n(t, a) = n0(a)
F (a)

F (a − t)
H(a − t) + ΛF (a)H(t − a),

where

F (a) = e− ∫ a
0 μ(s)ds,

H(s) = 1, s ≥ 0; H(s) = 0, s < 0.

Hence,

n(t, a) → ΛF (a),

p(t, a) → c(a)F (a)∫∞
0 c(b)F (b)db

=: p∞(a), t → ∞.
(13.34)

Introducing the fractions

u(t, a) = s(t, a)

n(t, a)
, w(t, a) = v(t, a)

n(t, a)
, x(t, a) = l(t, a)

n(t, a)
, y(t, a) = i(t, a)

n(t, a)
,

z(t, a) = j (t, a)

n(t, a)
,

we get a simplified system of (13.33):
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(
∂

∂t
+ ∂

∂a

)

u(t, a) = −β(a)c(a)B(t)u(t, a) − ψ(a)u(t, a),
(

∂

∂t
+ ∂

∂a

)

w(t, a) = ψ(a)u(t, a) − δβ(a)c(a)B(t)w(t, a),

(
∂

∂t
+ ∂

∂a

)

x(t, a) = β(a)c(a)B(t)(u(t, a) + δw(t, a) + σz(t, a)) − kx(t, a),

(
∂

∂t
+ ∂

∂a

)

y(t, a) = kx(t, a) − ry(t, a),

(
∂

∂t
+ ∂

∂a

)

z(t, a) = ry(t, a) − σβ(a)c(a)B(t)z(t, a),

B(t) = ∫∞
0 y(t, a)p(t, a)da,

p(t, a) = c(a)n(t, a)
∫∞

0 c(u)n(t, u)du
,

u(t, 0) = 1, w(t, 0) = x(t, 0) = y(t, 0) = z(t, 0) = 0.
(13.35)

Let Fψ(a) denote the probability that a susceptible individual has not been
vaccinated at age a. Then

Fψ(a) = e− ∫ a
0 ψ(b)db.

The system (13.35) has the infection-free steady state

u(a) = Fψ(a), w(a) = 1 − Fψ(a),

x(a) = y(a) = z(a) = 0, n(a) = ΛF (a).
(13.36)

To study the local stability of the infection-free equilibrium, we linearize (13.35)
about (13.36) and consider exponential solutions of the form

x(t, a) = X(a)eλt , y(t, a) = Y (a)eλt , B(t) = B0e
λt + O(e2λt ),

where

B0 =
∫ ∞

0
Y (a)p∞(a)da (13.37)

is a constant and p∞(a) is as in (13.34). Then the linear parts of the x and y

equations in (13.35) are of the form

λX(a) + d

da
X(a) = β(a)c(a)B0Vψ(a) − kX(a),

λY (a) + d

da
Y (a) = kX(a) − rY (a),



444 13 Disease Transmission Models with Age Structure

where

Vψ(a) = Fψ(a) + δ(1 − Fψ(a)). (13.38)

An expression for Y (a) can be obtained by solving the above system:

Y (a) = B0

∫ a

0

k

r − k
β(α)c(α)

(
e(λ+k)(α−a) − e(λ+r)(α−a)

)
Vψ(α)dα. (13.39)

From (13.37) and (13.39) we get

B0 = B0

∫ ∞

0

∫ a

0

k

r − k
p∞(a)β(α)c(α)

(
e(λ+k)(α−a) − e(λ+r)(α−a)

)
Vψ(α)dαda.

(13.40)

By changing the order of integration, introducing τ = a−α, and dividing both sides
by B0 (because B0 �= 0) in (13.40) we get the characteristic equation

1 =
∫ ∞

0

∫ ∞

0

k

r − k
p∞(α + τ)β(α)c(α)

(
e−(λ+k)τ − e−(λ+r)τ

)
Vψ(α)dτdα

:= G(λ).

(13.41)

Now we are ready to define the net reproduction number as R(ψ) = G(0); i.e.,

R(ψ) =
∫ ∞

0

∫ ∞

0

k

r − k
p∞(α + τ)β(α)c(α)

(
e−kτ − e−rτ

)
Vψ(α)dτdα.

(13.42)

Noticing that

G′(λ) < 0, lim
λ→∞G(λ) = 0, lim

λ→−∞G(λ) = ∞,

we know that (13.41) has a unique negative real solution λ∗ if, and only if, G(0) < 1,
or R(ψ) < 1. Also, (13.41) has a unique positive (zero) real solution if R(ψ) > 1
(R(ψ) = 1). To show that λ∗ is the dominant real part of roots of G(λ), we let
λ = x + iy be an arbitrary complex solution to (13.41). Note that

1 = G(λ) = |G(x + iy)| ≤ G(x),

indicating that �λ ≤ λ∗. It follows that the infection-free steady state is locally
asymptotically stable if R(ψ) < 1, and unstable if R(ψ) > 1. This establishes the
following result.
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Theorem 13.1 Let R(φ) be the reproduction number defined in (13.42).

(a) The infection-free steady state (13.36) is locally asymptotically stable if
R(ψ) < 1 and unstable if R(ψ) > 1.

(b) There exists an endemic steady state of (13.35) when R(ψ) > 1.

13.8.2 Pair-Formation in Age-Structured Epidemic Models

Sexually transmitted diseases (STDs) spread through sexual activities between
partners. The pair-formation, or mixing, is one of the key terms in modeling of
STDs [19, 20]. Assume that the function describing pair formation in the model is
separable, which makes the mathematical analysis more tractable. However, it has
been shown that the assumption of a separable pair formation function is equivalent
to assuming a total proportionate or random partnership formation [5–8, 12]. We
briefly explain it as follows.

Let ρ(t, a, a′) be the pair formation or mixing, which is the proportion of partners
with age a′ that an individual of age a has at time t . Let r(t, a) be the average
number of partners that an individual of age a has per unit of time, and let T (t, a)

be the total number of individuals of age a at time t . Then the function ρ(t, a, a′)
has the following properties:

1) 0 ≤ ρ(t, a, a′) ≤ 1,

2)
∫ ∞

0
ρ(t, a, a′)da′ = 1,

3) ρ(t, a, a′)r(t, a)T (t, a) = ρ(t, a′, a)r(t, a′)T (t, a′),
4) r(t, a)T (t, a)r(t, a′)T (t, a′) = 0 �⇒ ρ(t, a, a′) = 0.

Properties 1) and 2) follow from the fact that ρ(t, a, a′) is a proportion so that
it is always between zero and one, and its total sum equals one. Property 3) comes
from the fact that the total number of pairs of individuals of age a with individuals
of age a′ needs to be equal to the total number of pairs of individuals of age a′ with
individuals of age a. Moreover, if there are no active individuals, then there is no
pair formation, which leads to property 4).

13.8.2.1 Total Proportionate Mixing

Suppose that the pair formation is a separable function such that

ρ(t, a, a′) = ρ1(t, a)ρ2(t, a
′). (13.43)
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It follows from property 2 that

∫ ∞

0
ρ(t, a, a′)da′ =

∫ ∞

0
ρ1(t, a)ρ2(t, a

′)da′ = ρ1(t, a)

∫ ∞

0
ρ2(t, a

′)da′ = 1,

for all t . Hence

ρ1(t, a) = 1
∫∞

0 ρ2(t, a′)da′

is independent of a. Denote it by L(t). Then

ρ(t, a, a′) = L(t)ρ2(t, a
′). (13.44)

It follows from property 3) and (13.44) that

L(t)ρ2(t, a
′)r(t, a)T (t, a) = ρ(t, a′, a)r(t, a′)T (t, a′). (13.45)

Integrating (13.45) with respect to a from 0 to ∞ yields

L(t)ρ2(t, a
′)
∫ ∞

0
r(t, a)T (t, a)da = r(t, a′)T (t, a′). (13.46)

Hence

L(t)ρ2(t, a
′) = r(t, a′)T (t, a′)

∫∞
0 r(t, a)T (t, a)da

, (13.47)

which implies that ρ(t, a, a′) satisfies

ρ(t, a, a′) = r(t, a′)T (t, a′)
∫∞

0 r(t, a)T (t, a)da
. (13.48)

Notice that the right-hand side in (13.48) is the fraction of the total partners of
age a′ in the population, or the availability of partners of age a′. A pair formation
or mixing function satisfying (13.45) is called a total proportionate mixing. Such a
mixing depends completely on the availability of partners and is a kind of random
mixing. While it may be appropriate to assume a proportionate mixing or random
mixing in special cases such as modeling of HIV/AIDS for homosexual men, in
general, it is necessary to assume the pair-formation or mixing function to be non-
separable. It is possible to show that proportionate mixing is the only separable pair
formation [8].
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13.9 A Multi-Age-Group Malaria Model

Consider a human population in which malaria spreads. Divide the human pop-
ulation into four classes: susceptible, exposed, infective, and recovered who are
recovered and also immune from re-infection. Denote the densities by s(a, t),
e(a, t), i(a, t), and r(a, t), respectively. We further divide the human population
into n age groups with group i consisting of ages a ∈ [ai−1, ai), such that the
number of individuals in the ith group in the respective epidemiological classes
are Si(t) = ∫ ai

ai−1
s(a, t)da, Ei(t) = ∫ ai

ai−1
e(a, t)da, Ii(t) = ∫ ai

ai−1
i(a, t)da, and

Ri(t) = ∫ ai
ai−1

r(a, t)da for i = 1, 2, · · · , n. Then, based on the similar derivation
in Sect. 13.6, we obtain the following system of ordinary differential equations for
the disease transmission in humans:

S′
1(t) = B(t) − (μ1 + c1)S1 − λ1(t)S1,

S′
j (t) = cj−1Sj−1 − λj (t)Sj − (μj + cj )Sj , j = 2, . . . , n,

E′
1(t) = λ1(t)S1 − (μ1 + ε1 + c1)E1,

E′
j (t) = λj (t)Sj + cj−1Ej−1 − (μj + εj + cj )Ej , j = 2, . . . , n,

I ′
1(t) = ε1E1 − (μ1 + γ1 + ω1 + c1)I1,

I ′
j (t) = εjEj + cj−1Ij−1 − (μj + γj + ωj + cj )Ij , j = 2, . . . , n,

R′
1(t) = γ1I1 − (μ1 + c1)R1,

R′
j (t) = cj−1Rj−1 + γj Ij − (μj + cj )Rj , j = 2, . . . , n,

(13.49)

where B(t) is the recruitment rate of the susceptible class, μi the age specific natural
death rate, ωi the age specific disease induced death rates, ηi the age progression
rate, εi the age specific disease progression rate, and γi the age specific recovery
rate.

The infection rates λj (t) for humans are related to the vector (mosquito)
population and are given by

λj (t) = bNv(t)

N(t)
βj

Iv(t)

Nv(t)
= bβj Iv(t)

N(t)
, j = 1, . . . , n, (13.50)

where b is the number of bites on humans per mosquito in unit time, Nv the
total mosquito population, N = ∑n

j=1(Sj + Ej + Ij + Rj ) the total size of
human population, Iv the number of infective mosquitoes, and βj the probability
of infection per bite for group i.
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Let Sv and Ev denote the numbers of susceptible and exposed mosquitoes, and
Nv = Sv + Ev + Iv . The dynamics of the mosquito population are described by the
equations

S′
v(t) = Mv − λvSv − μvSv,

E′
v(t) = λv(Nv − Ev − Iv) − (μv + εv), (13.51)

I ′
v(t) = εvEv − μvIv,

where Mv is an input flow of susceptible mosquitoes, μv is the natural death rate of
mosquitoes, εv is the disease progression rate for exposed mosquitoes, and λv is the
infection rate for mosquitoes given by

λv(t) = b

n∑

j=1

(
βvj Ij (t)

N(t)

)

. (13.52)

Here βvj are the infection rate of mosquitoes from biting infected humans in group
j . Readers are referred to [30] for model analysis.

13.10 *Project: Another Malaria Model

In this project, we consider an SIS system for the human host and an SI system
for the mosquitoes. Let s(a, t) and i(a, t) denote the densities for susceptible and
infective hosts, and let n(a, t) = s(a, t) + i(a, t). The system of PDEs for hosts
reads

st (a, t) + sa(a, t) = −λ(a, t)s(a, t) − μ(a)s(a, t) + γ (a)i(a, t),

it (a, t) + ia(a, t) = λ(a, t)s(a, t) − (γ (a) + μ(a))i(a, t),
(13.53)

where

λ(a, t) = bβ(a)
Iv(t)

N(t)

with boundary and initial conditions

s(0, t) =
∫ ∞

0
ρ(a)n(a, t)da, i(0, t) = 0, s(a, 0) = s0(a), i(a, 0) = i0(a).
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The function ρ(a) denotes the age dependent birth rate. The equations for
mosquitoes are

S′
v(t) = Mv − λv(t)Sv(t) − μvSv(t),

I ′
v(t) = λv(t)Sv(t) − μvIv(t),

(13.54)

where

λv(t) = b

∫ ∞

0
βv(a)

i(a, t)

N(t)
da,

with initial conditions Sv(0) = Sv0 ≥ 0, Iv(0) = Iv0 ≥ 0. All other parameters
have the same meaning as in (13.51).

For the questions in this project, assume that the host population has reached the
stable age distribution with constant total population size, i.e.,

ñ(a) = βπ(a), π(a) = e− ∫ a
0 μ(u)du, Ñ =

∫ ∞

0
ñ(a)da = β

∫ ∞

0
π(a)da,

where β is a positive constant and the constraint
∫∞

0 ρ(a)ñ(a, t)da = 1 holds.
Assume also that the total mosquito population has reached the steady state Ñv =
Mv/μv .

Question 1

(a) Show that the basic reproduction number has the form

R0 =
∫ ∞

0
bβv(a)

I (a)

Ñ
Ñvda, (13.55)

where

I (a) =
∫ a

0
bβ(σ )

βπ(σ)

Ñ

1

μv

e− ∫ a
σ (γ (τ )+μ(τ))dτ dσ. (13.56)

(b) Provide the biological interpretation for the quantities I (a) and R0.

Question 2 Show that the disease-free equilibrium of the system (13.53)–(13.54) is
locally asymptotically stable if R0 < 1, and it is unstable if R0 > 1.

Question 3 Assume that all age-dependent parameters are constants in the age
intervals [ak−1, ak), k = 1, · · · ,m, i.e., ρ(a) = ρk, β(a) = β, γ (a) = γk, μ(a) =
μk. Let n(t, a) = n(a) = βπ(a) with constant total population sizes Ñ . Let

Sk(t) =
∫ ak

ak−1

s(a, t)da, Ik(t) =
∫ ak

ak−1

i(a, t)da, Nk =
∫ ak

ak−1

n(a)da,

λk(t) = bβ
Iv(t)

Ñ
, λv(t) = b

m∑

k=1

βv

Ik(t)

Ñ
, k = 1, 2, · · · ,m.
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Then the ODE system corresponding to the system (13.53)–(13.54) is

S′
1(t) = Λ − (α1 + λ1(t) + μ1)S1(t) + γ1I1(t),

S′
k(t) = −(αk + λk + μk)Sk + γkIk + αk−1Sk−1(t), k = 2, . . . , m,

I ′
1(t) = λ1(t)S1(t) − (γ1 + μ1 + α1)I1(t),

I ′
k(t) = λkSk − (γk + μk + αk)Ik + αk−1Ik−1(t), k = 2, . . . , m,

I ′
v(t) = λv(t)(Ñv − Iv) − μvIv,

(13.57)

where αk = π(ak)/
∫ ak
ak−1

π(a)da, k = 1, . . . , m − 1, and αm = 0.

(a) Show that the disease-free equilibrium (DFE), E0, of system (13.57) is given
by

E0 =
(

β

α + μ1
, . . . ,

β
∏k−1

j=1 αj
∏k

j=1(αj + μj )
, . . . ,

β
∏n−1

j=1 αj
∏n

j=1(αj + μj )
, 0, . . . , 0, N̄v, 0

)

.

(13.58)

Note that the first m components of E0 describe the age distribution of the
population at the DFE, i.e.,

Nk = β
∏k−1

j=1 αj
∏k

j=1(αj + μj )
, k = 1, 2, · · · ,m (αm = 0). (13.59)

(b) Derive the basic reproduction number R̃0 for the ODE system (13.57).
(c) Show that E0 is locally asymptotically stable if R̃0 < 1, and unstable if R̃0 > 1.

Question 4 Verify the result in part (c) of Question 3 by numerical simulations.
Consider the case of m = 2 age groups (e.g., children and adults), and assume that
R̃0 can be varied by changing the value of β. To adopt different ratio of children to
adults, the value of μ2 can be determined by the ratio N1/N2. One set of possible
parameter values can be found in Table 13.1.

(a) Choose the values and βk , k = 1, 2, such that R̃0 < 1 and plot I1(t) and I2(t)

vs. time.
(b) Repeat part (a) but use different values of βk for which R̃0 > 1.
(c) Assume that drug treatment can increase the recovery rate γk . Plot R̃0 as a

function of γ1 or γ2 or both.
(d) Consider various scenarios based on treatment in children or adults alone or

both. Plot I1(t) and I2(t) vs. time and observe how they change with γk .

References: [14, 17, 29, 33].
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Table 13.1 Parameter values and ranges for numerical simulations

Parameters Two age groups References

Fixed values

Mv 150

μv 0.03 [17, 29]

β 0.45N(μ1 + α1)

Values with ranges

b 0.2 (0.1, 0.25) [14, 17]

Age-dependent Age group 1 Age group 2 Reference

μk 0.0002 α1N̄1/N̄2 [33]

αk 1/15/365 0 [33]

βk 0.03 0.015 [14]

βvk 0.3 0.24 [14]

γk 1/100 1/80 [14]

13.11 Project: A Model Without Vaccination

Consider the model in the previous section but without vaccination, i.e.,

st (t, a) + sa(t, a) = −β(a)c(a)B(t)s(t, a) − μ(a)s(t, a),

lt (t, a) + la(t, a) = β(a)c(a)B(t)(s(t, a) + σj (t, a)) − (k + μ(a))l(t, a),

it (t, a) + ia(t, a) = kl(t, a) − (r + μ(a))i(t, a),

jt (t, a) + ja(t, a) = ri(t, a) − σβ(a)c(a)B(t)j (t, a) − μ(a)j (t, a),

(13.60)

where

B(t) =
∫ ∞

0

i(t, a′)
n(t, a′)

p(t, a′)da′,

with initial and boundary conditions:

s(t, 0) = Λ, l(t, 0) = i(t, 0) = j (t, 0) = 0,
s(0, a) = s0(a), l(0, a) = l0(a), i(0, a) = i0(a), j (0, a) = j0(a).

The function p is the same as defined in the previous section. Assume that the total
population is at the stable age distribution, i.e., n(t, a) = ΛF (a) =: N(a) and let
p(t, a) = p∞(a) = c(a)N(a)/

∫∞
0 c(b)N(b)db.

(a) Introduce the fractions

u(t, a) = s(t, a)

n(t, a)
, x(t, a) = l(t, a)

n(t, a)
, y(t, a) = i(t, a)

n(t, a)
, z(t, a) = j (t, a)

n(t, a)
.

Derive a system for the fractions u, x, y, and z.
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(b) Derive a formula for the basic reproduction number R0
(c) Show that the DFE, (u(a), x(a), y(a), z(a)) = (1, 0, 0, 0), is locally asymptot-

ically stable when R0 < 1 and unstable when R0 > 1.
(d) An endemic steady state of the system is a time-independent solution

(u∗(a), x∗(a), y∗(a), z∗(a)), with x∗ > 0.

Find an endemic steady state.

13.12 Project: An SIS Model with Age of Infection Structure

Consider the following system which describes an SIS model with infectiousness
dependent on age-of-infection a:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S′(t) = μN − [μ + λ(t)] S(t) + ∫∞
0 δγ (a)i(t, a) da

it (t, a) + ia(t, a) = −[μ + δγ (a)]i(t, a)

i(0, t) = λ(t)S(t), S(0) = S0 > 0, i(0, a) = i0(a) ≥ 0

(13.61)

where

λ(t) = β

N

∫ ∞

0
p(a)i(t, a)da

and

N(t) = S(t) + I (t), I (t) =
∫ ∞

0
i(t, a)da.

The function p(a) ∈ (0, 1) describes the fraction of infected individuals who
are infectious at infection age a, β is the transmission coefficient for infectious
individuals, γ (a) is the age-dependent recovery rate, and δ is a factor representing
the increased recovery rate due to treatment.

(a) Denote the incidence function by v(t) = λ(t)S(t). Solve the i equation using
the method of characteristics and express the solution as a function of v.

(b) Derive a system of integral equations using variables N(t) and v(t) that is
equivalent to the system (13.61).

(c) Derive a formula for the reproduction number R0.
(d) Show that an endemic steady state E exists when R0 > 1, and determine how

the disease level at the steady-state E depends on R0.
(e) Examine the dependence of E and R0 on the treatment effort δ.
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13.13 Exercises

1. Consider the model (13.33) in Sect. 13.8.1.

(a) Show that

lim
t→∞ n(t, a) = ΛF (a)

lim
t→∞p(t, a) = c(a)F (a)

∫∞
0 c(b)F (b)db

:= p∞(a),

where

F (a) = e− ∫ a
0 μ(s)ds .

(b) Show that at the disease-free steady state E0

s(a)

n(a)
= Fψ(a),

v(a)

n(a)
= 1 − Fψ(a),

l(a) = i(a) = j (a) = 0, n(a) = ΛF (a),

(13.62)

where

Fψ(a) = e− ∫ a
0 ψ(b)db.

(c) Let R0 denote the basic reproduction number. Show that

R0 =
∫ ∞

0

∫ ∞

0

k

r − k
p∞(α + τ)β(α)c(α)

(
e−kτ − e−rτ

)
dτdα.
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Chapter 14
Spatial Structure in Disease Transmission
Models

14.1 Spatial Structure I: Patch Models

With the advent of substantial intercontinental air travel, it is possible for diseases
to move from one location to a completely separate location very rapidly. This
was an essential aspect of modeling SARS during the epidemic of 2002–2003,
and has become a very important part of the study of the spread of epidemics.
Mathematically, it has led to the study of metapopulation models or models with
patchy environments and movement between patches [4–7, 33, 38].

These models, which are the focus of this section, are called metapopulation
models. They usually consist of a system (often a large system) of ordinary
differential equations with some coupling between patches. A patch can be a city,
community, or some other geographical region. In real life, a metapopulation model
for the spread of a communicable disease should consider all the locations for which
there are interactions. An example would be two distant cities with some air travel
between them but no contact otherwise. It is possible that not all patches are linked
directly. For example, we might think of a system consisting of a city and two
suburbs, with contact between occupants of each suburb and the city but not between
occupants of the two suburbs. Thus a model must keep track of both the patches and
the links between them, and should be described in terms of a graph.

In the interest of simplicity, we will confine our attention to models consisting
of only two patches, but it is important to be aware of the complications of scale. A
more thorough description may be found in [3].

14.1.1 Spatial Heterogeneity

Consider a basic SIR compartmental model. We divide the population into
two connected sub-populations. Let Si, Ii , Ri denote, respectively, the number of

© Springer Science+Business Media, LLC, part of Springer Nature 2019
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susceptible, infective, and recovered individuals in Patch i for i = 1, 2. The total
population of Patch i is Ni = Si + Ii +Ri . The birth and natural death rate constant
μ is assumed to be the same in each patch, so that the total population of each patch
remains constant. The average infective period 1/γ is assumed to be the same in
each patch. This spatial model can be written for i = 1, 2 as in [24]

S′
i = μNi − μSi − λiSi

I ′
i = λiSi − (μ + γ )Ii (14.1)

R′
i = γ Ii − μRi,

with the force of infection in Patch i given by a mass action type of incidence

λi = βi1I1 + βi2I2.

Thus, infective individuals in one patch can infect susceptible individuals in another
patch, but there is no explicit movement of individuals in this model.

For the SIR model (14.1) the disease-free equilibrium is Si = Ni, Ii = Ri = 0.
Using the next generation matrix [39] R0 can be calculated from (14.1) as R0 =
ρ(FV −1), where the (i, j) of FV −1 is βijNi/(d + γ ).

For the case that each patch has the same population (i.e., Ni = N ) and βij are
such that the endemic equilibrium values of Si , Ii , and λi are independent of i, then
the endemic equilibrium is given explicitly for R0 > 1 by

Si∞ = S∞ = N

R0
, Ii∞ = I∞ = μN

μ + γ

(

1 − 1

R0

)

, Ri∞ = R∞ = γ I∞
d

,

(14.2)
with λi∞ = λ∞ = μ(R0 − 1).

As an example of a symmetric situation that satisfies the above requirements,
assume that βij = β if i = j and βij = pβ with p < 1 if i �= j . Then the contact
rate is the same within each patch and has a smaller value between patches. We may
calculate that

R0 = βN(p + 1)

(μ + γ )
,

which depends on the coupling strength p.
We should note that the assumption in the above example that the two patches

have the same total population size is quite unrealistic in practice; it is given only as
a simple example.

If we linearize about the endemic equilibrium and solve the linear approximation,
we find that the solutions are damped oscillations about the equilibrium which are
phase-locked except for very small values of p. Simulations suggest that, as has been
found in other metapopulation models, with larger p values (i.e., stronger between
patch coupling) the system effectively behaves much like a single patch.
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14.1.2 Patch Models with Travel

Sattenspiel and Dietz [33] introduced a metapopulation epidemic model in which
individuals are labeled with their city of residence as well as the city in which they
are present at a given time.

To formulate a demographic model with travel for two patches, let Nij (t) be the
number of residents of Patch i who are present in Patch j at a time t . Residents of
Patch i leave this patch at a per-capita rate gi ≥ 0 per unit time. For a model with
more than two patches we would also need to count the fraction of these travelers
going to each patch. Residents of Patch i who are in Patch j return home to Patch
i with a per-capita rate of rij ≥ 0 with r11 = r22 = 0. It is natural to assume that
gi > 0 if and only if rij > 0. These travel rates determine a directed graph with
patches as vertices and edges connecting vertices if the travel rates between them
are positive. It is assumed that the travel rates are such that this directed graph is
strongly connected.

Assume that births occur in the home patch at a per-capita rate μ > 0, and that
natural deaths occur in each patch with this same rate. Then the population numbers
satisfy the equations

N ′
ii =

2∑

k=1

rikNik − giNii + μ
( 2∑

k=1

Nik − Nii

)

N ′
ij = giNii − rijNij − μNij , i, j = 1, 2, i �= j.

(14.3)

These equations describe the evolution of the number of residents in Patch i who
are currently in Patch i and those who are currently in Patch j �= i. In the first
equation of (14.3) the term μNik represents births in Patch i to residents of Patch i

currently in Patch k. The number of residents of Patch i, namely Nr
i = Ni1 +Ni2 is

constant, as is the total population of the two-patch system. With initial conditions
Nij (0) > 0, the system (14.3) has an asymptotically stable equilibrium N̂ij .

We now formulate an epidemic model in each of the patches, with Sij (t) and
Iij (t) denoting the number of susceptible and infective individuals resident in Patch
i who are present in Patch j at time t . The equations for the evolution of the number
of susceptibles and infectives residents in Patch i (with i = 1, 2) are

S′
ii =

2∑

k=1

rikSik − giSii −
2∑

k=1

κiβiki

SiiIki

N
p
i

+ μ

(
2∑

k=1

Nik − Sii

)

I ′
ii =

2∑

k=1

rikIik − giIii +
2∑

k=1

κiβiki

SiiIki

N
p
i

− (γ + μ)Iii ,

(14.4)
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and for j �= i

S′
ij = giSii − rij Sij −

2∑

k=1

κjβikj

Sij Ikj

N
p
j

− μSij

I ′
ij = giIii − rij Iij +

2∑

k=1

κjβikj

Sij Ikj

N
p
j

− (γ + μ)Iij , i, j = 1, 2

(14.5)

with N
p
i = N1i + N2i denoting the number present in Patch i. Here βikj > 0 is

the proportion of adequate contacts in Patch j between a susceptible from Patch
i and an infective from Patch k that results in disease transmission, βikj > 0 is
the average number of such contacts in Patch j per unit time, and γ > 0 is the
recovery rate of infectives (assumed the same in each patch). Note that the disease
is assumed to be sufficiently mild so that it does not cause death and does not inhibit
travel, and it is assumed that individuals do not change disease status during travel.
Equations (14.4) and (14.5) together with non-negative initial conditions constitute
the SIR metapopulation model.

The disease-free equilibrium is given by Sij = N̂ij , Iij = 0 for i, j = 1, 2. If the
system is at an equilibrium and one patch is at the disease-free equilibrium, then all
patches are at the disease-free equilibrium; whereas if one patch is at an endemic
disease level, then all patches are at an endemic level. These results hold based on
the assumption that the directed graph determined by the travel rates is strongly
connected. If this is not the case, then the results apply to patches within a strongly
connected component.

We may calculate the basic reproduction number R0 for the model (14.4), (14.5)
using the next generation matrix approach [14, 39]. As the result is somewhat
complicated, we do not give it explicitly here, but we note that R0 depends on
the travel rates as well as the epidemic parameters. If R0 < 1, then the disease-free
equilibrium is locally asymptotically stable; whereas if R0 > 1, then it is unstable.

If the disease transmission coefficients are equal for all populations present in a
patch, i.e., βijk = βk for i, j = 1, 2 it is possible to obtain the bounds

min
i=1,2

Roi ≤ R0 ≤ max
i=1,2

Roi, (14.6)

where Roi = κiβi/(d + γ ) is the basic reproduction number of Patch i in isolation.
Thus if Roi < 1 for all i, the disease dies out; whereas if Roi > 1 for all i, then the
disease-free equilibrium is unstable.

A change in travel rates g1, g2 can induce a bifurcation from R0 < 1 to R0 >

1 or vice versa, see [5, Fig. 3a]. Thus travel can stabilize (small travel rates) or
destabilize (larger travel rates) the disease-free equilibrium. Numerical simulations
support the claim that for R0 > 1, the endemic equilibrium is unique and that R0
acts as a sharp threshold between extinction and invasion of the disease.
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Sattenspiel and Dietz [33] have suggested an application of their metapopulation
SIR model to the spread of measles in the 1984 epidemic in Dominica. Travel
rates of infants, school-age children, and adults are assumed to be different, thus
making the model system highly complex and requiring knowledge of much data
for simulation. Sattenspiel and coworkers, see [32] and the references therein, have
since used this modeling approach for studying other infectious diseases in the
historical archives.

The SARS epidemic of 2002–2003 spread rapidly through airline transportation
from Asia to North America, and if there is an influenza pandemic in the near future
it is likely that it will spread in a similar way. Metapopulation models, perhaps with
small numbers of traveling infectives, may be a useful approach to modeling such
a spread. Because the airline network is complex and because passenger travel data
are difficult to acquire, there are substantial technical problems in the formulation
of accurate models. However, it is possible that the qualitative insights that can be
obtained from simple metapopulation models may be useful.

14.1.3 Patch Models with Residence Times

In this chapter we have been examining patch models with travel rates between
patches included explicitly. Another possible perspective, which may be more
appropriate in some situations, would be to describe patches with residents who
spend a fraction of their time in different patches. For example, the spread of
an infectious disease from one village to another through people who visit other
patches may be a realistic description. Another interpretation could be to assume
that individuals spend some of their time in environments more likely to allow
disease transmission.

We consider an SIR epidemic model in two patches, one of which has a
significantly larger contact rate, with short-term travel between the two patches.
The total population resident in each patch is constant. We follow a Lagrangian
perspective, that is, we keep track of each individual’s place of residence at all times
[9, 12, 16]. This is in contrast to an Eulerian perspective, which describes migration
between patches.

Thus we consider two patches, with total resident population sizes N1 and
N2, respectively, each population being divided into susceptibles, infectives, and
removed members. Si and Ii denote the number of susceptibles and infectives,
respectively, who are residents in Patch i, regardless of the patch in which they
are present.

Residents of Patch i spend a fraction pij of their time in Patch j , with

2∑

i=1

pi1 + pi2 = 1, i = 1, 2.

βi is the risk of infection in Patch i, and we assume β1 > β2.
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Each of the p11S1 susceptibles from Patch 1 who are present in Patch 1 can be
infected by infectives from Patch 1, and infectives from Patch 2 who are present
in Patch 1. Similarly, each of the p12S1 susceptibles present in Patch 2 can be
infected by infectives from Patch 1, and by infectives from Patch 2 who are present
in Patch 2. The number of infectives from both patches who are present in Patch 1
is

p11I1(t) + p21I2(t)

and the total number of individuals present in Patch 1 is

p11N1 + p21N2.

Thus the density of infected individuals in Patch 1 at time t who can infect only
individuals currently in Patch 1 at time t , that is, the effective infective proportion in
Patch 1 is given by

p11I1(t) + p21I2(t)

p11N1 + p21N2
.

Thus the rate of new infections of members of Patch 1 in Patch 1 is

β1p11S1
p11I1(t) + p21I2(t)

p11N1 + p21N2
.

The rate of new infections of members of Patch 1 in Patch 2 is

β2p12S1
p12I1(t) + p22I2(t)

p12N1 + p22N2
.

Then the differential equations for S1 and I1 for an SIR infection are given by

S′
1 = −β1p11S1

[
p11I1(t) + p21I2(t)

p11N1 + p21N2

]

− β2p12S1

[
p12I1(t) + p22I2(t)

p12N1 + p22N2

]

I ′
1 = β1p11S1

[
p11I1(t) + p21I2(t)

p11N1 + p21N2

]

+ β2p12S1

[
p12I1(t) + p22I2(t)

p12N1 + p22N2

]

− γ I1.

(14.7)

There is a corresponding calculation for the rate of new infections of members
of Patch 2 in each patch, and the differential equations for S2 and I2 are given by

S′
2 = −β1p21S2

[
p11I1(t) + p21I2(t)

p11N1 + p21N2

]

− β2p22S2

[
p12I1(t) + p22I2(t)

p12N1 + p22N2

]

I ′
2 = β1p21S2

[
p11I1(t) + p21I2(t)

p11N1 + p21N2

]

+ β2p22S2

[
p12I1(t) + p22I2(t)

p12N1 + p22N2

]

− γ I2.

(14.8)
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Using the next generation approach to compute the basic reproduction number
[39] we define

F =
⎛

⎝
p11β1S1

p11I1+p21I2
p11N1+p21N2

+ p12β2S1
p12I1+p22I2
p12N1+p22N2

p21β1S2
p11I1+p21I2
p11N1+p21N2

+ p22β2S2
p12I1+p22I2
p12N1+p22N2

⎞

⎠ and V =
(
γ I1

γ I2

)

,

then

F =
(
B11 B12

B21 B22

)

and V =
(
γ 0
0 γ

)

,

where

B11 = N1

(
p2

11β1

p11N1 + p21N2
+ p2

12β2

p12N1 + p22N2

)

,

B12 = N1

(
p11p21β1

p11N1 + p21N2
+ p12p22β2

p12N1 + p22N2

)

,

B12 = N2

(
p11p21β1

p11N1 + p21N2
+ p12p22β2

p12N1 + p22N2

)

,

B22 = N2

(
p2

21β1

p11N1 + p21N2
+ p2

22β2

p12N1 + p22N2

)

.

The B matrix explicitly captures the secondary infections produced by Patch 1
and Patch 2 individuals in each environment. For example, B12 collects the Patch
1 residents infected by Patch 2 inhabitants in both environments. Finally, the
reproduction number is the largest eigenvalue of the matrix FV −1, this is

R0(P) =
B11 + B22 −

√
B2

11 + 4B12B21 − 2B11B22 + B2
22

2γ
.

Figure 14.1 shows the effect of mobility on R0(P) as residence times vary. In the
next chapter we show the applications of this approach in the context of Ebola,
tuberculosis, and Zika.

In the special case of no movement between patches

p11 = p22 = 1, p12 = p21 = 0,

we obtain

R0 = max

(
β1

γ
,
β2

γ

)

.
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Fig. 14.1 Effect of mobility
in the global R0. Parameters
β1 = 0.09, β2 = 0.02, and
γ = 0.05

Integration of the equations for (Si + Ii) (i = 1, 2) gives

γ

∫ ∞

0
Ii(t)dt = Ni − Si(∞), i = 1, 2

and these relations combined with the result of integrating the equations for S′
i/Si

(i = 1, 2) give the final size relations, whose form is quite complicated.
Choosing different values for pij gives a way to estimate the effect on the

epidemic size of imposing travel restrictions between patches.

14.2 Spatial Structure II: Continuously Distributed Models

In the preceding section, we have discussed the spread of a communicable disease
from one patch to another. In this section we will discuss the spatial spread of
a disease in a single patch because of the (continuous) motion of individuals.
The mathematical analysis is based on partial differential equations of reaction–
diffusion type. It is technically complicated and requires substantial mathematical
background. As references for some of the mathematical details, we suggest [10,
Chapter 5], [15, Chapters 9–11], [23, Chapters 15–18], [27, Chapters 11 and 13],
[28, Chapters 1 and 2].

An introduction to models for the spatial spread of epidemics may be found
in other references such as [2, 11, 14, 19, 37]. One characteristic feature of such
models is the appearance of traveling waves, which have been observed frequently
in the spread of epidemics through Europe from medieval times to the more recent
studies of fox rabies [1, 22, 25, 29]. The asymptotic speed of spread of disease is the
minimum wave speed [8, 13, 26, 31, 35, 41]. Models describing spatial spread and
including age of infection are analyzed in [17, 18, 20, 28].
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14.2.1 The Diffusion Equation

Let us begin by considering the motion of particles. Here, by a particle we might
mean an individual cell, a member of a population, or any object of a set in whose
spatial distribution as a function of time we are interested.

Our approach is to take a small region of space and to form a balance equation
which says that the rate of change of the number of particles in the region is equal
to the rate at which particles flow out of the region minus the rate at which particles
flow into the region plus the rate of creation of particles in the region.

We shall confine ourselves mainly to the case in which the dependence is with
respect to a single space coordinate. Let us think of a tube of constant cross section
area A and let x denote the distance along the tube from some arbitrary starting point
x = 0. We assume that the tube is a bounded region described by the inequalities
0 ≤ x ≤ L.

Let u(x, t) be the concentration of particles (number per unit volume) at location
x at time t , meaning that in the portion of the tube between x and x+h, with volume
Ah the number of particles is approximately Ahu(x, t). By “approximately” we
mean that if h is small, the error in this approximation Ahu(x, t) is smaller than a
constant multiple of h2.

We let J (x, t) be the flux of particles at location x at time t , by which we mean
the time rate of the number of particles crossing a unit area in the positive direction.
For every x0 the net rate of flow into the region between x0 and x0+h is AJ(x0, t)−
AJ(x0 + h, t). We let Q(x0, t, u) be the net growth rate per unit length at location
x0 at time t , representing births and deaths.

We have a balance relation on the interval x0 ≤ x ≤ x0 + h, expressing the
fact that the rate of change of population size at time t in this interval is equal to
the growth rate of population in this interval plus the net flux, and this leads to the
conservation law

ut (x, t) = Q(x, t, u) − ∂J

∂x
(x, t). (14.9)

In order to obtain a model which describes the population density u(x, t) we
must make some assumption which relates the rate of change of flux density ∂J

∂x
and

the population density u(x, t). If the motion is random, then Fick’s law says that
the flux due to random motion is approximately proportional to the rate of change
of particle concentration, that is, that J is proportional to ux . If population density
decreases as x increases (ux < 0) we would expect J > 0, so that J and ux have
opposite sign and thus that

J = −Dux

with D a constant called the diffusivity or diffusion coefficient. More generally,
D could be a function of the location x but we shall confine our attention to
constant diffusivity. Equation (14.9) then becomes a second-order partial differential
equation
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ut (x, t) = Q(x, t, u) + Duxx(x, t). (14.10)

Equation (14.10) is a reaction–diffusion equation. If Q = 0, it is called the heat or
diffusion equation. It is possible to solve the heat equation explicitly; the solution
for

−∞ < x < ∞, 0 ≤ t < ∞,

with u(x, 0) = f (x) is

u(x, t) = 1√
4πDt

∫ ∞

−∞
e− (x−ξ)2

4Dt f (ξ) dξ.

In population ecology, we can translate Fick’s law of diffusion into the statement
that the individuals move from a region of high concentration to a region of low
concentration in search for limited resources. We must, however, use this law with
caution when modeling spatial spread of infectious diseases since the individual
movement behaviors may be altered during the course of outbreaks of diseases.

For Eq. (14.10) to have a unique solution, we need to impose additional
conditions. It is possible to establish the following result.

The diffusion equation (14.10) with a specified initial condition u(x, 0) = f (x)

for 0 ≤ x ≤ L and boundary conditions for x = 0 and x = L has a unique solution
for 0 ≤ x ≤ L, 0 ≤ t < ∞. The boundary conditions may specify the value of u

or the value of ux for x = 0 and x = L.
Such a problem is called an initial boundary value problem.
We could also consider problems in an infinite tube defined by −∞ < x < ∞

for which no boundary conditions are required, or a semi-infinite tube 0 ≤ x < ∞
for which a boundary condition is required only at x = 0. In each case there is
a unique bounded solution for any specified initial condition u(x, 0) = f (x) for
−∞ ≤ x < ∞ or u(x, 0) = f (x) for 0 ≤ x < ∞.

A boundary condition specifying that the solution must vanish at a boundary
(called an absorbing boundary) may be taken to say that an individual leaving the
region must die immediately. This is an idealization, but we may think of a large
region with u = 0 far enough away. A boundary condition specifying that ux must
vanish at the boundary may be taken to say that the population is confined to the
region and there is no flow across the boundary.

There are several types of initial condition which may arise. One possibility
is that particles are absent initially, u(x, 0) = 0 and enter through the boundary.
A second possibility is that particles are inserted at a single point x0, u(x, 0) =
u0δ(x−x0). Here, δ(x) denotes the delta “function,” which is zero except for x = 0
and

∫ ∞

−∞
δ(x) dx = 1 (14.11)

and if f is continuous, then



14.2 Spatial Structure II: Continuously Distributed Models 467

∫ ∞

−∞
f (x)δ(x − a) dx = f (a). (14.12)

A third kind of initial condition would be to specify a constant initial concentration,
u(x, 0) = u0 for 0 ≤ x ≤ L.

14.2.2 Nonlinear Reaction–Diffusion Equations

In this section we consider reaction–diffusion equations containing a nonlinear
growth rate g(u) with g(0) = g(K) = 0, g′(u) > 0 for 0 ≤ u < K and g′(K) < 0.
Thus, we shall consider the equation

ut (x, t) = Duxx(x, t) + g(u). (14.13)

This equation could describe a population with diffusion in space, and births and
deaths given by the function g(u).

We begin by looking for solutions u(t) which are independent of x. Then uxx = 0
and Eq. (14.13) reduces to the ordinary differential equation

u′ = g(u). (14.14)

Note that K is the carrying capacity, every bounded solution of (14.14) approaches
the equilibrium K as t → ∞.

For solution patterns in space, we can consider time-independent solutions, i.e.,
ut = 0. In this case, Eq. (14.13) reduces to the following second-order ordinary
differential equation:

Du′′ + g(u) = 0. (14.15)

Let v = u′, then v′ = −g(u)/D, Eq. (14.15) is equivalent to the following first-
order system:

(
u

v

)′
=
(

v

−g(u)/D

)

. (14.16)

From g(0) = g(K) = 0 and g′(u) > 0 for 0 ≤ u < K , we know that system (14.16)
has equilibria (u∞, v∞) = (0, 0) and (K, 0). The Jacobian matrix is

[
0 1

− g′(u∞)
D

0

]

. (14.17)
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Since g′(0) > 0, both eigenvalues at the equilibrium (0, 0) are positive and this
equilibrium is asymptotically stable. Since g′(K) < 0, there is one positive and one
negative eigenvalue and the equilibrium (K, 0) is a saddle point.

Nonlinear reaction–diffusion equations may have traveling wave solutions. A
traveling wave solution has the form u(x, t) = U(x − ct) for some constant c.
In this case, ux(x, t) = U ′(x − ct), uxx(x, t) = U ′′(x − ct), and ut (x, t) =
(−c)U ′(x − ct). Thus, from Eq. (14.13), the following equation holds:

−cU ′(x − ct) = g[U(x − ct)] + DU ′′(x − ct).

Let z = x − ct , then the function U(z) must satisfy the second-order ordinary
differential equation in z

DU ′′ + cU ′ + g(U) = 0. (14.18)

The first-order system equivalent to (14.18) is

U ′ = V, V ′ = −g(U)

D
− c

V

D
, (14.19)

whose equilibria are (U∞, V∞) = (0, 0) and (K, 0). The Jacobian matrix at (U∞, 0)
is

[
0 1

− g′(U∞ )

D
− c

D

]

.

From g′(K) < 0 we know that (K, 0) is a saddle point. The equilibrium (0, 0) is
an asymptotically stable node if c2 > 4Dg′(0) and a stable point if c2 < 4Dg′(0).
By studying the phase portrait of the system it is possible to show that, if (0, 0)
is a node, then there is an orbit connecting the saddle point as z → −∞ and the
equilibrium at (0, 0) as z → ∞. This orbit corresponds to a wave solution u(x, t)

traveling to the right, as shown in Fig. 14.2.

14.2.3 Disease Spread Models with Diffusion

If we take the simple endemic SIR model (3.1) considered in chapter 3 (with Λ

being a constant and d = 0) and add diffusion, we obtain the reaction–diffusion
model:

St = Λ − μS − βSI + DSxx

It = βSI − (α + d + μ)I + DIxx.
(14.20)
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Fig. 14.2 A connecting orbit of Eq. (14.13)

A search for traveling wave solutions would lead to a four-dimensional system of
ordinary differential equations. This approach can be carried out but is technically
complicated, and we will not pursue it. Instead, we will consider a case study
in which it is biologically reasonable to assume that susceptible members of the
population do not diffuse, such as the spread of rabies in continental Europe during
the period 1945–1985. This will permit a search for traveling wave solutions that
requires the analysis of only a two-dimensional system.

The epidemic began on the edge of the German/Polish border, and its front
moved westward at an average speed of about 30–60 km per year. The spread of
the epidemic was essentially determined by the ecology of the fox population as
foxes are the main carrier of the rabies under consideration.

A model was formulated in [22] to describe the front of the wave, its speed, and
the total number of foxes infected after the front passes, and the connection of the
wave speed to the so-called propagation speed of the disease.

We formulate a model describing susceptible (S) and infective (I ) foxes. Assume
that susceptible foxes are territorial and do not diffuse, but the rabies virus induces a
loss of sense of territory. Consider the case when the population size has been scale
to 1, i.e., 0 < S(x, t) ≤ 1 and 0 ≤ I (x, t) < 1. Assume also a uniform initial
density for the susceptibles with S0 = 1. The simplest epidemic model under these
assumptions is

St (x, t) = −βS(x, t)I (x, t)

It (x, t) = DIxx(x, t) + βS(x, t)I (x, t) − αI (x, t),
(14.21)

where β is the transmission coefficient, α is the disease death rate of infective foxes,
and D is the diffusion coefficient.
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Consider the traveling wave solution with speed c:

u(z) = S(x − ct), v(z) = I (x − ct),

where z = x − ct , and u and v are the waveforms (or wave profiles).
Substituting the above special form into the system (14.21), we obtain the system

of ordinary differential equations:

Dv′′ + cv′ + βuv − αv = 0, cu′ − βuv = 0, (14.22)

where primes denote differentiation with respect to z. Assume the boundary
conditions:

u(−∞) = a, u(∞) = 1, v(−∞) = v(∞) = 0, (14.23)

where a is a constant to be determined. Substituting the second equation in (14.22)
into the first equation and using the boundary conditions we obtain the system

u′ = β

c
uv,

v′ = c

D

[
1 − u − v + α

β
ln u

]
.

(14.24)

Let (u∞, v∞) denote an equilibrium of system (14.24). Then v∞ = 0. For u∞, it is
either 0 or a solution of the equation

u − 1 = α

β
ln u. (14.25)

For 0 < u∞ < 1, a solution of (14.25), denoted by a, exists if and only if

a <
α

β
< 1. (14.26)

Thus, the two equilibrium points are E1 = (a, 0) and E2 = (1, 0). Observe
that β/α is actually the basic reproduction number R0 of the corresponding ODE
model (14.24).

The Jacobian matrix at E = (u∞, 0) is

J (E) =
⎛

⎜
⎝

0
β

c
u∞

c

D

(α

β

1

u∞
− 1

)
− c

D

⎞

⎟
⎠ .
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Using the condition in (14.26) and β/α > 1, we know that J (E1) has negative trace
and negative determinant, and hence, E1 = (a, 0) is a saddle point. Let

c∗ = 2
√
βD(1 − α/β),

then E2 = (1, 0) is a stable node if c > c∗ and a stable focus if c < c∗. Hence, a
traveling wave solution satisfies c > c∗, in which case there is a connecting orbit
from E1 to E2.

In the model considered here we have neglected many important factors,
including births and natural deaths and the long latent period fox rabies. More
accurate models can predict not only the observed wave pattern but also give a
close approximation to the shape of the epidemic wave. Some additional sources of
information about rabies modeling are [21, 25, 29, 30, 42].

With diffusion in both S and I , other difficult questions arise. One question is
diffusive instability, meaning that an equilibrium is asymptotically stable for the
system of ordinary differential equations obtained by a search for solutions that are
constant in time but unstable for the system with diffusion. In general, diffusion
tends to have a stabilizing effect and diffusive instability requires very specific
conditions on the coefficients.

We have looked only at diffusion in one-dimensional space. In the extension
to higher space dimensions, the term uxx can be replaced by the Laplacian of the
function u. In many problems for two-dimensional space there is radial symmetry,
which can be incorporated by describing the Laplacian in polar coordinates and
assuming u to be independent of the angular coordinate. If the radial variable is
denoted by r , the term Duxx would be replaced by urr + ur/r .

Diffusion problems may be mathematically very complicated, and they require a
considerable amount of mathematical background. One important possibility is the
formation of spatial patterns, first suggested by A. M. Turing in 1952 [36]. These
require more knowledge of partial differential equations than wish to assume. Some
examples of pattern formation in diffusive epidemic models may be found in [34, 40]
and further information may be found in [27].

14.3 Project: A Model with Three Patches

The epidemic patch model, (14.4) and (14.5), is for the case of two patches. We can
consider an extension of the model to include three patches. In this case, individuals
leaving Patch i can travel to either one of the two other patches. Let mji ≥ represent
the fractions of individuals moving into Patch j from Patch i. Then mii = 0, rii = 0,∑3

j=1 mji = 1, and gimji denotes the travel rate entering Patch j from Patch i.
Consider the case in which the transmission coefficient βikj depends only on the
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Patch j where the transmission occurs, i.e., βikj = βj . Then the system on resident
Patch i (with i = 1, 2, 3) reads

S′
ii =

3∑

k=1

rikSik − giSii −
3∑

k=1

κiβi

SiiIki

N
p
i

+ μ
( 3∑

k=1

Nik − Sii

)

I ′
ii =

3∑

k=1

rikIik − giIii +
3∑

k=1

κiβi

SiiIki

N
p
i

− (γ + μ)Iii ,

(14.27)

and for j �= i

S′
ij = gimjiSii − rij Sij −

3∑

k=1

κjβj

Sij Ikj

N
p
j

− μSij

I ′
ij = gimjiIii − rij Iij +

3∑

k=1

κjβj

Sij Ikj

N
p
j

− (γ + μ)Iij ,

(14.28)

with N
p
i = N1i + N2i + N3i , the number present in Patch i.

Question 1 The total population sizes satisfy the following equations:

N ′
ii =

3∑

k=1

rikNik − giNii + μ
( 3∑

k=1

Nik − Nii

)
, i = 1, 2, 3,

N ′
ij = gimjiNii − rijNij − μNij , i �= j.

(14.29)

(a) Show that the total resident population in Patch i,
∑3

k=1 Nik , remains constant
at all time. Let Ni0 = ∑3

k=1 Nik for i = 1, 2, 3.
(b) Show that the system (14.29) has the asymptotically stable equilibrium

N̂ii =
(

1

1 + gi

∑3
k=1

mki

μ+rik

)

Ni0, (14.30)

and for j �= i

N̂ij = gimji

μ + rij
N̂ii . (14.31)

Question 2 Let N̂iq be as given in (14.30) and (14.31), and let N̂p
q = ∑3

i=1 N̂iq . It
is easy to show that R0i = κiβi/(μ + γ ) is the isolated basic reproduction number
of Patch i (i.e., when there is no travel between patches). Consider the order of
infective variables
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(
I11, I12, I13, I21, I22, I23, I31, I32, I33

)
.

(a) Show that the basic reproduction number R0 for the model (14.27)–(14.28)
is given by the dominant eigenvalue of the matrix FV −1, where F is a block
matrix with nine blocks, and each block Fij is a 3 × 3 matrix with the form
Fij = diag(fijq) with

fijq = κqβq

N̂iq

N̂
p
q

, q = 1, 2, 3

and

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 −r12 −r13 0 0 0 0 0 0
−g1m21 b12 0 0 0 0 0 0 0
−g1m31 0 b13 0 0 0 0 0 0

0 0 0 b21 −g2m12 0 0 0 0
0 0 0 −r21 a2 −r23 0 0 0
0 0 0 0 −g2m32 b23 0 0 0
0 0 0 0 0 0 b31 0 −g3m13

0 0 0 0 0 0 0 b32 −g3m23

0 0 0 0 0 0 −r31 −r32 a3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where ai = gi + γ + μ and bik = rik + γ + μ.
(b) Consider the special case when βi = β for i = 1, 2, 3. Fix all parameters

except β. Then R0 = R0(β) is a function of β. Consider the set of parameters:
γ = 1/25, μ = 1/(75 × 365), g1 = 0.01, g2 = 0.02, g3 = 0.03, mij = 0.5
for i �= j , rij = 0.05 for i �= j , κi = κ = 1 and N0i = N0 = 1500 for
i = 1, 2, 3.

(i) Plot R0 as a function of β. What is the threshold value βc such that
R0(β) < 1 for all β < βc?

(ii) Figure 14.3 shows the number of susceptible and infective individuals of
three resident populations for the case of β = 0.025 with different values
of κi and gi . Experiment with other set of parameters to observe how the
prevalence within these patches will change.

(c) Consider the same set of parameter values as given in (a) except that the
parameters κ1 and N01 for Patch 1 can vary. Numerically plot the solutions
for different values of these parameters and describe your observations.

(d) We can also explore the effect of travel rates gi on the prevalence. Let β = 0.025
and fix all parameters as in part (b) except g1 and κ1. Determine a couple of sets
of parameter values of g1 and κ1 that can determine whether or not the infection
on Patch 1 can go extinct.
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Fig. 14.3 Time plots of the
susceptibles (solid) and
infectives (dashed)
individuals for the resident
populations 1 (thicker curve),
2 (intermediate), and 3
(thinner curve). The
parameter values used are
β = 0.025, κ1 = 3, κ2 = 2,
κ3 = 1, g1 = 0.01,
g2 = 0.02, g3 = 0.03 in (A)
and g1 = 0.07, g2 = 0.03,
g3 = 0.04 in (B). All other
parameters have the same
values as in part (A)

(A)

(B)

14.4 Project: A Patch Model with Residence Time

Consider a model consisting of (14.7) and (14.8) with parameters

N1 = N2 = 1,000,000, β1 = 0.3056, β2 = 0.1, γ = 1/6.5.

Question 1 Begin with an assumption that mixing is symmetric, p12 = p21.
Calculate the final epidemic size with several choices of p11 = p22.

Question 2 Calculate the effect on epidemic size of assuming no travel to the patch
with a higher contact rate by assuming p22 = 1, p21 = 0 for several choices of p12.

Question 3 Calculate the effect on epidemic size of banning all travel, p12 =
p21 = 0.
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Chapter 15
Epidemiological Models Incorporating
Mobility, Behavior, and Time Scales

15.1 Introduction

The work of Eubank et al. [24], Sara del Valle et al. [44], Chowell et al. [7, 18], and
Castillo-Chavez and Song [13] have highlighted the impact of modified modeling
approaches that incorporate heterogeneous modes of mobility within variable
environments in order to study their impact on the dynamics of infectious diseases.
Castillo-Chavez and Song [13], for example, proceeded to highlight a Lagrangian
perspective, that is, the use of models that keep track at all times of the identity of
each individual. This approach was used to study the consequences of deliberate
efforts to transmit smallpox in a highly populated city, involving transient sub-
populations and the availability of massive modes of public transportation.

Here, a multi-group epidemic Lagrangian framework where mobility and the
risk of infection are functions of patch residence time and local environmental risk
is introduced. This Lagrangian approach has been used within classical contact
epidemiological (that is, transmission is due to “contacts” between individuals)
formulations in the context of a possible deliberate release of biological agents
[2, 13]. The Lagrangian approach is introduced here as a modeling approach that
explicitly avoids the assignment of heterogeneous contact rates to individuals. The
use of contacts or activity levels and the view that transmission is due to collisions
between individuals has a long history and it is conceptually consistent with the way
we envision disease transmission between susceptible and infectious individuals.
However, contacts are hard to define and consequently, at least in the context of
communicable diseases, impossible to measure in various settings. Is it possible
to capture interactions of individual mathematically in a way different from the
notion of contacts? The approach that is proposed focuses on the use of modeling
frameworks that involve patches/environments defined or characterized by risks of
infection that are functions of the time spent in each environment/patch. These
patches/environments may or may not have permanent hosts and they may be used
to account for places of “transitory” residence like mass transportation systems or
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hospitals or forests, to name but a few possibilities. Each environment or patch is
characterized by the expected risk of infection of visitors as a function of time spent
in such an environment. For example, a population near a forest may have some
of its individuals spend time in the forest. Those who like the outdoors may be
exposed longer to vectors than those who do not visit the forest. Consequently, the
possibility of acquiring a vector-borne disease is a function of, among other factors,
how long an individual spends in the forest each day. Similarly, individuals that use
mass transportation routinely (during rush hour) are at a higher risk of acquiring a
communicable disease including common colds, and it makes sense to assume that
the risk may be a function of how long each individual spends each day commuting
to work or to school. In other words, the average time spent in a community defined
as a collection of environments that determined a priori the risk of acquiring an
infection is at the heart of the Lagrangian approach.

What is the Lagrangian approach and what does the theory tell us about the
dynamics of such models in epidemic settings? We revisit this framework in
possibly the simplest general setting that of a susceptible–infected–susceptible (SIS)
epidemic multi-group model. We collect some of the mathematical formulae and
results in the context of this general SIS multi-group model as reported in the
literature [4, 6, 7, 11]. We proceed to identify basic reproduction numbers R0 as
a function of the associated multi-patch residence-time matrix P (pi,j : i, j =
1, 2, 3 . . . n), which determines the proportion of time that a resident of Patch i

spends in environment j . The analysis shows that the n-patch SIS model (as long as
it is a strongly connected system) has a unique globally stable endemic equilibrium
when R0 > 1, and a globally stable disease-free equilibrium when R0 ≤ 1. We

have used simulations to generate insights on the impact that the residence matrix P

has on infection levels within each patch. Model results [4, 6, 7, 11] show that the
infection risk vector, which characterizes environments by risk to a pre-specified
disease (measured by B), and the residence-time matrix P both play an important
role in determining, for example, whether or not endemicity is reached at the patch
level. Further, it is shown that the right combinations of environmental risks (B)
and mobility behavior (P) are capable of promoting or suppressing infection within
particular patches. The theoretical results [4, 6, 7, 11] are used to characterize patch-
specific disease dynamics as a function of the time spent by residents and visitors
in patches of interest. These results have helped classify patches as sources or sinks
of infection, depending, of course, on the risk (B) and mobility (P) matrices. In
general a residence-time matrix P cannot be made of constant entries in realistic
settings. In fact the entries of P may depend on disease prevalence levels. We have
explored some simple situations, via simulations, when the entries of the matrix P

are state-dependent [4, 6, 7, 11]. The analysis and simulations for specific diseases
are illustrated later in this chapter. They are used to highlight some of the possible
differences that arise from having a state-dependent residence-time matrix P.
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15.2 General Lagrangian Epidemic Model in an SIS Setting

The following SIS model involving n-patches (environments) is introduced in [7]:

S′
i = bi − diSi + γiIi − Siλi(t) (15.1)

I ′
i = Siλi(t) − γiIi − diIi

N ′
i = bi − diNi,

where bi , di , and γi denote the per-capita birth, natural death, and recovery rates,
respectively, for i = 1, 2, 3 . . . n. The infection rates λi(t) have the form:

λi(t) =
n∑

j=1

βjpij

∑n
k=1 pkj Ik∑n
k=1 pkjNk

, i = 1, 2, . . . , n, (15.2)

where pij denotes the proportion of susceptibles from Patch i who are currently in
Patch j , βj is the risk of infection in Patch j , and the last fraction represents the
proportion of infected in Patch j . Using the approach of the next generation matrix,
the basic reproduction number R0 can be derived using the following system:

İi =
(
bi

di
− Ii

)

λi(t) − (γi + di)Ii, i = 1, 2, . . . , n.

As shown in the next section, R0 is a function of the risk vector B =
(β1, β2, . . . , βn)

t and the residence times matrix P = (pij ), i, j = 1, . . . , n, and it
is shown in [7] that whenever P is irreducible (patches are strongly connected), the
disease-free steady state is globally asymptotically stable if R0 ≤ 1 and a unique
interior equilibrium exists and is globally asymptotically stable if R0 > 1.

While a specific formula for the multi-patch basic reproduction number cannot
be computed explicitly, it is possible in this case to find expressions for the patch-
specific basic reproduction number. In fact, we have

R0i (P) = R0i ×
n∑

j=1

pji,

where R0i are the local basic reproduction numbers (i = 1, 2, 3, · · · , n) computed
when the patches are isolated from each other. From the R0i (i = 1, 2, 3, · · · , n),
the role that the relative risk that each environment (patch) plays, namely

βj

βi
,

can be assessed. Further, the role that residence times play in keeping track of
the appropriate fraction of the population involved in a given patch is given by

(pij bi/di)∑n
k=1 pkj bk/dk

. In other words, this patch specific R0i (i = 1, 2, 3, · · · ,) captures

the impact of the P and B matrices.



480 15 Epidemiological Models Incorporating Mobility, Behavior, and Time Scales

In short, if R0i (P) > 1 the disease persists in Patch i and furthermore, if pkj = 0
for all k = 1, 2, · · · , n and k �= i whenever pij>1, then it is shown that the disease
dies in Patch i if R0i (P) < 1, that is, patch-specific basic reproduction numbers
help characterize disease dynamics at the patch level [7].

We can look first at the following example of a multi-patch SIR model for a
single outbreak:

S′
i = −Siλi(t),

I ′
i = Siλi(t) − αiIi,

R′
i = αiIi, i = 1, 2,

(15.3)

where Si, Ii , and Ri denote the population of susceptible, infected, and recovered
immune individuals, respectively, in Patch i, and Ni = Si + Ii + Ri . This model
is the same as the model (14.7–14.8) in the preceding chapter. The parameter αi

denotes the per-capita recovery rate in Patch i and λi(t) are given in (15.2).
In the rest of this chapter we make use of this Lagrangian modeling perspective

(disease-specific versions) to carry out preliminary studies, in rather simple set ups,
of the role of mobility in reducing or enhancing the transmission of specific diseases
in regions of variable risk for the case of two patches. Numerical results are used to
illustrate the power and limitations of this approach. Lagrangian models are used to
explore the role that mobility plays in disease transmission for the cases of Ebola,
tuberculosis, and Zika in simplified settings. Figure 15.1 represents a schematic
representation of the Lagrangian dispersal between two patches.

Fig. 15.1 Dispersal of individuals via a Lagrangian approach
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15.3 Assessing the Efficiency of Cordon Sanitaire
as a Control Strategy of Ebola

During the 2014 Ebola Epidemic in West Africa, it was observed [10, 46] that the
rate of growth of the Ebola epidemic seemed to be increasing rather than decreasing
as is standard in the study of epidemics. In other words, the reproduction number
tends to decrease in time rather than increase. The evidence provided by the data
and our analysis indicated that something was not right. We learned that troops
were being used to prevent individuals from moving out of the most devastated
communities facing Ebola. The use of cordons sanitaires seemed to be implemented
even though past experiences have shown them to have a deleterious effect. Here, we
formulate a two-patch mathematical model for Ebola virus disease (EVD) dynamics
to highlight the potential lack of effectiveness or the deleterious impact of impeding
mobility (cordons sanitaires). Via simulations, we look at the role of mandatory
mobility restrictions and their impact on disease dynamics and epidemic final size. It
is shown that mobility restrictions between high and low risk areas of closely linked
communities are likely to have a deleterious impact on overall levels of infection in
the total population involved.

15.3.1 Formulation of the Model

The community of interest is assumed to be composed of two adjacent regions
facing highly distinct levels of EVD infection and having access to a highly
differentiated public health system (the haves and have-nots). There are differences
in population density, availability of medical services, and isolation facilities. The
need of those in the high-risk area to travel to the low-risk area is high as the jobs are
in the well-off community. For Ebola, it may be unrealistic to assume susceptibles
and infectives travel at the same rate. We let N1 denote the population in Patch 1
(high risk) and N2 the population in Patch 2 (low risk). The classes Si , Ei , Ii , Ri

represent the susceptible, exposed, infective, and recovered sub-populations in Patch
i (i = 1, 2). The class Di represents the number of disease induced deaths in Patch
i. The dispersal of individuals is modeled via the Lagrangian approach defined in
terms of residence times [4, 7].

The numbers of new infections per unit of time are based on the following
assumptions:

• The density of infected individuals mingling in Patch 1 at time t , who are only
capable of infecting susceptible individuals currently in Patch 1 at time t , that is,
the effective infectious proportion in Patch 1 is given by

p11I1 + p21I2

p11N1 + p21N2
,
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where p11 denotes the proportion of time that residents from Patch 1 spend in
Patch 1 and p21 the proportion of time that residents from Patch 2 spend in Patch
1.

• The number of newly infected Patch 1 residents while sojourning in Patch 1 is
therefore given by

β1p11S1

(
p11I1 + p21I2

p11N1 + p21N2

)

.

• The number of new infections within members of Patch 1, in Patch 2 per unit of
time is therefore

β2p12S1

(
p12I1 + p22I2

p12N1 + p22N2

)

,

where p12 denotes the proportion of time that residents from Patch 1 spend in
Patch 2 and p22 the proportion of time that residents from Patch 2 spend in Patch
2. Hence, the effective density of infected individuals in Patch j is given by

p1jN1 + p2jN2, j = 1, 2.

If we further assume that infection by dead bodies occurs only at the local level
(bodies are not moved), then, by following the same rationale as in model (15.3),
we arrive at the following model:

S′
i = −Siλi(t) − εiβipiiSi

Di

Ni

,

E′
i = Siλi(t) + εiβipiiSi

Di

Ni

− κEi,

I ′
i = κEi − γ Ii,

D′
i = fdγ Ii − νDi,

R′
i = (1 − fd)γ Ii + νDi,

Ni = Si + Ei + Ii + Di + Ri, i = 1, 2,

(15.4)

where λi(t) are given in (15.2).

15.3.2 Simulations

Simulations show that if only individuals from the high-risk region (Patch 1) were
allowed to travel, then the epidemic final size can go under the cordon sanitaire
level. Figure 15.2 captures the patch-specific prevalence levels for mobility values
of p12 = 0, 0.2, 0.4, 0.6 with p21 = 0 (no movement). Disease dispersal, if the
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Fig. 15.2 Dynamics of prevalence in each patch for values of mobility p12 =
0%, 20%, 40%, 60% and p21 = 0, with parameters: ε1,2 = 1.1,R01 = 2.45,R02 =
0.9, fd = 0.7, k = 1/7, ν = 1/2, γ = 1/7

Fig. 15.3 Dynamics of patch specific and total final epidemic size, for mobility values p12 =
0%, 20%, 40%, 60% and p21 = 0, with parameters: ε1,2 = 1.1,R01 = 2.45,R02 = 0.9, fd =
0.7, k = 1/7, ν = 1/2, γ = 1/7

disease spreads to a totally susceptible region, means that the secondary infections
produced in the low-risk region reduce the overall two-patch prevalence, due to its
access to better sanitary conditions and resources. However, there is a cost to the
low-risk patch not only for the services provided but also for the generation of a
larger number of secondary cases than if the “borders” were closed. Figure 15.3
shows that different mobility regimes can increase or decrease the total epidemic
final size. In the presence of “low mobility” levels (p12 = 0.2, 0.4), the total final
size curve may turn out to be greater than the cordon sanitaire case. We observe
that the nonlinear impact of mobility on the total epidemic final size can bring it
below the cordoned case even under relative “high mobility” regimes. This result
highlights the trade-off that comes from reducing individuals’ time spent in a high-
risk region versus exposing a totally susceptible population living in a safer region.
Under certain mobility conditions, the results of such a trade-off are beneficial for
the Global Commons.
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Fig. 15.4 Dynamics of
maximum final size and
maximum prevalence in Patch
1 with parameters: ε1,2 =
1.1,R01 = 2.45,R02 =
0.9, fd = 0.7, k = 1/7, ν =
1/2, γ = 1/7

Fig. 15.5 Dynamics of final
epidemic size in the one way
case with parameters: ε1,2 =
1.1,R01 = 2.45,R02 =
0.9, 1.0, 1.1, fd = 0.7, k =
1/7, ν = 1/2, γ = 1/7

Further, in order to clarify the effects of residence times on total final epidemic
size, we proceeded to analyze its behavior under one way mobility. Figure 15.4
shows the cordon sanitaire (dashed gray line), patch specific, and the total epi-
demic final size for various possible mobility scenarios, p12 ∈ [0, 1]. We see
that one way mobility reduces Patch 1 epidemic final size while increasing the
Patch 2 final number of infections. We see that the total epidemic final size
under low mobility (p12 < 0.5) is above the cordoned case. We also observe
that Patch 2 sanitary conditions play an important role under high mobility
regime bringing the total epidemic final size below the cordon sanitaire scenario
(p12 > 0.5).

Moreover, results suggest that for R02 < 1 extremely high mobility levels
might eradicate an Ebola outbreak. It is important to stress that mobility reducing
the total epidemic final size is dependent not only on the residence times and
mobility type, but also on the patch-specific prevailing infection rates. Figure 15.5
shows that if R02 > 1 mobility is not capable of leading the total epidemic final
size towards zero. Figure 15.6 shows that the global basic reproduction number
decreases monotonically as one way mobility increases. However, it is not capable
of capturing the harmful effect of low mobility levels, increasing the total epidemic
final size. Mobility on its own is not always enough to reduce R0 below the critical
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Fig. 15.6 Dynamics of R0
with parameters:
ε1,2 = 1,R01 = 2.45,R02 =
0.9, 1.0, 1.1, fd = 0.708, k =
1/7, α = 0, ν = 1/2, γ =
1/6.5

threshold. Instead, bringing the global R0 less than one requires reducing local risk,
that is, getting a lower R02.

15.4 *Mobility and Health Disparities on the Transmission
Dynamics of Tuberculosis

TB dynamics is the result of complex epidemiological and socio-economical
interactions between and among individuals living in highly heterogeneous regional
conditions. Many factors impact TB transmission and progression. A model is intro-
duced to enhance the understanding of TB dynamics in the presence of diametrically
distinct rates of infection and mobility. The dynamics are studied in a simplified
world consisting of two patches, that is, two risk-defined environments, where the
impact of short-term mobility and variations in reinfection and infection rates are
assessed. The modeling framework captures “daily dynamics” of individuals within
and between places of residency, work, or business. Activities are modeled by the
proportion of time spent in environments (patches) having different TB infection
risk. Mobility affects the effective population size of each Patch i (home of i-
residents) at time t and they must also account for visitors and residents of Patch i, at
time t . The impact that effective population size and the distribution of individuals’
residence times in different patches have on TB transmission and control is explored
using selected scenarios where risk is defined by the estimated or perceived first
time infection and/or exogenous reinfection rates. Model simulation results suggest
that, under certain conditions, allowing infected individuals to move from high to
low TB prevalence areas (for example, via the sharing of treatment and isolation
facilities) may lead to a reduction in the total TB prevalence in an overall, two-
patch, population.
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15.4.1 *A Two-Patch TB Model with Heterogeneity
in Population Through Residence Times in the Patches

Using a similar approach to model formulation, we consider the following model
for the dynamics of TB in two patches:

Ṡi = μiNi − Siλi(t) − μiSi,

L̇i = qSiλi(t) − Liλ̂i(t) − (γi + μi)Li + ρiIi,

İi = (1 − q)Siλi(t) + Liλ̂i(t) + γLi − (μi + ρi)Ii, i = 1, 2,
(15.5)

where λi(t) is the same as in (15.2) and

λ̂i (t) =
2∑

j=1

δjpij

∑2
k=1 pkj Ik

∑2
k=1 pkjNk

, i = 1, 2.

15.4.2 *Results: The Role of Risk and Mobility on TB
Prevalence

We highlighted the dynamics of tuberculosis within a two-patch system, described
by (15.5), under various residence times schemes via numerical experiments. The
simulations were carried out using the two-patch Lagrangian modeling framework
on pre-constructed scenarios. We assume that one of the two regions (say, Patch 1)
has high TB prevalence. We do not model specific cities or regions. Nomenclature
of some terms and scenarios are defined in Table 15.1.

The interconnection of the two idealized patches demands that individuals from
Patch 1 travel to the “safer” Patch 2 to work, to school, or for other social activities.
It is assumed that the proportion of time that Patch 2 residents spend in Patch 1 is
negligible.

Here we define “high risk” based on the value of the probability of developing
active TB using two distinct definitions: (i) patch having high direct first time
transmission potential but no difference in exogenous reinfection potential between
patches (β1 > β2 and δ1 = δ2) and (ii) the patch with high exogenous reinfection
potential (δ1 > δ2 and β1 = β2 ). In addition, we assume a fixed population size
for Patch 1 and vary the population size of Patch 2. Particularly, we assume that
Patch 1 is the denser patch, while Patch 2 is assumed to have 1

2N1 and 1
4N1. That

is, contact rates are higher in the Patch 1 population as compared to corresponding
rates in Patch 2.
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Table 15.1 Definitions and scenarios

Nomenclature

Risk Interpreted based on levels of infection rate, prevalence, or
average contacts (via population size)

High-risk patch Defined either by high direct first time infection rate (i.e., high β

which leads to high corresponding R0) or by high exogenous
reinfection rate (i.e., high δ)

Enhanced
socio-economic
conditions (reducing
health disparity)

Defined by better healthcare infrastructure which is incorporated
by high prevalence of a disease (i.e., high I (0)/N ) in a large
population (i.e., large N )

Mobility Captured by average residence times of an individual in different
patches (i.e., by using P matrix)

Scenarios (assume high-risk and diminished socio-economic conditions in
Patch 1 as compared to Patch 2)

Scenario 1 β1 > β2, δ1 = δ2;
I1(0)

N1
>

I2(0)

N2
, N1 > N2;

vary p12 & p21 ≈ 0

Scenario 2 β1 = β2, δ1 > δ2;
I1(0)

N1
>

I2(0)

N2
, N1 > N2;

vary p12 & p21 ≈ 0

Fig. 15.7 Effect of mobility in the case of different transmission rates 0.13 = β1 > β2 = 0.07
(which gives R01 = 1.5, R02 = 0.8) and δ1 = δ2 = 0.0026, on the endemic prevalence.
The cumulative prevalence and prevalence for each patch using the following population size
proportions N2 = 1

2N1 (left figure) and N2 = 1
4N1 (right figure) are shown here. The green

horizontal dotted line represents the decoupled case (i.e., the case when there is no movement
between patches)

15.4.3 The Role of Risk as Defined by Direct First Time
Transmission Rates

In this subsection, we explore the impact of differences in transmission rates
between patches. Patch 1 is high risk (R01 > 1; obtained by assuming β1 > β2),
while Patch 2 in the absence of visitors would be unable to sustain an epidemic
(R02 < 1). In addition the effect of different population ratios N1/N2 is explored.
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Figure 15.7 uses mobility values p12 as it looks at their impact on increases in
cumulative two-patch prevalence. At the individual patch level, increase in mobility
values reduces the prevalence in Patch 1 but increases the prevalence in Patch 2
initially and then decreases past a threshold value of p12 (see red and black curves
in Fig. 15.7). That is, completely cordoning off infected regions may not be a good
idea to control disease. However, the movement rate of individuals between high-
risk infection region and low-risk region must be maintained above a critical value
to control an outbreak. Thus, it is possible that when Patch 1 (riskier patch) has a
bigger population size, then mobility may turn out to be beneficial; the higher the
ratio in population sizes, the higher the range of beneficial “traveling” times.

15.4.4 The Impact of Risk as Defined by Exogenous
Reinfection Rates

Here, we focus our attention on the impact of exogenous reinfection on TB’s
transmission dynamics when transmission rates are the same in both patches,
β1 = β2. In this scenario, we assume the disease in both patches have reached
an endemic state, that is, R01 > 1 and R02 > 1. However, Patch 1 remains the
riskier, due to the assumption that exogenous reactivation of TB in Patch 1 is higher
than in Patch 2, δ1 > δ2.

Figure 15.8 shows the combined role of exogenous reinfection and mobility
values when the population of Patch 1 is twice or four times the population of
Patch 2.

It is possible to see a small reduction in the overall prevalence, given for all
mobility values from Patch 1 to Patch 2. Within this framework, parameters, and
scenarios, our model suggests that direct first time transmission plays a central role

Fig. 15.8 Effect of mobility when risk is defined by the exogenous reinfection rates 0.0053 =
δ1 > δ2 = 0.0026 and β1 = β2 = 0.1 (which gives R01 = R02 = 1.155), on the
endemic prevalence. The cumulative prevalence and prevalence for each patch using the following
population size proportions N2 = 1

2N1 (left figure) and N2 = 1
4N1 (right figure) are shown here.

The green dotted line represents the decoupled case (i.e., the case when there is no movement
between patches)
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Fig. 15.9 Effect of mobility
and population size
proportions on the global
basic reproduction number
R0 when
0.13 = β1 > β2 = 0.07 and
δ1 = δ2 = 0.0026

in TB dynamics when mobility is considered. Although mobility also reduces the
overall prevalence when exogenous reinfection differs between patches, its impact
is small compared to direct first time transmission results.

Finally, Fig. 15.9 shows the relationship between population densities and mobil-
ity (p12) with respect to the basic reproduction number R0. In this case we only
explore the first case: direct first time transmission heterogeneity and found out that
in this case mobility could indeed eliminate a TB outbreak.

According to the World Health Organization (WHO) [48], in 2014, 80% of the
reported TB cases occurred in 22 countries, all developing countries. Efforts to
control TB have been successful in many regions of the globe and yet we still see 1.5
million people die each year. And so, TB, faithful to its history [19], still poses one
of the greatest challenges to global health. Recent reports suggest that established
control measures for TB have not been adequately implemented, particularly in sub-
Saharan countries [1, 15]. In Brazil rates have decreased with relapse being more
important than reinfection [20, 33]. Finally, in Cape Town, South Africa, a study [47]
showed that in high incidence areas, individuals who have received TB treatment
and are no longer infectious are at the highest risk of developing TB instead of
being the most protected. Hence, policies that do not account for population specific
factors are unlikely to be effective. Without a complete description of the attributes
of the community in question, it is almost impossible to implement successful
intervention programs capable of generating low reinfection rates through multiple
pathways and low number of drug resistant cases. Intervention must account for
the risks that are inherent with high levels of migration as well as with local and
regional mobility patterns between areas defined by high differences in TB risk. This
discussion of TB dynamics within a simplified framework of a two-patch system
has captured in a rather dramatic way the dynamics in two worlds: the world of the
haves and the world of the have-nots. Simulations of simplified extreme scenarios
highlight the impact of disparities.

TB dynamics depend on the basic reproduction number (R0), a function of
model parameters that includes direct first transmission and exogenous (reinfection)
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transmission rates. The simulations of specific extreme scenarios suggest that short-
term mobility between heterogeneous patches does not always contribute to overall
increases in TB prevalence. The results show that when risk is considered only in
terms of exogenous reinfection, global TB prevalence remains almost unchanged
when compared to the effect of direct new infection transmission. In the case of
a high-risk direct first time transmission, it is observed that mobile populations
may contribute to prevalence levels in both environments (patches). The simulations
show that when the individuals from the risky population spend 25% of their time
or less in the safer patch this is bad for the overall prevalence. However, if they
spend more, the overall prevalence decreases. Further, in the absence of exogenous
reinfections, the model is robust, that is, the disease dies out or persists based on
whether or not the basic R0 is below or above unity, respectively. Although, the
role of exogenous reinfection seems not that relevant to overall prevalence, the fact
remains that such mode of transmission increases the risk that comes from a large
displacement of individuals into a particular TB-free areas, due to catastrophes or
conflict. As noted in [25], ignoring exogenous reinfections, that is, establishing
policies that focus exclusively on the reproduction number R0, would amount to
ignoring the role of dramatic changes in initial conditions, now more common
than before, due to the displacement of large groups of individuals, the result of
catastrophes, and/or conflict.

15.5 *ZIKA

In November 2015, El Salvador reported their first case of Zika virus (ZIKV), an
event followed by an explosive outbreak that generated over 6000 suspected cases
in a period of 2 months. National agencies began implementing control measures
that included vector control and recommending an increased use of repellents. In
addition in response to the alarming and growing number of microcephaly cases
in Brazil, the importance of avoiding pregnancies for 2 years was stressed. The
role of mobility within communities characterized by extreme poverty, crime, and
violence where public health services are not functioning is the set up for this
example. We use a Lagrangian modeling approach within a two-patch setting in
order to highlight the possible effects that short-term mobility, within two highly
distinct environments, may have on the dynamics of ZIKV when the overall goal is
to reduce the number of cases in both patches. The results of simulations in highly
polarized and simplified scenarios are used to highlight the role of mobility on ZIKV
dynamics. We found that matching observed patterns of ZIKV outbreaks was not
possible without incorporating increasing levels of heterogeneity (more patches). A
lack of attention to the threats posed by the weakest links in the global spread of
diseases poses a serious threat to global health policies (see [12, 16, 23, 34, 40–
42, 50]). Our results highlight the importance of focusing on key nodes of global
transmission networks, which in the case of many regions correspond to places
where the level of violence is highest. Latin America and the Caribbean, which
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house 9% of the global population are a particular hot spot because this region
accounts for 33% of the world’s homicides [29]. Hence, it is essential to assess how
much public safety conditions may affect mobility and the level of local risk, which
may affect the dynamics of ZIKV.

15.5.1 *Single Patch Model

Assume that individuals while in Patch 1 will be experiencing high risk of infection,
while those in Patch 2 will be experiencing low risk. Movement (daily activities) will
alter the amount of time that each individual spends on each patch, the longer that an
individual is found in Patch 1, the more likely that he/she will become infected. The
level of patch-specific risk to infection is captured via the use of a single parameter
β̂i , i = 1, 2 with β̂1 � β̂2. This assumption pretends to capture health disparities
in a rather simplistic way. The case of Johannesburg and Soweto in South Africa,
or North and South Bogota in Colombia, or Rio de Janeiro and adjacent favelas in
Brazil, or gang-controlled and gang-free areas within San Salvador are but some
of the unfortunately large number of pockets dominated by conflict, high crime
or highly differentiated health structures within urban centers around world. The
short time scale dynamics of individuals (going to work or attending schools or
universities) are incorporated within this model. The dynamics of transmission is
carried out via simulations over the duration of a single outbreak.

The ZIKV dynamics single patch model involves host and vector populations of
size Nh and Nv , respectively. Both populations are subdivided by epidemiological
states; the transmission process is modeled as the result of the interactions of
these populations. On that account, we let Sh, Eh, Ih,a , Ih,s , and Rh denote the
susceptible, latent, infectious asymptomatic, infectious symptomatic, and recovered
host sub-populations. Similarly, Sv , Ev , and Iv are used to denote the susceptible,
latent, and infectious mosquito sub-populations. Since the focus is on the study of
disease dynamics over a single outbreak, we neglect the host demographics while
assuming that the vector demographics do not change, meaning that it is assumed
the birth and death per-capita mosquito rates cancel each other out. New reports
[14, 21] point out the presence of large numbers of asymptomatic ZIKV infectious
individuals. Consequently, we consider two classes of infectious Ih,a and Ih,s , that
is, asymptomatic and symptomatic infectious individuals. Further, since there is no
full knowledge of the dynamics of ZIKV transmission, it is assumed that Ih,a and
Ih,s individuals are equally infectious with their periods of infectiousness roughly
the same. Our assumptions could be used to reduce the model to one that considers
a single infectious class Ih = Ih,a + Ih,s . We keep both infectious classes as it may
be desirable to keep track of each type. These assumptions may not be too bad given
our current knowledge of ZIKV epidemiology and the fact that ZIKV infections, in
general, are not severe. Furthermore, given that the infectious process of ZIKV is
somewhat similar to that of dengue, we use some of the parameters estimated in
dengue transmission studies within El Salvador. ZIKV basic reproduction number
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estimates are taken from those that we just estimated using outbreak data from
Barranquilla Colombia [45]. Furthermore, the selection of model parameters ranges
used also benefited from prior estimates conducted with data from the 2013–2014
French Polynesia outbreak [31], some of the best available. The dynamics of the
prototypic single patch system, single epidemic outbreak, can therefore be modeled
using the following standard nonlinear system of differential equations [9]:

S′
h = −bβvhSh

Iv
Nh

E′
h = bβvhSh

Iv
Nh

− νhEh

I ′
h,s = (1 − q)νhEh − γhIh,s

I ′
h,a = qνhEh − γhIh,a

R′
h = γh(Ih,s + Ih,a)

S′
v = μvNv − bβhvSv

Ih,s+Ih,a
Nh

− μvSv

E′
v = bβhvSv

Ih,s+Ih,a
Nh

− (μv + νv)Ev

I ′
v = νvEv − μvIv.

(15.6)

15.5.2 *Residence Times and Two-Patch Models

The role of mobility between two communities, within the same city, living under
dramatically distinct health, economic, social, and security settings is explored using
a model as simple as possible, that is, a model that only considers two patches
(prior modeling efforts that didn’t account for the effective population size but that
incorporated specific controls include [32]). Patch 2 has access to working health
facilities, low crime rate, adequate human and financial resources, and adequate
public health policies, in place. Patch 1 lacks nearly everything and crime is high.
The differences in risk are captured by postulating very different transmission rates.
We study the dynamics of host mobility in highly distinct environments, with risk
being captured by the transmission rate, β̂. Hence, β̂1 � β̂2, where β̂i defines the
risk in Patch i, i = 1, 2 [Patch 1 (high risk) and Patch 2 (low risk)].

The host populations are stratified by epidemiological classes indexed by the
patch of residence. In particular, Sh,i , Eh,i , Ih,a,i , Ih,s,i , and Rh,i denote the
susceptible, latent, infectious asymptomatic, infectious symptomatic, and recovered
host populations in Patch i, i = 1, 2 with Sv,i , Ev,i , and Iv,i denoting the
susceptible, latent, and infectious mosquito populations in Patch i, i = 1, 2. As
before, Nh,i denotes the host patch population size (i, i = 1, 2) and Nv,i the total
vector population in Patch i, i = 1, 2. The vector is assumed to be incapable of
moving between patches, a reasonable assumption in the case of Aedes aegypti
under the appropriate spatial scale. The patch model parameters are presented in
Table 15.2 with the flow diagram, single patch dynamics model, capturing the
situation when residents and visitors do not move; that is, when the 2 × 2 residence
times matrix P is such that p11 = p22 = 1 (Fig 15.10).
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Table 15.2 Description of the parameters used in system (15.6)

Parameters Description Value

βvh Infectiousness of human to mosquitoes 0.41

βhv Infectiousness of mosquitoes to humans 0.5

bi Biting rate in Patch i 0.8

νh Humans’ incubation rate 1
7

q Fraction of latent that become asymptomatic and infectious 0.1218

γi Recovery rate in Patch i 1
5

pij Proportion of time residents of Patch i spend in Patch j [0, 1]
μv Vectors’ natural mortality rate 1

13

νv Vectors’ incubation rate 1
9.5

Fig. 15.10 Flow diagram of model (15.6)

Since individuals experience a higher risk of ZIKV infection while in Patch 1,
then it is assumed that mobility from Patch 2 to Patch 1 is unappealing with typical
Patch 2 residents spending (on the average) a reduced amount of time each unit of
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time in Patch 1. Parameters are chosen so that the dynamics of ZIKV within Patch 2
cannot be supported in the absence of mobility between Patch 1 and Patch 2. Thus,
the Patch 2 local basic reproduction number is taken to be less than one, namely
R02 = 0.9. Mobility is modeled under the residence times matrix P with entries
given initially by p21 = 0.10 and p12 = 0.

Two cases are explored: A “worst case” scenario where control measures are
hardly implemented due to crime, conflict, or other factors on Patch 1, that is, Patch
1 is a place where the risk of acquiring a ZIKV infection is high since R01 = 2.
The “best case” scenario corresponds to the case when Patch 1 can implement
some control measures with some degree of effectiveness, and consequently Patch
1 has an R01 = 1.52. The R0i values used are in line with those previously
estimated for ZIKV outbreaks [31, 45]. Simulations are seeded by introducing an
asymptomatic infected individual in Patch 1 under the assumption that the host and
vector populations are fully susceptible in both patches.

Figure 15.11 (top) shows the incidence and final ZIKV epidemic size when Patch
1 is under the “worst case scenario,” defined by a basic reproduction number of
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Fig. 15.11 Per patch incidence and final size proportions for p21 = 0.10, p12 = 0, 0.15, 0.30, and
0.45. Mobility shifts the behavior of the Patch 1 final size in the “worst case” scenario: R01 = 2
and R02 = 0.9
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R01 = 2 [45]. Figure 15.11 shows that at p12 = 0.15 the final number of infected
residents in Patch 1 is larger to the number in the baseline scenario (p12 = 0).
In fact, it reaches almost 96% of the population, an unrealistic value. Additional
simulated p12 values show that final Patch 1 size would go below the baseline case;
a benefit of mobility. Figure 15.11 highlights the case when the Patch 2 epidemic
final size grows with increases in mobility when compared with the baseline case
(no mobility from Patch 1). We see reductions in the Patch 1 epidemic final size for
some mobility values accompanied by increments in the Patch 2 epidemic final size
when compared to the baseline scenario (no mobility from Patch 1). Specifically,
reductions in Patch 1 epidemic final size are around 1 × 10−3, while increments in
Patch 2 are around 1 × 10−2, under the assumption that the population in Patch 1 is
the same as that in Patch 2. Thus while mobility may provide benefits within Patch
1 (under the above assumptions) the fact remains that it does it at a cost. In short, it
is also observed that the epidemic final size per patch does not respond linearly to
changes in mobility even when only the mobility p12 is increased (see Figs. 15.11
and 15.12).

Fig. 15.12 Per patch incidence and final size proportions for p21 = 0.10, p12 = 0, 0.15, 0.30, and
0.45. Mobility significantly shapes the per patch final sizes in the “worst case” scenario R01 = 2
and R02 = 0.9
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Consider now the “best case” scenario, a basic reproduction number R01 = 1.52,
under the assumption that the population in Patch 1 is the same as that in Patch 2.
The results of simulations collected in Fig. 15.12 show a final size epidemic curve
similar to that generated in the “worst case” scenario for Patch 1. Some mobility
values can increase the Patch 1 epidemic final size, reaching almost 80% of the
population when p12 = 0.30, an unrealistic level, albeit, as expected lower than in
the “worst” case scenario. The existence of a mobility threshold after which the final
epidemic sizes in Patch 1 start to decrease is also observed. The results in Fig. 15.12
suggest that under all p12 mobility levels, Patch 2 ZIKV epidemic final size supports
monotone growth in the total number of infected individuals. The changes in the
epidemic final size in each patch in Fig. 15.12 are roughly equivalent (the same
order, 1 × 10−2) given that the population in Patch 1 is the same as that in Patch 2.

The simulation results presented so far provide only partial information on the
impact that short-term mobility may have on the transmission dynamics of ZIKV.
Now, by fixing the mobility from Patch 2 to Patch 1, we are just focusing only on
the impact of changes in mobility from Patch 1 to Patch 2. Further, the potential
changes in mobility patterns that host populations may have in response to ZIKV
dynamics are ignored by our use of a mobility matrix P with constant entries pij .
We found that epidemic final size within Patch 1 is qualitatively similar in the worst
and best case scenarios: increasing at first, decreasing after a certain threshold, and
crossing down the baseline case under some mobility regimes. Further, it has been
observed that the qualitative behavior of the epidemic final size in Patch 2 grows
monotonically as mobility increases. Patch 1 and Patch 2 responses are of different
orders of magnitude in the “worst case” scenario but roughly of the same order of
magnitude in the “best case” scenario, which means, under our restrictive conditions
and assumptions, that reductions in risk in Patch 1 do help significantly.

15.5.2.1 *The Role of Risk Heterogeneity in the Dynamics of ZIKV
Transmission

The impact of risk heterogeneity on ZIKV dynamics within the overall two-
patch system is explored, an analysis that requires the numerical estimation of
the global reproduction number as a function of the mobility matrix P. Using the
previous scenarios (R01 = 1.52, 2) simulations are carried out first assuming equal
population sizes (N1 = N2). However, when looking at the impact of changes
in risk on Patch 2 (R02 = 0.8, 0.9, 1, 1.1), our simulations identify a growing
epidemic in Patch 2 as risk increases with the overall community experiencing
nonlinear changes in risk as residency times change from the baseline scenario
given by p12 = 0. Specifically, Fig. 15.13 captures overall reductions on the global
reproduction number for all residence times while identifying the existence of a
residence time interval for which mobility decreases the total size of the outbreak
in the two-patch community, when compared to the corresponding baseline case
(p12 = 0). In the absence of mobility from Patch 1 (p12 = 0), increases in the
epidemic final size as R0i increases are observed. These simulations show that
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Fig. 15.13 Local and global final sizes through mobility values when p21 = 0.10. Although
mobility reduces the global R0, allowing mobility in the case of El Salvador (R0 = 2) might
lead to a detrimental effect in the global final size

mobility can slow down the speed of the outbreak (smaller global R0). Of course,
the simulation results also re-affirm the obvious, that is, that the existence of a
high risk, mobile, and well-connected patch can serve as an outbreak magnifier; a
situation that has been explored within an n-patch system under various connective
schemes [7, 10]. This is because, in the two-patch case, it is observed that the global
reproduction number R0 experiences reductions for almost all mobility values. For
the scenarios selected R0 never drops below 1. Hence, under our assumptions and
scenarios, it is seen that the use of fixed mobility patterns makes the elimination
of ZIKV extremely difficult if not impossible under our two scenarios. Figure 15.13
provides an example that highlights the relationship between the global reproduction
number and corresponding epidemic final size.

15.5.2.2 *The Role of Population Size Heterogeneity in the Dynamics
of ZIKV Transmission

The role of population density in the total epidemic final size and global basic
reproduction number is explored under our two scenarios, now under the changed
assumption that the densities (population sizes) of Patch 1 and Patch 2 differ.
Specifically, we take N1 = 2N2, 3N2, 5N2, and 10N2.
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Fig. 15.14 Total final size and global basic reproduction number through mobility values when
p21 = 0.10. Local risk values are set up to R02 = 0.9 and R01 = 1.52, 2

It is observed that difference in population sizes do matter. Specifically, it is
observed that (under our selections) a big difference in density indicate that a higher
epidemic final size is reached. The value of 90% for the “worst case” is possible
with changes in the global reproduction number exhibiting different patterns (see
Fig. 15.14). We observe that despite increases in the total epidemic final size as
mobility changes the global R0 actually decreases monotonically for most residence
times, never falling below one. A sensible degree of magnification on the spread
of the disease as residence times change is observed whenever the differences
between N1 and N2 are not too extreme. In fact, it is possible for mobility to be
beneficial in the control of ZIKV under the above simplistic extreme scenarios.
Simulations continue to show that under the prescribed conditions and assumptions,
model generated ZIKV outbreaks remain unrealistically high. The simulations show,
for example, that the global reproduction number reaches its minimum at around
p12 = 0.90 with Fig. 15.14 showing that the larger the high risk population gets
(N1 >> N2), the greater the total epidemic final size becomes as individuals from
Patch 1 spend more than half of their day in Patch 2. Using a low p12 value, a
small benefit is observed, namely the total epidemic final size is reduced, when the
differences between R0i are high.

For the two epidemiological scenarios R01 = 2 and R01 = 1.52, Tables 15.3
and 15.4 provide a summary of the average proportion of infected for low
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Table 15.3 Final size (Patch 1, Patch 2) N1 = 10,000, R01 = 2, R02 = 0.9, and p21 = 0.10

N2 Low mobility Intermediate mobility High mobility Min R0

N1 = N2 (0.9594, 0.5333) (0.9583, 0.5633) (0.9539, 0.6122) 1.4954

N1 = 2N2 (0.9683, 0.5418) (0.9685, 0.5599) (0.9667, 0.6116) 1.6786

N1 = 3N2 (0.9709, 0.5390) (0.9713, 0.5478) (0.9701, 0.6018) 1.7640

N1 = 5N2 (0.9729, 0.5283) (0.9732, 0.5255) (0.9725, 0.5852) 1.8457

N1 = 10N2 (0.9741, 0.5030) (0.9743, 0.4908) (0.9739, 0.5624) 1,9173

Table 15.4 Final size (Patch 1, Patch 2) N1 = 10,000, R01 = 1.52, R02 = 0.9, and p21 = 0.10

N2 Low mobility Intermediate mobility High mobility Min R0

N1 = N2 (0.7920, 0.3756) (0.7950, 0.4010) (0.7849, 0.4304) 1.1853

N1 = 2N2 (0.8287, 0.3938) (0.8340, 0.4061) (0.8300, 0.4356) 1.3023

N1 = 3N2 (0.8398, 0.3948) (0.8448, 0.3956) (0.8422, 0.4248) 1.3590

N1 = 5N2 (0.8480, 0.3877) (0.8520, 0.3731) (0.8500, 0.4046) 1.4141

N1 = 10N2 (0.8533, 0.3652) (0.8556, 0.3352) (0.8542, 0.3756) 1.4630

Fig. 15.15 Global R0 dynamics through mobility when p21 = 0.10. Patch 2 populations vary
from N1 = N2, 2N2, 3N2, 5N2 up to N1 = 10N2. The global R0 hits its minimum always at an
unrealistic 91% of mobility. As N1 approaches N2, this minimum value decreases

(p12 = 0–0.2), intermediate (p12 = 0.2–0.4), and high mobility (p12 = 0.4–0.6)
when p21 = 0.10. The role of population scaling N1 = 2N2, 3N2, 5N2, and 10N2
is also explored. Figure 15.15 shows the global R0 over all mobility values for
different population weights in the two epidemic scenarios. The minimum R0 value
is reached for all cases when mobility is at an unrealistic 91% and when N1 ≈ N2.
The results collected in Fig. 15.15 show that short-term mobility plays an important
role in ZIKV dynamics, again, under a system involving two highly differentiated
patches. Simulations also suggest that, even though mobility can reduce the global
reproduction number, mobility by itself is not enough to eliminate an outbreak or
make a real difference under our two scenarios.
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15.5.3 What Did We Learn from These Single Outbreak
Simulations?

The study of the role of mobility at large spatial scales may be best captured
using question-specific related models that account for the possibility of long-term
mobility (see, for example, [2, 3, 18, 22, 27, 28, 30, 43]). Here, we made use
of two patches, as distinct as they can be would be able to shed some light on
the transmission dynamics of ZIKV, whenever extreme health disparities within
neighboring communities or within urban centers were the norm. Although the
goal is not to fit specific outbreaks, we decided to make use of recently published
parameter ranges, including some reported by us [45]. The impact of ZIKV can be
assessed locally (each patch) or globally, that is, over the two-patch system. Here,
system risk assessment was carried out by computing R0, via the numerical solution
of a system of nonlinear equations. Changes in the system R0 were computed (as
residence times were varied) in relationship to the local R0i , that is, local basic
reproduction numbers (in the absence of mobility). Further, the mobility-dependent
system epidemic final sizes were computed via simulations that assessed the impact
of mobility (and risk) locally and on the overall system. The metrics used in
our assessment included the overall epidemic final size (a measure of the overall
impact of an outbreak), a function of mobility within the two selected scenarios
(R01 = 1.52 and R01 = 2).

The challenges posed by policies that may be beneficial to the system but
detrimental to each patch were explored within our two-patch system. Situations
where the total final epidemic size increased with increments in R02, and situations
where the total final epidemic size decreased under low mobility values for R(02)
were documented. Population density does make a difference and examples when
R02 < 1 with mobility incapable of reducing the total epidemic final size under no
differences in patch density (here measured by total population size in each patch,
both assumed to have roughly the same area) were also identified. Differences in
population density were also shown to be capable of generating reductions on the
total final epidemic size within some mobility regimes.

The highly simplified two-patch model used seemed to have shed some light
on the role of mobility on the spread of ZIKV in areas where huge differences
in the availability of public health programs and services—the result of endemic
crime, generalized violence, and neglect—exist. Model simulations seemed to have
shed some light on the potential relevance of factors that we failed to account for.
The value of the use of single patch-specific risk parameters (β̂) has strengths and
limitations. The model used did not account explicitly for changes in the levels
of infection within the vector population nor did it account for the impact of
substantial differences in patch vector population sizes. The simplified model failed
to account for the responses to outbreaks by patch residents as individuals may alter
mobility patterns, use more protective clothing while responding individually and
independently to official control programs in the face of dramatic increases on the
vector population or due to a surge in the number of cases. The use of two patches
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and severe assumptions limits the outcomes that such an oversimplified system can
support. Communities can’t in generally be modeled under a highly differentiated
two-tier system and in the case of ZIKV, the possibility of vertical transmission
in humans and vectors as well as sexually transmitted ZIKV cannot be completely
neglected [8, 39]. The introduction of changes in behavior in response to individuals’
assessment of the levels of risk infection over time needs to be addressed [10];
a challenge that has yet to be met to the satisfaction of the scientific community
involved in the study of epidemiological processes as complex adaptive systems
(see, for example, [26, 36, 42]).

The limitations of the role of technology in the absence of the public health
infrastructure—there is no silver bullet—have been addressed in the context of
Ebola [16, 49]. It would be interesting to see the impact of technology in settings
where health disparities are pervasive, using a two-patch Lagrangian epidemic
model in the context of communicable and vector-borne diseases, including dengue,
tuberculosis , and Ebola [5, 23, 34, 35]. Further, its often the case that the use of
simplified models quite often overestimates the impact of an outbreak (see [37, 38])
and so find the right level of model heterogeneity (number of patches) becomes a
pressing and challenging question. What is the right level of aggregation to address
these questions?

Certainly, we have seen the use of dramatic measures to limit the spread of
diseases like SARS, influenza , or Ebola [16, 17, 27], as well as the rise of vector-
borne diseases like dengue and Zika, and the dramatic implications that some
measures have had on local and global economies. The question remains, what
can we do to mitigate or limit the spread of disease, particularly emergent diseases
without disrupting central components? Discussions on these issues are recurrent
[26, 36], most intensely in the context of SARS, influenza, Ebola , and Zika, in the
last decade or so. The vulnerability of world societies is directly linked to the lack
of action in addressing the challenges faced by the weakest links in the system. This
must be accepted and acted on by the world community. We need global investments
in communities and nations where health disparities and lack of resources are the
norm. We must invest in research and surveillance within clearly identified world
hot spots, where the emergence of new diseases is most likely to occur. We must do
so with involvement at all levels of the affected communities [12, 44].
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Part IV
The Future



Chapter 16
Challenges, Opportunities
and Theoretical Epidemiology

Lessons learned from the HIV pandemic, SARS in 2003, the 2009 H1N1 influenza
pandemic, the 2014 Ebola outbreak in West Africa, and the ongoing Zika out-
breaks in the Americas can be framed under a public health policy model that
responds after the fact. Responses often come through reallocation of resources
from one disease control effort to a new pressing need. The operating models
of preparedness and response are ill-equipped to prevent or ameliorate disease
emergence or reemergence at global scales [27]. Epidemiological challenges that
are a threat to the economic stability of many regions of the world, particularly
those depending on travel and trade [132], remain at the forefront of the Global
Commons. Consequently, efforts to quantify the impact of mobility and trade
on disease dynamics have dominated the interests of theoreticians for some time
[14, 143]. Our experience includes an H1N1 influenza pandemic crisscrossing
the world during 2009 and 2010, the 2014 Ebola outbreaks, limited to regions
of West Africa lacking appropriate medical facilities, health infrastructure, and
sufficient levels of preparedness and education, and the expanding Zika outbreaks,
moving expeditiously across habitats suitable for Aedes aegypti. These provide
opportunities to quantify the impact of disease emergence or reemergence on
the decisions that individuals take in response to real or perceived disease risks
[11, 62, 93]. The case of SARS in 2003 [40], the efforts to reduce the burden of
H1N1 influenza cases in 2009 [33, 62, 80, 93] and the challenges faced in reducing
the number of Ebola cases in 2014 [24, 27] are but three recent scenarios that
required a timely global response. Studies addressing the impact of centralized
sources of information [150], the impact of information along social connections
[33, 37, 42], or the role of past disease outbreak experiences [105, 130] on the
risk-aversion decisions that individuals undertake may help identify and quantify
the role of human responses to disease dynamics while recognizing the importance
of assessing the timing of disease emergence and reemergence. The co-evolving
human responses to disease dynamics are prototypical of the feedbacks that define
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complex adaptive systems. In short, we live in a socioepisphere being reshaped by
ecoepidemiology in the “Era of Information”.

What are the questions and modes of thinking that should be driving ongoing
research on the dynamics, evolution, and control of epidemic diseases at the popu-
lation level? The challenges of SARS, Ebola, Influenza, Zika, and other diseases are
immense. While we may guess which emerging or re-emerging disease may lead
to the next possible catastrophe, we cannot know. The contemporary philosopher
Yogi Berra is rumored to have said, “Making predictions is hard, especially about
the future”. There are some epidemiological topics that have already received some
attention but are not yet fully developed. In the rest of this chapter we highlight
some challenges, opportunities, and promising approaches in the study of disease
dynamics at the population level.

16.1 Disease and the Global Commons

As has been noted, “The identification of a theoretical explanatory framework that
accounts for the pattern regularity exhibited by a large number of host–parasite
systems, including those sustained by host–vector epidemiological dynamics, is but
one of the challenges facing the co-evolving fields of computational, evolutionary,
and theoretical epidemiology” [25]. Furthermore, “The emergence of new diseases,
the persistence of recurring diseases and the re-emergence of old foes, the result of
genetic changes or shifts in demographic, and environmental shifts have increased
due to mobility, global connectedness, trade, bird migration, poverty and long-
lasting violent conflicts. These diseases often present modeling challenges which
may yield to existing analytic techniques but sometimes require new mathematics”
[25].

The Global Commons are continuously reshaped by the ability of an increasing
proportion of the human population to live, move, or trade nearly anywhere. There-
fore, understanding the patterns of interactions between humans, or between humans
and vectors, as well as their relationships to patterns of individual movement,
particularly those of the highly mobile, is critical to public health responses that
effectively ameliorate the ability of a disease to spread. In today’s world, hosts’ risk
knowledge (good or bad information) when combined with the ability of public
health officials to measure and properly communicate, in a timely manner, real
or perceived information on disease risks, limit our ability to derail the spread of
emergent and re-emergent diseases, at time scales that make a difference.

16.1.1 Contagion and Tipping Points

Contagion is believed to be the direct or indirect result of interactions between
individuals experiencing radically different epidemiological, or immunological, or
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social states. Contagion tends to succeed within environments or communities that
“facilitate” modes of infection among its members. Contagion is an “understood”
or “believed” mode of disease transmission or of “socially transmitted” behaviors,
popularized by Malcolm Gladwell, a journalist who made use of his general
understanding of the concept of “contagion.” In his construction of reasonable or
plausible explanations for the observed and documented dramatic reductions in car
thefts and violent crimes in New York City in the 1990s, [71] Gladwell expanded the
use of the concept of contagion and tipping point in his development of a framework
that captures—as the result of contagion—the spread of a multitude of social ills or
virtues [72]. Specifically, contagion is seen in [71] as a force capable of starting
and sustaining growth in criminal activity as long as a “critical mass” of individuals
capable and willing to commit crimes is available. The growth in criminal activity
in New York City is, according to Gladwell, the result of the “interactions” between
a large enough pool of criminally active (infected) individuals and individuals
susceptible to criminal contagion [71]. Gladwell extends the perspective pioneered
by Sir Ronald Ross [141] and his “students” [90–92] to the field of social dynamics.

Gladwell concludes as Ross did in 1911 that implementing control measures
(crime contact-reduction measures) that bring the size of the population of criminals
(the core) below a critical threshold (tipping point), are sufficient to explain the
drastic reductions in criminal activity in NYC. Gladwell concludes, “There is
probably no other place [NYC] in the country where violent crime has declined
so far, so fast” [71].

16.1.2 Geographic and Spatial Disease Spread

The SARS epidemic of 2002–2003 emphasized the possibility of disease trans-
mission over long distances through air travel, and this has led to metapopulation
studies that account for long-distance transmission [5–8]. A metapopulation, in this
context, is a population of populations linked by travel. A metapopulation model
would have an associated, independent of travel, reproduction number as well as
reproduction numbers that account for travel between patches, either temporary
travel or permanent migration . This is an Eulerian perspective, describing migration
between patches.

An alternative approach to the modeling of the spatial spread of diseases is based
on a Lagrangian perspective, which can be formulated, for example, in terms of
residence times [18, 25] . This approach has been introduced in Chap. 15. In this
structure, actual travel between patches is not described explicitly, and this makes
the analysis less complicated. Calculation of the reproduction number and the final
size relations is possible.

Another aspect of the study of the spread of diseases is the spatial spread of
diseases through diffusion. This has been introduced in Chap. 14 of this book and
has been examined in considerable detail in [136], with particular emphasis on
epidemic waves.
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16.2 Heterogeneity of Mixing, Cross-immunity, and
Coinfection

In epidemics, as in the rest of biology, the role of heterogeneity plays a fundamental
role and a critical question arises: what is the level of heterogeneity that must be
included to address a specific question properly? For example, first-order estimates
of the fraction that must be vaccinated to eliminate a communicable disease can
be handled with homogeneous mixing models while the elaboration of optimal
vaccination strategies in real-life situations often require an age-structured model
[28, 81]. The study of nosocomial (in-hospital) infections provides an additional
example of the role of heterogeneity in transmission or degree of susceptibility or
resistance [38, 39, 106]. The SARS epidemic provided a timely example of the
criticality of heterogeneous mixing, in nosocomial transmission [85, 152] . Since
there was no treatment available during the SARS epidemic, the main management
approach rested on the effectiveness of isolation of diagnosed infectives, quarantine
of suspected infectives, and early diagnosis. Quarantine was decided by tracing of
contacts made by infectives but in fact few quarantined individuals developed SARS
symptoms. The role of early diagnosis and the effectiveness of isolation seemed
to have been the key to SARS control with improvements in contact tracing also
playing an important role in epidemic control.

Another set of questions arises when one considers the immunological history of
individuals or populations. There are many instances in which more than one strain
of a disease is circulating within a population and the possibility of cross-immunity
between strains becomes important [3, 4]. Mathematically, co-strain co-circulation
may lead to models that support a disease-free equilibrium (or non-uniform age
distribution), equilibria in which only one strain persists, and an equilibrium in
which two strains coexist. The role of cross-immunity in destabilizing disease
dynamics (periodic solutions) has been studied extensively in the case of influenza
models without age structure [57, 123, 124, 151] and also in age-structured models
[29, 30]. Coinfections of more than one disease are also possible and their analysis
requires more elaborate models. This is a real possibility with HIV and tuberculosis
[96, 119, 133, 135, 140, 144, 154].

16.3 Antibiotic Resistance

In short-term disease outbreaks, antiviral treatment is one of the methods used
to treat illness and also to decrease the basic reproduction number R0 and thus
to lessen the number of cases of disease. However, many infectious pathogens
can evolve and generate successor strains that confer drug resistance [55]. The
evolution of resistance is generally associated with impaired transmission fitness
compared to the sensitive strains of the infectious pathogen [112]. In the absence
of treatment, resistant strains may be competitively disadvantaged compared to the
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sensitive strains and may go extinct. However, treatment prevents the growth and
spread of sensitive strains, and therefore induces a selective pressure that favors the
resistant strain to replicate and restores its fitness to a level suitable for successful
transmission [2]. This phenomenon has been observed in several infectious diseases,
in particular for management of influenza infection using antiviral drugs [138].

Previous models of influenza epidemics and pandemics have investigated strate-
gies for antiviral treatment in order to reduce the epidemic final size (the total
number of infections throughout the epidemic), while preventing widespread drug
resistance in the population [77, 107, 111, 113, 114]. Through computer simulations,
these studies have shown that, when resistance is highly transmissible, there may be
situations in which increasing the treatment rate may do more harm than good by
causing a larger number of resistant cases than the decrease in cases produced by
treatment of sensitive infections. A recent epidemic model [156] has exhibited such
behavior and suggested that there may be an optimal treatment rate for minimizing
the final size [107, 111, 114].

In diseases such as tuberculosis, which operate on a very long time scale, the
same problems arise but the modeling scenario is quite different. It is necessary
to include demographic effects such as births and natural deaths in a model. This
means that there may be an endemic equilibrium, and that the disease is always
present in the population. Instead of studying the final size of an epidemic to
measure the severity of a disease outbreak, it is more appropriate to consider the
degree of prevalence of the disease in the population at endemic equilibrium as a
measure of severity. For diseases such as tuberculosis, in which there are additional
aspects such as reinfection, there may be additional difficulties caused by the
possibility of backward bifurcations. The importance of understanding the dynamics
of tuberculosis treatment suggests that this is a topic that should be pursued [60].

Antibiotic-resistant bacterial infections in hospitals are considered one of the
biggest threat to public health. The British Chief Medical Officer, Dame Sally
Davies, noted that “the problem of microbes becoming increasingly resistant to the
most powerful drugs should be ranked alongside terrorism and climate change on
the list of critical risks to the nation.” Yet while antibiotic use is rising, not least in
agriculture for farmed animals and fish, resistance is steadily growing.

The challenges posed by the persistence, evolution, and expansion of resistance
to antimicrobials are critically important because the number of drugs is limited
and no new ones have been created for three decades [2, 16, 38, 65, 99]. We
are facing a global crisis in antibiotics, the result of rapidly evolving resistance
among microbes responsible for common infections that threaten to turn them into
untreatable diseases. Every antibiotic ever developed is at risk of becoming useless.
Antimicrobial resistance is on the rise in Europe, and elsewhere in the world.

Dr. Margaret Chan, Director General of the World Health Organization, while
addressing a meeting of infectious disease experts in Copenhagen, noted that “A
post-antibiotic era means, in effect, an end to modern medicine as we know it.
Things as common as strep throat or a child’s scratched knee could once again kill.
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For patients infected with some drug-resistant pathogens, mortality has been shown
to increase by around 50 per cent.”1

Strategies suggested to curb the development of resistant hospital-acquired
infections include antimicrobial cycling and mixing, that is, models of antibiotic
use that make use of two distinct classes of antibiotics that may distributed over
different schedules with the goal of slowing down the evolution of resistance.
Cycling alternates both classes of drugs over pre-specified periods of time while
mixing distributes both drugs simultaneously at random, that is, roughly half of the
physicians would prescribe the first drug class while the other half would prescribe
the second class. If the goal is to slow down single class drug resistance then
“mixing” is the answer [16] while if the goal is to minimize dual resistance (if
such a possibility exists) then the best option is cycling [38]. Of course, there are
other factors that may accelerate resistance (physicians’ compliance) or slow down
resistance (quarantine and isolation). All the above questions may be addressed via
the use of contagion models [38].

16.4 Mobility

The Global Commons are continuously reshaped by the ability of an increasing
proportion of the human population to live, move, or trade nearly anywhere.
Therefore, understanding the patterns of interactions between humans, between
humans and vectors, and the patterns of individuals’ movement, particularly those
who are highly mobile, is critical in guiding public health responses to disease
spread. In today’s world, hosts’ knowledge of information about risk, combined
with the ability of public health officials to measure and properly communicate, in
a timely manner, real or perceived information on disease risks, affects our ability
to derail the spread of emergent and re-emergent diseases, at scales that make a
difference.

Simon Levin showed that understanding scale-dependent phenomena is inti-
mately tied in to our understanding on how information at particular scales impact
other scales. His four decade old seminal paper establishing the relationships
between processes operating at different scales that highlighted how macroscopic
features arise from microscopic processes open the door to the theoretical advances
that have dominated the study of ecological and epidemiological systems [101].
Specifically, the theory of metapopulations, common to the study of the models
in this book [104, 155], was used to establish the role that localized disturbances
have had in maintaining biodiversity [103, 127]. Kareiva et al. observe that there is
a multitude of frameworks to study the role of disturbance, noting that, “Models
that deal with dispersal and spatially distributed populations are extraordinarily
varied, partly because they employ three distinct characterizations of space: as

1The Independent, Friday 16 March 2012.



16.4 Mobility 513

‘islands’ (or ‘metapopulations’), as ‘stepping-stones’, or as a continuum” [88]. We
choose to deal with mobility in Chap. 15 and this chapter uses a metapopulation
approach [80, 93, 104], with populations that exist on discrete “patches” defined
by some characteristic(s) (i.e., location, disease risk, water availability, etc.). As is
customary, patches are connected by their ability to transfer relevant information
among themselves, which, in the context of disease dynamics, is modeled by
the ability of individuals to move between patches. Patches may be constructed
(defined) by species (human and mosquito) with movement explicitly modeled via
patch-specific residence times and under a framework that sees disease dynamics
as the result of location-dependent interactions and location characteristic average
risks of infection [17, 18].

We observed that “It is therefore important to identify and quantify the pro-
cesses responsible for observed epidemiological macroscopic patterns: the result
of individual interactions in changing social and ecological landscapes” [25]. In the
rest of this chapter, we touch on some of the issues calling for the identification
of an encompassing theoretical explanatory framework or frameworks. We do
this by identifying some of the limitations of existing theory, in the context of
particular epidemiological systems. The goal is fostering and re-energizing research
that aims at disentangling the role of epidemiological and socioeconomic forces
on disease dynamics. In short, epidemic models on social landscapes are better
formulated as complex adaptive systems. Now the question becomes, “How does
such a perspective help our understanding of epidemics and our ability to make
informed adaptive decisions?” These are huge complex questions whose answers
have engaged a large number of interdisciplinary and trans-disciplinary teams of
researchers. What may be promising directions? In what follows, we discuss some
of the modeling used to address some of the challenges and opportunities that we
believe must be considered in the field of theoretical epidemiology.

16.4.1 A Lagrangian Approach to Modeling Mobility and
Infectious Disease Dynamics

The deleterious impact of the use of cordons sanitaires [58, 100] to limit the spread
of Ebola in West Africa points to the importance of developing and implementing
novel approaches that may ameliorate the impact of disease outbreaks in areas where
timely response to the emergence of novel pathogens is not possible at this time.

Disease risk is a function of the scale and the level of heterogeneity considered.
Risk varies by countries and within a country by areas of localized poverty, or
as a function of the availability and quality of sanitary/phytosanitary conditions,
or as a result of access and the quality of health care, or variability on the
levels of individual education, or as a result of engrained cultural practices and
norms. Travel and trade, easily bypassing in today’s world the natural or cultural
boundaries defined by many of factors just outlined, are now seen as engines that
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drive the spread of pests and pathogens across regional and global scales. Hence,
the identification of explanatory frameworks that help to disentangle the role of
epidemiological, socioeconomic, and cultural perspectives on disease dynamics
becomes evident and necessary in the Global Commons. Further, since the work
of Sir Ronald Ross over a century ago [141], efforts to develop a mathematical
framework that allow us to tease out the role of various mechanisms on disease
spread while enhancing our understanding of what may be the most effective mea-
sures to manage or eliminate a disease, the fields of mathematical and theoretical
epidemiology have developed into rich and useful fields of their own. Their role
in the development of public health policy and the study of disease evolution
within hosts (immunology) and between populations and its relationship to the
study of host–pathogen interactions within ecology or community ecology are now
integral components of the education and training of theoreticians and practitioners
alike [1, 12, 19–23, 26, 41, 53, 54, 59, 74, 76, 82, 102, 122, 157].

The use of (per capita) contact or activity rates in modeling the interactions
between individuals, that is, who mixes with whom or who interacts with whom, has
been the natural social dynamics currency used to model human-to-human or vector-
to-human interactions in the context of the transmission dynamics of communicable
diseases. The “physics or chemistry traditions” are used to model disease trans-
mission as the result of the “collisions” between individuals (with different energy
or activity levels) in different epidemiological states. Further, movement, typically
modeled using a metapopulation approach, is seen as the relocation between patches
of non-identifiable individuals. The scholarly and extensive review in [83] addresses
this perspective within homogeneous and heterogeneous mixing (age-structured)
population models (see also [30]). Weakening the assumption of homogeneous
mixing via contacts in epidemiology has been addressed using network-based
analyses that identify host contact patterns and clusters [13, 120, 121, 128] (and
references therein with [121] offering an extensive review). Focusing on how each
individual is connected within the population has been used to address the effects of
host behavioral response on disease prevalence (see [67, 68, 110] for a review).
Other approaches have included the effects of behavioral changes triggered by
“fear” and/or awareness of disease [56, 66, 131, 134]. Although this stress-induced
behavior may benefit public health efforts in some cases, it can also cause somewhat
unpredictable outcomes [75].

However, the fact remains that our ability to determine (and hence define)
what an effective contact is in the context of communicable diseases, that is, our
ability to measure the average number of contacts that a typical patch resident
has per unit of time and where, has been hampered by high levels of uncertainty.
Therefore, when we ask, what is the average rate of contacts that an individual
has while riding a packed subway in Japan or Mexico City, or what is the average
rate of contacts that an individual has at a religious event involving hundreds of
thousands of people, including pilgrimages, one quickly arrives at the conclusion
that different observers are extremely likely to arrive at very distinct understandings
and quantifications of the frequency, intensity, and levels of heterogeneity involved.
In short, this perspective puts emphasis on the use of a different currency (residence
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times) because measuring contacts at the places where the risk of infection is
the highest, pilgrimages, massive religious ceremonies, “Woodstock time events”,
packed subways, and other forms of mass gathering or transportation have not been
done to the satisfaction of most researchers. The risk of acquiring an infectious
disease within a flight can be measured at least in principle as a function of the
time that each individual of x-type spends flying, the number of passengers, and
the likelihood that an infectious individual is on board. For example, measuring the
risk of acquiring tuberculosis, an airborne disease that may spread by air circulation
in a flight, may be more a function of the duration of the flight and the seating
arrangement than the average rate of contacts per passenger within the flight (see
[31] and references therein). Furthermore, replication studies that measure risk of
infection in a given environment may indeed be possible under a residence time
model. In short, the risks of acquiring an infection can be quantified as a function of
the time spent (residence time) within each particular environment. The Lagrangian
modeling approach builds (epidemiological) models by tracking individuals’ patch-
residence times and estimating their contacts according to the time spent in each
environment [32]. The value of these models increases when we have the ability
to assess risk as a patch-specific characteristic. In short, the use of a Lagrangian
modeling perspective rather than the use of contacts is tied to the difficulties that
must be faced when the goal is to measure the average rate of contacts per type-x
individual in the environments that facilitate transmission the most.

The Lagrangian approach is highlighted here via the formulation of a disease
model involving the joint dynamics of an n-patch geographically structured popu-
lation with individuals moving back and forth from their place of residence to other
patches. Each of these patches (or environments) is defined by its associated risk
of residence-time infection. Patch risk measurements account for environmental,
health, and socioeconomic conditions. The Lagrangian approach [73, 125, 126]
keeps track of the identity of hosts regardless of their geographical/spatial position.
The use of Lagrangian modeling in living systems was, to the best of our knowledge,
pioneered and popularized by Okubo and Levin [125, 126] in the context of animal
aggregation. Recently, Lagrangian approaches have also been used to model human
crowd movement and behavior [15, 49, 78, 79] and in the context of bioterrorism
[31].

Here, host-residence status and mobility across patches are monitored with the
help of a residence times matrix P = (pij )1≤i,j≤n , where pij is the proportion
of time residents of Patch i spend in Patch j . Letting Ni denote the population of
Patch i predispersal, that is, when patches are isolated, we conclude that effective
population size in Patch i, at time t , is given by

∑n
j=1 pjiNj . That is, the effective

population within each patch must account for the residents and visitors to Patch i

at time t . A typical SIS model captures this Lagrangian approach in an n - patch
setting via the system of nonlinear differential equations:
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Ṡi = bi − diSi + γiIi −
n∑

j=1

(Si infected in Patch j)

İi =
n∑

j=1

(Si infected in Patch j) − γiIi − diIi,

(16.1)

where bi , di , and γi denote the constant recruitment, the per capita natural death,
and recovery rates, respectively, in Patch i. The effective population

∑n
j=1 pijNj in

each Patch i, i = 1, . . . , n includes
∑n

j=1 pij Ij infected individuals. Therefore, the
infection term is modeled as follows:

Si infected in patch j = βj × pijSi ×
∑n

k=1 pkj Ik∑n
k=1 pkjNk

.

The likelihood of infection in each patch is tied to the environmental risks,
defined by the “transmission/risk” vector B = (β1, β2, . . . , βn)

t and the pro-
portion of time spent in particular area. Letting I = (I1, I2, . . . , In)

t , N̄ =
( b1
d1
, b2
d2
, . . . , bn

dn
)t , Ñ = PtN̄ , d = (d1, d2, . . . , dn)

t , and γ = (γ1, γ2, . . . , γn)
t

allows to rewrite System 16.1 in the following single vectorial form

İ = diag(N̄ − I )Pdiag(B)diag(Ñ)−1
P
t I − diag(d + γ )I. (16.2)

The dynamics of the disease in all of the patches depends on the patch connec-
tivity structure. Therefore, if the residence-time matrix P is irreducible, patches are
strongly connected, then system 2 supports a sharp threshold property. That is, the
disease dies out or persists (in all patches) whenever the basic reproduction number
R0 is less than or greater than unity [18]. R0 is given by

R0 = ρ(diag(N̄)Pdiag(B)diag(Ñ)−1
P
tV −1),

where ρ denotes the spectral radius and V = −diag(d + γ ). The dynamics of the
system when the matrix P is not irreducible can be characterized using the following
patch-specific basic reproduction numbers:

Ri
0(P) = βi

γi + di
×

n∑

j=1

(
βj

βi

)

pij

⎛

⎝
pij

(
bi
di

)

∑n
k=1 pkjbkdk

⎞

⎠ .

The disease persists in Patch i whenever Ri
0(P) > 1, whereas the disease dies

out in Patch i if pkj = 0 for all k = 1, . . . , n, and k �= i,provided pij > 0 and
Ri

0(P) < 1.
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Patch-specific disease persistence can be established using the average Lyapunov
theorem [86] (see [18] for more details).

In Model 16.2, human behavior is crudely incorporated through the use of a
constant mobility matrix P. The role that adaptive human behavior may play in
response to disease dynamics is captured, also rather crudely, via a phenomenolog-
ical approach that assumes that individuals avoid or spend less time in areas of high
prevalence. This effect is captured by placing natural restrictions on the entries of

P. The inequalities
pij (Ii ,Ij )

∂Ij
≤ 0 and

pij (Ii ,Ij )

∂Ii
≥ 0, for (i, j) ∈ 1, 2, guarantee the

expected behavioral response. An example of such dependency could be captured
by the following functions: pii(Ii , Ij ) = σii+σii Ii+Ij

1+Ii+Ij
and pij (I1, Ij ) = σij

1+Ii
1+Ii+Ij

,

for (i, j) ∈ 1, 2 and σij = pij (0, 0), are such that
∑2

j=1 σij = 1. The simulation
below shows how a crude, density-dependent modeling mobility approach can alter
the expected disease dynamics from those generated under constant P (Figs. 16.1
and 16.2). In the special case, where there is no movement between patches (p12 =
p21 = σ12 = σ21 = 0), that is, there is no behavioral change, the two populations
support, as expected, the same dynamics (see the blue curves in Figs. 16.1 and 16.2).

The speed at which the vector-borne Zika virus disease spread throughout Latin
America, Central America, and the Caribbean (then hitting Mexico and the United
States) was strongly linked to human mobility patterns. Travelers transport the
disease and infect native mosquitoes. Here, it is assumed that vector mobility is
negligible and the assumptions proceed to incorporate the life history and epidemi-
ology of mosquitoes [10, 84, 98, 108, 109, 141], which can be effectively captured

Fig. 16.1 Dynamics of the disease in Patch 1 for three special cases. The symmetric residence
times (p12 = p21 = σ12 = σ21 = 0.5) are described by the solid and dashed black curves. The blue
curves represent the case where there is no movement between patches, that is, p12 = p21 = σ12 =
σ21 = 0. The red curves represent the high-mobility case for which p12 = p21 = σ12 = σ21 = 1. If
there is no movement between the patches (blue curves), the disease dies out in the low risk Patch
1 in both approaches with R1

0 = β1
d1+γ1

= 0.7636. The vertical axis represents the prevalence of
the disease in Patch 1. Figure courtesy of Ref. [18]
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Fig. 16.2 Dynamics of the disease in Patch 2. In the high-mobility case p12 = p21 = σ12 = σ21 =
1 (and then p11 = p22 = σ11 = σ22 = 0), the disease dies out (solid red curve) for P constant, with

R̃2
0 = β1

γ2+d2
= 0.8571. For the constant residence-time matrix, the system is strangely decoupled

because individuals of Patch 1 spend all their time in Patch 2, whereas individuals of Patch 2 spend
all their time in Patch 1. Hence, Patch 2 individuals (d2 and μ2) are subject exclusively to the
environmental conditions that define Patch 1 (β1), and so the basic reproduction of the “isolated”

Patch 1 is R̃2
0 = β1

γ2+d2
and the disease dies out because R̃2

0 = 0.8571. The disease persists if P

state-dependent (dashed red curve) as p12(I1, I2) = 1+I1
1+I1+I2

, p21(I1, I2) = 1+I2
1+I1+I2

,p11(I1, I2) =
I2

1+I1+I2
, and p22(I1, I2) = I1

1+I1+I2
. Figure courtesy of Ref. [18]

by decoupling host and vector mobility [98, 145]. Figure 16.3 and System 16.3
illustrate the approach. A Lagrangian model based on residence times has been
proposed recently for vector-borne diseases like dengue, malaria, and Zika [17].
The appropriateness of the Lagrangian approach for the study of the dynamics of
vector-borne diseases lies also in its assessment of the life-history specifics of the
vector involved [145].

İh = βvhdiag(Nh − Ih)Pdiag(a)diag(P
tNh)

−1Iv − diag(μ + γ )Ih

İv = βhvdiag(a)diag(Nv − Iv)diag(P
tNh)

−1
P
t Ih − diag(μv + δ)Iv.

(16.3)

Lagrangian approaches have been used to model vector-borne diseases (see
[48, 87, 139, 142, 153] and other references contained therein), although these
researchers have not considered the impact that the residence-time matrix P may
have on patch effective population size. Specifically, in [48, 142], the effects of
movement on patch population size at time t are ignored, namely, the population
size in each Patch j is fixed at Nj . In [139], it is assumed that human mobility
across patches does not produce any “net” change on the patch population size.
On the other hand, in Model 16.3 the relationship between each patch population
and mobility is dynamic and explicitly formulated. Moreover, the limited (vector
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Fig. 16.3 Flow diagram of a Lagrangian model in which the host structure is decoupled from the
vectors’ structure. Figure courtesy of Ref. [17]

mobility is ignored) Lagrangian approach used here to model the dynamics of
vector-borne diseases captures some unique features because the “spatial” structure
of mosquitoes is not the same as that of humans. Mosquitoes are stratified into m

patches (that may represent, for example, oviposition or breeding sites or forests)
with infection taking place still within each Patch j , characterized by its particular
risk βvhaj for j = 1, . . . , m. Here, βvh represents the infectiousness of human to
mosquitoes bite with aj denoting the per capita biting rate in Patch j . Hosts, on
the other hand, are structured by social groups or age classes (n). This residence
habitat division can be particularly useful in the study of the impact of target control
strategies.

The model in [17] describes the interactions of n host groups in m patches via
System 16.3, where

Ih = [Ih,1, Ih,2, . . . , Ih,n]t , Iv = [Iv,1, Iv,2, . . . , Iv,m]t
Nh = [Nh,1, Nh,2, . . . , Nh,n]t , N̄v = [N̄v,1, N̄v,2, . . . , N̄v,m]t
δ = [δ1, δ2, . . . , δm]t , a = [a1, a2, . . . , am]t , andμ = [μ1, μ2, . . . , μn]t .
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The infected host population is denoted by the vector Ih and the host population by
Nh. The infected vector population is denoted by Iv and the mosquito population
by Nv . The parameters ai , δi , and μv denote the biting, death rate of control, and
natural death rate of mosquitoes in Patch j , for j = 1, . . . , m. The infectiousness of
human to mosquitoes is βvh, whereas the infectiousness of mosquitoes to humans is
given by βhv. The host recovery and natural mortality rates are given, respectively,
by γ and μ. Finally, the matrix P represents the proportion of time host of group i,
i = 1, . . . , n, spend in Patch j , j = 1, . . . , m. The basic reproduction number of
Model 3, with m patches and n groups, is given by R2

0 (m, n) = ρ(MvhMhv), where

Mhv = βhvdiag(a)diag(P
tNh)

−1diag(Nv)P
t diag(μ + γ )−1

and

Mvh = βvhdiag(Nh)Pdiag(PtNh)
−1diag(a)diag(μv + δ)−1.

If the host–vector network configuration is irreducible, then System 16.3 is
cooperative and strongly concave with an irreducible Jacobian, hence the theory
of monotone systems, particularly Smith’s results [146], guarantee the existence of
a sharp threshold. That is, the disease-free equilibrium is globally asymptotically
stable if R2

0 (m, n) is less than unity and a unique globally asymptotic stable interior
endemic equilibrium exists otherwise. The effects of various forms of heterogeneity
on the basic reproduction number have been explored in [17], and we have found, for
example, that the irreducibility of the residence-time matrix P is no longer sufficient
to ensure a sharp threshold property, although the irreducibility of the host–vector
network configuration is necessary for such property [17].

The Lagrangian approach to disease modeling can use contacts [32] or times or
both as its currency. Here, we choose time-spatial-dependent risk, that is, we choose
to handle social heterogeneity by keeping track of individuals’ social or geograph-
ical membership. In this context, it is possible to include adaptive responses, for
example, via the inclusion of prevalence-dependent dispersal coefficients. In this
setting, the underlying hypothesis is that host behavioral responses to disease are
automatic: either constant or following a predefined function. The average residence
time P incorporates the average behavior of all hosts in each patch. This assumption
is rather crude because it implicitly assumes that hosts have accurate information on
health status and patch prevalence and respond to risk of infection accordingly. The
incorporation of the role that human decisions, as a function of what individuals
value and the cost that individuals place on these choices and trade-offs, within
systems that account for the overall population disease dynamics has been addressed
recently [61, 132] and discussed in economic epidemiology.
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16.5 Behavior, Economic Epidemiology, and Mobility

The movement/behavior of individuals within and between patches may be driven
by real or perceived personal economic risk and associated social dynamics.
Embedding behavioral-driven decisions in epidemiological models has shed new
perspectives on the modeling of disease dynamics [61], expanding available option
to manage infectious diseases [44, 62]. Economic epidemiological modeling (EEM)
has a history of addressing the role of individuals’ behavior when facing the risk of
disease. However, it has often failed to incorporate within host-pathogen feedback
mechanisms [34–36, 52, 70, 97, 137]. EEMs that account for host-pathogen feed-
back mechanisms has propelled the study of the ways that contact decisions impact
disease emergence or alter infectious disease-transmission dynamics. Decisions
involved may include the determination to engage in trade on particular routes
[89, 94, 95, 129], or to travel to specific places [62, 147–149], or to make contact
with or to avoid particular types of people [61, 63, 116]. EEMs advance the
view that the emergence of novel zoonotic diseases, such as SARS or the Nipah
virus, depend on the choices that bring people into contact with other species
[50, 51]. EEMs are usually built under the assumption that associated disease
risks are among the factors that individuals must consider when making decisions.
Individual decision-making processes, within epidemic outbreaks, must incorporate
the humans’ cost–benefit-driven adaptive responses to risk.

16.5.1 Economic Epidemiology

Simple EEMs are, by mathematical necessity, initially built on classical compart-
mental epidemiological models that account for the orderly transition of individuals
facing a communicable disease, through the susceptible, infected, and recovered
disease stages: the result of social and environmental interactions. EEMs assume
that the amount of activity one participates in, with whom, and where may all be
envisioned as the solutions to an individual decision problem. It is assumed that
individual decision problems are generated by rational-value formulations based
on (driven by) personal, real or perceived, cost of disease, and disease avoidance:
decisions constrained by underlying population-level disease dynamics. Thus,
finding effective ways of modeling rational value connections to individualized
cost–benefit analyses of disease risk is fundamental to the building of useful EEMs.
It is a quite challenging enterprise.

EEM approaches have precursors in the epidemiological literature [9, 64, 69].
EEM construction has been strongly influenced by past and ongoing work on
the exploitation of species [45–47], a literature that addresses optimal harvesting
questions in the context of wild species, or the control of invasive pests, or the
management of forestry system. The methodology for modeling behavior within
an EEM rests on a proper specification of behavioral costs and a description of
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the payoffs linked to such behaviors; the stipulation of an appropriate objective
function, congruent with the decision-makers’ goals; the coupling to the dynamics
of the natural resource and/or infectious human capital; and the mechanisms
available for a decision-maker to alter his or her behavior and the behaviors of those
around him or her. Although not all motivations for mitigation against infection are
monetary in nature, we choose to refer to them as economic.

Modeling whether or not an individual undertakes infection-causing behavior
provides a natural starting point since it is connected to the rate of generation of
secondary cases of infection per unit of time, the so-called incidence rate. A simple
incidence function that captures the instantaneous expectation of the rate of new
infections at a given time is therefore given by

S(t)cPSI (t)ρ,

where S(t) is the number of individuals susceptible to the disease, c is the average
amount of activity they engage in, PSI (t) is the probability that a unit of such activ-
ity takes the susceptible individual in contact with infectious individuals/material,
and ρ is the probability that such contact successfully infects.

A decision to reduce the volume of activity one engages in (lowering c) has been
shown in many cases to be phenomenologically identical to reducing one’s chances
of coming in contact with infection (lowering PSI (t)) by altering where the activity
takes place and with whom one engages or by substituting a particular behavior
for a riskier one [62, 118]. The modeling assumes that individuals derive benefits
from making contacts but may incur costs associated with an infection. Hence, the
modeling assumes that activity volume or contacts are chosen to maximize expected
utility (rudimentarily, benefit less cost), balancing the marginal value of a contact
against the increased risk of infection. The utility function is assumed to depend
on the health status of the individual and the contacts that they make, that is, the
utility of a representative individual of health status h is given, for example, by the
function

Uh = U(h,Ch). (16.4)

The utility function is assumed to be concave, decreasing in illness and increasing
in contacts. If the probability of transitioning from susceptible to infected health
status depends on the rate of contacts, the optimal choice of contacts is the solution
to a dynamic programming problem:

Vt (h) = max
Cs

⎧
⎨

⎩
Ut(ht , C

h
t ) + r

∑

j

ρhjVt+1(j)

⎫
⎬

⎭
, (16.5)

where r is the discount rate and ρhj is the probability of transition from health state
h to health state j . This probability depends on the current state of the system,
{S(t), I (t), R(t)}, the behavior of individuals in other health classes, C−h, and
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the behavior of individuals in the decision-makers’ own health class, C̄h. In short,
we have a complex adaptive system where individuals within the model, in this
example, impact disease outcomes (through changes in the incidence). Eqs. (16.4)
and (16.5) are both optimized from an individual perspective. Within this individual
context, EEMs have shown that individual distancing, conditional on health status,
plays an important role in the spread of infectious disease. However, it has also been
shown that the provision of incentives for infectious individuals to self-quarantine
is likely to be welfare-enhancing [43, 44, 61, 115]. Thus, understanding how the
individual responds to relative costs of disease and disease prevention is critical to
the design of public policy that affects those costs. Indeed, the role of recovered
individuals in protecting susceptible individuals has been generally overlooked in
public health interventions, and yet it is known that their behavior is, in fact, critical
to disease management due to the positive externality the individuals’ contacts
generate once in an immune, non-disease-transmitting state [63]. The benefits of
herd immunity include the positive externality associated with acquired immunity
but may, in turn, be nullified by nontargeted social-distancing policies that induce
such immune individuals to reduce contacts. By incentivizing the maintenance of
contacts by recovered individuals policy may lower the probability of susceptible
individuals contacting infected individuals and/or allow susceptible and infected
individuals to individually increase contacts without changing the probability of
infection.

16.5.2 Lagrangian and Economic Epidemiology Models

Theoretical epidemiology aims to disentangle the role of epidemiological and
socioeconomic forces on disease dynamics. However, the role of behavior and indi-
vidual decisions in response to a changing epidemic landscape has not been tackled
systematically. In this chapter, we highlight alternative ways for modeling disease
transmission that can use contacts as its currency or residence times or both. It seems
evident that the use of contacts, in the context of influenza, Ebola, tuberculosis, or
other communicable diseases (as opposed to sexually transmitted diseases), while
intellectually satisfying, fails to recognized the fact that contacts cannot be measured
effectively in settings where the risk of acquiring such infections is the highest. In
fact, when contact-based models are fitted to data, it has become clear that contact
rates play primarily the role of fitting parameters; in other words, if the goal is
connecting models to data that include transmission mechanisms, then the use of
contacts has serious shortcomings. Therefore, in order to advance the role of theory,
we need models that are informed by data. Hence, the need to invest on efforts that
bring forth alternative modes of modeling. While Lagrangian approaches are not a
panacea, their use extends the possibilities because they depend on parameters like
residence times and average time to infection for a given environment (risk), that
is, parameters that can be measured. Frameworks should be explored and compared
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and their analyses contrasted. We have revisited recent work that equates behavior
with cost–benefit decisions, which, in turn, are linked, within our framework, to
health status and population-level dynamics, the components of a complex adaptive
system. Connecting the Lagrangian movement-modeling approach with EEMs
seems promising, albeit computationally and mathematically challenging. However,
as discussed in [117], the perception that the benefits of disease control are limited
by the capacity of the weakest link in the chain to respond effectively is not a basic
result of EEM models, which actually show that it may not be in within the ability of
an individual in a poor community/country to do more risk mitigation. The need for
richer communities or nations to find ways to incentivize greater levels of disease-
risk mitigation in poor countries may be the best approach.

Simon Levin, in his address as the 2004 recipient of the Heineken award, placed
our narrow perspective in a broader powerful context:

A great challenge before us is thus to understand the dynamics of social norms, how they
arise, how they spread, how they are sustained and how they change. Models of these
dynamics have many of the same features as models of epidemic spread, no great surprise,
since many aspects of culture have the characteristics of being social diseases. 1998
Heineken award winner Paul Ehrlich and I have been directing our collective energies to this
problem, convinced that it is as important to understand the dynamics of the social systems
in which we live as it is to understand the ecological systems themselves. Understanding
the links between individual behavior and societal consequences, and characterizing the
networks of interaction and influence, create the potential to change the reward structures
so that the social costs of individual actions are brought down to the level of individual
payoffs. It is a daunting task, both because of the amount we still must learn, and because
of the ethical dilemmas that are implicit in any form of social engineering. But it is a task
from which we cannot shrink, lest we squander the last of our diminishing resources.
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Correction to: Mathematical Models
in Epidemiology

Correction to:
F. Brauer et al., Mathematical Models in Epidemiology,
Texts in Applied Mathematics 69,
https://doi.org/10.1007/978-1-4939-9828-9

The book was inadvertently published with the following errors in Chaps. 5 and 13.
The same has now been corrected in the book.

Chapter 5
Page 188, Example 2 was corrected to read as follows:

Example 2 Consider the vaccination model (5.1) of Sect. 5.1. The disease states
are IU and IV . Then

F =
[
aU(IU + δIV )

σaV (IU + δIV

]

and

F =
[

aU
NU

N
δaU

NU

N

σaV
NV

N
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N

]

, V =
[
αU 0
0 αV

]

.
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C2 Correction to: Mathematical Models in Epidemiology

It is easy to see that the next generation matrix with large domain is the matrix K

calculated in Sect. 5.1. Since each disease state is a disease state at infection, the next
generation matrix is K , the same as the next generation matrix with large domain.
As in Example 1, the determinant of K is zero and K has rank 1. Thus the control
reproduction number is the trace of K ,

Rc = aU

αU

NU

N
+ δσ

aV

αV

NU

N
.

Chapter 13
Page 429, the following sentence was corrected to include a reference citation and
now reads as:

As references for the mathematical details, we suggest [1, Chapters 9 and 13],
[21, Part III], [22, 23, Chapter 19], [28, Section 10.9], [32, Chapter 22]. Some
applications may be found in [2, 4, 9, 13, 15, 21, 24, 25, 27, 34, 35].



Epilogue

This book, inspired by our textbook Mathematical Models in Population Biology
and Epidemiology [4], attempts to draw attention to the fields of computational,
mathematical, and theoretical epidemiology (CMTE) with the goal of reaching
researchers and practitioners whose interests and questions overlap with those posed
by individuals or groups working in the fields of epidemiology, ecology, population
biology, public health, and applied mathematics. Different variants of contagion
models are used to study the transmission dynamics of communicable and vector-
borne diseases. Contagion models are now being used extensively in the study of
the dynamics of socio-economic-epidemiological processes [3, 11, 16].

One of the objectives of this book is to highlight the commonality of modeling
approaches within the fields of epidemiology and the population dynamics of host–
pathogen or host–parasite systems and consequently the intimate mathematical
connections between ecology, epidemiology, and population biology. The mathe-
matical focus is primarily on the applications of CMTE to the study of disease
dynamics in large populations and, consequently, the book is dominated by the
use of deterministic models. We tacitly recognize the challenges posed by the
socio-behavioral dynamics that underline the world where disease appears, expands,
persists, and evolves. Researchers and practitioners willing to immerse themselves
in the topics addressed will value the importance and relevance of building research
programs at the interface of CMTE and public health, guided by adopting a holistic
perspective. The challenges faced by a world shaped and re-shaped by mobility,
trade, changing demographics, war, violence, and health and economic disparities
highlight the importance of training researchers at the intersection of CMTE and
public health. The contents of this volume have been shaped by the understanding
gained from the study of models for specific diseases and their analyses as well
as by the challenges of connecting and simplifying processes that impact disease
dynamics across scales and levels of organization, as is the case, for example, of
immunology and epidemiology.
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Our systems level thinking was instigated by the 1992 NSF workshop Mathemat-
ics and Biology: the Interface Challenges and Opportunities [13]. The workshop
and the meeting’s report focused on the interface between mathematics and biology,
which “. . . has long been a rich area of research, with mutual benefit to each
supporting discipline.” Classical areas of investigation “such as population genetics,
ecology, neurobiology, and 3-D reconstructions, have flourished [over] the past
twenty years.” Interactions between mathematicians and biologists have changed
dramatically, reaching out to encompass areas of both biology and mathematics that
previously had not benefited from the closer integration of theory and experiment
due to the increased reliance on high-speed computation. The report documents
the participants’ enthusiastic conclusion that mathematical and computational
approaches are essential to the future of biology and that biological applications will
continue to contribute to the vitality of mathematics, as they have since the days of
Vito Volterra. The ideas and vision expressed in this nearly three-decades old report
have been expanded, reformulated, and enriched to the point that three decades later
it has become routine to hold specialized workshops in mathematical epidemiology,
mathematical immunology, mathematical physiology, or mathematical ecology, to
name but a few.

In 2009, most of the NSF directorates supported the workshop Towards a Science
of Sustainability, an effort to bring to the forefront of NSF the importance of
convergence research. The report Toward a Science of Sustainability [9] states that
“Building a science of sustainability. . . requires a truly multi-disciplinary approach
that integrates practical experience with knowledge and know-how drawn from
across the natural and social sciences, medicine and engineering, and mathematics
and computation.” This National Science Foundation (NSF) report, carried out
with the full support of most Directorates at the Foundation, places in context
the importance of the challenges and opportunities posed by sustainability science.
The importance of sustainability thinking in epidemiology and public health has
been central to their goal of reducing or ameliorating the impact of disease from
the individual to the population level and beyond. The need to manage antibiotic
resistance, or to formulate and implement sustainable health solutions, or the
effective management of vector-borne diseases, or working on identifying ways of
assessing the role of travel and trade and their impact on disease dynamics, or the
challenges posed by the ecology of infectious disease, or the efforts to reduce the
prevalence or stop the expansion of health disparities would all benefit from what is
being learned within the science of sustainability [14].

We believe that the chapters of this book provide a good start for those interested
not only on epidemiological applications but also on processes that can be modeled
as contagion processes as the surge in applications in the context of the behavioral,
economic, and social sciences demonstrate [3, 11].

The possible deliberate release of biological agents and their consequences has
moved to the forefront of the concerns of the Global Commons. Its potential impact
is being addressed in part by the models and methods developed over the past
century within the field of computational and mathematical epidemiology.
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Specific models have been used to address and assess the role of disease and
interventions on human or animal populations or agricultural systems. Studies on
the potential impact of the deliberate release of biological agents have instigated
the development of mathematical frameworks capable of addressing the impact of
foot and mouth disease, or the role of mobility and trade, and particularly situations
when a released agent is aimed at unsuspecting populations.

In the Report generated at a 2002 DIMACS working group meeting, Mathemat-
ical Sciences Methods for the Study of Deliberate Releases of Biological Agents
and their Consequences [5] these issues were addressed soon after the events of
September 11 of 2001.

The Centers for Disease Control (CDC) “. . . in the early 1950s established and
developed intelligence epidemiological services. This decision, driven in part by
national concerns about the potential use of biological agents as a source of terror,
was one of the first systematic responses to bioterrorism . . . The impact of deliberate
releases of biological agents (Foot and Mouth, Mediterranean Fruit Flies, Citrus
rust, etc.) on agricultural systems and/or our food supply needs to be addressed
and evaluated. For example, foot and mouth disease was most likely accidentally
introduced in Britain nearly simultaneously at multiple sites via the cattle food
supply and agricultural personnel movement. Hence, it was difficult to contain
this outbreak despite Britain’s effective post-detection response (stamping-out). The
costs associated with its containment have been estimated to be over 15 billion
dollars. The use of agents like anthrax highlights the need to look at existing models
for the dispersion of pathogens in buildings (models of air-flow in buildings) and in
water systems (e.g. dispersion while flowing through pipes) . . . new paradigms are
needed for the study of releases of these agents in rather unconventional ways.”

The challenges posed by the Global Commons have reached critical stages
as travel, trade, immigration, population growth, conflicts, disease and changing
economic and demographic factors continuously exhibit our inability to reduce the
levels of uncertainty when assessing the impact of disease within the socio-epi
sphere that we live in. The opportunities given to modelers, epidemiologists, and
public health experts to improve health outcomes using mathematical modeling have
re-energized the intersecting fields of computational, mathematical, and theoretical
epidemiology or CMTE just as the world’s population surpasses the seven billion
mark. Further, the fields of data science, demography, social dynamics, public health
policy, behavioral sciences, modeling, computer science and applied mathematics
continue to enhance our understanding of problems that can be better understood
and managed from what can be learned from the study of specific questions that
can be often addressed through synergistic approaches involving the mathematical,
health, and behavioral sciences. Efforts to advance relevant theoretical work while
searching for solutions to pressing epidemiological questions is becoming the
new standard, some would say the norm. Hence, grounding ourselves within
the context of human managed or operated systems is not only critical but also
highlights the importance of the following question: How can decision-makers build
and implement robust policies anchored on the best information and knowledge
available given that social landscapes evolve and change as a function of the
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decisions that individuals make every single moment in response to real or perceived
information?

The challenges of the twenty-first century have brought the role of individual and
group decisions to the forefront of most efforts aimed at ameliorating the impact
and consequences of emergent, re-emergent, and endemic diseases. The technical
advances of the twenty-first century have put the power of the quantitative sciences
in the hands of policy and decision makers. Progress depends on the researchers’
ability to address disease dynamics, evolution and epidemiological management
challenges tied in to current and changing understanding of disease processes across
various levels of organization within systems often operating simultaneously over
fast, intermediate, and slow time scales.

The need to model and quantify uncertainty within multi-scale, multi-state
human-disease systems increases the role that the impact of human behavior
and decisions play in altering the social and biological landscapes on which
diseases operate. Disentangling the complications of disease dynamics, control, and
individuals’ decisions demand the use of a holistic perspective since, in fact, most
often we are dealing with complex adaptive systems [12].

Simon Levin put it best when he observed (in his address as the 2004 recipient
of the Heineken award), “A great challenge before us is thus to understand the
dynamics of social norms, how they arise, how they spread, how they are sustained
and how they change. Models of these dynamics have many of the same features
as models of epidemic spread, no great surprise, since many aspects of culture have
the characteristics of being social diseases. The 1998 Heineken award winner Paul
Ehrlich and I have been directing our collective energies to this problem, convinced
that it is as important to understand the dynamics of the social systems in which
we live as it is to understand the ecological systems themselves. Understanding the
links between individual behavior and societal consequences, and characterizing
the networks of interaction and influence, create the potential to change the reward
structures so that the social costs of individual actions are brought down to the level
of individual payoffs. It is a daunting task, both because of the amount we still must
learn, and because of the ethical dilemmas that are implicit in any form of social
engineering. But it is a task from which we cannot shrink, lest we squander the last
of our diminishing resources.”

The challenges posed by the explosive growth of antibiotic resistance are
immense. The head of the WHO while addressing a meeting of infectious disease
experts in Copenhagen highlighted recently the global crisis in antibiotics, the result
of “rapidly evolving resistance among microbes responsible for common infections
that threaten to turn them into untreatable diseases every antibiotic ever developed
was at risk of becoming useless.”

No new classes of antibiotics have been developed since 1987. Professor Nigel
Brown, president of the Society for General Microbiology remarks that immediate
action by scientists is required if we are going to identify and mass produce
new antibiotics; the kind of effort needed to tackle the problem of antimicrobial
resistance and its transmission, particularly in the context of nosocomial (in
hospital) infections.
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The challenges and opportunities facing the fields of epidemiology and public
health are timely, pressing, and complex. The contributions of the fields of com-
putational, mathematical, and theoretical epidemiology continue to expand often
responding immediately epidemiological emergencies [2, 6, 7].

Bill Gates, in Business Insider has recently warned the world (April 27, 2018,
and May 12, 2018) about the consequences of its lack of preparedness for the sure-
to-be coming influenza pandemic. This book, through the study of communicable
and vector-borne diseases, some re-emergent, and some emergent diseases, provides
a solid training on modeling approaches and the mathematical methods that may be
useful in the formulation and analyzes of population-level modeling efforts aimed
at containing or ameliorating the impact of childhood diseases, sexually-transmitted
diseases, HIV, tuberculosis, influenza, vector-borne diseases, and more.

We have included applications that account for the impact of host or pathogen
heterogeneity on disease dynamics and control. We have made efforts to enhance
the modeling tool kit by outlining and comparing the use of “Lagrangian” and
“Eulerian” modeling perspectives.

The issue of time scales has been addressed in various forms throughout
including via the clear differentiating that we have made of the differences that
come from the study and modeling of short and long-term dynamics as well as on
the consequences of including population structure [15].

Some of the limitations found in this volume are tied in to our deliberate omission
of stochastic models [1] or at least some of the specifics of parameter estimation [8].
Further, we have not included the role of agent based modeling [10] or many of the
advances and perspectives that network theory has brought into epidemiology.

This book captures our biased perspectives on the role of computational,
mathematical, and theoretical epidemiology in the study of disease dynamics and
public health. However, it does not provide a comprehensive view of CMTE, just
the basics. We believe nevertheless that its content would be useful and relevant to
those interested in addressing the challenges posed by disease dynamics and control.
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Appendix A
Some Properties of Vectors and Matrices

A.1 Introduction

A single linear algebraic equation in one unknown has the form

Ax = b.

A system of m linear equations in n variables is a system of equations of the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . .
an1x1 + an2x2 + · · · + annxn = bn

The language of vectors and matrices makes it possible to write this system in
the simple form Ax = b, where A is an m × n matrix and b is a column vector.
We will develop the elementary theory of vectors and matrices to show how to use
this language to simplify the analysis of linear systems. This will be useful in the
study of systems of differential equations that arise in epidemic models. In models
consisting of a system of two differential equations in two unknown functions the
matrices and vectors involved will have m = n = 2, and readers should interpret
the results in this chapter with m = n = 2. We may think of matrix algebra as
machinery that will allow us to simplify the language of epidemiological models.
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A.2 Vectors and Matrices

A real n-vector is an ordered n-tuple of real numbers of the form

v = [a1, a2, . . . , an].

We also write v in the form (column vector)

v =

⎡

⎢
⎢
⎢
⎣

a1

a2
...

an

⎤

⎥
⎥
⎥
⎦

. (A.1)

In these notes, we use the form (A.1), since this will simplify calculations later.
The real numbers will be called scalars.

We have the following two vector operations:

1. Addition, which is given by the formula

⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦+

⎡

⎢
⎣

b1
...

bn

⎤

⎥
⎦ =

⎡

⎢
⎣

a1 + b1
...

an + an

⎤

⎥
⎦ ;

2. Scalar multiplication, defined by

λ

⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦ =

⎡

⎢
⎣

λa1
...

λan

⎤

⎥
⎦ .

We define the scalar product (also called inner or dot product) of two vectors by

⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦ ·
⎡

⎢
⎣

b1
...

bn

⎤

⎥
⎦ = a1b1 + . . . + anbn.

Example 1 Consider the vectors

v1 =
⎡

⎣
1
3

−2

⎤

⎦ , v2 =
⎡

⎣
−2
1
2

⎤

⎦ .
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Then

v1 + v2 =
⎡

⎣
−1
4
0

⎤

⎦ , 3v1 =
⎡

⎣
3
9

−6

⎤

⎦ ,

v1 · v2 = (1)(−2) + (3)(1) + (−2)(2) = −3.

It is not hard to see that the operations defined above have the following
properties:

u + v = v + u

(u + v) + w = u + (v + w)

λ(u + v) = λu + λv

u · v = v · u
u · (v + w) = u · v + u · w

u · (λv) = λu · v

An m × n matrix is an array of mn real numbers with m rows and n columns:

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤

⎥
⎥
⎥
⎦

. (A.2)

The matrix A is also written as A = (aij ). The size of A is m × n. Matrices of
the same size can be added, and matrices can be multiplied by scalars, according to
the following rules:

⎡

⎢
⎢
⎣

a11 . . . a1n
.
.
.

. . .
.
.
.

am1 . . . amn

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

b11 . . . b1n
.
.
.

. . .
.
.
.

bm1 . . . bmn

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

a11 + b11 . . . a1n + b1n
.
.
.

. . .
.
.
.

am1 + bm1 . . . amn + bmn

⎤

⎥
⎥
⎦ ,

λ

⎡

⎢
⎣

a11 . . . a1n
...

. . .
...

am1 . . . amn

⎤

⎥
⎦ =

⎡

⎢
⎣

λa11 . . . λa1n
...

. . .
...

λam1 . . . λamn

⎤

⎥
⎦ .
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Example 2 Consider the matrices

A =
[

2 −1 3
−2 5 0

]

, B =
[

0 −1 3
4 4 −2

]

.

Then we have

A + B =
[

2 −2 6
2 9 −2

]

, 5A =
[

10 −5 15
−10 25 0

]

,−B =
[

0 1 −3
−4 −4 2

]

.

The matrix operations satisfy the following properties:

A + B = B + A

A + (B + C) = (A + B) + C

λ(A + B) = λA + λB.

If A = (aij ) is an m × n matrix, and B = (bjk) is an n × p matrix, then the
product AB is defined as the m × p matrix given by C = (cik) where

cik =
n∑

j=1

aij bjk.

That is, the (i, k)-element of C is the scalar product of the ith row of A and the kth
column of B. Note that the product of two matrices A and B is defined only when
the number of columns of A is equal to the number of rows of B.

Example 3 Let

A =
[

2 −1 3
−2 5 0

]

, B =
⎡

⎣
2 −1 4
0 1 −1

−2 5 0

⎤

⎦ ,

then

AB =
[−2 12 9
−4 7 −13

]

.

We can check that the matrix product satisfies the following properties:

A(BC) = (AB)C

A(B + C) = AB + AC

A(λB) = λAB.
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It is important to note that the matrix product is not commutative, that is, in general
AB �= BA. Moreover, if the product AB is defined, in general BA is not defined.

A matrix is called a square matrix if the number of its rows is equal to the number
of its columns. The main diagonal of an n×n square matrix A = (aij ) is the n-tuple
(a11, a22, . . . , ann). A square matrix D is called a diagonal matrix if all its elements
are zero with the exception of its diagonal:

D =

⎡

⎢
⎢
⎢
⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤

⎥
⎥
⎥
⎦

.

We also write D as D = diag(λ1, λ2 . . . , λn).

Example 4 Let

A =
⎡

⎣
2 1 4
0 1 −1

−2 5 0

⎤

⎦ , D =
⎡

⎣
2 0 0
0 −1 0
0 0 5

⎤

⎦ = diag(2,−1, 5).

Then

AD =
⎡

⎣
4 1 20
0 −1 −5

−4 −5 0

⎤

⎦ ,DA =
⎡

⎣
4 −2 8
0 −1 1

−10 25 0

⎤

⎦ .

The example above suggests the following fact, which is indeed true: If A =
(v1 v2 . . . vn) is a square matrix whose columns are the n-vectors v1, v2, . . . , vn,

and B =

⎡

⎢
⎢
⎢
⎣

u1

u2
...

un

⎤

⎥
⎥
⎥
⎦

is a square matrix whose rows are the n-vectors u1, u2, . . . , un,

then

A diag(λ1, λ2, . . . , λn) = (λ1v1 λ2v2 . . . λnvn) (A.3a)

diag(λ1, λ2, . . . , λn)B =

⎡

⎢
⎢
⎢
⎣

λ1u1

λ2u2
...

λnun

⎤

⎥
⎥
⎥
⎦

. (A.3b)



544 A Some Properties of Vectors and Matrices

The n × n identity matrix is the matrix I diag(1, 1, . . . , 1), and satisfies

AI = IA = A (A.4)

for all n × n matrices A.

A.3 Systems of Linear Equations

A system of m linear equations in n variables is a system of equations of the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . .
an1x1 + an2x2 + · · · + annxn = bn

We can write this system in the form Ax = b, where

A = (aij ), x =
⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ , b =

⎡

⎢
⎣

b1
...

bm

⎤

⎥
⎦ .

The information contained in the above system is also contained in the aug-
mented matrix A|b with n+ 1 rows and m columns. The solutions of the system are
not changed by adding a multiple of one equation to another equation, multiplication
of an equation by a non-zero constant, or interchanging two equations. This
statement is equivalent to the statement that the set of solutions is not changed if the
augmented matrix is subjected to a sequence of elementary row operations. There
are three types of elementary row operations, namely

1. addition of a multiple of one row to another row,
2. multiplication of a row by a non-zero constant,
3. interchange of two rows.

The system can be solved by reducing the matrix A to a triangular matrix
using elementary row operations, a method called the Gauss–Jordan method. We
demonstrate the method by an example.

Example 1 Solve the system

x − 3y − 5z = −8

−x + 2y + 4z = 5

2x − 5y − 11z = −9.
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We add the first row to the second row, subtract double the first row from the third
row, and multiply the new second row by −1. Next we add 3 times the second row
to the first row and subtract the second row from the third row. Finally we subtract
the third row from the first row, multiply the third row by −1/2, and subtract the
third row from the second row. These operations give the sequence of augmented
matrices

⎛

⎝

⎡

⎣
1 −3 −5

−1 2 4
2 −5 −11

⎤

⎦

∣
∣
∣
∣
∣
∣

⎡

⎣
−8
5

−9

⎤

⎦

⎞

⎠ ∼
⎛

⎝

⎡

⎣
1 −3 −5
0 1 1
0 1 −1

⎤

⎦

∣
∣
∣
∣
∣
∣

⎡

⎣
−8
3
7

⎤

⎦

⎞

⎠

∼
⎛

⎝

⎡

⎣
1 0 −2
0 1 1
0 0 −2

⎤

⎦

∣
∣
∣
∣
∣
∣

⎡

⎣
1
3
4

⎤

⎦

⎞

⎠

∼
⎛

⎝

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

∣
∣
∣
∣
∣
∣

⎡

⎣
−3
5

−2

⎤

⎦

⎞

⎠ .

Then we may read off the solution from the final form as x = −3, y = 5, z = −2.

A.4 The Inverse Matrix

Let A be a square n × n matrix. The inverse of A, if it exists, is a matrix A−1 such
that

AA−1 = A−1A = I.

Not every matrix A has an inverse. If A has an inverse, then it is called invertible,
and its inverse is unique.

Example 1 Find the inverse of the matrix

A =
⎡

⎣
1 −3 −5

−1 2 4
2 −5 −11

⎤

⎦ .

Solution The inverse of A must be of the form (A.2), so we have to solve the system
of 9 linear equations

A · (xij ) = I.
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As in the previous example, we use the Gauss–Jordan method to solve this system
of equations. The first and last steps of the algorithm are

⎛

⎝

⎡

⎣
1 −3 −5

−1 2 4
2 −5 −11

⎤

⎦

∣
∣
∣
∣
∣
∣

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎞

⎠ ∼
⎛

⎝

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

∣
∣
∣
∣
∣
∣

⎡

⎣
−1 −4 −1
− 3

2 − 1
2

1
2

1
2 − 1

2 − 1
2

⎤

⎦

⎞

⎠ .

Therefore the inverse of A is the matrix

A−1 =
⎡

⎣
−1 −4 −1
− 3

2 − 1
2

1
2

1
2 − 1

2 − 1
2

⎤

⎦ .

A.5 Determinants

The determinant of a square matrix is defined inductively by

det

[
a11 a12

a21 a22

]

= a11a22 − a12a21

det

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
.
.
.

.

.

.
. . .

.

.

.

an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

= a11 det

⎡

⎢
⎢
⎣

a22 . . . a2n
.
.
.

. . .
.
.
.

an2 . . . ann

⎤

⎥
⎥
⎦

−a12 det

⎡

⎢
⎢
⎣

a21 . . . a2n
.
.
.

. . .
.
.
.

an1 . . . ann

⎤

⎥
⎥
⎦ + . . .

+(−1)n+1a1n det

⎡

⎢
⎢
⎣

a21 a22 . . . a2(n−1)
.
.
.

.

.

.
. . .

.

.

.

an1 an2 . . . an(n−1)

⎤

⎥
⎥
⎦ .

Example 1 Calculate the determinant of the matrix

A =
⎡

⎣
2 0 1
1 4 1
0 −2 −1

⎤

⎦ .
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Solution We have

detA = 2 det

[
4 1

−2 −1

]

− 0 + det

[
1 4
0 −2

]

= 2(−4 + 2) + (−2) = −6.

Theorem A.1

det(v1 . . . αu + βv . . . vn) = α det(v1 . . . u . . . vn) + β det(v1 . . . v . . . vn)

det(v1 . . . vi . . . vj . . . vn) = − det(v1 . . . vj . . . vi . . . vn)

From (A.5), we can deduce the following properties of the determinant.

det(v1 . . . 0 . . . vn) = 0

det(v1 . . . u . . . u . . . vn) = 0 (A.5)

det(v1 . . . u . . . v + αu . . . vn) = det(v1 . . . u . . . v . . . vn).

The transpose of a matrix is the matrix whose columns are the rows of A, and
whose rows are the columns of A. If A is an m × n matrix, then AT is an n × m

matrix.
One can show inductively that

detAT = detA. (A.6)

From (A.6) we conclude that the alternating multilinear properties (A.5-A.5) also
hold for the rows of a matrix.

Example 2 Calculate the determinant of the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 4 3 −1
0 4 2 −2 0

−2 1 −1 3 2
10 4 −2 0 1
4 6 −1 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Solution We use properties (A.5–A.5) applied to the rows of A to calculate this
determinant.

detA = det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 4 3 −1
0 4 2 −2 0
0 1 7 9 0
0 4 −42 −30 11
0 6 −17 −12 7

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= − det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 4 3 −1
0 1 7 9 0
0 4 2 −2 0
0 4 −42 −30 11
0 6 −17 −12 7

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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= − det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 4 3 −1
0 1 7 9 0
0 0 −26 −38 0
0 0 −70 −66 11
0 0 −59 −66 7

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= − det

⎡

⎣
−26 −38 0
−70 −66 11
−59 −66 7

⎤

⎦

= 2 det

⎡

⎣
13 19 0

−70 −66 11
−59 −66 7

⎤

⎦ = 2

(

13 det

[−66 11
−66 7

])

−
(

−19 det

[−70 11
−59 7

])

= 2(13(−462 + 726) − 19(−490 + 649)) = 822.

Theorem A.2 If A and B are square matrices of the same size, then

det(AB) = (detA)(detB). (A.6a)

If the matrix A has an inverse A−1, then Eq. (A.6a) implies

(detA)(detA−1) = 1. (A.7)

Thus, from Eq. (A.7), we can conclude that if A has an inverse, then detA �= 0. The
converse is true and is contained in the following theorem.

Theorem A.3 Let A be an n × n matrix. Then the following are equivalent:

1. The system Ax = b has a unique solution for each n-vector b.
2. The matrix A is invertible.
3. detA �= 0.

Note that if detA = 0, then the system Ax = 0 has non-zero solutions x. We use
this fact in the following section.

A.6 Eigenvalues and Eigenvectors

Let A be a square matrix. We say that v �= 0 is an eigenvector of A if λ is a scalar
such that

Av = λv (A.8)

for some possibly complex scalar λ. The scalar λ is called an eigenvalue of A with
respect to v. Note that each eigenvector of a matrix A corresponds to a unique
eigenvalue; however, several eigenvectors may correspond to a single eigenvalue.
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Example 1 Consider

A =
⎡

⎣
5 8 −3
0 −3 0
0 0 2

⎤

⎦ , v =
⎡

⎣
1
0
1

⎤

⎦ .

Then v is an eigenvector of A with respect to the eigenvalue λ = 2:

Av =
⎡

⎣
5 8 −3
0 −3 0
0 0 2

⎤

⎦

⎡

⎣
1
0
1

⎤

⎦ =
⎡

⎣
2
0
2

⎤

⎦ = 2

⎡

⎣
1
0
1

⎤

⎦ .

We now describe an algorithm to find the eigenvalues of a matrix. First, note
that if v is an eigenvector of A with respect to the eigenvalue λ, then λ and v are
solutions to Eq. (A.8) with v �= 0. Equation (A.8) can be written in the form

(A − λI)v = 0, (A.9)

where I is the identity matrix of the same size as A. By Theorem A.3, Eq. (A.9) has
a non-zero solution in v if and only if

det(A − λI) = 0. (A.10)

Equation (A.10) is called the characteristic equation of the matrix A. Observe that if
A is an n×n matrix, then the characteristic equation (A.10) is a polynomial equation
in λ of degree n.

Example 2 Calculate the eigenvalues and eigenvectors of the matrix

A =
⎡

⎣
5 8 −3
0 −3 0
0 0 2

⎤

⎦ .

Solution The characteristic equation of A is given by

0 = det(A − λI) = det

⎡

⎣
5 − λ 8 −3

0 −3 − λ 0
0 0 2 − λ

⎤

⎦ = (5 − λ)(−3 − λ)(2 − λ).
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Thus the eigenvalues of A are λ1 = 5, λ2 = −3, and λ3 = 2. To calculate the
eigenvectors, we solve the Eq. (A.9) for each λi . Using the Gauss–Jordan method
we obtain that

v1 =
⎡

⎣
1
0
0

⎤

⎦ , v2 =
⎡

⎣
1

−1
0

⎤

⎦ , v3 =
⎡

⎣
1
0
1

⎤

⎦

are the eigenvectors of A with respect to λ1 = 5, λ2 = −3, and λ3 = 2.

Example 3 Calculate the eigenvalues and eigenvectors of the matrix

A =
⎡

⎣
1 1 0
2 0 0
0 0 3

⎤

⎦ .

Solution The characteristic equation of A is given by

0 = det

⎡

⎣
1 − λ 1 0

2 −λ 0
0 0 3 − λ

⎤

⎦ = (1 − λ) det

[−λ 0
0 3 − λ

]

− det

[
2 0
0 3 − λ

]

= (1 − λ)(−λ)(3 − λ) − 2(3 − λ) = −(λ − 3)(λ + 1)(λ − 2).

Thus, the eigenvalues of A are then λ1 = 3, λ2 = −1, and λ3 = 2. The eigenvectors
of A with respect to these eigenvalues are, respectively,

v1 =
⎡

⎣
0
0
1

⎤

⎦ , v2 =
⎡

⎣
−1
2
0

⎤

⎦ , v3 =
⎡

⎣
1
1
0

⎤

⎦ .

Example 4 Find the eigenvalues and eigenvectors of the matrix

A =
[

1 3
−4 2

]

.

Solution The characteristic equation of A is the equation

0 = det

[
1 − λ 3
−4 2 − λ

]

= λ2 − 3λ + 14.

Then the eigenvalues of A are

λ1 = 3

2
+

√
47

2
i and λ2 = 3

2
−

√
47

2
i.
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The eigenvectors of A corresponding to λ1 and λ2 are, respectively,

v1 =
[

3
1
2 +

√
47
2 i

]

, v1 =
[

3
1
2 −

√
47
2 i

]

.

Let A be an n×n matrix, and suppose that the eigenvalues λ1, λ2, . . . , λn are all
different. If v1, v2, . . . , vn are the eigenvectors of A with respect to the λi , let

D = diag(λ1, λ2, . . . , λn),

S = (v1 v2 . . . vn).

The matrix D is the diagonal matrix whose diagonal elements are the eigenvalues
of A, and S is the matrix whose columns are the eigenvectors of A. Hence

AS = A(v1 v2 . . . vn) = (Av1 Av2 . . . Avn) = (λ1v1 λ2v2 . . . λnvn)

= (v1 v2 . . . vn) diag(λ1, λ2, . . . , λn) = SD,

where we have used (A.3a). One can show that the matrix S has an inverse. Then,
we factor A in the form

A = SDS−1. (A.11)

The expression (A.11) is called the diagonalization of A. Not every matrix has
a diagonalization. If the matrix A has a diagonalization, then we say that A is
diagonalizable. We have seen, in the case where all the eigenvalues of A are distinct,
that A is diagonalizable.

Example 5 Diagonalize the matrix

A =
⎡

⎣
1 1 0
2 0 0
0 0 3

⎤

⎦ .

Solution The eigenvalues of A are λ1 = 3, λ2 = 2, and λ3 = −1, and the
eigenvectors with respect to these eigenvalues are

v1 =
⎡

⎣
0
0
1

⎤

⎦ , v2 =
⎡

⎣
1
1
0

⎤

⎦ , v3 =
⎡

⎣
−1
2
0

⎤

⎦ .
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Let

S =
⎡

⎣
0 1 1
0 1 −2
1 0 0

⎤

⎦ ,D =
⎡

⎣
3 0 0
0 2 0
0 0 −1

⎤

⎦ .

Then we have A = SDS−1. Thus, the diagonalization of A is

⎡

⎣
1 1 0
2 0 0
0 0 3

⎤

⎦ =
⎡

⎣
0 1 1
0 1 −2
1 0 0

⎤

⎦

⎡

⎣
3 0 0
0 2 0
0 0 −1

⎤

⎦

⎡

⎣
0 0 1

2/3 1/3 0
1/3 −1/3 0

⎤

⎦ .

From (A.3) one can check that

(
diag(λ1, λ2, . . . , λn)

)k = diag(λk
1, λ

k
2, . . . , λ

k
n).

Thus, if A = SDS−1,

Ak = (SDS−1)(SDS−1) · · · (SDS−1) (k factors)

= SDkS−1.

If p(x) = akx
k + . . .+a1x+a0 is a polynomial and A is an n×n matrix, we define

p(A) = akA
k + . . . + a1A + a0I.

By the above observations, we see that if A is diagonalizable, then

p(A) = p(SDS−1) = S · p(D) · S−1 = S · diag(p(λ1), p(λ2), . . . , p(λn)) · S−1.

Example 6 Calculate p(A) where p(x) = x2 − 3x + 14, and

A =
[

1 3
−4 2

]

.

Solution The characteristic equation of A is λ2 − 3λ + 14 = 0. Therefore

p(A) = S · p(D) · S−1 = S · diag(p(λ1), p(λ2)) · S−1 = S · diag(0, 0) · S−1 = 0.

The above example suggests the following fact, which is indeed true: Every
diagonalizable matrix satisfies its characteristic equation. In fact, one can show that
every matrix satisfies its characteristic equation.



Appendix B
First Order Ordinary Differential
Equations

B.1 Exponential Growth and Decay

The rate of change of some quantity is often proportional to the amount of the
quantity present. This may be true, for example, of the size of a population with
enough resources that its growth is unrestricted, and depends only on an inherent per
capita reproductive rate. It can also apply to a decaying population—for example,
the mass of a piece of a radioactive substance. In such a case, if y(t) is the quantity
at time t , then y(t) satisfies the differential equation

dy

dt
= ay (B.1)

where a is a constant representing the proportional growth or decay rate with a

positive if the quantity is increasing and negative if the quantity is decreasing. It
is easy to verify that y = ceat is a solution of the differential equation (B.1) for
every choice of the constant c. By this we mean that if we substitute the function
y = ceat into the differential equation (B.1) it becomes an identity. If y = ceat ,
then y′ = aceat = ay, and this is the necessary verification. Thus the differential
equation (B.1) has an infinite family of solutions (one for every choice of the
constant c, including c = 0), namely

y = ceat . (B.2)

In order for a mathematical problem to be a plausible description of a scientific
situation, the mathematical problem must have only one solution; if there were
multiple solutions, we would not know which solution represents the situation. This
suggests that the differential equation (B.1) by itself is not enough to specify a
description of a physical situation. We must also specify the value of the function
y for some initial time when we may measure the quantity y and then allow the
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system to start running. For example, we might impose the additional requirement,
called an initial condition, that

y(0) = y0. (B.3)

A problem consisting of a differential equation together with an initial condition is
called an initial value problem. We may determine the value of c for which the solu-
tion (B.2) of the differential equation (B.1) also satisfies the initial condition (B.3)
by substituting t = 0, y = y0 into the form (B.2). This gives the equation

y0 = c e0 = c

and thus c = y0. We now use this value of c to give the solution of the differential
equation (B.1) which also satisfies the initial condition (B.3), namely y = y0e

at . In
order to show that this is the only solution of the initial value problem (B.1), (B.3),
we must show that every solution of the differential equation (B.1) is of the
form (B.2).

To prove this, suppose that y(t) is a solution of the differential equation (B.1),
that is, that y′(t) = ay(t) for every value of t. If y(t) �= 0, division of this equation
by y(t) gives

y′(t)
y(t)

= d

dt
log |y(t)| = a. (B.4)

Integration of both sides of (B.4) gives log |y(t)| = at + k for some constant of
integration k. Then

|y(t)| = eat+k = ekeat .

Because eat and ek are positive for every value of t , |y(t)| cannot be zero, and thus
y(t) cannot change sign. We may remove the absolute value and conclude that y(t)
is a constant multiple of eat , y = ceat . We note also that if y(t) is different from
zero for one value of t then y(t) is different from zero for every value of t . Thus
the division by y(t) at the beginning of the proof is legitimate unless the solution
y(t) is identically zero. The identically zero function is a solution of the differential
equation, as is easily verified by substitution, and it is contained in the family of
solutions y = ceat with c = 0.

The absolute value which appears in the integration produces some complications
which may be avoided if we know that the solution must be non-negative, so that
|y(t)| = y(t), as is the case in many applications. If we know that a solution y(t) of
the differential equation y′ = ay is positive for all t , we could replace (B.4) by

d

dt
log y(t) = a

and then integrate to obtain log y(t) = at + k, y(t) = eat+k = eat ek = ceat .
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The logical argument in the above proof is that if the differential equation has a
solution, then that solution must have a certain form. However, it also derives the
form and thus serves as a method of determining the solution.

We now have a family of solutions of the differential equation (B.1). In order
to determine the member of this family which satisfies a given initial condition,
that is, in order to determine the value of the constant c, we merely substitute the
initial condition into the family of solutions. This procedure may be followed in
any situation which is described by an initial value problem, including population
growth models and radioactive decay.

Example 1 Suppose that a given population of protozoa develops according to a
simple growth law with a growth rate of 0.6 per member per day, that there are
no deaths, and that on day zero the population consists of two members. Find the
population size after 10 days.

Solution The population size satisfies the differential equation (B.1) with a = 0.6,
and is therefore given by y(t) = ce0.6t . Since y(0) = 2, we substitute t = 0,
y = 2, and we obtain 2 = c. Thus the solution which satisfies the initial condition
is y(t) = 2 e0.6t , and the population size after 10 days is y(10) = 2 e(0.6)(10) = 403
(with population size rounded off to the nearest integer). �

If we know that a population grows exponentially according to an exponential
growth law but do not know the rate of growth we view the solution y = ceat as
containing two parameters which must be determined. This requires knowledge of
the population size at two different times to provide two equations which may be
solved for these two parameters.

Example 2 Suppose that a population which follows an exponential growth law has
50 members at a starting time and 100 members at the end of 10 days. Find the
population at the end of 20 days.

Solution The population size at time t satisfies y(t) = ceat and y(0) =
50, y(10) = 100. Thus y(0) = 50 = ce0, y(10) = ce10a = 100. It follows that
c = 50 and 100 = 50e10a . We obtain e10a = 2, a = log 2

10 = 0.0693. Finally, we
obtain

y(20) = 50 e(20)(log 2)/10 = 50 e2 log 2 = 50 · 22 = 200. �

B.2 Radioactive Decay

Radioactive materials decay because a fraction of their atoms decompose into other
substances. If y(t) represents the mass of a sample of a radioactive substance at
time t , and a fraction k of its atoms decompose in unit time, then y(t + h) − y(t)

is approximately −ky(t) and we are led to the differential equation (B.1) with a

replaced by −k. If it is clear from the nature of the problem that the constant of
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proportionality must be negative, we will use −k for the constant of proportionality,
giving a differential equation

y′ = −ky (B.5)

with k > 0.

Example 3 The radioactive element strontium 90 has a decay constant 2.48 × 10−2

years−1. How long will it take for a quantity of strontium 90 to decrease to half of
its original mass?

Solution The mass y(t) of strontium 90 at time t satisfies the differential equa-
tion (B.7) with k = 2.48 × 10−2. If we denote the mass at time t = 0 by y0, then
y(t) = y0 e−(2.48×10−2)t . The value of t for which y(t) = y0/2 is the solution of

y0

2
= y0 e−(2.48×10−2)t .

If we divide both sides of this equation by y0 and then take natural logarithms, we
have

−(2.48 × 10−2)t = log
1

2
= − log 2

so that t = (log n)/(2.48 × 10−2) = 27.9 years. �
The time required for the mass of a radioactive substance to decrease to half of

its starting value is called the half-life of the substance. The half-life T is related to
the decay constant k by the equation

T = log 2

k

because if y(t) = y0e
−kt and (by definition) y(T ) = y0

2 , then e−kT = 1
2 , so that

−kT = log 1
2 = − log 2. For radioactive substances it is common to give the half-

life rather than the decay constant.

Example 4 Radium 226 is known to have a half-life of 1620 years. Find the length
of time required for a sample of radium 226 to be reduced to one fourth of its original
size.

Solution The decay constant for radium 226 is k = log 2
1620 = 4.28 × 10−4 years−1.

In terms of k, the mass of a sample at time t is y0e
−kt if the starting mass is y0. The

time τ at which the mass is y0/4 is obtained by solving the equation y0/4 = y0 e−kτ

or e−kτ = 1/4. Taking natural logarithms we obtain −kτ = log 4, which gives

τ = − log 3
4

k
= 1620(log 3

4 )

log 2
= 672 years. �
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The radioactive element carbon 14 decays to ordinary carbon (carbon 12) with
a decay constant 1.244 × 10−4 years−1, and thus the half-life of carbon 14 is 5570
years. This has an important application, called carbon dating, for determining the
approximate age of fossil materials. The carbon in living matter contains a small
proportion of carbon 14 absorbed from the atmosphere. When a plant or animal dies,
it no longer absorbs carbon 14 and the proportion of carbon 14 decreases because
of radioactive decay. By comparing the proportion of carbon 14 in a fossil with the
proportion assumed to have been present before death, it is possible to calculate the
time since absorption of carbon 14 ceased.

Example 5 Living tissue contains approximately 6 × 1010 atoms of carbon 14 per
gram of carbon. A wooden beam in an ancient Egyptian tomb from the First Dynasty
contained approximately 3.33 × 1010 atoms of carbon 14 per gram of carbon. How
old is the tomb?

Solution The number of atoms of carbon 14 per gram of carbon, y(t), is given by
y(t) = y0e

−kt , with y0 = 6 × 1010, k = 1.244 × 10−4, and y(t) = 3.33 × 1010

for this particular t value. Thus the age of the tomb is given by the solution of the
equation

e−(1.244×10−4)t = 3.33 × 1010

6 × 1010
= 3.33

6
,

and if we take natural logarithms this reduces to

t = − log 3.33 − log 6

1.244 × 10−4 = 4733 years. �

B.3 Solutions and Direction Fields

By a differential equation we will mean simply a relation between an unknown
function and its derivatives. We will confine ourselves to ordinary differential
equations, which are differential equations whose unknown function is a function
of one variable so that its derivatives are ordinary derivatives. A partial differential
equation is a differential equation whose unknown function is a function of more
than one variable, so that the derivatives involved are partial derivatives. The order
of a differential equation is the order of the highest-order derivative appearing in
the differential equation. In this chapter we shall consider first-order differential
equations, relations involving an unknown function y(t) and its first derivative
y′(t) = dy

dt
. The general form of a first-order differential equation is

y′ = dy

dt
= f (t, y), (B.6)

with f a given function of the two variables t and y.
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By a solution of the differential equation (B.6) we mean a differentiable function
y of t on some t-interval I such that, for every t in the interval I ,

y′(t) = f (t, y(t)).

In other words, differentiating the function y(t) results in the function f (t, y(t)).
For example, we have seen in the preceding section that, whatever the value of the
constant c, the function y = ceat is a solution of the differential equation y′ = ay

on every t-interval. We see this by differentiating ceat to get a ceat , which we can
rewrite as ay.

To verify whether a given function is a solution of a given differential equation,
we need only substitute into the differential equation and check whether it then
reduces to an identity.

Example 1 Show that the function y = 1
t+1 is a solution of the differential equation

y′ = −y2.

Solution For the given function,

dy

dt
= − 1

(t + 1)2
= −y2

and this shows that it is indeed a solution. �
In the same way we can verify that a family of functions satisfies a given

differential equation. By a family of functions we will mean a function which
includes an arbitrary constant, so that each value of the constant defines a distinct
function. The family ce5t , for instance, includes the functions e5t , −4e5t , 12e5t , and√

3 e5t , among others. When we say that a family of functions satisfies a differential
equation, we mean that substitution of the family (i.e., the general form) into the
differential equation gives an identity satisfied for every choice of the constant.

Example 2 Show that for every c the function y = 1
t+c

is a solution of the
differential equation y′ = −y2.

Solution For the given function,

dy

dt
= − 1

(t + c)2
= −y2,

and thus each member of the given family of functions is a solution. �
In applications we are usually interested in finding not a family of solutions of a

differential equation but a solution which satisfies some additional requirement. In
the various examples in Sect. B.1 the additional requirement was that the solution
should have a specified value for a specified value of the independent variable t .
Such a requirement, of the form
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y(t0) = y0 (B.7)

is called an initial condition, and t0 is called the initial time while y0 is called the
initial value. A problem consisting of a differential equation (B.1) together with an
initial condition (B.2) is called an initial value problem. Geometrically, an initial
condition picks out the solution from a family of solutions which passes through the
point (t0, y0) in the t-y plane. Physically, this corresponds to measuring the state of
a system at the time t0 and using the solution of the initial value problem to predict
the future behavior of the system.

Example 4 Find the solution of the differential equation y′ = −y2 of the form
y = 1

t+c
which satisfies the initial condition y(0) = 1.

Solution We substitute the values t = 0, y = 1 into the equation y = 1
t+c

, and

we obtain a condition on c, namely 1 = 1
c
, whose solution is c = 1. The required

solution is the function in the given family with c = 1, namely y = 1
t+1 . �

Example 5 Find the solution of the differential equation y′ = −y2 which satisfies
the general initial condition y(0) = y0, where y0 is arbitrary.

Solution We substitute the values t = 0, y = y0 into the equation y = 1
t+c

and

solve the resulting equation y0 = 1
c

for c, obtaining c = 1
y0

provided y0 �= 0. Thus
the solution of the initial value problem is

y = 1

(t + 1
y0
)2

except if y0 = 0. If y0 = 0, there is no solution of the initial value problem of the
given form; in this case the identically zero function, y = 0, is a solution. We have
now obtained a solution of the initial value problem with arbitrary initial value at
y = 0 for the differential equation y′ = −y2. �

A family of solutions may arise if we are considering a differential equation with
no initial condition imposed, and we will then also be concerned with the question
of whether the given family contains all solutions of the differential equation. To
answer this question, we will need to make use of a theorem which guarantees
that each initial value problem for the given differential equation has exactly one
solution. More specifically, if an initial value problem is to be a usable mathematical
description of a scientific problem, it must have a solution, for otherwise it would
be of no use in predicting behavior. Furthermore, it should have only one solution,
for otherwise we would not know which solution describes the system. Thus for
applications it is vital that there be a mathematical theory telling us that an initial
value problem has exactly one solution. Fortunately, there is a very general theorem
which tells us that this is true for the initial value problem (B.6), (B.3) provided
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the function f is reasonably smooth. We will state this result and ask the reader
to accept it without proof because the proof requires more advanced mathematical
knowledge than we have at present.

Existence and Uniqueness Theorem If the function f (t, y) is differentiable with
respect to y in some region of the plane which contains the point (t0, y0), then the
initial value problem consisting of the differential equation y′ = f (t, y) and the
initial condition y(t0) = y0 has a unique solution which is defined on some t-
interval containing t0 in its interior.

Even though the function f (t, y) may be well-behaved in the whole t-y plane,
there is no assurance that a solution will be defined for all t . As we have seen
in Example 1, the solution y = 1

t+1 of y′ = −y2, y(0) = 1 exists only for
−1 < t < ∞. As we have seen in Example 2, each solution of the family of
solutions y = 1

t+c
has a different interval of existence. In Example 5, we have

shown how to rewrite a family of solutions for a differential equation in terms of
an arbitrary initial condition—that is, as a solution of an initial value problem for
that differential equation. We have also seen how to identify those initial conditions
which cannot be satisfied by a member of the given family. Often there are constant
functions which are not members of the given family but which are solutions
and satisfy initial conditions that cannot be satisfied by a member of the family.
The existence and uniqueness theorem tells us that if we can find a family of
solutions, possibly supplemented by some additional solutions, so that we can find
this collection contains a solution corresponding to each possible initial condition,
then we have found the set of all solutions of the differential equation.

A differential equation which arises in various applications, including models for
population growth and spread of rumors, is the logistic differential equation,

y′ = ry
(

1 − y

K

)
(B.8)

containing two parameters r and K . The basic idea behind this form is that instead
of a constant per capita growth rate r as in the exponential growth equation it is
more realistic to assume that the per capita growth rate decreases as the population
size increases. The form 1 − y

K
used in the logistic equation is the simplest form

for a decreasing per capita growth rate. We may verify that for every constant c the
function

y = K

1 + ce−rt
(B.9)

is a solution of this differential equation. To see this, note that for the given
function y,

y′ = Kcr e−rt

(1 + ce−rt )2
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and

1 − y

K
= K − y

K
= ce−rt

(1 + ce−rt )
.

Thus

ry
(

1 − y

K

)
= Krc e−rt

(1 + ce−rt )2
= y′,

and the given function satisfies the logistic equation for every choice of c.
To find the solution which obeys the initial condition y(0) = y0, we substitute

t = 0, y = y0 into the form (B.9), obtaining K
1+c

= y0 which implies c = K−y0
y0

as
long as y0 �= 0 and gives the solution

y = K

1 +
(
K − y0

y0

)

e−rt

= Ky0

y0 + (K − y0) e−rt
(B.10)

to the initial value problem with y0 �= 0. Note that the denominator begins at K

(for t = 0) and moves toward y0 as t → ∞. Now suppose that K represents some
physical quantity such that K > 0. It is easy to see from the form (B.10) that if
y0 > 0, then the solution y(t) exists for all t > 0, and limt→∞ y(t) = K . If y0 < 0,
then this solution does not exist for all t > 0, because y(t) → −∞ where the
denominator changes sign: as y0 + (K − y0)e

−rt → 0, or t → − log( −y0
K−y0

). If
y0 = 0, the solution of the initial value problem is not given by (B.10), but is the
identically zero function y = 0. We observe that the family of solutions (B.9) of
the logistic differential equation (B.8) includes the constant solution y = K (with
c = 0) but not the constant solution y = 0. The existence and uniqueness theorem
shows that, since we have now obtained a solution corresponding to each possible
initial condition, we have obtained all solutions of the logistic differential equation.

The geometric interpretation of a solution y(t) to a differential equation (B.6)
is that the curve y = y(t) has slope f (t, y) at each point (t, y) along its length.
Thus we might think of approximating the solution curve by piecing together short
line segments whose slope at each point (t, y) is f (t, y). To realize this idea, we
construct at each point (t, y) in some region of the plane a short line segment with
slope f (t, y). The collection of line segments is called the direction field of the
differential equation (B.6). The direction field can help us to visualize solutions of
the differential equation since at each point on its graph a solution curve is tangent to
the line segment at that point. We may sketch the solutions of a differential equation
by connecting these line segments by smooth curves.

A direction field and some solutions of the differential equation y′ = y are shown
in Fig. B.1. The direction field suggests exponential solutions, which we know from
Sect. B.1 to be correct.
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Fig. B.1 Direction field and
solutions for y′ = y

A direction field and some solutions of the differential equation y′ = y(1−y) are
shown in Fig. B.2. The direction field indicates that solutions below the t-axis are
unbounded below while solutions above the t-axis tend to 1 as t → ∞, consistent
with what we have established for this logistic differential equation.

Drawing direction fields by hand is a difficult and time-consuming task. There
are computer programs, both self-contained and portions of more elaborate com-
putational systems such as Maple, Matlab, and Mathematica, which can generate
direction fields for a differential equation and can also sketch solution curves
corresponding to these direction fields. The examples here have been produced by
Maple.

The geometric view of differential equations presented by the direction field will
appear again when we examine some qualitative properties in Sect. B.5.

B.4 Equations with Variables Separable

In this section, we shall learn a method for finding solutions of a class of differential
equations. The method is based on the method we used in Sect. B.1 for solving the
differential equation of exponential growth or decay, and is applicable to differential
equations with variables separable. A differential equation y′ = f (t, y) is called
separable or is said to have variables separable if the function f can be expressed
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Fig. B.2 Direction field and
solutions for y′ = y(1 − y)

in the form

f (t, y) = p(t)q(y). (B.11)

In particular, if f is independent of t and is a function of y only, the differential
equation (B.6) is separable; such an equation is said to be autonomous. The reason
for the name separable is that the differential equation can then be written as

y′

q(y)
= p(t)

with all the dependence on y on the left and all the dependence on t on the right-
hand side of the equation, provided that q(y) �= 0. For example, y′ = y

1+t2 and

y′ = y2 are both separable, whereas y′ = sin t −2ty is not separable. The examples
discussed in Sect. B.1 are also separable and the method of solution described for
Eq. (B.1) of Sect. B.1 is a special case of the general method of solution to be
developed for separable equations. Before explaining this general technique, let us
work out some more examples.
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Example 1 Find all solutions of the differential equation

y′ = −y2.

Solution We divide the equation by y2, permissible if y �= 0, to give

1

y2

dy

dt
= −1.

We then integrate both sides of this equation with respect to t . In order to integrate
the left side of the equation we must make the substitution y = y(t), where y(t) is
the (as yet unknown) solution. This substitution gives

∫
1

y2

dy

dt
dt =

∫
dy

y2
= − 1

y
+ c

and we obtain

− 1

y
= −t − c (B.12)

or y = 1
t+c

, with c a constant of integration. Observe that no matter what value of
c is chosen this solution is never equal to zero. We began by dividing the equation
by y2, which was legitimate provided y �= 0. If y = 0, we cannot divide, but
the constant function y = 0 is a solution. We now have all the solutions of the
differential equation, namely the family (B.12) together with the zero solution. �
Example 2 Solve the initial value problem

y′ = −y2, y(0) = 1.

Solution We begin by using a more colloquial form of separation of variables than
the procedure of Example 1. We write the differential equation in the form dy

dt
=

−y2 and separate variables by dividing the equation through by y2 to give

−dy

y2 = dt.

This form of the equation is meaningless without an interpretation of differentials,
but the integrated form

−
∫

dy

y2 =
∫

dt

is meaningful. Carrying out the integration, we obtain 1
y

= t + c, where c is a
constant of integration. Since y = 1 for t = 0 we may substitute these values into
the solution and obtain 1 = c. Substituting this value of c we now obtain



B First Order Ordinary Differential Equations 565

1

y
= t + 1.

Solving for y, we obtain the solution y = 1
t+1 , and we may easily verify that this is

a solution of the initial value problem, defined for all t ≥ 0. �
The version of separation of variables used in Example 2 is easier to apply in

practice than the more precise version used in Example 1. When we treat the general
case we will justify this approach.

Example 3 Solve the initial value problem

y′ = −y2, y(0) = 0.

Solution The procedure used in Example 1 leads to the family of solutions y = 1
t+c

for the differential equation y′ = −y2. When we substitute t = 0, y = 0 and attempt
to solve for the constant c, we find that there is no solution. When we divided the
differential equation by y2 we had to assume y �= 0, but the constant function y ≡ 0
is also a solution of the differential equation, as may easily be verified. Since this
function also satisfies the initial condition, it is the solution of the given initial value
problem. �

Let us now apply the technique of Example 2 to show how to obtain the solution
in the general case of a differential equation with variables separable. We will make
use of the idea of the definition of the indefinite integral of a function as a new
function whose derivative is the derivative of the given function. We first solve the
differential equation

y′ = p(t)q(y) (B.13)

where p is continuous on some interval a < t < b and q is continuous on some
interval c < y < d. We solve the differential equation (B.13) by separating variables
as in Example 1 dividing by q(y) and integrating to give

∫
dy

q(y)
=
∫

p(t)dt + c (B.14)

where c is a constant of integration. We now define

Q(y) =
∫

dy

q(y)
, P (t) =

∫
p(t)dt,

by which we mean that Q(y) is a function of y whose derivative with respect to
y is 1

q(y)
and P(t) is a function of t whose derivative with respect to t is p(t).

Then (B.14) becomes
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Q(y) = P(t) + c (B.15)

and this equation defines a family of solutions of the differential equation (B.13).
To verify that each function y(t) defined implicitly by (B.15) is indeed a solution of
the differential equation (B.13), we differentiate (B.15) implicitly with respect to t ,
obtaining

1

q(y(t))

dy

dt
= p(t)

on any interval on which q(y(t)) �= 0, and this shows that y(t) satisfies the
differential equation (B.13). There may be constant solutions of (B.13) which are
not included in the family (B.15). A constant solution to the original equation (B.13)
corresponds to a solution of the equation q(y) = 0.

In order to find the one solution of the differential equation (B.13) which satisfies
the initial condition y(t0) = y0, it will help to be more specific in the choice of the
indefinite integrals Q(y) and P(t). We let Q(y) be the indefinite integral of 1

q(y)

such that Q(y0) = 0, and we let P(t) be the indefinite integral of p(t) such that
P(t0) = 0. Then, because of the fundamental theorem of calculus, we have

Q(y) =
∫ y

y0

du

q(u)
, P (t) =

∫ t

t0

p(s) ds

and we may write the solution (B.15) in the form

∫ y

y0

du

q(u)
=
∫ t

t0

p(s) ds.

Now substitution of the initial conditions t = t0, y = y0 gives c = 0. Thus the
solution of the initial value problem is given implicitly by

∫ y

y0

du

q(u)
=
∫ t

t0

p(s) ds (B.16)

We have now solved the initial value problem in the case q(y0) �= 0. Since
y(t0) = y0 and the function q is continuous at y0, q(y(t)) is continuous, and
therefore q(y(t)) �= 0 on some interval containing t0 (possibly smaller than the
original interval a < t < b). On this interval, y(t) is the unique solution of the
initial value problem. If q(y0) = 0, we have the constant function y = y0 as a
solution of the initial value problem in place of the solution given by (B.16).

We shall see in Sect. B.5 that the constant solutions of a separable differentiable
equation (B.13) play an important role in describing the behavior of all solutions as
t → ∞.
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The differential equation

y′ = −ay + b (B.17)

where a and b are given constants appears in some of the examples in Sect. B.4. In
order to solve it, we separate variables, obtaining

∫
dy

−ay + b
=
∫

dt.

Integration gives

−1

a
log(−ay + b) = t + c

with c an arbitrary constant of integration. Algebraic solution now gives

log(−ay + b) = −a(t + c)

−ay + b = e−a(t+c) = e−ac e−at

ay = b − e−ace−at

y = b

a
− e−ac

a
e−at .

We now rename the arbitrary constant − e−ac

a
as a new arbitrary constant, which we

again call c, and obtain the family of solutions

y = b

a
+ ce−at . (B.18)

In our separation of variables, we overlooked the constant solution y = b
a

, but this
solution is contained in the family (B.18).

In order to find the solution of (B.17) which satisfies the initial condition

y(0) = y0 (B.19)

we substitute t = 0, y = y0 into (B.18), obtaining

y0 = b

a
+ c

or c = y0 − b
a

. This value of c gives the solution

y = b

a
+ (y0 − b

a
)e−at = b

a
(1 − e−at ) + y0e

−at (B.20)

of the initial value problem.
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The solutions (B.18) and (B.20) have been obtained without regard for the sign of
the coefficients b and a. We will think of a in (B.18) and (B.20) as positive, and will
rewrite the solutions for a negative by making the replacement r = −a, thinking of
r as positive. The result of this is that the solutions of the differential equation

y′ = ry + b (B.21)

are given by the family of functions

y = −b

r
+ cert (B.22)

and the solution of the differential equation (B.21) which satisfies the initial
condition (B.19) is

y = −b

r
(1 − ert ) + y0e

rt = b

r
(ert − 1) + y0e

rt . (B.23)

In applications, the specific form of the solution of a differential equation is often
less important than the behavior of the solution for large values of t . Because
e−at → 0 as t → ∞ when a > 0, we see from (B.18) that every solution of (B.17)
tends to the limit b

a
as t → ∞ if a > 0. This is an example of qualitative information

about the behavior of solutions which will be useful in applications. In Sect. B.5,
we shall examine other qualitative questions—information about the behavior of
solutions of a differential equation which may be obtained indirectly rather than by
an explicit solution.

To conclude this section, we return to the logistic differential equation (B.8)
whose solutions were described in Sect. B.3. In Sect. B.3, we verified that the solu-
tions were given by Eq. (B.9) but did not show how to obtain these solutions. The
differential equation (B.8) is separable, and separation of variables and integration
gives

∫
Kdy

y(K − y)
=
∫

r dt

provided y �= 0, y �= K . In order to evaluate the integral on the left-hand side, we
use the algebraic relation (which may be obtained by partial fractions)

K

y(K − y)
= 1

y
+ 1

K − y

and then rewrite
∫

K dy

y(K − y)
=
∫

dy

y
+
∫

dy

K − y
= log |y| − log |K − y| = rt + c,
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so

log
∣
∣
∣

y

K − y

∣
∣
∣ = rt + c.

We can now exponentiate both sides of the equation to obtain

∣
∣
∣

y

K − y

∣
∣
∣ = ert+c = ert ec.

If we remove the absolute value bars from the left-hand side, we can define a new
constant C on the right-hand side, equal to e−c if 0 < y < K , and equal to −e−c

otherwise, thus rewriting the right-hand side as 1
C
ert . Finally, we solve for y, and

obtain the family of solutions

y = K

1 + Ce−rt
(B.24)

as in Sect. B.3. This family contains all solutions of (B.8) except for the constant
solution y = 0. A qualitative observation is that if r > 0 every positive solution
approaches the limit K as t → ∞. (The only other non-negative solution is the
constant solution y ≡ 0).

The explicit solution of the logistic differential equation is complicated, requiring
some knowledge of techniques of integration (separation into partial fractions) as
well as some algebraic manipulations to convert the implicit function given by
integration into an explicit expression. In Sect. B.5, we will see how to obtain the
qualitative observation that if r > 0, every positive solution approaches the limit K
as t → ∞ without the need to go through these calculations.

B.5 Qualitative Properties of Differential Equations

We have seen some instances in which all solutions of a differential equation, or
at least all solutions with initial values in some interval, tend to the same limit as
t → ∞. Two examples are the (separable) linear differential equation with constant
coefficients

y′ = −ay + b (B.25)

for which every solution approaches the limit b
a

as t → ∞ provided a > 0
(Sect. B.4), and the logistic differential equation (B.8) for which every solution with
positive initial value approaches the limit K as t → ∞ (Sect. B.4) if r > 0.
In applications we are often particularly interested in the long-term behavior of
solutions, especially since many of the models we develop will be complex enough
to make finding an explicit solution impractical. In this section, we describe some
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information of this nature which may be obtained indirectly, without explicit
solution of a differential equation. Properties of solutions obtained without actually
finding an expression for the solutions are called qualitative properties.

We shall study only differential equations which do not depend explicitly on the
independent variable t , of the general form

y′ = g(y). (B.26)

Such differential equations are called autonomous. We will always assume that the
function g(y) is sufficiently smooth that the existence and uniqueness theorem of
Sect. B.3 is valid, and there is a unique solution of the differential equation (B.26)
through each initial point. An autonomous differential equation is always separable,
but if the integral

∫ dy
g(y)

is difficult or impossible to evaluate, solution by separation
of variables is impractical. In Sect. B.4, when we established the method of
separation of variables, we pointed out the possibility of constant solutions which
do not come from separation of variables. It will turn out that examination of these
constant solutions is of central importance in the qualitative analysis. We begin with
an example, the logistic equation already solved explicitly in Sect. B.3.

Example 1 Determine the behavior as t → ∞ of solutions of the logistic
equation (B.8) with y(0) > 0.

Solution We write

g(y) = ry
(

1 − y

K

)
,

and note that g(y) > 0 if 0 < y < K, g(y) < 0 if y > K . Since a solution
y(t) of (B.8) has the property that y(t is increasing if g(y(t)) > 0, a solution with
0 < y(0) < K increases for all t such that y(t) < K . However, this solution must
remain less than K for all t , because if there were a value t∗ such that y(t∗) = K ,
there would be two solutions with y(t∗) = K , namely the solution y(t) and the
constant solution y = K , and this would violate the uniqueness theorem. Thus y(t)

is an increasing function for all t bounded above by K , and therefore tends to a limit
y∞ as t → ∞. If y∞ < K, then

lim
t→∞ g(y(t)) = g(y∞) > 0,

and this is a contradiction because if y(t) is a monotone increasing differentiable
function that tends to a limit, its derivative must approach zero. Therefore, we have
shown that

lim
t→∞ y(t) = K.

A similar argument if y(0) > K shows that the solution y(t) decreases monotoni-
cally to the limit K , and we have shown that every solution of (B.8) with y(0) > 0
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Fig. B.3 Phase line for the
logistic equation

approaches the limit K as t → ∞ using only information about the sign of the
function g(y). We may describe this pictorially by drawing the phase line. This is
the graph of the function g(y) together with arrows drawn along the y-axis to the
right on intervals in which the function g(y) is positive (corresponding to intervals
in which a solution y(t) is increasing), and arrows drawn to the left on intervals
on which the function g(y) is negative. Points where g(y) = 0 correspond to
constant solutions of the differential equation, and the arrows indicate which of
these equilibrium points are approached by other solutions (the equilibrium y = K

for the logistic equation), and which equilibrium points repel solutions beginning
near them (the equilibrium y = 0 for the logistic equation (Fig. B.3). �

The information given by the phase line is reflected in the graphs of solutions of
the logistic equation (Fig. B.4).

The analysis in general of the behavior as t → ∞ of the solutions of the
differential equation (B.26) follows a similar pattern, determined from the nature
of the constant solutions. The theory depends on the following properties of
autonomous differential equations. For simplicity, we shall consider only non-
negative values of t , and we will think of solutions as determined by their initial
values for t = 0.

Property 1 If ŷ is a solution of the equation g(y) = 0, then the constant function
y = ŷ is a solution of the differential equation y′ = g(y). Conversely, if y = ŷ is a
constant solution of the differential equation y′ = g(y), then ŷ is a solution of the
equation g(y) = 0.

To establish this property, we need only observe that because the derivative of
a constant function is the zero function, a constant function y = ŷ is a solution
of (B.26) if and only if g(ŷ) = 0. A solution ŷ of g(y) = 0 is called an equilibrium
or critical point of the differential equation (B.26), and the corresponding constant
solution of (B.26) is called an equilibrium solution.

The graphs of equilibrium solutions of an autonomous differential equa-
tion (B.26) are horizontal lines which separate the t − y plane into horizontal
bands of the form

{(t, y) | t ≥ 0, y1 < y < y2}
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Fig. B.4 Some solutions of
the logistic equation (B.8)
with r = 2, K = 2

where y1 and y2 are consecutive equilibria of (B.26), with no equilibrium of (B.26)
between y1 and y2.

Property 2 The graph of every solution curve of the differential equation y′ =
g(y) remains in the same band and is either monotone increasing [y′(t) > 0] or
monotone decreasing [y′(t) < 0] for all t ≥ 0, depending on whether g(y) > 0 or
g(y) < 0, respectively, in the band.

Suppose that y1 and y2 are consecutive equilibria of (B.26) and that y1 < y(0) <

y2. If g(y) is indeed smooth enough to apply the existence and uniqueness theorem
of Sect. B.3, then the graph of a solution cannot cross either of the constant solutions
which form the boundaries of the band; otherwise at the crossing there would be
a point in the t − y plane with two solutions passing through it, violating the
uniqueness. Therefore the solution must remain in this band for all t ≥ 0. If, for
example, g(y) > 0 for y1 < y < y2, then y′(t) = g{y(t)} > 0 for t ≥ 0, and the
solution y(t) is monotone increasing. A similar argument shows that if g(y) < 0 for
y1 < y < y2, the solution y(t) is monotone decreasing.

If y(0) is above the largest equilibrium of (B.26), the band containing the solution
is unbounded, and if g(y) > 0 in this band, then the solution y(t) may be (positively)
unbounded and does not necessarily exist for all t ≥ 0. Likewise, if y(0) is below the
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smallest equilibrium of (B.26) and if g(y) < 0 in the band containing the solution,
then the solution may be unbounded (negatively) and may fail to exist for all t ≥ 0.

Property 3 Every solution of the differential equation y′ = g(y) which remains
bounded for 0 ≤ t < ∞ approaches a limit as t → ∞.

This property is an immediate consequence of Property 2 and the fact from
calculus that a function which is bounded and monotone (either increasing or
decreasing) must approach a limit as t → ∞. In order to show which solutions
of a given differential equation have a limit, it is necessary to show which solutions
remain bounded. A solution may become unbounded positively (i.e., y(t) → +∞)
if it is monotone increasing when y is large. In many applications, g(y) < 0 for
large y, and in such a case every solution remains bounded, because solutions
which become large and positive must be decreasing. If, as is also frequently the
case in applications, y = 0 is an equilibrium and only non-negative solutions are
of interest, solutions cannot cross the line y = 0 and become negatively unbounded
(i.e., y(t) → −∞). In many applications, y stands for a quantity such as the number
of members of a population, the mass of a radioactive substance, the quantity of
money in an account, or the height of a particle above ground which cannot become
negative. In such a situation, only non-negative solutions are significant, and if
y = 0 is not an equilibrium but a solution reaches the value zero for some finite
t , we will consider the population system to have collapsed and the population to be
zero for all larger t . If this is the case we need not be concerned with the possibility
of solutions becoming negatively unbounded even if y = 0 is not an equilibrium.

Property 4 The only possible limits as t → ∞ of solutions of the differential
equation y′ = g(y) are the equilibria of the differential equation.

To see why this property is true, we use the fact from calculus that if a
differentiable function tends to a limit as t → ∞, then its derivative must tend
to zero. If a solution y(t) of y′ = g(y) tends to zero, then by the continuity of the
function g(y) we have

0 = lim
t→∞ y′(t) = lim

t→∞ g{y(t)} = g{ lim
t→∞ y(t)}.

Thus, limt→∞ y(t) must be a root of the equation g(y) = 0, and hence an
equilibrium of (B.26).

In applications, the initial condition usually comes from observations and is
subject to experimental error. For a model to be a plausible predictor of what will
actually occur, it is important that a small change in the initial value does not
produce a large change in the solution. An equilibrium ŷ of (B.26) such that every
solution with initial value sufficiently close to ŷ approaches ŷ as t → ∞ is said
to be asymptotically stable. If there are solutions which start arbitrarily close to
an equilibrium but move away from it, then the equilibrium is said to be unstable.
For the logistic differential equation (B.8) the equilibrium y = 0 is unstable, and
the equilibrium y = K is asymptotically stable. In applications, unstable equilibria
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Fig. B.5 Equilibria ŷ with
(a) g′(ŷ) < 0, (b) g′(ŷ) > 0

have no significance, because they can be observed only if the initial condition is
“just right.”

Property 5 An equilibrium ŷ of y′ = g(y) with g′(ŷ) < 0 is asymptotically
stable; an equilibrium ŷ with g′(ŷ) > 0 is unstable.

To establish this property, we note that if ŷ is an equilibrium with g′(ŷ) < 0
(g(y) has a negative slope at y = ŷ), then g(y) is positive if y < ŷ and
negative if y > ŷ (Fig. B.5a). In this case solutions above the equilibrium decrease
toward the equilibrium, while solutions below the equilibrium increase toward the
equilibrium. This shows that an equilibrium ŷ with g′(ŷ) < 0 is asymptotically
stable. By a similar argument, if g′(ŷ) > 0, solutions above the equilibrium increase
and solutions below the equilibrium decrease, with both moving away from the
equilibrium (Fig. B.5b).

The properties we have developed make it possible for us to make a complete
analysis of the asymptotic behavior, that is, the behavior as t → ∞, of solutions
of an autonomous differential equation (B.26) merely by examining the equilibria
and the nature of the function g(y) for large values of y. We begin by finding all
the equilibria (roots of the equation g(y) = 0). An equilibrium ŷ with g′(ŷ) < 0 is
asymptotically stable, and all solutions with initial value in the two bands adjoining
this equilibrium tend to it. An equilibrium ŷ with g′(ŷ) > 0 is unstable and repels
all solutions with initial value in the two bands adjoining it. An equilibrium ŷ with
g′(ŷ) = 0 must be analyzed more carefully. If g(y) is negative for values of y above
the largest equilibrium, then no solutions become positively unbounded. If g(y) is
positive for values of y above the largest equilibrium, then this equilibrium is unsta-
ble, and solutions with initial value above this equilibrium become unbounded. If
g(y) is negative for values of y below the smallest equilibrium, then this equilibrium
is likewise unstable, and solutions with initial value below this equilibrium become
negatively unbounded.

A convenient way to display the qualitative behavior of solutions of an
autonomous differential equation (B.26) is by drawing the phase line. We draw
the graph of the function g(y) and on the y-axis we may draw arrows to the right
where the graph is above the y-axis and to the left where the graph is below the
y-axis. The reason for doing this is that where the graph is above the axis g(y)

is positive and therefore the solution y of (B.26) is increasing, while where the
graph is below the axis g(y) is negative and therefore the solution y of (B.26) is
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Fig. B.6 A phase line
superimposed on the
corresponding graph of g(y)

decreasing. The points where the graph crosses the y-axis are the equilibria, and
we can see from the directions of the arrows along the axis which equilibria are
asymptotically stable and which are unstable. The phase line is the y-axis viewed as
the line on which the solution curve moves, thinking of t as a parameter. Thus, the
solution is described by the motion along the line, whose direction is given by the
arrows. The graph of Fig. B.6 describes a situation in which there are asymptotically
stable equilibria at y = −1 and y = 2, and an unstable equilibrium at y = 0.

Example 8 Describe the asymptotic behavior of solutions of the differential equa-
tion (B.25).

Solution Here g(y) = −ay + b, g′(y) = −a. The only equilibrium is y = b
a

.
If a > 0, this equilibrium is asymptotically stable, and g(y) < 0 if y is large and
positive, g(y) > 0 if y is large and negative. This means that every solution is
bounded and approaches the limit b

a
. If a < 0, however, the equilibrium is unstable.

Further, since g(y) > 0 above the equilibrium and g(y) < 0 below the equilibrium,
every solution is unbounded, either positively or negatively. �
Example 9 Describe the asymptotic behavior of solutions with y(0) ≥ 0 of the
differential equation

y′ = y
(
re−y − d

)
, (B.27)

where r and d are positive constants.
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Fig. B.7 A phase line and
graph of g(y) for (B.27), with
r < d

Fig. B.8 A phase line and
graph of g(y) for (B.27), with
r > d

Solution The equilibria of (B.27) are the solutions of y(re−y − d) = 0. Thus
there are two equilibria, namely y = 0 and the solution ŷ of re−y = d, which is
ŷ = log r

d
. If r < d, ŷ < 0, and only the equilibrium y = 0 is of interest. In this

case, g(y) < 0 for y > 0, and solutions with y(0) > 0 decrease to 0 (Fig. B.7).
If r > d, we define K to be log r

d
, so that the positive equilibrium is y = K .

We may now rewrite the differential equation (B.27) as y′ = ry
(
e−y − e−K

)
. For

the function g(y) = ry
(
e−y − e−K

)
, we have g′(y) = r

(
e−y − e−K

) − rye−y

and g′(0) = r(1 − e−K) > 0, implying that the equilibrium y = 0 is unstable.
The equilibrium y = K is asymptotically stable since g′(K) = −rKe−K < 0. All
positive solutions are bounded, because g(y) < 0 for y > K . Thus every solution
with y(0) > 0 tends to the limit K , while the solution with initial value zero is the
zero function and has limit zero (Fig. B.8). �
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We see that the solutions of (B.27), which has been suggested as a population
growth model with per capita birth rate re−y and per capita death rate d, behave
qualitatively in the same manner as solutions of the logistic equation. Some other
differential equations which exhibit the same behavior have been proposed as
population models. The original formulation of the logistic equation was based
on a per capita growth rate which should be a decreasing function of population
size, positive for small y but negative for large y. It is not difficult to show that
every population model of the form (B.26) for which the per capita growth rate is a
decreasing function of the population size y, and which is positive for 0 < y < K

and negative for y > K , has the property that every solution with y(0) > 0
approaches the limit K as t → ∞.

In many applications, the function g(y) has the form g(y) = yf (y), which has
the effect of guaranteeing that y = 0 is an equilibrium. Then g′(y) = f (y)+yf ′(y).
At the equilibrium y = 0, g′(0) = f (0) and at a non-zero equilibrium ŷ with
f (ŷ) = 0, g′(ŷ) = ŷ f ′(ŷ). Thus the equilibrium y = 0 is asymptotically stable
if f (0) < 0 and unstable if f (0) > 0; a non-zero equilibrium ŷ is asymptotically
stable if f ′(ŷ) < 0 and unstable if f ′(ŷ) > 0. We shall restate this result formally
as a theorem.

Equilibrium Stability Theorem An equilibrium ŷ of y′ = g(y) with g′(ŷ) < 0 is
asymptotically stable; an equilibrium ŷ with g′(ŷ) > 0 is unstable. The equilibrium
y = 0 of y′ = yf (y) is asymptotically stable if f (0) < 0 and unstable if f (0) > 0,
while a non-zero equilibrium ŷ is asymptotically stable if f ′(ŷ) < 0 and unstable if
f ′(ŷ) > 0.



Appendix C
Systems of Differential Equations

In the previous chapter we saw how to model and analyze continuously changing
quantities using differential equations. In many applications of interest there may
be two or more interacting quantities—populations of two or more species, for
instance, or parts of a whole, which depend upon each other. When the amount
or size of one quantity depends in part on the amount of another, and vice versa,
they are said to be coupled, and it is not possible or appropriate to model each
one separately. In these cases we write models which consist of systems of dif-
ferential equations. In this chapter, we will find that the quantitative and qualitative
approaches we used to analyze individual differential equations in Sects. B.2 and B.5
extend in a more or less natural way to cover systems of differential equations.
Extending them will require some basic multivariable calculus, principally the use
of partial derivatives and the idea of linear approximation.

C.1 The Phase Plane

Our purpose is to study two-dimensional autonomous systems of first-order differ-
ential equations of the general form

y′ = F(y, z) (C.1)

z′ = G(y, z)

Usually, it is not possible to solve such a system, by which we mean to find y and z

as functions of t so that

y′(t) = F(y(t), z(t)), z′(t) = G(y(t), z(t))
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for all t in some interval. However, we can often obtain information about the
relation between the functions y(t) and z(t). Geometrically, such information is
displayed as a curve in the y–z plane, called the phase plane for this system

An equilibrium of the system (C.1) is a solution (y∞,z∞) of the pair of equations

F(y, z) = 0, G(y, z) = 0. (C.2)

Geometrically, an equilibrium is a point in the phase plane. In terms of the
system (C.1), an equilibrium gives a constant solution y = y∞, z = z∞ of the
system. This definition is completely analogous to the definition of an equilibrium
given for a first-order differential equation in Sect. B.5.

The orbit of a solution y = y(t), z = z(t) of the system (C.1) is the curve in the
y–z phase plane consisting of all points (y(t), z(t)) for 0 ≤ t < ∞. A closed orbit
corresponds to a periodic solution because the orbit must travel repeatedly around
the closed orbit as t increases.

There is a geometric interpretation of orbits which is analogous to the interpreta-
tion given for solutions of first-order differential equations in Sect. B.3. Just as the
curve y = y(t) has slope y′ = f (t, y) at each point (t, y) along its length, an orbit
of (C.1) (considering z as an implicit function of y) has slope

dz

dy
= z′

y′ = G(y, z)

F (y, z)

at each point of the orbit. The direction field for a two-dimensional autonomous
system is a collection of line segments in the phase plane with this slope at each
point (y, z), and an orbit must be a curve which is tangent to the direction field at
each point of the curve. Computer algebra systems such as Maple and Mathematica
may be used to draw the direction field for a given system.

Example 1 Describe the orbits of the system

y′ = z, z′ = −y.

Solution If we consider z as a function of y, we have

dz

dy
= z′/y′ = −y

z
.

Solution by separation of variables gives

∫
z dz = −

∫
y dy,

and integration gives z2

2 = − y2

2 + c. Thus every orbit is a circle y2 + z2 = 2c with
center at the origin, and every solution is periodic. �
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To find equilibria of a system (C.1), it is helpful to draw the nullclines, namely
the curves F(y, z) = 0 on which y′ = 0, and G(y, z) = 0 on which z′ = 0. An
equilibrium is an intersection of these two curves.

C.2 Linearization of a System at an Equilibrium

Sometimes it is possible to find the orbits in the phase plane of a system of
differential equations, but it is rarely possible to solve a system of differential
equations analytically. For this reason, our study of systems will concentrate
on qualitative properties. The linearization of a system of differential equations
at an equilibrium is a linear system with constant coefficients, whose solutions
approximate the solutions of the original system near the equilibrium. In this section,
we shall see how to find the linearization of a system. In the next section, we shall
see how to solve linear systems with constant coefficients, and this will enable us to
understand much of the behavior of solutions of a system near an equilibrium.

Let (y∞, z∞) be an equilibrium of a system (C.1) that is, a point in the phase
plane such that (C.2). We will assume that the equilibrium is isolated, that is,
that there is a circle centered around (y∞, z∞) which does not contain any other
equilibrium. We shift the origin to the equilibrium by letting y = y∞ + u,
z = z∞ + v, and then make linear approximations to F(y∞ + u, z∞ + v) and
G(y∞ + u, z∞ + v). The difference here between a one-dimensional system and
a two-dimensional one is that the linear approximation in two or more dimensions
uses partial derivatives. Our approximations are

F(y∞ + u, z∞ + v) ≈ F(y∞, z∞) + Fy(y∞, z∞)u + Fz(y∞, z∞)v (C.3)

G(y∞ + u, z∞ + v) ≈ G(y∞, z∞) + Gy(y∞, z∞)u + Gz(y∞, z∞)v

with error terms h1 and h2, respectively, which are negligible relative to the linear
terms in (C.3) when u and v are small (i.e., close to the equilibrium).

The linearization of the system (C.1) at the equilibrium (y∞, z∞) is defined to be
the linear system with constant coefficients

u′ = Fy(y∞, z∞)u + Fz(y∞, z∞)v (C.4)

v′ = Gy(y∞, z∞)u + Gz(y∞, z∞)v.

To obtain it, we first note that y′ = u′, z′ = v′, and then substitute (C.3)
into (C.1). By (C.2) the constant terms are zero, and for the linearization we neglect
the higher-order terms h1 and h2. The coefficient matrix of the linear system (C.4)
is the matrix of constants

[
Fy(y∞, z∞) Fz(y∞, z∞)

Gy(y∞, z∞) Gz(y∞, z∞)

]

.
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The entries of this Jacobian matrix describe the effect of a change in each variable
on the growth rates of the two variables.

Example 1 Find the linearization at each equilibrium of the system

y′ = A − βyz − μy, z′ = βyz − (γ + μ)z.

(This corresponds to the classical Kermack–McKendrick SIR model for a possibly
endemic disease. Here y corresponds to the number of susceptible, uninfected
individuals, z to the number of infected, infective individuals, A to the birth rate,
μ to the death rate and β and γ to the infection and recovery rates, respectively.)

Solution The equilibria are the solutions of A = y(βz + μ), z(βy) = (γ + μ)z.
To satisfy the second of these equations, we must have either z = 0 or βy = γ +μ.
If z = 0, the first equation gives y = A/μ. If z > 0, the second equation gives
βy = γ + μ. Since

∂

∂y
[−βyz − μy] = −βz − μ,

∂

∂z
[−βyz] = −βy,

∂

∂y
[βyz − (γ + μ)z] = βz,

∂

∂z
[βyz − (γ + μ)z] = βy − (γ + μ),

the linearization at an equilibrium (y∞,z∞) is

u′ = −(βz∞ + μ)u − βy∞v,

v′ = βz∞u + (βy∞ − (γ + μ))v.

At the equilibrium (A/μ, 0) the linearization is

u′ = −μu − β
A

μ
v

v′ = β
A

μ
− (γ + μ)v.

At the other equilibrium with I > 0 the linearization is

u′ = −(βI∞ + μ)u − (μ + α)v

v′ = βI∞u. �

An equilibrium of the system (C.1) with the property that every orbit with
initial value sufficiently close to the equilibrium remains close to the equilibrium
for all t ≥ 0, and approaches the equilibrium as t → ∞, is said to be locally
asymptotically stable. An equilibrium of (C.1) with the property that some solutions
starting arbitrarily close to the equilibrium move away from it is said to be unstable.
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These definitions are completely analogous to those given in Sect. B.5 for first-order
differential equations. We speak of local asymptotic stability to distinguish from
global asymptotic stability, which is the property that all solutions, not merely those
with initial value sufficiently close to the equilibrium, approach the equilibrium. If
we speak of asymptotic stability of an equilibrium, we will mean local asymptotic
stability unless we specify that the asymptotic stability is global.

The fundamental property of the linearization which we will use to study stability
of equilibria is the following result, which we state without proof. The proof may
be found in any text which covers the qualitative study of nonlinear differential
equations. Here we suppose F and G to be twice differentiable, that is, smooth
enough for the linearization to give a correct picture.

Linearization Theorem If (y∞, z∞) is an equilibrium of the system

y′ = F(y, z), z′ = G(y, z)

and if every solution of the linearization at this equilibrium approaches zero as
t → ∞, then the equilibrium (y∞, z∞) is (locally) asymptotically stable. If the
linearization has unbounded solutions, then the equilibrium (y∞, z∞) is unstable.

For a first-order differential equation y′ = g(y) at an equilibrium y∞, the
linearization is the first-order linear differential equation u′ = g′(y∞)u. We may
solve this differential equation by separation of variables and see that all solutions
approach zero if g′(y∞) < 0, and there are unbounded solutions if g′(y∞) > 0.
We have seen in Sect. B.5, without recourse to the linearization, that the equilibrium
is locally asymptotically stable if g′(y∞) < 0 and unstable if g′(y∞) > 0. The
linearization theorem is valid for systems of any dimension and is the approach
needed for the study of stability of equilibria for systems of dimension higher than 1.

Note that there is a case where the theorem above does not draw any conclusions,
namely the case where the linearization about the equilibrium is neither asymptot-
ically stable nor unstable. In this case, the equilibrium of the original (nonlinear)
system may be asymptotically stable, unstable, or neither.

Example 2 For each equilibrium of the system

y′ = z, z′ = −2(y2 − 1)z − y

determine whether the equilibrium is asymptotically stable or unstable.

Solution The equilibria are the solutions of z = 0, −2(y2 − 1)z − y = 0, and thus
the only equilibrium is (0,0). Since ∂

∂y
[z] = 0, ∂

∂z
[z] = 1, and

∂

∂y
[−2(y2 − 1)z − y] = −4yz − 1,

∂

∂z
[−2(y2 − 1)z − y] = −2(y2 − 1),
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the linearization at (0,0) is u′ = 0u + 1v = v, v′ = −u + 2v. We can actually
solve this system of equations outright by using a clever trick to reduce it to a single
equation. We subtract the first equation from the second to give (v − u)′ = (v − u).
This is a first-order differential equation for (v − u), whose solution is v − u =
c1e

t . This partial result is already enough to tell us that the equilibrium is unstable,
as since the difference between u and v grows exponentially, at least one of them
must therefore grow exponentially as well. As there are unbounded solutions, we
conclude that the equilibrium (0,0) is unstable. �

C.3 Solution of Linear Systems with Constant Coefficients

We have seen in the preceding section that the stability of an equilibrium of a system
of differential equations is determined by the behavior of solutions of the system’s
linearization at the equilibrium. This linearization is a linear system with constant
coefficients (recall that a linear system has right-hand sides linear in y and z). Thus,
in order to be able to decide whether an equilibrium is asymptotically stable, we
need to be able to solve linear systems with constant coefficients. We were able
to do this in the examples of the preceding section because the linearizations took
a simple form with one of the equations of the system containing only a single
variable. In this section we shall develop a more general technique.

The problem we wish to solve is a general two-dimensional linear system with
constant coefficients,

y′ = ay + bz, (C.5)

z′ = cy + dz,

where a, b, c, and d are constants. We look for solutions of the form

y = Yeλt , z = Zeλt , (C.6)

where λ, Y , and Z are constants to be determined, with Y and Z not both zero. When
we substitute the form (C.6) into the system (C.5), using y′ = λYeλt , z′ = λZeλt ,
we obtain two conditions

λYeλt = aYeλt + bZeλt ,

λZeλt = cYeλt + dZeλt ,

which must be satisfied for all t . Because eλt �= 0 for all t , we may divide these
equations by eλt to obtain a system of two equations which do not depend on t ,
namely

λY = aY + bZ,

λZ = cY + dZ
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or

(a − λ)Y + bZ = 0, (C.7)

cY + (d − λ)Z = 0.

The pair of equations (C.7) is a system of two homogeneous linear algebraic
equations for the unknowns Y and Z. For certain values of the parameter λ this
system will have a solution other than the obvious solution Y = 0, Z = 0. In order
that the system (C.7) have a non-trivial solution for Y and Z, it is necessary that the
determinant of the coefficient matrix, which is (a−λ)(d −λ)−bc, be equal to zero
(this result comes from linear algebra). This gives a quadratic equation, called the
characteristic equation, of the system (C.5) for λ. We may rewrite the characteristic
equation as

λ2 − (a + d)λ + (ad − bc) = 0. (C.8)

We will assume that ad − bc �= 0, which is equivalent to the assumption that
λ = 0 is not a root of (C.8). Our reason for this assumption is the following: If
λ = 0 is a root (or, equivalently, ad − bc = 0), the equilibrium conditions will
reduce to a single equation since each equation is a constant multiple of the other
and there is effectively only one equilibrium equation. Consequently, there will be
a line of non-isolated equilibria. We do not wish to explore this problem in part
because the treatment of non-isolated equilibria is complicated and in part because
it is not possible to apply the linearization theorem of the previous section when the
linearization of a system about an equilibrium is of this form.

If ad − bc �= 0, the characteristic equation has two roots λ1 and λ2, which may
be real and distinct, real and equal, or complex conjugates. If λ1 and λ2 are the roots
of (C.8), then there is a solution (Y1, Z1) of (C.7) corresponding to the root λ1, and
a solution (Y2, Z2) of (C.7) corresponding to the root λ2. These, in turn, give us two
solutions

y = Y1e
λ1t , z = Z1e

λ1t

y = Y2e
λ2t , z = Z2e

λ2t

of the system (C.5). We note that if λ is a root of (C.8), then equations (C.7) reduce
to a single equation. Thus we may make an arbitrary choice for one of Y , Z and the
other is then determined by (C.7).

Because the system (C.5) is linear, it is easy to see that every constant multiple of
a solution of (C.7) is also a solution and also that the sum of two solutions of (C.7)
is also a solution. It is possible to show that if we have two different solutions of
the system (C.5), then every solution of (C.5) is a constant multiple of the first
solution plus a constant multiple of the second solution. By “different” we mean
that neither solution is a constant multiple of the other. Here, if the roots λ1 and λ2
of the characteristic equation (C.8) are distinct, we do have two different solutions
of (C.5), and then every solution of system (C.5) has the form
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y = K1Y1e
λ1t + K2Y2e

λ2t , (C.9)

z = K1Z1e
λ1t + K2Z2e

λ2t

for some constants K1 and K2. The form (C.9) with two arbitrary constants K1
and K2 is called the general solution of the system (C.5). If initial values y(0) and
z(0) are specified, these two initial values may be used to determine values for the
constants K1 and K2, and thus to obtain a particular solution in the family (C.9).

Example 1 Find the general solution of the system

y′ = −y − 2z, z′ = y − 4z

and also the solution such that y(0) = 3, z(0) = 1.

Solution Here a = −1, b = −2, c = 1, d = −4, so that a+d = −5, ad −bc = 6,
and the characteristic equation is λ2 + 5λ + 6 = 0, with roots λ1 = −2, λ2 = −3.
With λ = −2, both equations of the algebraic system (C.7) are Y − 2Z = 0, and
we may take Y = 2, Z = 1. The resulting solution of (C.5) is y = 2e−2t , z = e−2t .
With λ = −3, both equations of the algebraic system (C.7) are Y − Z = 0, and we
may take Y = 1, Z = 1. The resulting solution of (C.5) is y = e−3t , z = e−3t . Thus
the general solution of the system is

y = 2K1e
−2t + K2e

−3t , z = K1e
−2t + K2e

−3t .

To satisfy the initial conditions, we substitute t = 0, y = 3, z = 1 into this form,
obtaining a pair of equations 2K1 + K2 = 3, K1 + K2 = 1. We may subtract the
second of these from the first to give K1 = 2, and then K2 = −1. This gives, as the
solution of the initial value problem,

y = 4e−2t − e−3t , z = 2e−2t − e−3t . �

In the language of linear algebra, λ is an eigenvalue and (Y, Z) is a corresponding
eigenvector of the 2 × 2 matrix

A =
[
a b

c d

]

Note that a+d is the trace, denoted by trA, and ad−bc is the determinant, denoted
by detA, of the matrix A. The sum of the eigenvalues of A is the trace, and the
product of the eigenvalues is the determinant. This is seen easily by writing (C.8) as

λ2 − trAλ + detA = 0
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We will consider vectors to be column vectors, that is, matrices with two rows
and one column. Suppose the matrix A has two distinct real eigenvalues λ1, λ2 with
corresponding eigenvectors

[Y1, Z1], [Y2, Z2]

respectively (this approach can also be used if λ1 = λ2 provided there are two
independent corresponding eigenvectors). We define the matrix

P =
[
Y1 Y2

Z1 Z2

]

and then if we make the change of variable

[
y

z

]

= P

[
u

v

]

=
[
Y1 Y2

Z1 Z2

] [
u

v

]

the system (C.5) is transformed to the system

u′ = λ1u (C.10)

v′ = λ2v.

Since the system (C.10) is uncoupled, it may easily be solved explicitly to give

u = K1e
λ1t , v = K2e

λ2t .

We may then transform back to the original variables y, z to give the solution (C.9).
The linear algebra approach gives the same result that was obtained by our initial
approach of trying to find exponential solutions. Since it is constructive, it does not
make use of the result which we stated without proof that if we have two different
solutions of the system (C.5), then every solution of (C.5) is a constant multiple of
the first solution plus a constant multiple of the second solution.

If the characteristic equation (C.8) has a double root, the method we have used
gives only one solution of the system (C.5), and we need to find a second solution
in order to form the general solution. In order to see what form the second solution
must have we consider the special case c = 0 of (C.5). Then (C.5) becomes

y′ = ay + bz, (C.11)

z′ = dz.

Then the eigenvalues of the corresponding matrix A are a and d; if a = d, the
characteristic equation has a double root. However, the assumption c = 0 means that
we can solve the system (C.11) recursively. Every solution of the second equation
in (C.11) has the form
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z = Zedt

and we may substitute this into the first equation to give

y′ = ay + bZedt

This first order linear differential equation is easily solved. We multiply the equation
by e−at to give

y′e−at − aye−at = bZe(d−a)t . (C.12)

If a �= d, integration of (C.12) gives

ye−at = bZ

d − a
e(d−a)t + Y

where Y is a constant of integration. From this we obtain the solution

y = bZ

d
edt + Yeat

z = Zedt

which is equivalent to the solution (C.9) obtained earlier; note that here λ1 =
a, λ2 = d.

A more interesting case arises when a = d, so that the two roots of the
characteristic equation are equal. Then (C.12) becomes

y′e−at − aye−at = bZ (C.13)

and integration gives

ye−at = bZt + Y

where Y is a constant of integration. From this we obtain the solution

y = bZteat + Yeat

z = Zeat .

This suggests that if there is a double root λ of the characteristic equation the needed
second solution of (C.5) will contain terms teλt as well as eλt . It is possible to show
(and the reader can verify) that if λ is a double root of (C.8), we must have λ = a+d

2
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and in addition to the solution y = Y1e
λt , z = Z1e

λt of (C.5) there is a second
solution, of the form

y = (Y2 + Y1t)e
λt , z = (Z2 + Z1t)e

λt

where Y1, Z1 are as in (C.7) and Y2, Z2 are given by

(a − λ)Y2 + bZ2 = Y1,

cY2 + (d − λ)Z2 = Z1.

Thus the general solution of the system (C.5) in the case of equal roots is

y = (K1Y1 + K2Y2)e
λt + K2Y1te

λt , (C.14)

z = (K1Z1 + K2Z2)e
λt + K2Z1te

λt .

Note that if (C.8) has a single root and b = 0, then λ = a = d, and we have Y1 = 0,
Z1 = cY2, so that the general solution becomes

y = K3e
λt , z = K4e

λt + cK3te
λt ,

where K3 ≡ K2Y2 and K4 ≡ cK1Y2 + K2Z2 are arbitrary constants. Likewise
if (C.8) has a single root and c = 0, then λ = a = d, Z1 = 0, Y1 = bZ2, and the
general solution reduces to

y = K5e
λt + bK6te

λt , z = K6e
λt

with arbitrary constants K5 ≡ bK1Z2 + K2Y2 and K6 ≡ K2Z2. If b and c are both
zero, the system becomes uncoupled

y′ = ay, z′ = dz

and is easily solved by integration to give y = K1e
at , z = K2e

dt . This is the
solution in all cases, regardless of whether the characteristic equation has distinct
roots or equal roots.

Example 2 Find the general solution of the system

y′ = z, z′ = −y + 2z

and also the solution such that y(0) = 2, z(0) = 3.

Solution Since a = 0, b = 1, c = −1, d = 2, we have a + d = 2, ad − bc = 1.
The characteristic equation is λ2 − 2λ + 1 = 0, with a double root λ = 1. With
λ = 1, both equations of the system (C.7) are Y − Z = 0, and we may take Y = 1,
Z = 1 to give the solution y = et , z = et of (C.5). Substituting these values into the
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equations for Y2, Z2, we find that they reduce to the single equation −Y2 +Z2 = 1,
so we may take Y2 = 0, Z2 = 1. Equations (C.14) now give the general solution
y = K1e

t + K2te
t , z = (K1 + K2)e

t + K2te
t . To find the solution with y(0) = 2,

z(0) = 3, we substitute t = 0, y = 2, z = 3 into this form, obtaining the pair of
equations K1 = 2, K1 + K2 = 3. Then K2 = 1, and the solution satisfying the
initial conditions is y = 2et + tet , z = 3et + tet . �

From a linear algebra perspective we may make a change of variable of the
system (C.5) just as in the case where we had two eigenvectors. We define the matrix

P =
[
Y1 Y2

Z1 Z2

]

with

[
Y1

Z1

]

an eigenvector of the matrix A as before, but with

[
Y2

Z2

]

chosen arbitrarily, except that the determinant of P must be non-zero. Then under
the change of variable

[
y

z

]

= P

[
u

v

]

=
[
Y1 Y2

Z1 Z2

] [
u

v

]

the system (C.5) is transformed to a system of the form (C.5) with c = 0 which may
be solved explicitly, as we have seen.

A particularly clever choice of [Y2, Z2] is the solution of the system of linear
equations

aY2 + bZ2 = λY2 + Y1

cY2 + dZ2 = λZ2 + Y2.

It is possible to show that this system always has a solution. With this choice of
Y2, Z2, the system (C.5) is transformed to

u′ = λ1u + v (C.15)

v′ = λ2v.
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If we solve the system (C.15) recursively by the method used to solve the
system (C.11) and the solution is then transformed back to the original variables,
we obtain the solution (C.14).

Another complication arises if the characteristic equation (C.8) has complex
roots. While the general solution of (C.5) is still given by (C.9), in this case the
constants λ1 and λ2 are complex, and the solution is in terms of complex functions.
Complex exponentials, however, can be defined with the aid of trigonometric
functions (eiθ ≡ cos θ + i sin θ for real θ ), so it is still possible to give the solution
of (C.5) in terms of real exponential and trigonometric functions. In this case, if the
characteristic equation (C.8) has conjugate complex roots λ = α ± iβ, where α and
β are real and β > 0, equations (C.9) become

y = (K1Y1 + K2Y2)e
αt cosβt + i(K1Y1 − K2Y2)e

αt sinβt,

z = (K1Z1 + K2Z2)e
αt cosβt + i(K1Z1 − K2Z2)e

αt sinβt.

We can eliminate the imaginary coefficients by defining Q1 ≡ i(K1 − K2), Q2 ≡
K1 + K2, and taking (a − λi)Yi + bZi = 0 for i = 1, 2 from (C.9) to arrive at the
form

y = Q1be
αt sinβt + Q2be

αt cosβt,

z = −[Q1(a − α) − Q2β]eαt sinβt + [Q1β − Q2(a − α)]eαt cosβt.

Example 3 Find the general solution of the system

y′ = −2z, z′ = y + 2z

and also the solution with y(0) = −2, z(0) = 0.

Solution We have a = 0, b = −2, c = 1, d = 2, and the characteristic equation is
λ2 − 2λ + 2 = 0, with roots λ = 1 ± i. The general solution is then

y = −2K1e
t sin t − 2K2e

t cos t, z = (K1 − K2)e
t sin t + (K1 + K2)e

t cos t.

To find the solution with y(0) = −2, z(0) = 0, we substitute t = 0, y = −2, z = 0
into this form, obtaining −2K2 = −2, K1 + K2 = 0, whose solution is K1 = −1,
K2 = 1. This gives the particular solution

y = 2et sin t − 2et cos t, z = −2et sin t. �

In many applications, especially in analyzing stability of an equilibrium, the
precise form of the solution of a linear system is less important to us than the
qualitative behavior of solutions. It will turn out that often the crucial question is
whether all solutions of a linear system approach zero as t → ∞. The nature of
the origin as an equilibrium of the linear system (C.5) depends on the roots of the
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characteristic equation (C.8). If both roots of (C.8) are real and negative, then the
solutions of (C.5) are combinations of negative exponentials. This implies that all
orbits approach the origin and the origin is asymptotically stable. If the roots of (C.8)
are real and of opposite sign, then there are solutions which are positive exponentials
and solutions which are negative exponentials. Thus there are solutions approaching
the origin and solutions moving away from the origin, and the origin is unstable.
If the roots of (C.8) are complex, the orbits approach the origin if their real parts
are negative. We conclude that the origin is an asymptotically stable equilibrium
of (C.5) if both roots of (C.8) have negative real part and unstable if at least one
root of(C.8) has positive real part.

Solution of systems of linear differential equations with constant coefficients can
be carried out more economically with the use of vectors and matrices. A system

y′
1 = a11x1 + a12x2 + . . . + a1nxn

y′
2 = a21x1 + a22x2 + . . . + a2nxn

...
...
...

y′
n = am1x1 + am2x2 + . . . + amnxn

may be written in the form

y′ = Ay, (C.16)

where A is an n × n matrix and y and y′ are column vectors,

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann,

⎤

⎥
⎥
⎥
⎦

y =

⎡

⎢
⎢
⎢
⎣

y1

y2
...

yn

⎤

⎥
⎥
⎥
⎦

.

We attempt to find solutions of the form y = eλt c with c a constant column vector.
Substituting this form into (C.16) we obtain the condition

λeλt c = Aeλtc,

or

Ac = λc.

Thus λ be an eigenvalue of the matrix A and c must be a corresponding eigenvector.
If the eigenvalues of A are distinct, this procedure generates n solutions of (C.16)
and it can be shown that every solution is a linear combination of these solutions.
This explains the exponential solutions that we obtained. If there are multiple
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eigenvalues of A, it may be necessary to obtain additional solutions, and these
will be exponential functions multiplied by powers of t . If some eigenvalues are
complex, the corresponding complex exponential solutions may be replaced by
products of exponential functions and sines or cosines.

C.4 Stability of Equilibria

In order to apply the linearization theorem of Sect. C.2 to questions of stability of
an equilibrium, we must determine conditions under which all solutions of a linear
system with constant coefficients

y′ = ay + bz, (C.17)

z′ = cy + dz

approach zero as t → ∞. As we saw in Sect. C.3, the nature of the solutions
of (C.17) is determined by the roots of the characteristic equation

λ2 − (a + d)λ + (ad − bc) = 0. (C.18)

If the roots λ1 and λ2 of (C.18) are real, then the solutions of (C.17) are made up of
terms eλ1t and eλ2t , or eλ1t and teλ1t if the roots are equal. In order that all solutions
of (C.17) approach zero, we require λ1 < 0 and λ2 < 0, so that the terms will be
negative exponentials. If the roots are complex conjugates, λ = α±iβ, then in order
that all solutions of (C.17) approach zero, we require α < 0. Thus if the roots of
the characteristic equation have negative real part, all solutions of the system (C.17)
approach zero as t→ ∞. In a similar manner, we may see that if a root of the
characteristic equation has positive real part, then (C.17) has unbounded solutions.

It turns out, however, that it is not necessary to solve the characteristic equation in
order to determine whether all solutions of (C.17) approach zero, as there is a useful
criterion in terms of the coefficients of the characteristic equation. The basic result is
that the roots of a quadratic equation λ2+a1λ+a2 = 0 have negative real part if and
only if a1 > 0 and a2 > 0. Applying this to the characteristic equation (C.18) and
the system (C.17), we obtain the following result for linear systems with constant
coefficients:

Stability Theorem for Linear Systems Every solution of the linear system with
constant coefficients (C.17) approaches zero as t → ∞ if and only if the trace a+d

of the coefficient matrix of the system is negative and the determinant ad − bc

of the system’s coefficient matrix is positive. If either the trace is positive or the
determinant is negative, there is at least one unbounded solution.
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Example 1 Determine whether all solutions tend to zero or whether there are
unbounded solutions for each of the following systems:

(i) y’ = -y - 2z, z’ = y - 4z
(ii) y’ = z, z’ = -u - 2v

(iii) y’ = -2z, z’ = y + 2z

Solution (i) The characteristic equation is λ2 +5λ+6 = 0, with roots λ = −2, λ =
−3. Thus all solutions tend to zero. Alternatively, since the trace of the coefficient
matrix is −5 < 0 and the determinant is 6 > 0, the stability theorem gives the same
conclusion. For (ii), the characteristic equation is λ2 + 2λ + 1 = 0 with a double
root λ = −1, and thus all solutions tend to zero. For (iii), the characteristic equation
is λ2 − 2λ + 2 = 0, and since the trace is positive, there are unbounded solutions.
As we indicated in the previous section, we could also have drawn this conclusion
from a phase portrait. �

If we apply the stability theorem for linear systems to the linearization (C.4) of a
system (C.2)at an equilibrium (y∞, z∞), we obtain the following result.

Equilibrium Stability Theorem Let (y∞, z∞) be an equilibrium of a system y′ =
F(y, z), z′ = G(y, z), with F and G twice differentiable. Then if the trace of
the Jacobian matrix at the equilibrium is negative and the determinant of the
Jacobian matrix at the equilibrium is positive, the equilibrium (y∞, z∞) is locally
asymptotically stable. If either the trace is positive or the determinant is negative,
then the equilibrium (y∞, z∞) is unstable.

Example 2 Determine whether each equilibrium of the system

y′ = z, z′ = 2(y2 − 1)z − y

is locally asymptotically stable or unstable.

Solution The equilibria are the solutions of z = 0, 2(y2 − 1)z − y = 0, and thus
the only equilibrium is (0,0). Here F(y, z) = z, with partial derivatives 0 and 1,
respectively, and G(y, z) = 2(y2 − 1)z − y, with partial derivatives 4yz − 1 and
2(y2 − 1), respectively. Therefore the Jacobian matrix at the equilibrium is

[
0 1

−1 −2

]

with trace −2 and determinant 1, as in Example 1(ii). Thus the equilibrium (0,0) is
locally asymptotically stable. �
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Example 3 Determine whether each equilibrium of the system

y′ = y(1 − 2y − z)

z′ = z(1 − y − 2z)

is locally asymptotically stable or unstable.

Solution The equilibria are the solutions of y(1 − 2y − z) = 0, z(1 − y − 2z) = 0.
One solution is (0,0); a second is the solution of y = 0, 1 − y − 2z = 0, which is
(0, 1

2 ); a third is the solution of z = 0, 1 − 2y − z = 0, which is ( 1
2 ,0); and a fourth

is the solution of 1 − 2y − z = 0, 1 − y − 2z = 0, which is ( 1
3 , 1

3 ). The Jacobian
matrix at an equilibrium (y∞, z∞) is

[
1 − 4y∞ − z∞ −y∞

−z∞ 1 − y∞ − 4z∞

]

.

At (0,0), this matrix has trace 1 and determinant 1, and thus the equilibrium is
unstable. At (0, 1

2 ), this matrix has trace − 1
2 and determinant − 1

2 , and thus the
equilibrium is unstable. At ( 1

2 ,0), this matrix has trace − 1
2 and determinant − 1

2 , and
thus the equilibrium is unstable. At ( 1

3 , 1
3 ), this matrix has trace − 4

3 and determinant
1
3 , and thus this equilibrium is locally asymptotically stable. �

The careful reader will have noticed that, like the linearization theorem of
Sect. C.2, the equilibrium stability theorem given above has a hole of sorts in its
result, in that the theorem says nothing about the stability of equilibria for which the
trace and determinant lie on the boundary of conditions, in other words, for which
the trace or the determinant of the Jacobian matrix at the equilibrium is zero, so
that the linearization has solutions which do not approach zero as t → ∞ but stay
bounded. The reason for this “hole” is that in such cases, the linearization does not
give enough information to determine stability.

If all orbits beginning near an equilibrium remain near the equilibrium for t ≥ 0,
but some orbits do not approach the equilibrium as t → ∞, the equilibrium is said
to be stable, or sometimes neutrally stable. If the origin is neutrally stable for the
linearization at an equilibrium, then the equilibrium may also be neutrally stable for
the nonlinear system. However, it is also possible for the origin to be neutrally stable
for the linearization at an equilibrium, while the equilibrium is asymptotically stable
or unstable. Thus neutral stability of the origin for a linearization at an equilibrium
gives no information about the stability of the equilibrium.

We have seen in Sect. B.5 that a solution of an autonomous first-order differential
equation is either unbounded or approaches a limit as t → ∞. For an autonomous
system of two first-order differential equations, these same two possibilities exist.
In addition, however, there is the possibility of an orbit which is a closed curve,
corresponding to a periodic solution. Such an orbit is called a periodic orbit because
it is traversed repeatedly.
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Fig. C.1 Trajectories
approaching a limit cycle

There is a remarkable result which says essentially that these are the only
possibilities.

Poincaré-Bendixson Theorem A bounded orbit of a system of two first-order
differential equations which does not approach an equilibrium as t→ ∞ either
is a periodic orbit or approaches a periodic orbit as t→ ∞.

It is possible to show that a periodic orbit must enclose an equilibrium point in
its interior. In many examples, there is an unstable equilibrium, and orbits beginning
near this equilibrium spiral out towards a periodic orbit. A periodic orbit which is
approached by other (non-periodic) orbits is called a limit cycle. One example of a
limit cycle involves the system

y′ = y(1 − y2 − z2) − z,

z′ = z(1 − y2 − z2) + y,

which has its only equilibrium at the origin. The equilibrium is unstable, and
Fig. C.1 illustrates the fact that all orbits not beginning at the origin spiral coun-
terclockwise [in or out] toward the unit circle y2 + z2 = 1.

In many applications the functions y(t) and z(t) are restricted by the nature of
the problem to non-negative values. For example, this is the case if y(t) and z(t) are
population sizes. In such a case, only the first quadrant y ≥ 0, z ≥ 0 of the phase
plane is of interest. For a system

y′ = F(y, z), z′ = G(y, z)

which has F(0, z) ≥ 0 for z ≥ 0 and G(y, 0) ≥ 0 for y ≥ 0, then since y′ ≥ 0 along
the positive z-axis (where y = 0) and z′ ≥ 0 along the positive y-axis (where z = 0),
no orbit can leave the first quadrant by crossing one of the axes. The Poincaré–
Bendixson theorem may then be applied to orbits in the first quadrant. In such a
case, the first quadrant is called an invariant set, a region with the property that
orbits must remain in the region.

If instead F and G are identically zero along the respective [half-]axes, then
y′ = 0 for {y = 0, z ≥ 0}, and z′ = 0 for {y ≥ 0, z = 0}. In this case, orbits which
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begin on an axis must remain on that axis, and orbits beginning in the interior of
the first quadrant (with y(0) > 0, z(0) > 0) must remain in the interior of the first
quadrant (i.e., y(t) > 0 and z(t) > 0 for t ≥ 0). If there is no equilibrium in the first
quadrant, there cannot be a periodic orbit, because a periodic orbit must enclose an
equilibrium. Thus, if there is no equilibrium in the first quadrant every orbit must be
unbounded.

Example 4 Show that every orbit in the region y > 0, z > 0 of the system

y′ = y(2 − y) − yz
y+1 ,

z′ = 4 yz
y+1 − z

approaches a periodic orbit as t → ∞.

Solution We have y′ = 0 when y = 0, and z′ = 0 when z = 0, so orbits starting in
the first quadrant remain in the first quadrant. Equilibria are the solutions of either
y = 0 or 2 − y = z

y+1 , and either z = 0 or 4y
y+1 = 1. If y = 0, we must also have

z = 0. If 2 − y = z
y+1 , we could have z = 0, which implies y = 2, or y = 1

3 , which

implies z = 20
9 . Thus there are three equilibria, namely (0,0), (2,0), and ( 1

3 ,
20
9 ). By

checking the values of the trace and determinant of the Jacobian matrix, which is

[
2 − 2y∞ − z∞

(1+y∞)2 − y∞
y∞+1

4z∞
(y∞+1)2

4y∞
y∞+1 − 1

]

,

we may see that each of the three equilibria is unstable. In order to apply the
Poincaré–Bendixson theorem, we must show that every orbit starting in the first
quadrant of the phase plane is bounded.

To show this, we might like to show that y′ and z′ are negative when y and/or
z are sufficiently large, but a glance at the equations tells us this isn’t necessarily
so. Therefore we instead consider some positive combination of y and z whose time
derivative does become negative far enough from the origin. In particular, consider
the function V (y, z) = 4y + z. If an orbit is unbounded, then along this orbit the
function V (y, z) must also be unbounded. The derivative of V (y, z) along an orbit
is

d

dt
V [y(t), z(t)] = 4y′(t) + z′(t) = 4y(2 − y) − z.

This is negative except in the bounded region defined by the inequality z <

4y(2 − y). Therefore the function V (y, z) cannot become unbounded, because it
is decreasing (dV/dt < 0) whenever it becomes large (z > 4y(2 − y), which is
true, for example, whenever V > 9). This proves that all orbits of the system are
bounded. Now we may apply the Poincaré–Bendixson theorem to see that every
orbit approaches a limit cycle. �



598 C Systems of Differential Equations

C.5 Qualitative Behavior of Solutions of Linear Systems

In Sect. C.2 we reduced the analysis of the stability of an equilibrium (x∞, y∞) of
a system of differential equations

x′ = F(x, y), y′ = G(x, y)

to the determination of the behavior of solutions of the linearization at the
equilibrium

u′ = Fx(x∞, y∞)u + Fy(x∞, y∞)v, (C.19)

v′ = Gx(x∞, y∞)u + Gy(x∞, y∞)v.

Next we shall analyze the various possibilities for the behavior of solutions of
the two-dimensional linear homogeneous system with constant coefficients

x′ = ax + by, (C.20)

y′ = cx + dy,

where a, b, c, and d are constants, in order that we might describe the behavior
of solutions of the linearization at an equilibrium. We will then be able to state
some refinements of the linearization theorem of Sect. C.3 that give more specific
information about the behavior of solutions near an equilibrium as determined by the
Jacobian matrix at the equilibrium. We will assume throughout that ad − bc �= 0.
This implies that the origin is the only equilibrium of the system (C.20). If this
system is the linearization at an equilibrium (x∞, y∞) of a nonlinear system (C.19),
then this equilibrium is isolated, meaning that there is a disc centered at (x∞, y∞)

containing no other equilibrium of the nonlinear system. It is convenient to use
vector–matrix notation: We let x denote the column vector

[
x
y

]
, x′ the column vector

[
x′
y′
]
, and A the 2 × 2 matrix

[
a b

c d

]

.

Then, using the properties of matrix multiplication, we may rewrite the linear system
x′ = ax + by, y′ = cx + dy in the form

x′ = Ax.

A linear change of variable x = Pu, with P a nonsingular 2 × 2 matrix (which
represents a rotation of the axes and a change of scale along the axes), transforms
the system to Pu′ = APu, or

u′ = P−1APu = Bu.
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This is of the same type as the original system x′ = Ax, and its coefficient matrix
B = P−1AP is similar to A. If we can solve for u, we can then reconstruct
x = Pu, and in fact the qualitative properties of solutions for u are preserved in
this reconstruction. Thus, we may describe the various possible phase portraits of
x′ = Ax by listing the various possible canonical forms of A under similarity and
constructing the phase portrait for each possibility.

Canonical Form Theorem The matrix

A =
[
a b

c d

]

,

with detA = ad − bc �= 0, is similar under a real transformation to one of

(i)

[
λ 0
0 μ

]

, λ > μ > 0 or λ < μ < 0.

(ii)

[
λ 0
0 λ

]

, λ > 0 or λ < 0.

(iii)

[
λ 1
0 λ

]

, λ > 0 or λ < 0.

(iv)

[
λ 0
0 μ

]

, λ > 0 > μ

(v)

[
0 β

−β 0

]

, β �= 0.

(vi)

[
α β

−β α

]

, α > 0, β �= 0 or α < 0, β �= 0.

We now describe the phase portraits for each of these cases in turn.

Case (i) The transformed system is u′ = λu, v′ = μv, with solution u =
u0e

λt , v = v0e
μt . If λ < μ < 0 then u and v both tend to zero as t → ∞ and

v/u = v0e
(μ−λ)t /u0 → +∞. Thus, every orbit tends to the origin with infinite

slope (except if v0 = 0, in which case the orbit is on the u-axis), and the phase
portrait is as shown in Fig. C.2. If λ > μ > 0 the portrait is the same, except that
the arrows are reversed.

Case (ii) The system is u′ = λu, v′ = λv, with solution u = u0e
λt , v = v0e

λt . If
λ < 0 both u and v tend to zero as t → ∞ and v/u = v0/u0. Thus every orbit is
a straight line going to the origin, and all slopes as the orbit approaches the origin
are possible. The phase portrait is as shown in Fig. C.3. If λ > 0, the portrait is the
same except that the arrows are reversed.

Case (iii) The system is u′ = λu+v, v′ = λv. The solution of the second equation
is v = v0e

λt , and substitution into the first equation gives the first-order linear
equation u′ = λu+ v0e

λt whose solution is u = (u0 + v0t)e
λt . If λ < 0, both u and

v tend to zero as t → ∞, and v/u = v0/(u0 + v0t) tends to zero unless v0 = 0, in
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Fig. C.2 Case (i)

Fig. C.3 Case (ii)

which case the orbit is the u- axis. Because u = (u0 + v0t)e
λt , we have du/dt =(

(u0λ+v0)+λv0t
)
eλt , and therefore du/dt = 0 when t = −(v0 +u0λ)/λv0. Thus

except for the orbits on the u-axis, every orbit has a maximum or minimum u-value
and then turns back toward the origin. The phase portrait is as shown in Fig. C.4. If
λ > 0, the portrait is the same except that the arrows are reversed.

Case (iv) The solution is u = u0e
λt , v = v0e

μt just as in Case (i), but now u is
unbounded and v → 0 as t → ∞, unless u0 = 0, in which case the orbit is on the
v-axis. The phase portrait is as shown in Fig. C.5.

Case (v) The system is u′ = βv, v′ = −βu. Then u′′ = βv′ = −β2u and u =
A cosβt + B sinβt for some A,B. Thus v = u′/β = −A sinβt + B cosβt and
u2 +v2 = A2 +B2. Every orbit is a circle, clockwise if β > 0 and counterclockwise
if β < 0. The phase portrait for β > 0 is as shown in Fig. C.6.



C Systems of Differential Equations 601

Fig. C.4 Case (iii)

Fig. C.5 Case (iv)

Fig. C.6 Case (v)
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Fig. C.7 Case (vi)

Case (vi) The system is u′ = αu + βv, v′ = −βu + αv. We make the change of
variables u = eαtp, v = eαtq, so that u′ = αeαtp + eαtp′, v′ = αeαtq + eαtq ′
reduces the system to p′ = βq, q ′ = −βp, which has been solved in Case (v).
Thus, u = eαt (A cosβt +B sinβt), v = eαt (−A sinβt +B cosβt), and u2 +v2 =
e2αt (A2 +B2). If α < 0, u2 + v2 decreases exponentially, and the orbits are spirals
inward to the origin, clockwise if β > 0 and counterclockwise if β < 0. The phase
portrait is as shown in Fig. C.7. If α > 0, the portraits are the same except that the
arrows are reversed.

These six cases may be classified as being of four distinct types. In Cases (i), (ii),
and (iii) all orbits approach the origin as t → +∞ (or as t → −∞ depending on
the signs of λ and μ) with a limiting direction, and the origin is said to be a node
of the system. In Case (iv), only two orbits approach the origin as t → +∞ or as
t → −∞, and all other orbits move away from the origin. In this case the origin
is said to be a saddle point. In Case (vi) every orbit winds around the origin in the
sense that its angular argument tends to +∞ or to −∞, and the origin is said to
be a vortex, spiral point, or focus. In Case (v), every orbit is periodic; in this case
the origin is said to be a center. According to the equilibrium stability theorem of
Sect. C.4, asymptotic stability of the origin for the linearization implies asymptotic
stability of an equilibrium of a nonlinear system. In addition, instability of the origin
for the linearization implies instability of an equilibrium of a nonlinear system. The
asymptotic stability or instability of the origin for a linear system is determined
by the eigenvalues of the matrix A, defined to be the roots of the characteristic
equation

det(A − λI) = det

[
a − λ b

c d − λ

]

= (a − λ)(d − λ) − bc

= λ2 − (a + d)λ + (ad − bc) = 0.
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The sum of the eigenvalues is the trace of the matrix A, namely a + d, and the
product of the eigenvalues is the determinant of the matrix A, namely ad − bc. A
similarity transformation preserves the trace and determinant and therefore does not
change the eigenvalues. Thus, the eigenvalues of A are λ,μ in Cases (i) and (iv); λ
(a double eigenvalue ) in Cases (ii) and (iii); the complex conjugates ±iβ in Case
(v); and α ± iβ in Case (vi). Examination of the phase portraits in the various cases
shows that the origin is asymptotically stable in Case (i) if λ < μ < 0; in Cases
(ii) and (iii) if λ < 0; and in Case (vi) if α < 0. Similarly the origin is unstable in
Case (i) if λ > μ > 0; in Cases (ii) and (iii) if λ > 0; in Case (iv); and in Case
(vi) if α > 0. The origin is stable but not asymptotically stable in Case (v) (center).
A simpler description is that the origin is asymptotically stable if both eigenvalues
have negative real part and unstable if at least one eigenvalue has positive real part.
If both eigenvalues have real part zero, the origin is stable but not asymptotically
stable. Our assumption that ad − bc = detA �= 0 rules out the possibility that
λ = 0 is an eigenvalue; thus, eigenvalues with real part zero can occur only if the
eigenvalues are pure imaginary, as in Case (v).

Combining this analysis with the linearization result, we have the following result
(which is the equilibrium stability theorem of Sect. C.4 with some added details):

Stability Theorem If (x∞, y∞) is an equilibrium of the system (C.19) and if all
eigenvalues of the coefficient matrix of the linearization at this equilibrium have
negative real part, specifically if

trA(x∞, y∞) = Fx(x∞, y∞) + Gy(x∞, y∞) < 0,

detA(x∞, y∞) = Fx(x∞, y∞)Gy(x∞, y∞) − Fy(x∞, y∞)Gx(x∞, y∞) > 0,

then the equilibrium (x∞, y∞) is asymptotically stable.
We can be more specific about the nature of the orbits near an equilibrium. In

terms of the elements of the matrix A, we may characterize the cases as follows,
using the remark that the eigenvalues are complex if and only if

Δ = (a + d)2 − 4(ad − bc) = (a − d)2 + 4bc < 0.

1. If detA = ad − bc < 0, the origin is a saddle point.
2. If detA > 0 and trA = a + d < 0, the origin is asymptotically stable, a node if

Δ ≥ 0 and a spiral point if Δ < 0.
3. If detA > 0 and trA > 0, the origin is unstable, a node if Δ ≥ 0 and a spiral

point of Δ > 0.
4. If detA > 0 and trA = 0, the origin is a center.

It is possible to show that in general, the phase portrait of a nonlinear system at
an equilibrium is similar to the phase portrait of the linearization at the equilibrium,
except possibly if the linearization has a center. This is true under the assumption
that the functions F(x, y) and G(x, y) in the system (C.19) are smooth enough
that Taylor’s theorem is applicable, so that the terms neglected in the linearization
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process are of higher order. If the linearization at an equilibrium has a node, then the
equilibrium of the nonlinear system is also a node, defined to mean that every orbit
tends to the equilibrium (either as t → ∞ or as t → −∞) with a limiting direction.
If the linearization at an equilibrium has a spiral point, then the equilibrium of the
nonlinear system is also a spiral point, defined to mean that every orbit tends to the
equilibrium (either as t → ∞ or as t → −∞) with its angular variable becoming
infinite. If the linearization at an equilibrium has a saddle point, then the equilibrium
of the nonlinear system is also a saddle point. A saddle point is defined by the
characterization that there is a curve through the equilibrium such that orbits starting
on this curve tend to the equilibrium but orbits starting off this curve cannot stay
near the equilibrium. An equivalent formulation is that there are two orbits tending
to the equilibrium as t → +∞ and two orbits tending away from the equilibrium,
or tending to the equilibrium as t → −∞. These orbits are called separatrices;
the two orbits tending to the saddle point are the stable separatrices, while the two
orbits tending away from the saddle point are the unstable separatrices. Other orbits
appear like hyperbolas (Fig. C.8).

A center is defined to be an equilibrium for which there is an infinite sequence of
periodic orbits around the equilibrium with the orbits approaching this equilibrium.
If the linearization at an equilibrium has a center, then the equilibrium of the
nonlinear system may be a center, but is not necessarily a center: It could be an
asymptotically stable spiral point or an unstable spiral point.

Fig. C.8 Separatrices at a
saddle point
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