
Chapter 7
Layered and Truncated Conductors

Abstract The subject of this chapter is the eddy-current inspection of test-pieces
that are coated, layered, or truncated. It is presumed that various surfaces of the
test-piece significantly perturb the induced eddy currents and that the effect of those
surfaces must be taken into account to properly interpret the observed eddy-current
probe coil impedance. The discussion includes a description of impedance-plane
diagrams for surface coils, encircling coils, and bobbin coils in relation to coated,
layered, or truncated test-pieces with planar or cylindrical surfaces. The effect of the
test-piece edge on the observed probe coil impedance is also described.

7.1 Introduction

In this chapter, the effect on the impedance of the eddy-current coil of a test-piecewith
multiple physical boundaries or interfaces is discussed. In Chap. 6, the discussion
was limited to fundamental cases described by one physical boundary—either flat or
cylindrical—at the surface of a homogeneous conductor. Generally, coil impedance
can be expressed for an arbitrary number of layers in the sample, each with its
particularmaterial propertiesσi andμi . Such expressions of impedance are presented
here for a multilayered test-piece, whose interfaces are all (i) parallel planes and (ii)
concentric cylinders. Impedance expressions are also presented for cases that are
important in practical terms, i.e., for simplified geometries in which the test-piece
has two layers. One of these cases is that of the coated conductor; a half-space or
cylinder with a coating which may or may not be conductive, and the other case is
that of the plate or tube; a conductor of finite thickness. It is worth acknowledging
that no conductor is truly a half-space, i.e., infinitely thick, but in the context of
EC NDE a half-space is a conductor with a planar inspection surface, whose other
surfaces (sides and back-plane) are sufficiently remote that they do not disturb the
eddy currents significantly. As in Chap.6, the spherical test-piece geometry is not
discussed explicitly here. Readers interested in a treatment of eddy-current probe
response to layered spheres are directed to [1, 2].

In Sect. 7.2, expressions are provided for the impedance of coils that exhibit
cylindrical symmetry in relation to these test-pieces. In Sect. 7.3, a description is
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provided of methods that can be applied to analyze inspection scenarios in which
the conductors are truncated in some manner; a plate edge or the end of a tube, for
example. Impedance-plane plots are presented in several cases.

For geometries yet more complex than these, such as a coil interacting with a rivet
in a layered aircraft skin, full numerical modeling in the form of finite- or boundary-
element approaches are applicable. Numerous approaches to computational electro-
magnetics in the context of EC NDE are discussed by Sabbagh et al. [3].

7.2 Layered Conductors

The important work of Dodd and Deeds published in 1968 [4] involves analyses of
the impedance of a surface coil positioned above a half-space conductor, discussed in
Sect. 6.3.4, and of a coil encircling a rod conductor, discussed in Sect. 6.5.2. In both
configurations, the treatment presented in [4] accommodates a single surface layer
of a different material coating the test-piece. In fact, since the material properties
assigned to the surface layer or substrate are entirely arbitrary in the analysis, the
impedance of a surface coil positioned above a plate or of a coil encircling a tube
conductor can also be computed by assigning the conductivity of the substrate to
be zero. Extending this work to test-pieces with an arbitrary number of layers, co-
author Cheng joined Dodd and Deeds and published analyses in 1971 and 1974
concerning the impedance of an eddy current surface coil above a planar conductor
composed of an arbitrary number of layers [5] and of an eddy current coil coaxial
with an arbitrary number of cylindrical conductors [6]. The former, [5], is useful
not only for studying the impedance of a surface coil in the vicinity of a layered
planar conductor, discussed in Sect. 7.2.1, but also of a plate sufficiently thin for its
back surface to influence the value of measured coil impedance, which itself might
be composed of multiple layers. The latter, [6], is applicable to a coil encircling a
solid circular cylindrical conductor, discussed in Sect. 6.5.2, and to a coil internal
to and coaxial with a borehole in a conductor. The fact that an arbitrary number of
cylindrical conductors is treated, Sect. 7.2.4, allows the analysis to be applied also
to a coil external to a layered cylindrical rod, Sect. 7.2.5, to a coil coaxial with a tube
(either internal or external), Sect. 7.2.6, and to a coil internal to a layered borehole,
not discussed explicitly in this text.

7.2.1 Planar Conductor with an Arbitrary Number of Layers

The impedance of a surface coil positioned above a planar conductorwith an arbitrary
number of layers, shown schematically in Fig. 7.1, is given by
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Fig. 7.1 Cross-section through the axis of a circular, air-cored, eddy-current surface coil, positioned
above a layered half-space

Z = jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ6

{
2κl + 2e−κl − 2 + [

e−κs − e−κ(s+l)
]2

×
[
(κμr(m+1) − γ1)V11(1) + (κμr(m+1) + γ1)V21(1)

(κμr(m+1) + γ1)V11(1) + (κμr(m+1) − γ1)V21(1)

]}
dκ (7.1)

whereγi = √
κ2 + jωμ0μriσi andμri is the relative permeability of the i th layer. The

first three terms in curly brackets 2κl + 2e−κl − 2, in (7.1) give the impedance of the
isolated coil (6.88). The remainder of the expression represents the additional effect
of the conductor on the coil impedance. In (7.1), the function J (κri,κro) defined in
(6.78) is related to the coil dimensions. The matrix elements Vkl(k, l = 1, 2) have
argument m, where m is an integer denoting the position of the layer relative to the
coil. Then,

V (m) = T (m,m + 1)T (m + 1,m + 2) . . . T (L − 2, L − 1)T (L − 1, L) (7.2)

where the T (m,m + 1) are 2 × 2 transformation matrices

T (m,m + 1) =
[
T11(m,m + 1) T12(m,m + 1)
T21(m,m + 1) T22(m,m + 1)

]
(7.3)

whose elements are

T11(m,m + 1) = 1

2
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γm+1

γm

]

T12(m,m + 1) = 1

2
e(γm+1+γm )tm
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γm+1

γm

]
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T21(m,m + 1) = 1
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]

T22(m,m + 1) = 1

2
e(γm+1−γm )tm

[
1 + μrm

μr(m+1)

γm+1

γm

]
. (7.4)

7.2.2 Coated Half-Space Conductor

The case of the half-space conductor with a surface coating of another material, or
with a surface that has been modified by a particular treatment process (e.g., surface
hardening), is commonly encountered in practice. Such a test-piece can often be
considered as having a step-function change in material properties at the interface
between the twomedia. The impedance change of an air-cored surface coil positioned
above a coated half-space can be deduced from (7.1) by putting L = 2:

Z = 2 jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ6

{
κl + e−κl − 1 + [

e−κs − e−κ(s+l)
]2 ×

[
(γ1μr2 + γ2μr1)(κμr1 − γ1) + e−2γ1t1(γ1μr2 − γ2μr1)(κμr1 + γ1)

(γ1μr2 + γ2μr1)(κμr1 + γ1) + e−2γ1t1(γ1μr2 − γ2μr1)(κμr1 − γ1)

]}
dκ

(7.5)

The normalized impedance plane diagram Fig. 7.2 illustrates how the impedance of
an air-cored coil changes as a function of the thickness of a conductive coating on a
half-space substrate of different conductivity.

Fig. 7.2 Normalized
impedance plane diagram for
an air-cored surface coil
positioned above a coated
half-space. The normalized
impedance depends upon the
coating thickness, its
conductivity, and the
conductivity of the
half-space substrate. Both
the substrate and coating are
non-ferromagnetic in this
example
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7.2.3 Plate Conductor

The impedance of an air-cored surface coil positioned above a layered plate can
be deduced from (7.1) by putting σL = 0 and μr L = 1. With these parameters, the
second-line term in (7.1) in square brackets becomes simply [V21(1)/V11(1)].

The impedance of a coil in the presence of a homogeneous plate is a special case
that combines the conditions L = 2, σL = σ2 = 0 and μr L = μr2 = 1. Imposing
these values in (7.1) or (7.5) gives

Z = 2 jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κro,κri)

κ6

{
κl + e−κl − 1 + [

e−κs − e−κ(s+l)
]2 ×

[
(γ1 + κμr1)(κμr1 − γ1) + e−2γ1t1(γ1 − κμr1)(κμr1 + γ1)

(γ1 + κμr1)(κμr1 + γ1) + e−2γ1t1(γ1 − κμr1)(κμr1 − γ1)

]}
dκ. (7.6)

An impedance plane plot showing the effect of changing the thickness of various
metal plates on the impedance of a surface coil is given in Fig. 7.3. It is noticeable
that the resistance of the coil passes through a maximum value as the thickness of the
test-piece increases, whereas the coil reactance passes through a minimum, before
the coil impedance converges to a constant complex value equal to its impedance
in the presence of a half-space conductor. Convergence occurs as the conductor
becomes sufficiently thick that its back wall no longer disturbs the eddy-current
distribution significantly. The way in which increasing conductivity or lift-off affects
the impedance is marked in Fig. 7.3 and has already been discussed in the context
of Fig. 6.2.

7.2.4 Cylindrical Conductor with an Arbitrary Number
of Layers

The impedance of a coil coaxial with an arbitrary number of conductive layers that
may be located exterior and/or interior to it, shown schematically in Fig. 7.4, is
given by

Z = Z0 + 2 jωμ0n
2

l2(ro − ri)2

∫ ∞
0

2(1 − cosκl)

κ6
×

[
U12V11 I

2(κri,κro) +U22V21K
2(κri,κro) + 2U12V21 I (κri,κro)K (κri,κro)

U22V11 −U12V21

]
dκ

(7.7)

where Z0 represents the impedance of the isolated coil, (6.88), and the second term
represents the effect of the conductor on the coil impedance. The function K 2(x1, x2)
is defined in (6.130) and I 2(x1, x2) can be obtained from it by substituting I for K .
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Fig. 7.3 Z for several different non-ferromagnetic metals as a function of plate thickness [7]

The matrix elements Vi j and Ui j have arguments m and m ′, respectively, where
m and m ′ are integers denoting the layers adjacent to the coil, on the interior and
exterior, respectively. Then,

V (m) = T (m,m − 1)T (m − 1,m − 2) . . . T (3, 2)T (2, 1) (7.8)

U (m ′) = T (m ′,m ′ − 1)T (m ′ − 1,m ′ − 2) . . . T (3′, 2′)T (2′, 1′), (7.9)

where the T (i, j) are 2 × 2 transformation matrices

T (m + 1,m) =
[
T11(m + 1,m) T12(m + 1,m)

T21(m + 1,m) T22(m + 1,m)

]
, (7.10)

whose elements are

T11(m + 1,m) = γm+1ρm[K0(γm+1ρm)I1(γmρm)

+(γm/γm+1)I0(γmρm)K1(γm+1ρm)]
T12(m + 1,m) = γm+1ρm[K0(γm+1ρm)K1(γmρm)

+(γm/γm+1)K0(γmρm)K1(γm+1ρm)]
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Fig. 7.4 Cross-section through the axis of a circular coil with finite cross-section, coaxial with
a cylindrical conductor with an arbitrary number of layers, that may be interior (m layers) and/or
exterior (m′ layers) to the coil. Note that the system is circularly symmetric about the z-axis although
the m′ exterior layers are shown only on the right in this diagram, for clarity. · · · indicate multiple
layers. Further, ri ≡ ρm and ro ≡ ρm′

T21(m + 1,m) = γm+1ρm[I0(γm+1ρm)I1(γmρm)

+(γm/γm+1)I0(γmρm)I1(γm+1ρm)]
T22(m + 1,m) = γm+1ρm[I0(γm+1ρm)K1(γmρm)

+(γm/γm+1)K0(γmρm)I1(γm+1ρm)]. (7.11)

Note that V (2) = T (2, 1) so that V11(2) is simply T11(2, 1) and V21(2) is T21(2, 1),
etc.

7.2.5 Coated Cylindrical Conductor

The case of the coated cylindrical conductor is useful for analyzing several con-
figurations of practical importance such as case-hardened steel shafts, for which
the surface-hardened layer has a different conductivity and permeability than the
unhardened core, and metal coatings applied to rods of other metal types, for various
purposes. Note that a nonconductive (and non-ferromagnetic) coating on a cylin-
drical metal test-piece behaves, from the point of view of eddy-current inspection,
merely as nonresponsive filler between the coil and the metal. Assuming that the
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outer diameter of the test-piece can be measured, the thickness of the nonconductive
coating can be determined by measuring the impedance of an encircling coil and
establishing the fill-factor (and therefore radius) of the conductive core within the
coil, from an impedance-plane plot such as that shown in Fig. 6.23.

For a coil encircling a coated cylinder such as that shown schematically in Fig.
7.5, the impedance is given by setting m = 3 and m ′ = 1 in (7.7). Noting that the
following hold, in the special case of no conductive layers exterior to the coil,

U = 1, i.e. U12 = 0 and U22 = 1, (7.12)

then

Z = Z0 + 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

2(1 − cosκl)

κ6

V21(3)

V11(3)
K 2(κri,κro)dκ (7.13)

in which, explicitly,

V11(3) = T11(3, 2)T11(2, 1) + T12(3, 2)T21(2, 1)

V12(3) = T21(3, 2)T11(2, 1) + T22(3, 2)T21(2, 1)

and expressions for the Ti j (m + 1,m) are given in (7.11). Note, some simplification
occurs for the case shown in Fig. 7.5 due to the fact that γ3 = κ.

Fig. 7.5 Cross-section
through the axis of a circular
coil with finite cross-section,
coaxial with a coated
cylindrical conductor
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7.2.6 Tube Conductor

Encircling Coil

For an introductory discussion on the role of the encircling coil, the reader is referred
to Sect. 6.5. There, the impedance of a coil encircling a solid cylindrical rod is
discussed. Here, the discussion is extended to the coil encircling a hollow cylindrical
rod (cylindrical tube). As with the rod, the tube test-piece geometry was studied
extensively by Friedrich Förster and a summary of his work relevant to the encircling
coil and tube is given in [8, Sect. 4: Theory of Encircling Coil and Internal Axial
Coil Tests of Tubes]. The definition of fill-factor given in (6.97) for the solid rod
conveys the same meaning in the case of the tube but is modified according to the
nomenclature of Fig. 7.5, by replacing ρ1 in (6.97) with ρ2, which is the outer radius
of the tube indicated in Fig. 7.5:

η =
(

ρ2

ri

)2

. (7.14)

The tube inspected by an encircling coil is a special case of the coated cylindrical
conductor shown in Fig. 7.5, in which the core, region 1, takes the parameter values
of air; σ1 = 0 and μr1 = 1 so that γ1 = γ3 = κ in the equations of Sect. 7.2.5.

The normalized impedance plane diagram shown in Fig. 7.6 illustrates the effect
of changing fill-factor, frequency of inspection, and test-piece conductivity for the
encircling coil inspection of a conductive, non-ferromagnetic tube assuming that the
coil and tube are coaxial with one another [8]. Figure 7.7 illustrates the effect on the
impedance-plane plot of changing the tube wall thickness.

Bobbin Coil

For discussions on the role of the bobbin probe, the reader is referred to Sects.
6.6 and 8.3 of this text and again to the detailed work of Friedrich Förster [8, Sect. 4:
Theory of Encircling Coil and Internal Axial Coil Tests of Tubes]. The definition of
fill-factor given in (6.132) is modified for this case by replacing ρ1 in (6.132) with
ρm ′−1 that denotes the inner radius of the tube shown in Fig. 7.4:

ηb =
(

ro
ρm ′−1

)2

. (7.15)

The tube inspected by a bobbin coil is a special case of the coated cylindrical
conductor shown in Fig. 7.4, in which there is no conductor interior to the coil and,
exterior to the coil, m ′ = 3, σ1′ = σ3′ = 0 and μr1′ = μr3′ = 1 so that γ1′ = γ3′ = κ
in the equations of Sect. 7.2.5.

The normalized impedance-plane diagram shown in Fig. 7.6 illustrates the effect
of changing fill-factor, frequency of inspection, and test-piece conductivity for the
bobbin coil inspection of a conductive, non-ferromagnetic tube assuming that the
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Fig. 7.6 Normalized
impedance-plane plot for a
coil with inner radius ri
encircling a tubular,
non-ferromagnetic,
test-piece with outer radius
ρ2 and constant ratio of wall
thickness to ρ2, i.e.,
(ρ2 − ρ1)/ρ2 = constant,
Fig. 7.5. Solid lines (—–)
represent the complex
impedance of the probe as a
function of rod conductivity,
σ, or frequency of coil
operation, f . Broken lines
(- - -) represent the effect of
changing η, (7.14). The same
curves are obtained for a
bobbin coil with outer radius
ro internal to and coaxial
with a tube with inner
diameter ρm′−1, Fig. 7.4 and
(7.15) [8]

coil and tube are coaxial with one another [8]. Figure 7.7 illustrates the effect on the
impedance-plane plot of changing the tube wall thickness.

7.3 Truncated Conductors

An eddy current probe may be viewed as ‘small’ relative to the dimensions of a
test-piece if the eddy current density induced by the coil is negligible in the vicinity
of any sharp geometrical changes in the test-piece. This condition may be satisfied
if the geometrical variations of the test-piece take place over a length scale much
larger than the dimensions of the probe coil, but the distribution of the eddy-current
density also depends on the frequency at which the coil is operating. Looking back
at Fig. 2.8 it can be seen that not only does the depth of penetration of the eddy
currents decline as the frequency increases, by the skin effect, but the lateral spread
of the eddy-current density declines as the probe frequency increases, as well. This
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Fig. 7.7 Normalized
impedance-plane plot for a
coil with inner radius ri
encircling a cylindrical
test-piece with varying outer
radius ρ2, constant
conductivity, and constant
inner diameter, for various
ratios of wall thickness to
outside tube radius
(ρ2 − ρ1)/ρ2, Fig. 7.5. Solid
lines (—–) represent the
complex impedance of the
probe as a function of
frequency, f . Broken lines
(- - -) represent the effect of
changing (ρ2 − ρ1)/ρ2. The
outermost solid curve applies
for η = 1 and the innermost
curve for η = 0.9, (7.14).
Similar curves are obtained
for a bobbin coil internal to a
tube, Fig. 7.4 and (7.15) [8]

means that geometrical variations in a test-piece will be less noticeable to a probe
operating at higher frequency, if all other parameters are equal.

Eddy-current inspection commonly needs to be done in regionswhere the geomet-
rical variation of the test-piece is noticeable, however. Examples of such variations
include edge effects. As a surface probe approaches the edge of a plate, as a bobbin
probe emerges from a tube, or as a rotary probe emerges from a borehole, for exam-
ple, there is a sharp transition in the eddy current density in the vicinity of the coil
due to the truncation of the test-piece. The impedance changes in the eddy-current
probe that result from changes in local test-piece geometry are often larger than
impedance changes due to defects in those regions. The inspector therefore faces the
problem of needing to separate a defect signal from a potentially masking signal due
to geometrical variations of the test-piece.

This section offers a review of quasi-analytical solutions to problems that have
been solved in relation to EC NDE of conductors with relatively sharp geometrical
variations. Many of the solutions employ the truncated region eigenfunction expan-
sion (TREE) method, introduced by Theodoulidis [9] and mentioned in Sect. 6.3.5
with reference to modeling the effect of a ferrite probe core on the probe impedance.
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7.3.1 Truncated Region Eigenfunction Expansion Method

The TREEmethod is a quasi-analytical method of solving the electromagnetic equa-
tions governing probe coil behavior in the environs of conductive test-pieces of
various geometries. The homogeneous and layered flat and cylindrical test-pieces
treated in Chap. 6 and Sect. 7.2 were tractable by the traditional method of sep-
aration of variables, as employed by Dodd, Deeds, and Cheng [4–6]. The TREE
method also relies upon separation of variables to express a general solution for
the electromagnetic field in analytic form but, additionally, employs truncation of
the solution domain in one or more coordinates. Truncation of the solution domain
allows expression of the solution in the truncated coordinate as a series summation
rather than as an integral of infinite extent. The primary advantage of this approach is
that the interface conditions on the electromagnetic fields can be satisfied at several
interfaces simultaneously, allowing analytical treatment of the eddy-current inspec-
tion of truncated conductors such as the ends of tubes or rods, and the edges of plates.
The development of the TREE method and its application to several problems in EC
NDE that were previously intractable analytically was a significant breakthrough in
the field, carrying the additional benefit of highly efficient numerical solvers with
easier error control than afforded by the numerical evaluation of integrals [10].

7.3.2 Wedge and Plate Edge

In a series of articles published in 2005 [11], 2010 [12], and 2014 [13], the problem
of EC inspection of a thick conductor with an abrupt edge has been examined in
different aspects. This test-piece geometry is also termed a wedge conductor or, in
the case of a wedge with a right-angled vertex, a quarter-space conductor. The first
of these articles was concerned with calculating the impedance of an eddy-current
surface coil, whose axis is perpendicular to one of the faces of a conductive quarter
space [11], Fig. 7.8. The second solved a similar problem but for a surface coil
whose axis may adopt any of the three orthogonal directions relative to the faces of
the quarter-space [12]. In a new departure, the focus of [13] was computation of the
impedance of an EC coil in the vicinity of a conductive wedge of arbitrary angle.
The assumptions adopted were that the wedge is perfectly conducting and that the
coil axis is parallel to the line defining the vertex of the wedge. For this arrangement,
the problem reduces to that of a tangent coil (Sect. 6.4) above a half-space conductor
as the wedge angle tends to 180◦.

In 2006, the TREE method calculation of eddy-current coil impedance for a coil
with axis perpendicular to the surface of a truncated platewas published [14], Fig. 7.9.
This result is particularly useful for understanding the contribution made by the edge
of a plate to the EC coil impedance. Figure 7.10 shows a normalized impedance
plane plot calculated as the coil is moved from the surface of a plate, over its edge,
and to a point remote from it. The normalized impedance is plotted as a difference
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Fig. 7.8 Cross-section
through the axis of a circular,
air-cored, eddy-current coil,
positioned horizontally
above a conductive
quarter-space
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Fig. 7.9 Cross-section
through the axis of a circular,
air-cored, eddy-current coil,
positioned horizontally
above a conductive plate
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relative to the free-space (isolated coil) value, with the maximum difference revealed
when the coil is over the plate, at the lower end of each curve in the figure. Five plate
thicknesses are considered in Fig. 7.10 and parameters of the calculation are given
in Table 7.1.

Together, these solutions for EC coil interaction with wedge and plate-edge
geometries represent a significant advance in the analysis of EC coil impedance
due to sharp geometrical features for the reasons mentioned in Sec. 7.3.1.

7.3.3 End Effects and Cylindrical Conductors

The earliest application of the TREE method in the context of EC NDE was to the
analysis of impedance of a surface coil with a ferrite core in the vicinity of a layered
conductive half-space, Sect. 6.3.5, published in 2003 [9]. The core was treated as a
truncated ferromagnetic cylinder. Building on this approach, a series of publications
have treated a variety of test-pieces with truncated circular cylindrical geometry.

A quasi-analytical solution for the impedance of a bobbin coil emerging from
the end of a tube, and coaxial with it, was published in 2004 [15]. The effects of
wall-thinning near the tube end and the difficulty of detecting a small defect close
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Fig. 7.10 Normalized impedance-plane plot for a coil with axis perpendicular to the surface of
a plate, thickness T , as the coil scans from the plate to free space, over the plate edge (Fig. 7.9).
Normalized impedance is plotted as a difference relative to the free-space (isolated coil) value, with
the maximum difference revealed when the coil is over the plate, at the lower end of each curve
[14]

Table 7.1 Parameters for the numerical calculations whose data are presented in Fig. 7.10 [14]

Coil parameters Value

ro Outer radius (mm) 11.43

ri Inner radius (mm) 4.04

l Length (mm) 8.02

s Stand-off (mm) 1.08

n Number of turns 1,858

Test-piece parameters Value

σ Conductivity (MSm−1) 17.5

μr Relative permeability 1

to the tube end were demonstrated in this paper. The complementary problem, of an
encircling coil coaxial with a truncated circular conducting rod, layered rod or tube,
was treated in 2005 [16, 17].

A solution published in 2008 accommodated a greater degree of uncertainty in
the position of the coil in relation to a borehole [18], modeling the impedance of
both a rotary coil interior to the borehole, Fig. 6.5, and of a bobbin coil whose axis
is offset from the axis of the borehole, Fig. 6.27.

The interested reader is invited to pursue these solutions through the original
literature cited here.
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7.4 Summary

This chapter has collected together analytical expressions for the impedance of a coil
in the presence of layered, coated, or thin flat and cylindrical test-pieces. Impedance
plane plots that show how the impedance varies as a function of various geometrical,
physical, and probe parameters have been presented. Further, the Truncated Region
Eigenfunction Expansion method has been mentioned as having been successfully
applied to model the impedance of EC coils in the vicinity of test-pieces with sharp
geometrical discontinuities.

Building upon the discussion of signals, coils, and the impedance responses to
various types of test piece, covered in Chap. 6 and this chapter, the next chapter
considers the ways in which coils and other sensors are put together in various
configurations to form probes that are optimized for different inspection needs.

7.5 Examples

1. Identify two limiting cases in which the expression for the impedance of an EC
surface coil positioned above a coated half-space conductor (7.5) should reduce
to the result for the half-space conductor (given in (6.87) and reproduced below
for convenience):

Z = jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ5

(
2l + 1

κ

{
2e−κl − 2

+[e−2κ(l+s) + e−2κs − 2e−κ(l+2s)]
(

γ − κ

γ + κ

)})
dκ

and show that (7.5) does indeed reduce correctly in those limits.
2. Identify one limiting case in which the expression for the impedance of an EC

surface coil positioned above a plate conductor (7.6) should reduce to the result
for the half-space conductor given above, and show that (7.6) does indeed reduce
correctly in that limit.
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