
Chapter 5
Fitting in the Age of Single-Molecule
Experiments: A Guide
to Maximum-Likelihood Estimation
and Its Advantages

Behrouz Eslami-Mosallam, Iason Katechis and Martin Depken

5.1 Introduction

Single-molecule (SM) experiments allowus to peer deep into themolecular dynamics
that drive biology at the microscopic scale [4, 14]. Though observing the dynamics
of a single molecule is an amazing feat in and of itself, the information gleaned is
limited by the small number of observables that can be simultaneously tracked, and
the resolution at which this can be done. Faced with such limitations, mechanistic
modeling and parameter estimation are often used to extract as much quantitative
information as possible.

Using SM fluorescence or Förster resonance energy transfer (FRET) [15], it is
possible to generate time distributions for reactions, such as the unbinding-time dis-
tributions of ligands unbinding from a single receptor (Fig. 5.1). Such distributions
are particularly useful when the pathway includes multiple steps, as they can be quite
complex and information rich. Faced with systems exhibiting several characteristic
times, least-squares (LS) fitting is often brought to bear on the problem. Though pop-
ular and often useful, there are situations in which standard LS approaches fail, and
unfortunately often do so in quite non-obvious ways. To help the reader understand
and avoid such pitfalls, we here explore some of these situations through the lens of
ML estimation, an alternative approach that has become very popular in the physical
sciences [1–3, 7, 8, 13, 16, 17, 24–26, 28].

As it is straight forward, adaptable, and well suited to SM experiments, we here
provide a self-contained introduction to ML estimation. We heuristically show that
ML estimation should generally outperform LS fitting and explicitly show this to be
the case in relevant SM FRET examples. We close with a discussion of how to use
bootstrapping to estimate the standard deviation of fit parameters. The presentation
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Fig. 5.1 a A single-step ligand-receptor unbinding model. A dsRNA-binding protein releases
dsRNAat a characteristic rate koff. For thismodel,we expect an exponential distributionof unbinding
time, with the average unbinding time τ̂off = 1/koff. b A histogram (bars) formed from 300
unbinding times picked from an exponential distribution with the true average unbinding time
τ̂off = 1 s. The predicted bin counts for a model with average unbinding time τoff = 1 s are shown
as a red curve, and the notation used in Eq. (5.1) is indicated for bin b (pink bar). In the inset, we
show the unweighted LS residue RuwLS(τoff) (in log-scale) as a function of themodel parameter τoff.
The function displays a global minimum close to the true average unbinding time (yellow arrow),
as well as a local minimum for short times (red arrow). Beware that local minima can sometimes
trap numerical minimization algorithms, leading them to erroneously report the local minimum as
the sought after global minimum

is intended for SM experimenters who find fitting data indispensable to their work,
but might find the advantages/limitations/rationale of various approaches hard to
ascertain.

5.2 Prerequisites

In an effort to be self-contained, we start by discussing LS fitting, as well as error
estimation and some crucial concepts in probability theory. These sections can be
skipped by the initiated reader.

5.2.1 LS Fitting and the Distance Between Model and Data

LS fitting comes in several flavors, depending on how statistical fluctuations in bin
counts are accounted for. Thefitting is generally performedby collecting the available
data into bins b = 1, 2, . . . , B, and finding themodel parameter values that minimize
the total square deviation between actual bin counts (Hb) and model predictions for
bin counts (hb) (Fig. 5.1b), normalized with the true standard deviation of the bin
count (σb). We will refer to this approach as true LS (tLS) fitting. For unbinding
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times in the simple RNA-protein example of Fig. 5.1a, tLS fitting consists of finding
the model parameter τoff (the average unbinding time of the model) that minimizes
the total residue

RtLS(τoff) =
B∑

b=1

(
�Hb(τoff)

σb

)2

, �Hb(τoff) = Hb − hb(τoff). (5.1)

Minimizing the total residue RtLS makes intuitive sense, as it penalizes parameter
values that give large deviations between predictions and measurements, in a manner
scaled by the size of statistical fluctuations in each bin. A perfect estimate in a bin
(Hb = hb(τoff)) results in zero residue, while any positive (weighted) residue gives a
measure of the “statistical distance” betweenmodel and data in that bin. By summing
the residues in Eq. (5.1), we get a measure of the total distance between model and
data; tLS fitting aims to minimize this distance.

Unfortunately, we do not often have access to the true standard deviation of
counts in each bin, and various approximations to Eq. (5.1) must be deployed. For
ease of presentation, we will here focus on two cases: In the first case, we assume
that count fluctuations are almost constant over all bins, and we use unweighted LS
(uwLS) residues by taking σb to be constant1 (e.g., see inset in Fig. 5.1b); in the
second case, we assume a fixed total number (N ) of independent measurements,
such that the count fluctuations in each bin are binomially distributed, with σb =√

〈Hb〉
(
1 − 〈Hb〉

/
N

) ≈ √〈Hb〉. Here, the angle brackets represent the statistical
average over a large number of experiments, and we have in the last step assumed
bins to be small enough that no bin on average contains a large fraction of the total
number of observations (i.e., 〈Hb〉 � N for all bins).With no better estimate at hand,
the statistical average of bin counts is often approximatedwith the observed bin count
by setting σb ≈ √

Hb in Eq. (5.1). We will refer to this approach as weighted LS
(wLS).

Both wLS and uwLS fitting can be problematic. Using uwLS, we assume fluc-
tuations in bin counts to be uniform over bins. As we shall see, this is often a poor
approximation for systems with multiple characteristic timescales. Using wLS, we
instead use individual bin counts to estimate the standard deviation of counts in that
bin. As individual bin counts can be small, relative fluctuations can be large, resulting
in large approximation errors when using σb ≈ √

Hb in Eq. (5.1).

5.2.2 Error Estimation, Variation, and Systematic Bias

For any estimationmethod applied to an experimentwith a finite set ofmeasurements,
the estimated parameter value (τ ) will deviate from the true value (τ̂ ). To compare

1Note that we do not need to know the actual constant value of σb, as it will not affect the position
of the minimum of RuwLS.
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Fig. 5.2 A histogram of
estimates for a hypothetical
process with the true
parameter value τ̂ = 1. The
systematic bias �τ bias and
the typical size of
fluctuations �τ sd around the
average estimate 〈τ 〉 are
indicated
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twomethods, we need to understand the distribution of parameter estimates that each
approach would yield were it to be repeated many times. Over a large number of
experiments, the typical error can be measured by the mean square error, MSE =〈(

τ − τ̂
)2〉

. To understand the nature of estimation errors, consider the bias�τ bias =
〈τ 〉 − τ̂ , capturing how the average estimate deviates from the true parameter value,

as well as the standard deviation �τ sd =
√〈

(τ − 〈τ 〉)2〉, capturing the typical spread
of estimates around their average (Fig. 5.2). Conveniently, the bias and standard
deviation add in quadrature to form the MSE [9]

MSE = (
�τ bias

)2 + (
�τ sd

)2
.

The smaller theMSE the better, and we should seek to minimize both the bias and
standard deviation as far as possible. A large bias can be introduced by the estimation
method itself, while a large standard deviation typically results from a lack of data
and/or accuracy of the measurements.

5.2.3 Bayes’ Equation and Observation Frequencies

To explain the rationale behindML estimation [9], we first introduce Bayes’ equation
by way of Venn diagrams and the frequentist interpretation of probability. Accord-
ing to this interpretation, probabilities can be seen as the asymptotic frequency of
outcomes, recorded over a large number of repetitions [12]. For concreteness, imag-
ine a steady rainfall with water drops hitting the yellow (event A)- and blue (event
B)-striped shapes shown in Fig. 5.3. Further imagine keeping track of the number
of raindrops that falls on the section with just yellow stripes (NA), just blue stripes
(NB), both yellow and blue stripes (NA&B), or anywhere (Ntot = NA + NB). Among
these various counts, the relationship
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Fig. 5.3 Imagine exposing the blue and yellow shapes to rain, while keeping track of the number
of raindrops that hit each differently striped area. If the rainfall is steady, we can use the frequentist
interpretation of probability to relate the different fractions of raindrops landing on the various areas
to probabilities. The trivial Eq. (5.2) then becomes Bayes’ equation as expressed in Eq. (5.3)

NA,B

Ntot
= NA&B

NB

NB

Ntot
= NA&B

NA

NA

Ntot
(5.2)

holds trivially true, as can be seen by canceling the first denominator with the second
numerator after each equal sign. If we collect enough raindrops, the fraction of
raindrops that has so far landed on a particular section will approach the probability
that also the next raindrop will land in that same section. Taking the frequentist
approach, we can translate Eq. (5.2) into Bayes’ equation for probabilities

P(A, B) = P(A|B)P(B) = P(B|A)P(A). (5.3)

In the above, P(A, B) = NA&B/Ntot is the joint probability that both A and B
occur, P(A) = NA/Ntot is the probability that A occurs irrespective of whether B
occurs or not, P(A|B) = NA&B/NB gives the conditional probability that A occurs,
given that B occurs, and so on swapping A and B.

5.2.4 Continuous Outcomes and Probability Densities

We are ultimately interested in measurements that produce real numbers (such as
unbinding times), while Bayes’ equation (Eq. 5.3) is valid for probabilities of discrete
events. For outcomes that can take a continuous value, the relevant concept is that
of the probability density function (PDF). For two concurring continuous outcomes,
denote recording the respective values in interval Ia and Ib, centered around a and
b, as event A and B. For very short interval lengths �Ia and �Ib, the probability to
end up in the interval (denoted by upper case P) is simply the relevant PDF (denoted
by a lower case p) multiplied with the relevant interval length(s)
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P(A, B) = p(a, b)�Ia�Ib,

P(A) = p(a)�Ia, P(A|B) = p(a|b)�Ia, P(B) = p(b)�Ib, P(B|A) = p(b|a)�Ib.

The above relations can be plugged into Bayes’ equation for probabilities of dis-
crete events (Eq. 5.3), giving the sought after Bayes’ equation for PDFs of continuous
outcomes

p(a, b) = p(a|b)p(b) = p(b|a)p(a). (5.4)

With the prerequisites covered, we are now ready to address the rationale behind
ML estimation and assess how it compares and relates to LS fitting.

5.3 Maximum Likelihood

To keep the discussion in general, consider an experiment where we collect N -
independent measurements {t}N = {t1, t2, . . . , tN } and modeled it as process with
M parameters {τ }M = {τ1, τ2, . . . , τM }. Based on our one experiment, we would
like to determine the parameter values that gave rise to the data. As the stochasticity
of the data makes it impossible to precisely determine the parameters exactly, our
best bet would by definition be to find the most probable set of parameter values,
given the data. In the language of conditional PDFs, this corresponds to finding the
model parameters which maximize the PDF p({τ }M |{t}N ) of having a model with
parameters {τ }M given the measured data {t}N (for a lighthearted and instructive
discussion of the meaning of the probability of a model, see [18]. Unfortunately, we
do not have direct access to this conditional PDF. Still, we can make considerable
progress by using Bayes’ equation and introducing a few additional assumptions.

5.3.1 The Most Likely Model

Through Bayes’ equation for PDFs (Eq. 5.4), we can relate the unknown PDF of
interest to PDFs about which we do have some knowledge, or regarding which we
can at least make some reasonable assumptions. Letting a = {t}N and b = {τ }M in
Eq. (5.4), we have2

p({τ }M |{t}N ) = p({τ }M)

p({t}N )
p({t}N |{τ }M).

2Amore intuitive way of writing thismight be in the form p(model|data) = p(model)
p(data) p(data|model).
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With the aim to maximize the left-hand side of the above expression with respect
to the model parameters, we note that the denominator on the right-hand side does
not depend on the model parameters and therefore will not influence which param-
eter value maximizes the left-hand side; we promptly ignore the denominator. The
numerator can be interpreted as encoding what we knew of the correct parameter
values before our experiments. If we assume little or no prior knowledge, it makes
sense to also assume this prior PDF to be roughly uniform and thus largely inde-
pendent of the model parameters3; we promptly ignore also the numerator. The last
term on the right-hand side of the equation describes the PDF of a particular set of
measurements, given the model parameters. This conditional PDF can be calculated
if we have a model of the system!

Through the above argument, we conclude that by maximizing the likelihood
function p({t}N |{τ }M), we can find an estimate for the model parameter values that
best describe the data. Equivalently, we could choose to minimize the log-likelihood
function4 LML({τ }M) = − ln p({t}N |{τ }M), which has a global minimum for the
same parameter values as the likelihood function has a global maximum. As we
assume independent measurements, the PDF of the whole experimental outcome
{t}N can simply be written as the product of the PDFs for each measurement. The
log-likelihood function then has the convenient property that it turns into a sum over
measurements,

LML({τ }M) = − ln

(
N∏

n=1

p(tn|{τ }M)

)
= −

N∑

n=1

ln p(tn|{τ }M). (5.5)

Finding the parameter values that globally minimize Eq. (5.5) constitutes ML
parameter estimation, and we now apply it to a few simple but illustrative examples
to familiarize the reader with the approach.

5.3.2 ML Estimation for an Exponential Process

To demonstrate ML estimation in practice, we return to ligand–receptor unbinding.
For simple unbinding kinetics, the unbinding times are exponentially distributedwith
the PDF p(t |τoff) = e−t/τoff/τoff. Inserting this PDF into Eq. (5.5), we see that the
log-likelihood function is given by

3There are subtleties here relating to variable changes [18], but these lie outside our present scope.
4It should be noted that as the logarithm takes a unit-less argument, while the PDF has units (inverse
time in case of the unbinding experiments). Strictly, we therefore need to multiply the PDF with
some constant that renders the argument of the logarithm unit less in the definition of LML({τ }M ).
As the value of this constant does not affect the position of the minimum, we drop it for notational
convenience.
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LML(τoff) = N

(
ln τoff + t̄

τoff

)
, t̄ = 1

N

N∑

n=1

tn.

The ML estimate
(
τML
off

)
is now arrived at by minimizing LML(τoff) with respect

to τoff. In this simple example, we can find the ML estimate analytically by using the
zero-derivative test for finding an optimum,

0 = ∂LML

∂τoff

(
τML
off

) = N

(
1

τML
off

− t̄

(τML
off )2

)
⇒ τML

off = t̄ . (5.6)

Consequently, ML estimation confirms the well-known result that the charac-
teristic time of an exponential process can be estimated by the average event time
observed in the data; or simply, the off-rate estimate is kML

off = 1/t̄ . Note that we did
not need to perform any binning to extract this estimate, which constitutes a clear
advantage over standard LS fitting methods.

5.3.3 ML Estimation for an Exponential Process with a Time
Cutoff

The simplest additional characteristic time to consider is possibly that introduced
by photobleaching in FRET experiments. With photobleaching, the experimental
signal in our unbinding example can, in addition to unbinding, also be lost due to the
stochastic degradation of fluorophores over time.We can account for photobleaching
by interpreting the estimated characteristic rate (1/τML

off ) of the PDF (which is still
exponential), not purely as the unbinding rate, but as the sum of the unbinding and
bleaching rate. As the bleaching rate can usually be independently measured, we can
often readily estimate the unbinding rate by subtracting the bleaching rate from the
estimated total rate.

Next, consider having a hard cutoff time Tcut limiting the duration of each mea-
surement. Slightly more complex than photobleaching, this scenario will serve to
demonstrate that the ML approach often allows us to utilize extra information in a
rational manner. Though we cannot know the precise duration for any binding event
lasting longer than Tcut, there is information in the number of unbinding events that
exceeded it. We start by noting that the simple ML recipe used in Eq. (5.6) does not
work, as losing long unbinding times will clearly lead us to underestimate the char-
acteristic unbinding time. Instead, we would like to keep the information regarding
the number of measurements that exceeded the finite measurement time window.
Combining the probability densities of the measured unbinding times

({t}Nrec

)
with

the probabilities of the missed times
({

t ′
}
Ncut

)
, the relevant likelihood function is
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Nrec∏

n=1

p(tn|τoff)
︸ ︷︷ ︸

PDF of the Nrec

recorded events

Ncut∏

n′=1

P
(
t ′n′ > Tcut|τoff

)

︸ ︷︷ ︸
probability of the
Ncut missed events

=
Nrec∏

n=1

p(tn|τoff)
( ∞∫
Tcut

dt ′ p
(
t ′|τoff

))Ncut

.

The corresponding log-likelihood function will now become a sum over both
probability densities (for the Nrec recorded times) and probabilities (for the Ncut

missed times)

LML(τoff) = −
Nrec∑

n=1

ln p(tn|τoff) − Ncut ln
∞∫
Tcut

dt p(t |τoff)

= Nrec

(
ln τoff + t̄

τoff

)
+ NcutTcut

τoff
. (5.7)

TheML estimate can once again be found analytically through the zero-derivative
condition, yielding the simple formula

0 = ∂LML

∂τoff

(
τML
off

) ⇒ τML
off = t̄

(
1 + TcutNcut

t̄ Nrec

)
(5.8)

to correct for the cutoff-induced bias. Note that the correction only becomes signif-
icant when the lower bound of the total duration of cut events (TcutNcut) becomes
comparable to the total time of recorded events (t̄ Nrec).

5.3.4 ML Estimation for a Double-Exponential Process

The unbinding process itself might have several characteristic times. We next con-
sider the case where the model yields a double-exponential PDF of unbinding times
and where the maximal measurement duration is large enough to be ignored. For
the unbinding problem discussed above, such PDFs could originate in two inter-
convertible binding modes: a loose binding mode where the ligand first binds, and
eventually unbinds from, and a tight binding mode from which the ligand cannot
unbind directly (see Fig. 5.4a). Alternatively, it could result from two protein popu-
lations with different unbinding rates. The PDF for either system can be written as
(Fig. 5.4b)

p(t|τ1, τ2, P1) = P1
τ1

e−t/τ1 + 1 − P1
τ2

e−t/τ2 (5.9)
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Fig. 5.4 aA dsRNA-binding protein exhibiting two bound states, resulting in a double-exponential
PDF for the unbinding time. b Histogram (bars, in log-scale) formed by picking 1000 unbinding
times from a double-exponential distribution with a PDF characterized by τ̂1 = 1 s, τ̂2 = 5 s, and
P̂1 = P̂2 = 0.5. The predicted bin counts for a model with τ1 = 1 s, τ2 = 5 s, and P1 = P2 = 0.5
are shown as a red curve

where the characteristic times τ1 and τ2, as well as the population fraction P1 associ-
ated with τ1, can be directly related to the microscopic rates of the relevant system.
Attempting to use thePDFofEq. (5.9) to calculate the log-likelihood function accord-
ing to Eq. (5.5), it quickly becomes clear that we can no longer find a simple analytic
solution to the minimization problem. This is quite generally the case, and one has
to perform the minimization numerically, as we will do when comparing LS andML
approaches on simulated data below.

5.3.5 Coarse-Grained Likelihood

ThoughMLestimation has the clear advantage of requiring no binning of the data, for
large data sets, it often becomes computationally demanding to numericallyminimize
a log-likelihood function with as many terms as there are measurements (see sum in
Eq. 5.5). The computational efficiency can be drastically increased by considering
the likelihood over bins, which should be a reasonable approximation as long as we
choose the bin size small enough for there to be little change in the PDF over each
bin. The probability Pb of a particular measurement ending up in bin b can then be
related to the model PDF and used to calculate the predicted bin count hb as

hb({τ }M) = N Pb({τ }M), Pb({τ }M) =
tb+�tb/2∫
tb−�tb/2

dt p(t |{τ }M) ≈ �tb p(tb|{τ }M),

(5.10)

where the integral runs over the whole width �tb of bin b centered around tb.
Splitting the sum over measurements in the definition of the log-likelihood func-

tion (Eq. 5.5) into a sum over bins and a sum over measurements in each bin, it can
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be approximated by the coarse-grained (cg) log-likelihood function

LML({τ }M) = −
B∑

b=1

∑

tn in
bin b

ln p(tn|{τ }M) ≈ −
B∑

b=1

Hb ln hb({τ }M) = LcgML({τ }M).

(5.11)

Here, the last equality is a definition, and we have dropped constant terms and
factors not affecting the minimizing parameter values. Note that the results of using
cgML estimation can always be made arbitrarily close to the original ML estimate
by choosing the bin widths small enough.

5.3.6 The Connection Between LS and ML

We will now show that ML estimation can be seen as another approximation of tLS
and, importantly, one that is generally expected to do better than both uwLS and
wLS. The connection between LS and ML estimation has been studied for the case
of independent and Gaussian-distributed data with equal variance [10], but in an
effort to understand the differences in estimates more generally, we here employ a
heuristic approach with wide applicability.

For any data set {t}N and model with parameter set {τ }M , we seek to compare
tLS fitting to ML estimation. As the tLS scheme is based on binned data sets, we opt
to compare it to equally binned cgML. The zero-derivative condition for finding the
tLS parameter estimates

{
τ tLS

}
M from Eq. (5.1) is

0 = ∂RtLS

∂τm

({
τ tLS

}
M

) ≈
∑

b

�Hb
({

τ tLS
}
M

)

〈Hb〉
∂�Hb

({
τ tLS

}
M

)

∂τm
, m = 1, . . . , M.

(5.12)

Similarly, differentiating Eq. (5.11), and using the normalization of probabilities(∑
b
hb = N

)
, the condition for finding the cgML estimate

{
τ cgML

}
M
can be written

as

0 = −∂LcgML

∂τm

({
τ cgML

}
M

)

=
∑

b

�Hb
({

τ cgML
}
M

)

hb
({

τ cgML
}
M

)
∂�Hb

({
τ cgML

}
M

)

∂τm
, m = 1, . . . , M. (5.13)
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Interestingly, though the functions that are minimized during tLS (Eq. 5.1) and
cgML (Eq. 5.11) estimation are quite different, their minima are located in close
proximity. From above, it is clear that the cgML minimization condition (Eq. 5.13)
can be seen as an approximation to the tLS minimization condition (Eq. 5.12) with
〈Hb〉 ≈ hb

({
τ cgML

}
M

)
.

The cgML approximation
(〈Hb〉 ≈ hb

({
τ cgML

}
M

))
should be compared to the

wLS approximation (〈Hb〉 ≈ Hb). The wLS approximation includes only the data
of each bin when estimating the variance in each bin. The cgML approximation
takes into account the data in all bins, since

{
τ cgML

}
M
is estimated from the whole

data set by definition. As increasing the number of measurements generally reduces
both the variance and systematic bias of estimates, we typically expect the cgML
approach to outperform the wLS approach. It should be noted that the ML approach

is not equivalent to setting σb ≈
√
hb

({
τ cgML

}
M

)
already in Eq. (5.1), as we would

then need to know the optimal parameters before we have minimized the residue
to find them. ML estimation elegantly bypasses this problem by enforcing the same
approximation, not on the function to be minimized but directly on the condition
defining the minimum (Eq. 5.13).

Having argued that we should generally expect (cg)ML to outperform wLS, we
explicitly compare their performance, together with that of uwLS, on the examples
used above.

5.4 Comparing LS and ML Through Simulations

Having established that uwLS, wLS, and cgML can all be seen as tLS approxima-
tions of various severity, we here numerically explore the consequences of these
approximations. By generating data with a known distribution, we can quantify the
success of the different approaches at estimating known parameter values. We do
not discuss the numerical minimization schemes we use when analytics fail, further
than stating that it is implemented in Mathematica™, using a simulated-annealing
algorithm [22] tominimize the risk of finding a local rather than globalminimum (see
inset in Fig. 5.1b, e.g., of a local (red arrow) and global (yellow arrow) minimum).
There are many powerful software packages available with the required numerical
optimization capabilities.

Without a sharp cutoff time for the measurements, we always expect many long-
time bins to be empty in the tail end of the PDF.A zero count in any bin is catastrophic
for wLS, as it gives a zero estimate for the standard deviation and so introduces
infinite terms in Eq. (5.1). In an attempt to circumvent such issues, various re-binning
procedures or reassignments of weights can be performed. Though such approaches
avoid infinite terms in Eq. (5.1), they do change the details of the estimation method
depending on the observed data, and so risk introducing a strong bias. For simplicity,
we will here only consider the interval between the highest and lowest measured data
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points generated, and for wLS we choose the minimum constant bin size that leaves
no empty bins in the intervening interval.

5.4.1 Method Comparison for an Exponential Process

Though trivial, we start with the simple exponential process. Using Eq. (5.10), we
can calculate the predicted bin counts hb(τoff) from the PDF. It should be noted that
we could in principle estimate both N and τoff by optimizing with respect to both
in any LS or ML approach. Though this is often done, it is not advisable as it will
increase the MSE compared to if we heed the fact that N is known and precisely
dictates the translation from probability to histogram counts in Eq. (5.10).

In Fig. 5.5, we show the results of using uwLS, wLS, and ML estimation on
10,000 exponentially distributed data sets of 100 measurements each (τ̂off = 1 s).
Even after eliminating the zero bins for wLS (see above), the wLS estimate remains
biased due to the unavoidable presence of the low-count bins [11, 19–21, 23, 27].
This bias has been shown to be inversely proportional to the average occupancy
of the bins [11]. The fact that uwLS estimation introduces a much smaller—if not
vanishing—bias compared to wLS estimation might seem strange, given that the
latter estimates the standard deviations in bins based on the data, while the former
ignores the data and assumes them all equal. The explanation can likely be found
in that though the weighted approach clearly employs better approximation for bins
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Fig. 5.5 Distribution of unbinding-time estimates from 10,000 exponentially distributed data sets
containing 100 samples each. There is a clear bias for wLS estimation (−0.04 s), while little
bias is apparent for uwLS (0.009 s) and ML (0.0002 s) estimation. The standard deviation of ML
estimation (0.10 s) is less than for wLS estimation (0.13 s), which in turn is less than for uwLS
estimation (0.14 s). Notwithstanding the larger absolute bias, the

√
MSE for wLS estimation (0.13 s)

outperforms that for uwLS estimation (0.14 s),whileMLestimation outperforms both othermethods
(0.10 s)
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withmany counts, the relative errors in low-count bins can be very large, outstripping
the error made when assuming the variance of counts to be equal in all bins. Among
the three approaches, ML is clearly preferable as both bias and standard deviation
are the smallest.

5.4.2 Method Comparison for an Exponential Process
with a Cutoff

Next, we consider a measurement that is limited by a maximum measurement time
Tcut. If this cutoff time is largely compared to the average unbinding time, we effec-
tively have no cutoff, which we covered in the previous section. If we instead have a
cutoff time that is comparable to the average unbinding time, there is information in
the number of unbinding events that exceeded the maximal duration of the measure-
ments. With a measurement cutoff time, the unbinding times are still exponentially
distributed, but the number of experimental observations N = Nrec + Ncut has to be
split into the Nrec events where the time was recorded, and the Ncut events for which
we know only that they lasted longer than Tcut. For bothwLS and uwLS, we explicitly
fit only the Nrec measurements falling within the observation window, while for ML
estimation, we include also the information regarding the cut events, according to
Eq. (5.8).

Though we lose data, introducing a short-time cutoff has the benefit of removing
bins that are likely to have zero counts, and thus, we decrease the need to re-bin data
for wLS estimation. For small data sets (Fig. 5.6a, b), the counts in each bin will still
have large (relative) fluctuations, and it is not surprising that we see a substantial error
in wLS estimation. This error decreases as the cutoff is lowered and progressively
fewer low-count bins are included (c.f. Fig. 5.6awith b), even though a higher fraction
of measurements falls outside the observation window. For the cutoff time close to
the characteristic unbinding time, uwLS and ML estimation are comparable, as the
variance in bin counts is roughly constant among bins below the cutoff time. This
shows a scenario where uwLS outperforms wLS, thoughML estimation consistently
remains the better alternative.

As we increase the size of the data sets by a factor 100 (Fig. 5.6c, d), we expect
the relative fluctuations around the predicted bin counts to decrease, bringing wLS
estimation closer to ML estimation. This effect can be seen clearly seen in Fig. 5.6c,
d. It is interesting to note that for these large data sets, the extra information regarding
the cut measurements included in the ML estimation had little effect on the fit, as all
fits roughly coincide in Fig. 5.6c, d.
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Fig. 5.6 Parameter estimation for 10,000 exponentially distributed data sets with a cutoff. a For
sets with 100 measurements, and a Tcut = 1 s, we see a clear bias in wLS estimation, while uwLS
estimation has a somewhat larger standard deviation thanML estimation. b For a lower Tcut = 0.5 s,
the bias for wLS estimation decreases slightly, while uwLS approachesML estimation. c Increasing
the size of the data sets to 10,000 measurements and considering a moderate cutoff time, the
difference between wLS estimation and ML estimation diminishes and both methods marginally
outperform uwLS estimation. c For large data sets and a low cutoff time, all methods converge

5.4.3 Method Comparison for a Double-Exponential Process

For data distributed according to the double-exponential PDF of Eq. (5.9), we need
to fit out two characteristic times (τ̂1 and τ̂2), together with the fraction of events
belonging to each (P̂1, P̂12 = 1 − P̂11). In Fig. 5.7, we show the results of 10,000
fits to data sets of size 10,000, for a process with moderately separated characteristic
times (τ̂1 = 1 s, τ̂2 = 3 s) and for three different population fractions (P̂1 = 0.1
Fig. 5.7a–c, P̂1 = 0.5 Fig. 5.7d–e, P̂1 = 0.9 Fig. 5.7g–h). In each case, we report
the

√
MSE/s within parenthesis in the legend.

The error in the short-timescale estimate (τ1) is dominated by the variance around
the average for all methods, and all methods perform better the larger the fraction
of events corresponding to the shorter timescale are (Fig. 5.7a, d, and g). The error
in the long-timescale estimates (τ2) is also dominated by the variances, which is
particularly large in uwLS estimation (Fig. 5.7b, e, and h). This can likely be traced
back to the fact that the constant variance assumption of uwLS suppresses the relative
influence of long timescales, introducing a relatively low penalty for variation here.
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Fig. 5.7 Parameter estimation over 10,000double-exponentially distributed data sets of size 10,000.
Each column corresponds to parameter estimate distributions for a particular value of P1, and each
row corresponds to a particular model parameter. a–c P1 = 0.1. d, e P1 = 0.5. f, h P1 = 0.9. In
each case, we report the

√
MSE/s within parenthesis in the legend. In all considered situations, ML

estimation is clearly the preferable choice as it has the lowest
√
MSE

The error in the estimation of the fraction of measurements belonging to the short
timescale (P1) is also dominated by the variance, and uwLS is particularly effected
due to the poor accounting for the change in variance going from short to long
timescales (Fig. 5.7c, f, and i). For all parameter values considered, cgML estimation
again clearly outperforms the other methods as was expected from our theoretical
developments.

5.5 Fitting Experimental Data

In the previous section, we have examined the performance of LS andML estimation
on well-specified data sets without experimental noise. Though a proper treatment of
experimental noise is outside our present scope, it is still interesting to apply the three
fitting methods on experimental data to see to what extent they agree. Considering
experimental data will also give us the opportunity to comment on how to estimate
the variance of parameter estimates through bootstrapping.
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5.5.1 All Fits Different, but All Naively Plausible

Continuing with our RNA–protein unbinding example, we now analyze SM total
internal reflection microscopy (TIRFM) data. The experiments measure the unbind-
ing time of double-stranded (ds) RNA from viral RNA-binding proteins involved
in protecting the viral genome from the hosts’ RNA interference-based defenses
[6]. The viral suppressors of RNA interference (VSR) proteins are immobilized on
a glass surface, and the binding/unbinding of fluorescently tagged dsRNAs to the
immobilized VSRs is followed (for more information on the biological aspects and
the interpretation of the data, see [6]).

The unbinding-time data of 50 nucleotide dsRNA-binding VSR is fitted with
uwLS, wLS, and cgML methods in Fig. 5.8a–c. In this particular system, and pre-
sumably due to the existence of weak and very strong binding modes, it is common
to have a population of VSRs that unbind quickly, as well as a population that remain
bound for the duration of the measurement. In the latter case, the apparent unbind-
ing time will report on the photobleaching time of the fluorophores, as discussed
previously. In such situations, the appropriate PDF is double exponential (Eq. 5.9),
and the information regarding the number of molecules still bound and fluorescing
at the end of the experiment (Ncut) can be incorporated in the ML estimation along
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Fig. 5.8 a The measured distribution of unbinding times (red) together with the uwLS fit (blue).
b The measured distribution of unbinding times (red) together with the wLS fit (blue). c The
measured distribution of unbinding times (red) together with the cgML fit (blue). In a–c, the average
number of measurements predicted to fall outside the observation window for the optimal fit is given
as an inset. This should be compared to Ncut = 1298 in the fitted data set. d Histogram of estimates
for the short timescale generated over 10,000 bootstrapped data sets. e Histogram of estimates for
the long timescale generated over 10,000 bootstrapped data sets. f Histogram of estimates of the
fraction of unbinding times originating in the short timescale, generated from 10,000 bootstrapped
data sets. The parameter distributions vary significantly between data sets, even though all fits look
plausible in a–c
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the lines of Eq. (5.7)

LML(τ1, τ2, P1) = −
Nrec∑

n=1

ln

(
P1
τ1

e−tn/τ1 + 1 − P1
τ2

e−tn/τ2

)

− Ncut ln
(
P1e

−Tcut/τ1 + (1 − P1)e
−Tcut/τ2

)
. (5.14)

The information regarding Ncut is ignored in standard uwLS andwLS approaches,
where the data is binned and fitted based on Eq. (5.9) only within the window cap-
turing the Nrec unbinding times.

As can be seen in Fig. 5.8a–c, the three methods considered give very different
results, all naively appearing to describe the data well. Lacking an objective way to
evaluate the goodness of fit across scenarios, we can only point to the fact that our
general developments and our numerical investigation suggest that the ML approach
gives the best estimate of the fit parameters.

The insets in Fig. 5.8a–c report the average number of measurements that the
best fit predicts should fall outside the measurement window. This average should be
compared to the Ncut = 1298measurements that actually fell outside the observation
window. From this, it is clear that the extra information included in theML estimation
regarding the cut data does increase its predictive capabilities in this case, which was
not visibly the case for the fits in Fig. 5.6c, d.

5.5.2 Bootstrapping: Doing the Best We Can with Limited
Resources

To determine the standard deviation of our parameter estimates, we would ideally
like to establish their distribution by repeating the same experiment many times—
much like we did in our earlier numerical comparison between estimation methods.
A common practice is to report the standard deviation of fit estimates over a triplicate
of identical experiments. However, not having a statistically significant sample can
result in significant errors in estimating the standard deviation. Unfortunately, repeat-
ing the same experiment a sufficient number of times is often too time-consuming
and costly, and we have to rely on other means.

If we could perform repeat experiments, we would in effect draw new unbinding
times from the true PDF describing the unbinding kinetics. Instead of repeating the
experiments by drawing from the true PDF, we here repeatedly draw from our best
estimate of the true PDF: the original data set. This approach is called bootstrapping
the data [5]. To generate each “new experiment,” we randomly draw N unbinding
times from our original data set (also of size N ), allowing for repeated draws of
the same data instance (this is known as random sampling with replacement). We
then fit our bootstrapped data set in the same manner as we fit our original data sets.
By repeating this process many times, we build up the desired distributions of fit
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parameters. In Fig. 5.8d–f, the distributions of the double-exponential fit parameters
are plotted, using uwLS, wLS, and cgML methods over 10,000 bootstrapped data
sets.

Contrary to the situation with our simulated data sets, we here do not know the
true values of the model parameters and so cannot establish the bias nor the MSE
and thus lack an objective metric by which to compare the different approaches.
In light of this, it is important to stress that the fact that the standard deviation is
consistently smallest for uwLS is not a good argument for why this approach should
be preferable. Given the disparate results of the various methods—even though all
fits naively look good (Fig. 5.8a–c)—it is clear that at least two of the three methods
can go astray in very non-obvious ways, and that caution is warranted. Our heuristic
arguments and simulations suggest ML estimation to be generally preferable.

5.6 Conclusion

We have provided an introduction to ML estimation as a powerful alternative to con-
ventional LS fitting methods. Focusing on exponential distributions as examples, we
showed how the ML method provides a general way to estimate the model parame-
ters from stochastic data, in principle without the need for binning. We also showed
that uwLS, wLS, and ML can all be thought of as approximations to tLS, utilizing
various estimates for the a priori unknown standard deviation of bin counts. The
main upshots of both our heuristic argument and numerical investigation are:

1. wLS becomes unreliable as soon as there are bins with low counts, as should
always be expected in the tail end of distributions without a severe experimental
cutoff time.

2. uwLS often outperforms wLS for processes with a single characteristic time, but
for processes with multiple characteristic times, it becomes unreliable as it fails
to appropriately weigh the contribution of data on different timescales.

3. (cg)ML consistently outperforms both wLS and uwLS by estimating bin-count
variations from thewhole data set, rather than ignoring them (uwLS)or estimating
them on a bin-to-bin basis (wLS).

The two first points significantly limit the global applicability of both uwLS and
wLS methods. The maximum-likelihood method is generally applicable though,
needs no binning—but if binned, is not sensitive to empty bins—and outperforms
both uwLS and wLS in all examples discussed. Although we focused on exponen-
tially distributed data, our conclusions are general and should apply irrespective of
the particular distribution describing the data. These advantages, together with the
adaptability of the approach, have convinced the authors that ML estimation is the
preferable choice for dealing with SM data; we hope our presentation has gone some
way toward convincing the reader of the same.
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