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Guidelines for Bioinformatics
and the Statistical Analysis of Omic Data
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4.1 Bioinformatics: An overview

The Human Genome Project [1] was initiated to find all the nucleotides that
constitute a human genome and identify and map genes making up that genome.
The Human Genome Project, along with the other model organism projects, have
enabled us to better understand the genetic and molecular underpinnings of devel-
opmental stages and disease conditions. These projects have also produced petabytes
of data, mostly sequences of nucleotides, which are not comprehensible to a biolo-
gist until and unless it is given a biological perspective. Bioinformatics is a
multidisciplinary branch of science, utilizing knowledge from many other fields
including physics, mathematics, computational science, and statistics, to assist in
transforming these raw nucleotide sequences to a more comprehensible biological
dataset (Fig. 4.1). Bioinformatics can be broadly classified into two groups, geno-
mics and proteomics. Genomics includes the study of the genomic data pertaining to
defects in transcriptional and posttranscriptional mechanisms, while proteomics
pertains to changes in proteins occurring mostly during the translational and post-
translational phase. In this section we discuss the bioinformatics tools and algorithms
used in various kinds of genomic experiments. Bioinformatics for transcriptome
analyses can be found in the transcriptome chapter.

Genomic analyses focus on deoxyribonucleic acid (DNA), which is the building
block of any biological system and is the primary component of the central dogma.
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DNA is transcribed into ribonucleic acid (RNA), and messenger RNA (mRNA)
directs protein translation. DNA is found in the nucleus and is composed of four
major groups of nitrogen-based organic compounds (nucleotides): deoxyadenosine
(A), deoxyguanosine (G), deoxythymidine (T), and deoxycytidine (C). These four
nucleotides are arranged in different combinations to form single-stranded DNA. As
A forms a chemical bond with T and C bonds with G, the DNA arranges itself into
the shape of a double-stranded helical structure where each strand complements the
other. If one strand has a nucleotide arrangement of ATTTCGATA, the second
complementary strand will have an arrangement of TAAAGCTAT. This arrange-
ment of nucleotides is called a sequence and the two strands of DNA sequences are
referred to as the forward strand (read from left to right; also called 50–30) or the
reverse strand (read from right to left; also called 30–50). RNA, another common
biological material studied in genomics, differs slightly from DNA. Besides being
made up of ribonucleic acid rather than deoxyribonucleic acid, RNA contains a
unique nucleotide, uracil (U), in place of thymine.

From its isolation from pus in late 1868 [2] to the end of the Human Genome
Project, the identification of the sequence of DNA has been an important aspect in
understanding the functionality of the genes. This chapter is intended to be a
resource for researchers interested in designing omic experiments or analyzing
data from such experiments. It is organized into two major applications. The first
has a focus on bioinformatics tools and techniques, and the second has a focus on
statistical analyses. This chapter is intended to be a high-level introduction for
researchers interested in performing their own analyses. It describes the major
components of bioinformatics and statistical analysis and also directs the reader to
key tools and sources of further information. Unfortunately it is beyond the scope of

What is Bioinformatics ?

Fig. 4.1 Bioinformatics is a multidisciplinary branch of science: bioinformatics is a
multidisciplinary branch of science, utilizing ideas from major branches of science such as physics,
statistics, biology, and computer science
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this chapter to provide a comprehensive discussion of statistical theory and complex
statistical models. This chapter discusses the general study design and aspects that
should be taken into account before an experiment is begun. We describe some basic
principles of statistical analysis and some commonly used methods, but further
guidance from a statistician will be required for more complex study designs and
statistical models.

4.2 Major Applications

4.2.1 Bioinformatics of Genomics Data

The first section discusses the bioinformatics tools and algorithms used in genomics.
It describes typical workflows and the tools available for performing an omic
experiment and underscores the importance of both the tools being used and a
clear understanding of the underlying algorithm. One of the primary goals of any
genomic research is to understand whether there are any changes or variants in the
genome of a subject as compared to a reference genome. The reference genome is a
representative genome of an organism, including humans, that is made up of
multiple samples and is a representative example of a species’ set of genes. The
variation from this reference genome can be of two types: single nucleotide poly-
morphisms (SNP) and structural variants (SV). While SNPs constitute a change in a
single nucleotide, SVs constitute a variation of �50 kilobases (KB) which can be an
insertion, deletion, inversion, translocation, or duplication. It is these variants, or
differences, which we are interested in when we perform omic experiments.

Next-generation sequencing (NGS) is the common term used for the modern-day
high-throughput sequencing techniques, which allow one to define the precise order
of nucleotides in the DNA of the organism sequenced. As this chapter focuses on the
bioinformatics aspect of omic experiments, we will focus more on the results
obtained from sequencing instruments than the sequencing techniques used. A
general overview of sequencing techniques can be found in the following reviews
[3, 4]. Here we briefly discuss the workflow for whole genome sequencing (WGS)
analysis, obtained from a short-read sequencer, such as that produced by Illumina. A
similar pipeline is used for exome sequencing. The pipeline can be divided into five
parts (workflow is shown in Fig. 4.2):

1. Preprocessing of raw sequences: Raw output from sequencers, referred to as
binary base calls (BCL), is converted to the human readable Fastq format
[5]. Fastq format generally has three lines representing the sequence header, the
sequence, and a quality score (PHRED score) [6, 7]. The PHRED score is a
measure of the quality of the nucleotide identification associated with each base
written in ASCII format. The PHRED score Q is defined as
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Q ¼ �10log P

where P is the base-calling error probability. Thus, a larger Q value indicates a
greater accuracy in identifying the base. The generally accepted PHRED score
threshold is 30 which translates to the chances that the base was incorrectly
identified as 1 out of 1000. The tool FastQC [8] can be used not only to provide
a visual representation of PHRED score per sequence but to provide additional
useful information such as sequence GC content, sequence length distribution,
and sequence duplication distribution. If a sequence is found to be of low quality,
trimming tools such as cutadapt [9], sickle [10], and scythe (tool available at
https://github.com/vsbuffalo/scythe) can be used to remove unwanted sequences.
As one example, sickle allows one to input a PHRED score threshold so that the
user can define which sequences will be trimmed due to quality issues. Each of
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Fig. 4.2 Workflow for WGS: sequence files obtained from sequencers are converted to Fastq files,
and an initial quality check using FastQC is performed. If the quality is low, the file can be trimmed
using a trimming software such as Sickle. Next, alignment to the reference genome is performed
using BWA. Aligned SAM files are processed using Samtools and Picard based on the type of
variants to be identified. For single nucleotide polymorphisms (SNPs) and small insertion deletions
(indels), GATK or Freebayes is chosen. For larger structural variants (SV), tools like Delly and
Lumpy can be used. The output of all of these tools is a variant call format (VCF) file. An annotation
tool for annotating the VCF file is chosen based on the variant that needs to be identified. Annovar
and Snpeff are used for SNP annotation and AnnotSV for SV annotation. The final product is an
annotated VCF file
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these tools has various capabilities and the documentation for each should be
consulted and understood before using.

2. Alignment of the sequence: Multiple tools/algorithms are available for the align-
ment/mapping of the whole genome sequence(s) to the reference genome. There
are several important aspects to consider when choosing an alignment algorithm/
software. These include the accuracy of alignment to the reference genome, the
amount of computational memory used, and the time required for the alignment.
One of the most important and commonly used algorithms is the Burrows-
Wheeler algorithm (BWA) [11]. The BWA uses backward search with a com-
pression algorithm, the Burrows-Wheeler transform (BWT) [12], to align
sequence reads to the reference genome at a reduced memory usage and time
[13]. The BWA software package consists of three algorithms, BWA-backtrack,
BWA-SW, and BWA-MEM. BWA-backtrack is used for sequence reads that are
shorter than 70 base pairs, while both BWA-SW and BWA-MEM are used for
longer reads. The choice between BWA-SW and BWA-MEM is dependent on
the platform used to generate the reads and the characteristics of the data. This
algorithm can align 7 Gbp (giga base pairs) to the human reference genome per
CPU day [13]. Output from this alignment step is a Sequence Alignment Map
(SAM).

3. Processing of the aligned files: The output from this step needs to be further
processed before it can be used for calling variants. Read group names are added
to the aligned reads using Picard (https://broadinstitute.github.io/picard/) to
identify each of the reads from different runs separately. Samtools [14] uses a
merge function to combine different SAM files into a single merged binary
aligned BAM file. Quality control processes can then be applied to the merged
files using Samtools, and PCR duplicates can be removed by Picard Mark
Duplicates.

4. Identifying single nucleotide polymorphisms and structural variants: Typically,
short-read sequencers are more adept at identifying or calling small nucleotide
variants and small insertion/deletions (indels) than structural variants. The
Genome Analysis Toolkit (GATK) [15] is the standard and most commonly
used pipeline for the identification of small nucleotide polymorphism and small
indels from an aligned and processed BAM file. Other softwares, Freebayes [16]
and Heap [17], are also available with Heap having the advantage in the detection
of SNPs at low coverage.

Although short-read sequencers are not ideal for identifying structural vari-
ants, there are multiple tools that can detect and identify structural variants from
BAMs obtained by aligning short-read sequencer reads. All SV calling tools for
short reads are based on five basic ideas:

(a) Read pair (RP): Discovers SVs by looking at the span and orientation of
paired end reads. This method is used to identify almost all types of SVs.
Pairs that are mapped far apart may denote deletion, whereas closer read pairs
denote insertion. Orientation inconsistencies denote inversion or tandem
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duplications [18]. Some of the tools associated to this method are
BreakDancer [19], PEMer [20], and MODIL [21].

(b) Read count (RC): This method can be also known as read depth. In these
algorithms, a Poisson or modified Poisson distribution is assumed for the
mapping depth, and deviation from that distribution denotes deletion or
duplication [22]. This kind of SV is also called copy number variants
(CNV). Tools associated with this method are EXCAVATOR [23], CNVnator
[24], and BIC-seq [24].

(c) Split read (SR): This method defined SV break points by identifying devia-
tions between the sample sequence and the reference genome. A gap in the
sample sequence denotes deletion, while additional sequence (above that in
the reference) denotes insertion. Tools include Socrates [25] and
Splitread [26].

(d) De novo assembly (AS): In these group of algorithms, the short fragments are
reassembled to form the original sequence, to identify the SV [27]. Tools
include Cortex [28] and Magnolya [29].

(e) Hybrid methods: These algorithms use a combination of two or more methods
discussed above. For example, Delly [30] and Lumpy [31] use read pair and
split read algorithms, to detect SV.

As there are multiple methods to detect SVs, it is advisable to get a
consensus result from multiple methods to confidently detect a true set of
SVs in a sample. Tools like svMerge [32], SURVIVOR [33], and Parliament
[34] combine results from multiple SV-identifying tools, to get a consensus
output in variant call format (VCF).

5. Annotation: The output from the SV identifiers are in the form of a VCF, which
includes information on the chromosome number and location of the variant
along with type of SNP/SV and quality. It does not, however, contain information
on the gene affected or whether or not the variant is a rare variant. This informa-
tion is added by annotation tools. Annotation tools like Annovar [35] can perform
annotation for both SVs and SNPs. Using Gene transfer format (GTF), Annovar
identifies genes affected and uses databases such as dbSNP [36] (for SNPs) and
Database of Genomic Variants [37] (DGV; for SVs) to identify the frequency of
occurrence of the particular SV across different populations. Clinvar [38] data-
base is used to identify the clinical significance of the variants (whether it causes
disease or not), whereas the CADD [39, 40] tool is used to classify the variant
based on its pathogenicity. Snpeff [41] and SnpSift [42] can be used to annotate
and filter SNPs and small insertion deletion (indels; <50 bases), respectively,
whereas AnnotSV [43] performs the same task for SVs.
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4.2.2 Other Bioinformatics Analyses

Beyond expression analysis and variant discovery, NGS and microarrays can also be
used to determine and evaluate the effect of other biological factors that affect a
system. They include:

1. Transcription factor binding site: Chromatin immunoprecipitation (ChIP) is an
immunoprecipitation technique by which the genomic region to which a tran-
scription factor binds is extracted and then analyzed using either microarray or
sequencing techniques. The basic working of microarray and sequencing remains
the same for ChIP experiments, only the analysis tool pipeline changes.

(a) Microarray: These experiments are known as ChIP-on-chip. The design of
the experiments is similar to gene expression determination experiments,
where the control is without the antibody to pull down the genomic region,
while the experimental condition has the pulled down genomic region. Tiling
Analysis Software (open-source software from Affymetrix) is used to process
raw data into signals, with associated p-values for each probe. This is
followed by visualization using Integrated Genome Browser (IGB), a propri-
etary software from BioViz. Another proprietary software, Partek, can also be
used to analyze and visualize the regions to which transcription factors bind
to. An open-source Bioconductor R pipeline is also available [87] which uses
Ringo [88] for processing the raw microarray data into normalized data,
BioMart [89] to annotate the data, and topGO [90] to perform the gene
ontology. Ringo also has functions to visualize the genomic region.

(b) RNA-seq: These experiments are known as ChIP-seq. Preprocessing, align-
ment, and processing of BAMs are done in the same fashion as RNA-seq
data. FastQC is used for quality check, followed by alignment with Bowtie or
BWA, followed by processing of SAM files by Samtools and Picard. To
identify genomic regions to which transcription factors bind, we identify
regions in the genome where maximum reads map to. These are called
peaks. Peak calling is performed using tools like model-based analysis of
ChIP-Seq (MACS) [91] and spatial clustering for identification of ChIP-
enriched regions (SICER) [92]. Normalization and fold change calculation
of transcription factor binding between two samples (control and experimen-
tal) are estimated using edgeR, Gfold, and Deseq2.

2. Methylation: Determination of methylation is done using bisulfite treatment. This
converts unmethylated cytosine to uracil but leaves methylated cytosine
unchanged [93]. Microarray and/or sequencing techniques can be then performed
to determine the difference in methylation between an experimental condition and
a control condition.

(a) Microarray: The most popular platforms are Illumina 450 K and Epic (850 K)
arrays. These arrays are named after the number of probes used; the 450 K has
450,000 probes of known methylation region and the 850 K is composed of
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850,000 probes. There are multiple tools to analyze this data. Partek, a
proprietary software, performs differential methylation and visualization of
methylation regions. Open-source workflow Champ [94, 95], a R
Bioconductor workflow, uses other Bioconductor packages like minfi [96]
for analysis and visualization of methylation, a modified version of combat
function from sva package [97] for batch correction, limma for differential
expression calculation, and plotly [98] for visualization.

(b) Sequencing: The workflow can be divided into two steps.

(i) Preprocessing and alignment-based identification: The preprocessing
and the alignment steps are similar to preprocessing step as described
in the Genomics and Transcriptomics sections; the only differences are in
the tools used for alignment. FastQC is used for quality check and sickle
used for trimming. Most of the alignment methods use a modified version
of other short read alignment algorithms like Bowtie2. Tools like
Bismark [99], BS-Seeker [100], and B-Solana [101] use Bowtie algo-
rithm, with methods to handle cytosine to thymine (uracil in RNA)
conversion. LAST [102], another algorithm, uses score matrix to handle
C-T conversion, and Bisulfighter [103] uses this algorithm for alignment.
Another algorithm, BSMAP [104], converts the thymine to cytosine in
the bisulfite reads in silico, in positions in which cytosine is present in the
reference.

(ii) Differential methylation: The best tool to use is based on whether
replicates are present in the experiment to be analyzed. For experiments
in which there are no replicates available for control or experimental
conditions, methylkit [102] or RnBeads [105] uses Fisher’s exact tests,
and ComMet [103, 106] (part of Bisulfighter methylation analysis pipe-
line) or Methpipe [107] uses hidden Markov models. For experiments
having replicates, tools like limma, BSmooth [108], and Biseq [109] use
regression models. Good reviews of these tools and methods can be
found in [110, 111].

4.2.3 Platforms Used

Most of the pipelines used in the discussion involve a combination of a Linux
environment and R IDEs like Rstudio. Open-source user interface (UI) option for
analyzing NGS studies is limited, with Galaxy [116] being the only reliable option.
Cloud platform UIs like DNAnexus and artificial intelligence RNA-seq (AIR) are
proprietary and are subscription based. Cloud-based platforms such as Amazon and
Microsoft Azure can also be used for processing large amounts of genomic data, but
they are mostly command line based.
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4.2.4 Downstream Analysis and Visualization

After the analysis to identify the most significantly expressed genes is complete,
multiple downstream analyses can then be performed to give biological perspective
to the genes defined. Following are the two most important downstream analyses
done on transcriptomic analyzed data:

1. Gene ontology and pathway analysis: To better understand the biological system
studied in a given experiment, one needs to understand the function and pathways
of the genes that are expressed in the system. Gene ontology [117] (GO)
classification tools can classify the function of the genes under three broad
classes: cellular components (CC), molecular functions (MF), and biological
processes (BP). This kind of analysis is called a gene enrichment analysis
(GEA). GEA can also be divided into three categories:

(a) Singular enrichment analysis (SEA): A user-defined gene list derived from
any high-throughput NGS/microarray experiment can be used as an input
[118]. Generally, the input genes are those highly significant genes based on
user-defined arbitrary threshold (e.g., multiple testing adjusted p-value <
0.05). The genes are classified as falling into the three broad categories
(BP, CC, and MF) described above. Fisher’s exact test [119] and its modifi-
cations (EASE score [118]) or a chi-square test [120] is used in this method to
determine whether the genes are related to the categorization based on
function. Tools such as DAVID [118, 121], GOStat [122], and Bingo [123]
perform singular enrichment analysis.

(b) Gene set enrichment analysis (GSEA): In gene set enrichment analysis, all
genes from a high-throughput genomic experiment are used as an input, thus
ensuring the analysis is free from any potential bias due to arbitrary thresholds
such as those used in SEA [124]. This allows even genes with small differ-
ential expression changes to be considered for further enrichment analysis.
Maximum enrichment scores (MESs) are calculated from the rank order of all
gene members in an annotation category. These maximum enrichment scores
are analyzed and p-values calculated using either Kolmogorov-Smirnov-like
statistics to compare the observed MESs to those obtained with from a
random distribution or with parametric statistics which compare fold changes
between experiments. ErmineJ [125] and FatiScan [126] can be used to
perform this type of analysis.

(c) Modular enrichment analysis (MEA): Modular enrichment analysis combines
SEA-kind enrichment analysis with network discovery algorithms, to allow
term to term relationships. Kappa statistics of agreement are used for this
analysis. Due to the structure of the kappa statistics, genes which do not occur
in multiple neighboring terms are excluded from the analysis. Some tools that
perform this type of analysis are ADGO [127],DAVID, andGeneCodis [128].
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These gene ontology classification tools combine data from multiple
sources including KEGG [129] for pathway analysis, Pfam [130] for protein
domains, and TRANSFAC [131] for gene regulation.

2. Correlation networks: Another important piece of information from the obtained
gene lists are whether or not there is any relationship between the statistically
significant gene lists. Although we learn a lot about genes that share common
functionality from the GEA, tools like GeneMania [132] provide the user with
information on the interaction between genes, thus yielding a more comprehen-
sive picture of the interaction pathways. GeneMania provides the users with
predictions of co-expression, co-localization, and physical interactions between
genes. Biological General Repository for Interaction Datasets (Biogrid) [133] is
another database which provides the user with chemical, genetic, and protein
interactions using known experimental results and is curated regularly. STRING
[133], a protein interaction database, is used to understand the interaction
between the proteins translated from the genes. One can also use weighted gene
correlation network analysis (WGCNA) [134], a package in R [135], which uses
expression data from microarray or RNA-seq to construct a correlation network
between genes in a given experiment.

Visualization Tools like FastQC and MultiQC [136] are used to evaluate and
visualize the quality of the sequencing from both Fastq and BAM data. Visualization
of expression data can be done using Heatmap.2 function of the gplots [137] package
in R. GOPlot [138], an R package, which can be used to visualize Gene
Ontology data.

4.2.5 Conclusion

Although newer long-read sequencing techniques as well as optical mapping tech-
niques are being developed to better understand variation in genes and changes in
expression, no technology has yet displaced short-read sequencing and/or
microarrays. With the advancement in computational hardware, as well as develop-
ment of more extensive computational algorithms to better handle big data, bioin-
formatics tools for analysis of NGS data are rapidly changing. In these changing
times, one should not only concentrate on the tools being used, but also better
understand and appreciate the underlying algorithm to better evaluate his/her data.
In addition, a thorough understanding of experimental design and statistical analysis
is incredibly important to yield a thoughtful and meaningful analysis.
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4.3 Statistical Analysis

4.3.1 Study Design Principles

Study design at its most basic level is defined as the methods for planning the
collection of data in order to obtain the maximum amount of information using the
least amount of resources. As such, good study design is an integral part of any
experiment. There are many available resources that discuss study design in general,
and an Internet search of study design fundamentals will yield hundreds of sources.
However, omic experiments have certain common traits that make many typical
study design elements less applicable. We often do not have large numbers of
samples available or the high cost of the technologies limits the number of samples
we have the resources for. We are often testing many more parameters than we have
samples for, causing difficulties with our statistical analyses [139, 140]. Lastly, due
to the scarcity of individual samples, we are often tempted to test complicated
hypotheses that we do not have the data to truly support.

Before we begin an experiment, there are several things we should consider so
that our experiment can be planned to appropriately answer our scientific question.
We need to have a testable hypothesis, we need to define our replicates (how many
we have and what type they are), we need to understand the sources of variability in
our sample and how it relates to the population, and we need to verify that our
sample size is adequate to answer our question. Lastly, we need to understand what
our collected data points are representing.

4.3.1.1 Hypothesis

Having a testable hypothesis may seem an obvious step; however, not all hypotheses
are well thought out or testable. Omic experiments are often used for hypothesis
“generation” where we use the data we have to inform what is happening in a
biological system. We then use this information to generate hypotheses that can be
tested in future experiments. Because of this feature, it is mistakenly thought that
omic experiments are discovery in nature and do not need an a priori defined
hypothesis. While this is not entirely false, it is also not true [141]. One may have
a more general question to ask such as “are RNA levels related to biceps strength?”
with the intention of discovering what RNA levels change in response to strength.
However, when we perform our statistical analysis, we are in fact testing a hypoth-
esis. That hypothesis may involve assessing the relationship between RNA levels at
one particular strength level, or assessing the change in RNA levels as strength
changes, or assessing whether or not the relationship between RNA level and
strength is different with respect to some other factors such as gender. These three
hypotheses are all tested using different statistical methods and require different
study designs and numbers of samples. So, we must know what hypothesis we want
to test before we plan our experiment, even if our goal is only to “discover” what
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RNA levels are important to us. If we don’t consider a hypothesis, we may be left at
the end with data that cannot answer our questions.

Imagine a case where we are interested in assessing whether exercise in men has
an effect on the expression level of gene X. We measure gene expression in 10 men
who exercise on a regular basis and in 10 men who are sedentary. If we are truly
interested in whether or not exercise causes a change in expression of gene X, we
cannot test that hypothesis with this sample. All we have from our sample design is
expression levels in exercisers and expression levels in sedentary individuals. We
may find significant differences in the expression of gene X; however, we cannot say
those differences are due to exercise. They could be due to any number of differences
between the two groups of men, not necessarily related to exercise. Our intentions
may have been to test the hypothesis that exercise induces changes in gene expres-
sion, but our sample cannot test that hypothesis. In order to test our intended
hypothesis, we would need repeated measurements of expression on the same
individuals both before and after exercise. Only then could we infer that the exercise
was, in part, responsible for any differences observed in expression levels.

The above example shows how it can be a mistake to design an experiment
without a clear hypothesis in mind. We can spend valuable resources collecting data
that does not, in the end, meet our needs.

4.3.1.2 Replicates

The understanding and choice of replicates is often a source of confusion because the
term “replicates” has various definitions depending on who is defining it. At its
simplest, a replicate is a measurement taken more than once. Some refer to multiple
measurements taken from the same sample at the same time as replicates. Others
refer to measurements taken from the same sample at different times as replicates.
And yet others consider replicates to be different aliquots of the same RNA extrac-
tion or multiple arrays hybridized with the same RNA.

We can divide replicates into two types, biological and technical, which serve
different purposes. Technical replicates are used to establish the variability, or
experimental error, of the measurement technique. They are performed on the
same biological sample so that the differences we see can be wholly attributed to
the measurement technique. All measurement techniques have variability in how
well they measure the parameter of interest and we need to quantify this to better
allow us to measure other sources of variability we encounter. Those performing
omic experiments should be familiar with this phenomenon as we must know how
much noise is in the measurement to accurately assess the signal. Biological repli-
cates, on the other hand, are broadly speaking biologically different samples. They
are used to establish the biological variability which exists between organisms which
should be identical, and they are typically the reason we are performing the exper-
iment in the first place. The biological entities in our experiment represent the wider
population. We can only make inferences, by applying inferential statistics, about
the population from which our samples were taken. When we apply statistical tests to
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our sample we are inferring what we would expect to see in the larger population.
Vaux et al. [142] provides an excellent overview of the difference between technical
and biological replicates and describe why one can be used in hypothesis tests and
inferential statistics and the other cannot. A particularly apt description of the
mistake in the blurring of technical and biological replicates is given by Bell [143].

Consider the three following experiments, each of which contains replicates. The
first experiment assesses gene expression in 10 separate mice. Here we have
10 biological replicates and we expect expression to be the same in each mouse.
We are measuring how much difference in expression exists in our mice. This
sample of 10 mice is representative of the population of all mice and we can apply
inferential statistics to infer that our conclusions apply to the population. The second
experiment assesses protein expression in a cell line that has been aliquoted into
20 plate wells. Here we have 20 technical replicates; we expect protein levels to be
exactly the same from the same cell line; therefore, we are measuring the variability
in the measurement method. Our population here is this single cell line. The third
experiment is more complicated. We have one cell line that is aliquoted into two
petri dishes, one of which is treated with a potential drug. From each dish, we take
three aliquots and measure gene expression of gene Y. Here we have three technical
replicates that could be used to estimate the variability in the gene expression
measurement, but we do not have any biological replicates; all measurements were
made on the same sample. We may be tempted to compare gene expression between
the treated samples and the untreated samples and attribute any differences we see to
the treatment. However, our population remains one single cell line. Any conclusion
we make from that comparison applies only to that single cell line; we cannot infer
the same would be true in other cell lines.

We must be careful to understand what our replicates actually represent. Because
the p-values calculated from statistical tests are based in part on the number of data
points we have, we can inadvertently artificially increase our sample size and bias
our conclusions by mistaking technical replicates for biological replicates.

4.3.1.3 Understanding Sources of Variability

All statistical tests assume that what we observe in our sample can be inferred in the
population under study. When we understand our sample, we can be more confident
that our conclusions are generalizable to the population under study. We can
appropriately deal with the many sources of variability, both biological and techni-
cal, that, when ignored, can severely impact our statistical analysis and the conclu-
sions from that analysis.

Many sources of variability are familiar to those performing omic experiments.
These can include date and method of data collection or preparation, protocol used,
the technician performing preparatory analyses, software used for data processing,
and a host of other experiment-/platform-specific characteristics. We can account for
these potential differences in our samples either statistically or technically; however,
we need to have this information to do so. We can plan our experiment so that all
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samples use the same preparation techniques and are performed by the same
technician, or we can account for these differences through the use of covariates in
our statistical tests.

Equally important are sources of variability within our study population. These
may not be as familiar to those performing omic experiments but they can affect the
conclusions from our experiments. When one is building a hypothesis based on a
defining variable, such as the effect of a drug, both the samples receiving the drug
and those not receiving the drug should be as similar to each other as possible. This
becomes more difficult when the defining variable is also an inherent difference
between samples, for example, assessing gene expression in individuals with a
disease compared to those without. It is difficult to find affected and unaffected
individuals who are similar in all other respects, making any expression differences
possibly due to other factors rather than the disease. The more completely we
characterize and understand the variability in our samples, the more confidence we
have in the validity of our conclusions.

4.3.1.4 Adequate Sample Size

A last area of importance in study design, but one that is often the most difficult to
deal with, is ensuring we have an adequate sample size for the hypothesis we are
testing. All of the previously described areas of study design are important in
determining what your sample size should be or what power you have given an
already existing sample. Sometimes we have all of the information we need to
adequately perform our sample size or power calculations; however, more often
we do not. This section does not aim to discuss the theory behind sample size or
power calculations or to fully describe all of the individual techniques that have been
developed for specific types of experiments. It is instead intended to make the reader
aware of what is necessary to complete these calculations and to impart their
importance. A more thorough and easily readable discussion of sample size calcu-
lations can be found in Whitley and Ball [144]. An additional resource by Billoir
et al. [145], although more technical, discusses sample size and power specifically
for high-throughput experiments with a particular focus on metabolomics.

Sample size and power calculations utilize the same mathematical equations and
have common elements. A checklist for the elements needed for power and/or
sample size calculations include:

1. Well-defined hypothesis
2. The statistical test we will use to test our hypothesis
3. The effect size we expect to see (i.e., how much difference are we trying to detect)
4. How much variation in our outcome can we expect
5. The significance level (type I error rate) we want to test the hypothesis at
6. The power (type II error) we want/have
7. The sample size we need/have
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You’ll notice that the list includes both power and sample size. If one wants to
determine sample size, power must be provided. If one wants to determine power,
sample size must be given. One can choose to calculate the power that a sample has
to test the hypothesis or calculate the number of samples needed to test the hypoth-
esis at a given power level. We’ll discuss what each of these components is and how
to define them.

A well-defined hypothesis and the statistical test we will use to test it are
necessary because each statistical test has its own equation to calculate sample size
and/or power. The equation to calculate sample size for a t-test is very different than
that for a chi-square test. We must know what test we will perform so that we can use
the correct equation. The choice of statistical test, as described above, is determined
by the hypothesis one is testing. So, our first step is to define our hypothesis and
determine what test will be used. Only then can we perform the appropriate analysis
to define our sample size/power.

The effect size describes how large of an effect you would define as statistically
significant. In other words, how large of a difference in your dependent variable
would you expect to see or define as meaningful. If you have preliminary data
available, this difference may come from the difference you’ve observed in that data.
Or you may decide that only a difference of a certain amount is meaningful;
therefore, you want to have a large enough sample to detect that effect size. Imagine
you are planning an experiment to test the hypothesis that expression of gene A is
different in men and women. You may have some previous data that indicates
expression in men is 10% greater than in women. This is the effect size, or
difference, you would like to plan your experiment to detect. Or you may not have
any previous data but consider any difference between men and women smaller than
10% to be meaningless; again 10% would be the effect size you are planning to
detect. Defining the effect size can be difficult, especially if you have no preliminary
data nor an idea of what would be meaningful. If this is the case, we have to
improvise and make our best guess as to what the effect size will be and understand
that detecting a smaller effect size requires a larger sample size. We can use literature
sources of similar experiments as a guide, or we can calculate sample size or power
for a range of effect sizes and hope that the effect size that ultimately exists in our
sample falls within that range.

The expected variability is directly related to our effect size. It is an estimate of
how much variability we expect to find in our dependent variable. Not surprisingly,
the more variable our dependent variable is, the larger the sample size needed will
be. Unless we have preliminary data, the expected variability can be difficult to
estimate. Like effect size, we can make a best guess based on similarities in literature
sources or use a range of values.

The significance level, or the type I error rate, is the level at which we want to test
our hypothesis. It defines the false-positive rate that we are willing to accept and still
define our conclusion as statistically significant. This value is conventionally set at
0.05 for any single statistical test; 5% is the level of uncertainty we are comfortable
with. However, in omic experiments, we are rarely performing only a single statis-
tical test and are often performing many hundreds or thousands of tests. To account
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for this, we often adjust the significance level in our sample size/power calculations
to account for these many tests. This phenomenon is described in more detail in the
multiple testing section of this chapter.

The last elements are power and sample size. These are the values we are
interested in calculating. If we want to determine what sample size is needed to
test our hypothesis, we need to define the power we are comfortable with. Power, or
type II error, is the rate at which we expect to conclude there is a statistically
significant difference when there truly is. It is defined as 1 minus the false-negative
rate (1-FN). Conventionally we perform statistical tests with 80% power; however,
we are free to increase our power if warranted. Once we define these elements, we
have all of the necessary information to calculate the number of samples we need to
test our hypothesis at the given significance and power levels.

Sometimes we already have our sample in hand. It may be a sample of conve-
nience that happens to be available, or we may know that we have the money and
resources for a certain number of samples. In these cases, we can calculate how much
power we have given our sample. This is an important step that is not only usually
required in funding proposals, but one that is in our best interest to perform.
Underpowered studies, those that do not have adequate power to test their hypoth-
eses, are a common problem and often result in inconclusive results. At the end of an
experiment, a nonsignificant p-value indicates that either there truly is no effect or
the sample was not powered to detect the effect. If you know that your analysis was
adequately powered, you can be confident in concluding there is no effect. If on the
other hand you have an underpowered study, you’re left with an inconclusive
answer. Assuring that your experiment is adequately powered allows one to ade-
quately answer the question they are interested in and assures the funding agency
that the money spent on the experiment will be of use.

The table below (from [144]) shows the relationships between all of the elements
that go into sample size or power calculations. As mentioned above, a smaller effect
size or a dependent variable with a large level of variability requires a larger sample
size. An experiment with greater power requires a larger sample size than one with
lower power.

Factor Magnitude Impact of identification of effect
Required sample
size

P-value Small Stringent criteria; may be difficult to achieve
significance

Large

Large Relaxed criteria; easier to attain significance Small

Power Low Identification unlikely Small

High Identification more probable Large

Effect size Small Difficult to identify Large

Large Easy to identify Small

Variability Small Easy to identify Small

Large Difficult to identify Large
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4.3.1.5 Data Representation

One last topic the researcher should be aware of is the pre-data processing that has
occurred prior to statistical analysis. Just as it’s important to understand what
hypothesis you are testing and what your replicates represent, it’s also important to
understand what one’s data represent. Typically, omic experiments utilize data from
an instrument that goes through various steps of processing and normalization before
any statistical analysis is performed. Rarely is raw data collected from an instrument
used in analysis. Each type of experiment, i.e., proteomic, transcriptomic, etc., has
specific processing methods to yield useable data points. It is important to under-
stand what these data points represent. Are they values in an experimental sample
relative to a control sample? Are they ratios of values in treated samples to untreated
samples? Before any statistical analysis is performed, the researcher needs to know
exactly what the data is representing so that the appropriate hypothesis can be tested.

4.3.2 Statistical Analysis Methods

The statistical analysis methods chosen to test hypotheses depend primarily on the
type of data being analyzed, the definition of the dependent variable, and the sample
size. Every statistical test has underlying assumptions that must be met for the
method to be appropriate and there are specific tests developed for the analysis of
small sample sizes. This section will describe the most commonly used statistical
tests and define the appropriate use of them.

4.3.2.1 Data Type

The first characteristic that must be defined is the type of data one is applying the
statistical test to. Typically, data falls into two broad categories, continuous and
categorical. These names are descriptive of the data. A continuous variable is
quantitative and measured on a continuous scale and can take on any value limited
only by the measurement precision. The value of a continuous variable indicates
some sort of amount. For example, protein expression reported in RFUs is a
continuous variable that can take on any value between a minimum and a maximum,
can be measured to the precision possible by the instrument, and indicates how much
of the protein is expressed. Categorical data is, on the other hand, data that describes
inclusion into a category. For example, experiment batch is an example of categor-
ical data where the data defines which category or group the data point falls into,
either it is a data point that was collected in batch A or it is a data point that was
collected in batch B. The value of the category is not meaningful itself, i.e., batch A
is not more or less of a batch than batch B. Categorical data can be further divided
into nominal (categories that have no natural order) and ordinal (categories that have
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a natural order). This may seem a rather elementary description that most scientists
will be familiar with, but the importance of knowing what type of data you have is
sometimes forgotten. The statistical methods for the analysis of continuous data are
completely different than those used for categorical data and they are, for the most
part, not interchangeable. For a continuous variable, such as protein expression, it
makes sense to compare mean levels between two groups. It does not make much
sense, however, to compare mean levels of batch, a categorical variable, between
two groups.

4.3.2.2 Dependent Versus Independent Variables

The distinction between the dependent variable and the independent variable(s) is an
important element to a statistical analysis. While, mathematically, simple statistical
tests between two variables, such as a Pearson correlation or a Chi-square test, do not
differ based on which variable is considered dependent or independent, many
statistical tests do differ. In addition, which variable is defined as the dependent
variable dictates the interpretation of the statistical test.

Typically, an experiment has two classes of variables, the dependent variable that
is tested and measured and the independent variables that are changed or controlled.
The dependent variable is said to be “dependent” on the independent variable; as the
independent variable changes, it exerts an effect on the dependent variable which is
measured. We can say that the independent variable is the “input” to a statistical
model which describes the change in the “output” or the dependent variable. This
may seem an unnecessary complication for analysis, but this distinction defines how
the results are interpreted. For an example of how interpretation is impacted,
consider a simple experiment where one has a group of mice of varying ages and
the interest is to evaluate if the expression of gene ABC changes as the mice get
older. If expression of gene ABC is defined as the dependent variable and age as the
independent variable, a correlation or linear regression would be used to assess the
relationship. The conclusion, assuming a significant p-value, would indicate that age
exerts an effect on gene expression; the gene expression level depends on how old
the mouse is. If, on the other hand, age is defined as the dependent variable and
expression as the independent variable, the same correlation or linear regression
would be used. The conclusion from this analysis however, assuming a significant p-
value, would indicate expression exerts an effect on age; the age of the mouse
depends on what the expression of gene ABC is. These are two closely related
conclusions, but they are saying something quite different. One is implying that
the expression of gene ABC changes as the mice get older; the other is implying that
age is dictated by the expression of gene ABC.

In more complicated statistical analyses where one has more than two variables,
the definition of dependent/independent variables will mathematically change the
statistical test. Here it is critically important to define the dependent variable
appropriately so that the statistical test used is testing the hypothesis correctly.
Before a choice of a statistical test is made, make sure that the dependent variable
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is defined correctly. Multiple regression models, where one has a single dependent
variable and two or more independent variables, treat the dependent and independent
variables differently. The model estimates calculated as part of a multiple regression
model take into account all independent variables in the model and calculate their
cumulative effect on the dependent variable.

4.3.2.3 Parametric Versus Nonparametric

The commonly used statistical tests described here fall into two groups, those that are
parametric and those that are nonparametric. There are semi-parametric models that
do not fit this paradigm; however, they are beyond the scope of this discussion.
Parametric tests are those that make assumptions about the population distribution
from which the sample is drawn; nonparametric tests do not make this assumption.
Parametric tests use the data points as measured or after a systematic transformation
has been applied, whereas nonparametric tests use the rank order of the data points
(which value is the smallest, which is the next smallest, and so on) and ignore the
distance between the points. Each parametric statistical test requires that the distri-
bution assumption is met. If, and only if, one can show their data is drawn from the
assumed population, the statistical test is valid.

When performing a statistical test that relies on an underlying distribution, such
as the common student’s t-test, the test is only valid if your sample has been drawn
from a normal distribution. Applying a t-test to a highly skewed dependent variable
violates the assumption of the test which can lead to either a reasonable conclusion
or a biased conclusion. However, the difficulty is one doesn’t know which. Before
applying a statistical test, look at the dependent variable graphically and determine if
it meets the assumptions. If it does not, a data transformation (i.e., log, square root,
reciprocal transformation) can be applied, or a nonparametric test can be used.

4.3.2.4 Common Statistical Tests

When setting out to perform a statistical analysis, answer the three following
questions of your data. First, what is the dependent variable and what is/are the
independent variable(s)? Second, what type of data are the dependent and indepen-
dent variables? Third, can we show that the dependent variable is drawn from a
specific distribution, or do we not want to make that assumption? Once these three
questions are answered, the choice of the appropriate statistical test is
straightforward.

The table below is intended as a guide to the most commonly used statistical tests
in omic experiments and those tests likely to be available using nonstatistical
software. It is not an exhaustive list and analyses that require more complicated
methods or designs should be performed with the guidance of a statistician.
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Underlying
distribution of
dependent
variable

Dependent
variable

Independent
variable Test Use

Normal Continuous Continuous Pearson
correlation

Assess the linear relationship
between two continuous
variables

Normal Continuous Categorical
with two
levels

Independent
t-test for
equal
variances

Compare means between two
independent groups; variances
equal in both groups

Normal Continuous Categorical
with two
levels

Welch t-test
for unequal
variances

Compare means between two
independent groups; variances
unequal

Normal Continuous Categorical
with three or
more levels

ANOVA Compare means between three
or more independent groups

Normal Continuous Paired cate-
gorical with
two levels

Paired t-test Compare means between two
paired groups (often pre/post)

Normal Continuous Paired cate-
gorical with
three or more
levels

Repeated
measures
ANOVA

Compare three or more means
between groups (often
pre/post)

Normal Continuous Any type/any
number

Linear
regression

Assess the effect the indepen-
dent variable(s) exert on the
dependent variable; can predict
what the dependent variable
would be if one knows the
value for the independent vari-
able(s)

Binomial Categorical
(two levels)

Any type/any
number

Logistic
regression

Assess the effect the indepen-
dent variable(s) exert on the
dependent variable; can predict
what the dependent variable
would be if one knows the
value for the independent vari-
able(s)

Binomial Categorical
(three or
more
levels)

Any type/any
number

Ordinal or
nominal
regression

Assess the effect the indepen-
dent variable(s) exert on the
dependent variable; can predict
what the dependent variable
would be if one knows the
value for the independent vari-
able(s)

Chi2 Categorical Categorical Chi square
test

Tests for an association
between two categorical
variables

(continued)
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Underlying
distribution of
dependent
variable

Dependent
variable

Independent
variable Test Use

Chi2 Categorical Categorical Fisher’s
exact test

Tests for an association
between two categorical
variables; used for small sam-
ple sizes

Chi2 Categorical Categorical
(2 levels)—
Paired

McNemar’s
test

Tests for an association
between two paired categorical
variables

Chi2 Categorical Categorical
(3+ levels)—
paired

Cochran’s Q
test

Tests for an association
between two paired categorical
variables where one variable
has three or more levels

Binomial Single
proportion

Known
proportion

Binomial test Test deviations from a theoret-
ically expected distribution of
observations into two
categories

Normal Continuous Continuous Kolmogorov-
Smirnov one
sample test

Compares the distribution of
the experimental variable to a
normal distribution (normality
test)

Normal Continuous Continuous Kolmogorov-
Smirnov
two-sample
test

Compares two continuous var-
iables to determine if they arise
from similar distributions

N/A Continuous Continuous Spearman
correlation

Assesses the linear relationship
between two ranked continu-
ous variables

N/A Continuous Categorical
with two
levels

Wilcoxon
rank sum

Compare ranks between two
independent groups

N/A Continuous Categorical
with three or
more levels

Kruskal-
Wallis

Compare ranks between three
or more independent groups

N/A Continuous Paired cate-
gorical with
two levels

Wilcoxon
sign rank

Compare ranks between two
paired groups (often pre/post)

N/A Continuous Paired cate-
gorical with
three or more
levels

Freidman test Compare three or more ranks
between groups (often
pre/post)

I highly recommend two reference books to guide the researcher in choosing the
correct statistical test to use. These two references, [146, 147], discuss statistical tests
in easy to understand language devoid of the heavy use of jargon. Pett discusses the
choice of statistical methods specifically for small sample sizes, a common problem
in omic experiments.
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4.3.2.5 Statistical Model Complexity

Statistical models range from simple, where one is testing the relationship between
two variables, to extremely complex where one can have many comparison groups,
many time points, nested designs, and many covariates. As described above, it is
important to make sure the sample size one has is adequate to test the hypothesis of
interest. It is also important to make the best use of the number of samples one has,
often a small number.

Consider one wants to look at expression levels between two groups of mice,
treated and untreated, and also want to see if there is a sex difference. Analyze the
data using a linear regression with expression as your dependent variable and with
two independent variables, sex and treatment. This will allow you test the simulta-
neous effect of sex and treatment, and it will allow one, through the use of a sex �
treatment interaction term, to determine if expression differences between treated
and untreated are different in males and females. This is a much more efficient
analysis than performing a comparison in males and females separately. It allows
one to perform a direct comparison between males and females.

However, a more complex statistical model can require a larger sample size to
adequately test the hypothesis. If one has many treatment groups or many doses of
one treatment and are interested in evaluating the change in expression over many
time points, a small sample size of six mice is probably not adequate. Here we must
balance the need for using our data in the most efficient manner (using a more
complex model) with the need for a model that can be adequately supported by our
sample size.

4.3.2.6 Multiple Testing

The issue of multiple testing and the need to account for it is not a new phenomenon;
however, it has gained a new prominence with the rise of high-throughput experi-
ments where thousands, and sometimes millions, of statistical tests are performed on
the same samples. Whereas before we concerned ourselves with the testing of 10 or
20 outcomes, now we are concerned with a number of statistical tests that is many
orders of magnitude larger.

Each statistical test produces a p-value which most researchers are familiar with.
Using the conventional significance level of 0.05 as our decision point, a p-value
�0.05 will lead the researcher to reject the null hypothesis and conclude there is a
significant effect; a p-value >0.05 will lead the researcher to accept the null
hypothesis and conclude there is no evidence of a significant effect. In layman’s
terms, the p-value defines how likely the conclusion to accept or reject the null
hypothesis has occurred by chance. A p-value of 0.05 indicates that there is a 1 in
20 chance that the conclusion occurred by chance (false positive) and a 19 in
20 chance that the conclusion is true. The smaller the p-value is, the less likely it
occurred by chance. This concept applies to each statistical test performed.
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Consider that for a single significance test performed at the conventional 0.05
level, we have a 5% chance (or a 1 in 20 chance) that our conclusion to reject the null
hypothesis occurred by chance alone (is a false positive). Because of a mathematical
property of probabilities, the likelihood of this conclusion occurring by chance
(a false positive) increases with the number of tests performed. So that if one
performs 20 statistical tests, there is a 64% chance of at least one conclusion being
a false positive. This 64% of having at least one false positive is obviously much
greater than 5%. Now consider when we perform thousands of statistical tests; the
likelihood that at least one of our conclusions is false approaches 100%. Unfortu-
nately, we cannot differentiate which of our significant conclusions are in fact false
positives and which are true findings.

To combat this problem, much effort has been put into methods to control the
error in an analysis [148] and these methods consider two different ways to solve this
problem. The first methods control the family-wise error rate (FWER), the proba-
bility of finding one or more false positives among all of the statistical tests
performed. The most common method, the Bonferroni method, adjusts the overall
error rate to control the probability of at least one false positive overall rather than for
each individual statistical test. Most researchers are probably familiar with the
Bonferroni correction where the p-value used as our cutoff for accepting or rejecting
the null hypothesis is adjusted by the number of hypotheses tested. For example, if
the cutoff (i.e., significance level) for a single statistical test is 0.05, then the new
cutoff for 10 statistical tests is 0.05/10 or 0.005. Now, only p-values that are �0.005
would be evidence to reject the null hypothesis and conclude there is a significant
finding. Unfortunately, the Bonferroni correction specifically and the adjustment of
the FWER generally are usually considered too conservative for most omic exper-
iments [149] for reasons that go beyond the scope of this chapter. A second
methodology, control of the false discovery rate (FDR), has been developed which
controls the expected proportion of false positive among all of the significant
findings (i.e., where the null hypothesis has been rejected). Many different methods
have been developed to control each of these error rates (FWER and FDR) and they
have been refined to resolve specific limitations. A review of the commonly used
methods for both control of the FWER and the FDR can be found in Chen [150].

In any omic experiment where we are performing multiple statistical tests, as in
testing the expression of thousands of genes, we need to account for multiple testing.
If we do not, we cannot define which, if any, of our genes yielding a significant p-
value are true findings and which are false positives.

4.3.2.7 Limitations and Future Directions

This chapter is intended as a resource to assist in the design and analysis of omic
experiments; however, it is not a comprehensive guide. It introduces a high-level
view of the bioinformatic techniques commonly used and an overview of the
statistical methods typically used for omic experiments, but it does not discuss in
detail the underlying mathematics or probability theory. It is advised that one
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consults with a statistician early in the experimental process, preferably during study
design, to ensure that one is able to test the hypothesis of interest with the data
collected. In addition, the guidance of a statistician is highly recommended for
complex study designs as the methods used for their analysis go beyond the common
methods discussed here. Some additional resources are given as references [151–
161]. These resources describe statistical tests and their interpretation from a non-
statistician perspective and include discussions of statistical analyses specifically for
omic experiments.

Understanding the purpose of your experiment will determine what type of
statistics are best suited and the inferential statistics described in this chapter may
not even be needed. The purpose of inferential statistics is to make broad conclusions
about a population from a smaller sample through the calculation of a p-value. If
your purpose differs, maybe to describe a sample rather than make inferences about
the broader population, the calculation of a p-value is unwarranted and unnecessary.
If you have only technical replicates, all originating from the same biological
sample, inferential statistics are unnecessary. Here any conclusions can only inform
you about the population which consists of a single biological sample.

The statistical analysis of omic experiments is an evolving field where consensus
on the most appropriate methods can be hard to find. As research continues,
improved methods for the adjustment of multiple testing better suited to related
outcomes will be developed and better methods of data integration from various
sources and platforms will be defined. However, there remain several challenges in
the analysis of omic data, whether it be integrating molecular and clinical data or
adequately testing hypotheses so that the resulting conclusions are relevant for the
population.
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