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Chapter 1
The Role of Omics Approaches in Muscle
Research

Stefano Schiaffino, Carlo Reggiani, and Marta Murgia

A thorough understanding of skeletal muscle physiology requires knowledge of the
molecular composition of muscle tissue. So far, this has been mostly obtained
through biochemical investigations focused on selected components of the muscle
contractile and metabolic machinery. More recently, a systems biology approach,
based on the emergence of omics technologies, has been introduced to get global
views of all muscle components. These approaches have been used to explore the
DNA (genomics and epigenomics), RNA (transcriptomics and non-coding RNA
analyses), proteins (proteomics and global analyses of post-translational protein
modifications, e.g. phosphoproteomics) and small molecules (metabolomics).

Genome-wide association studies (GWAS) compare single-nucleotide variants
(single-nucleotide polymorphisms or SNPs) in the sequence of the whole human
genome, to identify genes associated with muscle disorders that may influence the
risk of the disease or modify the disease phenotype (genetic modifiers). Epigenetic
changes, including both DNA methylation and histone post-translational modifica-
tions, have been analysed in muscle tissues to determine the effect of ageing,
exercise and diet on gene expression. Microarray analyses and more recently
RNA-seq techniques based on next-generation sequencing (NGS) provide a com-
plete view of all mRNAs, as well as non-coding RNAs, including micro-RNAs and
long non-coding RNAs. Transcriptome analyses have been widely applied to the
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study of skeletal muscle; however, not all transcripts are actually translated, and the
analysis of proteins through proteomic approaches is required to identify the trans-
lated products in muscle cells. Proteomics and metabolomics, which are mostly
based on liquid chromatography-mass spectrometry techniques, as well as nuclear
magnetic resonance spectroscopy, have seen tremendous technological advances in
the last years with both respect to instrumentation and data processing. Common
proteomic and metabolomic experiments involve non-targeted or discovery
approaches, which allow for the relative quantification of different proteins or
metabolites, and targeted approaches, which allow for the absolute quantification
of few selected components. A dynamic view of protein turnover, as a result of
protein synthesis and degradation, can be obtained by combining proteomic analysis
with protein labelling in vivo using isotope-labelled amino acids or heavy water [1].

Epigenetic changes have been extensively investigated in skeletal muscle. DNA
methylation, leading to repression of gene transcription by reducing accessibility to
gene promoters, is mediated by DNA methyltransferases (DNMTs) and is inhibited
by specific demethylases, which usually activate transcription. DNA methylation
involves transformation of cytosine into methyl-cytosine and can be quantified using
bisulphite sequencing, taking advantage of the property of sodium bisulphite to
convert unmethylated cytosine into uracil. Post-translational histone modifications
affect chromatin condensation resulting in gene activation or gene silencing. They
consist of acetylation, methylation, phosphorylation, ubiquitination and
SUMOylation of specific amino acid residues of histones. Acetylation and
deacetylation of histone lysine residues, which are especially important in regulating
gene expression, are catalysed by histone acetyl transferases (HATs) and histone
deacetylases (HDACs), respectively. Diet and exercise can modulate the muscle
epigenome and even the possible transfer of epigenetic marks from one generation to
the next [2].

Systematic analyses of alternative splicing, which produces distinct transcripts
and protein isoforms for a large number of genes, have been combined with the study
of specific functional interactions of each isoform. Widespread interaction differ-
ences due to alternative splicing were revealed from protein-protein interaction
profiling of 1423 protein isoforms derived from alternative splicing of 506 human
genes [3]. It will be of interest to apply similar interactome analyses to skeletal
muscle proteins, many of which derive from alternative splicing. Indeed, skeletal
muscle genes undergo extensive programs of alternative splicing, as shown in the
Vertebrate Alternative Splicing and Transcription Database (VastDB) [4], although
it remains to be established whether all of them are actually translated. This
information is relevant to explain how mutations in widely expressed proteins can
produce distinct pathologies in different tissues, including muscle, as shown in a
recent study of tissue-specific splice variants for nuclear envelope proteins [5]. A
further layer of complexity in the muscle proteome is generated by extremely high
number and variety of post-translational modifications that can be measured in a cell.
Advanced phosphoproteomic techniques allow to map more than 50,000 phosphor-
ylation events on at least 75% of the proteome in a human cell line [6]. Acute high-
intensity exercise was found to induce significant changes in human skeletal muscle
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phosphoproteome, including over 900 exercise-regulated phosphorylation sites that,
as yet, have no known upstream kinase [7]. A novel proteomic approach, top-down
mass spectrometry, allows to identify protein isoforms and post-translational mod-
ifications by analysing intact proteins without digestion: this approach has been used
to characterize sarcomeric proteins from rhesus macaque skeletal muscle [8].

An integrated view of tissue metabolism can be obtained by combining different
omics techniques, e.g. proteomics and metabolomics. This is especially useful when
one tries to capture a temporal picture of metabolic changes, such as those taking
place during the circadian cycle. This approach has been used to define the role of the
intrinsic muscle clock in regulating the changes in glucose, lipid and amino acid
metabolism during the feeding-fasting and rest-activity cycles [9, 10]. Lipid oscil-
lations during the day/night cycle were also demonstrated by lipidomics analyses in
human skeletal muscle and were found to persist in myotubes cultured in vitro
[11]. Metabolic flux analyses using isotope tracers will be required to complement
the snapshots provided by metabolomics studies and build a dynamic picture of
metabolism. Finally, muscle metabolism must be considered in the context of the
whole body, where complex crosstalk takes place between organs and tissues, as
suggested by a global metabolomics analysis of circadian changes in eight mouse
tissues, including skeletal muscle [12].

When omics approaches are applied to muscle samples, for example, human
biopsies, it should be kept in mind that each sample contains a variety of other cell
types. In a classic electron microscopy study, not always considered in omics
studies, Schmalbruch and Hellhammer [13] reported that half of the nuclei in adult
rat skeletal muscles are interstitial cell nuclei, predominantly fibroblasts and endo-
thelial cells. This can obviously affect the interpretation of omics studies, for
example, epigenomic analyses on muscle samples are expected to reflect in equal
measure profiles of DNA methylation or histone post-translational modifications in
muscle and non-muscle nuclei. Although myofibres certainly account for a greater
proportion of the total proteins because of their large volume, the direct analysis of
single myofibres can provide a more precise protein profile without any contamina-
tion by other cell types. A sensitive single-muscle-fibre proteomic technique has
been developed to study mouse and human skeletal muscle [14, 15]. A crucial
advantage of this approach is the possibility to compare for the first time the protein
profile of the different fibre types present in a muscle biopsy and define their changes
in different conditions. For example, single-muscle-fibre proteomics has shown that
glycolytic enzymes decrease in fast 2A but increase in type1/slow muscle fibres
during ageing [15]. Distinct protein changes induced by denervation in fast and slow
muscle fibres were likewise revealed by single-muscle-fibre proteomics [16].

The availability of a quantitative portrait of muscle fibre proteomes will provide
an essential foundation to interpret muscle fibre metabolism and physiology. A point
to be stressed here is that the introduction of omics strategies does not simply result
in the accumulation of a huge amount of new data. Instead, it can lead to conceptual
advances by showing previously hidden correlations and enable researchers to frame
new models and hypotheses. For example, single-muscle-fibre proteomics has
shown that the NADP-dependent isocitrate dehydrogenase 2 (IDH2) is more
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abundant in type 1/slow mouse muscle fibres, whereas the NAD-dependent IDH3 is
more abundant in fast 2X and 2B fibres, thus revealing the existence of alternative
pathways in the Krebs cycle [14, 17]. The fibre-type-specific distribution of the two
isoforms was confirmed by immunohistochemical staining with specific antibodies.
The differential distribution of the two isoenzymes does not simply reflect the
mitochondrial content, which is actually higher in type 2X compared to type 1 fibres.
A plausible interpretation is that the continuously active slow fibres generate higher
levels of reactive oxygen species (ROS), thus requiring more active antioxidant
systems, which depend on sustained NADPH provision. If this interpretation is
correct, one would expect that the other major NADPH-generating enzyme present
in mitochondria, nicotinamide nucleotide transhydrogenase (NNT), which trans-
forms NADH into NADPH, is likewise more abundant in slow fibre mitochondria.
This was immediately verified by simple inspection of the proteomics database [17],
thus supporting the hypothesis suggested by proteomic analyses, which can now be
tested by appropriate knockdown experiments.

In conclusion, the rapid collection and examination of data by high-throughput
omics techniques are useful not only to produce large datasets and identify bio-
markers but also to generate new questions, models and hypotheses and has thus
become an essential tool in muscle research. A crucial advantage of these studies
compared to traditional studies based on candidate genes and proteins is that “data-
driven” models and hypotheses are generated through an unbiased approach and are
thus more likely to reveal new, often unexpected findings, whereas “hypothesis-
driven” research is biased, thus more likely to confirm previous notions and findings
[18, 19]. Obviously, the new leads suggested by the examination of large datasets
must be followed by focused analyses aimed at verifying the new models. Indeed,
the intelligent combination of data-driven and hypothesis-driven approaches,
whereby data-driven predictions are validated by hypothesis-driven strategies, is
going to become a standard approach to science with the best chances to increase our
knowledge in all fields of biology, including muscle biology.
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Part I
Genomic and Epi-genomic



Chapter 2
Genome-Wide Association Studies
in Muscle Physiology and Disease

Luca Bello, Elena Pegoraro, and Eric P. Hoffman

2.1 Historical Outline and Rationale

The ultimate goal of genetic studies is to identify the role of genes in determining
health and disease traits, in a complex context where factors distinct from genetics
(i.e., environmental) may also alter these traits. The concept of “heritability” defines
in what amount the variance of a specific trait in a population is dictated by inherited
genes, as opposed to the environment. From this perspective, genetics may be
viewed as the study of heritability and its molecular underpinnings.

Given the endless diversity of physiological and pathological traits that may be
taken in consideration in humans and other organisms, it is intuitive that the study of
their heritability may be approached from many different angles and with many
different research tools. A distinction could be made between the study of common
DNA variations (usually called “polymorphisms”) seeking to explain health traits or
risk of common diseases (e.g., muscle mass or risk of diabetes), as opposed to rare
DNA variants (usually called “mutations”) that cause Mendelian diseases (e.g.,
Duchenne muscular dystrophy or cystic fibrosis) with a high penetrance. The
genome-wide association study (GWAS) essentially addresses the former scenario,
and it may be considered the main research tool used to approach common genetic
variation at the genomic level. As a means to map common genetic variation, the
GWAS takes advantage of the most abundant form or variation in our genomes:
single-nucleotide polymorphisms (SNPs).

SNPs are not only the most abundant but also the simplest form of genetic variant.
For the most part, as suggested by the name, SNPs consist of the substitution of a
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single nucleotide in the DNA sequence with another nucleotide: purine-purine and
pyrimidine-pyrimidine changes are called transitions, while purine-pyrimidine and
pyrimidine-purine changes are called transversions. However, more complex
changes such as small rearrangements (e.g., deletions-insertions of a few nucleo-
tides), as well as polymorphisms with more than two possible alleles (multiallelic
vs. biallelic), may be included in an extended definition of an SNP. Importantly,
mutations that cause rare diseases do not at all differ structurally from common SNPs
at the DNA level, but are just rarer, and have more deleterious effects on RNA and/or
protein expression and function.

Since the publication of the draft sequence of the human genome in 2001 [1, 2], it
became evident that SNPs are present in approximately 1 in 1300 position of the
human genetic sequence, around 1.42 million SNPs having been identified by the
International Human Genome Sequencing Consortium [3]. SNPs arise from random
mutational events and, if not purged by natural selection, as may be the case with rare
disease-causing mutations, are then inherited in subsequent generations. The fre-
quency of a certain SNP in the population is usually defined by its minor allele
frequency (MAF). If, for instance, 70% of chromosomes in a population show a
cytosine base at a certain position, while 30% of chromosomes show a transition to a
thymine base, an SNP with a 0.30 MAF is determined to be present in that
population.

Most of the time, SNPs have little or no effect in themselves on the expression or
function of neighboring genes but are simply co-inherited with alleles that are
associated with true biological effects because of linkage disequilibrium (LD), i.e.,
the low frequency of recombination events happening between DNA stretches that
are physically close together. Because of the LD structure of genomes, SNPs may be
used as “tags” for specific alleles at genomic loci in which they are situated.

Since the early 2000s, the development of relatively inexpensive SNP genotyping
arrays, allowing to genotype multiple individuals at up to 105–106 SNPs throughout
the genome in a single experiment, provided an easily accessible means of mapping
genes that influence complex phenotypic traits and disease risks. It should be again
stressed that SNPs genotyped by such arrays seldom have a direct influence on the
trait or disease of interest but may be in LD with functional variants in neighboring
genes, providing a rationale for using them as tags for quantitative trait loci (QTLs)
or disease-risk alleles.

Operatively, GWAS is based on massively parallel statistical tests of association
between the phenotype of interest and genotype at each genotyped SNP. For
instance, in a classic case-control design for disease risk, MAFs of genotyped
SNPs are compared between affected and control individuals, and a χ2 statistic and
corresponding odds ratio (OR), i.e., an estimation of risk associated to carrying a
copy of the minor allele, is calculated for each SNP. An OR > 1 means an increased
risk of disease, while OR< 1 means that the minor allele is protective. Alternatively,
in a linear association design usually adopted for the study of QTLs, the quantitative
phenotype is regressed against the genotype modeled as a quantitative variable (e.g.,
0 for common allele homozygotes, 1 for heterozygotes, and 2 for minor allele
homozygotes in additive models), calculating a linear correlation coefficient for
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each SNP. Because of the massively parallel nature of the tests, in which allele
frequency at hundreds of thousands of loci is compared between the same two
groups of individuals, or the same set of quantitative data is regressed against
genotypes at hundreds of thousands of loci, it is intuitive that a strict correction for
multiple testing must be enforced, leading to a very low p-value threshold for
establishing statistical significance of genome-wide associations. This threshold is
usually set at 5 � 10�8 in GWASs involving individuals of European ancestry,
assuming around a million independently inherited common variants [4, 5], and thus
dividing the usual 0.05 threshold of statistical significance by a million as a
Bonferroni correction for the number of parallel tests. In order to attain sufficient
statistical power in these conditions (e.g., predicted reaching the 5 � 10�8 p-value
threshold), it is usually necessary to sample numerous individuals, starting from
several hundred up to tens of thousands, depending mainly on the strength of the
genotype-phenotype association and on the frequency of the associated variant. A
power calculation illustrating required sample sizes with different values of these
variables is shown in Fig. 2.1.

It appears clearly from Fig. 2.1 that the required sample for identifying a
statistically significant genotype-phenotype association by GWAS decreases as a
function of the effect size of the associated variant (odds ratio; OR). For instance,
several thousands to tens of thousands of individuals are needed to identify a risk
variant with a small/moderate OR of 1.1, while a smaller sample size would be
sufficient for larger effects, e.g., a few hundred individuals for ORs over 2. Very
large GWASs or meta-analyses of multiple GWASs, with collective sample sizes
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reaching hundreds of thousands of genotyped participants, are needed to pinpoint
SNP associations with small effect sizes, in the order of 1.01–1.05 (e.g., 1–5%
increased risk). Both with high and low ORs, it is easier to identify the effect of
common (MAF above 0.05) rather than infrequent (MAF 0.01–0.05) variants. In
essence, the statistics of GWAS are similar to any other experiment: the bigger the
effect of a variable, the easier it is to prove it is not a false positive. However,
GWASs, unlike other experiments, have to compensate for the very large number of
tests being done (thousands or millions of genotypes run against a phenotype), and
this leads to a much higher p-value threshold for significance ( p < 5 � 10�8).

“Classic” GWAS algorithms cannot at all be applied to rare variants (MAF below
0.01), identified by next-generation sequencing (NGS) techniques such as whole
exome sequencing (WES) or whole genome sequencing (WGS), as the number of
participants carrying the minor allele would be too small to sufficiently power a
study. In order to circumvent this problem, specific association algorithms for rare
variants have been devised, which will be discussed separately. Typically, genetic
associations identified by successful GWASs have shown small-to-moderate size
effects (OR 1.05–1.5), with sample sizes in the order of 103 (1000 subjects studied).

In fact, because of the purging effect of natural selection, it is unlikely for
common variants targeted by GWAS arrays to have large effects on disease risks
or common traits. There are, however, exceptions to this rule, especially for diseases
that do not alter reproductive fitness. For example, the very first published GWAS
[6] identified a true risk variant for age-related macular degeneration within the CFH
gene, by genotyping only 96 cases and 50 controls. The associated OR was very high
(7.4). The following years of GWAS research, on the other hand, have revealed that
such “low-hanging fruits” are extremely unusual.

Figure 2.2 exemplifies different kinds of genetic associations according to the
effect size/allele frequency ratio. Variants with large effect size and common allele
frequency (top right of the diagram) correspond to the “low-hanging fruits” men-
tioned above. On the bottom right, with small-to-intermediate effect size and com-
mon allele frequency, are associations usually identified by typical GWASs. Rare
variants with strong effects (top left) correspond to the disease-causing mutations of
Mendelian diseases, which are not captured by genotyping chips and are best
identified by targeted sequencing or NGS in individuals or families with suggestive
phenotypes. On the other hand, the field of rare variant association in common
diseases and traits is an emerging one, which requires specific algorithms different
from “classic” GWAS (discussed separately). Finally, rare variants with small
effects (bottom left) may be hard or impossible to identify. While the individual
role of any such variant in disease and physiology may be of secondary importance,
the collective role of large numbers of variants with small effects is very challenging
to gauge and represents a potential source of “missing heritability” [7]. Other
potential sources of “missing heritability” are types of genetics not measured by
GWAS (e.g., epigenomic effects, or very rare mutations with very large effects).

Since the first successful attempt in 2005, the GWAS approach has led to both
impressive genetic associations and failures (major factors in traits such as obesity or
fitness that are not queried by GWAS—e.g., diet and effort, respectively). The
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National Human Genome Research Institute (NHGRI), in collaboration with the
European Molecular Biology Laboratory-European Bioinformatics Institute
(EMBL-EBI), currently lists 68,147 different associations from 2847 published
studies (Hindorff LA, MacArthur J [EBI], Morales J [EBI], Junkins HA, Hall PN,
Klemm AK, and Manolio TA. A Catalog of Published Genome-Wide Association
Studies. Available at: www.genome.gov/gwastudies. Accessed April 25th, 2018).

These myriad studies have greatly increased our knowledge on the genetic
architecture and molecular mechanisms underlying common disorders and traits,
both in general and specifically for individual phenotypes. In general, it has been
established that virtually all common diseases and traits are polygenic, i.e., they are
associated with several independent loci in different chromosomic regions. Con-
versely, there is pervasive pleiotropy, i.e., individual variants are associated with
several different phenotypes, a classic example being variants that represent risk
factors in some autoimmune diseases and protective factors for others. Several novel
disease pathways and therapeutic targets have been identified by GWAS, and a
recent excellent review can be found here [8]. This chapter will be aimed at
application of GWAS to muscle diseases and muscle physiology and focus on
methodological aspects.

Fig. 2.2 Diagram of the size effect/allele frequency ratio of genetic associations and corresponding
approaches leading to their identification. Modified from [5]

2 Genome-Wide Association Studies in Muscle Physiology and Disease 13

http://www.genome.gov/gwastudies


2.2 Outline of GWAS Methods

Genotyping Assays and Genotype Calling Genotyping assays in SNP genotyping
chips are based on allele-specific oligonucleotide probes complementary to a known
SNP-containing DNA sequence. The target DNA is fragmented and hybridized with
the probes, which are immobilized on the solid surface of the chip at a known
position for each SNP. The most successful and widely used commercial designs
were those by Affymetrix, based on 25-mer probes carrying the SNP locus at varying
positions within the probe, with which the target DNA hybridizes more or less
strongly depending on the SNP genotype, leading to stronger or dimmer fluorescent
signal, and by Illumina, based on the 50-mer sequence immediately adjacent to the
SNP and fluorescently labeled free base extensions that bind specifically to different
alleles in the target DNA. In both cases, different fluorescent signals are produced for
each allele, allowing to discriminate major allele homozygotes (presence of fluores-
cent signal corresponding to the major allele only), heterozygotes (presence of
fluorescent signals corresponding to both alleles), and minor allele homozygotes
(presence of fluorescent signal corresponding to the minor allele only). After hybrid-
ization, fluorescent signals are read at each position of the array by automated
fluorescence microscopy, and genotypes are called at each SNP position from raw
fluorescence intensity data, using dedicated software. Genotype calling for biallelic
SNPs (which constitute the vast majority of assayed SNPs) is based on “clustering”
of samples according to fluorescence intensity (example in Fig. 2.3a). Whenever
samples are not closely “clustered” within areas defined by the genotype calling
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Fig. 2.3 Examples of genotyping assay results for a biallelic SNP, plotted with fluorescent signal
corresponding to the “A” allele (major allele) on the x-axis and fluorescent signal corresponding to
the “B” (minor) allele on the y-axis. In the (a) panel, an ideal assay is represented, where samples
closely cluster according to genotype. In the (b) panel a problematic assay is represented, where
fluorescence intensity values are variable across samples with the same genotype, so that several
samples are distant from the cluster center. In a few samples (bottom left), no signal is observed
because of experimental failure. The result is a high percentage of missed calls (gray data points)
that may be reduced by increasing the area of called genotype clusters. However, this would imply a
risk of wrong calls in borderline areas
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algorithm (which may be more strict or permissive depending on experimental
conditions), the results are missing genotype calls (Fig. 2.3b). A relevant percentage
of missing calls in an SNP assay across samples, or in a sample across assays, may
indicate faulty assays or bad-quality DNA samples, respectively.

Data Quality Checks and Data Cleaning Once genotype at all SNP positions has
been called, before genome-wide genotype data may be used in association algo-
rithms, strict quality checks and data cleaning procedures are essential. Including
error-ridden data in the analyses exposes researchers to a risk of false-positive and
false-negative findings. Common errors and sources of bias in GWASs include
wrong genotypes, sample mislabeling, cryptic duplicates, wrong phenotype data,
sample sexing errors, and wrong association of samples with phenotype data. A
peculiar source of bias, population stratification, is often caused by cryptic related-
ness and by the compresence of subgroups with heterogeneous ancestry within the
GWAS sample and will be discussed separately.

Missingness As illustrated in Fig. 2.3, issues with genotyping assays may lead to
missing genotype calls. A faulty genotyping assay, illustrated in panel (b), will yield
a high percentage of missed calls across samples, and DNA samples of insufficient
quality or quantity will yield a high percentage of missed calls across assays, as
exemplified by the small cluster of samples with very low signals for both alleles in
panel (b). A threshold for missingness is often the first step in GWAS data cleaning,
mainly because even non-missing data that derive from assays and samples with
high missingness are probably error-ridden and would lead to false-positive or false-
negative findings. The specific thresholds used for filtering vary according to
experimental design and conditions, but common examples are removal of sam-
ples/assays with >5% missingness. Assays for SNPs with low MAF (below 5%)
require a more stringent threshold (e.g., 1%).

Relatedness and Duplicates From genotype calls in the whole sample, it is possible
to compute an “identity-by-state” (IBS) matrix, containing information about how
similar/dissimilar any couple of samples in the genotyped population is. IBS
expresses the concept of identical genotype at any particular SNP position, not
necessarily implying “identity by descent” (IBD), which means that a certain allele
has been inherited from a common ancestor in two or more individuals. In order to
quantify the degree of genome-wide IBS between two samples, the “pi-hat” param-
eter is often used, where “1” identifies identical twins or the same sample genotyped
twice, 0.5 first-degree relatives like siblings or parent-offspring pairs, 0.25 second-
degree relatives, and so on. Ideally, GWASs reach the greatest statistical power
when participants are of homogeneous ancestry but are not closely related with each
other. This guarantees that SNPs tag the same true functional variants because of
homogeneous haplotype structure within the population, at the same time minimiz-
ing population substructure bias (see below). Even if study recruitment is designed in
such a way as to avoid relatedness, a genotype-level verification can be very helpful.
For instance, especially in large multicenter studies, the same individual might be
enrolled in the same study twice (knowingly or unknowingly), or related individuals
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might be inadvertently enrolled. Alternatively, samples might be duplicated because
of laboratory handling errors. An IBS matrix is an easy way to identify and remove
cryptic duplicates and related samples.

Heterozygosity The degree of heterozygosity for common SNP genotype is variable
between individuals and between genomic regions. Higher-than-usual degrees of
genome-wide heterozygosity in individual samples might indicate recent genetic
admixture, but in the context of a GWAS experiment, it might simply signify sample
contamination. Therefore, an inspection of heterozygosity levels among the GWAS
population and elimination of outlier samples (e.g., >4 standard deviations from the
mean) is advisable.

Sex Sex of recruited individuals is usually annotated in the phenotypic information.
Sex may be relevant in GWAS both for associations involving X chromosome loci
and for its influence as an “environmental” modifier of phenotype (e.g., hormonal
influences, sexual dimorphisms, behavioral issues, etc.). Based on X chromosome
SNP genotyping, it is often possible to determine an individual’s sex from SNP chip
data, although multiple SNP loci need to be scored for accuracy. A comparison of
phenotype and SNP-derived sex data is advisable during SNP chip data cleaning, in
order to double-check discordant samples.

Hardy-Weinberg Equilibrium (HWE) Usually, common SNPs included in GWAS
chips are polymorphisms that have stable allele frequencies in a population as there
is no evolutionary pressure and because unrelated individuals of homogeneous
ancestry are recruited into a typical GWAS. Therefore, it is expected that observed
genotypes do not violate HWE, as expressed by the formula p2 + 2pq + q2 ¼ 1,
where p is the major allele frequency and q the minor allele frequency. A χ2 test for
deviation from HWE at each genotyped SNP can be performed to verify this
assumption. Deviations from HWE might be caused by population substructure or
genotyping errors. However, because of the sheer amount of genotyped SNPs in a
GWAS, HWE violations with p < 0.05 are always observed, and removal of SNPs
from the GWAS workflow because of HWE violation is not recommended. SNPs
with lower HWE p-values (e.g., p< 10�5) may be “flagged” for technical validation
of genotyping, in case of a positive association with phenotype. Importantly, in case-
control studies, a HWE violation in cases may actually be caused by a positive
association with the disease, as the sampling of these individuals from the population
is not random. Therefore, HWE should be calculated separately for cases and
controls.

Population Stratification The concept of population stratification identifies a situ-
ation in which the GWAS sample is subdivided in clusters that systematically differ
in allele frequency at some loci, most commonly because of differences in ancestry.
This may be because of relatedness (overt or cryptic) between individuals in the
sample, because of heterogeneous racial/ethnic groups within the sample. Population
stratification is a major source of bias in GWAS, mainly because individuals who are
related, or belong to similar racial/ethnic groups, may easily be subject to similar
environmental or other nongenetic factors that modify traits or disease risks over and
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above the genetics. Therefore, all variants that have a different MAF in that group
will appear associated with the phenotype, leading to false-positive results (inflation
of type I error). Secondarily, as haplotype structure differs between populations, the
same SNP may function as an efficient tag of a certain risk allele in one population,
but not in another, resulting in loss of power and false-negative results at some loci
(inflation of type II error). Therefore, as mentioned earlier, “classic” GWASs are
aimed at recruiting individuals who are unrelated but identify within the same racial/
ethnic group. As a result of striving towards homogeneity of the racial/ethnic sub-
jects to increase accuracy of GWASs, the design of the most widely used SNP
genotyping chips is largely based on the haplotype structure of populations of
European descent. However, with growing knowledge about the haplotype struc-
tures of diverse human populations, due to the success of sequencing projects such
as the 1000 Genomes project, SNP chips are increasingly becoming available, which
are adapted to the study of population with different and/or more complex and
variable haplotype structures, such as populations of African descent.

A simple, effective way of inspecting genotype data for the presence of popula-
tion stratification is analysis of principal components (PCs). PCs are mathematical
vectors that describe major patterns of similarity/dissimilarity among samples.
Whenever samples tend to cluster in different groups according to values of one or
more PCs, it can be concluded that population stratification is present. Figure 2.4
exemplifies this concept by illustrating a plot of the two main PCs from
multidimensional scaling (MDS, an algorithm akin to PC analysis) analysis of
genome-wide genotype data from the Cooperative International Neuromuscular
Research Group Duchenne Natural History Study (CINRG-DNHS) [9]. As the
CINRG-DNHS was an international study recruiting a diverse, multiethnic cohort
across four continents, it appears clearly from the MDS plot that there is substantial
population stratification, as a main cluster of participants are concentrated on the left
of the plot (low values of the first PC), while a consistent minority of samples tended
to “drift” rightwards with higher values of the first PC and alternatively higher or
lower values of a second PC. From racial/ethnic self-identification data (according to
categories recognized by the United States Census Bureau), it is clear that higher
values of both PC1 and PC2 are associated with participants of African descent (top
right), while participants of Asian descent present higher values of PC1 and lower
values of PC2 (bottom right), and the leftward cluster corresponds to a core of
participants of European ancestry. Muscular dystrophy phenotype is associated to
ethnicity because of nongenetic reasons, i.e., regional standards of care and cultural/
economic factors; therefore, the simplest choice in order to minimize population
stratification bias in such a scenario is to limit association analyses to the main
cluster of participants of European descent (left of the arbitrary PC1 cutoff indicated
by the red line in the plot). However, alternative approaches are possible such as
clustered association algorithms or implementations of selected PCs as covariates.

Main Association Algorithms For case-control studies (the most typical approach
for common disease GWASs), the association test that is run in parallel for all SNPs
is a basic allelic χ2 test comparing allele frequency between cases and controls (2� 2
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table with 1 degree of freedom) and calculating an estimate of risk per copy (additive
model) of the minor allele (OR) and its corresponding p-value. When rare SNPs are
included that might lead to values �5 in any cell of the 2 � 2 tables, use of Fisher’s
exact test is recommended (although this would also imply low statistical power of
the GWAS). Dominant and recessive inheritance models are seldom used in GWAS,
as fully dominant/recessive effects are more typical of disrupting, high-penetrance,
Mendelian gene mutations than of more common variants with mild effects on
common diseases and traits. Furthermore, even when a true functional variant does
lean towards dominance/recessivity, it is likely that its tag SNP on the genotyping
chip will yield the strongest signal through an additive model, because of non-perfect
LD between the tag SNP and the functional variant. All these considered, dominant/
recessive case-control studies do not differ much analytically from their additive
counterpart, as the only modification needed is a subject-based, rather than allele-
based χ2 test. Genotypic, non-additive tests (e.g., 2 � 3 table with 2 degrees of
freedom for AA, AB, and BB genotypes) are also rarely adopted. Quantitative trait
(QT) association, on the other hand, is based on regression between the quantitative
phenotype and a quantitative model of the genotype. As SNPs included in GWAS
chips are typically biallelic, the most common genotype model is additive, with
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major allele homozygote coded as 0, heterozygote as 1, and minor allele homozygote
as 2, which corresponds to number of copies of the minor allele. A regression
coefficient β and corresponding p-value are calculated for each SNP. Different
codes (e.g., 0-1-1 for dominant, 0-0-1 for recessive, 1-2-4 for multiplicative) allow
exploration of different genotypic models, according to the underlying scientific
hypothesis. Then again, GWASs are mostly hypothesis-free, discovery studies, and
the balanced additive model is by far the most widely used. Statistical models based
on logistic and linear regression allow the implementation of covariates for case-
control and QT data, respectively. Covariates are often of the utmost importance in
order to reach valid conclusions. For instance, major nongenetic risk factors, such as
cigarette smoke or diet, account for large amounts of the variance of phenotypic
outcomes. When this is controlled for by specific covariates, statistical power for the
identification of genetic effects substantially rises. Time- and age-related covariates
may be implemented through the use of time-to-event statistical models (e.g., Cox
regression).

Quantile-Quantile (QQ) and Manhattan Plots An effective way to present overall
GWAS results is plots of association p-values at each individual SNPs. The negative
logarithm with base 10 of the p-value is plotted on the y-axis (e.g., p ¼ 0.00001,
�log10( p)¼ 5), so that highly associated signals appear as high values in the plot. A
QQ plot is used to inspect GWAS result for systematic bias (such as population
stratification), plotting observed �log10( p-values) against theoretical �log10( p-
values) that would be observed under the null hypothesis, i.e., in conditions of no
association whatsoever between phenotypes and SNP genotypes. In the absence of
systematic bias, all p-values will be distributed on a straight line corresponding to
expected values under the null hypothesis, except for p-values corresponding with
few truly associated SNPs, which will have higher observed values with genome-
wide, or at least suggestive, significance. If there is an early deviation of observed
value from expected values under the null hypothesis, some source of systematic
bias must be suspected. Upward deviation in the QQ plot signifies type I error
inflation (risk of false-positive results), as seen in the case of population stratifica-
tion, while downward deviation indicates type II error inflation (risk of false-
negative results). The Manhattan plot shares the same y-axis as the QQ plot, but
on the x-axis, SNPs are arranged according to physical chromosome position.
Association signals appear as groups of p-values “towering” above the others (like
skyscrapers, hence the “Manhattan” name), with a highest point corresponding to the
individual SNP or SNPs best tagging the hypothetical true functional variant, and a
trail of SNPs showing lower association deriving from decreasing LD (Fig. 2.5).

The identification of a statistically significant association signal, in line with the
hypothesis-generating, discovery-oriented nature of GWAS, represents the basis for
experimental approaches aimed at characterizing and mechanistically defining the
association. Validation in independent GWASs and meta-analyses of multiple
GWASs, possibly across populations of different ancestry, are needed to confirm
SNP association and definitely establish their effect size. Regarding functional
characterization, first steps usually involve targeted high-density genotyping or
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resequencing of nearby genes, especially in genomic areas that represent LD blocks
in the population of interest, in order to possibly identify the true functional variant
and its effect on corresponding genes. Subsequent functional studies vary based on
the relevant biology.

2.3 Applications of GWAS to Muscle Biology

2.3.1 Applications in Muscle Physiology

Skeletal muscle is one of the largest organ systems of the body of all mammals, and
also one of the most adaptable tissues, showing dramatic remodeling in response to
different types of exercise and training, diet and fasting, and development and aging.
Skeletal muscle is also a major industry in terms of “meat”—many animals have
been genetically bred to increase meat volume and taste. Given the commercial
importance of muscle as a food, it may not be unexpected that many GWASs have
focused on muscle in terms of meat quantity and quality [11–13]. Due to the nature
of strong pressures of human selection for animal traits, it is very rare for animal
genetics to relate to human genetics (more “natural” selection in the latter).

In terms of human GWASs for muscle traits, many studies have focused on a
“responder” analysis of professional athletes (or Olympians) vs. control populations.
Of course, nongenetic traits such as “effort and drive” have a major factor in
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becoming a professional athlete. That said, studies have shown some clear success
stories. First and foremost, a nonsense polymorphism (an SNP that kills the gene and
cannot make its corresponding protein) has been found in a fast-twitch myofiber
isoform of alpha-actinin (a structural protein of the Z-line of the sarcomere that binds
actin filaments) [14]. While the ACTN3 polymorphism (the gene for speed) was
originally identified via candidate gene studies, its large effect size has held up in
subsequent GWAS analyses [15]. The loss-of-function polymorphism is associated
with endurance phenotypes, whereas the wild-type allele is associated with strength
and power phenotypes.

Besides muscle function studied through phenotypes such as speed or strength,
the amount of muscle mass may be studied by measuring lean mass (mostly
consisting of skeletal muscle) by X-ray absorptiometry of electrical impedance.
Collaborative GWASs of lean body mass in a total of 38,292 participants have
identified five validated loci: HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO
[16]. As lean and fat mass are usually directly correlated, investigators adjusted
lean mass association signal for fat mass, confirming the strong association of the
FTO gene with both lean and fat mass regulation. Another area where GWASs have
shed light on muscle physiology is type 2 diabetes, where it is well known that
exercise is the best treatment for reversing this disorder [17].

2.3.2 Applications in Muscle Disease

Skeletal muscle diseases are challenging to investigate by GWAS because of their
rarity, which hinders the collection of samples large enough to yield the required
statistical power for GWAS. Even if one considered “muscular dystrophy” or
“myopathy” as a single, large nosographic category, comprising all described
forms together, GWAS would hardly be an effective method of exploring the
underlying genetic variants. This is partly because of extreme locus heterogeneity,
i.e., a very large number of genes responsible for the phenotype in different
individuals, which would impede the identification of strong association signals,
but mostly because the rare causative mutations of Mendelian myopathies are not
efficiently tagged by common SNPs included in genotyping chips and may only be
identified by sequencing. A GWAS approach, however, may be used to investigate
the modifier effect of common genetic variation on phenotype in groups of individ-
uals with the same neuromuscular disease, caused by identical or equivalent muta-
tions within the same gene, leading to the identification of genetic modifiers.
Acquired diseases such as inflammatory or toxic myopathies may also be investi-
gated by GWAS, looking for common risk variants.

GWAS in Acquired Muscle Diseases The most important chapter of acquired
muscle diseases is probably represented by the idiopathic inflammatory myopathies,
whose pathogenesis bears resemblance to that of other autoimmune/
autoinflammatory diseases. In the GWAS era, much has been learned about the
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genetic architecture of autoimmune disorders. The human leukocyte antigen (HLA)
complex, encoded in a 3-Mb region on chromosome 6p21, has long been known
(well before the emergence of GWAS) to be associated with the risk of developing
several autoimmune disorders. A challenge for autoimmune disease GWASs has
been the fine-mapping of this region [18], which is very dense in implicated variants
and association signals, leading to the identification of responsible amino acid
variations through a combined use of haplotype-based imputation, targeted
resequencing, and development of dedicated genotyping tools such as the
Immunochip. Outside this genomic region, GWASs have brought to the identifica-
tion of numerous other association signals near genes involved in inflammation and
immunity [19]. A typical feature of the genetic architecture of these disorders is
pervasive pleiotropy, many individual loci being associated with different autoim-
mune conditions and often acting paradoxically as risk or protective variants in
different diseases, depending on the pathological context [20].

Inflammatory myopathies comprise the largest group of acquired and treatable
muscle disorders in the pediatric and adult population and are divided in a few major
forms: dermatomyositis (DM), polymyositis (PM), sporadic inclusion body myositis
(sIBM), necrotizing autoimmune myopathy (NAM), and the “overlap” myositides
which associate with other connectivitis conditions [21]. A strong association with
the HLA 8.1 ancestral haplotype has been established in a GWAS including a mixed
PM and DM population [22]. Differences between DM and PM have been identified
in respect to both the fine-mapping of the association in the HLA region and
independent association signals in other loci, as shown by Immunochip studies
[23]. The PTPN22 gene, encoding for a protein tyrosine phosphatase expressed in
lymphoid tissues, and implicated in T-cell receptor signaling, seems to play a
relevant role in PM, but not DM, pathogenesis. Validation studies across ethnic
groups seem to confirm the strengths of these associations [24]. sIBM recognizes a
different pathological picture, with a relevant degenerative component and an
accordingly different genetic component. So far, only the HLA-DRB1�03:01
locus has been associated with sIBM at genome-wide level, and non-HLA associ-
ations have only been proposed as putative [25].

Another muscle-related condition that is a frequent reason of referral to neuro-
muscular centers is muscle toxicity due to the use of the commonly prescribed lipid-
lowering agents, statins, which can take the form of isolated elevation of circulating
creatine kinase (CK), myalgia, overt myopathy with muscle weakness, and severe
rhabdomyolisis in rare cases [26]. An early GWAS enrolling only 85 subjects with
statin-induced myopathy and 90 controls identified a strong association (OR 4.5)
with the rs4149056 SNP within SLCO1B1, involved in the hepatic uptake of statins
[27], while subsequent larger GWASs exploring CK values as a QT identified
associated variants within the CK-encoding CKM gene, as well as several genes
related with immune functions [28, 29].

Genetic Modifiers of Muscle Diseases Genetic modifiers are variants, situated in
genes different from the disease gene of a Mendelian disorder, which by a trans-
active mechanism influence its expressivity. Phenotypic variability is a common
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observation in myopathies and muscular dystrophies [30], representing a challenge
for definition of the natural history and for clinical trial design [31]. The identifica-
tion of genetic modifiers allows more precise prognosis and patient stratification in
observational and interventional studies. Duchenne muscular dystrophy (DMD), the
severe form of dystrophinopathy caused by frameshifting or truncating mutations in
the DMD gene [32, 33], has represented a paradigm in the study of genetic modifiers
in the muscle disease field, for several reasons: there is little phenotype variability
due to different disease-causing mutations (“cis-effects,” as opposed to genetic
modifier “trans-effects”) because by definition all DMD patients have mutations
leading to a complete dystrophin defect; DMD is relatively frequent among the rare
muscular dystrophies, facilitating the collection of larger case series; DMD is severe,
allowing to observe and measure the evolution of muscle weakness more easily in
the time frame of a clinical study. Several genetic modifier loci of DMD have been
identified by a candidate gene approach. Osteopontin, encoded by the gene SPP1, is
a pleiotropic cytokine known to be upregulated in damaged and dystrophic muscle,
where it is expressed by both infiltrating immune cells and regenerating myoblasts
[34]. Its genetic ablation in mice-delayed inflammation and repair after muscle
damage [35] and apparently attenuated the damaging consequences of dystrophin
deficiency [36, 37]. The minor G allele at the SPP1 promoter SNP rs28357094,
previously tied to a reduction in gene expression in in vitro models [38], was shown
to be associated with earlier loss of ambulation (LoA) in collectively around
370 participants from the CINRG-DNHS and the DMD cohort followed at Univer-
sity of Padova, Italy [9, 39]. Participants in the CINRG-DNHS also showed lower
grip strength with the G genotype, while participants from the Padova cohort had
lower manual muscle testing strength scores. The association was validated with
longitudinal ambulatory outcomes (North Star Ambulatory Assessment and 6-min
walk test) in an independent Italian cohort [40]. On the other hand, validation was
problematic in further DMD cohorts [41, 42], possibly due to a relatively small effect
size and complex interactions of the SPP1 promoter with steroids, including gluco-
corticoids used to treat DMD [9, 43, 44].

Latent transforming growth factor β (TGF-β) binding protein 4 (LTBP4) is a
matrix protein that binds TGF-β in a latent complex in the extracellular matrix,
preventing it from interacting with its receptor at the cellular surface. The murine
Ltbp4 locus emerged as a potential modifier from a preclinical genome scan of a
mouse model of muscular dystrophy lacking δ-sarcoglycan, on a diverse genetic
background [45]. Fine-mapping of this association revealed a 36-bp deletion in the
Ltbp4 coding region, associated with increased proteolysis of the TGF-β latent
complex, downstream SMAD signaling, and fibrosis. A subsequent candidate-
gene study in a cohort of 254 severe dystrophinopathy patients followed by the
United Dystrophinopathy Project (UDP) revealed that a haplotype of four coding
SNPs across different exons of the human homologous LTBP4 gene was associated
with DMD phenotype severity, the minor haplotype IAAM leading to increased
stability of the latent complex, reduced TGF-β signaling, and delayed LoA [41]. This
association was validated in several hundred patients across other independent
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cohorts: CINRG-DNHS, Padova University [9], and the European Bio-NMD
network [42].

Interestingly, both these modifiers consistently pointed to a relevant role of
TGF-β signaling in modulating the severity of dystrophic pathology, as had been
suggested by previous independent gene expression studies [46, 47].

A third DMD modifier identified with a candidate approach was the common null
polymorphism R577X in the ACTN3 gene, encoding the sarcomeric protein actinin-
3. This allele is detrimental to sprint and power performance in athletes and normal
individuals and was shown to also reduce muscle strength and 10-m walk/run speed
in DMD [48].

The application of GWAS to the identification of genetic modifiers of muscular
dystrophy has only seen initial attempts so far. One hundred and seventy DMD
patients participating in the CINRG-DNHS were genotyped with the Illumina
Exome chip, a genotyping chip focused on coding variants situated within protein-
coding genes across the genome and mostly with protein-altering effects (missense,
nonsense, or variants in the promoters and untranslated regions [UTRs]). These exon
variants were associated with the LoA phenotype (Cox regression with glucocorti-
coid treatment as a covariate) in 109 participants of European ancestry but did not
yield “exome-wide” significant signals after Bonferroni correction for about 27,000
examined SNPs. A hypothesis-based filtering and prioritization of suggestive asso-
ciation signals, selecting those SNPs in the vicinities of genes involved in
pro-inflammatory and pro-fibrotic pathways, singled out a signal corresponding to
the rs1883832 SNP in the 50 UTR of the CD40 gene, encoding for a co-stimulatory
T-cell receptor. The minor T allele at rs188382 had already been associated with
different immune diseases both as a risk factor (for multiple sclerosis and Graves’
disease) and conversely as a protective factor (e.g., for some vasculitides such as
Kawasaki disease), as is often observed in pleiotropic loci associated with
autoinflammation. Validation in around 550 DMD patients from all international
DMD natural history studies cited above confirmed the association of the rs1883832
minor T allele with earlier LoA in DMD, highlighting the relevance of the transition
from innate to cell-mediated immunity, mediated by T-cell receptor signaling, in
DMD [10].

The first GWAS utilizing a “classic” genotyping chip (as opposed to the exome
chip which focuses on exonic, disrupting variants) has recently been published by
the UDP group [49]. The authors focused again on the LoA phenotype in the same
cohort of 253 severe dystrophinopathy patients used to describe the LTBP4 modifier
variant described above and, despite the small sample size for GWAS standards,
were able to identify two different loci with genome-wide significance. The first
significant SNP, rs2725797 (chr15, p ¼ 6.6 � 10�9), was demonstrated through
analyses of gene expression and chromatin interaction databases to tag regulatory
variants relevant to the expression of thrombospondin-1. This protein, encoded by
the THBS1 gene, is an activator of TGF-β signaling by direct binding to LTBP4 and
an inhibitor of pro-angiogenic nitric oxide signaling. The second signal derived from
the SNP, rs710160 (chr19, p ¼ 4.7 � 10�8), is situated upstream of the LTBP4 gene
and functionally related to its expression levels. This work provides further
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confirmation of the key role of the LTBP4-TGF-β pathway in dictating DMD
pathology. Apparently, multiple SNPs situated in different chromosomes converge
on this same molecular pathway. This work is also interesting for the analytic
strategy used to compensate for small sample size: inclusion of familial cases with
ad hoc computational algorithms to adjust for relatedness, implementation of differ-
ent inheritance models (similar to the original LTBP4 association, both loci were
significant with the recessive model), and in silico functional testing leveraging on
open online databases of functional data on gene expression and chromatin
conformation.

Especially the last two works here reviewed provide a proof of principle that, at
least in the most common of rare diseases, it is possible to apply a GWAS approach
to the study of variable phenotypic expressivity.

2.4 Limitations and Extensions

GWAS is a powerful tool that has provided much knowledge about the genetic bases
of human diseases and traits. However, it has been clear for at least 10 years that a
“classic” GWAS approach—genotyping hundreds/thousands of individuals for
SNPs tagging common variation in the genome—is sufficient to explain but a
small percentage of the heritability of these diseases and traits [7]. The “missing
heritability” may be explained by several reasons: inefficient tagging of functional
variants by genotyped SNPs; presence of large numbers of associated SNPs with
very small effects that cannot be demonstrated, if not by huge meta-analyses of
hundreds of thousands of individuals; effects of rare variants and copy number
variations; and epigenetic changes. The continuous improvement of genotyping
chips with dense genotyping and ethnicity-specific arrays will improve GWAS
power, by more efficient tagging of common variation. Imputation of infrequent
and rare variants can be effectively performed from haplotypes established in
sequencing studies in homogeneous populations [50]. Low-frequency exon variants
identified by WES and WGS studies in more than one population (exome chips) can
be included in genotyping arrays. Analyses of signal intensity from genotyping
assays can be performed to identify copy number variations.

Another great challenge is the investigation of the interaction of genetic variants
with the environment and between themselves. The characterization of environmen-
tal interactions requires deep phenotyping and complex, versatile statistical models
that are hard to fit to a genome-wide discovery study. Regarding epistatic gene x
gene interactions, GWAS has been largely unsuccessful in demonstrating them. A
possible reason is that in classic association tests, statistical power is proportional to
the LD between the tag SNP and the functional variant, measured as r2, but when
two functional variants are involved, statistical power decreases proportionally to r4

when tag SNPs do not perfectly predict the functional variant [8]. Sequencing data
and imputation of rare variants, applied to large GWAS meta-analyses, may improve
the power of studies of epistatic interactions in the future.
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The field of rare variant association is rapidly evolving and has the potential to
explain some of the “missing heritability” remaining from GWASs. This approach is
very interesting for Mendelian diseases such as myopathies and muscular dystrophy,
whose genetic architecture is largely weighted on rare, gene-disrupting variants. In
fact, “gene hunting” in unsolved neuromuscular disorders by whole exome sequenc-
ing (WES) and, increasingly, by whole genome sequencing (WGS) may be consid-
ered a form of rare variant association, even if variants are tested for pathogenicity
case by case, rather than collectively. Statistical tests applied to the effect of rare
(MAF < 0.01 down to singleton) variants cannot obviously be based on a single-
variant approach, but rather rely on “collapsing” identified variants within
predefined genetic sequence unit, most conveniently (but not necessarily) protein-
coding genes. The first such algorithms, called “burden” tests, leaned heavily on the
hypothesis of disruptive disease-causing variants, with substantial loss of power in
the presence of neutral variants and bidirectional effects [51]. Subsequent advance-
ments provided researchers with algorithms that can be adapted to different scenar-
ios, depending on various scientific hypotheses, such as those based on the sequence
kernel association test (SKAT), and may be optimized for relatively small sample
sizes [52].

2.5 Future Directions

Applications of GWAS to muscle disorders have yet been only initial. A large,
adequately powered GWAS based on the LoA phenotype in DMD would require a
sample size of around 800–1000 individuals according to our power calculations
(Fig. 2.6) and is feasible in a multicenter setting. Identified loci may be cross-
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validated in other dystrophinopathies and muscular dystrophies in general, as several
pathogenetic mechanisms might cross disease boundaries. Studying genetic modi-
fiers in even rarer muscle disorders is challenging both because of sample sizes and
because of the difficulties in modeling phenotype differences due to allelic hetero-
geneity (i.e., different pathogenetic mutations within the same gene causing the same
disease).

The future of neuromuscular diagnostics may entail the integration of WES, or
even WGS, and SNP genotyping, aiming primarily at the identification of the
Mendelian pathogenetic mutation, but also simultaneously at defining and discov-
ering modifier variants, paving the way for a personalized genomic medicine of
muscle disorders.
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Chapter 3
Chromatin Epigenomics in Muscle
Development and Disease

Jelena Perovanovic

3.1 Introduction

Eukaryotic genetic material is separated from the rest of the cytoplasm by a nuclear
envelope. This unique feature distinguishes eukaryotes from prokaryotes and plays a
role in cell specification and differentiation. Within the nucleus, genomes are
hierarchically packed into the chromatin [1] that is tightly organized to provide a
platform for regulation of gene expression. Histones are basic proteins, and their
positive charges associate with negatively charged DNA to form chromatin. Chro-
matin is organized as an array of nucleosomes that are composed of histone octamer
core (H2A, H2B, H3, H4). The first level of DNA packaging represents wrapping of
147 bp of DNA around this core. Each core is separated by linker DNA
(H1) [2, 3]. By modulating the levels of this interaction, eukaryotic genomes regulate
gene expression.

Chromatin is further organized into higher-order structures that not only allow
packaging into the nucleus but also provide a regulatory mechanism [4]. Regulation
of chromatin packaging occurs at various levels. Nucleosome localization has a
negative effect on the transcription of the genes in the vicinity. Nucleosomes present
a physical obstruction that can lead to bending of the DNA that impedes transcrip-
tion. Furthermore, positioning of the nucleosomes along the DNA fiber has a major
role in modifying accessibility of the specific biding sites to the corresponding
transcription factors [5]. The tail region of core histone proteins can be covalently
modified (Fig. 3.1). There are numerous residues within that tail that can be
posttranslationally modified. New covalent modifications of the histone tails are
still being discovered; however, the best studied ones occur at the N-terminus and
include methylation (Me), acetylation (Ac), phosphorylation (P), ubiquitinylation,
sumoylation, ADP ribosylation, and deamination [6]. Histone methylations occur on
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lysines (K) and arginines (R), and acetylation takes place on lysines (K), while
phosphorylation marks serine (S), threonine (T), and tyrosine (Y) residues [7]. His-
tone modifications can have both positive and negative effects on the transcription of
the neighboring genes (Fig. 3.1). The tail residue that is modified together with the
type of covalent modification is important in determining the effects of modification
and is referred to as histone code. Not all histone modifications are important for
regulation of gene expression; some modifications are constitutive and are an
essential part of DNA repair, replication, and cell fate maintenance [8]. For example,
histone phosphorylation plays a major role during DNA damage, when phosphory-
lated histone H2A(X) marks large chromatin domains around the site of DNA
breakage [9].

Here we review major epigenomic techniques to study chromatin biology in
muscle tissue with a major focus on muscle development, muscle regeneration,
and aging.
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Fig. 3.1 Epigenetic regulation of transcription and packaging into chromosomes
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3.2 Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) is a commonly utilized method of defining
protein/DNA interactions. Chromatin immunoprecipitation is performed on
formaldehyde-fixed (cross-linked) cells or tissue. During this process a covalent
bond is introduced between the protein of interest and the genomic regions bound by
the protein. Using an antibody that specifically recognizes the protein of interest, the
genomic loci directly or indirectly bound by the protein are isolated in the process
called immunoprecipitation.

ChIP-seq combines ChIP with next-generation sequencing [10–12] to generate
genome-wide maps of specific genomic regions that interact with a particular protein
of interest. Next-generation sequencing is a high-throughput sequencing method that
encompasses whole genome and exome sequencing, transcriptome profiling
(RNA-seq), and epigenomic sequencing (ChIP-seq, ATAC-seq, etc.). The cost of
high-throughput sequencing has dramatically decreased over the past several years
making this technique more widely accessible.

Histone modifications have a pivotal role in influencing gene expression. Specific
regulatory regions show unique epigenomic signatures. For example, trimethylation
of lysine 4 on histone 3 (H3K4me3) is commonly found near transcription start
sites, and it is a marker the promoters of transcriptionally active genes. Other
posttranslational modifications are markers that are specific for enhancer regions
(H3K27Ac, H3K4me1) or show negative correlation with transcriptional activity
(H3K27me3, H3K9me3). These epigenetic signatures show high degrees of tissue
specificity, and efforts have been made to generate comprehensive epigenome
maps in multiple human and mouse tissues [Roadmap Epigenomics (http://www.
roadmapepigenomics.org/)].

ChIP-seq is a powerful and versatile tool and there are many applications of this
tool. Some of the major applications of ChIP-seq include analysis of chromatin
modifications [13–15], chromatin state maps that define chromatin landscapes of
normal and disease cells [16], analysis of transcription factor binding site [17, 18],
and associations of architectural proteins with the DNA [19].

Bivalent domains are regulatory regions that are marked by large regions of H3
lysine 27 trimethylation (H3K27e3) and smaller regions of H3 lysine 4 trimethylation
(H3K4me3) and were discovered using ChIP-seq [13]. In embryonic stem (ES) cells,
bivalent domains mark developmental genes expressed at very low levels. These
promoters tend to resolve during differentiation and either become enriched only for
K27 methylation (lose K4 methylation) or keep only K4 methylation and drive
silencing or activation of developmental genes, respectively [13]. With respect to the
muscle field, Liu et al. investigated the bivalent epigenetic landscape of adult muscle
progenitor cells known as quiescent satellite cells (QSCs) [15] and showed that
chromatin of QSC is largely permissive and large numbers of promoters for
non-myogenic lineage genes were marked as bivalent and very few were strictly
repressed. During aging, QSCs acquire repressive K27 methylation marks while
maintaining comparable levels of K4 methylation. These data provide evidence that
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epigenetic changes accumulate over the life span of an organism and represent a
platform for functional decay of adult satellite cells in aging and/or pathological
states [20, 21]. Brack et al. have shown that QSCs from aged mice tend to
transdifferentiate from myogenic fate to fibrogenic lineage, and this is under the
influence of the systemic environment of old animals [20]. This study highlights the
importance of an aging environment and its contribution to pathological conditions
(increase in tissue fibrosis with age).

Classical applications of ChIP-seq include identification of transcription factor
binding sites, chromatin remodeling complex binding, and architectural protein-
DNA interactions [18, 19, 22]. MyoD is a master regulator of muscle fate and
plays a major role in the activation of skeletal muscle genes during differentiation.
Using ChIP-seq, Cao et al. showed that MYOD1 binds many of the regulatory
regions of muscle-specific genes and that this enrichment was increased with muscle
differentiation [17]. The study confirmed MYOD1 as a master regulator of muscle-
specific genes. Master regulators mediate cell signaling and direct cell-type-specific
responses to environmental cues. Mullen et al. showed that transforming growth
factor beta (TGF-β) signaling conveys its cell-type-specific response through
SMAD3 master regulator interactions. The authors show that, in myogenic cells,
Smad3 co-occupies genomic regions already bound by MYOD, whereas in ESC and
B-cell-type cells, SMAD3 was enriched in OCT4 and PU.1 regions, respectively
[18]. Finally, ChIP-seq technology has been utilized to study DNA interactions with
architectural proteins. Lamin A/C protein is a major building block of nuclear lamina
structure that lies underneath the nuclear membrane and is in direct contact with
chromatin. In human adipose tissue, lamin A/C interacts with distinct promoter
regions and associates with a repressive chromatin environment [19].

Chromatin profiling is an extension of classical ChIP-seq analysis of histone
markers and provides a systematic description of cis-regulatory elements known as a
chromatin state map. Cis-regulatory elements are regulatory regions that are present
on the same molecule of DNA as the gene they control. Chromatin state maps use
combinatorial analysis of various histone markers and DNA-binding proteins to
define regulatory regions that are unique to particular cell types [16, 23]. Chromatin
state maps define highly plastic landscapes, where specific patterns of remodeling
are conserved among cell types. These maps use coloring scheme to show various
genomic annotations in a clear and concise manner. For example, gray represents
constitutive heterochromatin (Fig. 3.2), red and purple mark active and poised
promoters, shades of yellow define enhancer regions, and green markers represent
transcribed regions (Fig. 3.3) [24]. Moreover, chromatin states can be read in an
allele-specific manner where disease variants frequently reside with cis-regulatory
regions that are cell-type and tissue-type specific. In one such study [25], the authors
analyzed muscle biopsies from 271 well-phenotyped Finnish participants ranging
from normal to T2D. They showed that muscle-specific genetic regulatory architec-
ture is highly enriched in muscle super enhancers. More specifically, they show that
type 2 diabetes (T2D)-risk variants coincide with muscle super enhancers and are
associated with increased expression of muscle-specific gene isoforms [25].
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3.3 DamID

DNA adenine methyltransferase identification (DamID) assay is a technique that has
been successfully used to study in vivo genome binding sites of a variety of
DNA-binding and chromatin proteins [26–29]. DamID relies on prokaryotic adenine
methyltransferase Dam that methylates adenines within GATC sequence that are
specifically recognized by DpnI enzyme [29, 30]. When Dam is fused to a protein of
interest, direct interaction of that protein and DNA brings the bacterial Dam enzyme
in close proximity of the eukaryotic genome leading to methylation of the GATC
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Fig. 3.2 Representative image of different sequencing resolutions generated using epigenetics
tools. Top panel shows chromatin state maps in two cell types (brain, top; heart, bottom). Second
panel shows the sequencing signal obtained though Dam-LMNB1 sequencing. The red box marks
the DamID region known as LAD. Third panel represents ATAC-seq signal in two different cell
lines. Fourth panel depicts signal generated by two classical transcription factors’ binding (bright
red and green) and histone modification pull-down (dark red). Bottom panel shows USCS-
annotated gene positions
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Fig. 3.3 Chromatin state maps, ATAC-seq signal, and ChIP-seq binding patterns are shown. Top
panel shows chromatin state maps in two different tissues (brain, top; heart, bottom). Second panel
depicts ATAC-seq signal from two different developmental stages. Third panel shows classical
transcription factor binding patterns, followed by a fourth panel that represents enrichment of
activating histone mark (H3K4me3 shown in dark red) and repressive histone modification
(H3K27me3 shown in blue). Bottom panel shows locations of USCS-annotated genes
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sites nearby (a modification not normally seen in eukaryotic DNA). Thus, by
identifying the newly methylated GATC sites, DamID provides a direct method
for studying protein-DNA interactions.

The major difference between more commonly used ChIP and DamID is the
method of sample preparation and the genomic regions of interest that can be
identified. ChIP requires formaldehyde cross-linking of the sample to introduce
covalent bonds between the target protein and bound DNA, thus identifying more
stable interactions. DamID is an enzymatic modification of DNA that is more
capable of detecting transient protein/DNA interactions as well as stable ones. The
second major difference is in the way these two techniques identify genomic
domains that are enriched for the protein of interest. ChIP requires the use of
antibodies against the protein of interest, followed by isolation of the cross-linked
DNA/protein complexes. The procedure is dependent on the quality of the antibody
used and the ability to pull down low-solubility heterochromatic domains. The cross-
linking procedure in ChIP can also induce sequencing artifacts [31].

DamID avoids these artifacts by direct methylation of the genomic DNA. Fur-
thermore, since DamID is not dependent on an antibody, it is more broadly appli-
cable to proteins where adequate antibodies may not exist [32]. DamID is also useful
for testing the effects of mutations on DNA binding or for studying different
isoforms of the same protein [33]. DamID has been successfully used to study
nuclear envelope associations with the genome [27, 30, 33, 34]. These lamina-
associated domains (LADs) have been first described by Guelen et al., as gene-
poor regions, indicating that LADs are a repressive chromatin environment
[33, 35]. Perovanovic et al. used the DamID system to analyze genome binding of
different disease-causing mutant forms of lamin A/C protein [27, 36, 37]. The
authors showed that muscle-specific mutation of lamin A causes inadequate chro-
matin tethering to the nuclear envelope leading to inappropriate activation of
pluripotency pathway that resulted in delayed muscle differentiation [27]. Also,
DamID has been used in the context of muscle to show that tissue-specific gene
repositioning mediated by nuclear membrane promotes repression of developmental
genes during myogenesis [34]. The authors provide evidence that three muscle-
specific nuclear envelope transmembrane proteins, NET39, Tmem38A, and WFS1,
direct specific myogenic genes to the nuclear periphery in order to facilitate their
repression.

As shown in Fig. 3.2, DamID-positive signal spans over a large number of genes
(represented by red box) and is positively correlated with heterochromatic regions
(top chromatin state panel shows gray region that represents constitutive heterochro-
matin). Moreover, DamID-positive regions show closed chromatin architecture and
are void of transcription binding sites and active histone marks.
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3.4 ATAC-seq

Assay for transposase-accessible chromatin using sequencing (ATAC-seq) is a
technique that provides an insight to the chromatin accessibility landscape. Nucle-
osome shifting or destabilization at the promoters or enhancer regions is positively
correlated with transcription that results from binding of the specific transcription
factors [38]. Thus the open and accessible genomic regions are considered to be
primary locations of regulatory elements and have a determining role in cell fate
specification, development, and disease progression. Further unraveling of the
chromatin landscape remodeling is important to understand the mechanism of
epigenomic control of normal development and disease progression. Representative
ATAC-seq signals together with classical ChIP-seq enrichment from transcription
factors or histone modifications are shown in Fig. 3.2.

ATAC-seq measures direct effects of chromatin remodeling on gene expression.
It uses a process called tagmentation during which the genome is simultaneously
fragmented and tagged by sequencing adaptors. Tagmentation is achieved by the use
of hyperactive Tn5 transposase that can transpose DNA sequencing adapters into the
native open chromatin. Mutant Tn5 is preloaded with the sequencing adapters, and
the excision and DNA tagging occur in the same step. Initially, tagmentation was
designed as part of commercial next-generation sequencing (NGS) library prepara-
tion kit. Since then this technology has been adapted to efficiently identify open
chromatin regions, and it is now known as ATAC-seq [39].

ATAC-seq is a two-step protocol that uses between 500 and 50,000 cells to
investigate chromatin accessibility, transcription factor occupancy, and nucleosome
positioning. The major advantage of the ATAC-seq method over other methods that
investigate the chromatin landscape (DNase-seq, FARE-seq) is the low amounts of
starting material. DNase-seq relies on the DNase I enzyme to preferentially cleave
open accessible domain sensitive to DNase I [38]. FARE-seq uses formaldehyde
cross-linking to separate nucleosome bound (cross-linked) from nucleosome-free
and accessible region (less cross-linked) [40]. Both methods require between 106

and 107 cells as a starting material. This is of particular interest to the muscle biology
field where cell numbers can be a limiting factor. By requiring 50,000 freshly
isolated cells instead of millions of cells grown ex vivo, ATAC-seq method pre-
serves the in vivo epigenetic landscape and provides a tool to dissect individual
populations within the muscle (i.e., quiescent satellite cells).

ATAC-seq tends to correlate with tissue-specific transcription factor binding and
active H3K4me3 marks. In Fig. 3.2, desmin (Des) promoter shows an open chro-
matin profile (second panel) in two muscle cell types (purple, satellite cells; yellow,
proliferating myoblasts). Furthermore, desmin promoter shows enrichment for
muscle-specific MyoD (red) and active histone mark (H3K4me3) but not Pbx1
(green) and H3K27me3 (blue).

Major applications of ATAC-seq include nucleosomal mapping [39, 41], tran-
scription factor occupancy [42, 43], identification of novel enhancers [44], and
identification of accessibility changes relevant to pathological states [25].

3 Chromatin Epigenomics in Muscle Development and Disease 37



Deep enough sequencing of ATAC-seq libraries coupled with computational
analysis has a potential to infer the protein occupancy at specific nucleotides,
known as footprinting [39]. The theory being that DNA sequences directly occupied
by transcription factor (or other DNA-binding proteins) are inaccessible for trans-
position but are surrounded by accessible active chromatin. Computational identifi-
cations of these protected dips within the ATAC-seq regions could provide an
alternative to numerous transcription factor ChIP-seq analyses in detailed recon-
struction of regulatory networks. The idea of using digital footprinting is very
appealing when considering limitations and biases introduced by ChIP-seq analysis
(input requirements, cross-linking artifacts, antibody selection issues). Nevertheless,
digital footprints have limitations. Not all transcription factors leave footprints [45],
and it is highly dependent on individual transcription factor residence time [46].

ATAC-seq approach has been extensively used in the field of developmental
biology to understand epigenetic remodeling. Wu et al. investigated chromatin
remodeling in mammalian implantation embryos and showed that accessible chro-
matin is shaped by transposable elements and overlapped with cis-regulatory regions
[43]. Using distal ATAC-seq peaks, the authors showed that in early-stage embryos,
specific peaks were associated with genes controlling chromatin regulation, whereas
distal peaks in inner cell mass (ICM) and embryonic stem cells (ESC) are located in
the vicinity of development genes. They show that timing of the appearance of a
particular motif correlates with the expression of the corresponding transcription
factor. Furthermore, Loh et al. used ATAC-seq coupled with transcriptomic analysis
to generate comprehensive developmental roadmaps of human development from
pluripotency to 12 mesodermal lineages including skeletal and cardiac muscle.
Using a stepwise process, they defined key transcriptional and signaling factors
responsible for each lineage choice [42]. For example, the authors showed that
activation of the dermomyotome program (embryonic stage that derives skeletal
muscle) and inhibition of sclerotome (bone) depended on WNT activation and initial
inhibition of hedgehog (HH) signaling. Chromatin accessibility maps identified
GATA, HAND1, and NKX2.5 as key factors regulating cardiac mesoderm. These
factors are considered as key biomarkers of cardiac tissue development. Finally,
these data provide tools to navigate mesoderm and produce human tissue progenitors
that could be used in therapy in addition to contributing to the fundamental under-
standing of human development.

ATAC-seq approach has been successfully applied to study disease states. Scott
et al. analyzed skeletal muscle biopsies from 271 participants with glucose tolerance
ranging from normal to newly diagnosed type 2 diabetes. Using ATAC-seq
approach on frozen muscle sections, the authors investigated the tissue-specific
genetic regulatory landscape and showed that type 2 diabetes risk variants were
associated with muscle super enhancers and led to increased expression and alter-
native splicing of muscle-specific ANK1 isoforms [25].
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3.5 Limitations

Next-generation sequencing technologies have been adapted to investigate different
aspects of chromatin biology. These epigenomic tools have been successfully
exploited to identify genomic loci that are bound by transcription factors, occupied
by nucleosomes or accessible to nuclease cleavage or in close proximity to
DamFusion constructs.

There are some key limitations that are associated with different steps of the
process. Sample type and sample size represent a major limitation when it comes to
high-throughput sequencing techniques. Muscle stem cells, quiescent satellite cells
(QSCs), represent a small percentage of the muscle mass, and obtaining sufficient
material for omics approach can be challenging. Traditional ChIP-seq protocols use
between one million and ten million cells as starting material which is very chal-
lenging to collect when working with satellite cells where most isolation protocols
yield between 100,000 and 350,000 quiescent SCs from hind limb muscles
[47, 48]. To circumvent the sample size challenge, ChIP-seq protocols have been
modified to work with low cell number. One such protocol, termed chipmentation,
combines classical immunoprecipitation protocols with sequencing library prepara-
tion by Tn5 transposase to decrease input requirements to below 500,000 cells [49].

Chromatin structure represents the first level of bias in chromatin profiling
studies. In ChIP-seq, DNA fragmentation is usually achieved by sonication and is
a required step before protein-bound fragments are isolated by immunoprecipitation.
The mechanical properties of the chromatin and its susceptibility to shearing vary
across the genome, and it leads to a nonrandom selection of the fragments that are
available for subsequent processing. Heterochromatin that contains tightly packed
chromatin is less efficiently sheared compared to accessible euchromatin and usually
underrepresented in sequencing studies. To circumvent this effect, enzymatic shear-
ing is used in DamID studies and ATAC-seq studies, but this approach also has
limitations and has been shown to be sequence dependent and represents a major
source of bias.

The characteristics of transcription factor (TF) binding to the chromatin are
substantially different between TFs [50]. The type of signals that are obtained
from each TF is majorly influenced by nucleosomal positioning, kinetics of the
TF-DNA interaction, and the TF tendency to co-bind with other factors [51]. Thus,
some transcription factors are easily detected by ATAC-seq (e.g., CTCF), while
other factors would never leave a footprint [46].

Resolution of each sequencing technique varies, and it should be taken into
consideration in order to better understand the data and potential bias introduced
by the experiment. Genomic analyses are performed over length scales from 1 bp
(in SNP analyses) to around 10 bp (in ATAC-seq), 100 bp (in TF ChIP-seq), 100 bp–
100 kb (in chromatin domain analyses—histone modification ChIP-seq), and
100 kb–1 Mb (DamID-seq) (Fig. 3.2).

The DamID method also has a unique set of limitations [36]. First, the fusion of
the bacterial enzyme to the protein of interest may alter the activity and/or
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DNA-binding properties of the resulting fusion protein. Second, DamID is not
suitable for studying posttranslational modifications (PTMs) of the target protein.
This is in contrast to ChIP that often uses PTM-specific antibodies to identify
genomic regions of enrichment. DamID is an enzymatic modification of DNA that
occurs over the entire time period of the experiment, making DamID less ideal for
dissecting changes at a specific point in time. Additionally, prokaryotic Dam enzyme
gets diluted every time eukaryotic cell replicates leading to loss of Dam methylation
events over time. This limits the DamID applications in fast replicating cells (early
embryonic development) [52]. Comparative studies have shown that both DamID
and ChIP techniques produce comparable genome-wide binding profiles, suggesting
that many of these potential limitations may not have a large impact on the results
and data interpretation [33, 53].

3.6 Vital Future Directions

The vast majority of epigenetic data from cell cultures or tissues are generated and
analyzed under the assumption that cells in culture or tissues are a homogeneous
population that is often very far from reality. For example, epigenetic modifications
are defined as transcriptionally activating or repressing based on experiments made
in bulk cell populations. However, growing evidence contradicts this assumption
and provides evidence for the greater complexity of epigenomic regulation
[54]. Therefore, to better understand the complex relationship between epigenome
and transcriptome in a heterogeneous setting, the epigenomic field is moving
towards the single-cell approach.

The first single-cell (sc) ATAC-seq protocol was conducted by employing a
“combinatorial indexing” approach in which the tagmentation reaction (and first
barcoding) is performed in 96 wells containing a few thousand nuclei. During the
second step, cells were pooled and split after which a second barcode was introduced
by polymerase chain reaction (PCR). This experimental design was optimized in
order to maximize the probability that a barcode combination marks only a single
cell [55, 56]. Other scATAC-seq methods have been described that rely on com-
mercially available microfluidic devices to carry out the transposition reaction in
individual cells [57, 58].

Conducting ChIP-seq at the single-cell resolution is very challenging due to high
levels of background noise associated with nonspecific antibody binding. Rotem
et al. presented a modified protocol to overcome this challenge [59]. The authors
performed the immunoprecipitation step on chromatin from pooled single cells that
had already been fragmented (digested) and barcoded, so that the pull-down is
effectively performed on thousands of cells. Large numbers of cells had to be
processed in parallel using droplet-based microfluidic platform to obtain a sufficient
number of high-quality reads per cell.

A single-cell approach has been successfully employed to study interactions with
the nuclear lamina using single-cell DamID [60]. One of the limitations of the
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technique is the resolution which is in the order of 100 kb–2 Mb, which limits the
extent of its applications.

The epigenomic field and tools are evolving at a remarkable pace due to advances
in DNA sequencing technologies, accessibility of epigenomic data in the public
domain [61], and the early adoption of new technologies into individual laboratories.
These methods have challenges and limitations, such as high levels of PCR dupli-
cates, sample size requirements, and introduction of technical bias (shearing bias,
nonspecific antibody binding, lack of adequate controls). Nonetheless, single-cell
sequencing tools provide new perspective into genomic variations that may underlie
different disease states. Moreover, computational integration of these tools into
multi-omics approach provides a platform for multiple data sets to be used for
discovery and better understating of genome-cell function interplay. Understanding
links between various epigenetic layers provides a window to comprehensively
unlock the secrets of cell identity, function, and the progression of diseases [62].
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Chapter 4
Guidelines for Bioinformatics
and the Statistical Analysis of Omic Data

Surajit Bhattacharya and Heather Gordish-Dressman

4.1 Bioinformatics: An overview

The Human Genome Project [1] was initiated to find all the nucleotides that
constitute a human genome and identify and map genes making up that genome.
The Human Genome Project, along with the other model organism projects, have
enabled us to better understand the genetic and molecular underpinnings of devel-
opmental stages and disease conditions. These projects have also produced petabytes
of data, mostly sequences of nucleotides, which are not comprehensible to a biolo-
gist until and unless it is given a biological perspective. Bioinformatics is a
multidisciplinary branch of science, utilizing knowledge from many other fields
including physics, mathematics, computational science, and statistics, to assist in
transforming these raw nucleotide sequences to a more comprehensible biological
dataset (Fig. 4.1). Bioinformatics can be broadly classified into two groups, geno-
mics and proteomics. Genomics includes the study of the genomic data pertaining to
defects in transcriptional and posttranscriptional mechanisms, while proteomics
pertains to changes in proteins occurring mostly during the translational and post-
translational phase. In this section we discuss the bioinformatics tools and algorithms
used in various kinds of genomic experiments. Bioinformatics for transcriptome
analyses can be found in the transcriptome chapter.

Genomic analyses focus on deoxyribonucleic acid (DNA), which is the building
block of any biological system and is the primary component of the central dogma.
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DNA is transcribed into ribonucleic acid (RNA), and messenger RNA (mRNA)
directs protein translation. DNA is found in the nucleus and is composed of four
major groups of nitrogen-based organic compounds (nucleotides): deoxyadenosine
(A), deoxyguanosine (G), deoxythymidine (T), and deoxycytidine (C). These four
nucleotides are arranged in different combinations to form single-stranded DNA. As
A forms a chemical bond with T and C bonds with G, the DNA arranges itself into
the shape of a double-stranded helical structure where each strand complements the
other. If one strand has a nucleotide arrangement of ATTTCGATA, the second
complementary strand will have an arrangement of TAAAGCTAT. This arrange-
ment of nucleotides is called a sequence and the two strands of DNA sequences are
referred to as the forward strand (read from left to right; also called 50–30) or the
reverse strand (read from right to left; also called 30–50). RNA, another common
biological material studied in genomics, differs slightly from DNA. Besides being
made up of ribonucleic acid rather than deoxyribonucleic acid, RNA contains a
unique nucleotide, uracil (U), in place of thymine.

From its isolation from pus in late 1868 [2] to the end of the Human Genome
Project, the identification of the sequence of DNA has been an important aspect in
understanding the functionality of the genes. This chapter is intended to be a
resource for researchers interested in designing omic experiments or analyzing
data from such experiments. It is organized into two major applications. The first
has a focus on bioinformatics tools and techniques, and the second has a focus on
statistical analyses. This chapter is intended to be a high-level introduction for
researchers interested in performing their own analyses. It describes the major
components of bioinformatics and statistical analysis and also directs the reader to
key tools and sources of further information. Unfortunately it is beyond the scope of

What is Bioinformatics ?

Fig. 4.1 Bioinformatics is a multidisciplinary branch of science: bioinformatics is a
multidisciplinary branch of science, utilizing ideas from major branches of science such as physics,
statistics, biology, and computer science
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this chapter to provide a comprehensive discussion of statistical theory and complex
statistical models. This chapter discusses the general study design and aspects that
should be taken into account before an experiment is begun. We describe some basic
principles of statistical analysis and some commonly used methods, but further
guidance from a statistician will be required for more complex study designs and
statistical models.

4.2 Major Applications

4.2.1 Bioinformatics of Genomics Data

The first section discusses the bioinformatics tools and algorithms used in genomics.
It describes typical workflows and the tools available for performing an omic
experiment and underscores the importance of both the tools being used and a
clear understanding of the underlying algorithm. One of the primary goals of any
genomic research is to understand whether there are any changes or variants in the
genome of a subject as compared to a reference genome. The reference genome is a
representative genome of an organism, including humans, that is made up of
multiple samples and is a representative example of a species’ set of genes. The
variation from this reference genome can be of two types: single nucleotide poly-
morphisms (SNP) and structural variants (SV). While SNPs constitute a change in a
single nucleotide, SVs constitute a variation of �50 kilobases (KB) which can be an
insertion, deletion, inversion, translocation, or duplication. It is these variants, or
differences, which we are interested in when we perform omic experiments.

Next-generation sequencing (NGS) is the common term used for the modern-day
high-throughput sequencing techniques, which allow one to define the precise order
of nucleotides in the DNA of the organism sequenced. As this chapter focuses on the
bioinformatics aspect of omic experiments, we will focus more on the results
obtained from sequencing instruments than the sequencing techniques used. A
general overview of sequencing techniques can be found in the following reviews
[3, 4]. Here we briefly discuss the workflow for whole genome sequencing (WGS)
analysis, obtained from a short-read sequencer, such as that produced by Illumina. A
similar pipeline is used for exome sequencing. The pipeline can be divided into five
parts (workflow is shown in Fig. 4.2):

1. Preprocessing of raw sequences: Raw output from sequencers, referred to as
binary base calls (BCL), is converted to the human readable Fastq format
[5]. Fastq format generally has three lines representing the sequence header, the
sequence, and a quality score (PHRED score) [6, 7]. The PHRED score is a
measure of the quality of the nucleotide identification associated with each base
written in ASCII format. The PHRED score Q is defined as
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Q ¼ �10log P

where P is the base-calling error probability. Thus, a larger Q value indicates a
greater accuracy in identifying the base. The generally accepted PHRED score
threshold is 30 which translates to the chances that the base was incorrectly
identified as 1 out of 1000. The tool FastQC [8] can be used not only to provide
a visual representation of PHRED score per sequence but to provide additional
useful information such as sequence GC content, sequence length distribution,
and sequence duplication distribution. If a sequence is found to be of low quality,
trimming tools such as cutadapt [9], sickle [10], and scythe (tool available at
https://github.com/vsbuffalo/scythe) can be used to remove unwanted sequences.
As one example, sickle allows one to input a PHRED score threshold so that the
user can define which sequences will be trimmed due to quality issues. Each of

DNA Sequence Reads
(Fastq; WGS)

Quality Check
Fastqc

Sickle(Trimmer)

Alignment/Mapping
Bwa-mem

Processing of the aligned reads
Samtools

Picard

Annotated VCF Annotation
AnnotSV

SV Callers
Lumpy
Delly

SNP Callers
GATK

Freebayes

Annotation
Annovar
Snpeff

SNP

SAM

SV

VCFVCF

Fig. 4.2 Workflow for WGS: sequence files obtained from sequencers are converted to Fastq files,
and an initial quality check using FastQC is performed. If the quality is low, the file can be trimmed
using a trimming software such as Sickle. Next, alignment to the reference genome is performed
using BWA. Aligned SAM files are processed using Samtools and Picard based on the type of
variants to be identified. For single nucleotide polymorphisms (SNPs) and small insertion deletions
(indels), GATK or Freebayes is chosen. For larger structural variants (SV), tools like Delly and
Lumpy can be used. The output of all of these tools is a variant call format (VCF) file. An annotation
tool for annotating the VCF file is chosen based on the variant that needs to be identified. Annovar
and Snpeff are used for SNP annotation and AnnotSV for SV annotation. The final product is an
annotated VCF file
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these tools has various capabilities and the documentation for each should be
consulted and understood before using.

2. Alignment of the sequence: Multiple tools/algorithms are available for the align-
ment/mapping of the whole genome sequence(s) to the reference genome. There
are several important aspects to consider when choosing an alignment algorithm/
software. These include the accuracy of alignment to the reference genome, the
amount of computational memory used, and the time required for the alignment.
One of the most important and commonly used algorithms is the Burrows-
Wheeler algorithm (BWA) [11]. The BWA uses backward search with a com-
pression algorithm, the Burrows-Wheeler transform (BWT) [12], to align
sequence reads to the reference genome at a reduced memory usage and time
[13]. The BWA software package consists of three algorithms, BWA-backtrack,
BWA-SW, and BWA-MEM. BWA-backtrack is used for sequence reads that are
shorter than 70 base pairs, while both BWA-SW and BWA-MEM are used for
longer reads. The choice between BWA-SW and BWA-MEM is dependent on
the platform used to generate the reads and the characteristics of the data. This
algorithm can align 7 Gbp (giga base pairs) to the human reference genome per
CPU day [13]. Output from this alignment step is a Sequence Alignment Map
(SAM).

3. Processing of the aligned files: The output from this step needs to be further
processed before it can be used for calling variants. Read group names are added
to the aligned reads using Picard (https://broadinstitute.github.io/picard/) to
identify each of the reads from different runs separately. Samtools [14] uses a
merge function to combine different SAM files into a single merged binary
aligned BAM file. Quality control processes can then be applied to the merged
files using Samtools, and PCR duplicates can be removed by Picard Mark
Duplicates.

4. Identifying single nucleotide polymorphisms and structural variants: Typically,
short-read sequencers are more adept at identifying or calling small nucleotide
variants and small insertion/deletions (indels) than structural variants. The
Genome Analysis Toolkit (GATK) [15] is the standard and most commonly
used pipeline for the identification of small nucleotide polymorphism and small
indels from an aligned and processed BAM file. Other softwares, Freebayes [16]
and Heap [17], are also available with Heap having the advantage in the detection
of SNPs at low coverage.

Although short-read sequencers are not ideal for identifying structural vari-
ants, there are multiple tools that can detect and identify structural variants from
BAMs obtained by aligning short-read sequencer reads. All SV calling tools for
short reads are based on five basic ideas:

(a) Read pair (RP): Discovers SVs by looking at the span and orientation of
paired end reads. This method is used to identify almost all types of SVs.
Pairs that are mapped far apart may denote deletion, whereas closer read pairs
denote insertion. Orientation inconsistencies denote inversion or tandem
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duplications [18]. Some of the tools associated to this method are
BreakDancer [19], PEMer [20], and MODIL [21].

(b) Read count (RC): This method can be also known as read depth. In these
algorithms, a Poisson or modified Poisson distribution is assumed for the
mapping depth, and deviation from that distribution denotes deletion or
duplication [22]. This kind of SV is also called copy number variants
(CNV). Tools associated with this method are EXCAVATOR [23], CNVnator
[24], and BIC-seq [24].

(c) Split read (SR): This method defined SV break points by identifying devia-
tions between the sample sequence and the reference genome. A gap in the
sample sequence denotes deletion, while additional sequence (above that in
the reference) denotes insertion. Tools include Socrates [25] and
Splitread [26].

(d) De novo assembly (AS): In these group of algorithms, the short fragments are
reassembled to form the original sequence, to identify the SV [27]. Tools
include Cortex [28] and Magnolya [29].

(e) Hybrid methods: These algorithms use a combination of two or more methods
discussed above. For example, Delly [30] and Lumpy [31] use read pair and
split read algorithms, to detect SV.

As there are multiple methods to detect SVs, it is advisable to get a
consensus result from multiple methods to confidently detect a true set of
SVs in a sample. Tools like svMerge [32], SURVIVOR [33], and Parliament
[34] combine results from multiple SV-identifying tools, to get a consensus
output in variant call format (VCF).

5. Annotation: The output from the SV identifiers are in the form of a VCF, which
includes information on the chromosome number and location of the variant
along with type of SNP/SV and quality. It does not, however, contain information
on the gene affected or whether or not the variant is a rare variant. This informa-
tion is added by annotation tools. Annotation tools like Annovar [35] can perform
annotation for both SVs and SNPs. Using Gene transfer format (GTF), Annovar
identifies genes affected and uses databases such as dbSNP [36] (for SNPs) and
Database of Genomic Variants [37] (DGV; for SVs) to identify the frequency of
occurrence of the particular SV across different populations. Clinvar [38] data-
base is used to identify the clinical significance of the variants (whether it causes
disease or not), whereas the CADD [39, 40] tool is used to classify the variant
based on its pathogenicity. Snpeff [41] and SnpSift [42] can be used to annotate
and filter SNPs and small insertion deletion (indels; <50 bases), respectively,
whereas AnnotSV [43] performs the same task for SVs.

50 S. Bhattacharya and H. Gordish-Dressman



4.2.2 Other Bioinformatics Analyses

Beyond expression analysis and variant discovery, NGS and microarrays can also be
used to determine and evaluate the effect of other biological factors that affect a
system. They include:

1. Transcription factor binding site: Chromatin immunoprecipitation (ChIP) is an
immunoprecipitation technique by which the genomic region to which a tran-
scription factor binds is extracted and then analyzed using either microarray or
sequencing techniques. The basic working of microarray and sequencing remains
the same for ChIP experiments, only the analysis tool pipeline changes.

(a) Microarray: These experiments are known as ChIP-on-chip. The design of
the experiments is similar to gene expression determination experiments,
where the control is without the antibody to pull down the genomic region,
while the experimental condition has the pulled down genomic region. Tiling
Analysis Software (open-source software from Affymetrix) is used to process
raw data into signals, with associated p-values for each probe. This is
followed by visualization using Integrated Genome Browser (IGB), a propri-
etary software from BioViz. Another proprietary software, Partek, can also be
used to analyze and visualize the regions to which transcription factors bind
to. An open-source Bioconductor R pipeline is also available [87] which uses
Ringo [88] for processing the raw microarray data into normalized data,
BioMart [89] to annotate the data, and topGO [90] to perform the gene
ontology. Ringo also has functions to visualize the genomic region.

(b) RNA-seq: These experiments are known as ChIP-seq. Preprocessing, align-
ment, and processing of BAMs are done in the same fashion as RNA-seq
data. FastQC is used for quality check, followed by alignment with Bowtie or
BWA, followed by processing of SAM files by Samtools and Picard. To
identify genomic regions to which transcription factors bind, we identify
regions in the genome where maximum reads map to. These are called
peaks. Peak calling is performed using tools like model-based analysis of
ChIP-Seq (MACS) [91] and spatial clustering for identification of ChIP-
enriched regions (SICER) [92]. Normalization and fold change calculation
of transcription factor binding between two samples (control and experimen-
tal) are estimated using edgeR, Gfold, and Deseq2.

2. Methylation: Determination of methylation is done using bisulfite treatment. This
converts unmethylated cytosine to uracil but leaves methylated cytosine
unchanged [93]. Microarray and/or sequencing techniques can be then performed
to determine the difference in methylation between an experimental condition and
a control condition.

(a) Microarray: The most popular platforms are Illumina 450 K and Epic (850 K)
arrays. These arrays are named after the number of probes used; the 450 K has
450,000 probes of known methylation region and the 850 K is composed of
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850,000 probes. There are multiple tools to analyze this data. Partek, a
proprietary software, performs differential methylation and visualization of
methylation regions. Open-source workflow Champ [94, 95], a R
Bioconductor workflow, uses other Bioconductor packages like minfi [96]
for analysis and visualization of methylation, a modified version of combat
function from sva package [97] for batch correction, limma for differential
expression calculation, and plotly [98] for visualization.

(b) Sequencing: The workflow can be divided into two steps.

(i) Preprocessing and alignment-based identification: The preprocessing
and the alignment steps are similar to preprocessing step as described
in the Genomics and Transcriptomics sections; the only differences are in
the tools used for alignment. FastQC is used for quality check and sickle
used for trimming. Most of the alignment methods use a modified version
of other short read alignment algorithms like Bowtie2. Tools like
Bismark [99], BS-Seeker [100], and B-Solana [101] use Bowtie algo-
rithm, with methods to handle cytosine to thymine (uracil in RNA)
conversion. LAST [102], another algorithm, uses score matrix to handle
C-T conversion, and Bisulfighter [103] uses this algorithm for alignment.
Another algorithm, BSMAP [104], converts the thymine to cytosine in
the bisulfite reads in silico, in positions in which cytosine is present in the
reference.

(ii) Differential methylation: The best tool to use is based on whether
replicates are present in the experiment to be analyzed. For experiments
in which there are no replicates available for control or experimental
conditions, methylkit [102] or RnBeads [105] uses Fisher’s exact tests,
and ComMet [103, 106] (part of Bisulfighter methylation analysis pipe-
line) or Methpipe [107] uses hidden Markov models. For experiments
having replicates, tools like limma, BSmooth [108], and Biseq [109] use
regression models. Good reviews of these tools and methods can be
found in [110, 111].

4.2.3 Platforms Used

Most of the pipelines used in the discussion involve a combination of a Linux
environment and R IDEs like Rstudio. Open-source user interface (UI) option for
analyzing NGS studies is limited, with Galaxy [116] being the only reliable option.
Cloud platform UIs like DNAnexus and artificial intelligence RNA-seq (AIR) are
proprietary and are subscription based. Cloud-based platforms such as Amazon and
Microsoft Azure can also be used for processing large amounts of genomic data, but
they are mostly command line based.
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4.2.4 Downstream Analysis and Visualization

After the analysis to identify the most significantly expressed genes is complete,
multiple downstream analyses can then be performed to give biological perspective
to the genes defined. Following are the two most important downstream analyses
done on transcriptomic analyzed data:

1. Gene ontology and pathway analysis: To better understand the biological system
studied in a given experiment, one needs to understand the function and pathways
of the genes that are expressed in the system. Gene ontology [117] (GO)
classification tools can classify the function of the genes under three broad
classes: cellular components (CC), molecular functions (MF), and biological
processes (BP). This kind of analysis is called a gene enrichment analysis
(GEA). GEA can also be divided into three categories:

(a) Singular enrichment analysis (SEA): A user-defined gene list derived from
any high-throughput NGS/microarray experiment can be used as an input
[118]. Generally, the input genes are those highly significant genes based on
user-defined arbitrary threshold (e.g., multiple testing adjusted p-value <
0.05). The genes are classified as falling into the three broad categories
(BP, CC, and MF) described above. Fisher’s exact test [119] and its modifi-
cations (EASE score [118]) or a chi-square test [120] is used in this method to
determine whether the genes are related to the categorization based on
function. Tools such as DAVID [118, 121], GOStat [122], and Bingo [123]
perform singular enrichment analysis.

(b) Gene set enrichment analysis (GSEA): In gene set enrichment analysis, all
genes from a high-throughput genomic experiment are used as an input, thus
ensuring the analysis is free from any potential bias due to arbitrary thresholds
such as those used in SEA [124]. This allows even genes with small differ-
ential expression changes to be considered for further enrichment analysis.
Maximum enrichment scores (MESs) are calculated from the rank order of all
gene members in an annotation category. These maximum enrichment scores
are analyzed and p-values calculated using either Kolmogorov-Smirnov-like
statistics to compare the observed MESs to those obtained with from a
random distribution or with parametric statistics which compare fold changes
between experiments. ErmineJ [125] and FatiScan [126] can be used to
perform this type of analysis.

(c) Modular enrichment analysis (MEA): Modular enrichment analysis combines
SEA-kind enrichment analysis with network discovery algorithms, to allow
term to term relationships. Kappa statistics of agreement are used for this
analysis. Due to the structure of the kappa statistics, genes which do not occur
in multiple neighboring terms are excluded from the analysis. Some tools that
perform this type of analysis are ADGO [127],DAVID, andGeneCodis [128].
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These gene ontology classification tools combine data from multiple
sources including KEGG [129] for pathway analysis, Pfam [130] for protein
domains, and TRANSFAC [131] for gene regulation.

2. Correlation networks: Another important piece of information from the obtained
gene lists are whether or not there is any relationship between the statistically
significant gene lists. Although we learn a lot about genes that share common
functionality from the GEA, tools like GeneMania [132] provide the user with
information on the interaction between genes, thus yielding a more comprehen-
sive picture of the interaction pathways. GeneMania provides the users with
predictions of co-expression, co-localization, and physical interactions between
genes. Biological General Repository for Interaction Datasets (Biogrid) [133] is
another database which provides the user with chemical, genetic, and protein
interactions using known experimental results and is curated regularly. STRING
[133], a protein interaction database, is used to understand the interaction
between the proteins translated from the genes. One can also use weighted gene
correlation network analysis (WGCNA) [134], a package in R [135], which uses
expression data from microarray or RNA-seq to construct a correlation network
between genes in a given experiment.

Visualization Tools like FastQC and MultiQC [136] are used to evaluate and
visualize the quality of the sequencing from both Fastq and BAM data. Visualization
of expression data can be done using Heatmap.2 function of the gplots [137] package
in R. GOPlot [138], an R package, which can be used to visualize Gene
Ontology data.

4.2.5 Conclusion

Although newer long-read sequencing techniques as well as optical mapping tech-
niques are being developed to better understand variation in genes and changes in
expression, no technology has yet displaced short-read sequencing and/or
microarrays. With the advancement in computational hardware, as well as develop-
ment of more extensive computational algorithms to better handle big data, bioin-
formatics tools for analysis of NGS data are rapidly changing. In these changing
times, one should not only concentrate on the tools being used, but also better
understand and appreciate the underlying algorithm to better evaluate his/her data.
In addition, a thorough understanding of experimental design and statistical analysis
is incredibly important to yield a thoughtful and meaningful analysis.
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4.3 Statistical Analysis

4.3.1 Study Design Principles

Study design at its most basic level is defined as the methods for planning the
collection of data in order to obtain the maximum amount of information using the
least amount of resources. As such, good study design is an integral part of any
experiment. There are many available resources that discuss study design in general,
and an Internet search of study design fundamentals will yield hundreds of sources.
However, omic experiments have certain common traits that make many typical
study design elements less applicable. We often do not have large numbers of
samples available or the high cost of the technologies limits the number of samples
we have the resources for. We are often testing many more parameters than we have
samples for, causing difficulties with our statistical analyses [139, 140]. Lastly, due
to the scarcity of individual samples, we are often tempted to test complicated
hypotheses that we do not have the data to truly support.

Before we begin an experiment, there are several things we should consider so
that our experiment can be planned to appropriately answer our scientific question.
We need to have a testable hypothesis, we need to define our replicates (how many
we have and what type they are), we need to understand the sources of variability in
our sample and how it relates to the population, and we need to verify that our
sample size is adequate to answer our question. Lastly, we need to understand what
our collected data points are representing.

4.3.1.1 Hypothesis

Having a testable hypothesis may seem an obvious step; however, not all hypotheses
are well thought out or testable. Omic experiments are often used for hypothesis
“generation” where we use the data we have to inform what is happening in a
biological system. We then use this information to generate hypotheses that can be
tested in future experiments. Because of this feature, it is mistakenly thought that
omic experiments are discovery in nature and do not need an a priori defined
hypothesis. While this is not entirely false, it is also not true [141]. One may have
a more general question to ask such as “are RNA levels related to biceps strength?”
with the intention of discovering what RNA levels change in response to strength.
However, when we perform our statistical analysis, we are in fact testing a hypoth-
esis. That hypothesis may involve assessing the relationship between RNA levels at
one particular strength level, or assessing the change in RNA levels as strength
changes, or assessing whether or not the relationship between RNA level and
strength is different with respect to some other factors such as gender. These three
hypotheses are all tested using different statistical methods and require different
study designs and numbers of samples. So, we must know what hypothesis we want
to test before we plan our experiment, even if our goal is only to “discover” what

4 Guidelines for Bioinformatics and the Statistical Analysis of Omic Data 55



RNA levels are important to us. If we don’t consider a hypothesis, we may be left at
the end with data that cannot answer our questions.

Imagine a case where we are interested in assessing whether exercise in men has
an effect on the expression level of gene X. We measure gene expression in 10 men
who exercise on a regular basis and in 10 men who are sedentary. If we are truly
interested in whether or not exercise causes a change in expression of gene X, we
cannot test that hypothesis with this sample. All we have from our sample design is
expression levels in exercisers and expression levels in sedentary individuals. We
may find significant differences in the expression of gene X; however, we cannot say
those differences are due to exercise. They could be due to any number of differences
between the two groups of men, not necessarily related to exercise. Our intentions
may have been to test the hypothesis that exercise induces changes in gene expres-
sion, but our sample cannot test that hypothesis. In order to test our intended
hypothesis, we would need repeated measurements of expression on the same
individuals both before and after exercise. Only then could we infer that the exercise
was, in part, responsible for any differences observed in expression levels.

The above example shows how it can be a mistake to design an experiment
without a clear hypothesis in mind. We can spend valuable resources collecting data
that does not, in the end, meet our needs.

4.3.1.2 Replicates

The understanding and choice of replicates is often a source of confusion because the
term “replicates” has various definitions depending on who is defining it. At its
simplest, a replicate is a measurement taken more than once. Some refer to multiple
measurements taken from the same sample at the same time as replicates. Others
refer to measurements taken from the same sample at different times as replicates.
And yet others consider replicates to be different aliquots of the same RNA extrac-
tion or multiple arrays hybridized with the same RNA.

We can divide replicates into two types, biological and technical, which serve
different purposes. Technical replicates are used to establish the variability, or
experimental error, of the measurement technique. They are performed on the
same biological sample so that the differences we see can be wholly attributed to
the measurement technique. All measurement techniques have variability in how
well they measure the parameter of interest and we need to quantify this to better
allow us to measure other sources of variability we encounter. Those performing
omic experiments should be familiar with this phenomenon as we must know how
much noise is in the measurement to accurately assess the signal. Biological repli-
cates, on the other hand, are broadly speaking biologically different samples. They
are used to establish the biological variability which exists between organisms which
should be identical, and they are typically the reason we are performing the exper-
iment in the first place. The biological entities in our experiment represent the wider
population. We can only make inferences, by applying inferential statistics, about
the population from which our samples were taken. When we apply statistical tests to
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our sample we are inferring what we would expect to see in the larger population.
Vaux et al. [142] provides an excellent overview of the difference between technical
and biological replicates and describe why one can be used in hypothesis tests and
inferential statistics and the other cannot. A particularly apt description of the
mistake in the blurring of technical and biological replicates is given by Bell [143].

Consider the three following experiments, each of which contains replicates. The
first experiment assesses gene expression in 10 separate mice. Here we have
10 biological replicates and we expect expression to be the same in each mouse.
We are measuring how much difference in expression exists in our mice. This
sample of 10 mice is representative of the population of all mice and we can apply
inferential statistics to infer that our conclusions apply to the population. The second
experiment assesses protein expression in a cell line that has been aliquoted into
20 plate wells. Here we have 20 technical replicates; we expect protein levels to be
exactly the same from the same cell line; therefore, we are measuring the variability
in the measurement method. Our population here is this single cell line. The third
experiment is more complicated. We have one cell line that is aliquoted into two
petri dishes, one of which is treated with a potential drug. From each dish, we take
three aliquots and measure gene expression of gene Y. Here we have three technical
replicates that could be used to estimate the variability in the gene expression
measurement, but we do not have any biological replicates; all measurements were
made on the same sample. We may be tempted to compare gene expression between
the treated samples and the untreated samples and attribute any differences we see to
the treatment. However, our population remains one single cell line. Any conclusion
we make from that comparison applies only to that single cell line; we cannot infer
the same would be true in other cell lines.

We must be careful to understand what our replicates actually represent. Because
the p-values calculated from statistical tests are based in part on the number of data
points we have, we can inadvertently artificially increase our sample size and bias
our conclusions by mistaking technical replicates for biological replicates.

4.3.1.3 Understanding Sources of Variability

All statistical tests assume that what we observe in our sample can be inferred in the
population under study. When we understand our sample, we can be more confident
that our conclusions are generalizable to the population under study. We can
appropriately deal with the many sources of variability, both biological and techni-
cal, that, when ignored, can severely impact our statistical analysis and the conclu-
sions from that analysis.

Many sources of variability are familiar to those performing omic experiments.
These can include date and method of data collection or preparation, protocol used,
the technician performing preparatory analyses, software used for data processing,
and a host of other experiment-/platform-specific characteristics. We can account for
these potential differences in our samples either statistically or technically; however,
we need to have this information to do so. We can plan our experiment so that all
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samples use the same preparation techniques and are performed by the same
technician, or we can account for these differences through the use of covariates in
our statistical tests.

Equally important are sources of variability within our study population. These
may not be as familiar to those performing omic experiments but they can affect the
conclusions from our experiments. When one is building a hypothesis based on a
defining variable, such as the effect of a drug, both the samples receiving the drug
and those not receiving the drug should be as similar to each other as possible. This
becomes more difficult when the defining variable is also an inherent difference
between samples, for example, assessing gene expression in individuals with a
disease compared to those without. It is difficult to find affected and unaffected
individuals who are similar in all other respects, making any expression differences
possibly due to other factors rather than the disease. The more completely we
characterize and understand the variability in our samples, the more confidence we
have in the validity of our conclusions.

4.3.1.4 Adequate Sample Size

A last area of importance in study design, but one that is often the most difficult to
deal with, is ensuring we have an adequate sample size for the hypothesis we are
testing. All of the previously described areas of study design are important in
determining what your sample size should be or what power you have given an
already existing sample. Sometimes we have all of the information we need to
adequately perform our sample size or power calculations; however, more often
we do not. This section does not aim to discuss the theory behind sample size or
power calculations or to fully describe all of the individual techniques that have been
developed for specific types of experiments. It is instead intended to make the reader
aware of what is necessary to complete these calculations and to impart their
importance. A more thorough and easily readable discussion of sample size calcu-
lations can be found in Whitley and Ball [144]. An additional resource by Billoir
et al. [145], although more technical, discusses sample size and power specifically
for high-throughput experiments with a particular focus on metabolomics.

Sample size and power calculations utilize the same mathematical equations and
have common elements. A checklist for the elements needed for power and/or
sample size calculations include:

1. Well-defined hypothesis
2. The statistical test we will use to test our hypothesis
3. The effect size we expect to see (i.e., how much difference are we trying to detect)
4. How much variation in our outcome can we expect
5. The significance level (type I error rate) we want to test the hypothesis at
6. The power (type II error) we want/have
7. The sample size we need/have
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You’ll notice that the list includes both power and sample size. If one wants to
determine sample size, power must be provided. If one wants to determine power,
sample size must be given. One can choose to calculate the power that a sample has
to test the hypothesis or calculate the number of samples needed to test the hypoth-
esis at a given power level. We’ll discuss what each of these components is and how
to define them.

A well-defined hypothesis and the statistical test we will use to test it are
necessary because each statistical test has its own equation to calculate sample size
and/or power. The equation to calculate sample size for a t-test is very different than
that for a chi-square test. We must know what test we will perform so that we can use
the correct equation. The choice of statistical test, as described above, is determined
by the hypothesis one is testing. So, our first step is to define our hypothesis and
determine what test will be used. Only then can we perform the appropriate analysis
to define our sample size/power.

The effect size describes how large of an effect you would define as statistically
significant. In other words, how large of a difference in your dependent variable
would you expect to see or define as meaningful. If you have preliminary data
available, this difference may come from the difference you’ve observed in that data.
Or you may decide that only a difference of a certain amount is meaningful;
therefore, you want to have a large enough sample to detect that effect size. Imagine
you are planning an experiment to test the hypothesis that expression of gene A is
different in men and women. You may have some previous data that indicates
expression in men is 10% greater than in women. This is the effect size, or
difference, you would like to plan your experiment to detect. Or you may not have
any previous data but consider any difference between men and women smaller than
10% to be meaningless; again 10% would be the effect size you are planning to
detect. Defining the effect size can be difficult, especially if you have no preliminary
data nor an idea of what would be meaningful. If this is the case, we have to
improvise and make our best guess as to what the effect size will be and understand
that detecting a smaller effect size requires a larger sample size. We can use literature
sources of similar experiments as a guide, or we can calculate sample size or power
for a range of effect sizes and hope that the effect size that ultimately exists in our
sample falls within that range.

The expected variability is directly related to our effect size. It is an estimate of
how much variability we expect to find in our dependent variable. Not surprisingly,
the more variable our dependent variable is, the larger the sample size needed will
be. Unless we have preliminary data, the expected variability can be difficult to
estimate. Like effect size, we can make a best guess based on similarities in literature
sources or use a range of values.

The significance level, or the type I error rate, is the level at which we want to test
our hypothesis. It defines the false-positive rate that we are willing to accept and still
define our conclusion as statistically significant. This value is conventionally set at
0.05 for any single statistical test; 5% is the level of uncertainty we are comfortable
with. However, in omic experiments, we are rarely performing only a single statis-
tical test and are often performing many hundreds or thousands of tests. To account
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for this, we often adjust the significance level in our sample size/power calculations
to account for these many tests. This phenomenon is described in more detail in the
multiple testing section of this chapter.

The last elements are power and sample size. These are the values we are
interested in calculating. If we want to determine what sample size is needed to
test our hypothesis, we need to define the power we are comfortable with. Power, or
type II error, is the rate at which we expect to conclude there is a statistically
significant difference when there truly is. It is defined as 1 minus the false-negative
rate (1-FN). Conventionally we perform statistical tests with 80% power; however,
we are free to increase our power if warranted. Once we define these elements, we
have all of the necessary information to calculate the number of samples we need to
test our hypothesis at the given significance and power levels.

Sometimes we already have our sample in hand. It may be a sample of conve-
nience that happens to be available, or we may know that we have the money and
resources for a certain number of samples. In these cases, we can calculate how much
power we have given our sample. This is an important step that is not only usually
required in funding proposals, but one that is in our best interest to perform.
Underpowered studies, those that do not have adequate power to test their hypoth-
eses, are a common problem and often result in inconclusive results. At the end of an
experiment, a nonsignificant p-value indicates that either there truly is no effect or
the sample was not powered to detect the effect. If you know that your analysis was
adequately powered, you can be confident in concluding there is no effect. If on the
other hand you have an underpowered study, you’re left with an inconclusive
answer. Assuring that your experiment is adequately powered allows one to ade-
quately answer the question they are interested in and assures the funding agency
that the money spent on the experiment will be of use.

The table below (from [144]) shows the relationships between all of the elements
that go into sample size or power calculations. As mentioned above, a smaller effect
size or a dependent variable with a large level of variability requires a larger sample
size. An experiment with greater power requires a larger sample size than one with
lower power.

Factor Magnitude Impact of identification of effect
Required sample
size

P-value Small Stringent criteria; may be difficult to achieve
significance

Large

Large Relaxed criteria; easier to attain significance Small

Power Low Identification unlikely Small

High Identification more probable Large

Effect size Small Difficult to identify Large

Large Easy to identify Small

Variability Small Easy to identify Small

Large Difficult to identify Large
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4.3.1.5 Data Representation

One last topic the researcher should be aware of is the pre-data processing that has
occurred prior to statistical analysis. Just as it’s important to understand what
hypothesis you are testing and what your replicates represent, it’s also important to
understand what one’s data represent. Typically, omic experiments utilize data from
an instrument that goes through various steps of processing and normalization before
any statistical analysis is performed. Rarely is raw data collected from an instrument
used in analysis. Each type of experiment, i.e., proteomic, transcriptomic, etc., has
specific processing methods to yield useable data points. It is important to under-
stand what these data points represent. Are they values in an experimental sample
relative to a control sample? Are they ratios of values in treated samples to untreated
samples? Before any statistical analysis is performed, the researcher needs to know
exactly what the data is representing so that the appropriate hypothesis can be tested.

4.3.2 Statistical Analysis Methods

The statistical analysis methods chosen to test hypotheses depend primarily on the
type of data being analyzed, the definition of the dependent variable, and the sample
size. Every statistical test has underlying assumptions that must be met for the
method to be appropriate and there are specific tests developed for the analysis of
small sample sizes. This section will describe the most commonly used statistical
tests and define the appropriate use of them.

4.3.2.1 Data Type

The first characteristic that must be defined is the type of data one is applying the
statistical test to. Typically, data falls into two broad categories, continuous and
categorical. These names are descriptive of the data. A continuous variable is
quantitative and measured on a continuous scale and can take on any value limited
only by the measurement precision. The value of a continuous variable indicates
some sort of amount. For example, protein expression reported in RFUs is a
continuous variable that can take on any value between a minimum and a maximum,
can be measured to the precision possible by the instrument, and indicates how much
of the protein is expressed. Categorical data is, on the other hand, data that describes
inclusion into a category. For example, experiment batch is an example of categor-
ical data where the data defines which category or group the data point falls into,
either it is a data point that was collected in batch A or it is a data point that was
collected in batch B. The value of the category is not meaningful itself, i.e., batch A
is not more or less of a batch than batch B. Categorical data can be further divided
into nominal (categories that have no natural order) and ordinal (categories that have
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a natural order). This may seem a rather elementary description that most scientists
will be familiar with, but the importance of knowing what type of data you have is
sometimes forgotten. The statistical methods for the analysis of continuous data are
completely different than those used for categorical data and they are, for the most
part, not interchangeable. For a continuous variable, such as protein expression, it
makes sense to compare mean levels between two groups. It does not make much
sense, however, to compare mean levels of batch, a categorical variable, between
two groups.

4.3.2.2 Dependent Versus Independent Variables

The distinction between the dependent variable and the independent variable(s) is an
important element to a statistical analysis. While, mathematically, simple statistical
tests between two variables, such as a Pearson correlation or a Chi-square test, do not
differ based on which variable is considered dependent or independent, many
statistical tests do differ. In addition, which variable is defined as the dependent
variable dictates the interpretation of the statistical test.

Typically, an experiment has two classes of variables, the dependent variable that
is tested and measured and the independent variables that are changed or controlled.
The dependent variable is said to be “dependent” on the independent variable; as the
independent variable changes, it exerts an effect on the dependent variable which is
measured. We can say that the independent variable is the “input” to a statistical
model which describes the change in the “output” or the dependent variable. This
may seem an unnecessary complication for analysis, but this distinction defines how
the results are interpreted. For an example of how interpretation is impacted,
consider a simple experiment where one has a group of mice of varying ages and
the interest is to evaluate if the expression of gene ABC changes as the mice get
older. If expression of gene ABC is defined as the dependent variable and age as the
independent variable, a correlation or linear regression would be used to assess the
relationship. The conclusion, assuming a significant p-value, would indicate that age
exerts an effect on gene expression; the gene expression level depends on how old
the mouse is. If, on the other hand, age is defined as the dependent variable and
expression as the independent variable, the same correlation or linear regression
would be used. The conclusion from this analysis however, assuming a significant p-
value, would indicate expression exerts an effect on age; the age of the mouse
depends on what the expression of gene ABC is. These are two closely related
conclusions, but they are saying something quite different. One is implying that
the expression of gene ABC changes as the mice get older; the other is implying that
age is dictated by the expression of gene ABC.

In more complicated statistical analyses where one has more than two variables,
the definition of dependent/independent variables will mathematically change the
statistical test. Here it is critically important to define the dependent variable
appropriately so that the statistical test used is testing the hypothesis correctly.
Before a choice of a statistical test is made, make sure that the dependent variable
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is defined correctly. Multiple regression models, where one has a single dependent
variable and two or more independent variables, treat the dependent and independent
variables differently. The model estimates calculated as part of a multiple regression
model take into account all independent variables in the model and calculate their
cumulative effect on the dependent variable.

4.3.2.3 Parametric Versus Nonparametric

The commonly used statistical tests described here fall into two groups, those that are
parametric and those that are nonparametric. There are semi-parametric models that
do not fit this paradigm; however, they are beyond the scope of this discussion.
Parametric tests are those that make assumptions about the population distribution
from which the sample is drawn; nonparametric tests do not make this assumption.
Parametric tests use the data points as measured or after a systematic transformation
has been applied, whereas nonparametric tests use the rank order of the data points
(which value is the smallest, which is the next smallest, and so on) and ignore the
distance between the points. Each parametric statistical test requires that the distri-
bution assumption is met. If, and only if, one can show their data is drawn from the
assumed population, the statistical test is valid.

When performing a statistical test that relies on an underlying distribution, such
as the common student’s t-test, the test is only valid if your sample has been drawn
from a normal distribution. Applying a t-test to a highly skewed dependent variable
violates the assumption of the test which can lead to either a reasonable conclusion
or a biased conclusion. However, the difficulty is one doesn’t know which. Before
applying a statistical test, look at the dependent variable graphically and determine if
it meets the assumptions. If it does not, a data transformation (i.e., log, square root,
reciprocal transformation) can be applied, or a nonparametric test can be used.

4.3.2.4 Common Statistical Tests

When setting out to perform a statistical analysis, answer the three following
questions of your data. First, what is the dependent variable and what is/are the
independent variable(s)? Second, what type of data are the dependent and indepen-
dent variables? Third, can we show that the dependent variable is drawn from a
specific distribution, or do we not want to make that assumption? Once these three
questions are answered, the choice of the appropriate statistical test is
straightforward.

The table below is intended as a guide to the most commonly used statistical tests
in omic experiments and those tests likely to be available using nonstatistical
software. It is not an exhaustive list and analyses that require more complicated
methods or designs should be performed with the guidance of a statistician.
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Underlying
distribution of
dependent
variable

Dependent
variable

Independent
variable Test Use

Normal Continuous Continuous Pearson
correlation

Assess the linear relationship
between two continuous
variables

Normal Continuous Categorical
with two
levels

Independent
t-test for
equal
variances

Compare means between two
independent groups; variances
equal in both groups

Normal Continuous Categorical
with two
levels

Welch t-test
for unequal
variances

Compare means between two
independent groups; variances
unequal

Normal Continuous Categorical
with three or
more levels

ANOVA Compare means between three
or more independent groups

Normal Continuous Paired cate-
gorical with
two levels

Paired t-test Compare means between two
paired groups (often pre/post)

Normal Continuous Paired cate-
gorical with
three or more
levels

Repeated
measures
ANOVA

Compare three or more means
between groups (often
pre/post)

Normal Continuous Any type/any
number

Linear
regression

Assess the effect the indepen-
dent variable(s) exert on the
dependent variable; can predict
what the dependent variable
would be if one knows the
value for the independent vari-
able(s)

Binomial Categorical
(two levels)

Any type/any
number

Logistic
regression

Assess the effect the indepen-
dent variable(s) exert on the
dependent variable; can predict
what the dependent variable
would be if one knows the
value for the independent vari-
able(s)

Binomial Categorical
(three or
more
levels)

Any type/any
number

Ordinal or
nominal
regression

Assess the effect the indepen-
dent variable(s) exert on the
dependent variable; can predict
what the dependent variable
would be if one knows the
value for the independent vari-
able(s)

Chi2 Categorical Categorical Chi square
test

Tests for an association
between two categorical
variables

(continued)
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Underlying
distribution of
dependent
variable

Dependent
variable

Independent
variable Test Use

Chi2 Categorical Categorical Fisher’s
exact test

Tests for an association
between two categorical
variables; used for small sam-
ple sizes

Chi2 Categorical Categorical
(2 levels)—
Paired

McNemar’s
test

Tests for an association
between two paired categorical
variables

Chi2 Categorical Categorical
(3+ levels)—
paired

Cochran’s Q
test

Tests for an association
between two paired categorical
variables where one variable
has three or more levels

Binomial Single
proportion

Known
proportion

Binomial test Test deviations from a theoret-
ically expected distribution of
observations into two
categories

Normal Continuous Continuous Kolmogorov-
Smirnov one
sample test

Compares the distribution of
the experimental variable to a
normal distribution (normality
test)

Normal Continuous Continuous Kolmogorov-
Smirnov
two-sample
test

Compares two continuous var-
iables to determine if they arise
from similar distributions

N/A Continuous Continuous Spearman
correlation

Assesses the linear relationship
between two ranked continu-
ous variables

N/A Continuous Categorical
with two
levels

Wilcoxon
rank sum

Compare ranks between two
independent groups

N/A Continuous Categorical
with three or
more levels

Kruskal-
Wallis

Compare ranks between three
or more independent groups

N/A Continuous Paired cate-
gorical with
two levels

Wilcoxon
sign rank

Compare ranks between two
paired groups (often pre/post)

N/A Continuous Paired cate-
gorical with
three or more
levels

Freidman test Compare three or more ranks
between groups (often
pre/post)

I highly recommend two reference books to guide the researcher in choosing the
correct statistical test to use. These two references, [146, 147], discuss statistical tests
in easy to understand language devoid of the heavy use of jargon. Pett discusses the
choice of statistical methods specifically for small sample sizes, a common problem
in omic experiments.
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4.3.2.5 Statistical Model Complexity

Statistical models range from simple, where one is testing the relationship between
two variables, to extremely complex where one can have many comparison groups,
many time points, nested designs, and many covariates. As described above, it is
important to make sure the sample size one has is adequate to test the hypothesis of
interest. It is also important to make the best use of the number of samples one has,
often a small number.

Consider one wants to look at expression levels between two groups of mice,
treated and untreated, and also want to see if there is a sex difference. Analyze the
data using a linear regression with expression as your dependent variable and with
two independent variables, sex and treatment. This will allow you test the simulta-
neous effect of sex and treatment, and it will allow one, through the use of a sex �
treatment interaction term, to determine if expression differences between treated
and untreated are different in males and females. This is a much more efficient
analysis than performing a comparison in males and females separately. It allows
one to perform a direct comparison between males and females.

However, a more complex statistical model can require a larger sample size to
adequately test the hypothesis. If one has many treatment groups or many doses of
one treatment and are interested in evaluating the change in expression over many
time points, a small sample size of six mice is probably not adequate. Here we must
balance the need for using our data in the most efficient manner (using a more
complex model) with the need for a model that can be adequately supported by our
sample size.

4.3.2.6 Multiple Testing

The issue of multiple testing and the need to account for it is not a new phenomenon;
however, it has gained a new prominence with the rise of high-throughput experi-
ments where thousands, and sometimes millions, of statistical tests are performed on
the same samples. Whereas before we concerned ourselves with the testing of 10 or
20 outcomes, now we are concerned with a number of statistical tests that is many
orders of magnitude larger.

Each statistical test produces a p-value which most researchers are familiar with.
Using the conventional significance level of 0.05 as our decision point, a p-value
�0.05 will lead the researcher to reject the null hypothesis and conclude there is a
significant effect; a p-value >0.05 will lead the researcher to accept the null
hypothesis and conclude there is no evidence of a significant effect. In layman’s
terms, the p-value defines how likely the conclusion to accept or reject the null
hypothesis has occurred by chance. A p-value of 0.05 indicates that there is a 1 in
20 chance that the conclusion occurred by chance (false positive) and a 19 in
20 chance that the conclusion is true. The smaller the p-value is, the less likely it
occurred by chance. This concept applies to each statistical test performed.

66 S. Bhattacharya and H. Gordish-Dressman



Consider that for a single significance test performed at the conventional 0.05
level, we have a 5% chance (or a 1 in 20 chance) that our conclusion to reject the null
hypothesis occurred by chance alone (is a false positive). Because of a mathematical
property of probabilities, the likelihood of this conclusion occurring by chance
(a false positive) increases with the number of tests performed. So that if one
performs 20 statistical tests, there is a 64% chance of at least one conclusion being
a false positive. This 64% of having at least one false positive is obviously much
greater than 5%. Now consider when we perform thousands of statistical tests; the
likelihood that at least one of our conclusions is false approaches 100%. Unfortu-
nately, we cannot differentiate which of our significant conclusions are in fact false
positives and which are true findings.

To combat this problem, much effort has been put into methods to control the
error in an analysis [148] and these methods consider two different ways to solve this
problem. The first methods control the family-wise error rate (FWER), the proba-
bility of finding one or more false positives among all of the statistical tests
performed. The most common method, the Bonferroni method, adjusts the overall
error rate to control the probability of at least one false positive overall rather than for
each individual statistical test. Most researchers are probably familiar with the
Bonferroni correction where the p-value used as our cutoff for accepting or rejecting
the null hypothesis is adjusted by the number of hypotheses tested. For example, if
the cutoff (i.e., significance level) for a single statistical test is 0.05, then the new
cutoff for 10 statistical tests is 0.05/10 or 0.005. Now, only p-values that are �0.005
would be evidence to reject the null hypothesis and conclude there is a significant
finding. Unfortunately, the Bonferroni correction specifically and the adjustment of
the FWER generally are usually considered too conservative for most omic exper-
iments [149] for reasons that go beyond the scope of this chapter. A second
methodology, control of the false discovery rate (FDR), has been developed which
controls the expected proportion of false positive among all of the significant
findings (i.e., where the null hypothesis has been rejected). Many different methods
have been developed to control each of these error rates (FWER and FDR) and they
have been refined to resolve specific limitations. A review of the commonly used
methods for both control of the FWER and the FDR can be found in Chen [150].

In any omic experiment where we are performing multiple statistical tests, as in
testing the expression of thousands of genes, we need to account for multiple testing.
If we do not, we cannot define which, if any, of our genes yielding a significant p-
value are true findings and which are false positives.

4.3.2.7 Limitations and Future Directions

This chapter is intended as a resource to assist in the design and analysis of omic
experiments; however, it is not a comprehensive guide. It introduces a high-level
view of the bioinformatic techniques commonly used and an overview of the
statistical methods typically used for omic experiments, but it does not discuss in
detail the underlying mathematics or probability theory. It is advised that one
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consults with a statistician early in the experimental process, preferably during study
design, to ensure that one is able to test the hypothesis of interest with the data
collected. In addition, the guidance of a statistician is highly recommended for
complex study designs as the methods used for their analysis go beyond the common
methods discussed here. Some additional resources are given as references [151–
161]. These resources describe statistical tests and their interpretation from a non-
statistician perspective and include discussions of statistical analyses specifically for
omic experiments.

Understanding the purpose of your experiment will determine what type of
statistics are best suited and the inferential statistics described in this chapter may
not even be needed. The purpose of inferential statistics is to make broad conclusions
about a population from a smaller sample through the calculation of a p-value. If
your purpose differs, maybe to describe a sample rather than make inferences about
the broader population, the calculation of a p-value is unwarranted and unnecessary.
If you have only technical replicates, all originating from the same biological
sample, inferential statistics are unnecessary. Here any conclusions can only inform
you about the population which consists of a single biological sample.

The statistical analysis of omic experiments is an evolving field where consensus
on the most appropriate methods can be hard to find. As research continues,
improved methods for the adjustment of multiple testing better suited to related
outcomes will be developed and better methods of data integration from various
sources and platforms will be defined. However, there remain several challenges in
the analysis of omic data, whether it be integrating molecular and clinical data or
adequately testing hypotheses so that the resulting conclusions are relevant for the
population.
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Chapter 5
Transcriptomic Approaches for Muscle
Biology and Disorders

Poching Liu, Surajit Bhattacharya, and Yi-Wen Chen

The transcriptome refers to all RNA molecules transcribed from our genome,
including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA
(tRNA), as well as other regulatory noncoding RNAs. Some well-known regulatory
noncoding RNA molecules are long noncoding RNA (lncRNA), microRNA
(miRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA).
Among the different types of RNA, the protein-coding mRNA received the most
attention, particularly when the tools for RNA profiling, or gene expression profil-
ing, were first developed in the late twentieth century. Since then, different tools and
sample preparation techniques have been developed to target various groups of
RNAs for study. This chapter will focus on mRNA profiling approaches primarily;
however, the same or modified technologies can be used to study other RNA groups.
The approach for studying miRNA, miRNA profiling, is described in a separate
chapter.

Transcriptomic studies are conducted to understand how transcriptome differ-
ences and changes contribute to biological functions and diseases. For skeletal
muscle research, a large number of studies have been published in the past
20 years using arrays and sequencing approaches to investigate (1) basic muscle
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biology [1–5]; (2) molecular responses to physiological and environmental stimuli
[6–10]; (3) effects of aging on muscles [11, 12]; (4) disease mechanism of muscle
disorders [13–18]; (5) molecular changes in muscles of non-muscle diseases [19–
21]; and (6) molecular responses to therapeutic interventions [22–24]. Most of these
transcriptome data sets have been deposited into public databases, such as the Gene
Expression Omnibus (GEO) database hosted by the National Center for Biotechnol-
ogy Information (NCBI), National Institutes of Health (NIH) (https://www.ncbi.nlm.
nih.gov/geo/). This provides a rich source of information for researchers today. For
example, one can query and download data of interest and conduct further analyses.
In this chapter, we will focus on the most commonly used platforms and approaches
to generate these data sets.

5.1 Theory and History of the Technique

Gene expression is the process wherein information from a gene is used in the
production of a functional gene product. When the final product is a protein, the
process involves “transcription” which produces mRNA using DNA as the template
and “translation” which produces proteins using the information provided by the
mRNA transcripts. The size of human genome is estimated to be 3.3 billion base
pairs, and approximately 5% of it can be transcribed and produce RNA products. Of
the whole transcriptome, only ~4% of the transcribed RNAs are protein-coding
mRNAs [25]. The amount of mRNA changes slightly depending on the cell types.
Dividing cells that are more active transcriptionally produce more mRNA transcripts
compared to terminally differentiated cells, such as myofibers. In addition to mRNA
quantity, gene expression profiles are different in different cell types and cell states.
Controlling which genes are expressed at a given time enables the cell to control its
size, shape, and functions. In other words, while all cells carry the same DNA
content, only a small portion of the DNA is actively transcribed at any one point
in time. Among the transcripts produced, only a small portion is protein-coding
RNAs. Transcriptomic approaches allow us to investigate differences in these
transcripts in muscle tissues and cells in different physiological conditions and
disease states. By comparing samples of interests to the controls, one may discover
important molecular changes and pathways that play critical roles in the conditions
or diseases under study. Because many regulatory steps in addition to transcription
are involved in regulating protein synthesis and function, one should not make
conclusions solely based on mRNA profiling data. Previous studies showed that
mRNA expression levels positively correlate with protein levels; however, the
change of mRNA level does not fully explain changes in proteins because posttrans-
lational modifications such as phosphorylation and methylation may have further
effects on protein function [26–30].

Gene expression profiling measures RNA transcripts at a given moment, which
provides a “snapshot” of the gene activities in cells in a specific state or condition. In
general, methods for determining RNA transcript levels can be based on (1) transcript
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visualization, (2) transcript hybridization, or (3) transcript sequencing. Because
RNA molecules are prone to degradation, they are usually reverse-transcribed into
cDNA (complementary DNA) before further processing. However, there are excep-
tions which will be discussed later. Polymerase chain reaction (PCR) arrays use
fluorescent dyes to detect and quantify the amount of PCR amplicons of each
transcript in a sample. Microarrays use cDNA or oligonucleotide probes to detect
the transcripts by hybridization methods. The next-generation sequencing approach
directly sequences the transcripts and determines the expression level of each
transcript by the number of reads. Earlier technologies for expression profiling
(cDNA arrays or PCR-based arrays) measure the expression of hundreds to thou-
sands of genes at a time. These arrays can be made in-house or custom-made by
companies. Afterward, microarrays were commercially developed by several com-
panies to increase coverage, throughput, sensitivity, and specificity. Some of the
platforms are capable of surveying tens of thousands of transcripts and allow
genome-wide profiling. Commonly used platforms include Affymetrix GeneChip®

Microarrays, Illumina High-Density Silica Bead-Based Microarrays, and Agilent
Expression Microarrays. For these microarray platforms, oligonucleotide probes at
various lengths accompanied by different array designs are used to capture the target
transcripts by hybridization methods. Transcripts that have not been discovered or
are not included on the microarrays will not be detected or measured using these
platforms. This limitation was resolved by the next-generation sequencing technol-
ogies, which first became available at the beginning of the 2000s [31, 32]. Different
from the traditional Sanger sequencing, next-generation sequencing (NGS) does not
target specific sequences. Instead, all transcripts in a sample are sequenced. This
unbiased approach in theory can survey the whole transcriptome including both
coding and noncoding RNA. However, due to the limitation of how many reads can
be obtained in one run and one may only be interested in a specific type of RNA
transcripts, different protocols, including primer types and enrichment methods,
were developed to examine specific types of RNA transcripts.

5.2 Major Applications

5.2.1 Hybridization-Based Platforms

The principle of microarrays is nucleic acid hybridization, in which two comple-
mentary strands of DNA or RNA molecules join to form a double-stranded mole-
cule, following the complimentary base pairing rules: adenine (A) pairs with
thymine (T) and cytosine (C) pairs with guanine (G). Northern blotting uses probes
that are complementary to the target RNA to detect an RNA that is immobilized on a
nitrocellulose or nylon membrane. To detect many RNA transcripts at the same time,
instead of immobilizing the RNA samples, many different probes are immobilized,
i.e., spotted onto the membrane or glass slide and then used to detect the target RNA
transcripts in samples adding to the immobilized probes. In this case, RNA
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transcripts are reverse-transcribed into cDNA and then hybridized to the probes on
the slides. The cDNA fragments are fluorescently labeled for visualization. The
prototype of the cDNA microarray made by spotting known cDNAs into a 96-well
microplate was reported in 1995, on which cDNAs were printed by robot [33]. Dif-
ferential expression of 45 Arabidopsis genes were measured simultaneously using
two-color fluorescence approach. In1996, 870 cDNAs were spotted on glass slides to
determine gene expression for cancer classification [34]. Two different colors are
used for the platform, the sample of interest is labeled with one color (e.g., Cy3), and
a reference sample is labeled with a different color (e.g., Cy5). Both samples are
hybridized to the same array and the ratio between the experiment and the reference
samples are used for further data analyses. This design allows proper normalization
and comparisons among different arrays (Fig. 5.1). One of the earliest expression
profiling studies done in skeletal muscles was reported in 1996, in which membranes
with cDNA clones spotted on them were used [5]. The early versions of cDNA
arrays provide platforms for examining hundreds of transcripts simultaneously.
There are several issues associated with the cDNA arrays, such as sensitivity,
specificity, normalization, reproducibility, throughput, and coverage which were
addressed in later generations of microarrays. Next, we describe three commercial
platforms that are commonly used for expression profiling studies. A comparison of
the three platforms is in Table 5.1 at the end of this section.

Fig. 5.1 Workflow of gene expression profiling using two-color cDNA microarrays
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5.2.1.1 Affymetrix

Affymetrix makes GeneChip arrays for transcriptome analysis using millions of
25-base DNA probes that have been synthesized directly onto a glass chip using
light-directed oligonucleotide synthesis method [35]. The probes are used to “probe”
the sample for target RNA segments. Hybridization is the basis for the detections.
Because the 25-mer is relatively short and can potentially bind to more than one
transcript, instead of one probe, a set of 11 probes are designed for each transcript.
The intensity data from all 11 probes are analyzed to determine whether the
transcript is detected (called “present”) or not detected (called “absent”) and give a
measure of the level of expression. In an experiment, the mRNA is reverse-
transcribed into double-stranded cDNA. The cDNA is then used as the template
for in vitro transcription. The RNA produced is known as cRNA, in which the uracil
bases are labeled with biotin. The fragments of biotin-labeled cRNA are then loaded
into the array so that the sample can hybridize with the probes on the glass chip of the
array. Afterward the array is washed to remove RNA that has not hybridized to the
probes. The hybridization is then visualized using streptavidin-linked fluorescent
dyes that bind to the biotin-labeled cRNA. The array is scanned with a laser scanner
and the image is analyzed to determine which transcripts are detected and how much
of each transcript is present.

In 2000, Affymetrix GeneChip® HuGeneFL Arrays were used to identify
transcriptomic changes underlying disease mechanisms of muscular dystrophies
[18]. In this study, approximately 30–40% of the known human transcripts that
were on the array were called “present”. Based on the data collected from the array,
the group developed a custom-made muscle array which contains genes that are
expressed in skeletal muscles [36, 37]. The Affymetrix GeneChip® HuGeneFL
Array is the first version of human whole genome array and contained approximately
5000 full-length human sequences. Several different versions containing more
sequences to cover the whole genome were subsequently developed, and the final/
latest human version, Clariom™ D Assay, consists of more than 5,40,000 tran-
scripts, including alternative splicing isoforms of both coding and noncoding RNAs.
Microarrays for other species, including mouse, rat, nonhuman primates, insects,
livestock, bird and fish, and small mammals, are also currently available for expres-
sion profiling studies. In addition to the arrays for mRNA and long noncoding RNA,
GeneChip™ miRNA Arrays are available for studying small noncoding RNA,
including miRNA, snoRNA, and scaRNA.

Table 5.1 Features of Affymetrix, Illumina, and Agilent microarrays

Manufacture Affymetrix Illumina Agilent

Feature size (μM) 10 3 50

Oligonucleotide length 25 nt 50 nt 60 nt

Number of oligonucleotides/gene 10–20 1–2 1–2

Number of features/array Up to 10,00,000 Up to 40,00,000 Up to 2,00,000

Custom flexibility Limited Moderate Excellent

5 Transcriptomic Approaches for Muscle Biology and Disorders 83



5.2.1.2 Illumina

Illumina Whole-Genome Gene Expression BeadChip consists of oligonucleotides
immobilized to beads which are held in microwells on the array [38]. Up to 30 beads
are available for each probe to improve data quality and reproducibility. The beads
are randomly distributed across the array, one bead per well, and a 29-mer address
sequence present on each bead is used for mapping the location of the beads on the
array. In addition to the unique bead design, the BeadChip microarray is deployed on
multi-sample array formats. Four to 24 uniform pits can be on each array, and
multiple samples can be loaded to the Illumina Expression BeadChip arrays,
which increases throughput and reduced sample-to-sample variations. The length
of the probe is 50 bases which is synthesized in solution and then cross-linked to the
beads. Labeled cRNA segments are hybridized to the probes on the BeadChip. After
hybridization, washing, and staining, the image data are acquired by a scanner. The
HumanHT-12 Expression BeadChip simultaneously profiles more than 47,000 tran-
scripts representing 28,688 well-annotated genes. The transcription level is calcu-
lated using average of the signals from all the beads. In addition, some genes can be
detected by more than one probe. For formalin-fixed paraffin-embedded (FFPE)
samples, the Illumina developed the DASL Assay for handling degraded RNA,
including muscle samples [39, 40].

5.2.1.3 Agilent Technologies

Agilent SurePrint G3 Gene Expression Microarrays are made with probes of
60 bases long [41]. The probes are synthesized onto the glass slides directly by
printing A, T, C, G using an inkjet-like printer at hundreds of thousands of spots on
the slide. After each nucleotide is added, a chemical de-blocking step is used to allow
the next nucleotide in the chain to be added. The probes grow to the full length at the
end. Agilent SurePrint used to be a two-color system Cy3 and Cy5). Now a
one-color only (Cy3) system is available for the users. The advantage of this
approach is that it makes updating of stock microarrays possible/easier as new
gene information becomes available. In addition, custom-designed arrays targeting
transcripts of specific interest can be created using this platform. The probes used
here are relatively longer compared to the probes on the Affymetrix arrays but
shorter than the traditional cDNA array. The length of the oligonucleotides is at a
balance point for better sensitivity and specificity. Currently, human, mouse, and rat
microarrays that cover coding and noncoding transcripts from the NCBI Reference
Sequence (RefSeq) database are available. The coding and noncoding tran-
scripts from RefSeq database are curated and nonredundant sequences.
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5.2.2 Sequencing-Based Platforms

Next-generation sequencing (NGS)-based RNA sequencing (short for RNA-seq) is a
highly sensitive and accurate method for gene expression profiling analysis that
provides insight to previously undetectable changes in gene expression, as well as
enabling the characterization of multiple forms of noncoding RNA. With RNA-seq,
researchers can detect the various structures of the transcriptome, such as transcript
isoforms, gene fusions, single nucleotide variants, and other features, without the
limitation of prior knowledge. RNA-seq (1) provides sensitive, accurate measure-
ment of gene expression at the transcript level; (2) generates both qualitative and
quantitative data; (3) detects and sequences small RNAs and multiple forms of
noncoding RNA, such as small interfering RNA (siRNA), microRNA (miRNA),
small nucleolar (snoRNA), and transfer RNA (tRNA); (4) identifies alternatively
spliced isoforms, splice sites, and allele-specific expression in a single experiment;
(5) provides data sets that are not biased or restrained by existing knowledge;
(6) obtains allele-specific information in the data; and (7) scales for large studies
and high sample numbers. As researchers seek to understand how the transcriptome
shapes biology, RNA-seq is becoming one of the most significant and powerful tools
in modern science. In addition, these sequencing-based methods are more cost-
effective in comparison to microarrays and real-time RT-PCR. A comparison of
the major platforms is in Table 5.2 at the end of this section.

5.2.2.1 Illumina

The Illumina platforms are the most commonly used sequencers for next-generation
sequencing. The technology has been used extensively for diagnosis of muscle
diseases [42, 43]. It has also been used for studying muscle transcriptome to answer
various biological questions, such as annotations of muscle transcripts, muscle
disease mechanisms, and basic muscle biology [44–46]. Sample preparation for
mRNA-seq using the Illumina platform involves isolation of RNA and chemical
fragmentation of RNA, followed by reverse transcription to generate double-
stranded cDNA fragments that are then sequenced. Figure 5.2 illustrates a simplified
workflow of the process. Sequencing adaptors which contain barcodes are ligated to
the cDNA fragments before size selection by gel electrophoresis. The fragments at
desired size are then excised for sequencing. For example, fragments ranging from
250 to 400 bases are collected for regular RNA-seq. To sequence shorter fragments,
e.g., to target shorter miRNA, fragments of 150 bases or less are collected. A
relatively low number of cycles (9–12 cycles) of PCR amplification are performed
to increase the template. Alternatively, PCR-free kits are now available to reduce
biases and contamination that may be introduced during PCR amplification.

DNA libraries are hybridized to the primer lawn on the flow cell by an automated
Cluster Station (cBot). Single-stranded cDNA fragments are washed across the flow
cell and bind to primers on the surface of the flow cell. DNA that doesn’t attach is
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washed away. The DNA attached to the flow cell is then replicated to form small
clusters of DNA with the same sequence. This design (a cluster of the same molecule
instead of only one molecule) allows florescent signals emitted during the sequenc-
ing process strong enough to be detected by a camera. During the sequencing
process, the primers are first added. The DNA polymerase then adds the first
fluorescently labeled terminator bases (A, C, G, and T) to the new DNA strand.
Laser lights are used to activate the fluorescent label on the nucleotide base. This
fluorescence is detected by a camera and recorded on a computer. Each of the
terminator bases (A, C, G, and T) give off a different color. The fluorescently labeled
terminator group is then removed from the first base, and the next fluorescently
labeled terminator base can be added, and the process continues until the fragments
are fully sequenced. Illumina sequencer sequences short reads (50 or 250 bp

Table 5.2 Sequencers from Illumina, Thermo Fisher Scientific, PacBio, and Oxford Nanopore

Platform

Maximum
read length
(bp)

Maximum
throughput
per run
(Gb)

Single
read
accuracy
(%) Strength Weakness

Illumina

MiSeq 2 � 300 15 99.90 Longer read length, high
accuracy, lower cost

GC bias, lower
output

NextSeq 2 � 150 120 99.90 High accuracy, lower
cost, high throughput

GC bias

HiSeq 2 � 150 1500 99.90 High throughput, high
accuracy

GC bias, short
reads, high ini-
tial investment

NovaSeq 2 � 150 6000 99.90 High throughput, high
accuracy

GC bias, high
initial
investment

ThermoFisher Scientific

ION
Torrent
S5

400 25 99 Short run time, longer
read length

ION
PGM

400 2 99 Short run time Homopolymer
errors

ION
Proton

200 15 99 Short run time Homopolymer
errors

PacBio

RS II 60,000 160 90 No amplification bias,
long read length

Higher error
rate

Oxford Nanopore

MinION 100,000 10 90–99 No amplification bias,
long read length, portable,
direct detection of base
modification

Higher error
rate

86 P. Liu et al.



depending on the version) and can sequence both ends of the molecules
(paired ends).

5.2.2.2 Ion Torrent

The major advantage of the Ion Torrent platform is lower cost and rapid sequencing
speed [47]. After reverse transcription, single-stranded DNA templates are loaded to
a semiconductor chip. Unmodified A, C, G, or T dNTP are then added individually
along with DNA polymerase enzyme. If an introduced dNTP is complementary to
the next unpaired nucleotide of the DNA template, it will be incorporated into the
complementary strand by DNA polymerase. During the incorporation process,
hydrogen and pyrophosphate are released. The releasing of the hydrogen is detected
by a sensor and used to determine the base at that position in the DNA template.
With a portfolio of chips of varying outputs, the Ion GeneStudio™ S5 Plus and Ion
PGM™ Sequencers scale to a variety of RNA-seq applications for a broad range of
transcriptome sizes. For example, the Ion 550 Chip generates 100–130 million
sequencing reads on the Ion GeneStudio™ S5 Plus and Prime Systems using the
automated workflow of the Ion Chef System. The sequencing run time is as little as
2.5 h, with only 15 min of sample preparation time. Torrent Suite Software processes
and exports the sequence reads in FASTQ or BAM formats, which can be easily
imported into third-party software, such as Partek Flow software packages, for
further analyses. The read length has increased from 50 bases in the original
model to 400 bases in the latest model. Few examples of using this technology

Fig. 5.2 Workflow of Illumina RNA-seq. Total RNA (or mRNA) is isolated, followed by RNA
fragmentation, cDNA generation, linker ligation, fragment enrichment, and size selection to prepare
library for sequencing. Next-generation sequencing is a massive parallel sequencing which gener-
ates tens of billions of bases of sequences. Downstream data analyses followed
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include studies to dissect molecular pathways involved in myogenic differentiation
and de novo assembly of a muscle transcriptome [48–50].

5.2.2.3 Pacific Biosciences

PacBio uses single-molecule real-time (SMRT) sequencing technology for long-read
sequencing, which allows sequencing full-length cDNA without read assembly
[51]. The strengths of the system are that it is able to easily identify and quantify
new transcripts and alternative splicing isoforms. The SMRT sequencing is built
upon zero-mode waveguides (ZMWs) and phospholinked nucleotides. Zero-mode
waveguide is an optical waveguide that guides light energy into a volume that is
small in all dimensions compared to the wavelength of the light. Tens of thousands
of tiny wells with ZMWs are in the SMRT cell, in which one cDNA template
molecule is immobilized. Phospholinked nucleotides labeled with four different
fluorophores allow observation of the addition of the nucleotides as the DNA
polymerase producing the complementary strand. PacBio sequencer has advantages
of long read lengths, simultaneous epigenetic characterization, and single-molecule
resolution. The disadvantage is that the error rate is higher compared to the tradi-
tional short-read sequencing. Currently, muscle transcriptomic data generated using
this technology were frequently used to improve annotation of an incomplete
genome [52, 53].

5.2.2.4 Oxford Nanopore

Oxford Nanopore sequencing can directly sequence single molecule of DNA or
RNA without the need for PCR amplification or chemical labeling of the sample.
The flow cell contains more than a thousand nanopores which are nanoscale holes on
a membrane. In the device, ionic currents pass through the nanoscale holes, and
changes in current that occur as biological molecules pass through the nanopore are
recorded by a sensor [54, 55]. Computational algorithms are used to analyze the data
to reduce which of the four nucleotides passed through the pore. The approach can
be used to sequence DNA, RNA, and protein. When the RNA transcripts are
sequenced, the RNA samples can be reverse-transcribed into cDNA for sequencing
or directly sequenced. When the RNA is sequenced directly using the technology,
modifications of the bases (e.g., inosine, N6-methyladenosine, and N5-
methylcytosine) can be detected based on the subtle differences in the current
changes [56]. However, the call heavily relies and depends on the algorithms used
for data analyses. While quickly improving, this platform still has the higher error
rates in comparison to other major platforms. One advantage of the platform is the
transportability of the smaller device, such as MinION. The pocket-size device has
been brought into space and used in Antarctica as well as in rural areas for
experiments and fieldwork [57–61]. This provides new opportunities for clinical
diagnostic and research use. Nanopore sequencing has the potential to offer
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relatively low-cost sequencing, high mobility for testing, and rapid processing of
samples with the ability to display results in real time. The device is the only
sequencer to date that is able to sequence full-length RNAs.

5.2.3 Reverse Transcriptase Polymerase Chain Reaction
(RT-PCR) Assay

Microarrays and next-generation sequencing are high-throughput approaches, which
are great screening tools for identifying transcriptional changes in samples. The
RT-PCR assay is the most commonly used method to validate the changes identified.
Real-time RT-PCR allows accurate quantification because the amount of PCR
amplicons in a sample is measured real time after each PCR cycle, which allows
proper selection of data points for RNA quantification based on the rate of ampli-
fication. In the method, RNA is reverse-transcribed into cDNA, followed by
detecting and real-time monitoring of the presence of PCR products using florescent
dyes. The dyes can be either SYBR™ Green, which can be incorporated into the
DNA amplicons directly, or a fluorescently labeled probe that can bind to the target
sequence. In addition to individual assay, multiple assays can be performed to
examine gene networks and pathways. One example is the TaqMan® Gene Expres-
sion Assay developed by Applied Biosystems. The assay utilizes the 500 nuclease
activity of the Taq DNA polymerase to cleave the fluorescently labeled probe. Each
assay includes a single FAM™ dye-labeled TaqMan® probe with a minor groove
binder (MGB) moiety and two unlabeled oligonucleotide primers. The assays were
designed based on transcripts obtained from the NCBI Reference Sequence Project
database (RefSeq). QuantStudio™ 12K Flex OpenArray® Plate allows users to
specify the TaqMan® Gene Expression Assays to be included on the plate. Each
plate generates 2600 data points. The advantage is the flexibility of the design which
allows easy customization. The TaqMan®Array HumanMicroRNA Card Set v3.0 is
a two-card set containing a total of 384 TaqMan® MicroRNA Assays per card,
which can be used to assay miRNAs that are differentially expressed. It was used to
identify miRNAs that are differentially expressed between disease and healthy
muscle cells in order to understand disease mechanisms [62].

The PCR-based technique is highly sensitive, and no pre-amplification is needed.
In addition to being performed in an arrayed format for large-scale analysis, real-
time RT-PCR is the gold standard technique for validating differential expressed
genes identified by other high-throughput methods. Either absolute or relative
quantification can be performed. Standard curve can be included to allow compar-
ison among different plates. For validating expression changes less than twofold,
digital PCR (dPCR) can be considered for their better resolution. The dPCR is a
quantitative PCR method that the initial sample mix is partitioned into many
individual wells prior to the PCR amplification step, resulting in either 1 or 0 targets
being present in each well. Following PCR amplification, the number of positive and
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negative reactions is determined, and the absolute quantification of target transcript
is calculated using Poisson statistics.

5.2.4 Single-Cell RNA Sequencing

Traditional gene expression profile analyses analyze the expression of RNAs from
tissues or large populations of cells. In such mixed-cell populations, these measure-
ments may obscure critical differences that exist between individual cells, e.g.,
diseased vs viable, replicating vs senescent. Single-cell RNA sequencing (scRNA-
seq) allows expression profiling in individual cells. This can reveal the existence of
rare cell types within a cell population that have not previously been known. In
addition, scRNA-seq can be used to examine expression variations among the same
type of cells. Briefly a scRNA-seq experiment involves several steps: (1) single-cell
capture; (2) single-cell lysis; (3) reverse transcription of the RNA; (4) library
preparation; and (5) sequencing and data analysis (Fig. 5.3). Currently, common
single-cell sequencing platforms include 10X Genomics Chromium, Drop seq, and
Fluidigm C1. These platforms are primarily used for single-cell capture, processing,
and library preparation. A few potential applications of scRNA-seq include

Fig. 5.3 Workflow of single-cell sequencing. Single-cell RNA sequencing starts with single-cell
dissociation from the tissue sample, followed by single-cell capture. The captured cells then
undergo cell lysis, reverse transcription, and fragment enrichment in preparation for sequencing
and downstream data analysis
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characterization of cell types, elucidation of gene regulatory networks, drug resis-
tance clone identification, noninvasive biopsy diagnosis, stem cell lineage regulatory
networks, assessing tumor heterogeneity, and CRISPR screening.

Several studies utilizing the scRNA-seq technology to study skeletal muscles
suggested that muscle stem cells are a heterogeneous cell population with substantial
biochemical and functional diversity [63–65]. scRNA-seq was also used to provide
critical insights to disease mechanisms of the muscle disorder, such as
facioscapulohumeral muscular dystrophy (FSHD). The majority of the FSHD
(FSHD1) cases are caused by the contraction of a macrosatellite array called
D4Z4 at the chromosome 4q35. This mutation in combination with a permissive
genomic feature in the region allows the aberrant expression of double homeobox
protein 4 (DUX4) protein. The aberrant expression of the DUX4 leads to down-
stream molecular changes that cause the disease [15, 16, 66, 67]. It has been reported
that the DUX4 is not expressed in all cells and is present in only approximately 1 in
1000 proliferating myoblasts in culture [68]. Additional studies suggested that the
expression of DUX4 is stochastic due to the epigenomic changes at the D4Z4 region
[69, 70]. The scRNA-seq studies allowed the investigators to determine expression
patterns in individual cells and conclude that a DUX4 expression induced a series of
downstream expression changes [71].

5.3 Data Analyses

5.3.1 Microarrays

There are many bioinformatics tools/algorithms available to analyze microarray
data. Some are command line based (mostly in R) and some are user interface
(UI) based. GeneSpring from Agilent and Transcriptome Analysis Console (TAC)
from Affymetrix are UI based, while limma and affy are R command line based
[72, 73]. The basic analysis of microarray data can be broadly divided into steps. The
first step is data extraction, preprocessing, and normalization and the second is
identifying differentially expressed genes between samples, across different condi-
tions. The affy package from the Bioconductor suite of tools in R extracts intensity
data from .CEL files. Similarly, GeneSpring from Agilent Technologies helps in
intensity extraction from raw microarray data sets from Agilent. The beadArray
package from the R/Bioconductor suite of tools can be used to extract intensity
values from raw images from beadArray experiments [74].

For any experiment related to the evaluation of expression differences between
two groups, it is important to carry out the same experiment multiple times. This
increases the sample size to perform statistical significance tests for differential
expression, as well as reducing the bias in the experiment. This is typically done
using one of the following methods depending on the purpose of the repeated
samples. The biological replicates are samples extracted from multiple biological
entities, under the same biological condition. For example, to study the effect of a
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drug on a muscle disease, 3 affected mice are given a drug (experimental condition)
and 3 mice are not administered the drug (control). RNA is extracted from these
6 mice individually, to yield 3 biological replicates for the experiment and the
control conditions. The purpose of biological replicates is to draw conclusions on
the larger population of samples/controls. The technical replicates are samples
extracted multiple times from the same biological entity. In this case, one mouse
affected is given the drug (experiment) and the other mouse receives no drug
(control). RNA is extracted once from each of the mice and RNA is separated into
3 portions each, to run 3 controls and 3 experimental samples in the microarray
experiment. The purpose of technical replicates is to measure how much variation in
the quantification can be expected due to technical conditions. Note technical
replicates are not, and should not be, considered biological replicates; they are not
used to make conclusions about the population of the mice.

In any experiment, not all replicates can be run at the same time on the same
machine under the exact same conditions. Replicates may have to be run on
consecutive days or on two different instruments. These conditions introduce sys-
temic variations which, in turn, can cause variation in the expression of genes that
should be identical. To quantify and account for these run-to-run variations, nor-
malization methods are applied. There are two types of normalization, between and
within arrays. Between array methods normalize the expression of genes across the
multiple arrays (i.e., replicates), while within array methods normalize expression
across genes within an array (within the same replicate). One of the most commonly
used methods of between array normalization is quantile normalization [75]. The
RMA function in the affy package, part of the Bioconductor suite of tools and
GeneSpring from Agilent technology, not only performs quantile normalization
but also performs background correction, probe-level intensity calculation, and
probe set summarization. For within array normalization, Loess normalization is
typically used and implemented by the limma package, part of the Bioconductor
suite of tools. Other platforms like nimblegen and illumine have the packages oligo
[76] and beadArray, respectively, which extract intensity and normalize data using
the RMA function.

To evaluate possible changes in expression pattern across replicates, it is impor-
tant to use visualization in combination with statistical methods. A useful visualiza-
tion method is the heatmap.2 function in the gplots R package [77], which combines
heatmap functionality with hierarchical clustering to visualize the expression pat-
terns across replicates. Ideally, a normalized data set should show a similar expres-
sion pattern for a given gene across multiple replicates. If a significant difference in
expression patterns is observed, one needs to first verify that the correct file was used
for a given replicate, an easy mistake to make given the similarity in file names.
Next, different normalization methods should be used to verify that they show the
same general pattern. Principal component analysis (PCA) [77] and box plots are
used by Genespring to visualize the expression patterns across samples. This
normalization allows one to be confident that the quantification of gene expression
from different samples can be directly compared when assessing differences in gene
expression affected by an introduced factor (i.e., treatment, disease, etc.).
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When comparing two or more groups, one can identify genes that are differen-
tially expressed using statistical analyses. Difference in expression is expressed as
fold change (experimental gene expression/control gene expression) or logarithmic
fold change [log2 (experimental gene expression/control gene expression)]. Statisti-
cal significance is measured using hypothesis testing based on the design of the
experiment. See the chapter of bioinformatics and statistics for omics data for details
on the appropriate statistical method to use. Often, for designs where there is a single
experimental condition and a single control condition, Student’s t-test is used [78],
whereas ANOVA is commonly used for complex designs where there are multiple
experimental and control conditions [79]. Be advised however that both Student’s
t-test and ANOVA have assumptions that the data must meet for the tests to be valid.
Multiple testing correction methods such as the Benjamini-Hochberg [80] or
Bonferroni [81] are used to limit false positives. Base R packages are available to
perform t-tests (t.test()), ANOVAs (aov()), and multiple testing p-value correction
(p.adjust). GeneSpring uses ANOVA in their differential expression analysis.
Another program, limma, is a Bioconductor package which is based on linear
regression models and is one of the most popular differential expression analysis
tools. Before beginning the analysis of differential expression, a clear understanding
of the appropriate statistical method to use is essential, as using the incorrect method
can lead to invalid conclusions. Once genes are found to be differentially expressed
between conditions, they can be further analyzed by various means including
clustering analyses and functional annotation and gene ontology methods. In addi-
tion, Ingenuity Pathway Analyses, a web-based commercial tool, can be used to
identify networks, pathways, and regulatory relationships among the identified
transcripts.

5.3.2 RNA-Sequencing (RNA-Seq)

High-throughput sequencing techniques produce either short (50–75 bp) reads like
those generally produced by Illumina sequencers or longer reads produced by newer
methods such as PacBio (30–50kbp) [82] and Oxford Nanopore (can be longer than
100K) [55, 83] systems. Read length is an important parameter, as longer reads are
better able to estimate the number of counts of larger genes. Another important
parameter is the coverage of reads across a gene. To get a greater coverage, the reads
are sequenced from both ends (also known as paired end reads) when the Illumina
platform is used. Although the read lengths are different, major workflow is similar
and described below.

The major workflow, from raw sequences obtained from the sequencers (here we
specifically discuss short-read sequencers) to a list of differentially expressed genes,
can be divided into four major steps (workflow is depicted visually in Fig. 5.4):

Step 1 is preprocessing of raw sequences. This step uses the same tools as used in
Quality Control in Genomics analysis section.
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Step 2 is aligning the sequence. Multiple tools/algorithms are available for the
alignment/mapping of the transcriptome sequence to the reference genome. The
important aspects in choosing an alignment algorithm/software are the accuracy of
alignment to the reference genome, computational memory used, and the time taken
for the alignment. In addition, for transcriptome alignments, it is important that the
aligners are splice junction aware. This is because the RNA-seq is performed on
mature messenger RNAs (mRNAs), which are devoid of introns, but the reference
genome contains the intron sequences. If the aligner is not able to accurately identify
the region where splicing or removal of introns (splicing junction) happens, then it
would treat it as a deletion, and not estimate the transcript count accurately. Tophat2
[84], part of the Tuxedo [85] suite of tools, is a read aligner that is splice junction
aware. The Tuxedo suite of tools takes a raw FASTQ file as an input, aligns it to the
reference genome (Tophat2), and assembles it to accurately calculate expression.
Cufflinks [86] calculates the differential expression between samples (cuffdiff) and
finally visualizes expression plots (Cummerbund). Tophat2 uses Bowtie2 [87] (a fast
aligner that uses Burrows-Wheeler transform (BWT) [88] for compression and
storage of the reference genome) and FM index [89] (a compressed indexing method
for Burrows-Wheeler transformation), so that it can be accessed rapidly. The regions
that do not align to the reference genome using bowtie are divided into smaller
segments using Tophat2. Tophat2 determines splice junction, when it observes read
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Fig. 5.4 Workflow of RNA-seq data processing
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segments aligning to the reference genome with a gap of 100–1000 bases
between them.

STAR (spliced transcripts alignment to a reference) [90] is a fast aligner which
uses the concept of Maximal Mappable Prefix (MMP), on uncompressed suffix
arrays. Suffix arrays are a type of data structure, which enables faster searching of
sequences for alignment, by breaking the larger sequence into smaller subsections
(suffix), sorting and storing the address in the form of arrays. The MMP algorithm
searches these arrays to find the longest subsection of sequence reads that map to the
reference genome sequence. After the alignment, the software performs clustering
and stitching of all reads aligned to the genome to form a complete realigned
sequence. The disadvantage of this algorithm is that it is memory intensive as the
MMP search algorithm is performed on an uncompressed suffix array instead of a
compressed one. HiSat [91], a newer alignment algorithm, is part of the new Tuxedo
2 [92] pipeline [HiSat (alignment), StringTie (assembly) [93], and Ballgown (differ-
ential expression calculation) [94]]. Like Tophat2, HiSat also uses bowtie for
alignment utilizing the FM index functionality but also implements two different
FM indexes that increase the accuracy of alignment. Of the FM indices, one is a
global FM index and comprises the whole reference genome. The other index
contains several small FM indices, each made up of a 64,00-bp subsection, which
together covers the whole genomic region. By using memory optimization algo-
rithms, it can reduce memory usage and can align a whole human genome using only
4GB of memory.

Step 3 is assembly and quantification. The output from the alignment processes
produces aligned reads in the Sequence Alignment Map (SAM) format [95]. The
SAM file is text-based and includes mandatory fields of chromosome number,
location on the chromosome, and quality annotated, i.e., no genes are associated to
the reads. The assembly and quantification tools are responsible for annotating the
reads and estimating read counts associated with each transcript in the genome. SAM
files are converted into BAM files (binary SAM files), sorted, indexed, and then
given as an input to the assembler or read count estimation tools. Quality check of
the BAM files can be done using RSeQC [96]. Preprocessing is performed
by samtools software. There are multiple processes that perform assembly and
quantification. The choice of read count quantification tool depends on whether
one wants to have normalized read counts or raw read counts that can be normalized
using custom scripts.

Normalized read counts can be divided into two basic types, reads per kilo million
bases (RPKM) and transcripts per kilobase millions (TPM). RPKM is a normalized
read count for single-read RNA sequences [97]. It is measured as the ratio of the
number of reads depicting a region and the product of total reads divided by 1 million
and region length divided by 1000. Fragments per kilo million (FPKM) bases is the
paired end interpretation of RPKM. One of the tools that produce FPKM values is
Cufflinks. Cufflinks, part of the Tuxedo pipeline, assembles the reads by first creating
an overlap graph which represents all the reads that map to a region. The algorithm
then traverses through the graph to assemble the isoforms, by identifying the
minimum number of transcripts that can signify a particular intron junction. The
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assembled transcript fragments (transfrags) are counted using a statistical model for
RNA-seq experiments [86]. The output from this tool is a Gene transfer format
(GTF) file, which, along with information like chromosome name and location of the
gene, also contains the gene abundance or read counts in FPKM. TPM is another
normalization method [98] that is measured as the ratio of reads per kilobase (RPK)
per million scaling factors. The RPK value is the read counts of each gene divided by
the length of each gene in kilobases. The per million scaling factor is the sum of all
RPK in a sample divided by 10,00,000. As the denominator remains constant, TPM
for a given gene remains constant across replicate conditions if the same number of
reads is aligned to the reference genome. This is not the case for RPKM (or FPKM)
as its denominator is the length of the genes, which is a variable factor.

RSEM tool is responsible for the calculation of TPM for reads [99]. In the
workflow, rsem-prepare-reference function takes in whole genome reference
sequence in fasta format and GTF files and converts it to a transcript reference
sequence. RSEM utilizes the transcript reference to get a clear count of isoforms.
Next, rsem-calculate-expression calculates the TPM read counts. The input to this
tool can be either FASTQ files or aligned BAM files. If fastq is provided as an input,
the function first aligns the reads to a reference genome (default aligner is bowtie,
STAR is the other aligner available in RSEM). Then using the expectation-
maximization algorithm [100], maximum likelihood abundance (expected counts)
is calculated and converted into TPM values. In case of aligned BAM files, special
caution must be taken, if they are produced by aligners other than BWA and STAR.
Because RSEM uses an enhanced read generation model for estimating read abun-
dance compared to other aligners, aligner parameters must be changed to report all
aligned reads. Outputs from this tool are 2 text files reporting gene TPM and isoform
TPM values, respectively.

There are few other tools that do not perform any normalization in the read
estimation step. These provide users with raw read counts which can then be
normalized either by using available R/Python scripts or by functions available in
downstream processes. One of the tools, Htseq a python package [101], not only
quantifies read counts but can also be used as a parser for different genomic data files
like FASTQ, SAM/BAM, a quality assessment tool (htseq-qa) for aligned reads, and
GenomicArray class that stores the information from genomic data. The htseq-count
function counts the reads based on the idea that the reads should cover an exon either
completely or partially. The read counts are raw read counts, which can be normal-
ized into FPKM, by custom scripts in python or R. Other useful tools are
featureCounts [102] and summarizeOverlaps of the Genomic Alignment package
in R [103].

Step 5 is differential expression calculation to identify genes or noncoding RNAs
that are statistically significantly different between two or more conditions. In these
steps raw or normalized reads are taken as an input, and using either parametric or
nonparametric methods, differentially expressed genes are evaluated. The reads are
given as an input directly as text files (in the case of Cuffdiff) or as R data objects
extracted by tools like tximport [104], for downstream processing with R
Bioconductor packages. Sample size is an important criterion to identify truly
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statistically significant differentially expressed genes. For RNA-seq tools, the effi-
ciency of detection increases with sample size, and most of the statistical tools work
reasonably well with a sample size of 3–5 per condition. Many of these tools can
identify statistically significant targets with no replicates; however, extreme caution
should be taken with interpretation. Please see the chapter of bioinformatics and
statistics for omics data to fully understand the appropriate sample size and statistical
methods to use. In general, differential expression tools can be divided into two
types.

The first one is parametric analysis. The read counts generated from the quanti-
fication tools are either raw read counts or normalized read counts (FPKM/TPM).
Most of the downstream differential expression tools have methods of normalization
built into the packages. EdgeR [105], a R Bioconductor package, takes as input the
read counts and stores them in a list-based data object called DGEList. This contains
the read count matrix and the sample information, including the library information,
in the form of a R type data frame and an optional data frame containing annotated
gene information. EdgeR has methods to filter data based on count per million
(CPM; which is a normalization method similar to TPM) read counts, to normalize
data (calcNormFactors), and to estimate dispersion in read counts across samples
using a quantile-adjusted conditional maximum likelihood negative binomial model
(estimateDisp). For the differential expression calculation, a design matrix
containing the condition and sample information (i.e., which samples are controls
and which are experimental) must be provided as an input. Differential expression is
calculated using an exact negative binomial test (exactTest). Differentially expressed
genes are listed with parameters showing statistical significance (p-value and
adjusted p-value) and fold change by the topTags function. Deseq2 is another
Bioconductor package that uses similar statistics as EdgeR [106]. It takes as input
raw, non-normalized read counts and stores them as a DESeqDataSet, similar to
DGEList for EdgeR. Instead of three different functions to calculate differential
expression, Deseq2 has the function DESeq which contains the functions for nor-
malization, dispersion estimation, and negative binomial generalized linear model
(GLM) [107] fitting followed by a Wald test [108] to test for differential expression.
This tool provides an output similar to EdgeR. Cuffdiff, part of the Tuxedo suite of
tools, uses a merged GTF file produced by Cufflink along with aligned SAM files
from the conditions (output from Tophat) as the input for finding differential
expression between conditions. The GTF files for each of the samples produced by
Cufflinks are merged using the Cuffmerge function. The Cuffdiff function works
twofold: First, it quantifies the reads to FPKM values. Second, it performs a
statistical significance test based on negative binomial distribution as the previous
two functions. The output is quite similar to the previous two methods.

The second is nonparametric analysis. Although parametric methods are quite
powerful, it is completely dependent on the assumption that the distribution of the
expression values fit the distribution of the statistical test being used. Methods like
GFold [109] and Noiseq [110] use nonparametric methods of differential expression
calculation. GFold uses a posterior distribution of logarithmic value of the raw fold
changes and then ranks them based on their values. Those with higher ranks are
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upregulated, whereas low-ranked ones are downregulated. GFold can be used for
both single replicates and multiple replicates. For Noiseq, several distributions are
created; a noise distribution is for exhibiting change in counts, a contrasting fold
change distribution (M), and an absolute expression difference (D), for each gene in
a given condition. These are then used to compare whether M and D values between
conditions fall within the noise or are actual differences. NoiSeq has 2 functions,
NOISeq-real for replicates and NOISeq-sim for non-replicated samples. The output
from these steps is a list of genes exhibiting statistically significantly different
expressions between conditions. This list is used in further downstream analysis as
described in the chapter of bioinformatics and statistics for omics data.

5.3.3 Single-Cell Sequencing

Different cells in an organism exhibit different phenotypic functionalities. These
functionalities are governed by their genetic architecture; thus, it is important to
understand the expression of genes in individual cells. The single-cell sequencing
technique uses NGS methods on RNA isolated from single cells [111]. A review of
library preparation and sequencing technique for single cell can be found in
[112]. The bioinformatics pipeline is similar to RNA-seq, wherein quality check is
done by FastQC, alignment performed by STAR, followed by read count estimation
by HTSEq, and differential expression analysis performed by Deseq2. Custom-made
codes to differentiate cells based on barcodes are present in pipelines developed by
companies that develop the libraries such as 10Xgenomics. Identification of different
cell types is done using PCA or t-distributed stochastic neighbor embedding (t-SNE)
[113]. These assist in differentiation and visualization of gene clusters based on
expression similarities. For example, genes having similar differential expression
patterns among conditions would be clustered together and by identifying markers
we can identify known cell types or unknown cell types. T-SNE is implemented in
Seurat [114].

5.4 Platform Selection and Limitations

Gene expression profiles of different tissues, cells, conditions, disease states, or even
single cells are now routinely generated. This explosion in gene expression profiling
has been deeply affected by the rapid development of new technologies with an
improved sensitivity and cost effect. Which platform to be used for a study depends
on the goal of the study. The advantages of next-generation sequencing are that the
method provides direct counts of molecules; it can be used to study all types of RNA
transcripts; it provides better resolution for transcripts that share similar sequences;
alternative splice isoforms can be directly detected; and it can be used to examine
allele-specific expression. The disadvantages of the NGS approach are that it may
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not be able to detect low-abundance transcripts; data analyses and statistical analyses
are more challenging, and the final results heavily rely on how the raw data were
processed; computational demands are high; data storage and sharing are challeng-
ing; and there are concerns of privacy when sequence information is examined. In
addition to the above, the cost and availability of the platform and bioinformatics
expertise are something to be considered.

To select a proper platform and plan a profiling study, which RNA population
will be studied is an important factor. NGS will be the choice if whole transcriptome,
including those that are not on the microarrays, is studied. If one is only interested in
a specific group of RNA transcripts or few specific pathways, it may be more cost-
effective to use arrays and PCR-based assays. In addition to commercially available
stock arrays and PCR panels, researchers can custom-design arrays and PCR-based
assays to include specific transcripts of interests. The transcripts are well annotated,
and data analyses process is straightforward; therefore, the turnaround time is
shorter. Another factor to be considered is that NGS is limited by its total read
counts for each run. For example, the highly abundant rRNAs need to be removed
from the samples to increase the reads of the rest of the transcripts. The transcripts
that are low in abundance are often missed by direct sequencing. These include
low-abundant mRNA transcripts, alternatively spliced variants, and lncRNA tran-
scripts. In general, 20–50 million reads are sufficient for detecting ~20,000 tran-
scripts. 100 million reads will increase coverage and allow proper quantification and
identify differentially expressed transcripts. Three hundred million reads give
enough depth for studying alternative splicing and higher number of reads may be
needed for studying lncRNA. Since commercial microarrays that cover the whole
transcriptome, noncoding RNA, and splice variants are available, one can decide
which platform to use based on the experimental aims, turnaround time, and costs.
While the microarrays are generally good at detecting low-abundant transcripts,
depending on the dynamic range of different microarray platforms, sensitivities to
changes of highly abundant transcripts may reduce due to saturation of the intensity
signals at the high end.

One of the important considerations when conducting the profiling studies is
normalization of the data. The method used for normalization and for hybridization-
based assays is usually less an issue when a large number of genes are examined at
the same time. For example, Affymetrix normalizes the intensity of individual data
point to the average intensity of the whole array. This strategy is based on the
assumption that most of the genes in a sample do not change significantly. Any
conditions that change the expression of a large number of genes toward the same
direction will not be suitable to use this normalization method. Instead, one can
identify genes that express at consistent level in all samples to be normalized to. The
same strategies can be used when the platform does not examine a large number of
genes, such as cDNA arrays or PCR arrays. For muscle research, commonly used
internal controls such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
β-actin, and 18S rRNA may have inconsistent expression levels in samples that
are severely affected by a condition or disease. An important question is whether the
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condition or disease you are studying will cause genome-wide transcriptional
changes toward one direction or changes of the gene level of the internal controls.

Increased heterogeneity of pathological specimen needs to be kept in mind when
interpreting transcriptomic data. In addition to degeneration/regeneration, a muscle
sample may contain different degrees of pathological changes such as inflammation,
fibrosis, and fatty tissue replacement. One can imagine that severe fat infiltration or
inflammation can completely change the profiles. When the pathological changes are
prominent, we are comparing different tissues in such situations. This will cause a
challenge when analyzing data as well as interpreting results. To answer the ques-
tions regarding the origin of the changes, additional studies are needed, such as
immunostaining or immunohistochemistry to visualize and locate the protein prod-
ucts of the genes that were shown to change in the profiling data [6, 7, 18]. Now one
can also use single-cell sequencing to examine gene profiles in each cell individually
and determine which cells contribute to the changes [115]. However, it is still a good
idea to validate the protein changes in the tissue directly.

While transcriptomic approaches can potentially generate large amount of data,
usually only a limited number of genes and pathway are reported in a publication.
This can be due to (1) insufficient statistical power due to small sample sizes; (2) lack
of bioinformatics expertise to fully analyze the data; and (3) the researcher selecting
and focusing on only part of the genes and pathways to follow up. Placing expres-
sion profiling results in a publicly accessible microarray database makes it possible
for other researchers to access the data and have new discoveries beyond the scope of
published results [116].

5.5 Vital Future Directions

Technologies for studying transcriptome have been evolving quickly. New methods
and approaches to address common issues and concerns associated with the current
approach are becoming available. Companies have been improving reagents for
better sample preparation and producing new instruments for higher throughput
and lower cost per base. In addition, new utilization and approaches are developed
by both the companies and users to answer specific questions. Here we discuss few
examples. One of the questions is issues associated with tissue heterogeneity in
muscle samples. scRNA-seq allows single-cell resolution of transcriptomes; how-
ever, the information on the location of the cells and the relationship among the cells
are lost during the sample processing. To allow researchers to learn not only what is
in a cell but how the cells interact with other cells provides an invaluable insight into
understanding muscle biology and disease mechanisms. Recently 10X Genomics
acquired Spatial Transcriptomics which provides such technology. The technology
for the spatial gene expression profiling was originally developed at Science for Life
Laboratory in Stockholm, Sweden, which allows RNA sequencing to be performed
from tissue sections [117]. The process includes first attaching a frozen-sectioned
tissue section to a specialized chip. The tissue section is imaged before the RNA
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transcripts in the tissue section are reverse-transcribed. The image with coordinate
information will later be used to be matched to the gene expression data generated
from each specific location. The chip contains an array of probes which have poly-T
tails at the end. After the tissue section is fixated and permeabilized, the RNA with
poly-A sequence will be captured by the probes and reverse-transcribed. The cDNA-
RNA hybrids are cleaved off the chip, followed by library preparation for RNA-seq.
The RNA-seq data are integrated with the histology data for visualizing the
transcriptomes of cells at different locations in the section.

One challenge in performing single-cell profiling on skeletal muscle samples is
that the myofibers are multinucleated cells. It is not feasible to capture individual
myofiber for profiling using current platforms. On the other hand, single-nucleus
profiling will provide transcriptome information of individual nucleus in a sample. A
recent study showed that comparable results were obtained by using scRNA-seq and
snRNA-seq approaches although the snRNA-seq is better for sequencing nucleus-
enriched lncRNAs and miRNA precursors [64].

In addition to sequences, new technologies allow researchers to study RNA base
modifications [118]. More than a hundred RNA base modifications are known but
the role of the modifications in mRNA is mostly unclear. The Oxford Nanopore
platform allows direct sequencing of RNA molecules and identifying RNA modifi-
cations. The epitranscriptome will be one future direction that can take advantage of
the new technologies.

Transcriptomic approaches allow the researcher to determine the transcription
activities of all active genes. Temporal profiling approaches use a series of profiles
obtained at different time points to construct temporal changes of gene activities over
a period of time. Meanwhile, researches combine more than one omics approaches to
understand how the other processes, such as epigenomic, posttranscriptional, and
posttranslational regulations, affect the cell functions and to gain a more integrated
picture. Using multiple omics approaches to obtain temporal data makes construc-
tion of comprehensive molecular pathways involved in specific conditions possible.
Data from single-cell profiling and spatial gene profiling increases resolution to
changes in individual cell.
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Chapter 6
Approaches to Studying the microRNAome
in Skeletal Muscle

Alyson A. Fiorillo and Christopher R. Heier

6.1 Theory and History of the Technique

Muscle is a highly plastic tissue that needs to rapidly undergo dramatic changes in
gene expression patterns in order to maintain homeostasis. This requires a delicate
balance between satellite cell proliferation, myotube formation and differentiation,
and muscle degeneration/regeneration. The disruption of these pathways drives
muscle disorders and diseases; this includes dystrophies, inflammatory myopathies,
sarcopenia, and cachexia. Thus, identifying factors that regulate muscle gene expres-
sion programs is essential to understanding muscle health and function and may
uncover new therapeutic targets. Since the discovery of microRNAs (miRNAs)
[1–3], it has become well established that they are key regulatory factors which
fine-tune gene expression patterns in all cell and tissue types. As we gain new insight
into the function of miRNAs, their essential role as posttranscriptional regulatory
elements that drive proper muscle function becomes increasingly apparent. As has
been observed in the X-linked genetic diseases Duchenne and Becker muscular
dystrophies (DMD and BMD, respectively), the chronic dysregulation of miRNAs
can exacerbate disease [4–11]. In this chapter we will explore the role of miRNAs in
skeletal muscle and the importance of harnessing the power of miRNA profiling to
understand how different perturbations to muscle (i.e. exercise, injury, or genetic
defects) affect the muscle miRNAome and how the miRNAome, in turn, can yield
valuable information about the overall health of muscle.

miRNAs are small noncoding RNAs, approximately 22 nucleotides in length.
They primarily function by binding to the 30 untranslated region (UTR) of a
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messenger RNA (mRNA) transcript from a target gene. The binding between a
miRNA and the 30 UTR of a transcript downregulates protein expression from that
transcript by either inhibiting protein translation (imperfect complementary binding
of the seed sequence) or by promoting mRNA decay (perfect complementary
binding of the seed sequence) [12].

In most organisms there are only a small fraction of miRNAs as compared to the
number of mRNAs and proteins. In the human genome, it is estimated there are
roughly 20,000 protein-coding genes [13], while the number of annotated miRNAs
is approximately 2700 (from miRbase V22, http://www.mirbase.org/), although a
recent publication suggests this number may actually be as high as 3700
[14]. miRNAs are very stable and highly conserved across species—these factors
contribute to their appeal as disease-specific biomarkers [15, 16]. miRNAs are
estimated to regulate approximately >60–70% of the mammalian genome [17]
and are commonly dysregulated in disease which makes them attractive therapeutic
targets [18].

The basic miRNA processing pathway is illustrated in Fig. 6.1 and is reviewed in
detail in Refs. [19, 20]. Mature miRNAs are ~22 nucleotides (nt) in length; however,
they originate from much longer transcripts. The first step in the miRNA processing
pathway is the cleavage of the primary transcript (termed pri-miRNA) by the enzyme

Fig. 6.1 Schematic of miRNA biogenesis. miRNAs are transcribed by RNA polymerase II (RNA
Pol II) into a pri-miR, which possesses both a poly(A) tail and a 50 cap. The enzyme Drosha cleaves
the pri-miRNA into a 70–100-nucleotide (nt) hairpin structure termed the pre-miR. The pre-miR
translocates into the cytoplasm (via Exportin 5) and is further cleaved by Dicer into two mature
miRNAs that are approximately 22 nt. These miRNAs are transferred to the AGO proteins to form
the miRNA-induced silencing complex (miRISC). Strand selection occurs, where the dominant
strand termed “guide strand” (shown in red throughout the schematic) remains, and the non-active
strand or “passenger strand” (shown in black throughout the schematic) is discarded. The RISC
complex is then activated and engages the seed sequences of the miRNA with the 30 UTR of the
target mRNA leading to translational repression or mRNA destabilization and decay
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Drosha—this yields a pre-miRNA hairpin structure that is approximately 70–100 nt
in length. The pre-miR is translocated from the nucleus to the cytoplasm by Exportin
5 [20] and is cleaved by Dicer in combination with trans-activation response
RNA-binding protein (TRBP) into two mature miRNAs of approximately 22 nt
with short 30 overhangs [20]. These two mature miRNAs are termed the -3p and -5p
strands. Dicer transfers the duplex to one of the four human Argonaute (AGO)
proteins, requiring AGO to undergo conformation changes to enable binding of the
duplex [21]. Strand selection subsequently occurs where one of the strands (called
the passenger strand) is discarded. This allows for activation of the RNA-induced
silencing complex (RISC) which contains both AGO and one of the mature miRNAs
(called the guide strand or leading strand) and the presentation of the seed sequence
of the miRNA (this is most often nucleotides #2–8 of the miRNA). This seed
sequence can subsequently interact with its target mRNA, typically within the 30

UTR of the target transcript. Each miRNA can have hundreds or thousands of targets
and thus represents a complex system for “fine-tuning” gene expression patterns
[22, 23]. Binding of a miRNA to its target most commonly causes translational
repression of that transcript, but sometimes it triggers mRNA decay. The triggering
of either translational repression or mRNA decay depends on whether the miRNA
sequence is an imperfect match (translational repression) or perfect match (mRNA
decay) to the target mRNA sequence [24, 25].

The selection of the guide and passenger strand from the original pre-miRNA can
differ between tissues, and the ratio can also change depending on the disease state
[26, 27]. It is also important to understand the historical nomenclature to describe the
two mature miRNAs produced from the pre-miRNA (i.e., miR� vs. miR-3p/-5p). A
comprehensive guide for miRNA nomenclature is summarized in a review
paper [28].

Described as “micromanagers of gene expression” [29], it is not surprising that
miRNAs play a key role in modulating the complex regulatory circuits involved in
skeletal muscle formation, maintenance, and physiological and pathological signal-
ing programs [30, 31]. Some miRNAs are ubiquitously expressed, while others are
expressed in a tissue-specific manner [32, 33]. miRNAs that are either exclusively
expressed or enriched in striated muscle are referred to as myomiRs [34]. The
myomiR family includes eight miRNAs: miR-1, miR-133a, miR-133b, miR-206,
miR-208a, miR-208b, miR-486, and miR-499 [35–39]. myomiRs are expressed in
both skeletal and cardiac muscle with two exceptions: miR-208a is expressed only in
cardiac muscle, while miR-206 is exclusively expressed in skeletal muscle. Here, we
will focus on skeletal muscle myomiRs.

Several myomiRs are encoded by DNA within introns of muscle-specific genes,
which facilitate their expression specifically within muscle. For example, muscle-
specific miR-208b and miR-499 are encoded within introns of the myosin heavy
chain genes MYH7 and MYH7B, respectively [38, 39], while miR-486 is considered
muscle-enriched and is located within an intron of ankyrin 1 (ANK1) [37]. The other
myomiRs are organized into bicistronic clusters and transcribed together [40]. For
example, miR-1-2 and miR-133a-1 are encoded within an intron of the mindbomb
E3 ubiquitin ligase 1 (MIB1) gene, while miR-1-1 and miR-133a-2 are found in the
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intron of a muscle-enriched gene encoded by open reading frame 166 on chromo-
some 20 (C20orf166). In contrast, a cluster consisting of miR-206 and miR-133b
resides in an intergenic or non-protein coding space on chromosome 6. Regardless of
their genomic locus, the transcriptional regulation of all of myomiRs is known to be
driven by myogenic regulatory factors (MRFs) such as MYOD, MYOG, MYF5,
MYF6, and SRF [41, 42].

It is important to note that a subset of miRNAs, whose expression is not restricted
to muscle, also play key roles in muscle signaling and development. These miRNAs
include miR-26a [43], miR-27b [44], miR-29 [45], miR-125b [46], miR-155 [47],
miR-128a [48], miR-181 [49], miR-24 [50], miR-378 [51], miR221/222 [52], and
miR-214 [53]. In a disease state, the balance of miRNAs is dysregulated: miRNAs
not normally found in the muscle are increased [7–9], while miRNAs that are critical
to maintaining muscle homeostasis are decreased [35]. This has been demonstrated
in Duchenne muscular dystrophy (DMD) where both myomiRs and non-myomiRs
are highly dysregulated. Studies have shown regeneration-specific miRNAs are
elevated (miR-31, miR-34c, miR-206, miR-335, miR-449, and miR-494) [6, 10]
and degenerative miRNAs are downregulated (miR-1, miR-29c, and miR-135a) [10]
which is linked to an increase in fibrosis. Further, several studies have found that
inflammatory miRNAs are elevated in DMD including miR-222, miR-223,
miR-146a, miR-146b, miR-382, miR-320a, miR-142-5p, 142-3p, miR-301a,
miR-324-3p, miR-455-5p, miR-455-3p, miR-497, and miR-652 [6, 8–10]. Deregu-
lation of miRNA expression is a common feature of several skeletal muscle disorders
[7], and specific treatment regimens (e.g., anti-inflammatories, exon skipping) bring
some of these dysregulated miRNAs back toward homeostasis [6, 8, 9]. A detailed
view of how miRNAs affect normal and diseased muscle is summarized in Fig. 6.2.

6.2 Major Applications

6.2.1 miRNA Profiling

One advantage to profiling miRNAs is that they are much more stable than mRNAs
and can be recovered from formalin-fixed paraffin-embedded sections or other
sources that typically show low overall RNA quality. Consistent sample processing
and RNA extraction methods are critically important to the quality of results from
miRNA profiling, however. With that in mind, samples should be handled with care
to ensure consistent results and to avoid possible miRNA degradation [54]. In the
following sections, we will discuss the major methods of miRNA isolation and
profiling, as well as the advantages and disadvantages of each method.
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Fig. 6.2 miRNA-mediated regulation of skeletal muscle signaling in healthy muscle, stressed or
exercised muscle, and disease. Schematic represents gene regulation by miRNAs known to be
involved in muscle development and muscle growth (hypertrophy). The bottom two panels
illustrate how dysregulated miRNAs in disease feed into different pathways (inflammation, atrophy,
fibrosis) to exacerbate disease. Red bars represent inhibition. Canonical myomiRs are shown in
white boxes. Adapted from Refs. [9, 30]
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6.2.2 Sample Types and Extraction Methods

6.2.2.1 Muscle Biopsies or Whole Muscles

When working with either muscle biopsies or whole muscles from different species
(i.e., rat, mouse, dog), we recommend freezing muscle in liquid nitrogen-cooled
isopentane (also named 2-methylbutane) and storing at �80 �C for later use. This
method preserves the integrity of the muscle tissue for sectioning and also allows for
RNA and protein extraction. If the muscle is only being analyzed for RNA or
protein, it can be directly flash frozen by placing the dissected muscle in a cryogenic
tube and freezing directly in liquid nitrogen for at least 1 min. Samples should be
stored at �80 �C until RNA extraction.

Since skeletal muscle is a highly fibrous tissue, the most critical step in the
process is the disruption of all the cells. Preparation for homogenization should be
carried out on dry ice or under liquid nitrogen-cooled conditions. There are a few
ways to homogenize the frozen tissue. The first, most labor-intensive way is to use a
mortar and pestle cooled with liquid nitrogen to crush the muscle into a fine powder.
Another way is to first perform tissue crushing using a Liquid Nitrogen Cooled Mini
Mortar and Pestle Set (Bel-Art) and following this to directly homogenize the
crushed tissues in the specific reagent being used for RNA extraction (i.e., TRIzol,
QIAzol reagents) with a TissueRuptor or equivalent handheld homogenizer with
disposable probes (Qiagen). Alternatively, frozen samples can be placed directly into
the RNA extraction reagent and homogenized with a handheld homogenizer. Our
laboratories have found that the combination of crushing the muscle sample with
Liquid Nitrogen Cooled Mini Mortar and Pestle Set and homogenizing in the RNA
extraction reagent (TRIzol) results in the highest yield and highest quality RNA.

6.2.2.2 Muscle Cell Lines

If using muscle cell lines for miRNA profiling, the procedure is much easier and less
labor intensive. Prior to RNA extraction, media and cell debris should be rinsed off
of cells with PBS and then cells can either be frozen for later use (�80 �C) or RNA
extraction can be immediately performed by pipetting the RNA extraction reagent
(i.e., TRIzol) directly onto cells in plates or dishes. Differentiated myotubes grown in
six-well plates typically provide a concentration of 200–500 ng/ul of RNA (when
resuspended in 25–30 μL of RNase-free water), which is more than enough to work
with for profiling experiments.

6.2.2.3 Additional Considerations

Before beginning RNA extraction, it is important to apply RNase inhibitor spray to
the laboratory bench and to utilize RNase-free water, tubes, and equipment to

114 A. A. Fiorillo and C. R. Heier



prevent RNA degradation. For RNA extraction, the most common reagents and kits
utilize chemical extraction with concentrated chaotropic salts such as guanidine
thiocyanate (TRIzol and QIAzol). As an optional step, there are commercial kits
available to enrich for miRNAs (miRNeasy, Qiagen; mirVana, Ambion; and
PureLink, Thermo Fisher Scientific). These kits add a solid-phase extraction proce-
dure on silica columns. However, if you have limited samples and plan on analyzing
both miRNA and mRNA, we recommend skipping these miRNA enrichment steps
since the columns will only bind small RNAs and mRNAs will be lost in the wash
steps. To increase the yield of miRNA recovered using these methods, we recom-
mend performing the isopropanol precipitation step at �20 �C overnight or over the
weekend before performing the final ethanol wash and RNA re-suspension.

Unlike mRNA profiling, formalin-fixed paraffin embedded (FFPE) tissue can be
utilized for miRNA profiling [55]. mRNA becomes fragmented in FFPE samples;
however miRNA is quite stable, largely because it is less subject to RNase-mediated
degradation [56]. This is a clear advantage of utilizing miRNA profiling in a clinical
sample cohort where oftentimes FFPE samples are the only sample type available.
The procedure for recovering miRNAs from this sample type begins with cutting
FFPE samples into thick sections (~20 μm). Depending on the width of the cross
sections, as little as one section (i.e., for a muscle sample taken at autopsy) and as
many as four 20 μm sections (for a small muscle biopsy), or up to 35 mg of
unsectioned muscle, can be used. Following deparaffinization and protease treatment
[55, 57], miRNA can be recovered from these tissues by commercially available kits
such as RecoverAll Total Nucleic Acid Isolation Kit (Thermo Fisher Scientific),
High Pure miRNA Isolation Kit (Roche), or miRNeasy FFPE Kit (Qiagen).

6.2.3 Sample Heterogeneity

Muscle tissues contain a heterogeneous population of cell types [58]. Depending on
the experimental setup and question, it may be necessary to purify a specific cell type
from muscle tissue (i.e., satellite cells, macrophages, differentiated muscle) or purify
a specific area from a muscle section (i.e., damaged area, high inflammation area).
This can be achieved by using fluorescence-activated cell sorting (FACS), myofiber
isolation, or laser capture microdissection (LCM) [59, 60]. In FACS a specific cell
type is selected from a mixture of live cells using a fluorescently labeled antibody
against a specific cell marker, most often a receptor, and miRNA profiling is
subsequently performed [60, 61]. Another way to use this method is to purify
genetically labeled cells from a transgenic mouse [62]. Alternatively, LCM can be
used on histological sections of dissected muscle to cut out a specific area of interest
and purify RNA from these regions. This may be particularly useful if your specimen
has variable pathology, such as in studies on the effects of local injury (e.g., notexin
injection) or in assessing different stages of muscle development.
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6.2.4 Concentration and Quality Assessment

Once RNA is extracted, it is important to check quality and concentration. As a
general rule, each milligram of tissue should yield about 1 μg of total RNA. All
profiling methods discussed here can use total RNA, so it is not absolutely necessary
to assess miRNA quantity separately. The most simplistic way to determine overall
RNA quality and quantity is using spectrophotometry (i.e., NanoDrop). RNA has a
maximum absorbance at 260 nm, and this reading will yield the RNA concentration.
Historically, the ratio of absorbance at 260 to the absorbance at 280 nm has been
used as a measure of purity, with a ratio of 2.0 denoting a pure RNA sample. For
profiling experiments, RNA that has a purity of 1.7 or higher can generally be used.
Once RNA concentrations are determined, it is common practice to dilute all
samples to the same concentration. For a more in-depth analysis of RNA quality,
the Bioanalyzer 2100 (Agilent) can be used with the small RNA chip. This chip can
selectively quantify miRNAs in absolute amounts [pg/μL] and as a relative percent-
age of small RNA [%]. However, the estimation of miRNA abundance by this
method may only be accurate when overall RNA integrity is very high [63]. It is
also possible to assess miRNA extraction efficiency by incorporating a “spike-in”
synthetic miRNA from another species (most commonly C. elegans) at an early step
in the RNA isolation [64]. Quantification of these spike-in miRNAs in the RNA
recovered from muscle tissues/cell lines can serve as an RNA extraction efficiency
control, though other normalization methods are preferred for downstream miRNA
quantification.

6.2.5 miRNA Profiling Methods

There are three well-defined approaches for miRNA profiling: quantitative reverse
transcription PCR (qRT-PCR), hybridization-based methods, and RNA sequencing.
Deciding which method to choose will need to be based on your experimental goals
and your available resources. Figure 6.3 summarizes the basic miRNA profiling
platforms.

6.2.6 qRT-PCR-Based Methods

Low-density quantitative reverse transcriptase polymerase chain reaction
(qRT-PCR) arrays have emerged as a first-line method of choice by many for
miRNA profiling. This is because of the reproducibility of their data in subsequent
single-gene qPCR experiments, their increased sensitivity (dynamic range of seven
log10 units), and their ability to utilize a small amount of input RNA (as little as
25 picograms). Whereas other platforms require much greater starting material [65],
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it has been demonstrated that this method can detect miRNA content at the single-
cell level [66].

As miRNAs are too small to utilize standard methods to perform qRT-PCR, the
reverse transcription reaction has been modified to generate complementary DNA
(cDNA) that can be subsequently used in qRT-PCR. There are two main methods of
priming. Chen et al. developed a technique using stem-loop reverse transcription

Fig. 6.3 miRNA profiling platforms. Schematic summarizes the overall methodologies for miRNA
profiling of muscle or related samples. Each of the columns presents the concepts and processes
involved in one of three main profiling methods: qPCR-based low-density arrays (stem-loop RT
method depicted here), hybridization arrays, and RNA sequencing. The qPCR-based methods are
very approachable for those with prior experience in single-gene qPCR. Concepts behind the stem-
loop primer RT method are depicted here, an approach that is used by low-density microfluidics
cards to assay approximately 750 miRNAs per set. Next, hybridization arrays are widely available
through genomics cores and can simultaneously assay hundreds of pre-annotated miRNAs from
multiple species on a single miRNA gene array chip. Finally, RNA sequencing provides a highly
precise method with the ability to detect novel miRNAs or highly similar miRNAs at single base-
pair specificity
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(RT) priming to synthesize cDNA from miRNA, followed by TaqMan real-time
PCR analysis [67]. In the reverse transcription reaction, the stem-loop primer serves
to prime the cDNA reaction as well as extend the size of the mature miRNA: it
consists of a constant region that forms a stem loop and a variable six-nucleotide
extension. The stem-loop portion of the primer extends the 18–22-nucleotide
miRNA to >60 nucleotides to allow for traditional PCR in subsequent steps. The
six-nucleotide extension is the reverse complement of the last six nucleotides on the
30 end of the miRNA of interest and provides specificity. A second method to
convert mature miRNA to cDNA involves the addition of a poly(A) tail using
E. coli poly(A) polymerase and then performing qPCR using a miRNA-specific
forward primer and a universal poly(T) adaptor reverse primer [68].

To perform large-scale miRNA profiling using these methods, the RT-PCR
primers are pooled together and thus convert all target miRNAs into cDNA. This
is followed by performing qRT-PCR with pre-plated PCR primers that are distrib-
uted across multi-well plates or microfluidic cards containing nanoliter-scale wells.
There is also an option for a pre-amplification step, adding around 10–14 cycles of
amplification before samples are run on qPCR array plates. Examples of commer-
cially available qRT-PCR arrays include TaqMan low-density miRNA array cards
(stem-loop priming, Thermo Fisher Scientific) and miScript miRNA PCR Arrays
(poly(A) priming, Qiagen).

Data analysis for qRT-PCR arrays is performed using a method commonly
known as the ΔΔCt method, enabling the comparison of groups by using one
group as the normalizer [69]. This calculation assumes that the amplification product
in qPCR doubles after every PCR cycle. The abundance, then, is inversely related to
the cycle (Ct) number in which you detect the signal from your amplicon. In basic
terms, the ΔΔCt is calculated (1) from normalizing the cycle in which your target
amplifies to the cycle in which your housekeeping reference RNA amplified (called
ΔCt) and (2) from then normalizing your “treatment” sample to your “control”
sample (called ΔΔCt). More specifically, since each cycle of PCR represents a
doubling of your miRNA target, this is all actually done in logarithmic space
where the value at each cycle (Ct) is actually 2^Ct. The ΔCt is equal to CtmiRNA

minus CtHousekeeping, and ΔΔCt is equal to ΔCtTest minus ΔCtControl. To get a final,
relative quantification, the ΔΔCt result is converted back into a linear space by the
eq. 2^(�ΔΔCt). Different platforms have different software for performing this rela-
tive quantification in parallel and in an automated fashion. It is imperative, however,
that amplification curves for each individual miRNA assay are checked before
formalizing your results and/or using global normalization methods, as these pro-
grams don’t always flag improper amplification in the “noise” range. Not performing
the proper quality checks can therefore lead to the false appearance that the miRNA
expression in one group is significantly different, when in reality the Ct values from
the target miRNAs or from miRNAs included as normalization controls are simply
background noise. This process of quality checks can add labor to the profiling
analysis; however it can also increase confidence and insight by allowing one to
directly view the amplification curve data for each individual result.

118 A. A. Fiorillo and C. R. Heier



In terms of data normalization, there are a few strategies that can be used:
(1) normalization to stably expressed endogenous reference small RNAs, (2) global
normalization to the average of all Ct values from array experiments, and (3) nor-
malization to an external spike-in synthetic oligonucleotide. The first strategy,
normalization to reference small RNAs, commonly uses small nuclear/nucleolar
RNAs such as snoRNAs or RNU6A and 6B. For best results, the geometric mean
of multiple control genes should be used in order to minimize effects of any variation
or noise in the individual reference RNAs. As housekeeping RNAs can still be
affected by certain diseases or conditions [70], this is always a good idea for qPCR-
based gene expression analyses and is often included as an automated option in
expression analysis software. If normalization/control RNAs are suspected to be
changing or are not well-defined in a sample type, several statistical programs exist
that can analyze profiling data within an experiment and rank candidate reference
genes in order of stability. These include BestKeeper [71], GeNorm [72], and
NormFinder [73]. These programs also take into account intra- and intergroup
variability. As an alternative to using specific endogenous controls, another common
method is to use global normalization where the mean expression value of all
miRNAs is used as the normalization factor. Care should be taken to quality check
each individual miRNA using this approach. This global normalization method has
been reported to reduce technical variation and provide an accurate appreciation of
biological change [74]. A third normalization method is to normalize to a spike-in
synthetic oligonucleotide. This method is frequently used as a processing control to
measure miRNA extraction efficiency, and in some instances, it may be used for
gene expression when overall miRNA content is expected to be quite different in
control vs. treatment samples [75]. However it is less favorable than the other
methods for normalizing gene expression, as a spike-in method only corrects for
either extraction efficiency or reverse transcription efficiency and not for expression
variability within the original biological sample.

6.2.7 Hybridization-Based Methods

6.2.7.1 miRNA Microarrays

Microarrays were the first technology to be utilized for high-throughput analysis of
miRNA expression. Their advantages are the number of samples that can be
analyzed at once, that one array can cover more miRNAs from more species, and
that many institutions already have microarray core facilities to run them. miRNA
microarrays can screen hundreds of target sequences within a single sample, includ-
ing both precursor and mature miRNAs. The design of miRNA arrays is different
from that of other spotted microarrays, however, as the differing characteristics of
miRNAs must be taken into account. First, mature miRNAs are not polyadenylated,
meaning that a label (biotin, fluorescence) cannot be incorporated into miRNAs via
oligo (dT)-primed reverse transcription. Second, there is minimal sequence available
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on miRNAs to enable hybridization since miRNAs are typically only 18–22 nt in
length. This means probe design must also be restricted to this length. The restriction
in probe length is challenging because, similar to PCR, designing such short
hybridization probes leads to variable melting temperature (Tm) caused by highly
variable GC richness (i.e., 70% GC-rich vs. 20% GC-rich miRNAs require very
different hybridization temperatures) meaning that conditions cannot be optimized
for all miRNAs being detected by the array.

Carlo M. Croce and colleagues described the first miRNA profiling array [76]
which measured miRNA precursors rather than mature miRNAs. This method
utilizes biotin labeling of miRNAs via RT-PCR, priming the reaction with oligo d
(T) primers to turn poly(A) tailed transcripts into biotinylated cDNA as miRNA
precursors are polyadenylated similar to protein coding transcripts. In this method
labeled miRNAs are hybridized to a slide that is spotted with 40 nt oligo probes
specific for all human and murine pre-miRNAs. Hybridized miRNAs are detected
after adding a streptavidin-conjugated Alexa Fluor 647 label using a hybridization
chip reader.

A handful of the techniques to perform miRNA arrays involve an enzyme-
mediated labeling of miRNAs. The first described mature miRNA array method
utilizes a T4 RNA ligase to couple the 30 end of miRNAs to a fluorescent (Cy3)-
modified dinucleotide, while the 50 end hybridizes to capture probes that are spotted
onto slides [77]. A reference oligonucleotide for all mature miRNAs labeled with
Cy5 is included for normalization. This method requires a dephosphorylation step to
remove the 50 phosphate from miRNAs before hybridization; without this step
miRNAs are at risk for circularization. Another method of probe labeling is poly
(A) extension of the 30 end using poly(A) polymerase [78], following which a
fluorophore-conjugated oligonucleotide is ligated to the miRNA using a splinted
or bridged ligation technique [79, 80]. Here, ligation of an oligo to the 30 end of a
miRNA is facilitated by a second oligonucleotide (the “bridge oligo”) that hybridizes
to both the 30 end of the miRNA and the 50 end of the “capture” oligonucleotide. This
technique avoids the issue of circularization; however, poly(A) tailing is generally
variable in how many A’s are added to the miRNA, which could create variable
hybridization properties between miRNAs.

Another method is to modify the miRNAs after they are hybridized to their
respective probes. Nelson and colleagues developed a miRNA array platform
using RNA-primed, array-based, Klenow enzyme (RAKE) to label miRNAs post-
hybridization [81]. Here, DNA capture probes bound to slides have a spacer
sequence with three thymidine bases adjacent to the miRNA-binding region. After
miRNA hybridization, the microarray is treated with DNA exonuclease I, which
degrades the probes not bound by miRNAs. The Klenow fragment of DNA
polymerase I, an enzyme that can use RNA to prime its activity, is added with
biotinylated dATP, which becomes incorporated complementary to the three thymi-
dines in the capture probe. The amount of capture miRNA is subsequently deter-
mined by the addition of a fluorescently conjugated streptavidin. Similar approaches
have been adapted by others [82, 83].
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Like PCR, variable melting temperature (Tm) of the GC-rich content of miRNAs
is an obstacle for miRNA hybridization probes. To help reduce Tm and make
hybridization of miRNAs to capture probes more consistent, substituting locked
nucleic acid (LNA)-modified probes in place of DNA probes has proven to be useful
[84] as these synthetic RNA/DNA molecules increase the overall thermostability of
oligonucleotide probes.

Normalization of miRNA hybridization arrays can be performed in a variety of
ways as reviewed by Pradervand et al. [40]. One common normalization method is to
use global miRNA expression. This applies the assumption that specific miRNAs in
a sample may vary, but the overall miRNA content stays the same [85, 86]. This
method has been well validated and utilized in the literature. Other methods for data
normalization are described by Hua et al. [87] and include quantile normalization or
variance stabilizing normalization (VSN). The goal of the quantile method is to
make the distribution of probe intensities for each array in a set of arrays the same.
VSN assumes that most miRNAs are not differentially expressed. Both of these
normalization methods are available as part of the open-source Bioconductor bioin-
formatics software (https://www.bioconductor.org/). It is recommended, however,
that you discuss your normalization method with your bioinformatics team to choose
the best normalization method for your dataset.

6.2.7.2 NanoString nCounter Gene Expression System

A more recent development in hybridization-based miRNA profiling technology is
the NanoString nCounter, which applies a unique color-coded “fingerprint” to
miRNA-specific probes [88]. This technology utilizes a biotin-labeled 30 capture
probe and a 50 reporter probe with a color code that is unique to each miRNA. The
result is the formation of a tripartite structure consisting of a miRNA in between two
bound probes. Unbound probes are removed via affinity purification, and bound
complexes are immobilized onto a streptavidin-coated slide, followed by imaging
and counting of bound reporters. Data analysis can be performed using nSolver™, a
software provided by NanoString Technologies. This technique has high sensitivity
and high specificity, avoids amplification bias, and has the advantage of being able to
discriminate between similar miRNA variants.

6.2.8 miRNA Sequencing

The development of next-generation sequencing platforms provides us with power-
ful but complex methods to profile miRNA expression. Major strengths of these
platforms include their ability to detect novel miRNAs and their ability to precisely
identify miRNAs down to single base-pair differences. This can provide the ability
to differentiate between similar miRNAs within the same “family” and between
isomiR’s which possess slight modifications of the reference miRNA sequence.

6 Approaches to Studying the microRNAome in Skeletal Muscle 121

https://www.bioconductor.org/


A general pipeline for an RNA-seq project runs as follows: sample production,
RNA isolation, RNA sub-type selection, library preparation, quality checks, next-
generation sequencing, data quality checks, alignment of sequencing data to the
genome, and data visualization and analysis. Initially, RNA isolation and quantifi-
cation can be performed similarly to messenger RNA experiments, as high-quality
miRNA can be easily isolated from muscle samples using total RNA isolation
methods and reagents such as TRIzol. Subsequently, miRNA isolation kits such as
miRNeasy (Qiagen) are commonly used in order to both enrich for miRNA and
further purify the samples for subsequent enzymatic reactions. Library preparation is
performed after miRNA isolation and consists of ligating linker sequences to the
miRNAs, followed by reverse transcription to convert these into cDNAs, then PCR
amplification of these cDNAs, and subsequent purification through gel-based size
selection. Once the library preparation is complete, the miRNA-seq reaction can be
performed using any of several next-generation sequencing platforms. Examples of
these platforms include high-throughput sequencers such as the HiSeq 2000
(Illumina) and SOLiD (ABI), as well as smaller-scale sequencers such as Ion Torrent
(Invitrogen) and MiSeq (Illumina).

Note, the miRNA-seq workflow becomes much more complex than qPCR-based
methods due to the added steps of library preparation and the subsequent computa-
tional bioinformatics steps needed to analyze and interpret the data. Some tool suites
have been developed to help streamline the data analysis process. These include
publicly available, open-access suites such as the Galaxy Mississippi tool suite
(https://mississippi.snv.jussieu.fr/), as well as platform-specific tool suites provided
by vendors. A brief description of the steps and general concepts follows. First,
compressed sequencing data files may need to be converted to file types used for
analyses (.fastq file types). Adapter or linker sequences which were ligated to the
miRNAs during library preparation then need to be “trimmed” from the sequencing
data to isolate the miRNA sequences alone and the data needs to be quality checked;
these can be performed using software tools such as miRge [89] and Cutadapt
[90]. Once data clears quality checks, it needs to be aligned to a reference genome
or RNA library so that the miRNAs can be properly recognized, positioned, and
subsequently quantified or visualized. This alignment is performed using a genome
alignment tool such as Bowtie [91] or sRbowtie. Quantification can then be
performed to detect differences in the expression levels of miRNAs, using software
such as DESeq2 [92] or DEXUS [93]. In order to identify novel miRNAs within a
tissue or sample, further tools such as miRDeep2 [94], miRanalyzer [95], or
novoMiRank [96] are needed. The purpose of these tools is to reduce false-positive
identification of other small RNA species as miRNAs, and they can integrate
information such as related pre-miRNA sequences or predicted secondary structures.

During RNA isolation and selection, different methods can be used to select for
specific subsets or general types of small RNA species. For example, a method
known as CLIP-seq uses biochemical techniques to immunoprecipitate miRNA
species bound by specific proteins such as Argonaute (AGO), a protein component
of the RNA-induced silencing complex (RISC). Integrating biochemical techniques
such as this has the benefit of removing some non-miRNA small RNA species and of
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providing additional biological insight; however it also removes unbound miRNAs
from the sample. Alternatively, strictly size-based approaches to enrich samples for
miRNAs can be used; however additional small RNAs are then included in the
sequencing analysis which can complicate the data analysis. Computational
approaches need to be subsequently applied to help minimize incorrect identification
of such small RNAs as miRNAs.

Future developments in next-generation sequencing will enhance the abilities of
miRNA-seq, improve data storage, and make the technologies involved more
broadly accessible. This provides another advantage for next-generation sequencing
approaches—whereas qPCR- and hybridization-based technologies are largely
static, the technologies and analysis capabilities of sequencing are constantly evolv-
ing. Moving forward, new technologies in single-molecule sequencing (SMS) are
being developed with the potential to improve both speed and data bias in compar-
ison with current platforms [97].

6.2.9 miRNA Databases

Once data is generated from profiling, there are a few tools that will help in data
interpretation. The most utilized and comprehensive general database is miRBase
(www.miRbase.org, v22) [98, 99]. miRBase provides information on the predicted
hairpin portion of the miRNA transcript (pre-miR), on its genomic locus, and on the
mature miRNA sequence. It provides comprehensive information for all annotated
miRNAs, including nomenclature, sequence data, predicted gene targets, and vali-
dated targets of each miRNA. There are also other tools that help with miRNA target
prediction, with mining the literature for validated targets, and with determining the
functional significance of miRNAs identified in your profiling data. Some useful
databases include the following: (1) TargetScan [100], DIANA-TarBase [101],
miRTarBase [102, 103], and miRDB [104, 105] which provide target prediction,
(2) miRWalk 7.0 [106, 107] which provides validated miRNA-target interactions
and miRNA binding sites, and (3) DIANA miRPath [108] and miR2Disease [109]
which integrate miRNA profiling data with relevant pathways and diseases. We also
recommend using the UCSC Genome Browser to look at potential transcription
factors that regulate the miRNAs from your profiling data, as this can give further
clues into the pathways affected by experimental conditions [110]. A comprehensive
review of these databases is available [111, 112].

6.3 Limitations

In addition to their benefits, each of the miRNA profiling methods described here has
its own limitations. For qRT-PCR-based methods, these limitations stem from the
requirement of a predefined, separate, and specific primer/probe combination to be
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used in an enzymatic reaction for each unique miRNA. One consequence of this is
that novel miRNAs cannot be identified using this method. Additionally, since each
miRNA requires its own qPCR assay, there is a limit to how many miRNAs can be
assayed at once. Typical qRT-PCR array card systems can assay up to around 384 or
768 miRNAs at once. As a consequence, fewer miRNAs are assayed at once,
species-specific array cards are needed, and miRNA precursors are not typically
included.

The limitations of hybridization-based miRNA microarray methods include the
following: they require more starting material than qRT-PCR-based methods, they
have lower sensitivity and specificity than other methods making it difficult to
discern miRNAs with similar sequences (e.g., miR-146a-5p vs. miR-146b-5p), and
they do not enable the absolute quantification of miRNA abundance. Rather, using
this approach is an effective way to more broadly compare “healthy” to “diseased”
muscle or non-exercised to exercised muscle. A further limitation of the NanoString
nCounter gene expression system is that it is quite expensive compared to other
methods and the instrumentation required to run it is less broadly available.

Major disadvantages of miRNA sequencing platforms center around their cost
and the advanced computational bioinformatics resources needed to properly ana-
lyze the large datasets produced. Additionally, upstream biases are inherently intro-
duced to the datasets through library preparation methods which preferentially select
for specific types of RNAs. Post-acquisition, storage of the very large datasets and
files produced by next-generation sequencing represents a substantial problem for
the field. Advances in computing storage, in data compression, and in minimizing or
modifying the type of data files needed for long-term memory storage will all help to
address this issue. From the data analysis side, improvements to software and
algorithms are frequently being made at a rapid pace. Because of this, available
programs can quickly become out of date. Before planning and executing a next-
generation sequencing project, it is thus important to consult with a computational
bioinformatics expert and the recent literature to plan your project according to the
most trusted analysis workflows and software.

6.4 Vital Future Directions

As miRNAs are a relatively new class of biomolecule, they represent an exciting area
of research that we are only in the early stages of understanding. As several of the
technologies we have described are already well established due to redundancy with
mRNA techniques, here we will focus on one emerging technique and several
exciting applications that are rapidly evolving. Digital qPCR will be discussed as a
newer technique which enables sensitive and absolute, as opposed to relative,
quantification of miRNAs. Next, serum miRNA biomarkers have the potential to
improve diagnosis, improve translation of preclinical studies, and improve decisions
on clinical drug approvals. Finally, as a newer class of biomolecule that is
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dysregulated in disease, miRNAs provide us with an exciting new class of thera-
peutic targets.

The concept of digital PCR was first developed in 1992 [113] (then termed PCR
with limiting dilution) and later defined as digital PCR [114] when utilized to
quantify cancer-causing mutations. While this technology was usurped by the
development of quantitative real-time PCR, it is now reemerging due to the recent
development of better instruments and chemistry which have made it a simpler and
more practical technique. Digital PCR, in contrast to real-time PCR, provides
absolute quantification of the target miRNA based on partitioning of individual
molecules into thousands of replicate reactions at low dilution. This results in zero
or one target miRNA in most reactions. At the end of the PCR reaction, the absolute
concentration of the miRNA (in copies/μl) is determined by Poisson statistical
analysis of the number of positive and negative reactions. The main advantages of
digital PCR are as follows: (1) the ability to determine absolute quantification
without external references [115]; (2) no requirement for an endogenous control
for normalization, and (3) a high degree of sensitivity and precision as compared to
qPCR. Because of its high sensitivity, digital PCR may enable researchers to
accurately determine absolute physiological concentration of a given miRNA within
serum or other biofluids, where traditional intracellular housekeeping genes are not
present for relative normalization. As we learn more about the muscle miRNAome,
research is shifting toward the use of serum biomarkers as surrogate measures for
molecular changes in skeletal muscle. Through this evolution, digital PCR may
become an increasingly powerful tool to detect low copy number miRNAs that can
accurately predict and reflect the overall condition of skeletal muscle as it relates to
disease, exercise, aging, and overall health.

A particularly exciting area of miRNA research is the development of serum
miRNAs as minimally invasive biomarkers, which has the potential to improve the
diagnosis, monitoring, and treatment of muscle diseases. Loosely defined, a bio-
marker is a measurement that reflects a biological activity such as a disease or a drug
response. The discovery that miRNAs are present and highly stable in patient serum
provides a new class of highly quantifiable molecule which can be objectively and
routinely measured [16]. Whereas serum proteins are relatively unstable and degrade
during freeze-thaw cycles, serum can be repeatedly freeze-thawed at least six times
or even exposed to RNases with no discernable effect on miRNA levels. In muscle
diseases, miRNAs are released by damaged muscle into serum in a manner that may
help to predict disease state or pharmacodynamic response. For instance, myomiRs
are muscle-specific miRNAs and are released from damaged muscle. Accordingly,
myomiRs are detected at significantly increased levels in serum from muscular
dystrophy patients versus healthy volunteers and can further differentiate milder
BMD patients from more severe DMD patients [116]. In addition to myomiRs,
pathology-specific miRNAs are upregulated in certain disease states and may pro-
vide mechanism-defined biomarkers. For example, inflammatory miRNAs such as
miR-146a are increased in dystrophic muscle of both BMD/DMD patients and
animal models, and patient serum levels of these same miRNAs are found to predict
a response to anti-inflammatory drugs in other diseases [8, 9, 117]. Moving forward,
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a major goal is to develop serum miRNAs into objective and minimally invasive
surrogate outcome measures in clinical drug trials. Essentially, this will require
serum miRNAs to be validated and a biological rationale built which enables them
to be used as substitutes for clinically meaningful endpoints which predict the
effectiveness of therapies.

In addition to monitoring disease, miRNAs provide us with exciting new strate-
gies to treat disease. Two basic strategies for miRNA-based therapeutics involve
either the addition of a beneficial miRNA exogenously to improve pathology or the
inhibition of a pathological miRNA. The first of these is a bit more straightforward.
If a decrease in a particular miRNA is found to drive disease pathology, for example,
by resulting in upregulation of a pathological protein normally repressed by that
miRNA, then replacing that miRNA with a “miRNA mimic” may improve pathol-
ogy. The second strategy typically involves developing an antisense oligo to inhibit a
miRNA whose presence or upregulation is found to promote pathology. A strength
of this strategy is that, since it is targeting an RNA-based molecule, highly specific
drugs can be designed that target the specific nucleic acid sequences of that miRNA.
Toward this end, a diverse number of strategies and chemistries are being pursued to
ultimately produce a new generation of miRNA-based therapeutics. These include
antagomiRs which are antisense oligos complementary to the miRNA [18], opti-
mized “Tough Decoy” inhibitors [118, 119], miRNA “sponges” which present
decoy miRNA binding sites [120], and “target protectors” or “masks” which bind
30 UTRs to block miRNA binding without disrupting expression of the target
[121]. In recent years, at least nine miRNA-based therapeutics have entered preclin-
ical or clinical development, as reviewed in [122]. Moving forward, it will be
interesting to see how these early trials and next-generation drugs perform as we
uncover the full potential of miRNA-based therapeutics.
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Chapter 7
Proteomic Profiling of Human Skeletal
Muscle in Health and Disease

Paul R. Langlais and Lawrence J. Mandarino

7.1 Theory and History of the Technique

Skeletal muscle is the largest organ in the body by mass [1] and as such can affect
many processes in addition to its obvious roles in locomotion and breathing. In these
roles, diseases of skeletal muscle can have profound effects on human health.
Because it also is sensitive to the effect of insulin to enhance glucose uptake, storage,
and metabolism, it also is a key organ in insulin resistance and deranged glucose
metabolism in obesity and type 2 diabetes mellitus [2], one of the most common
chronic diseases in the world. The complex polygenic nature of this disease,
reaching the limits of predictive power of knowledge gained by genome-wide
association studies [3], and the profound genotype/environment interaction required
to develop type 2 diabetes mellitus compel additional approaches to understanding
pathogenesis of the disease. These approaches by necessity, therefore, must be able
to deal with complexities of biological changes in tissues. Proteomics offers inves-
tigators such an approach. Skeletal muscle is the largest single contributor when
insulin stimulates clearance of glucose from the blood in humans [4] and is one of
the major regulators of body amino acid metabolism [5]. Because of these and other
vitally important functions, human skeletal muscle has been a widely studied organ,
with nearly 20,000 citations in PubMed as of June 2018. Moreover, although not as
accessible as blood, skeletal muscle can be sampled readily by the use of percuta-
neous needle biopsies taken under local anesthesia. Because of the low rate of
adverse events during these procedures and the lack of lasting effects [6], muscle
biopsies can readily and ethically be performed not only in patients in need of
diagnosis of disease but also in healthy control volunteers. The highest incidence
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of adverse events was for pain, approximately 1% of patients [6]. The use of
percutaneous muscle biopsies in analyzing normal biology and disease pathogenesis
dates to the nineteenth century but was popularized in modern medicine in the 1960s
by Bergstrom [7], who described a muscle biopsy cannula that is still commonly
used today. The history and methodological considerations of the use of the muscle
biopsy technique have been reviewed thoroughly recently [8].

Skeletal muscle is a complex tissue in which multinucleated myotubes or myo-
fibrils are organized into muscle fascicles that are surrounded by an extracellular
matrix membrane (the perimysium) and contains blood vessels and sometimes
infiltrating adipose tissue (Fig. 7.1). Although a needle or open muscle biopsy can
contain these other tissues, when care is taken, a muscle biopsy predominantly
represents muscle tissue. Therefore, results obtained from analysis of homogenates
or lysates of a needle muscle biopsy can be assumed to primarily represent skeletal
muscle. However, the possibility of confounding factors as a result of contamination
of other tissues should always be kept in mind.

This chapter will focus on studies of human skeletal muscle using mass
spectrometry-based proteomics technologies. The primary focus will be studies
using biopsies to obtain skeletal muscle, but with selected references to studies
using in vitro primary cultures of human myoblasts or differentiated myotubes.
Although true in one sense or another for most tissues, because the primary function
of skeletal muscle is to contract and do work, there are limitations to in vitro models.
Moreover, with some exceptions, especially those of single gene mutations that
produce disease, it is difficult to create animal models that adequately reflect
humans. In complex, chronic diseases like type 2 diabetes, animal models in
isolation offer limited insight. In addition, in studies that examine how exercise or
exercise training affects protein abundance or other events in muscle, in vitro models
mostly lack relevance because it is difficult to perform physiological muscle con-
traction in these models. Therefore, it is critical to continue to develop methods to
study human skeletal muscle obtained directly using muscle biopsies. This chapter is
not intended to be exhaustive, but rather to represent the array of areas which have
proven to be amenable to mass spectrometry-based proteomics analysis in humans
and for which such analyses have contributed in a major way to our base of
knowledge.

Early studies of the human muscle proteome were limited by instrumentation. For
example, one of the first studies of the human vastus lateralis proteome identified
107 proteins using a 2D gel/MS approach [9]. With the advent of Fourier transform
ion cyclotron resonance mass spectrometry (FTICR/MS), the number of identified
proteins grew to over 900 proteins [10] and Orbitrap-type instruments have
expanded this to nearly 3000 proteins [11]. Moreover, earlier studies tended to be
composed of lists of proteins, with little in the way of new biology. Later studies
have focused on using mass spectrometry-based proteomics techniques to ask
relevant biological questions and identify new proteins and posttranslational modi-
fications. For example, studies have addressed how serine and threonine phosphor-
ylation alters function of insulin signaling [12, 13], identification of binding partners
of proteins [14], modification of ATP synthase beta subunit by phosphorylation
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[15, 16], how acetylation of mitochondrial proteins can affect their function [17], and
others. In essence, mass spectrometry-based proteomics has grown from a more
esoteric, instrument-focused approach to one in which highly sophisticated instru-
ments are now able to be used by many investigators to ask questions in areas
ranging from basic biology to translational research.

What advantages do study of the proteome confer? Analysis of genomic variation
can provide information about the array of possibilities for biological variation in
individuals and populations, but the genome must be transcribed to mRNA (and
other forms of RNA) in order to express this variability. Since expression of mRNA
is a highly regulated, complex, and gene-specific process, it is not possible at present
to predict the extent of expression of any specific gene from the sequence of the
genome. Despite this, there is a good overall relationship between mRNA expression
and protein abundance [18]. Once mRNA is expressed, it must be translated to
protein. Again, this is a highly regulated, complex process, the outcome of which is
not possible to predict from genomic or mRNA analyses. Finally, once mRNA is
translated into protein, there are many processes that control the abundance and
activity of the protein. Included among these processes are posttranslational modi-
fications of the protein. The advantages of mass spectrometry-based proteomics are
that in a single experiment, quantitative information can be obtained about a large
number of proteins on many levels. This includes information about protein
isoforms, and in addition, posttranslational modifications can be identified and, in
some cases, quantified. Thus, the use of proteomics complements and extends other
forms of “-omics” data.

Modern mass spectrometry instrumentation has dramatically improved our ability
to delve deeply into the proteome of all cells and tissues. In the past 20 years, the
advances in instruments and techniques have seriously raised the bar for just how
deep into the proteome investigators can dive. Earlier studies often used
two-dimensional gel separation of proteins coupled with identification by mass
spectrometry and quantification by protein staining intensity. These early studies
often identified and quantified only a handful of proteins compared to more current
methods but were not without merit. For example, because one of the dimensions of
separation is isoelectric focusing, differentially phosphorylated (and charged) forms
of the same proteins migrate with a characteristic pattern and allow investigators to
obtain information they might not have gotten with other techniques, like immuno-
blots, at the time. An example of this would be the use of 2D gels to demonstrate that
the beta subunit of mitochondrial ATP synthase exists in multiple phosphorylation
states, a hitherto unappreciated example of phosphorylation of mitochondrial pro-
teins [15]. More recently, investigators have used a one-dimensional “Gel-C-MS”
approach (see below) or gel-free techniques with other fractionation techniques.
Moreover, instrumentation has rapidly evolved over the past 20 years. It is not
surprising, then, that coverage of the skeletal muscle proteome has increased dra-
matically over this period, from a handful of proteins to several hundred, to several
thousand currently.
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7.2 Major Applications

Because of its size and role in metabolism and locomotion, skeletal muscle often is a
key tissue that is relevant to health and disease. This can result from a direct role of
muscle in a genetic disease such as Duchenne muscular dystrophy, or indirectly, as
in type 2 diabetes, through more subtle changes that lead to disease over time. And,
of course, the primary function of skeletal muscle is to provide a means for the body
to move through space, and the ability of muscle to respond to exercise therefore has
been a key aspect of the study of skeletal muscle by mass spectrometry-based
proteomics techniques. Proteomics techniques have been used in a vast array of
studies of numerous processes in health and disease in human skeletal muscle.
Examples of these studies to illustrate the breadth and depth of these investigations
are given in Table 7.1.

Two of the most intensively studied areas that pertain to healthy skeletal muscle
are exercise biology and aging. With regard to exercise and muscle contraction, the
ability of skeletal muscle to adapt to stress is a key element of healthy skeletal
muscle. The ability of muscle to respond to exercise may, in fact, be related to
metabolic disease, with the evolution of the concept that insulin-resistant muscle also
is “exercise resistant” [46, 47]. Proteomics techniques have played a key role in the
study of adaptations to exercise in healthy muscle and in conditions such as obesity
and type 2 diabetes mellitus. There has been an array of proteomics-based studies
that have examined a range of questions related to exercise. Hostrup and colleagues
used proteomics to study the question of whether treatment with beta-2 adrenergic
agonists, such as those used for asthma treatment, can affect the adaptation of
skeletal muscle to exercise training [19]. This question has relevance for athletes
and others who use inhaled beta-2 agonists every day. Other investigators have used

Table 7.1 Areas of proteomic investigation in human skeletal muscle

Exercise Hostrup et al. [19], Holloway et al. [20], Hussey et al. [21]

Aging Baraibar et al. [22], Lourenco dos Santos et al. [23], Murgia et al.
[24], Ohlendieck et al. [25], O’Connell et al. [26], Staunton et al.
[27], Theron et al. [28]

Metabolism (obesity, type
2 diabetes, etc.)

Hwang et al. [29], Lefort et al. [30], Mielke et al. [17], Langlais
et al. [12, 13], Hojlund et al. [10, 15, 16], Campbell et al. [11],
Fiuza-Luces et al. [31]

Degenerative diseases Conti et al. [32], Elf et al. [33], Greenberg et al. [34], Holland
et al. [35], Mutsaers et al. [36], Salanova et al. [37], Sun et al. [38]

Ophthalmoplegia Pfeffer et al. [39]

Inclusion body myositis Guttsches et al. [40]

Lipid storage disorders Debashree et al. [41]

Hypoxic stress Capitanio et al. [42]

Growth hormone Duran-Ortiz et al. [43]

Filaminopathy Kley et al. [44]

Differentiation Le Bihan et al. [45]
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proteomics to define differences in the global proteome between exercise-trained and
sedentary individuals and showed these people also differed in how their muscle
responded to an acute bout of exercise [48]. Yet other investigators have used
proteomics to study how exercise training influences protein abundance in a longi-
tudinal manner. Burniston and colleagues used 2D gels, iTRAQ quantification, and
LC-Maldi MS/MS to show that interval training resulted in broadly higher abun-
dance of mitochondrial proteins. The 2D gel approach also allowed these investiga-
tors to examine differences in phosphorylation of creatine kinase and troponin T
[48]. These results demonstrate the advantages of combining multiple proteomics
techniques. Other investigators have used proteomics to study how exercise affects
protein abundance in skeletal muscle of patients with type 2 diabetes, whose muscle
is metabolically abnormal and characterized by reduced sensitivity to insulin
[21]. These investigators could show that in patients with type 2 diabetes mellitus,
only 4 weeks of exercise training could induce a rise in components of the malate–
aspartate shuttle and citric acid cycle. Training also resulted in a fall in abundance of
glycolytic proteins and changed the abundance of cytoskeleton proteins. These data
showed that despite the overall lower response of insulin resistant muscle to a single
exercise bout [46, 47], exercise training still conferred benefits in muscle of diabetic
patients. With regard to studies of aging, again proteomics approaches have played
an important part. These studies include those regarding changes in the neuromus-
cular junction in aging [49], carbonylation of proteins involved in glycolysis and
protein quality control that may be involved in cellular senescence and other
processes [22, 23], a shift to slow-twitch muscle fibers in aging and sarcopenia
[24, 25], and aging in general [26–28].

A number of investigators have used proteomics methodology in an attempt to
understand how differences in protein abundance between healthy and insulin
resistant muscle in obese and type 2 diabetic patients might contribute to insulin
resistance and the pathogenesis of type 2 diabetes mellitus. These studies have found
similarities between insulin-resistant and sedentary muscle, especially in the mito-
chondrial proteome [29, 30]. This has led to the question of whether insulin
resistance is a cause or consequence of lower mitochondrial content, capacity, or
bioenergetic function. It is likely that this is a situation in which there is truth in both
sides of this question. The observations that insulin-resistant muscle does not
respond well to exercise [50–54] give some support to the idea that insulin resistance
itself can lead to mitochondrial dysfunction, broadly defined. On the other hand, an
improvement in insulin sensitivity with exercise training that raises mitochondrial
abundance suggests that insulin resistance also can arise from low mitochondrial
functional capacity. In yet another context, response to bariatric surgery, Campbell
et al. provide a global analysis of protein abundance changes [11].

In addition to these well-studied areas, proteomics techniques have been used in a
very broad range of studies of skeletal muscle biology in humans. Perhaps most
widely represented are studies involving degenerative diseases of skeletal muscle
(Table 7.1). These include genetic diseases such as Duchenne muscular dystrophy
[35]; diseases that may have multiple causes such as amyotrophic lateral sclerosis,
or Lou Gehrig’s disease [32, 33]; facioscapulohumeral muscular dystrophy; and
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limb-girdle muscular dystrophy [34]. Other studies using proteomics have studied
degenerative muscle diseases that result from denervation or disuse, such as bed rest
[36–38]. Related to these diseases, one study used proteomics to study protein
differences in ophthalmoplegia [39]. A number of other conditions that affect
skeletal muscle also have been studied using proteomics techniques (Table 7.1).
Included in this “miscellaneous” category are inclusion body myositis [40], lipid
storage disorders [41], glycogen storage diseases [31], hypoxic stress [42], growth
hormone excess and effects [43], filaminopathies [44], and normal differentiation of
myocytes [45]. Here we provide more details on selected applications.

Quantification of Protein Abundance Using Biopsies of Human Skeletal
Muscle In addition to assigning spectra to proteins and identifying a large number
of proteins in the skeletal muscle proteome, it is desirable to quantify protein
abundance, especially in the context of changes that occur in disease states or in
healthy muscle in response to exercise and exercise training. When quantifying
protein abundance from samples obtained in vivo, special considerations are
required. In vitro, highly precise quantification of proteins can be accomplished
efficiently with metabolic labeling of proteins, using techniques such as stable
isotope labeling by amino acids in cell culture (SILAC) labeling with stable isotopes
[55]. Although it is possible to isotopically label proteins in a mouse, it is not
possible to do this in humans. This leaves two general options for those wishing to
quantify protein abundance in muscle biopsies. One is chemical labeling of specific
amino acid residues in proteins with a stable isotope, using such techniques as
iTRAQ [20, 56]. This technique, while it can provide precise relative quantification
of proteins, does not always yield the highest number of quantifiable proteins. It also
is possible to quantify proteins without using labels, and this is termed label-free
quantification. One method that has been used commonly is quantification by means
of normalized spectral abundance factors [57–59]. In this technique, spectra specific
to a given protein are summed, normalized to the length of the protein (longer
proteins will have more spectra), and again normalized to the total spectrum count
in a sample. The concept is that the number of spectra for a protein reflects its
abundance, corrected for protein length and sample loading. This method has been
used productively [29] but suffers from several limitations. First, if groups of
separate samples are being compared, sometimes no spectra will be assigned to a
low-abundance protein in some of the samples. This leads to “zero” abundance
values and presents statistical normalization processes as well as the question of
whether to use that sample at all. Second, the discontinuous nature of the data also
presents analysis problems. To circumvent this, other investigators have used nor-
malized peptide ion intensities to quantify proteins. This technique also has issues if
a particular protein is not assigned to be statistically significantly present in a
particular sample. Some analysis programs attempt to circumvent this problem by
comparing two-dimensional “peptide ion feature” maps that can aid in assigning
low-abundance peaks to a particular peptide and protein. While no method is perfect,
and it is difficult to provide absolute, stoichiometric protein quantification with
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in vivo samples, important conclusions can still be derived from many of these
relative quantification methods.

Proteomes of Subcellular Fractions of Skeletal Muscle: Mitochondria Despite the
difficulty of performing clean isolations of subcellular fractions of skeletal muscle
biopsies, a number of studies have attempted to provide these proteomes. Because
production of energy for cellular functions such as contraction is a key aspect of the
biology of skeletal muscle in health and disease, the mitochondrial fraction has
attracted attention. One of the earlier attempts to define the human skeletal muscle
mitochondrial proteome used percutaneous needle muscle biopsies from healthy
volunteers and a 1D gel-based approach to identify over 800 unique proteins, of
which nearly 500 were annotated to the mitochondrion at that time [60]. This
proportion demonstrates the extent of contamination of mitochondrial subfractions
in skeletal muscle, since the investigators isolated these mitochondria using a
technique designed to produce functionally active organelles [30, 60]. Although,
on a protein basis, more than a third of the proteins assigned appeared to be
contaminants of the mitochondrial compartment, the proportion of spectra assigned
to mitochondrial proteins was much higher. Regardless of these limitations, this
approach allows investigators to study the proteome of an organelle in the same
preparation that can be used for functional studies.

Other Subcellular Proteomes Although much attention has been paid to the mito-
chondrial fraction of skeletal muscle, in particular due to interest in the biology of
exercise as well as skeletal muscle metabolism (both discussed below), other
subcellular proteomes have received attention. Some of these proteomes have been
obtained using muscle biopsies, while others derive from studies using cultured
cells. For example, one study used a variety of techniques, including proteomics, to
study the molecular nature of the neuromuscular junction in rodents and humans
[49]. This study revealed similarities and differences between rodent and human
neuromuscular junctions. Other studies, probably necessarily, used cultured
myocytes to obtain other information on muscle-related proteomes. Studies of the
secretome are especially amenable to the in vitro approach and would be difficult if
not impossible to perform in vivo. In one study, primary cultures of human skeletal
muscle cells were used for this purpose [61]. The purpose of this study was to
identify potential myokines, proteins secreted by skeletal muscle cells that can act on
other tissues at a distance. Using this approach, the investigators identified 12 novel
potential myokines [61]. This study is a prime example of how results from unbiased
proteomics analyses can lay the ground for generating hypotheses and potentially
discovering new biology.

Analysis of Posttranslational Modifications Protein function can be modulated
drastically by posttranslational modifications. Early discoveries by Sutherland of
the regulation of glycogen phosphorylase and glycogen metabolism by phosphory-
lation in response to hormonal stimulation are the classical example of how protein
phosphorylation regulates activity and was described in a series of classical papers
[62–65]. Posttranslational modifications have been a long-standing specialty of mass
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spectrometry, beginning with identifying which specific residues within a protein are
modified and evolving to quantification of directional changes of thousands of
posttranslational modifications across entire proteomes. When working on whole
proteomes and phosphorylation, after enzymatic digestion of the protein sample, the
resulting peptide mixture is overwhelmingly non-phosphorylated, so much so that
phosphopeptides become undetectable due to relatively low abundance. However,
this limitation is commonly overcome by employing phosphopeptide enrichment, a
technique that has evolved to become standard practice. Tandem mass spectrometry,
which takes advantage of coupling a parent ion scan to a peptide ion fragmentation
scan, has proven to be an excellent tool for assigning which exact amino acid residue
is subject to posttranslational modification within a given peptide. Soon after tandem
mass spectrometry became a mainstream go-to for peptide and posttranslational
modification site identification, the ability to perform quantification of directional
changes in peptide and posttranslational modification abundance between different
experimental groups emerged, eventually resulting in a powerful technique and a
new field, quantitative proteomics. Experiments evaluating directional fold changes
in posttranslational modifications like acetylation and phosphorylation across entire
proteomes are performed with the aforementioned label and label-free techniques,
and new oversight practices that allow for better review of data quality are now
requiring investigators to submit all annotated posttranslationally modified peptide
spectra to data repositories. With respect to proteomic analysis of skeletal muscle
and regulation of protein function by phosphorylation, there are a number of
examples. One of the more complicated examples of such analyses was the mapping
and quantification of serine and threonine phosphorylation sites in the insulin
signaling protein insulin receptor substrate (IRS)-1. Tyrosine phosphorylation of
IRS-1 by the tyrosine kinase activity of the insulin receptor transduces the signal
from insulin to increase glucose uptake and metabolism in tissues like skeletal
muscle and adipose tissue, and a great deal of attention was paid to the potential
role that might be played by this protein in the pathophysiology of skeletal muscle
insulin resistance in type 2 diabetes and obesity (see below). Extensive studies of
IRS-1 in cell culture and rodent models from the laboratory of Morris White revealed
that in addition to positive modulation of IRS-1 function by tyrosine phosphoryla-
tion, serine and threonine phosphorylation of IRS-1 also could regulate its function
[66, 67]. Because of the importance of insulin resistance to the development of and
consequences from type 2 diabetes, and since human diabetes differs substantially in
a variety of respects from cell culture or animal models of the disease, a compelling
case could be made for determining how IRS-1 is phosphorylated in human muscle
obtained from biopsies. Several phospho-specific antibodies were developed to
quantify the extent of phosphorylation at a few biologically relevant serine and
threonine sites in IRS-1, for use in immunoblots. Although these antibodies work
well in cell culture, the immunoblots from lysates of human muscle biopsies were
often somewhat unclear. Moreover, because approximately 270 of the 1242 amino
acid residues of IRS-1 are serine and threonine residues, it would be very difficult to
use immunoblot analysis to obtain a global picture of IRS-1 phosphorylation in
human muscle. As techniques for analysis and quantification of serine/threonine
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sites in proteins by mass spectrometry were developed, investigators applied them to
analysis of IRS-1 in human muscle biopsies in order to circumvent these problems.
In a series of papers, a number of serine/threonine phosphorylation sites were
identified and quantified under basal and insulin-stimulated conditions, where pos-
sible, in IRS-1 present at endogenous levels in human muscle biopsies [12, 13, 68–
70], and found a number of differences in phosphorylation of serine and threonine
residues in insulin-resistant muscle. These studies also revealed new biology related
to human IRS-1, which differs slightly but significantly from mouse IRS-1 [47], in
addition to providing information relevant to disease processes.

Another posttranslational modification of proteins that is amenable to analysis by
mass spectrometry methods is lysine acetylation [71–75]. Lysine residues often
confer function to proteins through their positive charge, and acetylation of lysine
removes this positive charge. Therefore, lysine acetylation can dramatically alter the
function of a protein. Acetylation of lysine residues is overrepresented in metabolic
and mitochondrial proteins [73], perhaps because of an environment in which acetyl
groups are especially abundant. An unbiased acetylomic analysis of human skeletal
muscle proteins revealed a number of acetylation sites in mitochondrial proteins
[17]. Among these were three lysine acetylation sites in the ADP/ATP translocase
1, sometimes referred to as adenine nucleotide translocase 1 (ANT1). In examining
the crystal structure of bovine ANT1, it became apparent that one of these residues,
lysine 23, was part of a cluster of positively charged residues near the adenine
nucleotide-binding pocket. Molecular modeling of the acetylated and unacetylated
versions of ANT1 revealed that acetylation at lysine 23 could dramatically lower the
binding affinity of ANT1 for ADP [17]. Since ADP is a key respiratory signal and
because ANT1 is an important locus of control of respiration under conditions of low
to moderate energy demand, a modification at this single residue might dramatically
affect cell function [76]. Moreover, the extent of acetylation at lysine 23 was related
to insulin sensitivity in skeletal muscle, demonstrating a biomedically relevant role
for this single acetylation site. It is likely that more lysine acetylation sites on
proteins in human skeletal muscle, and other tissues, will be identified by mass
spectrometry analysis and will lead to studies of the functional relevance of acety-
lation. Parenthetically, although acetyltransferases and deacetylases have been iden-
tified in particular instances, it is still unclear whether enzymatic or nonenzymatic
acetylation is involved in mitochondrial proteins, and nonenzymatic acetylation may
be widespread [77].

7.3 Limitations

Skeletal muscle is a highly organized, complex tissue whose main function is to
provide movement and do work. The arrangement of contractile proteins and
mitochondria within muscle is shown in Fig. 7.1. Contraction is accomplished via
the interaction of myosin and skeletal muscle actin, with titin providing springlike
elasticity. Proteins of the Z-disk, such as alpha actinin-2, provide an anchor for
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alpha-actin and titin. This highly structured molecular arrangement yields the typical
appearance of the sarcomere, the functional unit of contraction (Fig. 7.1). Mitochon-
dria are abundant and embedded between myofibrils, making it harder to liberate
functional mitochondria than it is in less organized cell types, such as hepatocytes.
Because of this organizational complexity and specialized function, skeletal muscle,
especially biopsies taken from humans or muscle specimens taken from other
animals, presents some special difficulties for many proteomics analyses. First,
because of the abundance of connective tissue and the complexity of its structure
consisting of “sticky” contractile proteins, this tissue requires vigorous disruption to
solubilize a large number of proteins. This also makes it more difficult to isolate
relatively pure subcellular fractions if one wishes to focus on a particular proteome,
for example, the mitochondrial or nuclear proteome. With regard to mitochondria, if
the experiment calls for isolation of functionally active mitochondria in order to
study bioenergetics of skeletal muscle, one must be willing to accept less-than-pure
mitochondria preparations from the perspective of proteomics [30, 60]. The impli-
cation of that is that the sensitivity and comprehensive nature of mass spectrometry-
based proteomics techniques allow one to “see” all the contamination that is present
normally in preparations of subcellular organelles like mitochondria. But perhaps the
biggest methodological hurdle to overcome in proteomics analysis of skeletal muscle
is the very high abundance of a few large to very large proteins. Myosin, titin, and
skeletal muscle actin comprise a very large proportion of the total protein in the
myocyte, as can be appreciated from Fig. 7.1. Therefore, techniques using
in-solution enzymatic digests of muscle biopsy lysates, as opposed to gel slices,
are plagued by a poor ability to identify low-abundance proteins. This is due in part
to the fact that current instruments have a limit on the number of spectra that can be
analyzed in any given time interval. Although scanning speeds have improved
dramatically in the last 10 years, as cited above, the problem in analyzing skeletal
muscle lysates is still severe. This problem can be likened to trying to find blades of
grass that are hidden in a vast forest of trees. One continues to identify trees.
Similarly, with these techniques, one continually identifies large contractile and
structural proteins (the trees) and misses lower-abundance proteins like transcription
factors, enzymes, and signaling proteins (the leaves of grass). Therefore, it is
advantageous to employ techniques that use molecular weight as one dimension of
a multidimensional fractionation protocol designed to maximize the ability to assign
proteins in the muscle proteome. Perhaps the most efficient way to do this is to
perform what has been termed “Gel-C-MS.” A typical workflow for this approach is
shown in Fig. 7.2. A complex lysate of a skeletal muscle biopsy first is resolved
using a one-dimensional SDS–polyacrylamide gel. This concentrates large proteins
at the top of the gel. Very large proteins like titin will not even enter the gel and thus
will be primarily excluded. Although myosin will enter most gels commonly used
for these purposes, the myosin band is easily identified by its characteristic staining
with Coomassie blue and can be totally avoided if desired. Each lane of the gel is
then cut into 6–12 slices, and each slice is enzymatically digested and processed for
analysis [10]. This procedure, with current instruments, can yield over 2000 quan-
tifiable proteins from a single, individual skeletal muscle biopsy and in upward of
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3000 quantifiable proteins over a number of specimens in any given experiment.
This discrepancy exists because not all the same proteins are assigned in all subjects
in a study. The problem of interference from large contractile proteins is not as
severe with myoblasts or even differentiated myotubes studied in culture, but if
human skeletal muscle is to be studied in a physiological or pathophysiological
context, these problems must be faced.

Another consideration when designing experiments may be whether one wishes
to study the effects of acute or chronic muscle contraction or exercise. For these
studies, the in vivo approach in humans, using muscle biopsies, may be the best.
Although there are now approaches to electrically stimulate differentiated myotubes
in culture, it is not clear how well this approach compares with muscle contraction
in vivo. For example, in vivo exercise produces effects not only through contraction
itself but also in response to systemic physiological changes that occur during
exercise, such as changes in blood flow and hormone or substrate concentrations.
The in vivo approach integrates these changes. It also is possible, using one-legged
muscle contraction [78], to minimize some of these systemic changes and relatively
isolate the effects of “muscle contraction” from those of “exercise.”

7.4 Vital Future Directions

From early lists of proteins generated on now-outmoded instrumentation to the use
of modern instruments that have the capability to dive deep into the proteome, the
field already has achieved significant progress. At some point soon, instrumentation

Fig. 7.2 Typical workflow for “Gel-C-MS” for proteomics analysis of lysates of skeletal muscle
biopsies
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should allow us to identify and quantify (at least relatively) almost all proteins that
are expressed in human muscle. Where do we go from here? It is critical that mass
spectrometry-based proteomics move to its place as a technique accessible to many
investigators who want to use its power to ask directed questions about basic or
translational biology. Currently, it too often is still a technique shrouded in mystery
behind a proteomics “core,” where investigators have little knowledge or control
over the data that are generated. Proteomics facilities must move from service cores
to collaborative laboratories engaged in generating data in a transparent, interactive
manner. It is also vital that methods be developed to more accurately and precisely
quantify proteins, using either a label-free or labeling approach.
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Chapter 8
Proteome Profiling of Muscle Cells
and Muscle Tissue Using Stable Isotope
Labeling by Amino Acids

Emily Canessa, Mansi V. Goswami, Alison M. Samsel, Michael Ogundele,
Shefa M. Tawalbeh, Tchilabalo D. Alayi, and Yetrib Hathout

8.1 Theory and History of Stable Isotope Labeling by
Amino Acids for Proteomic Studies

Comprehensive and accurate proteome profiling of skeletal muscle remains chal-
lenging owing to the large proteome dynamic range in this tissue and the increased
sensitivity needed to detect low-abundant proteins. Sarcomeric and glycolytic
enzymes are by far the most abundant proteins in muscle, masking detection and
quantification of low-abundant proteins such as dystrophin, dystrophin-associated
protein complex, cell signaling proteins, and transcription factors. About 5400
unique proteins have been identified so far in skeletal muscle using extensive
pre-fractionation methods and mass spectrometry [1]. While this is good for catalog-
ing the muscle proteome, pre-fractionation methods are often not compatible with
quantification or comparative proteomics because of inherent technical variability
from experiment to experiment leading to false and inaccurate quantification. To
overcome these challenges, several stable isotope labeling strategies have been
developed and tested in the past in different cell culture models and tissues. Typi-
cally, the two samples to be compared are tagged with heavy and light stable isotope-
labeled moieties, respectively, either at the peptide level, after digestion of proteins
with a protease (e.g., trypsin or endoproteinase Lys-C), or even at the cellular level
before protein extraction and processing. These different stable isotope labeling
techniques are described elsewhere [2], and for this book chapter, we will focus on
the most accurate methods.
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8.1.1 Stable Isotope Labeling by Amino Acid in Cell Culture
(SILAC)

Stable isotope labeling by amino acid in cell culture (SILAC) is by far the most
accurate method for quantitative proteomics when dealing with a cell culture system.
SILAC was first introduced in 2002 using light unlabeled leucine (Leu-d0) and
heavy deuterium labeled leucine (Leu-d3) to measure temporal changes in the
expression of proteins over the course of C2C12 differentiation [3]. The SILAC
technique was further improved by incorporating dual labeling using 13C6-Arg and
13C6-Lys, the two amino acids at which trypsin cuts. As depicted in Fig. 8.1, one set
of cell culture, often control cells, is grown in media where normal Arg and Lys are
replaced by heavy 13C6-Arg and

13C6-Lys, respectively, while the experimental cells
are grown in classical unlabeled media with normal 12C6-Arg and 12C6-Lys. After
passaging the cells five times (equivalent to seven cell doublings) in their respective

Fig. 8.1 Flowchart depicting the workflow of SILAC strategy. SILAC cells (most often control
cells labeled with 13C6-Lys and

13C6-Arg) and unlabeled cells (most often experimental cells grown
in 12C6,

14N2-Lys and
12C6-Arg) are mixed at a 1:1 ratio for subsequent subcellular fractionation.

Total proteins are extracted from each fraction of interest and further fractionated by SDS-PAGE to
reduce complexity. Gel lanes are then sliced into 2–3 mm pieces. Each piece is in-gel digested by
trypsin and the resulting peptides analyzed by LC-MS/MS. Labeled (red) and unlabeled (blue)
peptide pairs co-elute, but their masses are resolved by mass spectrometry. The intensity ratio of
unlabeled to labeled peptide reflects the amount of the corresponding protein in experimental
relative to control cells. The bottom right panel shows the elution profile of labeled and unlabeled
peptide pair
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media, the proteome of SILAC control cells becomes fully labeled with heavy Arg
and Lys residues, while the proteome of the experimental cells contains normal light
Arg and Lys. A given tryptic peptide belonging to a given protein will have the exact
same sequence in stable isotope-labeled control cells as its unlabeled homologue in
the experimental cells. Typically, total protein extracts from SILAC labeled cells and
unlabeled cells are mixed at a 1:1 ratio. The mixture is then digested by trypsin and
the resulting peptides are analyzed on a reversed-phase liquid chromatography
connected to a tandem mass spectrometry system with MS and MS/MS capabilities
(LC-MS/MS). During chromatography, stable isotope labeled and unlabeled peptide
pairs found in the same protein will co-elute since they have exactly the same amino
acid sequence, and therefore the same hydrophobicity but their masses are resolved
by the MS detector since the stable isotope-labeled peptide is 6 Da heavier than the
unlabeled peptide. The MS/MS data of either labeled or unlabeled peptide is used to
identify the protein, while the elution profile of labeled and unlabeled peptide pairs
detected at the MS level is used to determine the ratio of that protein in experimental
samples relative to the SILAC labeled control.

Because the light and heavy stable isotope-labeled sample pairs are mixed before
protein digestion and sometimes even before subcellular fractionation and protein
extraction (Fig. 8.1), variation due to sample handling and processing is minimized.
Typical precision or CV using this technology is below 15%. The SILAC strategy
has been widely used in a number of eloquent studies ranging from basic compar-
ative proteomics [4] to more complex proteomics studies such as quantitative
subcellular proteome profiling [5, 6], protein-protein interactions [7, 8], phospho-
proteomics and cell signaling [9, 10]. As discussed below SILAC has been also
implemented in studies using muscle cell culture as a model.

8.1.2 Stable Isotope Labeling in Mammals (SILAM)

More recently SILAC strategy has been extended to animal models where the whole
animal proteome is labeled with a stable isotope-labeled essential amino acid such as
13C6-Lys [11] or uniformly labeled with 15N [12]. In this strategy, pregnant female
mice are given 13C6-Lys labeled mouse feed or 15N-labeled Spirulina-based feed and
the entire mouse colony is maintained under this regimen for a couple of generations.
All proteins in the tissue and body fluids of the second-generation mice become fully
labeled with the heavy Lys residue or 15N. The proteome of the SILAM mouse is
labeled with 13C6-Lys and mixed at 1:1 ratio to the proteomes of unlabeled control
and experimental mice. In this example only tryptic peptides that contain Lys
residues can be used for quantification. But when the proteome of the SILAM
mouse is labeled with 15N and spiked into the proteomes of unlabeled control and
experimental mice, all tryptic peptides can be used for quantification since all
peptides contain several nitrogen atoms. In the SILAM 13C6-Lys experiment, the
mass difference between stable isotope-labeled peptide and its unlabeled peptide
homologue is 6 Da, while in the SILAM 15N experiment, the mass difference
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between stable isotope-labeled peptide and its unlabeled homologue depends on the
number of nitrogen atoms in the peptide. In general, when using SILAM strategy,
protein extract from a given tissue or body fluid from the SILAMmouse is used as an
internal standard to quantify the same set of proteins in unlabeled experimental and
control mice using intensity ratios of heavy and light peptide pairs (Fig. 8.2).

These innovative in vivo labeling strategies utilizing 13C6-Lys and 15N were
successfully implemented in a number of impactful research studies. This includes
a study on the role of specific genes using knockout mouse models [13], one defining
alteration in cell signaling during skin carcinogenesis [14], one defining disease
altered protein turnover in the brain of Alexander disease mouse model [15], studies
on the development of the brain in rat models [16, 17], as well as a study on
proteome turnover in different tissues and organs [18].

Fig. 8.2 Flowchart depicting the workflow of super SILAM strategy. Protein extracts from tissue
or body fluids of experimental and control mice are spiked with known amount of protein extract
from matching tissue or body fluids. Spiked samples are fractionated by SDS-PAGE and processed
for in-gel digestion and mass spectrometry analysis. Depending on the requested experiments,
replicate mice are used (n¼ 3 to 6 mice per group). Proteins are then identified and quantified using
our IP2 software. The lower panel shows an example of a peptide from a protein that was 1:1 ratio in
control (blue) relative to internal standard (red). Then a scenario where a peptide from a protein was
2:1 ratio, 1:1 ratio, or 1:2 ratio in experimental mice (green) relative to internal standard (red). Note
that the amount of spiked internal standard is the same for this peptide of interest, allowing for
accurate comparisons of protein levels across different samples
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8.2 Implementation of SILAC and SILAM Strategies
to Study the Proteome of Muscle in Health and Disease
Conditions

8.2.1 In Vitro Studies Using SILAC Labeled Muscle Cell
Cultures

Because of its accuracy and specificity, SILAC strategies have been implemented in
a number of basic and translational studies including studies dealing with cultured
muscle cell models. We highlight below some of the major applications in the field.

8.2.1.1 Study of Muscle Cell Differentiation and Myogenesis

One of the first applications of SILAC strategy was actually designed to define
changes in protein expression during muscle cell differentiation using C2C12 cells
as a model [3]. In this initial study, the author cultured undifferentiated C2C12
myoblasts in media containing unlabeled Leu-d0, while C2C12 undergoing differ-
entiation were grown in media containing Leu-d3 and were harvested at days 0, 2,
and 5 over the course of differentiation. Total protein extracts from Leu-d3 labeled
C2C12 day 0, day 2, and day 5 were mixed at 1:1 ratio with total protein extract from
undifferentiated Leu-d0 C2C12 and analyzed by LC-MS/MS. The authors identified
several proteins that did not change over the course of differentiation, while other
proteins either increased or decreased. This early study was performed using C2C12
cells, a transformed and immortalized mouse muscle cell line, and was done for only
5 days of differentiation.

To gain a better idea of how myogenesis occurs in human muscle, a recent study
used human primary myoblast in combination with a triple SILAC strategy to define
changes in the proteome dynamic during muscle cell differentiation [19]. Because
the authors used light, medium, and heavy stable isotope-labeled Lys and Arg, as
well as a more recent instrument, they identified key proteins involved in
myogenesis but also unraveled several novel proteins never reported before. The
authors identified 243 proteins that significantly changed during differentiation and
grouped them into 5 different clusters: those that decreased upon initiating differen-
tiation (clusters 1 and 3) and those that increased during differentiation (clusters
4 and 5). Cluster 2 rose at day 1 of differentiation and then returned to normal levels.
This is one of the most comprehensive studies of the timecourse of protein changes
during myogenesis in vitro and an excellent example of how versatile the SILAC
strategy can be.
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8.2.1.2 Study of the Muscle Cell Secretome

It is well accepted that muscle tissue secretes a large number of biologically active
proteins such as myokines which regulate the secretion of a number of other
biologically active molecules that have a key role in metabolism [20]. It is challeng-
ing to study the muscle secretome in vivo owing to difficulty in accessing the
interstitial space between muscle fibers. Thus, growing differentiated myotube cell
cultures was a first step in cataloguing the muscle cell secretome. In the past few
years, a number of muscle cell secretome studies have published a list of proteins
that were detected in the conditioned media of cultured myoblast and myotubes
using C2C12 cells or primary human muscle cells [21–23]. Besides myokines,
differentiated muscle cells secrete a large number of other biologically relevant
proteins. About 554–954 nonredundant proteins have been identified so far in the
conditioned media of these cultured myotubes. Only 25% of these proteins had a
signal peptide and were secreted through the classical pathway [23]. The remaining
75% of proteins in the conditioned media were either released by leaking cells or via
exosomes [23]. Some of the key secreted proteins identified in the conditioned media
of differentiated myotubes are listed in Table 8.1 with their Swiss-Prot accession
number and potential function relevant to muscle.

A key challenge in studying cell secretome is distinguishing between proteins that
are truly released by the cells and protein contaminants that originate from the 2%
bovine serum added in differentiation culture media or gelatins used to coat culture
flasks. Indeed, several bovine sera proteins have high sequence homology with
human or mouse proteins and might confound the true origin of the proteins
identified in the conditioned media. However, SILAC strategy can overcome this
background noise and distinguish proteins that are truly synthesized and secreted by
SILAC labeled cells from proteins that might be contaminants which are not labeled
by heavy isotope 13C6-Arg or 13C6-Lys residues.

Our group implemented SILAC strategy to define differential exosomal proteins
secreted between dystrophin deficient mouse muscle cells and healthy normal mouse
muscle cells [24]. This study demonstrated that dystrophin-deficient muscle cells
exhibit disrupted vesicle trafficking and protein secretion.

8.2.2 In Vivo Studies Using SILAM Labeled Mouse Model
for Muscle Diseases

8.2.2.1 Use of SILAM Strategy to Define Alterations in the Proteome
of Dystrophin-Deficient Skeletal Muscle

SILAM was successfully implemented by our group to elucidate molecular events
involved in muscle pathogenesis in the dystrophin-deficient mouse model mdx-52
[25] and in a mouse model of inflammatory myopathy [25]. Using this strategy,
thousands of proteins were identified and 789 were quantified, allowing for their
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levels of expression to be compared between muscle disease mouse models and
wild-type mice. Figure 8.3 shows the dystrophin protein which is absent in the
skeletal muscle of an mdx mouse model compared to that of wild-type mouse,
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) which remains unchanged,
and talin which is significantly elevated in the skeletal muscle of a dystrophin-
lacking mouse. Detailed data about altered levels in the proteome of skeletal
dystrophin-deficient skeletal muscle obtained using SILAM is discussed elsewhere
[25, 26]. The key finding from this SILAM mouse study was the identification of
pathways involved in early-stage muscular dystrophy pathogenesis in the mdx
mouse model. A subset of these findings were confirmed in human muscle tissue
comparing DMD muscle tissue to healthy muscle tissue [25].

Table 8.1 Partial list of proteins identified in the conditioned media of differentiated human
primary myotubes (selected from [23])

Accession
number Protein name Potential function relevant to skeletal muscle

Q15063 Periostin Extracellular matrix (ECM) organization and response to
muscle activity

P15502 Elastin Skeletal muscle development

Q14118 Dystroglycan Sarcolemma anchoring and skeletal muscle tissue
regeneration

P35052 Glypican-1 Positive regulation of skeletal muscle cell differentiation

P07585 Decorin Skeletal muscle tissue development

O14793 Myostatin or
GDF8

Negative regulation of muscle hypertrophy, negative regula-
tion of myoblast proliferation and differentiation

Q12841 Follistatin-related
protein 1

A myokine involved in muscle fiber regeneration

P01137 TGFB1 Negative regulation of skeletal muscle tissue development

Q15389 Angiopoietin-1 Regulation of skeletal muscle satellite cell proliferation

P17936 IGFBP3 Positive regulation of myoblast differentiation

Q99988 GDF15 Positive regulation of myoblast fusion

P78504 Protein jagged-1 Myoblast differentiation

P25391 Laminin Involved in myoblast fusion

P09382 Galectin-1 Involved in myoblast fusion

P09486 SPARC Positively regulated in ECM remodeling

P08253 Matrix
metalloproteinase-
2

Positively regulated in ECM remodeling

P02751 Fibronectin Collagen-/actin-binding protein, ECM remodeling

P08123 Collagen alpha-2
(I) chain

Upregulated as differentiation occurs, ECM remodeling

P55291 Cadherin-15 Positive regulation of muscle cell differentiation

P19022 Cadherin-2 Positive regulation of muscle cell differentiation
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8.2.2.2 Use of SILAM Strategy to Accurately Quantify Levels
of Dystrophin Protein in Skeletal Muscle

The need for accurate and precise dystrophin quantification in muscle biopsies and
skeletal tissue collected from clinical and preclinical studies has become highly
important since the introduction of dystrophin replacement therapies. Examples of
such therapies are exon skipping using a phosphorodiamidate morpholino oligomer
(PMO) [27], codon read through using ataluren drug, gene therapy using micro-
dystrophin AAV vector, and stem cell therapy [28]. While these therapies hold
promise because they repair the primary defect in DMD (e.g., restoration of the
missing dystrophin in the skeletal muscle), the precise amount and function of the
restored dystrophin remain a challenge to define which often delays approval by
regulatory agencies and halts further clinical trials. Indeed, quantification of

Fig. 8.3 Principle of SILAM mouse strategy to define the proteome signature of dystrophin-
deficient skeletal muscle in the mdx mouse model. Protein extract from the muscle tissue of a
SILAM labeled wild-type mouse is mixed at 1:1 ratio with protein extract from the muscle tissue of
an mdx mouse. The protein mixture is then fractionated by gel electrophoresis. Bands are excised
and in-gel digested by trypsin. The resulting peptides are analyzed by LC-MS/MS. Thousands of
proteins were identified and quantified. Right panel shows examples of light and heavy peptide
pairs detected for dystrophin, GAPDH, and talin-1 in mdx and SILAM wild type, respectively.
Using the intensity ratio of light to heavy peptide will determine the ratio of corresponding protein
in the muscle of mdx mouse relative to wild-type mouse
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dystrophin using classical antibody-based assays such as Western blot and immu-
nofluorescence exhibited large variability when done on the same biopsies across
different laboratories and even within the same laboratory [29]. Furthermore, dif-
ferent results can be obtained when using immunostaining depending on the muscle
section, the antibodies, and image reading [30].

Stable isotope-labeled proteotypic peptide(s) can be used as internal standard(s) to
quantify any given protein in a complex biological sample using targeted mass
spectrometry methods. Figure 8.4 depicts the targeted mass spectrometry flowchart.
Basically, the method focuses on selecting a peptide or peptides of interest based on
their retention time and m/z value in a LC-MS/MS run. Then the sample to be
analyzed is spiked with a known amount of stable isotope peptides that have the
same sequences as the unlabeled peptides in the target protein. This allows quanti-
fication of the target peptides and therefore allows us to quantify the amount of
protein of interest in the sample. The stable isotope peptides could be either custom
synthesized and spiked into the sample after total protein digestion or generated from
full-length stable isotope-labeled protein that is spiked into the sample before

Fig. 8.4 Targeted mass spectrometry assay principle and flowchart. The quantification is done with
MS/MS transition ions rather than m/z values at the MS level. This increases the sensitivity and
specificity of the measurement because MS/MS data from modern high-resolution instruments often
have little or no background noise. Quantification at the MS levels on anther hand can be noisier
with a risk of false quantification due to co-eluting peptides that might have a very similar mass to
the target peptide. Targeted mass spectrometry uses a combination of peptide (MS) selection
followed by quantification of a “daughter” fragment ion (MS/MS). This greatly improves the
specificity of the measurement because the likely hood of a co-eluting peptide having an identical
fragment ion is low
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digestion with trypsin. The full-length stable isotope protein could be generated by
SILAC cultured cells that express the protein of interest or by using tissue samples
from SILAM mouse that express the protein of interest.

We have successfully used this method to accurately quantify dystrophin in
human muscle biopsies using full-length 13C6-Lys labeled mouse dystrophin as an
internal standard [31]. Indeed, since mouse dystrophin and human dystrophin share
91% sequence homology, several tryptic peptides had exactly the same sequence
between human and mouse. These peptides were selected and used for quantification
of dystrophin.

8.2.2.3 Use of SILAM Mouse to Define Serum Protein Biomarkers
Associated with Dystrophin Deficiency

Fully 15N-labeled wild-type mice were successfully used as surrogates to identify
and quantify serum protein biomarkers associated with dystrophin deficiency using
two independent mouse models, the engineered mdx-Δ52, and the naturally occur-
ring mdx-23 [32]. Of the 355 screened mouse sera proteins, 23 were found signif-
icantly elevated and 4 significantly lowered in sera samples of mdx mice relative to
wild-type mice ( p value <0.001). Elevated proteins were mostly of muscle origin
and included myofibrillar proteins, glycolytic enzymes, transport proteins, and other
muscle proteins, while decreased proteins were mostly of extracellular origin.
Furthermore, analysis of sera from 1 week to 7 months old mdx-23 mice revealed
age-dependent changes in the level of these biomarkers. Most biomarkers acutely
elevated at 3 weeks of age and then either remained increased or decreased in older
mdx mice up to 7 months old. This data was validated in sera samples of DMD
patients [32]. This study shows the utility of using SILAM mouse to define serum
circulating biomarkers that are associated with muscle disease and could be extended
to a number of other applications when looking at the response of these biomarkers.

8.3 Limitations and Extensions of the Technique

While the use of SILAC and SILAM strategies coupled with mass spectrometry
enables accurate proteome profiling of cultured cells and animal tissues, respec-
tively, these techniques have some limitations as described below.

SILAC and SILAM strategies suffer from low throughput because only pairs of
samples can be compared at a time. To overcome some of the throughput challenges,
investigators have introduced super SILAC strategy, where a SILAC labeled cell
batch is prepared in large quantities and used as internal standard to quantify a series
of experimental cells [33]. Similarly, super SILAM can be used in the same way to
perform proteome profiling of different experimental mouse models. With improved
sample preparation methods and state-of-the-art LC-MS/MS instruments with higher
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speed, resolution, and sensitivity, the quantitative coverage of the proteome will
dramatically improve and several samples can be processed in only 1 week instead of
a month. But sample preparation still remains the limiting step in a number of
proteomic studies, especially those implementing SILAC and SILAM strategies,
because it takes on average 1 month to fully label cells with SILAC and up to
6 months to generate a SILAM mouse colony.

Another limitation of SILAC/SILAM strategies is they are restricted for use only
in cell culture models and animal models. Although this is true, cultured SILAC
labeled human myotube extract was successfully used as a surrogate to profile the
proteome of human muscle tissue [34]. However, this strategy still suffers from the
lack of perfect match between the proteome of cultured SILAC myotubes and the
proteome of muscle tissue, resulting in several orphan proteins without an internal
standard for quantification. Indeed, comparison of the whole proteome of human
muscle tissue and cultured human myotubes in our laboratory revealed that 38% of
the total identified proteins in muscle tissue extract were not detected in cultured
human myotube extract (Fig. 8.5). This could be explained by the fact that muscle
tissue is heterogeneous and comprised of a complex mixture of cells besides the
muscle fibers, while cultured human myotubes are more homogenous. For example,
several components of the neuromuscular junctions, endothelial cells, and conjunc-
tive tissue were detected in muscle tissue but not in cultured human myotubes.
Nevertheless, the use of SILAC labeled human myotubes as a surrogate can still be
used to quantify a large number of key proteins in human muscle tissue.

A third limitation of super SILAC/SILAM strategy is leaky or missing data when
dealing with the analysis of several samples for comparison. This missing measur-
able data is most often due to lack of MS/MS events and fragmentation of
low-abundant peptides in the LC-MS/MS run in data-dependent acquisition

Fig. 8.5 Venn diagram depicting the number of overlapping and unique proteins identified by
LC-MS/MS in human muscle tissue and cultured human myotubes. More proteins were identified in
cultured human myotubes than in muscle tissue for several reasons. Cultured cells had a lower
dynamic range than muscle tissue. Proteins are more easily extracted from cultured cells than from
muscle tissue
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(DDA) mode. Although the peptide is detected at the MS levels, there is no MS/MS
data attached to it. To overcome this issue, a more sophisticated mass spectrometry
method such as the sequential window acquisition of all theoretical mass spectra
(SWATH-MS) analysis was introduced [35] and is being implemented in several
proteomics studies and could be extended to muscle cells or muscle tissue.

8.4 Vital Future Directions

While metabolic labeling by stable isotope amino acids enables accurate quantitative
proteomics in muscle cells, muscle tissues, and other tissues, there are still knowl-
edge gaps that may require a combination of the SILAC/SILAM strategies with
other additional proteomics methods.

Proteomic Data Interpretation in the Context of Muscle Tissue in Health
and Disease Conditions Indeed, most of the time proteomic data is interpreted
using knowledge databases that are gathered from proteomics data and literature
generated on other tissues and disease conditions which often creates networks that
are biased toward cancer and other prevalent diseases. Although muscle tissue
expresses about 50% of the total human genome, only a handful of genes (~14%)
were defined as being enriched in muscle using a combination of transcriptome data
and antibody-based profiling [36]. While this is a great initiative, identifying true
muscle-specific proteins using large-scale skeletal muscle proteome profiling will
bring insight into the muscle proteome. The next step ideally is to determine the
absolute amount of each mass spectrometry identifiable protein in muscle tissue. For
example, several key proteins such as dystrophin, utrophin, dysferlin, and
dystroglycan are all associated with certain muscle diseases, and knowing the precise
levels of these proteins in skeletal muscle under healthy and disease conditions
might help define therapeutic targets for gene replacement therapies. SILAC or
SILAM strategy in combination with targeted mass spectrometry analysis can easily
help determine the absolute amount of these key proteins in skeletal muscle. The
next step is perhaps to extend targeted mass spectrometry analyses to absolute
quantification of global proteins in skeletal muscle. This will help refine the skeletal
muscle proteome atlas.

Protein-Protein Interaction in Muscle Another challenging aspect of working with
the muscle proteome, and perhaps in a number of other tissues, is defining protein-
protein interaction and networks. While several cell signaling studies and protein
interaction studies were facilitated by the use of SILAC and/or SILAM strategies, in
other cell models and tissues, only a few studies have been undertaken using muscle
cells and muscle tissue. Such studies will bring insight to molecular mechanisms
involved in a number of muscle diseases and might help identify novel and innova-
tive therapeutic targets.
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Quantitative phosphoproteomics using SILAC and SILAM strategy is another
area of interest that could also bring exciting insights about the muscle biology in
general but also about alterations in muscle cell signaling under disease conditions.

Qualitative and Quantitative Glycoproteomics of Muscle Tissue Glycoproteins
play a crucial role in cell function and tissue integrity. Unfortunately, only a few
glycoproteomics studies have been undertaken in skeletal muscle, and most of these
studies were focused on the dystrophin-associated protein complex that plays a
crucial role in muscle fiber integrity and function. Aberrant assembly and/or glyco-
sylation pattern of this complex has been implicated in a number of muscle diseases
and has been a target for thorough glycosylation studies [37]. Extending these
analyses to other muscle glycoproteins in combination with SILAC strategy using
stable isotope-labeled glutamic acid and SILAM strategy using 15N might help
understand the role of glycoproteins in the pathogenesis of
dystroglycanopathies [38].
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Chapter 9
Investigating Muscle Protein Turnover
on a Protein-by-Protein Basis Using
Dynamic Proteome Profiling

Jatin G. Burniston

9.1 Theory and History of the Technique

Proteomic investigations aim to achieve broad-scale characterisation of the protein
complement of muscle and also perform non-targeted differential analysis of the
muscle proteome under different conditions (e.g. health versus disease). In the
majority, proteomic studies have generated new insight by linking patterns of protein
abundance or post-translational modification with different functional states. Such
information is regarded as being static because the measurements of abundance or
post-translational state represent a ‘snapshot’ of the muscle proteome under certain
conditions at a particular point in time. As such, these data do not include kinetic
information and cannot be used to study dynamic aspects of the muscle proteome,
including protein turnover or the relative contributions that synthesis and degrada-
tion make to changes in protein abundance. For instance, a series of samples
collected over time can be used to build a picture of temporal changes in muscle
protein abundance, but the question of how the time-dependent changes in the
abundance of proteins occurred cannot be answered without also knowing whether
(1) the change in a protein’s abundance was matched by a greater or lesser rate of
synthesis of that protein, and/or (2) whether a change in degradation rate might also
have contributed to the difference in protein abundance. Dynamic Proteome Profil-
ing is a new technique that aims to address these questions by offering insight to the
synthesis, abundance and degradation of individual proteins in the muscle of humans
[1], as well as non-human laboratory animals and cell cultures. Dynamic Proteome
Profiling is built on the culmination of a long history of research and methodological
development in the fields of stable isotopic labelling, proteomics and computational
biology. This chapter aims to highlight the contributions from these separate pillars

J. G. Burniston (*)
Research Institute for Sport and Exercise Sciences, Liverpool John Moores University,
Liverpool, UK
e-mail: j.burniston@ljmu.ac.uk

© The American Physiological Society 2019
J. G. Burniston, Y.-W. Chen (eds.), Omics Approaches to Understanding Muscle
Biology, Methods in Physiology, https://doi.org/10.1007/978-1-4939-9802-9_9

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9802-9_9&domain=pdf
mailto:j.burniston@ljmu.ac.uk


of research and explain how they are brought together in order to perform Dynamic
Proteome Profiling in humans.

Stable isotopes are fundamental to investigating the dynamic aspects of the
proteome in vivo because they enable proteins to be labelled in a manner that can
be detected by mass spectrometry and that does not alter the biological properties of
the protein, muscle or organism under study. Rudolf Schoenheimer and co-workers
pioneered the application of isotopic tracers in metabolic research in the mid- to late
1930s and provided empirical evidence for the dynamic state of body constituents
[2]. Schoenheimer’s laboratory developed stable isotope-labelled amino acids [3]
and used tyrosine labelled with heavy nitrogen (15N) to generate the first evidence
that the amino acids of body proteins are replaced by amino acids from the diet
[4]. These findings paved the way for a rich field of research employing isotopic
labels to investigate protein and amino acid metabolism. However, isotopic labelling
of a particular amino acid (e.g. 15N-lysine) is suboptimal for the technique of
Dynamic Proteome Profiling. Labelling just one type of amino acid places a limita-
tion on the relative amount of isotope that can be incorporated into each protein and
makes detection and quantitation of isotope incorporation more challenging. Instead,
Dynamic Proteome Profiling relies on isotope enrichment through the consumption
of ‘heavy water’/deuterium oxide (2H2O or D2O) which becomes incorporated into
the majority of amino acids during their de novo synthesis or transamination
reactions and, therefore, gives a proportionally greater signal for any given rate of
protein synthesis (described in more detail later).

Deuterium (2H or D) is the heavy stable isotope of hydrogen (1H, ‘protium’) and
was one of the first stable isotopes to be isolated (discovered in 1932 by Harold Urey
[5]) and used in biological research. August Krogh was amongst the first to report
that 2H became enriched in the muscle and other tissues of animals that had
consumed heavy water. The incorporation of 2H into muscle was relatively high
compared to other tissues and increased yet further after muscle contractions
[6, 7]. In 1941, Using [8] used heavy water to report relative rates of deuterium
incorporation in protein in vivo. On the basis of separate measurements of whole
muscle and the myosin fraction, he deduced that individual proteins within a tissue
are likely to have different rates of turnover. Dynamic Proteome Profiling now
provides a tool to investigate in detail the range of diversity in the turnover rates
of muscle proteins, but for the remainder of the twentieth century, the use of
deuterium oxide and the pursuit of individual protein turnover data in vivo were
largely unreported. Instead, methods and detection techniques for isotope-labelled
amino acids flourished and became the preferred tools for investigating the turnover
rates of muscle proteins. For example, Halliday and McKeran [9] was amongst the
first report in humans and used infusion of 15N-lysine to investigate whole-body and
muscle-specific protein turnover. Consistent with findings from rodent muscle,
Halliday and McKeran [9] reported a difference in average synthesis rate of sarco-
plasmic (3.8%/d) or myofibrillar (1.5%/d) protein mixtures in human muscle, which
is likely underpinned by the different protein compositions of these subcellular
fractions.
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During the latter part of the twentieth century, the use of stable isotope-labelled
amino acids became a well-established technique for investigating human protein
and amino acid metabolism (reviewed in [10]). The calculation of the fraction of
newly synthesised muscle protein was achieved by measuring the precursor/product
ratio after a short period of infusion of a stable isotope-labelled amino acid
(described in [11]). Gas chromatography-mass spectrometry (GC-MS) was used to
measure the relative abundances of unlabelled ‘light’ and isotope-labelled ‘heavy’
amino acids in either muscle protein hydrolysates (product) or the free amino acid
(precursor) pools. However, the hydrolysis of muscle proteins to individual amino
acid residues severs the link between individual proteins and their synthesis (isotope
incorporation) measurement. At the amino acid level, it is no longer possible to
determine the protein from which the amino acid originated. As such, the majority of
data report fractional synthesis rates that are essentially the gross average of the
hundreds or thousands of proteins in hydrolysates of whole muscle or subcellular
fractions such as myofibrillar, mitochondrial and sarcoplasmic. This is a significant
shortcoming because it is now known that the rate of turnover of individual proteins
spans a broad range and there are selective changes to the turnover of individual
proteins during physiological and pathophysiological adaptations.

Limited progress was made in the analysis of individual proteins until proteomic
techniques became established at around the turn of the twenty-first century. In
particular, two-dimensional gel electrophoresis (2DGE) evolved into a robust
method for separating proteins based on their isoelectric point and relative mass.
This development in protein separation technology co-occurred with the generation
of publicly available genome databases and key advancements in mass spectrometry,
including new ‘soft ionisation’ techniques known as electrospray ionisation (ESI)
and matrix-assisted laser desorption ionisation (MALDI). The new ionisation tech-
niques meant that large biomolecules such as proteins and peptides could be mass
analysed for the first time and earnt their inventors, John Bennett Fenn and Koichi
Tanaka, the 2002 Nobel Prize in Chemistry. Routine workflows became established
that used 2DGE to separate proteins into individual gel spots that could then be
digested with trypsin to produce peptide mixtures for analysis by mass spectrometry.
Trypsin digestion of mammalian proteins produces peptides that are typically ~6–20
amino acids long and have masses in the range (~1000–3000 Da) that could now be
mass analysed at a sufficient level of resolution to identify the parent protein by
comparing the mass spectra against theoretical masses generated by equivalent in
silico processing of genome and protein databases.

The introduction of 2DGE and peptide mass spectrometry facilitated a new era of
non-targeted ‘omic’ research at the protein level. Researchers used these techniques
to investigate muscle responses to key aspects of physiology such as exercise
[12, 13] and ageing [14, 15] by recording ‘static’ proteome data on the abundance
of proteins or their different post-translational states. The dynamic aspects of the
muscle proteome were also investigated; for example, Jaleel et al. [16] reports 2DGE
separation of proteins extracted from rat gastrocnemius that had been labelled by an
infusion of ring-[13C6] phenylalanine in vivo. Two separate but parallel workflows
were then applied to (1) identify individual proteins using peptide mass spectrometry
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and (2) measure the incorporation of isotopically labelled phenylalanine in protein
hydrolysates using gas chromatography-mass spectrometry (GC-MS) of derivatised
amino acids. These parallel workflows enabled the identity and fractional synthesis
rate of 68 mitochondrial proteins to be reported, but this was a relatively laborious
solution to acquiring data on protein-specific turnover rates and was not widely
adopted in the field. Instead, the ability to mass analyse peptides brought forth new
opportunities for investigating protein turnover based solely on peptide mass spec-
trometry data (providing that sufficient levels of isotope enrichment can be
achieved). When peptides are mass analysed, rather than isolated amino acids, it is
possible to simultaneously acquire information on the three key aspects that are
needed to calculate protein-specific turnover rates: (1) the identity of the parent
protein, (2) the level of incorporation of isotopically labelled amino acid in the
protein, and (3) the relative enrichment of isotopically labelled amino acid in the
precursor pool.

Mass spectrometry resolves peptides as ‘envelopes’ of mass isotopomers, and the
relative abundance of the mass isotopomers reflects the natural abundance of C, H, N
and O isotopes in the amino acids that were used to synthesise that protein (Fig. 9.1).
Marc Hellerstein and colleagues [17, 18] established an algorithm for mass
isotopomer distribution analysis (MIDA) that accurately predicts the relative abun-
dance of m0, m1, m2, m3, etc., isotopomers using binomial or multinomial expansion
of the probabilities of incorporating heavy isotopes based on the size of the molecule
and the natural abundance of its elements. Early work [19] used MIDA to measure
the synthesis of individual high-abundance proteins (e.g. serum albumin) but used
isotope-labelled amino acids at very high levels of precursor enrichment. This
approach is impractical for human studies that rely on short (typically<12 h) periods
of intravenous infusion, which means the amount of tracer incorporated into new
protein is low compared to the large quantity of existing material.

Recently there has been a renewed interest in the use of deuterium oxide (2H2O or
D2O, ‘heavy water’) as a reagent for investigating protein turnover in humans
[20]. 2H2O has the fundamental advantage that it can be administered via the
drinking water so labelling can take place in free-living participants over experi-
mental periods spanning days or months, rather than hours. 2H2O is non-hazardous,
but it can have isotope effects, including changes to the conformation and stability of
biopolymers [21] at concentrations greater than ~20% [22]). This, however, is an
order of magnitude greater than the concentrations employed in biosynthetic label-
ling studies in vivo. For example, 2H2O administration in rodents is often designed
to achieve a level of 4% enrichment of the body water pool (e.g. [23]). The target
level of enrichment is often less than 2% in humans (e.g. [20]), in part, because the
cost of achieving high levels of enrichment in humans is prohibitive. At such levels
(2–4% MPE), there are no reported long-term adverse effects of 2H consumption in
humans, but acute side-effects (nausea and vertigo) can occur at the beginning of a
dosing regimen if 2H2O is consumed as a large (i.e. >150 ml) bolus [24]. Therefore,
it has become common practice to administer smaller (e.g. 50 ml) doses interspersed
throughout the day, and over several days, the deuterium enrichment of the body
water compartment rises gradually (Fig. 9.2).
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2H2O taken in the drinking water rapidly dissociates to 2HHO and equilibrates
with body water in less than 3 h in humans [25] or less than 30 min in rats
[23]. Because equilibration of 2H2O with body water and the exchange of 2H into
C–H bonds of amino acids each occur rapidly, the rate of protein turnover is the
limiting factor to the incorporation of 2H in to protein. Deuterium labelling of amino
acids occurs intracellularly, and after incorporation into newly synthesised protein,
the 2H-label is irreversible [23]. 2H enrichment of the amino acid precursor pool is
equivalent to the body water enrichment [20] and, therefore, can be measured
directly in accessible body fluids including serum and saliva using GC-MS analysis
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Fig. 9.1 Nomenclature and composition of peptide mass isotopomers. Mass spectrometry resolves
peptides as ‘envelopes’ of mass isotopomers, and the relative abundance of the mass isotopomers
reflects the natural abundance of C, H, N and O isotopes in the amino acids that were used to
synthesise that protein. The first isotopomer in the series has the lowest mass (mass to charge ratio,
m/z) and is known as the monoisotopic peak (m0) because it consists entirely of primary/‘light’
isotopes (i.e. 12C, 1H, 14N, 16O, etc.). The second isotopomer is composed of peptides that contain
one stable secondary/‘heavy’ isotope (i.e. 13C, 2H, 15N, etc.) and is labelled the m1 peak, and the
next isotopomer is labelled the m2 peak because it contains two secondary/‘heavy’ isotopes, which
may be 13C or other heavy isotopes such as 15N. A peptide with the sequence DGFIDKNDLR has
an elemental composition of C51H81N15O18. In the absence of an exogenously applied isotope label,
the natural pattern of the mass isotopomers is largely determined by the natural abundance of carbon
isotopes. This is because carbon is a major component of amino acids and the ‘heavy’ 13C isotope
has a relatively high natural abundance (~1.1% of C is 13C and 98.9% is 12C). The mass isotopomer
pattern of a peptide can be roughly predicted based on the probability that 1.1% of the C will be 13C
and therefore cannot contribute to the abundance of the m0 peak. N.B., accurate and complete
prediction of the mass isotopomer pattern also requires the contributions of H, N and O isotopes to
be recognised and the diminishing probability of two, three or four heavy isotopes occurring with a
peptide
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[26]. These points mean the use of 2H2O circumvents several of the technical issues
that had complicated the interpretation of data from isotope-labelled amino acid
methods. For instance, when using deuterium oxide, the kinetics of precursor
enrichment are not confounded by amino acid metabolism or the transport rates
and capacities for transport of amino acids across cell membranes. Importantly,
deuterium enrichment of the precursor pool is also not diluted by consumption of
protein-rich meals or recycling of labelled amino acids due to protein degradation in
muscle or other tissues.

Non-essential amino acids such as alanine become labelled with 2H at their C–H
bonds during their de novo synthesis or transamination reactions. Alanine has been a
focus of attention because it has four potential sites for labelling and it is one of the
most common amino acids (second only to leucine), accounting for ~7.8% of
residues in mammalian proteins. In addition, the labelling efficiency of alanine is
high (~95% MPE) because of its de novo synthesis from branched-chain amino
acids and the transamination of alanine by the reductive amination of pyruvate as
part of the alanine-glucose (Cahill) cycle. GC-MS analysis of deuterium-labelled
alanine can provide comparable results to amino acid tracer methods in rodents [27]
and humans [28, 29] but has the shortcoming that it too severs the link between
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Fig. 9.2 Deuterium oxide/‘heavy water’ labelling in humans. During an experiment period of
14 days, participants consume 4� 50 ml ‘shots’ of deuterium oxide each day and the enrichment of
2H in their body water compartment rises at a rate (k) of 0.07%/d. Percutaneous biopsies of skeletal
muscle are taken prior to and at equidistant time points after commencement of 2H2O consumption
in preparation for Dynamic Proteome Profiling
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individual proteins and their synthesis measurement. Highly abundant proteins, such
as serum albumin, can be extracted prior to GC-MS analysis (e.g. [20]), but there is a
risk of contamination by proteins that may be co-extracted alongside the target of
interest.

Mass spectrometry of peptides, rather than isolated amino acids, is not con-
founded by co-extracted proteins and offers a direct and efficient analytical approach
to measuring protein-specific synthesis rates. The majority of amino acids are subject
to transamination reactions which involve the exchange of the αC–H and therefore
can introduce deuterium 2H (i.e. αC–2H) into the intracellular free amino acid pool.
The extent of hydrogen exchange in free amino acids in vivo has been empirically
determined using tritium in mice [30] and deuterium in humans [31]. After a
sustained period of isotope administration, each amino acid reaches an equilibrium
that reflects its average level of enrichment from the balance of its transamination
reactions, metabolism, and de novo synthesis. In addition to alanine, other
non-essential amino acids, such as glycine and glutamine/glutamic acid, also exhibit
high levels of deuterium enrichment. As a consequence, deuterium incorporation
into protein is sufficient for it to be detected on a protein-by-protein basis using
existing proteomic profiling methods.

A common approach for proteome profiling uses ‘bottom-up’ analysis, which
involves digestion of proteins followed by delivery of the peptide mixture into a
mass spectrometer by reversed-phase liquid chromatography (Fig. 9.3). The peptide
mixture is resolved in time, and a chromatogram is produced wherein the intensity of
each peptide peak provides a measure of abundance. Label-free quantitation is
performed, which defines the isotopic envelope of each peptide and records the
abundance of all mass isotopomers over the duration of the chromatographic peak
for that peptide. Several software platforms exist for label-free quantitation of
protein abundances, and log-transformed MS data can be exported after
normalisation by inter-sample abundance ratio and used to investigate differences
in protein abundance [32, 33]. However, there are currently no commercially
available software applications for automated analysis of protein synthesis rates,
and researchers working in this area generally develop their own solutions for
computing synthesis rates from peptide mass isotopomer data.

Similar to the aforementioned application of MIDA, the isotopomer distribution
of deuterium-labelled peptides can also be used to calculate the fractional rate of
synthesis of a protein [34, 35]. The data processing is complex but not difficult and
the fundamentals of the process have been reviewed in detail [36, 37]. The number
(n) of exchangeable H atoms must be calculated from the peptide sequence with
reference to standard tables reporting the enrichment of amino acids by deuterium
[31]. The peptide mass isotopomer distribution of deuterium-labelled peptides is
compared to either the theoretically predicted natural distribution of mass
isotopomers for that peptide or the empirically measured mass isotopomer distribu-
tion of the peptide in unlabelled samples. We use baseline subtraction of the natural
mass isotopomer distribution because this reduces error by accounting for differ-
ences in instrument performance on a sample-by-sample basis. Subtraction of the
natural/unlabelled mass isotopomer distribution from mass spectra of deuterium-

9 Investigating Muscle Protein Turnover on a Protein-by-Protein Basis. . . 177



labelled peptide gives a measure of the isotopomer excess (or molar percent excess,
MPE) due to the incorporation of deuterium in vivo. The ratio between ‘heavy’
isotope-containing peaks (e.g. m2/m1 peaks) can be used to back-calculate the
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Fig. 9.3 Proteomic profiling of deuterium-labelled muscle. Proteins extracted from skeletal muscle
samples taken prior to and after a period of 2H2O labelling in vivo are digested into peptides of
~6–20 amino acids (circles). The peptide mixture is separated in time by reversed-phase liquid
chromatography. Peptides elute based on their relative hydrophobicity and are delivered to the mass
spectrometer. Tandem mass spectrometry (MS/MS) involves two levels and mass analysis: Level
1 (MS1) records the mass spectra of the intact peptide and level 2 (MS2) records the mass spectra of
each peptide after it has undergone fragmentation. MS1 data are used to analyse both the relative
abundance (based on the intensity of all mass isotopomers) and deuterium (2H) incorporation (based
on the relative distribution of mass isotopomers) of each peptide. MS2 data provide information on
the peptide sequence (i.e. AFAHWGR) and are used to identify peptides by comparing the pattern
of fragmentation against protein databases. 2H-labelled amino acids incorporated into protein
during synthesis in vivo cause a shift in the distribution of MS1 peptide mass isotopomers. Peptides
that contain 2H-labelled amino acids can only contribute to the abundance of m1, m2, m3, etc. mass
isotopomers, and the relative abundance of the m0 mass isotopomer declines as a function of
deuterium incorporation (protein synthesis)
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relative enrichment of the aminoacyl-tRNA precursor pool ( p), but more often direct
measurements of body water enrichment are used via GC-MS analysis of accessible
bodily fluids such as plasma or saliva.

When the level of precursor enrichment is known, the incorporation of deuterium
(i.e. fraction of newly synthesised protein) can be calculated from the ratio of
unlabelled (m0)/labelled (m1) mass isotopomers. Alternatively, the ratio of
unlabelled (m0) can be expressed relative to the sum of labelled (m1, m2, m3, etc.)
isotopomers, which gives a proportionally greater magnitude of change for any
given amount of 2H incorporation. The monoisotopic peak (m0) cannot contain
heavy isotopes; therefore the molar fraction of m0 declines as a function of 2H
incorporation into protein. Hence, while biosynthetic labelling of protein turnover
(i.e. incorporation of 2H in to protein) exhibits asymptotic ‘rise-to-plateau kinetics,
data analysis is based on the reciprocal decline in the molar fraction of m0, which
follows the pattern of an exponential decay:

f t ¼ f t0 • e
�kt ð9:1Þ

The rate (k) of decay of the molar fraction ( f ) of the monoisotopic peak can be
calculated from the change in m0 from prior to (t0) to after (t1) a defined period of
deuterium incorporation using the formula:

k ¼ 1=ðt � t0Þ • ln ð f tÞ � ln ð f t0Þ ð9:2Þ

The rate of decay (k) of m0 must then be normalised by the number (n) of
exchangeable H positions based on the peptide sequence and the level of enrichment
( p) of the precursor pool (e.g. molar percent enrichment of 2H in the body water
compartment). The above 2-point calculation {i.e. samples taken at baseline (t0) and
after a period of deuterium consumption (t1)} is sufficient to estimate the fractional
synthesis rate of proteins when precursor enrichment can be rapidly raised and then
maintained at a steady state (such as for experiments in cell cultures or laboratory
rodents). However, these criteria are not readily achieved in humans that consume
2H2O via their drinking water, and in humans there is a gradual rise in precursor
enrichment even when multiple doses of heavy water are consumed each day
(Fig. 9.2).

In humans, the calculation of the rate of 2H into protein (i.e. synthesis rate) must
take into account the rise-to-plateau kinetics of 2H in the precursor/body water
compartment in addition to the kinetics of the incorporation of deuterium into
protein. Therefore, 2H incorporation into protein exhibits bi-exponential kinetics
and calculations to estimate protein fractional synthesis rates use approaches that
have developed from graphical approaches for the interpolation of data on free
versus bound radioisotope-labelled amino acid tracers [38]. Mathematical tech-
niques (e.g. Nelder-Mead optimisation) can be deployed to fitting bi-exponent data
on precursor enrichment and the incorporation of 2H into protein [39] provided that
data is available across multiple time points. As a minimum, protein synthesis
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calculations in humans require serial analysis encompassing the baseline (i.e. in the
absence of deuterium) and at least three subsequent time points after deuterium
administration has commenced (Fig. 9.2). This is necessary to capture information
on the bi-exponential pattern of change in peptide mass isotopomer distribution.

Dynamic Proteome Profiling brings together protein-specific data on fractional
synthesis rates with protein abundance measurements to give unique insight to the
contribution of degradation to changes in protein abundance in vivo. The rate of
change in the abundance of a protein is dependent on the difference between its rate
of synthesis and the rate of degradation. Therefore, by converting differences in
abundance between baseline and post-labelling time points into rates of change [i.e.
by substituting abundance data into Eq. (9.2)], the rate of degradation of each protein
is calculated as the difference between its rate of synthesis and its rate of change in
abundance. Furthermore, by plotting changes in abundance with changes in synthe-
sis rate (Fig. 9.4), it is possible to visualize different patterns of response to an
experimental intervention [1].
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Fig. 9.4 The dynamic proteome response of human muscle to exercise. Dynamic Proteome
Profiling data can be presented on quadrant plots to illustrate the relationship between changes in
abundance and synthesis rate of individual proteins (left panel). The panel on the right illustrates
preliminary unpublished data on the response of human muscle to high-intensity interval training
and is annotated with UniProt protein identifiers. Proteins such as ATP synthase subunit alpha
(ATPA, top-right quadrant) increase in abundance and are synthesised at a greater rate in exercised
muscle, whereas sarcoplasmic/endoplasmic reticulum ATPase 2 (AT2A2, bottom-right quadrant) is
more abundant in exercised muscle despite its rate of synthesis being less compared to baseline/pre-
exercise levels
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9.2 Major Applications

At present the majority of literature relevant to Dynamic Proteome Profiling in vivo
has been generated from the analysis of the brain [40], liver [41] or heart [39, 42] of
laboratory rodents. Compared to humans, the body mass of rodents is smaller and the
rate of protein turnover is higher; therefore relatively little deuterium oxide is
required and the duration of the labelling experiment can be relatively short. In
addition, deuterium enrichment of the body water compartment can be raised rapidly
and then maintained at a steady state by delivering an intraperitoneal bolus followed
by supplementation of the animal’s drinking water with 2H2O. A constant level of
precursor enrichment eases the burden of data analysis because only the kinetic
parameters of deuterium incorporation in newly synthesised protein need be consid-
ered, i.e. mono-exponential rise-to-plateau or ‘single-compartment’ models can be
used. Lastly, relatively high levels of precursor enrichment (e.g. 4% MPE) can be
achieved in rodents without being prohibitively expensive, and large quantities of
tissue can be collected for analysis, each of which can help to increase the sensitivity
of the analysis.

Kim et al. [42] report one of the earliest large-scale analyses of protein turnover in
striated muscle and investigated mouse heart mitochondria using 2H2O labelling
in vivo and bottom-up proteomic analysis of tryptic peptides. The synthesis rates of
314 cardiac mitochondrial proteins were characterised and the median rate of
synthesis was 0.04 d�1, which corresponds to a median half-life of ~18 days.
Liver mitochondria were also analysed, and, generally, protein synthesis rates
were threefold greater in liver than heart, but there was a broader range
(i.e. 75-fold range spanning 0.0112 d�1 to 0.8592 d�1) of synthesis rates in cardiac
mitochondria compared to the ~35-fold range (0.0211 d�1 to 0.7441 d�1) in liver.
The correlation between synthesis rates of proteins in heart and liver mitochondria
was modest (Spearmen ρ¼ 0.50), and more detailed inspection reveals the synthesis
rates of mitochondrial proteins rank differently between the heart and liver, which
suggests tissue-specific regulation of protein turnover. We [34] reported similar
findings across a selection of rat striated muscles, including heart, diaphragm,
slow-twitch soleus and fast-twitch extensor digitorum longus. We found that not
only is the synthesis rate of each protein different in each muscle but also the rank-
order of synthesis rates was different from muscle to muscle, which suggests the
general physiochemical properties of proteins cannot be used to predict their rate of
turnover. Indeed, there is no relationship between turnover rate and the protein’s
molecular weight, isoelectric point, hydrophobicity or motifs such as PEST (proline,
glutamate, serine and threonine enriched sequences) that have previously been
associated with proteins that have a short half-life [42].

It is also not obvious that protein turnover clusters with protein functional groups.
Cardiac mitochondria proteins involved in protein folding and proteolysis are
amongst those most rapidly synthesised, whereas the majority of proteins involved
in oxidative phosphorylation are amongst those with the lowest rates of synthesis
[42]. However, these are broad generalisations and there are some notable
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exceptions to these trends. For example, the synthesis of NADH dehydrogenase
assembly factor 3 (NDUFAF3) was approximately double the average rate of
complex I subunit proteins, which may point to a specific regulatory role for this
protein in complex I topogenesis and assembly. Proteomic synthesis data also argue
against a dominant role for turnover of whole mitochondria, e.g. via mitophagy, in
the normal heart because the turnover rate of proteins located on the outer mito-
chondrial membrane is generally greater than the turnover rate of inner mitochon-
drial membrane proteins. In the future it will also be important to study the relative
abundances of proteins alongside their turnover rates to capture the full picture on
proteome dynamics.

Broader analysis is also needed to determine how the turnover of mitochondrial
proteins relates to the wider muscle proteome and the discrete subcellular
populations of mitochondria in muscle. Mitochondria in the heart, as well as in
skeletal muscle, are present as at least two discrete subcellular populations:
interfibrillar mitochondria and subsarcolemmal mitochondria [43] that have different
functional characteristics and exhibit different responses in models of disease or
exercise training [44]. Generally, interfibrillar mitochondria have a higher oxidative
capacity and greater responsiveness to exercise, but Kasumov et al. [45] report
protein-specific synthesis rates are lower in interfibrillar compared to
subsarcolemmal mitochondria. Therefore, comparatively low rates of turnover
under basal conditions may not automatically be interpreted to mean a poor respon-
siveness to external stimuli. Indeed, changes to the rate of synthesis of proteins occur
during muscle adaptation; therefore basal rates of protein turnover cannot be used to
predict the rate of change (potential for adaptation) of the muscle proteome in
response to stimuli.

Research investigating the synthesis of individual proteins in the muscle of
humans is in its infancy. The earliest proteome-scale data was published in 2016
[46] and reports a cross-sectional comparison of muscle from sedentary adults and
individuals that had undertaken a 3-week regimen of sprint-interval cycling. After
stringent filtering of the mass spectrometry data, 139 proteins were analysed in at
least n ¼ 3 sedentary versus n ¼ 3 exercised participants and 20 proteins had
significantly greater rates of synthesis in exercised muscle. The data point to a
greater synthesis of proteins involved in glucose metabolic processes, apoptosis,
contraction and cellular respiration, but further work is needed to specifically
compare the effects of exercise against baseline values to rule out potential differ-
ences in the abundance of proteins between sedentary and exercised individuals.
Improvements in exercise performance after high-intensity aerobic exercise are
associated with both increases and decreases in the abundance of select proteins in
human muscle [47]. Increases in the abundance of the alpha and beta subunits of the
ATP synthase complex are a prominent feature of exercise-trained muscle [13, 48],
and Shankaran et al. [46] report the synthesis of these proteins was greater in the
muscle of participants that performed sprint-interval training. Shankaran et al. [46]
also report exercised muscle has a greater synthesis of glycolytic enzymes, but we
[47] found no difference in the abundance of these proteins after high-intensity
interval training. This dissimilarity could be due to slight differences in training
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regimens, but, moving forward, it will be important to investigate which exercise-
induced changes in protein synthesis also result in changes in protein abundance
using more comprehensive Dynamic Proteome Profiling.

The synthetic response of human muscle to endurance training interventions,
such as sprint-interval cycling, has been a largely neglected area of investigation in
the earlier literature from amino acid tracer studies. In part, this is because experi-
ments using isotopically labelled amino acids are more suited to capturing responses
to acute interventions (e.g. hormones, protein feeding or resistance exercise) that
have large and immediate effects on the synthesis of abundant myofibrillar proteins
[49]. That said, the large acute synthetic response of muscle in the hours immediately
after a single bout of resistance exercise tends to overestimate the cumulative growth
that occurs during long-term training programmes [50]. Likewise, dietary interven-
tions designed to optimise the acute response to a single bout of exercise have less
obvious benefits when the response is integrated over days or weeks of resistance
training. For example, the synthesis of mixed muscle protein in the hours immedi-
ately after a bout of resistance exercise is significantly greater when dietary protein
consumption is distributed evenly across four meals each day compared to when
protein is consumed in a skewed pattern, i.e. when the majority of protein is
consumed at dinner [51]. This beneficial effect was absent in follow-up analysis of
the experiment that reported time-integrated synthetic responses across protein
mixtures using 2H2O labelling [28]. Nevertheless, proteomic analysis of 2H2O-
labelled muscle reported 68 individual proteins that had significantly greater rates
of synthesis during the period of resistance training compared to baseline values.
Importantly this synthetic response to resistance exercise was evident across differ-
ent functional classes of proteins that included respiratory enzymes in addition to
myofibrillar proteins. The effect of resistance exercise on respiratory enzymes had
not been detectible from the analysis of protein mixtures and gives wider insight to
the muscle response to resistance training.

In the aforementioned works, the analysis of protein synthesis rates was not
routinely matched with equivalent analysis of protein abundances. Therefore, the
individual components of protein turnover, i.e. synthesis, abundance and degrada-
tion, were not investigated. Herein, we use the term ‘Dynamic Proteome Profiling’ to
describe a more comprehensive technique that gives insight to the individual com-
ponents of protein turnover by combining protein-specific synthesis measurements
with established [32] label-free proteomic profiling methods that can also report the
relative abundance of each protein. We [1] have used Dynamic Proteome Profiling to
study protein-by-protein responses of human muscle to resistance exercise training.
Our analysis included 90 of the most abundant muscle proteins encompassing major
myofibrillar components and key metabolic enzymes that represent ~85% of the total
protein mass of muscle [52]. To facilitate robust statistical analysis, we filtered out
proteins that could not be detected in each of the eight control and eight exercise-
trained participants across all four of the sampling points. A further unique feature of
our work [1] was that we specifically investigated proteome dynamics in a changing
system.
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Almost without exception, previous biosynthetic labelling experiments have been
designed such that protein abundance does not change during the period of inves-
tigation, and, therefore, synthesis rates are assumed to be equivalent to rates of
degradation. When both protein abundance and synthesis are measured directly, it is
possible to investigate a system that is undergoing change, wherein increases or
decreases in protein abundances can be explained in terms of the relative contribu-
tions of synthesis and degradation. In response to resistance exercise, human muscle
proteins exhibit several different patterns of response [1], including:

1. Enhanced turnover (i.e. increased synthesis rate but no change in protein
abundance).

2. Changes in abundance that are primarily driven by degradation (i.e. increases in
abundance in the absence of increases in synthesis rate or decreases in abundance
despite increases in synthesis).

3. Proteins that increased in abundance because their synthesis rate was elevated.

These findings offer a novel glimpse of the intricacies of muscle adaptation by
highlighting roles for protein turnover and selective protein degradation in addition
to purely synthetic accretion of protein in the mechanisms underlying changes in the
muscle proteome.

9.3 Limitations

Dynamic Proteome Profiling is unique in its ability to provide insight to the
individual components of protein turnover (i.e. synthesis, abundance and degrada-
tion) on a protein-by-protein basis in humans. The analysis is reproducible [53], but
the technique is very much in its infancy so there is undoubtedly scope for further
optimisation. The use of heavy water for biosynthetic labelling is less invasive than
infusion of isotope-labelled amino acids, and studies can be conducted in free-living
participants; nevertheless the participant burden of Dynamic Proteome Profiling
studies can be relatively demanding. Participants may be required to consume
2H2O several times throughout each day, provide daily saliva samples or frequent
venous blood samples and undergo percutaneous needle biopsies in addition to the
demands of the physiological intervention. Dynamic Proteome Profiling is best
suited to studying long-term integrated protein dynamics over period of days or
weeks in humans, but it is not optimal for studying the acute short-term (e.g. <1 d)
responses because the equilibration of 2H in body water is relatively slow and the
consumption of large boluses is associated with discomforting side-effects.

Some limitations of Dynamic Proteome Profiling are common to all proteomic
endeavours in striated muscle. That is, while skeletal muscle is an accessible and
important body tissue, it is a technically challenging substrate for proteomic inves-
tigation because it contains a small number of high-abundance proteins that domi-
nate the analytical landscape. Indeed, approximately half of the protein content of
muscle is accounted for by just ten proteins, which makes it relatively difficult to
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achieve deep proteome mining. Furthermore, the broad diversity of muscle pheno-
types is underpinned by complex patterns of co-expression of fast and slow isoforms
of myofibrillar proteins that share high levels of sequence homology. This makes
peptide-level studies particularly challenging because isoform-specific peptides
must be detected in order to study adaptations of the myofibrillar proteome.

As is the case with all proteomic analyses, the depth of the analysis (i.e. total
number of proteins reported) can be greatly enhanced by fractionating samples and
exploiting orthogonal separation techniques prior to analysis using the most up-to-
date high-resolution mass spectrometers. However, in any proteomic experiment, the
number of proteins that can be identified will be greater than the number that can be
quantified because of issues regarding missing data. That is, to identify a protein, it
need only be detected in one sample amongst many, but to quantify a protein,
peptides that are unique to that protein must be clearly resolved in each biological
replicate. Often this issue is partially circumvented by accepting a less than full
number of biological replicates for statistical testing of proteomics data, but this is
not best practice. Dynamic Proteome Profiling adds a further layer of complexity and
requires high-quality mass isotopomer distribution profiles to be captured for each
peptide during their entire chromatographic profile. Therefore, some peptides may
be excluded because co-eluting peptides with similar or overlapping mass
isotopomer envelopes contaminate each other and so the number of proteins sub-
mitted to statistical analyses is further reduced.

Because of the above-mentioned quality control processes, the analysis of some
proteins is based on data from single peptides, whereas other proteins may have
numerous isoform-specific peptides that are well-resolved and submitted to statisti-
cal analysis. Profiling of the same peptide across different experimental groups is
robust, but it is not yet certain how representative one peptide is of the abundance or
synthesis rate of the entire protein. Closer inspection of proteins with numerous
quantifiable isoform-specific peptides sometimes reveals that peptides from the same
protein exhibit broadly different rates of synthesis. Currently it is routine practice to
report the median rate across all peptides belonging to a protein to summarise the
average synthesis rate. Given the high level of reproducibility of peptide mass
isotopomer data, the differences in peptide synthesis rates are unlikely to be due
entirely to technical errors. In the future peptide-specific data could be used to gain
insight to domain-specific rates of turnover. For example, they may indicate peptide
domains that may be cleaved or subject to post-translational modifications that alter
their rate of turnover. Initially, it may be difficult to resolve these issues using
bottom-up analysis of peptide mixtures, but top-down analysis of proteins using
2DGE could be used to investigate proteoform-specific synthesis rates and shed new
light on whether a particular post-translation modification is associated with a
change to the synthesis or degradation rate of that protein.

In order to begin interrogating more complex proteoform-specific responses, it
will be necessary to further optimise the experiment designs and mathematical
models for generating protein synthesis rates from peptide mass spectrometry data.
Experiments that collect only baseline and post-intervention samples are less appro-
priate for detailed interrogation of protein responses because they do not chart the
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time course of changes in deuterium incorporation and therefore cannot establish
whether labelling of a protein has reached equilibration. Time series analyses
(i.e. including �4 samples) are better suited to detailed studies, but the timing of
sample collection dictates the sensitivity of the synthesis measurements, and this
design may be less appropriate for clinical settings because the collection of numer-
ous muscle samples may be less tolerated.

9.4 Vital Future Directions

Protein turnover is the fundamental mechanism that both maintains proteome quality
and enables muscle adaptation/changes in protein abundance to occur. Over recent
decades there has been great focus on the molecular biology of gene transcription
and signal transduction pathways (e.g. governing ribosomal translation) as the
mechanisms and regulators of protein abundances. It is important to appreciate
that the abundance of a protein can also be modulated by changes to its rate of
degradation and that changes to the rate of replacement/turnover of proteins may
influence muscle function in the absence of changes in gene expression or protein
abundance. Indeed, there is a growing awareness of the importance of ‘quality
control’ particularly regarding the biology of ageing [54] and as a mechanism of
disease. This is driving the development of methods such as Dynamic Proteome
Profiling to investigate protein homeostasis (i.e. proteo-stasis) or protein dynamics
(i.e. proteo-dynamics).

Some experimental situations and tissues cannot be studied in humans,
e.g. sampling of vital organs is not commonplace, but skeletal muscle is readily
accessible using percutaneous biopsy techniques. Omic studies in human muscle
provide a rare opportunity for hypothesis generating research into ageing, chronic
human diseases and exercise training which may each be underpinned by complex
gene-environment interactions that are challenging to model in laboratory rodents.
Muscle is the most abundant tissue in healthy adults, and it makes a significant
contribution to the health and well-being of individuals of all ages. Little work has
been done to investigate the mechanistic role that protein turnover plays in muscle
adaptation, but ‘quality control’ at the protein level may be particularly important in
skeletal muscle because turnover at the cellular level involving regeneration and
differentiation of myofibres is not considered to be a prominent feature of healthy
adult muscle. Therefore, Dynamic Proteome Profiling offers an important new tool
for gaining insight to the regulation of human muscle health.

We have studied the dynamic responses of muscle to exercise, and in the future, it
will be of interest to know whether diseases, such as type 2 diabetes, that are
associated with impaired muscle function also exhibit differences in the quality as
well as abundance of muscle proteins. Similarly, losses in muscle mass, whether as a
consequence of ageing or due to disuse, injury or disease, will be an important area
for the application Dynamic Proteome Profiling. As with all new techniques, there is
scope for further enhancement and optimisation of the assay. Deuterium labelling is
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relatively inexpensive for studies in cell culture and small laboratory animals, but
studies in humans currently require large amounts of deuterium and the cost can be
prohibitive. Dose-response studies are required to find the limits of sensitivity of
peptide mass spectrometry for detecting deuterium incorporation in human muscle
proteins. The burgeoning development of mass spectrometry instrumentation will
further impact on the minimum level of precursor enrichment required to perform
Dynamic Proteome Profiling and will also enable a greater proportion of the muscle
proteome to be interrogated. That said, user-friendly tools for data analysis and
bioinformatics are currently the major obstacle to widespread deployment of
Dynamic Proteome Profiling in physiology. Generally, bioinformatic tools for
proteomics are more complex and lag behind other omic disciplines, which is
unfortunate because the proteome is the most direct molecular link to cell function
and has the greatest potential to bring new insight in physiology. With regard to
Dynamic Proteome Profiling, developments are required to improve the robustness
of curve-fitting processes and to streamline the downstream bioinformatic
processing of data that encompasses synthesis, abundance and degradation values
on a proteome-wide level.

Synthesis and degradation are regulated independently and on a protein-by-
protein basis to affect the abundance and half-life of each protein. Presently, little
is known regarding the turnover of individual proteins, particularly in human
muscle, and the role that protein degradation plays as a regulatory mechanism in
muscle adaptation is largely unexplored. Early findings from Dynamic Proteome
Profiling of the human muscle response to resistance exercise [1] highlight that
muscle adaptation involves a range of different dynamic responses, including
instances where degradation has the dominant influence on changes in protein
abundance. Generally, the magnitude of the dynamic response is greater than the
magnitude of change in protein abundance, indicating that kinetic measurements of
protein turnover may be a more sensitive marker of muscle response than changes in
protein abundance. In addition, it is clear that changes to the turnover/replacement
rate of proteins are a response in and of itself. Therefore, it is key that simultaneous
measurements of synthesis and abundance are made in order to distinguish changes
to the rate of protein replacement from effects that lead to a change in protein
abundance.

References

1. Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., & Hawley, J. A. (2017).
Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet
and resistance exercise. The FASEB Journal, 31, 5478–5494.

2. Schoenheimer, R., & Clarke, H. T. (1942). The dynamic state of body constituents. Cambridge,
MA: Harvard University Press.

3. Schoenheimer, R., & Ratner, S. (1939). Studies in protein metabolism: III. Synthesis of amino
acids containing isotopic nitrogen. Journal of Biological Chemistry, 127, 301–313.

9 Investigating Muscle Protein Turnover on a Protein-by-Protein Basis. . . 187



4. Schoenheimer, R., Ratner, S., & Rittenberg, D. (1939). The process of continuous deamination
and reamination of amino acids in the proteins of normal animals. Science, 89, 272–273.

5. Urey, H., Brickwedde, F., & Murphy, G. (1932). A hydrogen isotope of mass 2. Physical
Review, 39, 164–165.

6. Krogh, A., & Ussing, H. H. (1936). The exchange of hydrogen between the free water and the
organic substances in the living organism. Acta Physiologica, 75, 90–104.

7. Ussing, H. H. (1937). The exchange of H and D atoms between water and protein in vivo and
in vitro. Acta Physiologica, 77, 107–122.

8. Ussing, H. H. (1941). The rate of protein renewal in mice and rats studied by means of heavy
water. Acta Physiologica Scandinavica, 2, 209–221.

9. Halliday, D., & McKeran, R. O. (1975). Measurement of muscle protein synthetic rate from
serial muscle biopsies and total body protein turnover in man by continuous intravenous
infusion of L-(alpha-15N)lysine. Clinical Science and Molecular Medicine, 49, 581–590.

10. Wagenmakers, A. J. (1999). Tracers to investigate protein and amino acid metabolism in human
subjects. The Proceedings of the Nutrition Society, 58, 987–1000.

11. Kim, I. Y., Suh, S. H., Lee, I. K., & Wolfe, R. R. (2016). Applications of stable, nonradioactive
isotope tracers in in vivo human metabolic research. Experimental & Molecular Medicine, 48,
e203.

12. Burniston, J. G. (2008). Changes in the rat skeletal muscle proteome induced by moderate-
intensity endurance exercise. Biochimica et Biophysica Acta, 1784, 1077–1086.

13. Burniston, J. G., & Hoffman, E. P. (2011). Proteomic responses of skeletal and cardiac muscle
to exercise. Expert Review of Proteomics, 8, 361–377.

14. Doran, P., Donoghue, P., O’Connell, K., Gannon, J., & Ohlendieck, K. (2009). Proteomics of
skeletal muscle aging. Proteomics, 9, 989–1003.

15. Gelfi, C., Vigano, A., Ripamonti, M., Pontoglio, A., Begum, S., Pellegrino, M. A., Grassi, B.,
Bottinelli, R., Wait, R., & Cerretelli, P. (2006). The human muscle proteome in aging. Journal
of Proteome Research, 5, 1344–1353.

16. Jaleel, A., Short, K. R., Asmann, Y. W., Klaus, K. A., Morse, D. M., Ford, G. C., & Nair, K. S.
(2008). In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial
proteins. American Journal of Physiology Endocrinology and Metabolism, 295, E1255–E1268.

17. Hellerstein, M. K., & Neese, R. A. (1999). Mass isotopomer distribution analysis at eight years:
Theoretical, analytic, and experimental considerations. The American Journal of Physiology,
276, E1146–E1170.

18. Hellerstein, M. K., & Neese, R. A. (1992). Mass isotopomer distribution analysis: A technique
for measuring biosynthesis and turnover of polymers. The American Journal of Physiology,
263, E988–E1001.

19. Papageorgopoulos, C., Caldwell, K., Shackleton, C., Schweingrubber, H., & Hellerstein, M. K.
(1999). Measuring protein synthesis by mass isotopomer distribution analysis (MIDA). Ana-
lytical Biochemistry, 267, 1–16.

20. Previs, S. F., Fatica, R., Chandramouli, V., Alexander, J. C., Brunengraber, H., & Landau, B. R.
(2004). Quantifying rates of protein synthesis in humans by use of 2H2O: Application to
patients with end-stage renal disease. American Journal of Physiology Endocrinology and
Metabolism, 286, E665–E672.

21. Thomson, J. F. (1960). Physiological effects of D20 in mammals. Annals of the New York
Academy of Sciences, 84, 736–744.

22. Barbour, H. G. (1937). The basis of the pharmacological action of heavy water in mammals.
The Yale Journal of Biology and Medicine, 9, 551–565.

23. Busch, R., Kim, Y. K., Neese, R. A., Schade-Serin, V., Collins, M., Awada, M., Gardner, J. L.,
Beysen, C., Marino, M. E., Misell, L. M., & Hellerstein, M. K. (2006). Measurement of protein
turnover rates by heavy water labeling of nonessential amino acids. Biochimica et Biophysica
Acta, 1760, 730–744.

24. Jones, P. J., & Leatherdale, S. T. (1991). Stable isotopes in clinical research: Safety reaffirmed.
Clinical Science (London, England), 80, 277–280.

188 J. G. Burniston



25. Holm, L., O’Rourke, B., Ebenstein, D., Toth, M. J., Bechshoeft, R., Holstein-Rathlou, N. H.,
Kjaer, M., & Matthews, D. E. (2013). Determination of steady-state protein breakdown rate
in vivo by the disappearance of protein-bound tracer-labeled amino acids: A method applicable
in humans. American Journal of Physiology Endocrinology and Metabolism, 304, E895–E907.

26. McCabe, B. J., Bederman, I. R., Croniger, C., Millward, C., Norment, C., & Previs, S. F.
(2006). Reproducibility of gas chromatography-mass spectrometry measurements of 2H label-
ing of water: Application for measuring body composition in mice. Analytical Biochemistry,
350, 171–176.

27. Gasier, H. G., Riechman, S. E., Wiggs, M. P., Previs, S. F., & Fluckey, J. D. (2009). A
comparison of 2H2O and phenylalanine flooding dose to investigate muscle protein synthesis
with acute exercise in rats. American Journal of Physiology Endocrinology and Metabolism,
297, E252–E259.

28. Murphy, C. H., Shankaran, M., Churchward-Venne, T. A., Mitchell, C. J., Kolar, N. M., Burke,
L. M., Hawley, J. A., Kassis, A., Karagounis, L. G., Li, K., King, C., Hellerstein, M., & Phillips,
S. M. (2018). Effect of resistance training and protein intake pattern on myofibrillar protein
synthesis and proteome kinetics in older men in energy restriction. The Journal of Physiology,
596, 2091–2120.

29. Wilkinson, D. J., Cegielski, J., Phillips, B. E., Boereboom, C., Lund, J. N., Atherton, P. J., &
Smith, K. (2015). Internal comparison between deuterium oxide (D2O) and L-[ring-13C6]
phenylalanine for acute measurement of muscle protein synthesis in humans. Physiological
Reports, 3, e12433.

30. Commerford, S. L., Carsten, A. L., & Cronkite, E. P. (1983). The distribution of tritium among
the amino acids of proteins obtained from mice exposed to tritiated water. Radiation Research,
94, 151–155.

31. Price, J. C., Holmes, W. E., Li, K. W., Floreani, N. A., Neese, R. A., Turner, S. M., &
Hellerstein, M. K. (2012). Measurement of human plasma proteome dynamics with (2)H(2)O
and liquid chromatography tandem mass spectrometry. Analytical Biochemistry, 420, 73–83.

32. Burniston, J. G., Connolly, J., Kainulainen, H., Britton, S. L., & Koch, L. G. (2014). Label-free
profiling of skeletal muscle using high-definition mass spectrometry. Proteomics, 14,
2339–2344.

33. Malik, Z. A., Cobley, J. N., Morton, J. P., Close, G. L., Edwards, B. J., Koch, L. G., Britton,
S. L., & Burniston, J. G. (2013). Label-free LC-MS profiling of skeletal muscle reveals heart-
type fatty acid binding protein as a candidate biomarker of aerobic capacity. Proteomes, 1,
290–308.

34. Hesketh, S., Srisawat, K., Sutherland, H., Jarvis, J., & Burniston, J. (2016). On the rate of
synthesis of individual proteins within and between different striated muscles of the rat.
Proteomes, 4, 12.

35. Xiao, G. G., Garg, M., Lim, S., Wong, D., Go, V. L., & Lee, W. N. (2008). Determination of
protein synthesis in vivo using labeling from deuterated water and analysis of MALDI-TOF
spectrum. Journal of Applied Physiology (Bethesda, MD: 1985), 104, 828–836.

36. Holmes, W. E., Angel, T. E., Li, K. W., & Hellerstein, M. K. (2015). Dynamic proteomics: In
vivo proteome-wide measurement of protein kinetics using metabolic labeling. Methods in
Enzymology, 561, 219–276.

37. Kasumov, T., Willard, B., Li, L., Sadygov, R. G., & Previs, S. (2015). Proteome dynamics with
heavy water: Instruments, data analysis and biological applications. In S. Magdeldin (Ed.),
Recent Advances in Proteomics Research. Rijeka: InTech.

38. Garlick, P. J., Millward, D. J., & James, W. P. (1973). The diurnal response of muscle and liver
protein synthesis in vivo in meal-fed rats. The Biochemical Journal, 136, 935–945.

39. Lam, M. P., Wang, D., Lau, E., Liem, D. A., Kim, A. K., Ng, D. C., Liang, X., Bleakley, B. J.,
Liu, C., Tabaraki, J. D., Cadeiras, M., Wang, Y., Deng, M. C., & Ping, P. (2014). Protein kinetic
signatures of the remodeling heart following isoproterenol stimulation. The Journal of Clinical
Investigation, 124, 1734–1744.

9 Investigating Muscle Protein Turnover on a Protein-by-Protein Basis. . . 189



40. Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., & Ghaemmaghami, S. (2010). Analysis
of proteome dynamics in the mouse brain. Proceedings of the National Academy of Sciences of
the United States of America, 107, 14508–14513.

41. Price, J. C., Khambatta, C. F., Li, K. W., Bruss, M. D., Shankaran, M., Dalidd, M., Floreani,
N. A., Roberts, L. S., Turner, S. M., Holmes, W. E., & Hellerstein, M. K. (2012). The effect of
long term calorie restriction on in vivo hepatic proteostatis: A novel combination of dynamic
and quantitative proteomics. Molecular and Cellular Proteomics, 11, 1801–1814.

42. Kim, T. Y., Wang, D., Kim, A. K., Lau, E., Lin, A. J., Liem, D. A., Zhang, J., Zong, N. C., Lam,
M. P., & Ping, P. (2012). Metabolic labeling reveals proteome dynamics of mouse mitochon-
dria. Molecular and Cellular Proteomics, 11, 1586–1594.

43. Palmer, J. W., Tandler, B., & Hoppel, C. L. (1977). Biochemical properties of subsarcolemmal
and interfibrillar mitochondria isolated from rat cardiac muscle. The Journal of Biological
Chemistry, 252, 8731–8739.

44. Kavazis, A. N., Alvarez, S., Talbert, E., Lee, Y., & Powers, S. K. (2009). Exercise training
induces a cardioprotective phenotype and alterations in cardiac subsarcolemmal and
intermyofibrillar mitochondrial proteins. American Journal of Physiology Heart and Circula-
tory Physiology, 297, H144–H152.

45. Kasumov, T., Dabkowski, E. R., Shekar, K. C., Li, L., Ribeiro, R. F., Jr., Walsh, K., Previs,
S. F., Sadygov, R. G., Willard, B., & Stanley, W. C. (2013). Assessment of cardiac proteome
dynamics with heavy water: Slower protein synthesis rates in interfibrillar than subsarcolemmal
mitochondria. American Journal of Physiology Heart and Circulatory Physiology, 304,
H1201–H1214.

46. Shankaran, M., King, C. L., Angel, T. E., Holmes, W. E., Li, K. W., Colangelo, M., Price, J. C.,
Turner, S. M., Bell, C., Hamilton, K. L., Miller, B. F., & Hellerstein, M. K. (2016). Circulating
protein synthesis rates reveal skeletal muscle proteome dynamics. The Journal of Clinical
Investigation, 126, 288–302.

47. Holloway, K. V., O’Gorman, M., Woods, P., Morton, J. P., Evans, L., Cable, N. T., Goldspink,
D. F., & Burniston, J. G. (2009). Proteomic investigation of changes in human vastus lateralis
muscle in response to interval-exercise training. Proteomics, 9, 5155–5174.

48. Srisawat, K., Shepherd, S. O., Lisboa, P. J., & Burniston, J. G. (2017). A systematic review and
meta-analysis of proteomics literature on the response of human skeletal muscle to obesity/type
2 diabetes mellitus (T2DM) versus exercise training. Proteomes, 5, 30.

49. Rennie, M. J., Smith, K., &Watt, P. W. (1994). Measurement of human tissue protein synthesis:
An optimal approach. The American Journal of Physiology, 266, E298–E307.

50. Mitchell, C. J., Churchward-Venne, T. A., Parise, G., Bellamy, L., Baker, S. K., Smith, K.,
Atherton, P. J., & Phillips, S. M. (2014). Acute post-exercise myofibrillar protein synthesis is
not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One, 9,
e89431.

51. Murphy, C. H., Churchward-Venne, T. A., Mitchell, C. J., Kolar, N. M., Kassis, A.,
Karagounis, L. G., Burke, L. M., Hawley, J. A., & Phillips, S. M. (2015). Hypoenergetic
diet-induced reductions in myofibrillar protein synthesis are restored with resistance training
and balanced daily protein ingestion in older men. American Journal of Physiology Endocri-
nology and Metabolism, 308, E734–E743.

52. Geiger, T., Velic, A., Macek, B., Lundberg, E., Kampf, C., Nagaraj, N., Uhlen, M., Cox, J., &
Mann, M. (2013). Initial quantitative proteomic map of 28 mouse tissues using the SILAC
mouse. Molecular and Cellular Proteomics, 12, 1709–1722.

53. Srisawat, K., Hesketh, K., Cocks, M., Strauss, J., Edwards, B. J., Lisboa, P. J., Shepherd, S., &
Burniston, J. G. (2019). Reliability of protein abundance and synthesis measurements in human
skeletal muscle. Proteomics, e1900194. https://www.ncbi.nlm.nih.gov/pubmed/31622029;
https://onlinelibrary.wiley.com/doi/abs/10.1002/pmic.201900194

54. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks
of aging. Cell, 153, 1194–1217.

190 J. G. Burniston

https://www.ncbi.nlm.nih.gov/pubmed/31622029
https://onlinelibrary.wiley.com/doi/abs/10.1002/pmic.201900194


Part IV
Metabolomic



Chapter 10
Skeletal Muscle Metabolomics
for Metabolic Phenotyping and Biomarker
Discovery

Kenneth Allen Dyar, Anna Artati, Alexander Cecil, and Jerzy Adamski

10.1 Theory and History of Metabolomics

Metabolism is the process of chemical transformation within a biological context.
Metabolites comprise all the small-molecule (<1 kDa) substrates and end products
of metabolism, including sugars, nucleotides, lipids, amino acids, organic acids,
ketones, aldehydes, amines, alkaloids, phenols, steroids, small peptides, xenobiotics,
and drugs. Similar in scope to other high-throughput “omics” technologies, the aim
of metabolomics is to comprehensively and unbiasedly detect, identify, and quantify
the metabolome, i.e., the full complement of small molecules found in cells, bio-
logical fluids, or tissues. Here we present a brief introduction of how skeletal muscle
metabolomics can be used for metabolic phenotyping and biomarker discovery.
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The presence and abundance of a particular metabolite are determined by the sum
of all genetic and environmental interactions [1]. At the cellular level, these include
the presence and abundance of related metabolites and cofactors, protein expression
and posttranslational modifications, gene expression, as well as epigenetic and
genetic mechanisms. At higher levels of organization, these factors are further
determined by specific physiological or pathophysiological contexts (time of day,
age, sex, nutritional status, physical activity, stress, disease, medications), as well as
environmental factors like diet composition, and host interaction with the gut
microbiome. By providing a comprehensive metabolic snapshot of an organism
within a particular context, metabolomics describes the phenotype of an organism
better than any of the other high-throughput “omics” technologies [2].

Accordingly, metabolites are powerful diagnostic indicators (biomarkers), and
they have been used to define health and disease since antiquity. For example,
ancient Chinese and Hindu manuscripts describe doctors using the sweetness of
urine (glycosuria) to diagnose diabetic patients already ~1500 BC [3]. Still today,
measuring specific metabolites in urine or blood and comparing them to levels found
in healthy individuals form the diagnostic basis of clinical chemistry, and metabolic
profiling allows doctors to define health status, track disease progression, and chart
the progress of various therapeutic interventions. This approach has successfully led
to early detection and management of a host of metabolic diseases thanks to neonatal
screening and regular health checkups.

The arrival of high-throughput metabolomics in the clinic quickly expanded this
basic analytical framework. Due to its comprehensive nature, metabolomics captures
more complex metabolic signatures that were previously unmeasured and thus
unknown. This information has already allowed doctors to better stratify patient
groups [4] and is expected to provide researchers with critical mechanistic insight
into the etiology of multifactorial diseases [5]. An early indicator of the predictive
potential of metabolomics is that some metabolic signatures can already predict
future risk and therapeutic success for certain diseases, like type 2 diabetes, more
than a decade in advance [1, 6]. It is anticipated that this kind of knowledge will
quickly pave the way toward more personalized medicine.

In comparison, genome-wide association studies (GWASs) have similarly iden-
tified many genetic polymorphisms associated with disease risk [7–10]. However,
GWASs struggle to provide the same predictive power as metabolomics. This is
partly because effect size for polymorphisms is often small and so requires screening
much larger populations to gain sufficient statistical power to identify disease-
causing variants. This problem is only magnified for more complex polygenic and
multifactorial diseases. On the other hand, different genetic variants, whether within
the same locus or in distinct and seemingly unrelated loci, can result in the same or
related metabolic phenotypes. Screening many intermediate phenotypes with
metabolomics therefore gives a broader picture of how different metabolic pathways
may be related and even relevant for the same disease [11]. To harness the best of
both worlds, metabolomics can also be combined with GWASs and other high-
throughput “omics” strategies. This combined approach can provide novel biolog-
ical insight and biomarkers for a wide range of heritable diseases and has already
uncovered new gene-metabolite associations relevant for cardiovascular disease and
mood disorders [6].
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The equipment needed to perform metabolomics studies originated in the 1950s
by synergizing complementary analytical and computational techniques [12–
16]. Coupling the physical separation capabilities of different chromatography
methods with the precision and accuracy of mass spectrometers made it possible
to confidently identify and quantify metabolites with high sensitivity and high
specificity over a wide range of applications.

Modern clinical metabolomics was born for the first time in 1971, with Horning
and Horning [17]; Mamer, Crawhall, and Tjoa [18]; Pauling, Robinson, and col-
leagues [19] profiling hundreds of urine metabolites. Around the same time,
advances in nuclear magnetic resonance (NMR) spectroscopy allowed for detection
and quantification of ATP, phosphocreatine, and inorganic and sugar phosphates in
intact skeletal muscles [20]. NMR was quickly adopted to further investigate
metabolites in different muscle types under aerobic or anaerobic conditions, during
electrical stimulation, and in diseased patients with Duchenne muscular dystrophy or
spinal muscular atrophy [21]. The field of metabolic profiling continued to grow
over the following decades, alongside continued technological advances in NMR,
mass spectrometry, chromatography, and computing. However, the explosive
“rebirth” of metabolomics as we know it today evolved from the rapid advances in
biostatistics, bioinformatics, and systems biology during the early genomics era.

The most common metabolomics experiments involve non-targeted (discovery)
or targeted (validation) approaches. Non-targeted metabolomics provides a global
view of all detectable metabolites within a biological sample. Extraction and ana-
lytical methods for non-targeted metabolomics are generally designed and optimized
to detect the widest range of biochemical classes with the largest number of
individual metabolites possible. This allows for the relative quantification of
“known” metabolites, i.e., those already identified and registered in metabolite
databases, but also “unknown” metabolites, which are detected yet still unidentified.
These unidentified metabolites may be important for phenotypic investigations and
can be further validated and identified in follow-up studies using a set of character-
istic parameters (i.e., retention times and mass spectra). Targeted metabolomics
experiments allow for the absolute quantification of a preselected set of metabolites,
and so by nature, these studies are more focused, with extraction methods optimized
around specific classes and panels of metabolites. However, in special cases
non-targeted methods are similarly adapted to focus on more specific metabolite
classes, i.e., lipidomics for lipids or glycomics for sugar metabolites.

Successful metabolomics studies rely on proper experimental design, standard-
ized sample processing, suitability of analytical methods, and biostatistics-
bioinformatics data processing and analysis (see Fig. 10.1 for an overview of a
typical metabolomics workflow).
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10.1.1 Experimental Design

Study design for metabolomics experiments normally follows two distinct strategies
[22]. The first strategy involves a well-controlled experimental environment, with
the only variable being the experimental treatment or condition. This usually results
in large changes in the metabolome, so these types of experiments do not normally
require a large number of replicates to obtain sufficient statistical confidence.
Examples are in vitro experiments, cultured tissue systems, and animal studies.
The second strategy involves population or epidemiological studies in which metab-
olite changes are often more subtle. In this case, many more samples may be required
to provide statistical confidence and gain an understanding of metabolic status.

Quality control (QC) and quality assurance (QA) are critical in metabolomics
experiments, especially in large-scale studies where it is often impossible to run all
samples in a single analytical batch. Instrument reproducibility and suitability must
also be considered and carefully followed throughout each study. Furthermore, QC
samples are required in every batch in order to provide robust QA for each detected
metabolic feature, as QC responses are used as the algorithmic basis for assessing
data quality in later data processing steps.
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Fig. 10.1 Typical metabolomics workflow
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10.1.2 Sample Processing

The first crucial step in sample processing is sample collection. Some metabolites are
extremely labile, so cellular metabolism must be immediately quenched. For tissue
samples, this can be achieved by ultrarapid freeze-clamping in situ [23] or by snap
freezing samples immediately after collection in liquid nitrogen. In either case,
samples are subsequently stored at �80 �C until further processing. It has been
shown that long-term storage of some samples, like plasma, can alter the concen-
trations of some metabolites and thus bias data analysis [24]. This is a major concern
for longitudinal studies, in which samples may be stored, processed, and measured
over several years or even decades. There may be differences in the long-term
stability of metabolites depending on the type of sample, whether plasma, serum,
urine, or different tissues; however, the literature regarding this point is extremely
sparse or nonexistent.

Sample preparation prior to analytical measurement typically involves metabolite
extraction, protein precipitation, and optional chemical derivatization. These pro-
cesses must all be optimized and validated for each metabolite of interest.

10.1.3 Analytical Method

As mentioned previously, modern metabolomics has been fueled by major techno-
logical improvements in instrumentation. The most frequently used technologies in
metabolomics are mass spectrometry (MS) and NMR. Resolution with either type of
analysis is greatly enhanced when separation steps are introduced prior to metabolite
detection. Common separation steps include gas chromatography (GC), capillary
electrophoresis (CE), liquid chromatography (LC), or ultra-high-performance liquid
chromatography (UHPLC), which can be coupled to either MS or NMR [25].

Analytical methods for targeted metabolomics must likewise first be validated for
all selected biochemicals in a study. The most commonly applied techniques are
based on GC-MS, LC-MS, UHPLC-MS, or flow injection assay mass spectrometry
(FIA-MS) [26, 27]. Since non-targeted metabolomics analytical methods must be
suitable for a wide range of metabolite classes, these studies often require a high
degree of parallel analytical platforms (i.e., multiple analyses on LC- and GC-MS).
This makes it easier to cover as many metabolites as possible and to avoid biases for
specific chemical classes. The most commonly used platforms are NMR, CE-MS,
GC-MS, LC-FT-ICR-MS, or UHPLC-MS [28, 29]. Special algorithms for metabo-
lite identification with specific databases are also required [30–32].
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10.1.4 Data Preprocessing

The raw data of mass spectrometry and NMR-based metabolomics experiments are
mass spectra peaks. These peaks must first be assigned a metabolite identity based on
reference spectra contained within large chemical databases. There are several
different computational approaches and tools for identifying and annotating metab-
olites, and the reader is encouraged to consult [15] for more detailed information.
Once metabolite identities are assigned, data preprocessing and analysis can begin.

In targeted metabolomics, data analysis begins by calculating whether the mea-
sured metabolite concentrations lie within the corresponding lower limit of quanti-
fication (LLOQ) and upper limit of quantification (ULOQ). These end points of the
linear range of metabolite concentrations are determined during assay development
and are specific for the MS machines used to measure the samples. The most
commonly used quality control (QC) samples are human plasma reference samples
or National Institute of Standards and Technology (NIST) samples. These are used to
determine the coefficient of variation (CV) during the measurement process. Metab-
olites showing more than 25% CV in their QC samples are discarded, since there is a
high likelihood they were incorrectly measured.

These first validation steps are very stringent. However, the range of acceptable
metabolite measurements can be broadened to also accept metabolite measurements
below the LLOQ—down to the absolute limit of detection (LOD), below which the
chosen mass spectrometer is unable to reliably detect peaks. Reference samples are
not only used for quality control but also to normalize for inter-batch effects when
measuring a high number of samples split into different batches.

In a typical targeted metabolomics experiment, plate-specific mean values (“plate
means”) are calculated for each plate and each metabolite:

Platemean metabolite xð Þ½ � ¼
P

C metabolite xð Þ½ �
N

where:

N ¼ number of reference samples

C ¼ metabolite concentration

The plate means are then used to calculate the overall “mean of all plates”:

Overall mean X½ � ¼
P

Means X½ �
N

where:

X ¼ metabolite xð Þ of Plates n . . . nj
� �

N ¼ number of Plates n . . . nj
� �

From the overall mean, the plate factors are calculated:
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Factor Y½ � ¼ Overall mean X½ �
Mean Y½ �

where:

X ¼ metabolite xð Þ of Plates n . . . nj
� �

Y ¼ Plate nð Þ metabolite xð Þ½ �

In the final normalization step, metabolite concentrations are multiplied by the
corresponding plate factor, e.g., metabolite concentrations of each sample on plate
1 are multiplied with plate factor 1:

Normalized Y½ � ¼ Factor Y½ � � Concentration Y½ �
where:

Y ¼ Plate nð Þ metabolite xð Þ½ �

Non-targeted metabolomics measurements cannot be validated in the same way
as targeted assays. Since reference samples are normally not included, parameters
like LLOQ, ULOQ, and LOD are not available. However, it is possible to generate
pooled QC samples from all the samples to be measured. These samples can then be
used in much the same way as the reference samples from targeted metabolomics.

For both approaches, and especially for non-targeted metabolomics, “NA” values
are a common occurrence. A result of “NA” in a metabolomics measurement does
not mean “no metabolite present” but rather “no metabolite concentration detectable
with the given method.” There are several ways to deal with these occurrences using
data imputation [33–38]. One of the most commonly used data imputation methods
is to replace all “NA” values by half the minimum value measured for a given
metabolite. Other approaches use the LOD instead of the minimum value and divide
the LOD either by 2 or by √2. Some other imputation methods use zero value or
median value imputation, k-nearest neighbors, or imputation by machine learning
algorithms such as random forest. Whichever way imputation is handled, it is
important to be consistent and transparent and explicitly state the impact of impu-
tation (how many metabolites were imputed, what kind, etc.) in the methods. If many
“NA” values are present, it is prudent to define exclusion criteria. Commonly used
ranges for metabolite exclusion are between 30% and 50% of “NA” values. After
initial data preprocessing, the data can be checked for outliers. This is commonly
done using box plots, with every metabolite above or below the 1.5 inter quartile
range considered an outlier, and thus discarded. Again, exclusion criteria should be
specified in the methods.

10.1.5 Data Analysis

After preprocessing, the data can be evaluated with many statistical methods and
tools [39–54]. The first step is to determine which of the measured metabolites are of
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interest: one specific metabolite, groups of metabolites, or all? Depending on the
experimental setup and data distribution, either uni- or multivariate analyses can be
conducted. Data distribution can be determined using Shapiro-Wilk tests, QQ
plotting, or bootstrapping, with results determining which downstream statistical
tests are appropriate.

Univariate tests include t-tests, Mann-Whitney U tests, Kruskal-Wallis tests, as
well as ANOVA. For the multivariate tests, a popular option is unsupervised
principal component analysis (PCA). This method does not take group information
into account and is based on the assumption that variables (in this case metabolites)
with a high variance carry a high amount of information, and conversely variables
with low variance convey less information. PCA allows for a quick overview of the
data composition, as samples with similar metabolite concentrations tend to cluster
together in the PCA plot.

In contrast, a partial least squares discriminant analysis (PLS-DA) utilizes a
supervised approach taking group information into account [39, 41, 43, 53, 55–
58]. The principal components of a data matrix (metabolite measurements) and their
respective response vector (group information, also called “discriminant”) are cal-
culated in order to maximize their covariance. Prior knowledge of which groups are
in the data set is therefore paramount for PLS-DA. Orthogonal PLS-DA (OPLS-DA)
takes this one step further by removing orthogonal noise unrelated to the response
vector. An OPLS-DA is therefore better able to differentiate groups than a PLS-DA.
There are some important details to keep in mind when performing PLS-DA or
OPLS-DA. For one, data overfitting is detected by the R2 and Q2 values. The R2

value is a measure for the goodness of fit of the measured data related to the
calculated regression of the data, and the Q2 value is a measure for the difference
of the sample groups. These should always be positive. It is also important to
perform permutation tests to check whether sample grouping is specific for the
tested phenotypes, i.e., whether the same clustering of the data is observed after
grouping information is randomly permuted n-times (most commonly n ¼ 2000). If
the clustering is observable in more than 5% of the cases, the test is considered to
have failed and the PLS-DA to be invalid.

Both PCA and PLS-DA yield a list of variables responsible for clustering data in
the PCA- or PLS-DA plots. In the PCA, the loading for each principal component
can be extracted, whereas for PLS-DA, “variables of importance” fulfill this role.
Variables of importance above a value of 1.0 are considered significant and used to
narrow down the list of relevant metabolites. From the PCA, one can extract the
relevant loadings by checking whether individual contributions are in the sloped area
of the curve or whether they are asymptotic, and contributions of the related
metabolites are therefore uniform.

Using data from the statistical tests and/or the results from PCA/PLS-DA, the
search for possible biomarkers can begin. This is most often achieved by
constructing a receiver operating characteristic (ROC) curve [59], which is a graph-
ical representation of a so-called binary classifier system (see Fig. 10.2). When
comparing biological systems for biomarker detection, ROC curves are often supe-
rior to using fold changes or odds ratios, as the ROC provides information on both
the sensitivity and selectivity of each biomarker. For this end, the data is split into
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two groups, based on binary classification, e.g., treated and untreated samples, or
healthy versus diseased. For this binary classification, the true positive, also called
“sensitivity,” and true negative rates, also called “specificity” (TPR and TNR,
respectively), can be calculated as follows:

TPR

True positive
True positive þ False negative

TNR

Falsepositive
False positive þ True negative

The ROC curve is obtained by plotting these two values against each other for
pre-defined thresholds (T ) on the axes:

TPR Tð Þ ¼
Z inf

T
f 1 xð Þdx versus FPR Tð Þ ¼

Z inf

T
f 0 xð Þdx

where FPR ¼ 1� TNR

Fig. 10.2 Example of a receiver operating characteristic (ROC) curve. A ROC curve reveals
specificity and sensitivity of models used to diagnose or differentiate data sets. In this example
three different models were built based only on age of subjects (yellow), age and body mass index
(BMI, green), or age, BMI, and a biomarker metabolite (Met1, blue). The model with age, BMI, and
metabolite shows the best performance with 84% specificity and 90% sensitivity. The dashed line
depicts performance of a random approach with 50% specificity and 50% selectivity.
Figure redrawn using data from [60] with permission from Oxford University Press
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Every point on the ROC curve represents a specificity/sensitivity pair for the
chosen criterion. From here, the area under the curve (AUC) can be calculated as a
measure of performance of the ROC. It can also be used to compare different ROCs.

There is also a large array of additional tools that can be implemented for
downstream metabolomics data analysis, interpretation, visualization, and integra-
tion with other “omics” data [61]. These rely on data associations and current
knowledge about biochemical pathway structure and regulation for pattern recogni-
tion, network inference and modeling, pathway activity prediction, metabolic path-
way enrichment, and overrepresentation. The reader is encouraged to consult [15]
for a recent overview of these and other useful approaches.

10.2 Major Applications

Skeletal muscle plays a highly dynamic role in metabolism and whole-body energy
homeostasis, both at rest [62] and during exercise [63]. Accordingly, skeletal
muscle’s role in health and disease has been an active research target since the
very first metabolomics experiments. This has inevitably produced a rich tapestry of
muscle metabolomics studies, briefly summarized in [64].

However, the vast majority of these studies have targeted muscle indirectly by
measuring metabolites in blood, urine, or even interstitial fluid [65, 66] after various
exercise protocols, under different nutritional challenges, or under different diseased
states. These studies include elegant and informative arterial-venous blood sampling
across the vascular bed of human forearm muscles [67], allowing for quantitative
characterization of dynamic uptake and release of muscle metabolites. Further
applications of these indirect approaches under different experimental conditions
will surely continue to uncover novel signaling molecules and regulatory mecha-
nisms associated with muscle function and disease pathogenesis.

On the other hand, muscle metabolomics experiments focusing directly or exclu-
sively on muscle tissue, rather than associated body fluids, are not as prevalent in the
literature. These can be broadly divided among five main research objectives:

1. Technical studies centered around various extraction and analytical techniques
[64] and their impact on muscle metabolite recovery and detection.

2. Studies aimed at understanding basic muscle physiology, including exercise and
nutritional studies focused on muscle development and growth, adaptation,
performance, and metabolism [68–74].

3. Studies investigating muscle metabolites during disease, disuse, or injury and the
effects of various interventions [75–77].

4. Studies performed for diagnostics, biomarker discovery, and forensics, including
time of death estimation [78–86].

5. Metabolic phenotyping of animal models and cell culture systems for basic
research [87–96].
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A comprehensive overview of all muscle metabolomics studies is outside of the
scope of this brief chapter, and this short survey of muscle metabolomics experi-
ments is by no means complete. It is merely meant to give a brief overview of the
wide range of applied muscle metabolomics studies already in the literature, and we
apologize to any colleagues whose work we have neglected due to space constraints.
In the following section, we will highlight only a few examples of how time series
metabolomics can help circumvent a limitation of many metabolomics experiments,
and can give important insight into disease mechanisms.

Complex metabolic diseases can be characterized according to their unique
metabolic signatures, i.e. how specific panels of metabolites change relative to
healthy individuals. As metabolism is a dynamic process, dynamic metabolic signa-
tures may likewise appear only transiently within precise temporal and spatial
windows that are difficult to know a priori. Dynamic metabolic signatures may
thus escape detection when sampling a single tissue at a single time point. In a
seminal paper, Koves and colleagues used targeted metabolomics to characterize
metabolic signatures associated with insulin resistance in muscles from rats and mice
[97]. By comparing both fed and fasted lean rats fed a standard chow diet with fed
and fasted obese rats fed a high-fat diet, the authors revealed a transient metabolic
signature of persistently increased fatty acylcarnitines in muscles and serum from
obese and diabetic rats during the fed state. This was accompanied by increased rates
of incomplete β-oxidation and reduced levels of organic acid intermediates associ-
ated with glycolysis and the TCA cycle, including lactate, citrate, malate, and
succinate. Their data revealed impaired metabolic flexibility in the fasted-to-fed
transition and suggested a causal link between mitochondrial lipid overload and
muscle insulin resistance and glucose intolerance. More recently, time-of-day depen-
dent metabolite changes in human vastus lateralis muscle were revealed in response
to high-fat and high-carbohydrate diets [72] underscoring the importance of diet
composition and time-of-day in determining the muscle metabolome of humans.

Temporal perspectives of metabolite dynamics can be further expanded to better
capture more complex and dynamic metabolic signatures and relationships under a
typical range of physiological conditions, including feeding-fasting and rest-activity
cycles (see Fig. 10.3). This has been achieved by sampling tissues, cells, or organelles
at high temporal resolution and by comparing metabolite dynamics across 24 h under
different nutritional, pharmacological, genetic, or exercise interventions [99–107].

This 24-h metabolomics perspective was recently applied to serial biopsies from
human vastus lateralis muscles, and in primary human myotubes after circadian
clock disruption using targeted lipidomics [108], and via non-targeted metabolomics
in murine tibialis anterior muscles after muscle-specific clock disruption
[109, 110]. These studies have provided important mechanistic insight into the
multiple roles muscle clocks play in maintaining glucose, lipid, and amino acid
homeostasis over 24 h. They have also shown how muscle clock disruption is
associated with local and systemic metabolic disturbances, including well-known
risk factors for metabolic diseases like intramuscular accumulation of bioactive
lipids and muscle insulin resistance.
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This is because muscle metabolism plays an integral role in metabolic homeo-
stasis in both the fed and fasted states. For example, muscle is the main site for
insulin-stimulated glucose uptake [111] and a major consumer of lipids [112]. It also
plays an important role in whole-body protein metabolism [113] as a major desti-
nation for amino acids after a meal [114] and as the main source of circulating amino
acids during periods of starvation and insulin deficiency [115]. What happens in
muscle thus impacts other tissues, including the brain, via metabolic cross-talk [116]
and by the production and secretion of myokines [117].

A comprehensive metabolomics atlas of circadian metabolism recently
underscored this interconnected role of muscle circadian metabolism and organ
cross-talk. Profiling eight different mouse tissues, including gastrocnemius muscle,
across 24 h under standard chow diet or high-fat diet [98], 24-h metabolite temporal
associations were reconstructed both within and across different tissues. This
dynamic temporal and spatial overview of the metabolome revealed novel metabolic
cross-talk between tissues and suggested novel pathogenic relationships. For exam-
ple, high-fat diet was associated with increased muscle production and release of
3-methylhistidine and alanine, both established biomarkers for muscle protein deg-
radation. These were temporally associated with increased glycerol 3-phosphate
levels in liver, suggesting a link between muscle protein turnover under high-fat
diet and increased liver production and secretion of glyceride-glycerol. While tracer
studies are needed to independently validate this particular relationship, muscle and
serum alanine were also found transiently elevated when profiling across 24 h in
insulin-resistant mice with muscle-specific clock disruption [110] and in serum of
insulin-resistant humans [118]. Together, these data suggest alanine as a novel risk
biomarker for type 2 diabetes (see Fig. 10.4). However, since this signal appeared
transiently over several hours, it may have been missed if sampling muscle or blood
at the “wrong” time or under less controlled conditions.

Fig. 10.3 Skeletal muscle diurnal fuel selection is altered by diet composition. Non-targeted 24-h
metabolomics profiling using LC/MS performed on gastrocnemius muscles collected from mice
under controlled laboratory conditions after 10 weeks of ad libitum feeding a standard chow diet or
a high-fat diet (HFD). The 12-h light-dark cycle of the animal facility is indicated by white or gray
shaded areas, respectively, with “lights on” at zeitgeber time 0 and “lights off” at zeitgeber time 12.
Green and pink plots show the range (colored area) between minimum and maximum abundance for
the muscle metabolites indicated on the right. Cubic spline interpolation was used to estimate
continuous abundance. Reprinted from [98], with permission from Elsevier
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10.3 Limitations and Extensions of Metabolomics

Metabolomics is a tool, and like any analytical tool, it was designed for specific
applications and has certain technical limitations worthy of consideration. For one,
the small molecules detected by metabolomics span from 20 to 1000 Da and include
a wide range of chemical structures and properties. Accordingly, there is no single
optimum extraction protocol and/or analytical method to detect all metabolites
within a sample. Combining different extraction techniques and different analytical
methods can help to circumvent this issue, but this is not always an option.

Metabolite concentrations also span a wide dynamic range, from picomolar to
millimolar, sometimes complicating their detection and discrimination. Another
consideration is that some metabolites are chemically and thermally labile, making
their recovery extremely challenging. One particular issue for non-targeted
metabolomics experiments is determining the absolute number of unknown metab-
olites, and one should keep in mind that lack of detection does not necessarily equate
with absence. Instrument variation can also be problematic, especially when mea-
suring a large number of samples in different batches or over different days, and
assay stability must be closely monitored throughout each experiment to ensure data
quality.

Fig. 10.4 Biomarker discovery using 24-h metabolomics profiling. (a) Targeted 24-h
metabolomics profiling of human plasma under controlled laboratory conditions using LC/MS
revealed elevated alanine among several novel biomarkers distinguishing overweight/obese type
2 diabetes mellitus subjects (T2DM) from age- and BMI-matched overweight/obese (OW/OB,
blue) and age-matched lean subjects (red). Lean and OW/OB groups were also matched for glucose
homeostasis markers (HbA1c, fasting glucose and insulin). Alanine was elevated in T2DM subjects
during the last half of the sleeping/fasting phase (gray region) and throughout the awake/feeding
phase (white region). Reprinted from [118] under the terms of the Creative Commons Attribution
4.0 International (CC BY 4.0). (b) Non-targeted 24-h metabolomics profiling of mouse muscles
under controlled laboratory conditions using GC/MS similarly revealed elevated alanine in tibialis
anterior muscles from muscle-specific Bmal1 knockout mice (mKO) compared to wild-type
(WT) littermates. Alanine was elevated in muscles from insulin resistant mKO mice at the end of
the sleeping/fasting phase (white region) and throughout the awake/feeding phase (gray region).
Targeted 24-h metabolomics profiling of mouse serum using GC/MS likewise detected elevated
serum alanine in mKOmice during the awake/feeding phase. Adapted from [110] under the terms of
CC BY 4.0
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Minimizing confounding factors is essential for producing meaningful
metabolomics data and for interpreting results. Failure to properly control for these
will negatively impact the outcome of the study and can result in misdiagnosis or
identification of fewer biomarkers. This is particularly relevant for human
metabolomics studies, which inherently contain more genetic and environmental
variations than cell culture and animal studies. Sources of sample heterogeneity in
human studies can result from individual variation; differences in sampling time,
place, or condition; population differences; and factors like age, sex, health status,
and environmental exposures. It may be difficult to control for every confounding
factor; nevertheless they should be accounted for during data analysis.

Even after controlling for confounding factors, analytical and biological variation
can still occur at multiple steps during sample processing, including during collec-
tion, storage, or extraction. Haid and colleagues [24] reported significant changes in
stability of a wide range of metabolite classes when human plasma samples were
stored long term at�80 �C. They found that storage of plasma samples at�80 �C for
5 years leads to altered concentrations of some amino acids, acylcarnitines,
glycerophospholipids, sphingomyelins, and the sum of hexoses.

Many biomarker studies may also be limited in the amount of mechanistic insight
they can provide regarding disease pathogenesis and treatment. This is because most
predictive risk metabolites have been measured in blood or urine from patients,
generally under specific controlled conditions (i.e., in the morning after an overnight
fast). Many biomarkers may thus not adequately reflect the primary diseased tissue
nor the particular circumstances under which pathogenic mechanisms arise (e.g.,
prolonged hyperglycemia after a meal). Metabolic signatures in blood and urine can
differentiate diseases and reflect crucial aspects of tissue function and pathology.
However, they are not a substitute for directly measuring the diseased tissue, which
may provide more relevant mechanistic information. Accordingly, many current
predictive risk biomarkers may only reflect indirect consequences of the diseases
they describe rather than direct causes, thus limiting their utility in disease preven-
tion or maintenance.

Finally, metabolism is a dynamic process, with metabolite concentrations deter-
mined by a balance between their production and consumption. As mentioned
previously, metabolomics experiments performed at a single time point can thus
only give a static snapshot of this balance. Time series metabolomics experiments
can provide additional descriptive information about how metabolites and metabolic
pathways are related and change over time, but cannot provide quantitative data
regarding pathway activity and rates of metabolic flux. Metabolite concentrations
and metabolic pathway flux are not always in agreement [119], and the only way to
accurately infer pathway activity is to complement metabolomics studies with flux
analysis using isotope tracers. For additional details on flux analysis, the reader is
encouraged to consult some useful recent reviews [15, 119].

206 K. A. Dyar et al.



10.4 Vital Future Directions

10.4.1 Metabolomics for Precision/Personalized Medicine

Precision medicine involves considering a patient’s genotype and phenotype when
designing an optimal treatment strategy [120]. Genetic background and gene expres-
sion do not always track with health status, yet metabolomics provides a quantifiable
readout of a patient’s current biochemical state. Metabolomics will thus continue to
be a growing and essential part of precision medicine’s toolbox. Today most
clinicians collect only a small fraction of available metabolite information, such as
glucose concentration to monitor diabetes, cholesterol and high-density lipoprotein/
low-density lipoprotein ratio to assess cardiovascular health, or blood urea nitrogen
(BUN) and creatinine for kidney function. The narrow range of diagnostic analytes
currently in use will be rapidly complemented by more comprehensive
metabolomics analyses. As metabolomics enters into the field of clinical testing
and more data becomes available, a wider range of biochemical signatures reflecting
a wider spectrum of health, disease, and therapeutic potential will become available.
The full emergence of clinical metabolomics is currently limited by a number of
specific challenges, including method standardization, data analysis and interpreta-
tion, quality control, and the need for rigorous analytical validation [121]. However,
as these and other challenges continue to be addressed, clinical metabolomics is
expected to play an ever-increasing role in clinical diagnostics and decision-
making [122].

10.4.2 Predictive and Preventive Health: Supporting
the Worldwide Healthcare System [123]

Chronic diseases, including diabetes, cardiovascular disease, respiratory diseases,
and cancer, are currently among the leading causes of death. They also create a major
financial burden on economies throughout the world. In combination with promoting
a healthy lifestyle (proper nutrition and exercise), monitoring and maintaining
normal values for key health metrics like blood pressure, blood glucose, and
cholesterol and lipid status greatly reduces disease risk. Integrating more compre-
hensive data from genomics, metabolomics, and other “omics” approaches will
provide more comprehensive and personalized health metrics, along with novel
predictive risk biomarkers. These will improve our potential for prevention in the
earliest stages of disease and allow for better prediction and tracking of health status,
thus improving overall quality of life and significantly reducing the financial burden
from chronic diseases. These benefits are urgently needed, as the global population
continues to rapidly become older [124] and more obese [125], thus increasing the
general risk for chronic diseases.
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10.4.3 Single Muscle Fiber Metabolomics

Metabolomics has been applied and validated in a variety of biological matrices,
including cultured cells, body fluids, and tissues. However, even cultured cells with
identical genotypes display heterogeneous phenotypes due to differences in cellular
dynamics and unique microenvironments. Likewise, skeletal muscle is a highly
heterogeneous tissue, with each muscle’s functional and metabolic characteristics
determined by its fiber type composition. Muscle fiber type is determined by intrinsic
fiber-specific properties and by extrinsic factors, including hormones and motor
neuron activity patterns [126]. Different muscle fiber types can be distinguished
across a metabolic spectrum according to their predominant ATP source, with
oxidative fibers relying more on oxidative phosphorylation and glycolytic fibers
relying more on anaerobic glycolysis. However, in addition to quantitative differ-
ences in mitochondrial content, cutting-edge single muscle fiber proteomics recently
revealed fiber-specific qualitative differences among mitochondrial proteomes [127],
reflecting mitochondrial specialization among different fiber types [128].

Single muscle fiber metabolomics is similarly poised to unravel a previously
hidden level of cellular heterogeneity and complexity among different fiber types.
This holds obvious promise for providing a deeper understanding of muscle metab-
olism in health and disease. Single cell metabolomics is currently conducted using a
shotgun-like MS approach with high mass resolution [129]. However, single-cell
metabolomics is still in its infancy, and many technical challenges remain that are
not so uncommon for the other single cell “omics” approaches. These include low
sample quantity, and rapid turnover of cellular metabolites during fiber isolation,
which may ultimately limit detection to only the most abundant and most resilient
metabolites. As analytical techniques and sensitivity continue to improve, compre-
hensive, high-resolution single muscle fiber metabolomics seems just on the horizon.

10.4.4 Spatial Resolution in Metabolomics Experiments

A current limitation for most metabolomics experiments is that metabolites are
normally extracted from whole homogenates of tissues and cells, losing all infor-
mation about cell type-specific or subcellular metabolite localization. One way
researchers have circumvented this issue is by performing fractionation of different
subcellular compartments prior to metabolomics measurements [101, 130], but
additional processing steps may delay quenching and lead to some metabolic drift.
Furthermore, depending on tissue composition, one may likewise start with a
mixture of several different cell types, again losing important information about
cell type-specific metabolic heterogeneity.

Mass spectrometry imaging (MSI) is one promising technique to avoid these
issues, as it directly visualizes the spatial distribution of metabolites in tissue sections
or cells. While this technique is generally considered descriptive, the signal
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generated is proportional to analyte abundance. A variety of ionization methods are
currently employed for MSI, such as matrix-assisted laser desorption/ionization
(MALDI), desorption electrospray ionization (DESI), and laser ablation electrospray
ionization (LAESI). For example, MALDI-MSI has been used to visualize and
distinguish metabolites in different muscles and fiber types of rats and mice after
different diet and exercise regimens [69, 131–134]. Continued technological
advances that further increase sensitivity and spatial resolution should soon make
it possible to confidently detect and quantify hundreds of subcellular metabolites in
situ, opening up a whole new level of biochemical complexity and mechanistic
understanding.
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