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1 Introduction

The long time behavior of solutions q(x, t) of the Cauchy initial-value problem for
the defocusing nonlinear Schrödinger (NLS) equation

i
∂q

∂t
+ ∂2q

∂x2 − 2|q|2q = 0, (1)

with initial data decaying for large x:

q(x, 0) = q0(x) → 0, |x| → ∞, (2)

has been studied extensively, under various assumptions on the smoothness and
decay properties of the initial data q0 [3, 5, 6, 8, 10, 19, 20]. The asymptotic behavior
takes the following form: as t → +∞, one has

q(x, t) = t−1/2α(z0)e
ix2/(4t)−iν(z0) ln(8t) + E(x, t), (3)

M. Dieng
Department of Mathematics, University of Arizona, Tucson, AZ, USA

K. D. T.-R. McLaughlin
Department of Mathematics, University of Arizona, Tucson, AZ, USA

Department of Mathematics, Colorado State University, Fort Collins, CO, USA
e-mail: kenmcl@rams.colostate.edu

P. D. Miller (�)
Department of Mathematics, University of Michigan–Ann Arbor, Ann Arbor, MI, USA
e-mail: millerpd@umich.edu

© Springer Science+Business Media, LLC, part of Springer Nature 2019
P. D. Miller et al. (eds.), Nonlinear Dispersive Partial Differential Equations
and Inverse Scattering, Fields Institute Communications 83,
https://doi.org/10.1007/978-1-4939-9806-7_5

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9806-7_5&domain=pdf
mailto:kenmcl@rams.colostate.edu
mailto:millerpd@umich.edu
https://doi.org/10.1007/978-1-4939-9806-7_5


254 M. Dieng et al.

where E(x, t) is an error term and for z ∈ R, ν(z) and α(z) are defined by

ν(z) := − 1

2π
ln(1 − |r(z)|2), |α(z)|2 = 1

2
ν(z), (4)

and

arg(α(z)) = 1

π

∫ z

−∞
ln(z − s) d ln(1 − |r(s)|2) + π

4
+ arg(�(iν(z))) − arg(r(z)).

(5)
Here z0 = −x/(4t), � is the gamma function, and r(z) is the so-called reflection
coefficient associated to the initial data q0. The connection between the initial data
q0(x) and the reflection coefficient r(z) is achieved through the spectral theory of
the associated self-adjoint Zakharov-Shabat differential operator

L := iσ3
d

dx
+ Q(x), σ3 :=

(
1 0
0 −1

)
, Q(x) :=

(
0 −iq0(x)

iq0(x) 0

)
,

acting in L2(R; C2) as described, for example, in [6]. See also the contribution of
Perry in this volume: [17, Section 2].

The modulus |α(z0)| of the complex amplitude α(z0) as written in (4) was first
obtained by Segur and Ablowitz [19] from trace formulæ under the assumption that
q(x, t) has the form (3) where E(x, t) is small for large t . Zakharov and Manakov
[20] took the form (3) as an ansatz to motivate a kind of WKB analysis of the
reflection coefficient r(z) and as a consequence were able to also calculate the
phase of α(z0), obtaining for the first time the phase as written in (5). Its [10]
was the first to observe the key role played in the large-time behavior of q(x, t)

by an “isomonodromy” problem for parabolic cylinder functions; this problem has
been an essential ingredient in all subsequent studies of the large-t limit and as we
shall see it is a non-commutative analogue of the Gaussian integral that produces
the familiar factors of

√
2π in the stationary phase approximation of integrals. The

first time that the form (3) itself was rigorously deduced from first principles (rather
than assumed) and proven to be accurate for large t (incidentally reproducing the
formulæ (4)–(5) in an ansatz-free fashion) was in the work of Deift and Zhou [3]
(see [6] for a pedagogic description) who brought the recently introduced nonlinear
steepest descent method [4] to bear on this problem. Indeed, under the assumption
of high orders of smoothness and decay on the initial data q0, the authors of [3]
proved that E(x, t) satisfies

sup
x∈R

|E(x, t)| = O
(

ln(t)

t

)
, t → +∞. (6)

It is reasonable to expect that any estimate of the error term E(x, t) would depend
on the smoothness and decay assumptions made on q0, and so it is natural to ask
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what happens to the estimate (6) if the assumptions on q0 are weakened. Early
in this millennium, Deift and Zhou developed some new tools for the analysis of
Riemann-Hilbert problems, originally aimed at studying the long time behavior of
perturbations of the NLS equation [7]. Their methods allowed them to establish
long time asymptotics for the Cauchy problem (1)–(2) with essentially minimal
assumptions on the initial data [8]. Indeed, they assumed the initial data q0 to lie
in the weighted Sobolev space

H 1,1(R) :=
{
f ∈ L2(R) : xf, f ′ ∈ L2(R)

}
. (7)

It is well known that if q0 ∈ H 1,1(R), then the associated reflection coefficient1

satisfies r ∈ H
1,1
1 (R), where

H
1,1
1 (R) :=

{
f ∈ H 1,1(R) : sup

z∈R

|f (z)| < 1

}
, (8)

and more generally the spectral transform R associated with the Zakharov-Shabat
operator L (6) is a map R : H 1,1(R) → H

1,1
1 (R), q0 �→ r = Rq0 that is a bi-

Lipschitz bijection [21]. The result of [8] is then that the Cauchy problem (1)–(2)
for q0 ∈ H 1,1(R) has a unique weak solution for which (3) holds with an error term
E (x, t) that satisfies, for any fixed κ in the indicated range,

sup
x∈R

|E(x, t)| = O
(

t
−
(

1
2 +κ

))
, t → +∞, 0 < κ <

1

4
. (9)

Subsequently, McLaughlin and Miller [13, 14] developed a method for the
asymptotic analysis of Riemann-Hilbert problems in which jumps across contours
are “smeared out” over a two-dimensional region in the complex plane, resulting in
an equivalent ∂ problem that is more easily analyzed. In this paper we adapt and
extend this method to the Riemann-Hilbert problem of inverse-scattering associated
to the Cauchy problem (1)–(2). The main point of our work is this: by using the
∂ approach, we avoid all delicate estimates involving Cauchy projection operators
in Lp spaces (which are central to the work in [8]). Instead it is only necessary to
estimate certain double integrals, an exercise involving nothing more than calculus.
Remarkably, this elementary approach also sharpens the result obtained in [8]. Our
result is as follows.

1Since q0 ∈ H 1,1(R) implies that (1 + |x|)q0(x) is square-integrable, it follows by Cauchy-
Schwarz that H 1,1(R) ⊂ L1(R), which in turn implies that the reflection coefficient r(z) is
well-defined for each z ∈ R.
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Theorem 1.1 The Cauchy problem (1)–(2) with initial data q0 in the weighted
Sobolev space H 1,1(R) defined by (7) has a unique weak solution having the
form (3)–(5) in which r(z) is the reflection coefficient associated with q0 and where
the error term satisfies

sup
x∈R

|E(x, t)| = O
(

t
− 3

4

)
, t → +∞. (10)

The main features of this result are as follows.

• The error estimate is an improvement over the one reported in [8], i.e., we prove
that the endpoint case κ = 1

4 holds in (9). Our methods also suggest that the
improved estimate (10) on the error is sharp.

• As with the result (9) obtained in [8], the improved estimate (10) only requires
the condition r ∈ H

1,0
1 (R), i.e., it is not necessary that zr(z) ∈ L2(R), but only

that r lies in the classical Sobolev space H 1(R) and satisfies |r(z)| ≤ ρ for
some ρ < 1. Dropping the weighted L2 condition on r corresponds to admitting
rougher initial data q0. For such data, the solution of the Cauchy problem is of a
weaker nature, as discussed at the end of [8].

• The new ∂ method which is used to derive the estimate (10) affords a consider-
ably less technical proof than previous results.

• The method used to establish the estimate (10) is readily extended to derive a
more detailed asymptotic expansion, beyond the leading term (see the remark at
the end of the paper).

Given the reflection coefficient r ∈ H
1,1
1 (R) associated with initial data q0 ∈

H 1,1(R) via the spectral transform R for the Zakharov-Shabat operator L, the
solution of the Cauchy problem for the nonlinear Schrödinger equation (1) may
be described as follows. For full details, we again refer the reader to [17, Section 2].
Consider the following Riemann-Hilbert problem:

Riemann-Hilbert Problem 1 Given parameters (x, t) ∈ R2, find M = M(z) =
M(z; x, t), a 2 × 2 matrix, satisfying the following conditions:

Analyticity M is an analytic function of z in the domain C \ R. Moreover, M has
a continuous extension to the real axis from the upper (lower) half-plane denoted
M+(z) (M−(z)) for z ∈ R.

Jump Condition The boundary values satisfy the jump condition

M+(z) = M−(z)VM(z), z ∈ R, (11)

where the jump matrix VM(z) is defined by
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VM(z) :=
(

1 − |r(z)|2 −r(z)e−2itθ(z;z0)

r(z)e2itθ(z;z0) 1

)
, z ∈ R, θ(z; z0) := 2z2 − 4z0z,

z0 := − x

4t
. (12)

Normalization There is a matrix M1(x, t) such that

M(z) = I + z−1M1(x, t) + o(z−1), z → ∞. (13)

From the solution of this Riemann-Hilbert problem, one defines a function q(x, t),
(x, t) ∈ R2, by

q(x, t) := 2iM1,12(x, t). (14)

The fact of the matter is then that q(x, t) is the solution of the Cauchy
problem (1)–(2).

Recent studies of the long-time behavior of the solution of the NLS initial-value
problem (1)–(2) have involved the detailed analysis of the solution M to Riemann-
Hilbert Problem 1. As regularity assumptions on the initial data q0 are relaxed, this
analysis becomes more involved, technically. The purpose of this manuscript is to
carry out a complete analysis of the long-time asymptotic behavior of M under
the assumption that r ∈ H

1,1
1 (R) (or really, r ∈ H

1,0
1 (R)), as in [6], but via a ∂

approach which replaces technical harmonic analysis estimates involving Cauchy
projection operators with very straightforward estimates involving some explicit
double integrals.

The proof of Theorem 1.1 using the methodology of [13, 14] was originally
obtained by the first two authors in 2008 [9]. Since then the technique has been
used successfully to study many other related problems of large-time behavior for
various integrable equations. In [2], the authors used the methods of [9] to analyze
the stability of multi-dark-soliton solutions of (1). In [1], the method of [9] was
used to confirm the soliton resolution conjecture for the focusing version of the
NLS equation under generic conditions on the discrete spectrum. In [12], the large-
time behavior of solutions of the derivative NLS equation was studied using ∂

methods, and in [11] the same techniques were used to establish a form of the
soliton resolution conjecture for this equation. Similar ∂ methods more based on
the original approach of [13, 14] have also been useful in studying some problems
of nonlinear wave theory not necessarily in the realm of large time asymptotics, for
instance [15], which deals with boundary-value problems for (1) in the semiclassical
limit. Based on this continued interest in ∂ methods, we decided to write this review
paper containing all of the results and arguments of [9], some in a new form, as
well as some additional expository material which we hope the reader might find
helpful.
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2 An Unorthodox Approach to the Corresponding Linear
Problem

In order to motivate the ∂ steepest descent method, we first consider the Cauchy
problem for the linear equation corresponding to (1), namely

i
∂q

∂t
+ ∂2q

∂x2 = 0, (15)

with initial condition (2) for which q0 ∈ H 1,1(R). By Fourier transform theory, if

q̂0(z) :=
∫

R

q0(x)e2izx dx, z ∈ R (16)

is the Fourier transform of the initial data, then q̂0 as a function of z ∈ R also lies
in the weighted Sobolev space H 1,1(R), and the solution of the Cauchy problem is
given in terms of q̂0 by the integral

q(x, t) = 1

π

∫
R

q̂0(z)e
−2itθ(z;z0) dz, (17)

where θ(z; z0) and z0 are as defined in (12). It is worth noticing that this formula
is exactly what arises from Riemann-Hilbert Problem 1 via the formula (14) if only
the jump matrix VM(z) in (12) is replaced with the triangular form

VM(z) :=
(

1 −q̂0(z)e−2itθ(z;z0)

0 1

)
, z ∈ R (18)

in which case the solution of Riemann-Hilbert Problem 1 is explicitly given by

M(z; x, t) = I − 1

2π i

∫
R

q̂0(ζ )e−2itθ(ζ ;z0)

ζ − z
dζ

(
0 1
0 0

)
. (19)

This shows that the reflection coefficient r(z) is a nonlinear analogue of (the
complex conjugate of) the Fourier transform q̂0(z).

Assuming that z0 ∈ R is fixed, the method of stationary phase applies to deduce
an asymptotic expansion of the integral in (17). The only point of stationary phase
is z = z0, and the classical formula of Stokes and Kelvin yields

q(x, t) = 1

π

√
2π

t | − 2θ ′′(z0; z0)| q̂0(z0)e
−2itθ(z0;z0)−iπ/4 + E(x, t)

= t−1/2 q̂0(z0)e−iπ/4

2
√

π
eix2/(4t) + E(x, t), (20)
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where the error term E(x, t) is of order t−3/2 as t → +∞ under the best assump-
tions on q̂0, assumptions that guarantee that the error has a complete asymptotic
expansion in terms proportional via explicit oscillatory factors to descending half-
integer powers of t . To derive this expansion from first principles consists of several
steps as follows.

• One introduces a smooth partition of unity to separate contributions to the
integral from points z close to z0 and far from z0.

• One uses integration by parts to estimate the contributions from points z far
from z0. This requires having sufficiently many derivatives of q̂0(z), which
corresponds to having sufficient decay of q0(x).

• One approximates q̂0(z) locally near z0 by an analytic function with an accuracy
related to the size of t and the number of terms of the expansion that are desired.

• One uses Cauchy’s theorem to deform the path of integration for the approximat-
ing integrand to a diagonal path over the stationary phase point. The slope of the
diagonal path produces the phase factor of e−iπ/4, and the path integral of the
leading term q̂0(z0)e−2itθ(z;z0) in the local approximation of q̂0(z)e−2itθ(z;z0) is a
Gaussian integral that produces the factor of

√
π .

It is possible to implement all steps of this method assuming, say, that q0 (and hence
also q̂0) is a Schwartz-class function. However, as one reduces the regularity of
q0 it becomes impossible to obtain an expansion to all orders. More to the point,
even in the presence of Schwartz-class regularity, the proof of the stationary phase
expansion by the traditional methods outlined above is complicated, perhaps more
so than necessary as we hope to convince the reader.

To explain an alternative approach that bears fruit in the case q0 ∈ H 1,1(R) that
is of interest here, let � denote a simply-connected region in the complex plane
with counter-clockwise oriented piecewise-smooth boundary ∂�. If f : � → C is
differentiable (as a function of two real variables u = Re(z) and v = Im(z)) and
extends continuously to ∂�, then it follows from Stokes’ theorem that

∮
∂�

f (u, v) dz =
∫∫

�

2i∂f (u, v) dA(u, v) (21)

where dA(u, v) denotes area measure in the plane and where ∂ is the Cauchy-
Riemann operator:

∂ := 1

2

(
∂

∂u
+ i

∂

∂v

)
, z = u + iv, (22)

which annihilates all analytic functions of z = u + iv. Now consider the diagram
shown in Fig. 1. We define a function E(u, v) on �+ ∪ �− as follows:

E(u, v) := cos(2 arg(u + iv − z0))q̂0(u) + (1 − cos(2 arg(u + iv − z0))) q̂0(z0),

u + iv ∈ �+ ∪ �−. (23)
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Fig. 1 The integration contour R in (17) and the unbounded domains �+ and �− in the z = u+iv
plane

Observe that:

• On the boundary v = 0 (i.e., z ∈ R), we have cos(2 arg(u + iv − z0)) ≡ 1, so
E(u, 0) = q̂0(u).

• On the boundary v = z0 − u, we have cos(2 arg(u + iv − z0)) ≡ 0, so E(u, z0 −
u) = q̂0(z0) which is independent of u.

The first point shows that E(u, v) is an extension of the function q̂0(z) from the
real z-axis into the domain �+ ∪ �−. The second point shows that the extension
evaluates to a constant on the diagonal part of the boundary of �+ ∪ �−. In
the interior of �+ ∪ �−, E(u, v) inherits smoothness properties from q̂0(u). In
particular, under the assumption q̂0 ∈ H 1,1(R), we may apply Stokes’ theorem in
the form (21) to the functions ±E(u, v)e−2itθ(u+iv;z0) on the domains �± and add
up the results to obtain the formula

q(x, t) = 1

π

∫ z0+∞e−iπ/4

z0+∞e3π i/4
q̂0(z0)e

−2itθ(z;z0) dz

+ 1

π

∫∫
�+−�−

2i∂
(
E(u, v)e−2itθ(u+iv;z0)

)
dA(u, v). (24)

The first term on the right-hand side originates from the diagonal boundary of �+ ∪
�− and because E is constant there it is an exact Gaussian integral evaluating to the
explicit leading term on the right-hand side of (20). Therefore, the remaining term
on the right-hand side of (24) is an exact double-integral representation of the error
term E(x, t) in the formula (20). Since q0 ∈ H 1,1(R) implies q̂0 ∈ H 1,1(R) which
in turn implies that q̂0(z) is defined for all z ∈ R, the leading term in (20) certainly
makes sense.

To estimate the error term we will only use the fact that q̂ ′
0 ∈ L2(R), i.e., that

q̂0 lies in the (classical, unweighted) Sobolev space H 1(R). First note that since
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e−2itθ(z;z0) is an entire function of z, ∂e−2itθ(z;z0) ≡ 0, so by the product rule it
suffices to have suitable estimates of ∂E(u, v) for u + iv ∈ �±. Indeed,

∣∣∣∣
∫∫

�±
2i∂
(
E(u, v)e−2itθ(u+iv;z0)

)
dA(u, v)

∣∣∣∣
≤ 2

∫∫
�±

|∂E(u, v)|e2t Im(θ(u+iv;z0)) dA(u, v)

= 2
∫∫

�±
|∂E(u, v)|e8t (u−z0)v dA(u, v).

(25)

A direct computation using (22) gives

∂E(u, v) = ∂
[
q̂0(z0) + cos(2 arg(u + iv − z0))

(
q̂0(u) − q̂0(z0)

)]
= cos(2 arg(u + iv − z0))∂q̂0(u)

+ (q̂0(u) − q̂0(z0)
)
∂ cos(2 arg(u + iv − z0))

= 1

2
cos(2 arg(u + iv − z0))q̂

′
0(u)

+ (q̂0(u) − q̂0(z0)
)
∂ cos(2 arg(u + iv − z0)).

(26)

In polar coordinates (ρ, φ) centered at the point z0 ∈ R and defined by u = z0 +
ρ cos(φ) and v = ρ sin(φ), the Cauchy-Riemann operator (22) takes the equivalent
form

∂ = eiφ

2

(
∂

∂ρ
+ i

ρ

∂

∂φ

)
, (27)

so as arg(u + iv − z0) = φ we have

∂ cos(2 arg(u + iv − z0)) = ieiφ

2ρ

d

dφ
cos(2φ) = − ieiφ

ρ
sin(2φ). (28)

Therefore we easily obtain the inequality

|∂E(u, v)| ≤ 1

2
|q̂ ′

0(u)| + |q̂0(u) − q̂0(z0)|√
(u − z0)2 + v2

, u + iv ∈ �+ ∪ �−. (29)

Note that by the fundamental theorem of calculus and the Cauchy-Schwarz
inequality,
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|q̂0(u) − q̂0(z0)| ≤
∫ u

z0

|q̂ ′
0(w)| |dw| ≤

√∫ u

z0

|dw|
√∫ u

z0

|q̂ ′
0(w)|2 |dw|

≤ ‖q̂ ′
0‖L2(R)

√|u − z0| ≤ ‖q̂ ′
0‖L2(R)

[
(u − z0)

2 + v2
]1/4

,

(30)
so (29) implies that also

|∂E(u, v)| ≤ 1

2
|q̂ ′

0(u)| + ‖q̂ ′
0‖L2(R)

[(u − z0)2 + v2]1/4 , u + iv ∈ �+ ∪ �−. (31)

Therefore, using (31) in (25) gives

∣∣∣∣
∫∫

�±
2i∂
(
E(u, v)e−2itθ(u+iv,z0)

)
dA(u, v)

∣∣∣∣ ≤ I±(x, t) + 2‖q̂ ′
0‖L2(R)J

±(x, t),

(32)
where

I±(x, t) :=
∫∫

�±
|q̂ ′

0(u)|e8t (u−z0)v dA(u, v) and

J±(x, t) :=
∫∫

�±

e8t (u−z0)v

[(u − z0)2 + v2]1/4 dA(u, v). (33)

The key point is that for t > 0, the exponential factors are bounded by 1 and
decaying at infinity in �±. So, by iterated integration, Cauchy-Schwarz, and the
change of variable w = t1/2(u − z0),

I+(x, t) =
∫ z0

−∞
du

∫ z0−u

0
dv |q̂ ′

0(u)|e8t (u−z0)v

=
∫ z0

−∞
du|q̂ ′

0(u)|1 − e−8t (u−z0)
2

8t (z0 − u)

≤ ‖q̂ ′
0‖L2(R)

√√√√∫ z0

−∞

[
1 − e−8t (u−z0)

2

8t (z0 − u)

]2

du

= K‖q̂ ′
0‖L2(R)t

−3/4, K :=
√√√√∫ 0

−∞

[
1 − e−8w2

8w

]2

dw < ∞.

(34)

In exactly the same way, we also get I−(x, t) ≤ K‖q̂ ′
0‖L2(R)t

−3/4. Note that
K is an absolute constant. The integrals J±(x, t) are independent of q0 and by
translation of z0 to the origin and reflection through the origin, the integrals are also
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independent of x and are obviously equal. To calculate them we introduce rescaled
polar coordinates by u = z0 + t−1/2ρ cos(φ) and v = t−1/2ρ sin(φ) to get

J±(x, t) = Lt−3/4, L :=
∫ ∞

0
ρdρ

∫ π

3π/4
dφ ρ−1/2e8ρ2 sin(φ) cos(φ) (35)

It is a calculus exercise to show that the above double integral is convergent and
hence defines L as a second absolute constant.

It follows from these elementary calculations that if only q̂ ′
0 ∈ L2(R), then the

error term E(x, t) in (20) obeys the estimate

sup
x∈R

|E(x, t)| ≤ 2

π
(K + 2L)‖q̂ ′

0‖L2(R)t
−3/4 (36)

which decays as t → +∞ at exactly the same rate as in the claimed result for the
nonlinear problem as formulated in Theorem 1.1. The same method can be used
to obtain higher-order corrections under additional hypotheses of smoothness for
the Fourier transform q̂0. One simply needs to integrate by parts with respect to
u = Re(z) in the double integral on the right-hand side of (24).

In the rest of the paper we will show that almost exactly the same elementary
estimates suffice to prove the nonlinear analogue of this result, namely Theorem 1.1.

3 Proof of Theorem 1.1

We will prove Theorem 1.1 in several systematic steps. After some preliminary
observations involving the jump matrix VM(z) in Riemann-Hilbert Problem 1 in
Sects. 3.1 and 3.2, we shall see that the subsequent analysis of Riemann-Hilbert
Problem 1 parallels our study of the associated linear problem detailed in Sect. 2. In
particular we find natural analogues of the nonanalytic extension method (Sect. 3.3),
of the Gaussian integral giving the leading term in the stationary phase formula
(Sect. 3.4), and of the simple double integral estimates leading to the proof of its
accuracy (Sect. 3.5). Finally, in Sect. 3.6 we assemble the ingredients to arrive at the
formula (3) with the improved error estimate, completing the proof of Theorem 1.1.

3.1 Jump Matrix Factorization

The jump matrix VM(z) of Riemann-Hilbert Problem 1 defined in (12) can be
factored in two different ways that are useful in different intervals of the jump
contour R as indicated:

VM(z) =
(

1 −r(z)e−2itθ(z;z0)

0 1

)(
1 0

r(z)e2itθ(z;z0) 1

)
, z > z0, (37)
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and

VM(z) =
⎛
⎝ 1 0

r(z)e2itθ(z;z0)

1 − |r(z)|2 1

⎞
⎠ (1 − |r(z)|2)σ3

⎛
⎝1 − r(z)e−2itθ(z;z0)

1 − |r(z)|2
0 1

⎞
⎠ , z < z0.

(38)
The importance of these factorizations is that they provide an algebraic separation
of the oscillatory exponential factors e±2itθ(z;z0). Indeed, if the reflection coefficient
r(z) is an analytic function of z ∈ R, then in each case the left-most (right-
most) factor has an analytic continuation into the lower (upper) half-plane near the
indicated half-line that is exponentially decaying to the identity matrix as t → +∞
due to z0 being a simple critical point of θ(z; z0). This observation is the basis for
the steepest descent method for Riemann-Hilbert problems as first formulated in [4].
In the more realistic case that r(z) is nowhere analytic, this analytic continuation
method must be supplemented with careful approximation arguments that are quite
detailed [8]. We will proceed differently in Sect. 3.3 below. But first we need to deal
with the central diagonal factor in the factorization (38) to be used for z < z0.

3.2 Modification of the Diagonal Jump

We now show how the diagonal factor (1 − |r(z)|2)σ3 in the jump matrix factor-
ization (38) can be replaced with a constant diagonal matrix. Consider the complex
scalar function defined by the formula

δ(z; z0) := exp

(
1

2π i

∫ z0

−∞
ln(1 − |r(s)|2)

s − z
ds

)
, z ∈ C \ (−∞, z0]. (39)

This function is important because according to the Plemelj formula, it satisfies
the scalar jump conditions δ+(z; z0) = δ−(z; z0)(1 − |r(z)|2) for z < z0 and
δ+(z; z0) = δ−(z; z0) for z > z0. Hence the diagonal matrix δ(z; z0)

σ3 is typically
used in steepest descent theory to deal with the diagonal factor in (38). However,
δ(z; z0) has a mild singularity at z = z0:

δ(z; z0) = K(z−z0)
iν(z0)(1+o(1)), z → z0, K = K(z0) = constant, (40)

where ν(z0) is defined in (4) and the power function is interpreted as the principal
branch. The use of δ(z; z0) introduces this singularity unnecessarily into the
Riemann-Hilbert analysis. In our approach we will therefore use a related function:

f (z; z0) := c(z0)δ(z; z0)(z − z0)
−iν(z0), (41)

where the constant c(z0) is defined by
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c(z0) := exp

(
− 1

2π i

[∫ z0−1

−∞
ln(1 − |r(s)|2)

s − z0
ds

+
∫ z0

z0−1

ln(1 − |r(s)|2) − ln(1 − |r(z0)|2)
s − z0

ds

])

= exp

(
1

2π i

∫ z0

−∞
ln(z0 − s) d ln(1 − |r(s)|2)

)
.

(42)

The function f (z; z0) has numerous useful properties that we summarize here.

Lemma 3.1 (Properties of f (z; z0)) Suppose that r ∈ H 1(R) and there exists
ρ < 1 such that |r(z)| ≤ ρ holds for all z ∈ R (as is implied by r ∈ H

1,1
1 (R) which

follows from q0 ∈ H 1,1(R)). Then

• The functions f (z; z0)
±1 are well-defined and analytic in z for arg(z − z0) ∈

(−π, π).
• The functions f (z; z0)

±1 are uniformly bounded independently of z0 ∈ R:

sup
z0∈R

arg(z−z0)∈(−π,π)

|f (z; z0)|±1 ≤ 1

1 − ρ2 . (43)

• The function f (z; z0) satisfies the following asymptotic condition:

lim
z→∞

−π<arg(z−z0)<π

f (z; z0)(z − z0)
iν(z0) = c(z0). (44)

• The functions f (z; z0)
±2 are Hölder continuous with exponent 1/2. In particular,

f (z; z0)
±2 → 1 as z → z0 and there is a constant K = K(ρ) > 0 such that

|f (z; z0)
±2 − 1| ≤ K|z − z0|1/2 holds whenever arg(z − z0) ∈ (−π, π).

• The continuous boundary values f±(z; z0) taken by f (z; z0) on R for z < z0
from ±Im(z) > 0 satisfy the jump condition

f+(z; z0) = f−(z; z0)
1 − |r(z)|2
1 − |r(z0)|2 , z < z0. (45)

Proof The assumptions imply in particular that ln(1−|r(·)|2) ∈ L1(R), so for z in a
small neighborhood of each point disjoint from the integration contour, the integral
in (39) is absolutely convergent and so δ(z; z0) and δ(z; z0)

−1 are analytic functions
of z on that neighborhood. The same argument shows that the first integral in the
exponent of the expression (42) for c(z0) is convergent. Since r ∈ H 1(R) implies
that r(·) is Hölder continuous with exponent 1/2, the condition |r(·)| ≤ ρ < 1
further implies that ln(1−|r(s)|2) is also Hölder continuous with exponent 1/2, from
which it follows that the second integral in the exponent of the expression (42) is
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also convergent. Therefore c(z0) exists, and clearly |c(z0)| = 1. Since the principal
branch of (z − z0)

∓iν(z0) is analytic for arg(z − z0) ∈ (−π, π), the analyticity of
f (z; z0)

±1 in the same domain follows. This proves the first statement.
In [8, Proposition 2.12] it is asserted that under the hypothesis |r(z)| ≤ ρ < 1,

the function δ(z; z0) defined by (39) satisfies the uniform estimates (1 − ρ2)1/2 ≤
|δ(z; z0)|±1 ≤ (1−ρ2)−1/2 whenever arg(z−z0) ∈ (−π, π). If arg(z−z0) = 0, then
obviously |δ(z; z0)| = 1, so it remains to prove the estimates hold for Im(z) �= 0.
Following [12], since ln(1−ρ2) ≤ ln(1−|r(s)|2) ≤ 0, if u = Re(z) and v = Im(z)

we have Im((s − z)−1) = v/((s − u)2 + v2), so assuming v > 0,

exp

(
v ln(1 − ρ2)

2π

∫ z0

−∞
ds

(s − u)2 + v2

)
≤ |δ(u + iv; z0)|. (46)

Bounding the left-hand side below by extending the integration to R (using
v ln(1 − ρ2) < 0) gives the lower bound (1 − ρ2)1/2 ≤ |δ(z; z0)|, and by taking
reciprocals, the upper bound |δ(z; z0)|−1 ≤ (1 − ρ2)−1/2 for Im(z) > 0. The
corresponding result for Im(z) < 0 follows by the exact symmetry δ(z̄; z0)

−1 =
δ(z; z0). Combining these bounds with |c(z0)| = 1 and the elementary inequalities
(1 − ρ2)1/2 ≤ (1 − |r(z0)|2)1/2 = e−πν(z0) ≤ |(z − z0)

iν(z0)| ≤ eπν(z0) =
(1 − |r(z0)|2)−1/2 ≤ (1 − ρ2)−1/2 holding for arg(z − z0) ∈ (−π, π) then proves
the second statement.

Since ln(1 − |r(·)|2) ∈ L1(R), from (39) a dominated convergence argument
shows that δ(z; z0) → 1 as z → ∞ provided only that the limit is taken in such a
way that for some given ε > 0, dist(z, [−∞, z0)) ≥ ε. Combining this fact with (41)
proves the third statement.

Analyticity implies Hölder continuity, so provided z is bounded away from
the half-line (−∞, z0], Hölder-1/2 continuity of f (z; z0)

±2 is obvious. But, since
ln(1−|r(·)|2) is Hölder continuous on R with exponent 1/2, by the Plemelj-Privalov
theorem [16, §19] and a related classical result [16, §22], the functions δ(z; z0)

±1

are uniformly Hölder continuous with exponent 1/2 in any neighborhood of the
integration contour except for the endpoint z = z0, and hence the same is true
for the functions f (z; z0)

±2. However, the latter functions are better-behaved near
z = z0. To see this, note that since

(z − z0)
∓iν(z0) = (z − (z0 − 1))∓iν(z0)

[
z − z0

z − (z0 − 1)

]∓iν(z0)

= (z − (z0 − 1))∓iν(z0) exp

(
∓ 1

2π i

∫ z0

z0−1

ln(1 − |r(z0)|2)
s − z

ds

)
,

z ∈ C \ (−∞, z0],
(47)
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we have from (39) and (41) that

f (z; z0)
±2 = c(z0)

±2(z − (z0 − 1))∓2iν(z0) exp

(
± 1

π i

∫ z0−1

−∞
ln(1 − |r(s)|2)

s − z
ds

)

· exp

(
± 1

π i

∫ +∞

z0−1

h(s) ds

s − z

)
(48)

where h(s) := ln(1−|r(s)|2)− ln(1− r(z0)|2) for s < z0 and h(s) := 0 for s ≥ z0.
As the first three factors are analytic at z = z0 while h(s) is Hölder continuous with
exponent 1/2 in a neighborhood of s = z0, the same arguments cited above apply
and yield the desired Hölder continuity of f (z; z0)

±2 near z = z0. It only remains
to show that f (z0; z0)

±2 = 1, but this follows immediately from (42) and (48). This
proves the fourth statement.

Finally, the fifth statement follows from the definition (41) of f (z; z0) and the
jump condition δ+(z; z0) = δ−(z; z0)(1 − |r(z)|2) for z < z0. ��

Using the diagonal matrix f (z; z0)
σ3 to conjugate the unknown M(z) of

Riemann-Hilbert Problem 1 by introducing

N(z) = N(z; x, t) := eiω(z0)σ3/2eitθ(z0;z0)σ3 · c(z0)
σ3 M(z; x, t)f (z; z0)

−σ3

· e−itθ(z0;z0)σ3 e−iω(z0)σ3/2, z ∈ C \ R, (49)

where

ω(z0) := arg(r(z0)), (50)

it is easy to check that N(z) satisfies several conditions explicitly related to those of
M(z) according to Riemann-Hilbert Problem 1. Indeed, N(z) must be a solution of
the following equivalent problem.

Riemann-Hilbert Problem 2 Given parameters (x, t) ∈ R2, find N = N(z) =
N(z; x, t), a 2 × 2 matrix, satisfying the following conditions:

Analyticity N is an analytic function of z in the domain C \ R. Moreover, N has
a continuous extension to the real axis from the upper (lower) half-plane denoted
N+(z) (N−(z)) for z ∈ R.

Jump Condition The boundary values satisfy the jump condition

N+(z) = N−(z)VN(z), z ∈ R, (51)

where the jump matrix VN(z) may be written in the alternate forms
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VN(z) =
(

1 −f (z; z0)
2r(z)eiω(z0)e−2it[θ(z;z0)−θ(z0;z0)]

0 1

)

·
(

1 0
f (z; z0)

−2r(z)e−iω(z0)e2it[θ(z;z0)−θ(z0;z0)] 1

)
, z > z0, (52)

VN(z) :=
⎛
⎝ 1 0

f−(z; z0)
−2r(z)e−iω(z0)e2it[θ(z;z0)−θ(z0;z0)]

1 − |r(z)|2 1

⎞
⎠

· (1−|r(z0)|2)σ3

⎛
⎝1 −f+(z; z0)

2r(z)eiω(z0)e−2it[θ(z;z0)−θ(z0;z0)]

1 − |r(z)|2
0 1

⎞
⎠ , z < z0,

(53)

where f+(z; z0) (f−(z; z0)) is the boundary value taken by f (z; z0) from the upper
(lower) half-plane.

Normalization There is a matrix N1(x, t) such that

N(z)(z − z0)
−iν(z0)σ3 = I + z−1N1(x, t) + o(z−1), z → ∞. (54)

Note that the matrix coefficient N1(x, t) is necessarily related to the coefficient
M1(x, t) in Riemann-Hilbert Problem 1 by a diagonal conjugation:

M1(x, t) = e−iω(z0)σ3/2e−itθ(z0;z0)σ3c(z0)
−σ3 N1(x, t)c(z0)

σ3 eitθ(z0;z0)σ3 eiω(z0)σ3/2.

(55)
Therefore, the reconstruction formula (14) can be written in terms of N1(x, t) as

q(x, t) := 2ie−iω(z0)e−2itθ(z0;z0)c(z0)
−2N1,12(x, t). (56)

The net effect of this step is therefore to replace the non-constant diagonal central
factor in (38) with its constant value at z = z0 and to introduce power-law asymp-
totics at z = ∞ at the cost of slight modifications of the left-most and right-most fac-
tors in (37)–(38). In the formula (49) we have also taken the opportunity to conjugate
off the constant value of θ(z; z0) and the phase of r(z) at the critical point z = z0.

3.3 Nonanalaytic Extensions and ∂ Steepest Descent

The key to the steepest descent method, both in its classical analytic framework and
in the ∂ setting, is to get the oscillatory factors e±2itθ(z;z0) off the real axis and into
appropriate sectors of the complex z-plane where they decay as t → +∞. We will
accomplish this by exactly the same means as in the linear case, namely by defining
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Fig. 2 The jump contour R in Riemann-Hilbert Problem 2 and the sectors �j , j = 1, . . . , 6 in
the z = u + iv plane

non-analytic extensions of the non-oscillatory coefficients of e±2itθ(z;z0) in the left-
most and right-most jump matrix factors in (37)–(38) by a slight generalization of
the formula (23). In reference to the diagram in Fig. 2, we define sectors

�1 : 0 < arg(z − z0) <
1

4
π

�2 : 1

4
π < arg(z − z0) <

3

4
π

�3 : 3

4
π < arg(z − z0) < π

�4 : − π < arg(z − z0) < −3

4
π

�5 : − 3

4
π < arg(z − z0) < −1

4
π

�6 : − 1

4
π < arg(z − z0) < 0.

(57)

Note that �3 = �+ and �6 = �− in reference to Fig. 1. Now we define extensions
on the domains shaded in Fig. 2 by following a very similar approach as in Sect. 2:

E1(u, v) := cos(2 arg(u + iv − z0))f (u + iv; z0)
−2r(u)e−iω(z0)

+ (1 − cos(2 arg(u + iv − z0)))|r(z0)|, z = u + iv ∈ �1

E3(u, v) := −
[

cos(2 arg(u + iv − z0))f (u + iv; z0)
2 r(u)eiω(z0)

1 − |r(u)|2

+ (1 − cos(2 arg(u + iv − z0)))
|r(z0)|

1 − |r(z0)|2
]

, z = u + iv ∈ �3
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E4(u, v) := cos(2 arg(u + iv − z0))f (u + iv; z0)
−2 r(u)e−iω(z0)

1 − |r(u)|2

+ (1 − cos(2 arg(u + iv − z0)))
|r(z0)|

1 − |r(z0)|2 , z = u + iv ∈ �4

E6(u, v) := −
[
cos(2 arg(u + iv − z0))f (u + iv; z0)

2r(u)eiω(z0)

+ (1 − cos(2 arg(u + iv − z0)))|r(z0)|
]
, z = u + iv ∈ �6.

(58)
It is easy to check that:

• E1(u, v) evaluates to f (z; z0)
−2r(z)e−iω(z0) for z ∈ R on the boundary of �1.

• E3(u, v) evaluates to −f+(z; z0)
2r(z)eiω(z0)/(1 − |r(z)|2) for z ∈ R on the

boundary of �3.
• E4(u, v) evaluates to f−(z; z0)

−2r(z)e−iω(z0)/(1 − |r(z)|2) for z ∈ R on the
boundary of �4.

• E6(u, v) evaluates to −f (z; z0)
2r(z)eiω(z0) for z ∈ R on the boundary of �6.

Thus exactly as in Sect. 2 these formulæ represent extensions of their values on the
real sector boundaries into the complex plane that become constant on the diagonal
sector boundaries (see (60) below), with the constant chosen in each case to ensure
continuity of the extension along the interior boundary of each sector. The only
essential difference between the extension formulæ (58) and the formula (23) from
Sect. 2 is the way that the factors f (z; z0)

±2 are treated differently from the factors
involving r(z); the reason for using f (u + iv; z0)

±2 in (58) rather than f (u; z0)
±2

will become clearer in Sect. 3.5 when we compute ∂Ej (u, v), j = 1, 3, 4, 6, and
take advantage of the fact (see Lemma 3.1) that ∂f (u+ iv; z0)

±2 ≡ 0 in the interior
of each sector.

We use the extensions to “open lenses” about the intervals z < z0 and z > z0 by
making another substitution:

O(u, v; x, t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(z; x, t)

(
1 0

E1(u, v)e2it[θ(u+iv;z0)−θ(z0;z0)] 1

)−1

, z = u + iv ∈ �1

N(z; x, t), z = u + iv ∈ �2

N(z; x, t)

(
1 E3(u, v)e−2it[θ(u+iv;z0)−θ(z0;z0)]

0 1

)−1

, z = u + iv ∈ �3

N(z; x, t)

(
1 0

E4(u, v)e2it[θ(u+iv;z0)−θ(z0;z0)] 1

)
, z = u + iv ∈ �4

N(z; x, t), z = u + iv ∈ �5

N(z; x, t)

(
1 E6(u, v)e−2it[θ(u+iv;z0)−θ(z0;z0)]

0 1

)
, z = u + iv ∈ �6.

(59)
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Our notation O(u, v; x, t) reflects the viewpoint that unlike N(z; x, t), z = u + iv,
O(u, v; x, t) is not a piecewise-analytic function in the complex plane due to the
non-analytic extensions Ej(u, v), j = 1, 3, 4, 6. The exponential factors in (59) all
have modulus less than 1 and decay exponentially to zero as t → +∞ pointwise in
the interior of each of the indicated sectors, a fact that suggests that (59) is a near-
identity transformation in the limit t → +∞. We also have the following property.

Lemma 3.2 (Relation Between N and O for Large z ∈ C) Let z0 ∈ R be fixed,
and suppose that r ∈ H 1(R) and that there exists a constant ρ < 1 such that
|r(z)| ≤ ρ holds for all z ∈ R (conditions that are true for r ∈ H

1,1
1 (R) as follows

from q0 ∈ H 1,1(R)). Then O(u, v; x, t) = N(u + iv; x, t)(I + o(1)) holds as z =
u + iv → ∞ where the decay of the error term is uniform with respect to direction
in each sector �j , j = 1, . . . , 6.

Proof The exponential factors in (59) also decay as z = u + iv → ∞ provided that
v → ∞. Since r, r ′ ∈ L2(R) means that (1 + | · |)r̂(·) is square-integrable where r̂

denotes the Fourier transform of r , the Cauchy-Schwarz inequality implies that also
r̂ ∈ L1(R). Hence by the Riemann-Lebesgue Lemma, r(u) is bounded, continuous,
and tends to zero as u → ∞. As 1 − |r(u)|2 ≥ 1 − ρ2 > 0, the same properties
hold for r(u)/(1 − |r(u)|2). Since the hypotheses of Lemma 3.1 hold, f (u +
iv; z0)

±2 are bounded functions, so the desired result follows from using extension
formulæ (58) in (59). ��
Despite the non-analyticity of the extensions, the above proof shows also that each
of the extensions Ej(u, v), j = 1, 3, 4, 6, is continuous on the relevant sector and
therefore O(u, v; x, t) is a piecewise-continuous function of (u, v) ∈ R2 with jump
discontinuities across the sector boundaries. We address these jump discontinuities
next.

3.4 The Isomonodromy Problem of Its

Although O(u, v; x, t) is not analytic in the sectors shaded in Fig. 2 for essentially
the same reason that the double integral error term in (24) does not vanish
identically, the fact that the extensions Ej(u, v), j = 1, 3, 4, 6, evaluate to constants
on the diagonals:

E1(u − z0, u) = |r(z0)| and E6(u − z0,−u) = −|r(z0)|, u > z0,

E3(u − z0,−u) = − |r(z0)|
1 − |r(z0)|2 and E4(u − z0, u) = |r(z0)|

1 − |r(z0)|2 , u < z0,

(60)
implies that if we introduce the recentered and rescaled independent variable
ζ := 2t1/2(z − z0), the jump conditions satisfied by O(u, v; x, t) across the
sector boundaries are exactly the same as those satisfied by the matrix function
P(ζ ; |r(z0)|) solving the following Riemann-Hilbert problem.
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Fig. 3 The jump contour �P and jump matrix VP(ζ ; m) for Riemann-Hilbert Problem 3

Riemann-Hilbert Problem 3 Let m ∈ [0, 1) be a parameter, and seek a 2 × 2
matrix function P = P(ζ ) = P(ζ ;m) with the following properties:

Analyticity P(ζ ) is an analytic function of ζ in the sectors | arg(ζ )| < 1
4π , 1

4π <

± arg(ζ ) < 3
4π , and 3

4π < ± arg(ζ ) < π . It admits a continuous extension from
each of these five sectors to its boundary.
Jump Conditions Denoting by P+(ζ ) (resp., P−(ζ )) the boundary value taken on
any one of the rays of the jump contour �P from the left (resp., right) according
to the orientation shown in Fig. 3, the boundary values are related by P+(ζ ;m) =
P−(ζ ;m)VP(ζ ;m), where the jump matrix VP(ζ ;m) is defined on the five rays of
�P by

VP(ζ ;m) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

meiζ 2
1

)
, arg(ζ ) = 1

4π

(
1 −me−iζ 2

0 1

)
, arg(ζ ) = − 1

4π

⎛
⎜⎝1 −me−iζ 2

1 − m2

0 1

⎞
⎟⎠ , arg(ζ ) = 3

4π

⎛
⎜⎝

1 0

meiζ 2

1 − m2 1

⎞
⎟⎠ , arg(ζ ) = − 3

4π

(1 − m2)σ3 , arg(−ζ ) = 0.

(61)

Normalization P(ζ ;m)ζ− ln(1−m2)σ3/(2π i) → I as ζ → ∞.

This Riemann-Hilbert problem is essentially the isomonodromy problem identified
by Its [10], and it is the analogue in the nonlinear setting of the Gaussian
integral that is the leading term of the stationary phase expansion (24) in the
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linear case. Although the jump conditions for O(u, v; x, t) correspond exactly to
those of P(ζ ; |r(z0)|), the scaling z �→ ζ = 2t1/2(z − z0) introduces an extra
factor into the asymptotics as z → ∞; the fact of the matter is that the matrix
(2t1/2)iν(z0)σ3O(u, v; x, t) satisfies the normalization condition of P(ζ ; |r(z0)|), and
the constant pre-factor has no effect on the jump conditions. Hence in Sect. 3.5
below we shall use the latter as a parametrix for the former.

However, we first develop the explicit solution of Riemann-Hilbert Problem 3.
The first step is to consider the related unknown U(ζ ;m) := P(ζ ;m)e−iζ 2σ3/2 and
observe that from the conditions of Riemann-Hilbert Problem 3 that U(ζ ;m) is ana-
lytic exactly in the same five sectors where P(ζ ;m) is, and that it satisfies jump con-
ditions of exactly the form (61) except that the factors e±iζ 2

are everywhere replaced
by 1; in other words, the jump matrix for U(ζ ;m) on each jump ray is constant
along the ray. It follows that the ζ -derivative U′(ζ ;m) satisfies the same “raywise
constant” jump conditions as does U(ζ ;m) itself. Then, since it is easy to prove
by Liouville’s theorem that any solution P(ζ ;m) of Riemann-Hilbert Problem 3
has unit determinant, it follows that U(ζ ;m) is invertible and a calculation shows
that the function U′(ζ ;m)U(ζ ;m)−1 is continuous and hence by Morera’s theorem
analytic in the whole ζ -plane possibly excepting ζ = 0. We will assume analyticity
at the origin as well and show later that this is consistent. As an entire function of ζ ,
the product U′(ζ ;m)U(ζ ;m)−1 is potentially determined by its asymptotic behavior
as ζ → ∞. Assuming further that the normalization condition in Riemann-Hilbert
Problem 3 means both that for some matrix coefficient P1(m) to be determined,

P(ζ ;m) =
(

I + ζ−1P1(m) + O(ζ−2)
)

ζ ln(1−m2)σ3/(2π i) and

P′(ζ ;m) =
(

ln(1 − m2)

2π i
ζ−1σ3 + O(ζ−2)

)
ζ ln(1−m2)σ3/(2π i)

(62)

hold as ζ → ∞, such as would arise from term-by-term differentiation, it follows
also that

U(ζ ;m) =
(

I + ζ−1P1(m) + O(ζ−2)
)

ζ ln(1−m2)σ3/(2π i)e−iζ 2σ3/2 and

U′(ζ ;m) =
(
−iζσ3 − iP1(m)σ3 + O(ζ−1)

)
ζ ln(1−m2)σ3/(2π i)e−iζ 2σ3/2

(63)

as ζ → ∞. Therefore the entire function is determined by Liouville’s theorem to
be a linear polynomial:

U′(ζ ;m)U(ζ ;m)−1 = −iζσ3 + i[σ3, P1(m)], (64)

where [A, B] := AB − BA is the matrix commutator. In other words, U(ζ ;m)

satisfies the first-order system of linear differential equations:

dU
dζ

(ζ ;m) =
( −iζ 2iP1,12(m)

−2iP1,21(m) iζ

)
U(ζ ;m). (65)
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Now, another easy consequence of Liouville’s theorem is that there is at most one
solution of Riemann-Hilbert Problem 3. Using the fact that m ∈ [0, 1), it is not dif-
ficult to show that if P(ζ ;m) is a solution of Riemann-Hilbert Problem 3, then so is

σ1P(ζ ;m)σ1, where σ1 :=
(

0 1
1 0

)
, (66)

so by uniqueness it follows that P(ζ ;m) = σ1P(ζ ;m)σ1. Combining this symmetry
with the first expansion in (62) shows that P1,21(m) = P1,12(m), so the differential
equations can be written in the form

dU
dζ

(ζ ;m) =
(−iζ β

β iζ

)
U(ζ ;m), β = β(m) := 2iP1,12(m). (67)

The constant β ∈ C is unknown, but if it is considered as a parameter, then
eliminating the second row shows that the elements U1j , j = 1, 2, of the first row
satisfy Weber’s equation for parabolic cylinder functions in the form:

d2U1j

dy2 −
(

1

4
y2 + a

)
U1j = 0, a := 1

2
(1+i|β|2), y := √

2e−iπ/4ζ, j = 1, 2.

(68)
The solutions of this equation are well-documented in the Digital Library of
Mathematical Functions [18, §12]. Equation (68) has particular solutions denoted
U(a,±y) and U(−a,±iy), where U(·, ·) is a special function2 with well-known
integral representations, asymptotic expansions, and connection formulæ.

The second step is to represent the elements U1j as linear combinations of a
fundamental pair of so-called numerically satisfactory solutions specially adapted
to each of the five sectors of analyticity for Riemann-Hilbert Problem 3. Thus, we
write

U1j (ζ ;m)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

βA
(0)
j U(a, y) + βB

(0)
j U(−a, iy), | arg(ζ )| < 1

4π,

βA
(1)
j U(a, y) + βB

(1)
j U(−a,−iy), 1

4π < arg(ζ ) < 3
4π,

βA
(−1)
j U(a,−y) + βB

(−1)
j U(−a, iy), − 3

4π < arg(ζ ) < − 1
4π,

βA
(2)
j U(a,−y) + βB

(2)
j U(−a,−iy), 3

4π < arg(ζ ) < π,

βA
(−2)
j U(a,−y) + βB

(−2)
j U(−a,−iy), −π < arg(ζ ) < − 3

4π,

(69)

2In many works on long-time asymptotics for the Cauchy problem (1)–(2) written before the
Digital Library of Mathematical Functions was freely available (e.g., [8, 9]), the solution of
Riemann-Hilbert Problem 3 was developed in terms of the related function Dν(y) := U(− 1

2 −
ν, y). Since most formulæ in [18, §12] are phrased in terms of U(·, ·), we favor the latter.
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and then using the first row of (67) along with identities allowing the elimination of
derivatives of U [18, Eqs. 12.8.2–12.8.3] we get the following representation of the
elements of the second row of U(ζ ;m):

U2j (ζ ;m)

= √
2e−iπ/4

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−A
(0)
j U(a−1, y)+i(a− 1

2 )B
(0)
j U(1−a, iy), | arg(ζ )|< 1

4π,

−A
(1)
j U(a−1, y)−i(a− 1

2 )B
(1)
j U(1−a,−iy), 1

4π< arg(ζ )< 3
4π,

A
(−1)
j U(a−1,−y)+i(a− 1

2 )B
(−1)
j U(1−a, iy), − 3

4π< arg(ζ )< − 1
4π,

A
(2)
j U(a−1,−y)−i(a− 1

2 )B
(2)
j U(1−a,−iy), 3

4π< arg(ζ )<π,

A
(−2)
j U(a−1,−y)−i(a− 1

2 )B
(−2)
j U(1−a,−iy), −π< arg(ζ )< − 3

4π.

(70)

Finally, we determine the coefficients A
(i)
j and B

(i)
j for j = 1, 2 and i =

0,±1,±2, as well as the value of β = β(m) so that all of the conditions of Riemann-
Hilbert Problem 3 are satisfied by P(ζ ;m) = U(ζ ;m)eiζσ3/2. The advantage of
using numerically satisfactory fundamental pairs is that the asymptotic expansion
[18, Eq. 12.9.1]

U(a, y) ∼ e− 1
4 y2

y
−a− 1

2

∞∑
k=0

(−1)k

(
1
2 + a

)
2k

k!(2y2)k
, y → ∞, | arg(y)| <

3

4
π

(71)

can be used to determine from (69)–(70) the asymptotic behavior of U(ζ ;m) in
each sector for the purposes of comparison with the first formula in (63). This
immediately shows that for consistency it is necessary to take A

(i)
1 = 0 and B

(i)
2 = 0

for i = 0,±1,±2. Next, it is useful to consider the trivial jump conditions for the
first column of U(ζ ;m) (across arg(ζ ) = − 1

4π and arg(ζ ) = 3
4π ) and for the

second column of U(ζ ;m) (across arg(ζ ) = 1
4π and arg(ζ ) = − 3

4π ). These imply

the identities B
(0)
1 = B

(−1)
1 , B

(1)
1 = B

(2)
1 (from matching the first column) and

A
(0)
2 = A

(1)
2 , A

(−2)
2 = A

(−1)
2 (from matching the second column). The diagonal

jump condition satisfied by U(ζ ;m) across the negative real axis then yields the
additional identities B

(−2)
1 = (1 − m2)−1B

(2)
1 and A

(2)
2 = (1 − m2)−1A

(−2)
2 . With

this information, we have found that U(ζ ;m) necessarily has the form

U(ζ ;m) =
(

βB
(0)
1 U(−a, iy) βA

(0)
2 U(a, y)√

2eiπ/4(a − 1
2 )B

(0)
1 U(1 − a, iy)

√
2e3π i/4A

(0)
2 U(a − 1, y)

)
,

| arg(ζ )| <
1

4
π, (72)

U(ζ ;m) =
(

βB
(1)
1 U(−a,−iy) βA

(0)
2 U(a, y)√

2e−3π i/4(a − 1
2 )B

(1)
1 U(1 − a,−iy)

√
2e3π i/4A

(0)
2 U(a − 1, y)

)
,

1

4
π < arg(ζ ) <

3

4
π, (73)
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U(ζ ;m) =
(

βB
(0)
1 U(−a, iy) βA

(−1)
2 U(a,−y)√

2eiπ/4(a − 1
2 )B

(0)
1 U(1 − a, iy)

√
2e−iπ/4A

(−1)
2 U(a − 1,−y)

)
,

− 3

4
π < arg(ζ ) < −1

4
π, (74)

U(ζ ;m)

=
(

βB
(1)
1 U(−a,−iy) β(1−m2)−1A

(−1)
2 U(a,−y)√

2e−3π i/4(a− 1
2 )B

(1)
1 U(1−a,−iy)

√
2e−iπ/4(1−m2)−1A

(−1)
2 U(a−1,−y)

)
,

3

4
π < arg(ζ ) < π, (75)

and

U(ζ ;m)

=
(

β(1−m2)−1B
(1)
1 U(−a,−iy) βA

(−1)
2 U(a,−y)√

2e−3π i/4(a− 1
2 )(1−m2)−1B

(1)
1 U(1−a,−iy)

√
2e−iπ/4A

(−1)
2 U(a−1,−y)

)
,

− π < arg(ζ ) < −3

4
π. (76)

Appealing again to (71) now shows that U(ζ ;m) agrees with the first formula in (63)
up to the leading term only if the parameter a in Weber’s equation (68) satisfies

a − 1

2
= 1

2π i
ln(1 − m2) �⇒ |β|2 = − 1

π
ln(1 − m2) > 0, (77)

and the remaining constants A
(0)
2 , A

(−1)
2 , B

(0)
1 , and B

(1)
1 , are given in terms of β by

B
(0)
1 = β−1(1 − m2)−1/8 exp

(
i

1

4π
ln(2) ln(1 − m2)

)

A
(0)
2 = 1√

2
(1 − m2)−1/8e−3π i/4 exp

(
−i

1

4π
ln(2) ln(1 − m2)

)

B
(1)
1 = β−1(1 − m2)3/8 exp

(
i

1

4π
ln(2) ln(1 − m2)

)

A
(−1)
2 = 1√

2
(1 − m2)3/8eiπ/4 exp

(
−i

1

4π
ln(2) ln(1 − m2)

)
. (78)

Only arg(β) remains to be determined, and for this we recall the nontrivial jump
conditions for the first (second) column of U(ζ ;m) across the rays arg(ζ ) =
1
4π,− 3

4π (the rays arg(ζ ) = − 1
4π, 3

4π ). Actually all four of these jump conditions
contain equivalent information due to the fact that the cyclic product of the jump
matrices in Riemann-Hilbert Problem 3 about the origin is the identity, so we just
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examine the transition of the first column across the ray arg(ζ ) = 1
4π implied by

the jump conditions in Riemann-Hilbert Problem 3. Using all available information,
the jump condition matches the connection formula [18, Eq. 12.2.18] if and only if

arg(β) = π

4
+ 1

2π
ln(2) ln(1 − m2) − arg

(
�

(
i

1

2π
ln(1 − m2)

))
. (79)

Combining this with (77) determines β=β(m) and then using (78) in (72)–(76) fully
determines U(ζ ;m) and hence also P(ζ ;m) = U(ζ ;m)eiζ 2σ3/2. This completes
the construction of the necessarily unique solution of Riemann-Hilbert Problem 3.
One can easily check directly that U′(ζ ;m)U(ζ ;m)−1 is analytic at ζ = 0, and
using (71) (which is known to be a formally differentiable expansion) one confirms
the asymptotic expansions (62)–(63), justifying after the fact all assumptions made
to arrive at the explicit solution.

We note that for each m ∈ [0, 1), P(ζ ;m) is uniformly bounded with respect to
ζ ∈ C, since it is locally bounded and the normalization factor in the asymptotics
as ζ → ∞ satisfies

(1 − m2)1/2 < |ζ− ln(1−m2)/(2π i)| < (1 − m2)−1/2, arg(ζ ) ∈ (−π, π). (80)

Since det(P(ζ ;m)) = 1, the same holds for P(ζ ;m)−1. Moreover, it is not difficult
to see that if ‖ · ‖ is a matrix norm, then supζ∈C\�P

‖P(ζ ;m)‖ is a continuous
function of m ∈ [0, 1). Therefore the estimates on P(ζ ;m) and P(ζ ;m)−1 hold
uniformly with respect to m ∈ [0, ρ] for any ρ < 1.

3.5 The Equivalent ∂ Problem and Its Solution for Large t

The next part of the proof of Theorem 1.1 is the nonlinear analogue of the
estimation of the error E(x, t) in the stationary phase formula (20) by double
integrals in the z-plane. Here instead of a double integral we will have a double-
integral equation arising from a ∂-problem. To arrive at this problem, we simply
define a matrix function E(u, v; x, t) by comparing the “open lenses” matrix
(2t1/2)iν(z0)σ3O(u, v; x, t) with its parametrix P(2t1/2(z − z0); |r(z0)|):

E(u, v; x, t) := (2t1/2)iν(z0)σ3 O(u, v; x, t)P(2t1/2(u+iv−z0); |r(z0)|)−1. (81)

We claim that E(u, v; x, t) satisfies the following problem.

∂ Problem 1 Let (x, t) ∈ R2 be parameters. Find a 2 × 2 matrix function E =
E(u, v) = E(u, v; x, t), (u, v) ∈ R2 with the following properties:

Continuity E is a continuous function of (u, v) ∈ R2.
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Nonanalyticity E is a (weak) solution of the partial differential equation
∂E(u, v) = E(u, v)W(u, v), where W(u, v) = W(u, v; x, t) is defined by

W(u, v; x, t) := P(2t1/2(u + iv − z0); |r(z0)|)�(u, v; x, t)

·P(2t1/2(u + iv − z0); |r(z0)|)−1, (82)

and

�(u, v; x, t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

−∂E1(u, v)e2it (θ(u+iv;z0)−θ(z0;z0)) 0

)
, u + iv ∈ �1

0, u + iv ∈ �2(
0 −∂E3(u, v)e−2it (θ(u+iv;z0)−θ(z0;z0))

0 0

)
, u + iv ∈ �3

(
0 0

∂E4(u, v)e2it (θ(u+iv;z0)−θ(z0;z0)) 0

)
, u + iv ∈ �4

0, u + iv ∈ �5(
0 ∂E6(u, v)e−2it (θ(u+iv;z0)−θ(z0;z0))

0 0

)
, u + iv ∈ �6.

(83)
Note that W(u, v; x, t) has jump discontinuities across the sector boundaries in
general.
Normalization E(u, v) → I as (u, v) → ∞.

To show the continuity, first note that in each of the six sectors �j , j = 1, . . . , 6,
E(u, v; x, t) is continuous as a function of (u, v) up to the sector boundary. Indeed,
the first factor in (81) is independent of (u, v), and the second factor in (81) has
the claimed continuity because this is a property of the solution N(u + iv; x, t) of
Riemann-Hilbert Problem 2 and of the change-of-variables formula (59). Finally,
P(ζ ;m) has unit determinant and its explicit formula in terms of parabolic cylinder
functions shows that its restriction to each sector is an entire function of ζ , which
guarantees the asserted continuity of the third factor in (81). Moreover, the matrices
(2t1/2)iν(z0)σ3O(u, v; x, t) and P(2t1/2(u+iv−z0); |r(z0)|) satisfy exactly the same
jump conditions across the six rays that form the common boundaries of neighboring
sectors, from which it follows that E+(u, v; x, t) = E−(u, v; x, t) holds across each
of these rays and therefore E(u, v; x, t) may be regarded as a continuous function
of (u, v) ∈ R2.

To show that ∂E = EW holds, one simply differentiates E(u, v; x, t) in each
of the six sectors, using the fact that O(u, v; x, t) is related to N(u + iv; x, t)

explicitly by (59) and that both N(u + iv; x, t) and the unit-determinant matrix
function P(2t1/2(u+ iv−z0); |r(z0)|) are analytic functions of u+ iv in each sector,
and hence are annihilated by ∂ . The region of non-analyticity of E is therefore the
union of shaded sectors shown in Fig. 2.
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Finally to show the normalization condition, we recall Lemma 3.2.
Therefore, comparing the normalization conditions of Riemann-Hilbert Problem 2
for N(z; x, t) and of Riemann-Hilbert Problem 3 for P(ζ ;m) shows that
E(u, v; x, t) → I as (u, v) → ∞ in R2.

The rest of this section is devoted to the proof of the following result.

Proposition 3.3 Suppose that r ∈ H 1(R) with |r(z)| ≤ ρ for some ρ < 1. If t > 0
is sufficiently large, then for all x ∈ R there exists a unique solution E(·, ·; x, t) ∈
L∞(R2) of ∂-Problem 1 with the property that

E1(x, t) := lim
(u,v)→∞

u=0

(u + iv) [E(u, v; x, t) − I] (84)

exists and satisfies

sup
x∈R

‖E1(x, t)‖ = O(t−3/4), t → +∞. (85)

Proof To show that ∂-Problem 1 has a unique solution for t > 0 sufficiently large,
and simultaneously obtain estimates for the solution E(u, v; x, t), we formulate a
weakly-singular integral equation whose solution is that of ∂-Problem 1:

E(u, v; x, t) = I + JE(u, v; x, t),

J F(u, v) := − 1

π

∫∫
R2

F(U, V )W(U, V ; x, t)

(U − u) + i(V − v)
dA(U, V ), (86)

in which the identity matrix I is viewed as a constant function on R2. Indeed, this is
a consequence of the distributional identity ∂z−1 = −πδ where δ denotes the Dirac
mass at the origin. We will solve the integral equation (86) in the space L∞(R2),
by computing the corresponding operator norm3 of J : L∞(R2) → L∞(R2) and
showing that for large t > 0 it is less than 1. Thus, we begin with the elementary
estimate

‖J F(u, v)‖ ≤ 1

π
‖F‖L∞(R2)

∫∫
R2

‖W(U, V ; x, t)‖ dA(U, V )√
(U − u)2 + (V − v)2

. (87)

Using the uniform boundedness of P(ζ ;m) and its inverse with respect to ζ i.e.,
there exists C > 0 such that ‖P(ζ ;m)‖ ≤ C and ‖P(ζ ;m)−1‖ ≤ C for all ζ ∈
C \ �P and all m ∈ [0, ρ] with ρ < 1, the assumption |r(z)| ≤ ρ < 1 gives that

3All Lp norms of matrix-valued functions in this section depend on the choice of matrix norm,
which we always take to be induced by a norm on C2.
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‖W(u, v; x, t)‖ ≤ C2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−8t (u−z0)v|∂E1(u, v)|, z = u + iv ∈ �1

e8t (u−z0)v|∂E3(u, v)|, z = u + iv ∈ �3

e−8t (u−z0)v|∂E4(u, v)|, z = u + iv ∈ �4

e8t (u−z0)v|∂E6(u, v)|, z = u + iv ∈ �6,

(88)

and of course W(u, v; x, t) ≡ 0 on �2 ∪ �5. By direct computation using (58)
along with the analyticity of f (z; z0)

±2 provided by Lemma 3.1 and straightforward
estimates of cos(2 arg(u + iv − z0)) and its ∂-derivative as in Sect. 2, we have the
following analogues of (29):

|∂E1(u, v)| ≤ 1

2
|f (u + iv; z0)

−2||r ′(u)| + |f (u + iv; z0)
−2r(u) − r(z0)|√

(u − z0)2 + v2
,

z = u + iv ∈ �1, (89)

|∂E3(u, v)| ≤ 1

2
|f (u + iv; z0)

2|
∣∣∣∣∣

d

du

r(u)

1 − |r(u)|2
∣∣∣∣∣

+
∣∣∣∣∣
f (u + iv; z0)

2r(u)

1 − |r(u)|2 − r(z0)

1 − |r(z0)|2
∣∣∣∣∣

1√
(u − z0)2 + v2

, z = u + iv ∈ �3,

(90)

|∂E4(u, v)| ≤ 1

2
|f (u + iv; z0)

−2|
∣∣∣∣ d

du

r(u)

1 − |r(u)|2
∣∣∣∣

+
∣∣∣∣f (u + iv; z0)

−2r(u)

1 − |r(u)|2 − r(z0)

1 − |r(z0)|2
∣∣∣∣ 1√

(u − z0)2 + v2
, z = u + iv ∈ �4,

(91)

and

|∂E6(u, v)| ≤ 1

2
|f (u + iv; z0)

2||r ′(u)| + |f (u + iv; z0)
2r(u) − r(z0)|√

(u − z0)2 + v2
,

z = u + iv ∈ �6. (92)

Note that ∣∣∣∣∣
d

du

r(u)

1 − |r(u)|2
∣∣∣∣∣ =

∣∣∣∣ d

du

r(u)

1 − |r(u)|2
∣∣∣∣ ≤ 1 + ρ2

(1 − ρ2)2 |r ′(u)| (93)
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holds under the condition |r(u)| ≤ ρ < 1. Also, under the same condition,

|f (u + iv; z0)
−2r(u) − r(z0)| = |(f (u + iv; z0)

−2 − 1)r(u) + r(u) − r(z0)|
≤ ρ|f (u + iv; z0)

−2 − 1| + |r(u) − r(z0)|
≤ (Kρ + ‖r ′‖L2(R)

) [(u − z0)
2 + v2]1/4, (94)

where we used Lemma 3.1 and (30), and K > 0 depends on ρ but not on z0. Exactly
the same estimate holds for |f (u + iv; z0)

2r(u) − r(z0)|. In the same way, but also
using (93),

∣∣∣∣∣
f (u + iv; z0)

2r(u)

1 − |r(u)|2 − r(z0)

1 − |r(z0)|2
∣∣∣∣∣ ≤

(
Kρ

1 − ρ2 + 1 + ρ2

(1 − ρ2)2 ‖r ′‖L2(R)

)
[(u − z0)

2 + v2]1/4

∣∣∣∣f (u + iv; z0)
−2r(u)

1 − |r(u)|2 − r(z0)

1 − |r(z0)|2
∣∣∣∣ ≤

(
Kρ

1 − ρ2 + 1 + ρ2

(1 − ρ2)2 ‖r ′‖L2(R)

)
[(u − z0)

2 + v2]1/4.

(95)

Therefore again using Lemma 3.1, we see that there are constants L and M

depending only on the upper bound ρ < 1 for ‖r‖L∞(R), on ‖r‖L2(R), and on
‖r ′‖L2(R) such that

|∂Ej (u, v)| ≤ L|r ′(u)| + M

[(u − z0)2 + v2]1/4 , z = u + iv ∈ �j , j = 1, 3, 4, 6.

(96)

Note that (96) is the nonlinear analogue of the estimate (31).
Combining (96) with (87)–(88) shows that for some constant D independent of

(x, t) ∈ R2,

‖J F(u, v; x, t)‖ ≤ D
[
I [1,4](u, v; x, t) + J [1,4](u, v; x, t) + I [3,6](u, v; x, t)

+J [3,6](u, v; x, t)
] ‖F‖L∞(R2), (97)

where the four terms are analogues in the nonlinear case of the double integrals
defined in (33) for the linear case:

I [1,4](u, v; x, t) :=
∫∫

�1∪�4

|r ′(U)|e−8t (U−z0)V dA(U, V )√
(U − u)2 + (V − v)2

,

I [3,6](u, v; x, t) :=
∫∫

�3∪�6

|r ′(U)|e8t (U−z0)V dA(U, V )√
(U − u)2 + (V − v)2

,
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J [1,4](u, v; x, t) :=
∫∫

�1∪�4

e−8t (U−z0)V dA(U, V )

[(U − z0)2 + V 2]1/4
√

(U − u)2 + (V − v)2
, and

J [3,6](u, v; x, t) :=
∫∫

�3∪�6

e8t (U−z0)V dA(U, V )

[(U − z0)2 + V 2]1/4
√

(U − u)2 + (V − v)2
.

(98)

Estimation of the integrals I [1,4](u, v; x, t) and J [1,4](u, v; x, t) requires nearly
identical steps as estimation of I [3,6](u, v; x, t) and J [3,6](u, v; x, t) (just note that
the sign of the exponent always corresponds to decay in the sectors of integration).
So for brevity we just deal with I [3,6](u, v; x, t) and J [3,6](u, v; x, t).

To estimate I [3,6](u, v; x, t), by iterated integration we have

I [3,6](u, v; x, t)

=
[∫ +∞

0
dV

∫ z0−V

−∞
dU +

∫ 0

−∞
dV

∫ +∞

z0−V

dU

] |r ′(U)|e8t (U−z0)V√
(U − u)2 + (V − v)2

≤
[∫ +∞

0
dV

∫ z0−V

−∞
dU +

∫ 0

−∞
dV

∫ +∞

z0−V

dU

] |r ′(U)|e−8tV 2

√
(U − u)2 + (V − v)2

.

(99)

The inner integrals can be estimated by Cauchy-Schwarz, using the fact that
r ′ ∈ L2(R):

±
∫ z0−V

∓∞
|r ′(U)| dU√

(U − u)2 + (V − v)2
≤
∫

R

|r ′(U)| dU√
(U − u)2 + (V − v)2

≤ ‖r ′‖L2(R)

√∫
R

dU

(U − u)2 + (V − v)2 = ‖r ′‖L2(R)

√
π√|V − v| . (100)

Thus,

I [3,6](u, v; x, t) ≤ ‖r ′‖L2(R)

√
π

∫
R

e−8tV 2
dV√|V − v| . (101)

Without loss of generality, suppose that v > 0. Then

∫
R

e−8tV 2
dV√|V − v| =

∫ 0

−∞
e−8tV 2

dV√
v − V

+
∫ v

0

e−8tV 2
dV√

v − V
+
∫ +∞

v

e−8tV 2
dV√

V − v
. (102)
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Using monotonicity of
√

v − V on V < 0 and the rescaling V = t−1/2w, we get
for the first term:

∫ 0

−∞
e−8tV 2

dV√
v − V

≤
∫ 0

−∞
e−8tV 2

dV√−V
= t−1/4

∫ 0

−∞
e−8w2

dw√−w
= O(t−1/4).

(103)

For the second term, we use the inequality e−b ≤ Cb−1/4 for b > 0 and the rescaling
V = vw to get

∫ v

0

e−8tV 2
dV√

v−V
≤ C(8t)−1/4

∫ v

0

dV√
V (v−V )

= C(8t)−1/4
∫ 1

0

dw√
w(1−w)

=O(t−1/4).

(104)

Using monotonicity of e−8tV 2
on V > v and the change of variable V −v = t−1/2w

we get for the third term:

∫ +∞

v

e−8tV 2
dV√

V − v
≤
∫ +∞

v

e−8t (V −v)2
dV√

V − v
= t−1/4

∫ +∞

0

e−8w2
dw√

w
= O(t−1/4).

(105)

The upper bounds in (103)–(104) are all independent of v (and u), so combining
them with (101)–(102) gives

sup
(u,v)∈R2

I [3,6](u, v; x, t) ≤ C‖r ′‖L2(R)t
−1/4, (106)

where C denotes an absolute constant.
To estimate J [3,6](u, v; x, t) we again introduce iterated integrals in the same

way as in (99) to obtain the inequality

J [3,6](u, v; x, t) ≤
[∫ +∞

0
dV

∫ z0−V

−∞
dU +

∫ 0

−∞
dV

∫ +∞

z0−V

dU

]

· e−8tV 2

[(U − z0)2 + V 2]1/4
√

(U − u)2 + (V − v)2
. (107)

Now, to estimate the inner U -integrals we will use Hölder’s inequality with
conjugate exponents p > 2 and q < 2. Thus,

±
∫ z0−V

∓∞
dU

[(U − z0)2 + V 2]1/4
√

(U − u)2 + (V − v)2
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≤
(

±
∫ z0−V

∓∞
dU

[(U−z0)2 + V 2]p/4

)1/p (
±
∫ z0−V

∓∞
dU

[(U−u)2 + (V −v)2]q/2

)1/q

≤
(∫

R

dU

[(U − z0)2 + V 2]p/4

)1/p (∫
R

dU

[(U − u)2 + (V − v)2]q/2

)1/q

.

(108)

Now, by the change of variable U − z0 = |V |w,

(∫
R

dU

[(U − z0)2 + V 2]p/4

)1/p

= |V |1/p−1/2
(∫

R

dw

[w2 + 1]p/4

)1/p

, (109)

where the integral on the right-hand side is convergent as long as p > 2. Similarly,
by the change of variable U − u = |V − v|w,

(∫
R

dU

[(U − u)2 + (V − v)2]q/2

)1/q

= |V − v|1/q−1
(∫

R

dw

[w2 + 1]q/2

)1/q

,

(110)
where the integral on the right-hand side is convergent as long as q > 1. Hence for
any conjugate exponents 1 < q < 2 < p < ∞ with p−1 + q−1 = 1, we have for
some constant C = C(p, q),

J [3,6](u, v; x, t) ≤ C

∫
R

e−8tV 2 |V |1/p−1/2|V − v|1/q−1 dV. (111)

As before, assume without loss of generality that v > 0. Then

∫
R

e−8tV 2 |V |1/p−1/2|V −v|1/q−1 dV =
∫ 0

−∞
e−8tV 2

(−V )1/p−1/2(v−V )1/q−1 dV

+
∫ v

0
e−8tV 2

V 1/p−1/2(v −V )1/q−1 dV +
∫ +∞

v

e−8tV 2
V 1/p−1/2(V −v)1/q−1 dV.

(112)

Using q > 1 and monotonicity of (v−V )1/q−1 on V < 0 along with 1/p+1/q = 1
and the rescaling V = t−1/2w gives for the first integral
∫ 0

−∞
e−8tV 2

(−V )1/p−1/2(v − V )1/q−1 dV ≤
∫ 0

−∞
e−8tV 2

(−V )1/p−1/2+1/q−1 dV

=
∫ 0

−∞
e−8tV 2

(−V )−1/2 dV

= t−1/4
∫ 0

−∞
e−8w2

(−w)−1/2 dw = O(t−1/4).

(113)
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For the second integral, we again recall e−b ≤ Cb−1/4 for b > 0 and rescale by
V = vw to get

∫ v

0
e−8tV 2

V 1/p−1/2(v − V )1/q−1 dV ≤ C(8t)−1/4
∫ v

0
V 1/p−1(v − V )1/q−1 dV

= C(8t)−1/4
∫ 1

0
w1/p−1(1 − w)1/q−1 dw

= O(t−1/4), (114)

using also q, p < ∞. Finally, for the third integral, we use monotonicity of e−8tV 2

and V 1/p−1/2 (for p > 2) on V > v and make the substitution V − v = t−1/2w to
get

∫ +∞

v

e−8tV 2
V 1/p−1/2(V − v)1/q−1 dV ≤

∫ +∞

v

e−8t (V −v)2
(V − v)1/p−1/2

· (V − v)1/q−1 dV

=
∫ +∞

v

e−8t (V −v)2
(V − v)−1/2 dV

= t−1/4
∫ +∞

0
e−8w2

w−1/2 dw = O(t−1/4).

(115)
Since the upper bounds in (113)–(115) are all independent of (u, v) ∈ R2,
combining them with (111)–(112) gives

sup
(u,v)∈R2

J [3,6](u, v; x, t) ≤ Ct−1/4, (116)

where C denotes an absolute constant.
Returning to (97) and taking a supremum over (u, v) ∈ R2, we see that

‖J F‖L∞(R2) ≤ Dt−1/4‖F‖L∞(R2), i.e., ‖J ‖L∞(R2)� ≤ Dt−1/4 (117)

holds where D is a constant depending only on the upper bound ρ < 1 for ‖r‖L∞(R),
on ‖r‖L2(R), and on ‖r ′‖L2(R), and where ‖J ‖L∞(R2)� denotes the norm of the

weakly-singular integral operator J acting in L∞(R2). It is a consequence of (117)
that the integral equation (86) is uniquely solvable in L∞(R2) by convergent
Neumann series for sufficiently large t > 0:

E(u, v; x, t) = (I −J )−1I = I +J I +J 2I +J 3I + · · · , t > D−4, (118)
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where I denotes the identity operator and I the constant function on R2, and that
the solution satisfies

‖E − I‖L∞(R2) ≤ Dt−1/4

1 − Dt−1/4 = O(t−1/4), t → +∞, (119)

an estimate that is uniform with respect to x ∈ R. This proves the first assertion in
Proposition 3.3.

To prove the existence of the limit E1(x, t) in (84), note that from the integral
equation (86) we have

(u + iv) [E(u, v; x, t) − I]

= 1

π

∫∫
R2

E(U, V ; x, t)W(U, V ; x, t) dA(U, V )

− 1

π

∫∫
R2

U + iV

(U − u) + i(V − v)
E(U, V ; x, t)W(U, V ; x, t) dA(U, V ).

(120)

The second term satisfies

∥∥∥∥
∫∫

R2

U + iV

(U − u) + i(V − v)
E(U, V ; x, t)W(U, V ; x, t) dA(U, V )

∥∥∥∥

≤ ‖E‖L∞(R2)

∫∫
R2

√
U2 + V 2

(U − u)2 + (V − v)2 ‖W(U, V ; x, t)‖ dA(U, V ).

(121)

Now, following [12], let us examine the resulting double integral for u = 0, i.e., for
z = u + iv restricted to the imaginary axis. Some simple trigonometry shows that

sup
(U,V )∈supp(W(·,·;x,t))

√
U2 + V 2

U2 + (V − v)2 = 1+√
2

|v|
|v| − |z0| , |v| > |z0|. (122)

Therefore, if u = 0, the double integral on the right-hand side of (121) will tend to
zero as |v| → ∞ by the Lebesgue dominated convergence theorem provided that
W(·, ·; x, t) ∈ L1(R2). Using (88) and (96), we have

∫∫
R2

‖W(U, V ; x, t)‖ dA(U, V )

≤ D
[
Ĩ [1,4](x, t) + J̃ [1,4](x, t) + Ĩ [3,6](x, t) + J̃ [3,6](x, t)

]
, (123)
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where (compare with (98), or better yet, (33))

Ĩ [1,4](x, t) :=
∫∫

�1∪�4

|r ′(U)|e−8t (U−z0)V dA(U, V ),

Ĩ [3,6](x, t) :=
∫∫

�3∪�6

|r ′(U)|e8t (U−z0)V dA(U, V ),

J̃ [1,4](x, t) :=
∫∫

�1∪�4

e−8t (U−z0)V dA(U, V )

[(U − z0)2 + V 2]1/4 , and

J̃ [3,6](x, t) :=
∫∫

�3∪�6

e8t (U−z0)V dA(U, V )

[(U − z0)2 + V 2]1/4 .

(124)

Noting the resemblance with the double integrals (33) analyzed in Sect. 2, we can
immediately obtain the estimate

∫∫
R2

‖W(U, V ; x, t)‖ dA(U, V ) ≤ Ct−3/4 < ∞ (125)

for some constant C independent of x. Therefore, the second term on the right-hand
side of (120) tends to zero as v → ∞ if u = 0 (the limit is not uniform with
respect to x since v is compared with z0 in (122)). Comparing with (84), we obtain
from (120) the formula

E1(x, t) := 1

π

∫∫
R2

E(U, V ; x, t)W(U, V ; x, t) dA(U, V ), (126)

and exactly the same argument shows that E1(x, t) is finite and uniformly decaying
as t → +∞:

‖E1(x, t)‖ ≤ 1

π
‖E‖L∞(R2)‖W‖L1(R2)

≤ 1

π

(
‖I‖L∞(R2) + ‖E − I‖L∞(R2)

)
‖W‖L1(R2)

≤ C

π

(
1 + Dt−1/4

1 − Dt−1/4

)
t−3/4 = O(t−3/4), (127)

where we have used (119) and (125) and noted that the constants C and D are
independent of x. This proves the second assertion in Proposition 3.3. ��
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3.6 The Solution of the Cauchy Problem (1)–(2) for t > 0
Large

Now we complete the proof of Theorem 1.1 by combining our previous results.
The matrix function N(u + iv; x, t) agrees with O(u, v; x, t) for u = 0 and |v|
sufficiently large given z0 = −x/(4t). Since according to (81),

O(u, v; x, t) = (2t1/2)−iν(z0)σ3 E(u, v; x, t)P(2t1/2(u+iv−z0); |r(z0)|), (128)

we compute the matrix coefficient N1(x, t) appearing in (56) by taking
a limit along the imaginary axis in (54). Thus, we obtain N1(x, t) =
(2t1/2)−iν(z0)σ3 Q(x, t)(2t1/2)iν(z0)σ3 , where (using z = u + iv)

Q(x, t) = (2t1/2)iν(z0)σ3

⎧⎪⎨
⎪⎩ lim

(u,v)→∞
u=0

z
[
N(z; x, t)(z − z0)

−iν(z0)σ3 − I
]
⎫⎪⎬
⎪⎭ (2t)−iν(z0)σ3

= lim
(u,v)→∞

u=0

z

·
[
E(u, v; x, t)P(2t1/2(z − z0); |r(z0)|)(2t1/2(z − z0))

−iν(z0)σ3 − I
]
.

(129)
Using (62) and Proposition 3.3 yields

Q(x, t) = E1(x, t) + 1

2
t−1/2P1(|r(z0)|). (130)

Therefore, using (56) gives the following formula for the solution of the Cauchy
problem (1)–(2):

q(x, t) = 2ie−iω(z0)e−2itθ(z0;z0)c(z0)
−2(2t1/2)−2iν(z0)Q12(x, t)

= e−iω(z0)e−2itθ(z0;z0)c(z0)
−2(2t1/2)−2iν(z0)

[
2iE1,12(x, t) + 1

2
t−1/22iP1,12(|r(z0)|)

]

= e−iω(z0)e−2itθ(z0;z0)c(z0)
−2(2t1/2)−2iν(z0)

[
2iE1,12(x, t) + 1

2
t−1/2β(|r(z0)|)

]
,

(131)
where we recall ω(z0) = arg(r(z0)), θ(z0; z0) = −2z2

0, the definition (4) of ν(z0),
the definition (42) of c(z0), and the definitions (77) and (79) of |β(m = |r(z0)|)|2
and arg(β(m = |r(z0)|)) respectively. Since the factors to the left of the square
brackets have unit modulus, from Proposition 3.3 it follows that q(x, t) has exactly
the representation (3) in which |E(x, t)| = |E1,12(x, t)| = O(t−3/4) as t → +∞,
uniformly with respect to x. This completes the proof of Theorem 1.1.
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Remark The use of truncations of the Neumann series (118) for E(u, v; x, t) yields
a corresponding asymptotic expansion of q(x, t) as t → +∞. In other words, it is
straightforward (but tedious) to compute explicit corrections to the leading term in
the asymptotic formula (3) by expanding E(x, t). For instance, the formula (126)
gives

E1(x, t) = 1

π

∫∫
R2

W(U, V ; x, t) dA(U, V )

+ 1

π

∫∫
R2

(E(U, V ; x, t) − I)W(U, V ; x, t) dA(U, V ), (132)

i.e., an explicit double integral plus a remainder. Using the estimates (119) and (125)
we find that the remainder term satisfies

sup
x∈R

∥∥∥∥ 1

π

∫∫
R2

(E(U, V ; x, t) − I)W(U, V ; x, t) dA

∥∥∥∥
≤ 1

π
sup
x∈R

‖E(·, ·; x, t)‖L∞(R2)‖W(·, ·; x, t)‖L1(R)

= O(t−1/4t−3/4) = O(t−1), t → +∞.

(133)

Using this result in (131) gives in place of (3) the corrected asymptotic formula

q(x, t) = q(0)(x, t) + q(1)(x, t) + E (1)(x, t) (134)

where

q(0)(x, t) := t−1/2α(z0)e
ix2/(4t)−iν(z0) ln(8t) (135)

is the leading term in (3),

q(1)(x, t) := 2i

π
e−iω(z0)e−2itθ(z0;z0)c(z0)

−2(2t1/2)−2iν(z0)

·
∫∫

R2
W12(U, V ; x, t) dA(U, V ) (136)

is an explicit correction (see (82)–(83)), and where E (1)(x, t) is error term satisfying
E (1)(x, t) = O(t−1) as t → +∞ uniformly with respect to x ∈ R. Theorem 1.1
implies that the correction satisfies ‖q(1)(·, t)‖L∞(R) = O(t−3/4) as t → +∞,
but the explicit formula (136) allows for a complete analysis of the correction. For
instance, we are in a position to seek reflection coefficients r(z) in the Sobolev
space H 1(R) with |r(z)| ≤ ρ < 1 for which the correction saturates the upper
bound of O(t−3/4), or to determine under which conditions on r(z) the correction
term can be smaller. Under additional hypotheses the expansion (134) can be carried



290 M. Dieng et al.

out to higher order, with subsequent corrections involving iterated double integrals
of W, which in turn involve ∂-derivatives of the extensions Ej , j = 1, 3, 4, 6, and
the parabolic cylinder functions contained in the matrix P(ζ ;m) solving Riemann-
Hilbert Problem 3.
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