
Chapter 5
Transcriptomic Approaches for Muscle
Biology and Disorders

Poching Liu, Surajit Bhattacharya, and Yi-Wen Chen

The transcriptome refers to all RNA molecules transcribed from our genome,
including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA
(tRNA), as well as other regulatory noncoding RNAs. Some well-known regulatory
noncoding RNA molecules are long noncoding RNA (lncRNA), microRNA
(miRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA).
Among the different types of RNA, the protein-coding mRNA received the most
attention, particularly when the tools for RNA profiling, or gene expression profil-
ing, were first developed in the late twentieth century. Since then, different tools and
sample preparation techniques have been developed to target various groups of
RNAs for study. This chapter will focus on mRNA profiling approaches primarily;
however, the same or modified technologies can be used to study other RNA groups.
The approach for studying miRNA, miRNA profiling, is described in a separate
chapter.

Transcriptomic studies are conducted to understand how transcriptome differ-
ences and changes contribute to biological functions and diseases. For skeletal
muscle research, a large number of studies have been published in the past
20 years using arrays and sequencing approaches to investigate (1) basic muscle
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biology [1–5]; (2) molecular responses to physiological and environmental stimuli
[6–10]; (3) effects of aging on muscles [11, 12]; (4) disease mechanism of muscle
disorders [13–18]; (5) molecular changes in muscles of non-muscle diseases [19–
21]; and (6) molecular responses to therapeutic interventions [22–24]. Most of these
transcriptome data sets have been deposited into public databases, such as the Gene
Expression Omnibus (GEO) database hosted by the National Center for Biotechnol-
ogy Information (NCBI), National Institutes of Health (NIH) (https://www.ncbi.nlm.
nih.gov/geo/). This provides a rich source of information for researchers today. For
example, one can query and download data of interest and conduct further analyses.
In this chapter, we will focus on the most commonly used platforms and approaches
to generate these data sets.

5.1 Theory and History of the Technique

Gene expression is the process wherein information from a gene is used in the
production of a functional gene product. When the final product is a protein, the
process involves “transcription” which produces mRNA using DNA as the template
and “translation” which produces proteins using the information provided by the
mRNA transcripts. The size of human genome is estimated to be 3.3 billion base
pairs, and approximately 5% of it can be transcribed and produce RNA products. Of
the whole transcriptome, only ~4% of the transcribed RNAs are protein-coding
mRNAs [25]. The amount of mRNA changes slightly depending on the cell types.
Dividing cells that are more active transcriptionally produce more mRNA transcripts
compared to terminally differentiated cells, such as myofibers. In addition to mRNA
quantity, gene expression profiles are different in different cell types and cell states.
Controlling which genes are expressed at a given time enables the cell to control its
size, shape, and functions. In other words, while all cells carry the same DNA
content, only a small portion of the DNA is actively transcribed at any one point
in time. Among the transcripts produced, only a small portion is protein-coding
RNAs. Transcriptomic approaches allow us to investigate differences in these
transcripts in muscle tissues and cells in different physiological conditions and
disease states. By comparing samples of interests to the controls, one may discover
important molecular changes and pathways that play critical roles in the conditions
or diseases under study. Because many regulatory steps in addition to transcription
are involved in regulating protein synthesis and function, one should not make
conclusions solely based on mRNA profiling data. Previous studies showed that
mRNA expression levels positively correlate with protein levels; however, the
change of mRNA level does not fully explain changes in proteins because posttrans-
lational modifications such as phosphorylation and methylation may have further
effects on protein function [26–30].

Gene expression profiling measures RNA transcripts at a given moment, which
provides a “snapshot” of the gene activities in cells in a specific state or condition. In
general, methods for determining RNA transcript levels can be based on (1) transcript
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visualization, (2) transcript hybridization, or (3) transcript sequencing. Because
RNA molecules are prone to degradation, they are usually reverse-transcribed into
cDNA (complementary DNA) before further processing. However, there are excep-
tions which will be discussed later. Polymerase chain reaction (PCR) arrays use
fluorescent dyes to detect and quantify the amount of PCR amplicons of each
transcript in a sample. Microarrays use cDNA or oligonucleotide probes to detect
the transcripts by hybridization methods. The next-generation sequencing approach
directly sequences the transcripts and determines the expression level of each
transcript by the number of reads. Earlier technologies for expression profiling
(cDNA arrays or PCR-based arrays) measure the expression of hundreds to thou-
sands of genes at a time. These arrays can be made in-house or custom-made by
companies. Afterward, microarrays were commercially developed by several com-
panies to increase coverage, throughput, sensitivity, and specificity. Some of the
platforms are capable of surveying tens of thousands of transcripts and allow
genome-wide profiling. Commonly used platforms include Affymetrix GeneChip®

Microarrays, Illumina High-Density Silica Bead-Based Microarrays, and Agilent
Expression Microarrays. For these microarray platforms, oligonucleotide probes at
various lengths accompanied by different array designs are used to capture the target
transcripts by hybridization methods. Transcripts that have not been discovered or
are not included on the microarrays will not be detected or measured using these
platforms. This limitation was resolved by the next-generation sequencing technol-
ogies, which first became available at the beginning of the 2000s [31, 32]. Different
from the traditional Sanger sequencing, next-generation sequencing (NGS) does not
target specific sequences. Instead, all transcripts in a sample are sequenced. This
unbiased approach in theory can survey the whole transcriptome including both
coding and noncoding RNA. However, due to the limitation of how many reads can
be obtained in one run and one may only be interested in a specific type of RNA
transcripts, different protocols, including primer types and enrichment methods,
were developed to examine specific types of RNA transcripts.

5.2 Major Applications

5.2.1 Hybridization-Based Platforms

The principle of microarrays is nucleic acid hybridization, in which two comple-
mentary strands of DNA or RNA molecules join to form a double-stranded mole-
cule, following the complimentary base pairing rules: adenine (A) pairs with
thymine (T) and cytosine (C) pairs with guanine (G). Northern blotting uses probes
that are complementary to the target RNA to detect an RNA that is immobilized on a
nitrocellulose or nylon membrane. To detect many RNA transcripts at the same time,
instead of immobilizing the RNA samples, many different probes are immobilized,
i.e., spotted onto the membrane or glass slide and then used to detect the target RNA
transcripts in samples adding to the immobilized probes. In this case, RNA
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transcripts are reverse-transcribed into cDNA and then hybridized to the probes on
the slides. The cDNA fragments are fluorescently labeled for visualization. The
prototype of the cDNA microarray made by spotting known cDNAs into a 96-well
microplate was reported in 1995, on which cDNAs were printed by robot [33]. Dif-
ferential expression of 45 Arabidopsis genes were measured simultaneously using
two-color fluorescence approach. In1996, 870 cDNAs were spotted on glass slides to
determine gene expression for cancer classification [34]. Two different colors are
used for the platform, the sample of interest is labeled with one color (e.g., Cy3), and
a reference sample is labeled with a different color (e.g., Cy5). Both samples are
hybridized to the same array and the ratio between the experiment and the reference
samples are used for further data analyses. This design allows proper normalization
and comparisons among different arrays (Fig. 5.1). One of the earliest expression
profiling studies done in skeletal muscles was reported in 1996, in which membranes
with cDNA clones spotted on them were used [5]. The early versions of cDNA
arrays provide platforms for examining hundreds of transcripts simultaneously.
There are several issues associated with the cDNA arrays, such as sensitivity,
specificity, normalization, reproducibility, throughput, and coverage which were
addressed in later generations of microarrays. Next, we describe three commercial
platforms that are commonly used for expression profiling studies. A comparison of
the three platforms is in Table 5.1 at the end of this section.

Fig. 5.1 Workflow of gene expression profiling using two-color cDNA microarrays
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5.2.1.1 Affymetrix

Affymetrix makes GeneChip arrays for transcriptome analysis using millions of
25-base DNA probes that have been synthesized directly onto a glass chip using
light-directed oligonucleotide synthesis method [35]. The probes are used to “probe”
the sample for target RNA segments. Hybridization is the basis for the detections.
Because the 25-mer is relatively short and can potentially bind to more than one
transcript, instead of one probe, a set of 11 probes are designed for each transcript.
The intensity data from all 11 probes are analyzed to determine whether the
transcript is detected (called “present”) or not detected (called “absent”) and give a
measure of the level of expression. In an experiment, the mRNA is reverse-
transcribed into double-stranded cDNA. The cDNA is then used as the template
for in vitro transcription. The RNA produced is known as cRNA, in which the uracil
bases are labeled with biotin. The fragments of biotin-labeled cRNA are then loaded
into the array so that the sample can hybridize with the probes on the glass chip of the
array. Afterward the array is washed to remove RNA that has not hybridized to the
probes. The hybridization is then visualized using streptavidin-linked fluorescent
dyes that bind to the biotin-labeled cRNA. The array is scanned with a laser scanner
and the image is analyzed to determine which transcripts are detected and how much
of each transcript is present.

In 2000, Affymetrix GeneChip® HuGeneFL Arrays were used to identify
transcriptomic changes underlying disease mechanisms of muscular dystrophies
[18]. In this study, approximately 30–40% of the known human transcripts that
were on the array were called “present”. Based on the data collected from the array,
the group developed a custom-made muscle array which contains genes that are
expressed in skeletal muscles [36, 37]. The Affymetrix GeneChip® HuGeneFL
Array is the first version of human whole genome array and contained approximately
5000 full-length human sequences. Several different versions containing more
sequences to cover the whole genome were subsequently developed, and the final/
latest human version, Clariom™ D Assay, consists of more than 5,40,000 tran-
scripts, including alternative splicing isoforms of both coding and noncoding RNAs.
Microarrays for other species, including mouse, rat, nonhuman primates, insects,
livestock, bird and fish, and small mammals, are also currently available for expres-
sion profiling studies. In addition to the arrays for mRNA and long noncoding RNA,
GeneChip™ miRNA Arrays are available for studying small noncoding RNA,
including miRNA, snoRNA, and scaRNA.

Table 5.1 Features of Affymetrix, Illumina, and Agilent microarrays

Manufacture Affymetrix Illumina Agilent

Feature size (μM) 10 3 50

Oligonucleotide length 25 nt 50 nt 60 nt

Number of oligonucleotides/gene 10–20 1–2 1–2

Number of features/array Up to 10,00,000 Up to 40,00,000 Up to 2,00,000

Custom flexibility Limited Moderate Excellent
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5.2.1.2 Illumina

Illumina Whole-Genome Gene Expression BeadChip consists of oligonucleotides
immobilized to beads which are held in microwells on the array [38]. Up to 30 beads
are available for each probe to improve data quality and reproducibility. The beads
are randomly distributed across the array, one bead per well, and a 29-mer address
sequence present on each bead is used for mapping the location of the beads on the
array. In addition to the unique bead design, the BeadChip microarray is deployed on
multi-sample array formats. Four to 24 uniform pits can be on each array, and
multiple samples can be loaded to the Illumina Expression BeadChip arrays,
which increases throughput and reduced sample-to-sample variations. The length
of the probe is 50 bases which is synthesized in solution and then cross-linked to the
beads. Labeled cRNA segments are hybridized to the probes on the BeadChip. After
hybridization, washing, and staining, the image data are acquired by a scanner. The
HumanHT-12 Expression BeadChip simultaneously profiles more than 47,000 tran-
scripts representing 28,688 well-annotated genes. The transcription level is calcu-
lated using average of the signals from all the beads. In addition, some genes can be
detected by more than one probe. For formalin-fixed paraffin-embedded (FFPE)
samples, the Illumina developed the DASL Assay for handling degraded RNA,
including muscle samples [39, 40].

5.2.1.3 Agilent Technologies

Agilent SurePrint G3 Gene Expression Microarrays are made with probes of
60 bases long [41]. The probes are synthesized onto the glass slides directly by
printing A, T, C, G using an inkjet-like printer at hundreds of thousands of spots on
the slide. After each nucleotide is added, a chemical de-blocking step is used to allow
the next nucleotide in the chain to be added. The probes grow to the full length at the
end. Agilent SurePrint used to be a two-color system Cy3 and Cy5). Now a
one-color only (Cy3) system is available for the users. The advantage of this
approach is that it makes updating of stock microarrays possible/easier as new
gene information becomes available. In addition, custom-designed arrays targeting
transcripts of specific interest can be created using this platform. The probes used
here are relatively longer compared to the probes on the Affymetrix arrays but
shorter than the traditional cDNA array. The length of the oligonucleotides is at a
balance point for better sensitivity and specificity. Currently, human, mouse, and rat
microarrays that cover coding and noncoding transcripts from the NCBI Reference
Sequence (RefSeq) database are available. The coding and noncoding tran-
scripts from RefSeq database are curated and nonredundant sequences.
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5.2.2 Sequencing-Based Platforms

Next-generation sequencing (NGS)-based RNA sequencing (short for RNA-seq) is a
highly sensitive and accurate method for gene expression profiling analysis that
provides insight to previously undetectable changes in gene expression, as well as
enabling the characterization of multiple forms of noncoding RNA. With RNA-seq,
researchers can detect the various structures of the transcriptome, such as transcript
isoforms, gene fusions, single nucleotide variants, and other features, without the
limitation of prior knowledge. RNA-seq (1) provides sensitive, accurate measure-
ment of gene expression at the transcript level; (2) generates both qualitative and
quantitative data; (3) detects and sequences small RNAs and multiple forms of
noncoding RNA, such as small interfering RNA (siRNA), microRNA (miRNA),
small nucleolar (snoRNA), and transfer RNA (tRNA); (4) identifies alternatively
spliced isoforms, splice sites, and allele-specific expression in a single experiment;
(5) provides data sets that are not biased or restrained by existing knowledge;
(6) obtains allele-specific information in the data; and (7) scales for large studies
and high sample numbers. As researchers seek to understand how the transcriptome
shapes biology, RNA-seq is becoming one of the most significant and powerful tools
in modern science. In addition, these sequencing-based methods are more cost-
effective in comparison to microarrays and real-time RT-PCR. A comparison of
the major platforms is in Table 5.2 at the end of this section.

5.2.2.1 Illumina

The Illumina platforms are the most commonly used sequencers for next-generation
sequencing. The technology has been used extensively for diagnosis of muscle
diseases [42, 43]. It has also been used for studying muscle transcriptome to answer
various biological questions, such as annotations of muscle transcripts, muscle
disease mechanisms, and basic muscle biology [44–46]. Sample preparation for
mRNA-seq using the Illumina platform involves isolation of RNA and chemical
fragmentation of RNA, followed by reverse transcription to generate double-
stranded cDNA fragments that are then sequenced. Figure 5.2 illustrates a simplified
workflow of the process. Sequencing adaptors which contain barcodes are ligated to
the cDNA fragments before size selection by gel electrophoresis. The fragments at
desired size are then excised for sequencing. For example, fragments ranging from
250 to 400 bases are collected for regular RNA-seq. To sequence shorter fragments,
e.g., to target shorter miRNA, fragments of 150 bases or less are collected. A
relatively low number of cycles (9–12 cycles) of PCR amplification are performed
to increase the template. Alternatively, PCR-free kits are now available to reduce
biases and contamination that may be introduced during PCR amplification.

DNA libraries are hybridized to the primer lawn on the flow cell by an automated
Cluster Station (cBot). Single-stranded cDNA fragments are washed across the flow
cell and bind to primers on the surface of the flow cell. DNA that doesn’t attach is
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washed away. The DNA attached to the flow cell is then replicated to form small
clusters of DNA with the same sequence. This design (a cluster of the same molecule
instead of only one molecule) allows florescent signals emitted during the sequenc-
ing process strong enough to be detected by a camera. During the sequencing
process, the primers are first added. The DNA polymerase then adds the first
fluorescently labeled terminator bases (A, C, G, and T) to the new DNA strand.
Laser lights are used to activate the fluorescent label on the nucleotide base. This
fluorescence is detected by a camera and recorded on a computer. Each of the
terminator bases (A, C, G, and T) give off a different color. The fluorescently labeled
terminator group is then removed from the first base, and the next fluorescently
labeled terminator base can be added, and the process continues until the fragments
are fully sequenced. Illumina sequencer sequences short reads (50 or 250 bp

Table 5.2 Sequencers from Illumina, Thermo Fisher Scientific, PacBio, and Oxford Nanopore

Platform

Maximum
read length
(bp)

Maximum
throughput
per run
(Gb)

Single
read
accuracy
(%) Strength Weakness

Illumina

MiSeq 2 � 300 15 99.90 Longer read length, high
accuracy, lower cost

GC bias, lower
output

NextSeq 2 � 150 120 99.90 High accuracy, lower
cost, high throughput

GC bias

HiSeq 2 � 150 1500 99.90 High throughput, high
accuracy

GC bias, short
reads, high ini-
tial investment

NovaSeq 2 � 150 6000 99.90 High throughput, high
accuracy

GC bias, high
initial
investment

ThermoFisher Scientific

ION
Torrent
S5

400 25 99 Short run time, longer
read length

ION
PGM

400 2 99 Short run time Homopolymer
errors

ION
Proton

200 15 99 Short run time Homopolymer
errors

PacBio

RS II 60,000 160 90 No amplification bias,
long read length

Higher error
rate

Oxford Nanopore

MinION 100,000 10 90–99 No amplification bias,
long read length, portable,
direct detection of base
modification

Higher error
rate
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depending on the version) and can sequence both ends of the molecules
(paired ends).

5.2.2.2 Ion Torrent

The major advantage of the Ion Torrent platform is lower cost and rapid sequencing
speed [47]. After reverse transcription, single-stranded DNA templates are loaded to
a semiconductor chip. Unmodified A, C, G, or T dNTP are then added individually
along with DNA polymerase enzyme. If an introduced dNTP is complementary to
the next unpaired nucleotide of the DNA template, it will be incorporated into the
complementary strand by DNA polymerase. During the incorporation process,
hydrogen and pyrophosphate are released. The releasing of the hydrogen is detected
by a sensor and used to determine the base at that position in the DNA template.
With a portfolio of chips of varying outputs, the Ion GeneStudio™ S5 Plus and Ion
PGM™ Sequencers scale to a variety of RNA-seq applications for a broad range of
transcriptome sizes. For example, the Ion 550 Chip generates 100–130 million
sequencing reads on the Ion GeneStudio™ S5 Plus and Prime Systems using the
automated workflow of the Ion Chef System. The sequencing run time is as little as
2.5 h, with only 15 min of sample preparation time. Torrent Suite Software processes
and exports the sequence reads in FASTQ or BAM formats, which can be easily
imported into third-party software, such as Partek Flow software packages, for
further analyses. The read length has increased from 50 bases in the original
model to 400 bases in the latest model. Few examples of using this technology

Fig. 5.2 Workflow of Illumina RNA-seq. Total RNA (or mRNA) is isolated, followed by RNA
fragmentation, cDNA generation, linker ligation, fragment enrichment, and size selection to prepare
library for sequencing. Next-generation sequencing is a massive parallel sequencing which gener-
ates tens of billions of bases of sequences. Downstream data analyses followed
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include studies to dissect molecular pathways involved in myogenic differentiation
and de novo assembly of a muscle transcriptome [48–50].

5.2.2.3 Pacific Biosciences

PacBio uses single-molecule real-time (SMRT) sequencing technology for long-read
sequencing, which allows sequencing full-length cDNA without read assembly
[51]. The strengths of the system are that it is able to easily identify and quantify
new transcripts and alternative splicing isoforms. The SMRT sequencing is built
upon zero-mode waveguides (ZMWs) and phospholinked nucleotides. Zero-mode
waveguide is an optical waveguide that guides light energy into a volume that is
small in all dimensions compared to the wavelength of the light. Tens of thousands
of tiny wells with ZMWs are in the SMRT cell, in which one cDNA template
molecule is immobilized. Phospholinked nucleotides labeled with four different
fluorophores allow observation of the addition of the nucleotides as the DNA
polymerase producing the complementary strand. PacBio sequencer has advantages
of long read lengths, simultaneous epigenetic characterization, and single-molecule
resolution. The disadvantage is that the error rate is higher compared to the tradi-
tional short-read sequencing. Currently, muscle transcriptomic data generated using
this technology were frequently used to improve annotation of an incomplete
genome [52, 53].

5.2.2.4 Oxford Nanopore

Oxford Nanopore sequencing can directly sequence single molecule of DNA or
RNA without the need for PCR amplification or chemical labeling of the sample.
The flow cell contains more than a thousand nanopores which are nanoscale holes on
a membrane. In the device, ionic currents pass through the nanoscale holes, and
changes in current that occur as biological molecules pass through the nanopore are
recorded by a sensor [54, 55]. Computational algorithms are used to analyze the data
to reduce which of the four nucleotides passed through the pore. The approach can
be used to sequence DNA, RNA, and protein. When the RNA transcripts are
sequenced, the RNA samples can be reverse-transcribed into cDNA for sequencing
or directly sequenced. When the RNA is sequenced directly using the technology,
modifications of the bases (e.g., inosine, N6-methyladenosine, and N5-
methylcytosine) can be detected based on the subtle differences in the current
changes [56]. However, the call heavily relies and depends on the algorithms used
for data analyses. While quickly improving, this platform still has the higher error
rates in comparison to other major platforms. One advantage of the platform is the
transportability of the smaller device, such as MinION. The pocket-size device has
been brought into space and used in Antarctica as well as in rural areas for
experiments and fieldwork [57–61]. This provides new opportunities for clinical
diagnostic and research use. Nanopore sequencing has the potential to offer
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relatively low-cost sequencing, high mobility for testing, and rapid processing of
samples with the ability to display results in real time. The device is the only
sequencer to date that is able to sequence full-length RNAs.

5.2.3 Reverse Transcriptase Polymerase Chain Reaction
(RT-PCR) Assay

Microarrays and next-generation sequencing are high-throughput approaches, which
are great screening tools for identifying transcriptional changes in samples. The
RT-PCR assay is the most commonly used method to validate the changes identified.
Real-time RT-PCR allows accurate quantification because the amount of PCR
amplicons in a sample is measured real time after each PCR cycle, which allows
proper selection of data points for RNA quantification based on the rate of ampli-
fication. In the method, RNA is reverse-transcribed into cDNA, followed by
detecting and real-time monitoring of the presence of PCR products using florescent
dyes. The dyes can be either SYBR™ Green, which can be incorporated into the
DNA amplicons directly, or a fluorescently labeled probe that can bind to the target
sequence. In addition to individual assay, multiple assays can be performed to
examine gene networks and pathways. One example is the TaqMan® Gene Expres-
sion Assay developed by Applied Biosystems. The assay utilizes the 500 nuclease
activity of the Taq DNA polymerase to cleave the fluorescently labeled probe. Each
assay includes a single FAM™ dye-labeled TaqMan® probe with a minor groove
binder (MGB) moiety and two unlabeled oligonucleotide primers. The assays were
designed based on transcripts obtained from the NCBI Reference Sequence Project
database (RefSeq). QuantStudio™ 12K Flex OpenArray® Plate allows users to
specify the TaqMan® Gene Expression Assays to be included on the plate. Each
plate generates 2600 data points. The advantage is the flexibility of the design which
allows easy customization. The TaqMan®Array HumanMicroRNA Card Set v3.0 is
a two-card set containing a total of 384 TaqMan® MicroRNA Assays per card,
which can be used to assay miRNAs that are differentially expressed. It was used to
identify miRNAs that are differentially expressed between disease and healthy
muscle cells in order to understand disease mechanisms [62].

The PCR-based technique is highly sensitive, and no pre-amplification is needed.
In addition to being performed in an arrayed format for large-scale analysis, real-
time RT-PCR is the gold standard technique for validating differential expressed
genes identified by other high-throughput methods. Either absolute or relative
quantification can be performed. Standard curve can be included to allow compar-
ison among different plates. For validating expression changes less than twofold,
digital PCR (dPCR) can be considered for their better resolution. The dPCR is a
quantitative PCR method that the initial sample mix is partitioned into many
individual wells prior to the PCR amplification step, resulting in either 1 or 0 targets
being present in each well. Following PCR amplification, the number of positive and
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negative reactions is determined, and the absolute quantification of target transcript
is calculated using Poisson statistics.

5.2.4 Single-Cell RNA Sequencing

Traditional gene expression profile analyses analyze the expression of RNAs from
tissues or large populations of cells. In such mixed-cell populations, these measure-
ments may obscure critical differences that exist between individual cells, e.g.,
diseased vs viable, replicating vs senescent. Single-cell RNA sequencing (scRNA-
seq) allows expression profiling in individual cells. This can reveal the existence of
rare cell types within a cell population that have not previously been known. In
addition, scRNA-seq can be used to examine expression variations among the same
type of cells. Briefly a scRNA-seq experiment involves several steps: (1) single-cell
capture; (2) single-cell lysis; (3) reverse transcription of the RNA; (4) library
preparation; and (5) sequencing and data analysis (Fig. 5.3). Currently, common
single-cell sequencing platforms include 10X Genomics Chromium, Drop seq, and
Fluidigm C1. These platforms are primarily used for single-cell capture, processing,
and library preparation. A few potential applications of scRNA-seq include

Fig. 5.3 Workflow of single-cell sequencing. Single-cell RNA sequencing starts with single-cell
dissociation from the tissue sample, followed by single-cell capture. The captured cells then
undergo cell lysis, reverse transcription, and fragment enrichment in preparation for sequencing
and downstream data analysis
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characterization of cell types, elucidation of gene regulatory networks, drug resis-
tance clone identification, noninvasive biopsy diagnosis, stem cell lineage regulatory
networks, assessing tumor heterogeneity, and CRISPR screening.

Several studies utilizing the scRNA-seq technology to study skeletal muscles
suggested that muscle stem cells are a heterogeneous cell population with substantial
biochemical and functional diversity [63–65]. scRNA-seq was also used to provide
critical insights to disease mechanisms of the muscle disorder, such as
facioscapulohumeral muscular dystrophy (FSHD). The majority of the FSHD
(FSHD1) cases are caused by the contraction of a macrosatellite array called
D4Z4 at the chromosome 4q35. This mutation in combination with a permissive
genomic feature in the region allows the aberrant expression of double homeobox
protein 4 (DUX4) protein. The aberrant expression of the DUX4 leads to down-
stream molecular changes that cause the disease [15, 16, 66, 67]. It has been reported
that the DUX4 is not expressed in all cells and is present in only approximately 1 in
1000 proliferating myoblasts in culture [68]. Additional studies suggested that the
expression of DUX4 is stochastic due to the epigenomic changes at the D4Z4 region
[69, 70]. The scRNA-seq studies allowed the investigators to determine expression
patterns in individual cells and conclude that a DUX4 expression induced a series of
downstream expression changes [71].

5.3 Data Analyses

5.3.1 Microarrays

There are many bioinformatics tools/algorithms available to analyze microarray
data. Some are command line based (mostly in R) and some are user interface
(UI) based. GeneSpring from Agilent and Transcriptome Analysis Console (TAC)
from Affymetrix are UI based, while limma and affy are R command line based
[72, 73]. The basic analysis of microarray data can be broadly divided into steps. The
first step is data extraction, preprocessing, and normalization and the second is
identifying differentially expressed genes between samples, across different condi-
tions. The affy package from the Bioconductor suite of tools in R extracts intensity
data from .CEL files. Similarly, GeneSpring from Agilent Technologies helps in
intensity extraction from raw microarray data sets from Agilent. The beadArray
package from the R/Bioconductor suite of tools can be used to extract intensity
values from raw images from beadArray experiments [74].

For any experiment related to the evaluation of expression differences between
two groups, it is important to carry out the same experiment multiple times. This
increases the sample size to perform statistical significance tests for differential
expression, as well as reducing the bias in the experiment. This is typically done
using one of the following methods depending on the purpose of the repeated
samples. The biological replicates are samples extracted from multiple biological
entities, under the same biological condition. For example, to study the effect of a

5 Transcriptomic Approaches for Muscle Biology and Disorders 91



drug on a muscle disease, 3 affected mice are given a drug (experimental condition)
and 3 mice are not administered the drug (control). RNA is extracted from these
6 mice individually, to yield 3 biological replicates for the experiment and the
control conditions. The purpose of biological replicates is to draw conclusions on
the larger population of samples/controls. The technical replicates are samples
extracted multiple times from the same biological entity. In this case, one mouse
affected is given the drug (experiment) and the other mouse receives no drug
(control). RNA is extracted once from each of the mice and RNA is separated into
3 portions each, to run 3 controls and 3 experimental samples in the microarray
experiment. The purpose of technical replicates is to measure how much variation in
the quantification can be expected due to technical conditions. Note technical
replicates are not, and should not be, considered biological replicates; they are not
used to make conclusions about the population of the mice.

In any experiment, not all replicates can be run at the same time on the same
machine under the exact same conditions. Replicates may have to be run on
consecutive days or on two different instruments. These conditions introduce sys-
temic variations which, in turn, can cause variation in the expression of genes that
should be identical. To quantify and account for these run-to-run variations, nor-
malization methods are applied. There are two types of normalization, between and
within arrays. Between array methods normalize the expression of genes across the
multiple arrays (i.e., replicates), while within array methods normalize expression
across genes within an array (within the same replicate). One of the most commonly
used methods of between array normalization is quantile normalization [75]. The
RMA function in the affy package, part of the Bioconductor suite of tools and
GeneSpring from Agilent technology, not only performs quantile normalization
but also performs background correction, probe-level intensity calculation, and
probe set summarization. For within array normalization, Loess normalization is
typically used and implemented by the limma package, part of the Bioconductor
suite of tools. Other platforms like nimblegen and illumine have the packages oligo
[76] and beadArray, respectively, which extract intensity and normalize data using
the RMA function.

To evaluate possible changes in expression pattern across replicates, it is impor-
tant to use visualization in combination with statistical methods. A useful visualiza-
tion method is the heatmap.2 function in the gplots R package [77], which combines
heatmap functionality with hierarchical clustering to visualize the expression pat-
terns across replicates. Ideally, a normalized data set should show a similar expres-
sion pattern for a given gene across multiple replicates. If a significant difference in
expression patterns is observed, one needs to first verify that the correct file was used
for a given replicate, an easy mistake to make given the similarity in file names.
Next, different normalization methods should be used to verify that they show the
same general pattern. Principal component analysis (PCA) [77] and box plots are
used by Genespring to visualize the expression patterns across samples. This
normalization allows one to be confident that the quantification of gene expression
from different samples can be directly compared when assessing differences in gene
expression affected by an introduced factor (i.e., treatment, disease, etc.).
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When comparing two or more groups, one can identify genes that are differen-
tially expressed using statistical analyses. Difference in expression is expressed as
fold change (experimental gene expression/control gene expression) or logarithmic
fold change [log2 (experimental gene expression/control gene expression)]. Statisti-
cal significance is measured using hypothesis testing based on the design of the
experiment. See the chapter of bioinformatics and statistics for omics data for details
on the appropriate statistical method to use. Often, for designs where there is a single
experimental condition and a single control condition, Student’s t-test is used [78],
whereas ANOVA is commonly used for complex designs where there are multiple
experimental and control conditions [79]. Be advised however that both Student’s
t-test and ANOVA have assumptions that the data must meet for the tests to be valid.
Multiple testing correction methods such as the Benjamini-Hochberg [80] or
Bonferroni [81] are used to limit false positives. Base R packages are available to
perform t-tests (t.test()), ANOVAs (aov()), and multiple testing p-value correction
(p.adjust). GeneSpring uses ANOVA in their differential expression analysis.
Another program, limma, is a Bioconductor package which is based on linear
regression models and is one of the most popular differential expression analysis
tools. Before beginning the analysis of differential expression, a clear understanding
of the appropriate statistical method to use is essential, as using the incorrect method
can lead to invalid conclusions. Once genes are found to be differentially expressed
between conditions, they can be further analyzed by various means including
clustering analyses and functional annotation and gene ontology methods. In addi-
tion, Ingenuity Pathway Analyses, a web-based commercial tool, can be used to
identify networks, pathways, and regulatory relationships among the identified
transcripts.

5.3.2 RNA-Sequencing (RNA-Seq)

High-throughput sequencing techniques produce either short (50–75 bp) reads like
those generally produced by Illumina sequencers or longer reads produced by newer
methods such as PacBio (30–50kbp) [82] and Oxford Nanopore (can be longer than
100K) [55, 83] systems. Read length is an important parameter, as longer reads are
better able to estimate the number of counts of larger genes. Another important
parameter is the coverage of reads across a gene. To get a greater coverage, the reads
are sequenced from both ends (also known as paired end reads) when the Illumina
platform is used. Although the read lengths are different, major workflow is similar
and described below.

The major workflow, from raw sequences obtained from the sequencers (here we
specifically discuss short-read sequencers) to a list of differentially expressed genes,
can be divided into four major steps (workflow is depicted visually in Fig. 5.4):

Step 1 is preprocessing of raw sequences. This step uses the same tools as used in
Quality Control in Genomics analysis section.
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Step 2 is aligning the sequence. Multiple tools/algorithms are available for the
alignment/mapping of the transcriptome sequence to the reference genome. The
important aspects in choosing an alignment algorithm/software are the accuracy of
alignment to the reference genome, computational memory used, and the time taken
for the alignment. In addition, for transcriptome alignments, it is important that the
aligners are splice junction aware. This is because the RNA-seq is performed on
mature messenger RNAs (mRNAs), which are devoid of introns, but the reference
genome contains the intron sequences. If the aligner is not able to accurately identify
the region where splicing or removal of introns (splicing junction) happens, then it
would treat it as a deletion, and not estimate the transcript count accurately. Tophat2
[84], part of the Tuxedo [85] suite of tools, is a read aligner that is splice junction
aware. The Tuxedo suite of tools takes a raw FASTQ file as an input, aligns it to the
reference genome (Tophat2), and assembles it to accurately calculate expression.
Cufflinks [86] calculates the differential expression between samples (cuffdiff) and
finally visualizes expression plots (Cummerbund). Tophat2 uses Bowtie2 [87] (a fast
aligner that uses Burrows-Wheeler transform (BWT) [88] for compression and
storage of the reference genome) and FM index [89] (a compressed indexing method
for Burrows-Wheeler transformation), so that it can be accessed rapidly. The regions
that do not align to the reference genome using bowtie are divided into smaller
segments using Tophat2. Tophat2 determines splice junction, when it observes read
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Fig. 5.4 Workflow of RNA-seq data processing
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segments aligning to the reference genome with a gap of 100–1000 bases
between them.

STAR (spliced transcripts alignment to a reference) [90] is a fast aligner which
uses the concept of Maximal Mappable Prefix (MMP), on uncompressed suffix
arrays. Suffix arrays are a type of data structure, which enables faster searching of
sequences for alignment, by breaking the larger sequence into smaller subsections
(suffix), sorting and storing the address in the form of arrays. The MMP algorithm
searches these arrays to find the longest subsection of sequence reads that map to the
reference genome sequence. After the alignment, the software performs clustering
and stitching of all reads aligned to the genome to form a complete realigned
sequence. The disadvantage of this algorithm is that it is memory intensive as the
MMP search algorithm is performed on an uncompressed suffix array instead of a
compressed one. HiSat [91], a newer alignment algorithm, is part of the new Tuxedo
2 [92] pipeline [HiSat (alignment), StringTie (assembly) [93], and Ballgown (differ-
ential expression calculation) [94]]. Like Tophat2, HiSat also uses bowtie for
alignment utilizing the FM index functionality but also implements two different
FM indexes that increase the accuracy of alignment. Of the FM indices, one is a
global FM index and comprises the whole reference genome. The other index
contains several small FM indices, each made up of a 64,00-bp subsection, which
together covers the whole genomic region. By using memory optimization algo-
rithms, it can reduce memory usage and can align a whole human genome using only
4GB of memory.

Step 3 is assembly and quantification. The output from the alignment processes
produces aligned reads in the Sequence Alignment Map (SAM) format [95]. The
SAM file is text-based and includes mandatory fields of chromosome number,
location on the chromosome, and quality annotated, i.e., no genes are associated to
the reads. The assembly and quantification tools are responsible for annotating the
reads and estimating read counts associated with each transcript in the genome. SAM
files are converted into BAM files (binary SAM files), sorted, indexed, and then
given as an input to the assembler or read count estimation tools. Quality check of
the BAM files can be done using RSeQC [96]. Preprocessing is performed
by samtools software. There are multiple processes that perform assembly and
quantification. The choice of read count quantification tool depends on whether
one wants to have normalized read counts or raw read counts that can be normalized
using custom scripts.

Normalized read counts can be divided into two basic types, reads per kilo million
bases (RPKM) and transcripts per kilobase millions (TPM). RPKM is a normalized
read count for single-read RNA sequences [97]. It is measured as the ratio of the
number of reads depicting a region and the product of total reads divided by 1 million
and region length divided by 1000. Fragments per kilo million (FPKM) bases is the
paired end interpretation of RPKM. One of the tools that produce FPKM values is
Cufflinks. Cufflinks, part of the Tuxedo pipeline, assembles the reads by first creating
an overlap graph which represents all the reads that map to a region. The algorithm
then traverses through the graph to assemble the isoforms, by identifying the
minimum number of transcripts that can signify a particular intron junction. The
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assembled transcript fragments (transfrags) are counted using a statistical model for
RNA-seq experiments [86]. The output from this tool is a Gene transfer format
(GTF) file, which, along with information like chromosome name and location of the
gene, also contains the gene abundance or read counts in FPKM. TPM is another
normalization method [98] that is measured as the ratio of reads per kilobase (RPK)
per million scaling factors. The RPK value is the read counts of each gene divided by
the length of each gene in kilobases. The per million scaling factor is the sum of all
RPK in a sample divided by 10,00,000. As the denominator remains constant, TPM
for a given gene remains constant across replicate conditions if the same number of
reads is aligned to the reference genome. This is not the case for RPKM (or FPKM)
as its denominator is the length of the genes, which is a variable factor.

RSEM tool is responsible for the calculation of TPM for reads [99]. In the
workflow, rsem-prepare-reference function takes in whole genome reference
sequence in fasta format and GTF files and converts it to a transcript reference
sequence. RSEM utilizes the transcript reference to get a clear count of isoforms.
Next, rsem-calculate-expression calculates the TPM read counts. The input to this
tool can be either FASTQ files or aligned BAM files. If fastq is provided as an input,
the function first aligns the reads to a reference genome (default aligner is bowtie,
STAR is the other aligner available in RSEM). Then using the expectation-
maximization algorithm [100], maximum likelihood abundance (expected counts)
is calculated and converted into TPM values. In case of aligned BAM files, special
caution must be taken, if they are produced by aligners other than BWA and STAR.
Because RSEM uses an enhanced read generation model for estimating read abun-
dance compared to other aligners, aligner parameters must be changed to report all
aligned reads. Outputs from this tool are 2 text files reporting gene TPM and isoform
TPM values, respectively.

There are few other tools that do not perform any normalization in the read
estimation step. These provide users with raw read counts which can then be
normalized either by using available R/Python scripts or by functions available in
downstream processes. One of the tools, Htseq a python package [101], not only
quantifies read counts but can also be used as a parser for different genomic data files
like FASTQ, SAM/BAM, a quality assessment tool (htseq-qa) for aligned reads, and
GenomicArray class that stores the information from genomic data. The htseq-count
function counts the reads based on the idea that the reads should cover an exon either
completely or partially. The read counts are raw read counts, which can be normal-
ized into FPKM, by custom scripts in python or R. Other useful tools are
featureCounts [102] and summarizeOverlaps of the Genomic Alignment package
in R [103].

Step 5 is differential expression calculation to identify genes or noncoding RNAs
that are statistically significantly different between two or more conditions. In these
steps raw or normalized reads are taken as an input, and using either parametric or
nonparametric methods, differentially expressed genes are evaluated. The reads are
given as an input directly as text files (in the case of Cuffdiff) or as R data objects
extracted by tools like tximport [104], for downstream processing with R
Bioconductor packages. Sample size is an important criterion to identify truly
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statistically significant differentially expressed genes. For RNA-seq tools, the effi-
ciency of detection increases with sample size, and most of the statistical tools work
reasonably well with a sample size of 3–5 per condition. Many of these tools can
identify statistically significant targets with no replicates; however, extreme caution
should be taken with interpretation. Please see the chapter of bioinformatics and
statistics for omics data to fully understand the appropriate sample size and statistical
methods to use. In general, differential expression tools can be divided into two
types.

The first one is parametric analysis. The read counts generated from the quanti-
fication tools are either raw read counts or normalized read counts (FPKM/TPM).
Most of the downstream differential expression tools have methods of normalization
built into the packages. EdgeR [105], a R Bioconductor package, takes as input the
read counts and stores them in a list-based data object called DGEList. This contains
the read count matrix and the sample information, including the library information,
in the form of a R type data frame and an optional data frame containing annotated
gene information. EdgeR has methods to filter data based on count per million
(CPM; which is a normalization method similar to TPM) read counts, to normalize
data (calcNormFactors), and to estimate dispersion in read counts across samples
using a quantile-adjusted conditional maximum likelihood negative binomial model
(estimateDisp). For the differential expression calculation, a design matrix
containing the condition and sample information (i.e., which samples are controls
and which are experimental) must be provided as an input. Differential expression is
calculated using an exact negative binomial test (exactTest). Differentially expressed
genes are listed with parameters showing statistical significance (p-value and
adjusted p-value) and fold change by the topTags function. Deseq2 is another
Bioconductor package that uses similar statistics as EdgeR [106]. It takes as input
raw, non-normalized read counts and stores them as a DESeqDataSet, similar to
DGEList for EdgeR. Instead of three different functions to calculate differential
expression, Deseq2 has the function DESeq which contains the functions for nor-
malization, dispersion estimation, and negative binomial generalized linear model
(GLM) [107] fitting followed by a Wald test [108] to test for differential expression.
This tool provides an output similar to EdgeR. Cuffdiff, part of the Tuxedo suite of
tools, uses a merged GTF file produced by Cufflink along with aligned SAM files
from the conditions (output from Tophat) as the input for finding differential
expression between conditions. The GTF files for each of the samples produced by
Cufflinks are merged using the Cuffmerge function. The Cuffdiff function works
twofold: First, it quantifies the reads to FPKM values. Second, it performs a
statistical significance test based on negative binomial distribution as the previous
two functions. The output is quite similar to the previous two methods.

The second is nonparametric analysis. Although parametric methods are quite
powerful, it is completely dependent on the assumption that the distribution of the
expression values fit the distribution of the statistical test being used. Methods like
GFold [109] and Noiseq [110] use nonparametric methods of differential expression
calculation. GFold uses a posterior distribution of logarithmic value of the raw fold
changes and then ranks them based on their values. Those with higher ranks are
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upregulated, whereas low-ranked ones are downregulated. GFold can be used for
both single replicates and multiple replicates. For Noiseq, several distributions are
created; a noise distribution is for exhibiting change in counts, a contrasting fold
change distribution (M), and an absolute expression difference (D), for each gene in
a given condition. These are then used to compare whether M and D values between
conditions fall within the noise or are actual differences. NoiSeq has 2 functions,
NOISeq-real for replicates and NOISeq-sim for non-replicated samples. The output
from these steps is a list of genes exhibiting statistically significantly different
expressions between conditions. This list is used in further downstream analysis as
described in the chapter of bioinformatics and statistics for omics data.

5.3.3 Single-Cell Sequencing

Different cells in an organism exhibit different phenotypic functionalities. These
functionalities are governed by their genetic architecture; thus, it is important to
understand the expression of genes in individual cells. The single-cell sequencing
technique uses NGS methods on RNA isolated from single cells [111]. A review of
library preparation and sequencing technique for single cell can be found in
[112]. The bioinformatics pipeline is similar to RNA-seq, wherein quality check is
done by FastQC, alignment performed by STAR, followed by read count estimation
by HTSEq, and differential expression analysis performed by Deseq2. Custom-made
codes to differentiate cells based on barcodes are present in pipelines developed by
companies that develop the libraries such as 10Xgenomics. Identification of different
cell types is done using PCA or t-distributed stochastic neighbor embedding (t-SNE)
[113]. These assist in differentiation and visualization of gene clusters based on
expression similarities. For example, genes having similar differential expression
patterns among conditions would be clustered together and by identifying markers
we can identify known cell types or unknown cell types. T-SNE is implemented in
Seurat [114].

5.4 Platform Selection and Limitations

Gene expression profiles of different tissues, cells, conditions, disease states, or even
single cells are now routinely generated. This explosion in gene expression profiling
has been deeply affected by the rapid development of new technologies with an
improved sensitivity and cost effect. Which platform to be used for a study depends
on the goal of the study. The advantages of next-generation sequencing are that the
method provides direct counts of molecules; it can be used to study all types of RNA
transcripts; it provides better resolution for transcripts that share similar sequences;
alternative splice isoforms can be directly detected; and it can be used to examine
allele-specific expression. The disadvantages of the NGS approach are that it may

98 P. Liu et al.



not be able to detect low-abundance transcripts; data analyses and statistical analyses
are more challenging, and the final results heavily rely on how the raw data were
processed; computational demands are high; data storage and sharing are challeng-
ing; and there are concerns of privacy when sequence information is examined. In
addition to the above, the cost and availability of the platform and bioinformatics
expertise are something to be considered.

To select a proper platform and plan a profiling study, which RNA population
will be studied is an important factor. NGS will be the choice if whole transcriptome,
including those that are not on the microarrays, is studied. If one is only interested in
a specific group of RNA transcripts or few specific pathways, it may be more cost-
effective to use arrays and PCR-based assays. In addition to commercially available
stock arrays and PCR panels, researchers can custom-design arrays and PCR-based
assays to include specific transcripts of interests. The transcripts are well annotated,
and data analyses process is straightforward; therefore, the turnaround time is
shorter. Another factor to be considered is that NGS is limited by its total read
counts for each run. For example, the highly abundant rRNAs need to be removed
from the samples to increase the reads of the rest of the transcripts. The transcripts
that are low in abundance are often missed by direct sequencing. These include
low-abundant mRNA transcripts, alternatively spliced variants, and lncRNA tran-
scripts. In general, 20–50 million reads are sufficient for detecting ~20,000 tran-
scripts. 100 million reads will increase coverage and allow proper quantification and
identify differentially expressed transcripts. Three hundred million reads give
enough depth for studying alternative splicing and higher number of reads may be
needed for studying lncRNA. Since commercial microarrays that cover the whole
transcriptome, noncoding RNA, and splice variants are available, one can decide
which platform to use based on the experimental aims, turnaround time, and costs.
While the microarrays are generally good at detecting low-abundant transcripts,
depending on the dynamic range of different microarray platforms, sensitivities to
changes of highly abundant transcripts may reduce due to saturation of the intensity
signals at the high end.

One of the important considerations when conducting the profiling studies is
normalization of the data. The method used for normalization and for hybridization-
based assays is usually less an issue when a large number of genes are examined at
the same time. For example, Affymetrix normalizes the intensity of individual data
point to the average intensity of the whole array. This strategy is based on the
assumption that most of the genes in a sample do not change significantly. Any
conditions that change the expression of a large number of genes toward the same
direction will not be suitable to use this normalization method. Instead, one can
identify genes that express at consistent level in all samples to be normalized to. The
same strategies can be used when the platform does not examine a large number of
genes, such as cDNA arrays or PCR arrays. For muscle research, commonly used
internal controls such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
β-actin, and 18S rRNA may have inconsistent expression levels in samples that
are severely affected by a condition or disease. An important question is whether the
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condition or disease you are studying will cause genome-wide transcriptional
changes toward one direction or changes of the gene level of the internal controls.

Increased heterogeneity of pathological specimen needs to be kept in mind when
interpreting transcriptomic data. In addition to degeneration/regeneration, a muscle
sample may contain different degrees of pathological changes such as inflammation,
fibrosis, and fatty tissue replacement. One can imagine that severe fat infiltration or
inflammation can completely change the profiles. When the pathological changes are
prominent, we are comparing different tissues in such situations. This will cause a
challenge when analyzing data as well as interpreting results. To answer the ques-
tions regarding the origin of the changes, additional studies are needed, such as
immunostaining or immunohistochemistry to visualize and locate the protein prod-
ucts of the genes that were shown to change in the profiling data [6, 7, 18]. Now one
can also use single-cell sequencing to examine gene profiles in each cell individually
and determine which cells contribute to the changes [115]. However, it is still a good
idea to validate the protein changes in the tissue directly.

While transcriptomic approaches can potentially generate large amount of data,
usually only a limited number of genes and pathway are reported in a publication.
This can be due to (1) insufficient statistical power due to small sample sizes; (2) lack
of bioinformatics expertise to fully analyze the data; and (3) the researcher selecting
and focusing on only part of the genes and pathways to follow up. Placing expres-
sion profiling results in a publicly accessible microarray database makes it possible
for other researchers to access the data and have new discoveries beyond the scope of
published results [116].

5.5 Vital Future Directions

Technologies for studying transcriptome have been evolving quickly. New methods
and approaches to address common issues and concerns associated with the current
approach are becoming available. Companies have been improving reagents for
better sample preparation and producing new instruments for higher throughput
and lower cost per base. In addition, new utilization and approaches are developed
by both the companies and users to answer specific questions. Here we discuss few
examples. One of the questions is issues associated with tissue heterogeneity in
muscle samples. scRNA-seq allows single-cell resolution of transcriptomes; how-
ever, the information on the location of the cells and the relationship among the cells
are lost during the sample processing. To allow researchers to learn not only what is
in a cell but how the cells interact with other cells provides an invaluable insight into
understanding muscle biology and disease mechanisms. Recently 10X Genomics
acquired Spatial Transcriptomics which provides such technology. The technology
for the spatial gene expression profiling was originally developed at Science for Life
Laboratory in Stockholm, Sweden, which allows RNA sequencing to be performed
from tissue sections [117]. The process includes first attaching a frozen-sectioned
tissue section to a specialized chip. The tissue section is imaged before the RNA
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transcripts in the tissue section are reverse-transcribed. The image with coordinate
information will later be used to be matched to the gene expression data generated
from each specific location. The chip contains an array of probes which have poly-T
tails at the end. After the tissue section is fixated and permeabilized, the RNA with
poly-A sequence will be captured by the probes and reverse-transcribed. The cDNA-
RNA hybrids are cleaved off the chip, followed by library preparation for RNA-seq.
The RNA-seq data are integrated with the histology data for visualizing the
transcriptomes of cells at different locations in the section.

One challenge in performing single-cell profiling on skeletal muscle samples is
that the myofibers are multinucleated cells. It is not feasible to capture individual
myofiber for profiling using current platforms. On the other hand, single-nucleus
profiling will provide transcriptome information of individual nucleus in a sample. A
recent study showed that comparable results were obtained by using scRNA-seq and
snRNA-seq approaches although the snRNA-seq is better for sequencing nucleus-
enriched lncRNAs and miRNA precursors [64].

In addition to sequences, new technologies allow researchers to study RNA base
modifications [118]. More than a hundred RNA base modifications are known but
the role of the modifications in mRNA is mostly unclear. The Oxford Nanopore
platform allows direct sequencing of RNA molecules and identifying RNA modifi-
cations. The epitranscriptome will be one future direction that can take advantage of
the new technologies.

Transcriptomic approaches allow the researcher to determine the transcription
activities of all active genes. Temporal profiling approaches use a series of profiles
obtained at different time points to construct temporal changes of gene activities over
a period of time. Meanwhile, researches combine more than one omics approaches to
understand how the other processes, such as epigenomic, posttranscriptional, and
posttranslational regulations, affect the cell functions and to gain a more integrated
picture. Using multiple omics approaches to obtain temporal data makes construc-
tion of comprehensive molecular pathways involved in specific conditions possible.
Data from single-cell profiling and spatial gene profiling increases resolution to
changes in individual cell.
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