
Chapter 6
Signals and Coils

Abstract This is a pivotal chapter in which the many background elements intro-
duced in earlier chapters are drawn together to show how various factors affect the
observed impedance of an eddy current probe coil. This chapter focuses on fun-
damental knowledge in eddy-current NDE, detailing the response of eddy-current
probes to unflawed test-pieces of relatively simple shape. The analysis begins with
the simplified case of a current sheet and half-space conductor, from which the defi-
nition of the electromagnetic skin depth emerges. Semi-analytic calculations of coil
impedance are given for a coil in free space and in the vicinity of a conductor, includ-
ing cases of surface and tangent coils in the vicinity of a conductive half-space and
encircling or bobbin coils in the vicinity of cylindrical conductors or bore holes,
respectively. The effect of important probe factors—coil dimensions, construction
with or without a ferrite core, and frequency of excitation current—are discussed.
Test-piece factors—conductivity, permeability, shape, and position relative to the
coil—are also discussed. Sources of uncertainty in inspections due to, for example,
unknown variations in the coil windings or accidental tilt of the probe during an
inspection are described. The impedance-plane diagram is introduced in absolute
and normalized forms.

6.1 Introduction

The purpose of this chapter is the presentation of electromagnetic theory that under-
lies the observed impedance of an eddy-current coil. Two important configurations
are considered, from which the impedance of most eddy current probe types can be
obtained. These are (i) the configuration in which a coil is oriented such that its axis
is perpendicular to the surface of the test-piece (a “surface” or “normal” coil) and (ii)
that in which the coil axis is ideally aligned with the axis of the test-piece, as in the
case of an encircling coil or bobbin probe. In both configurations, a simple current
loop is considered first and the impedance of a coil with N turns is obtained later by
superposition. This chapter presents, therefore, the theoretical building blocks from
which the impedance of multi-coil probes such as differential, driver pick up, plus-
point, array and hybrid probes can be calculated. These are discussed in Chap.8.
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The test-pieces described in this chapter are also limited to the simplest possible; the
homogeneous half-space and the long rod or bore hole. A half-space is an idealized
shape with a flat surface that is, in practice, sufficiently large that the coil fields are
not measurably perturbed by the edges or back surface of the sample. Similarly, the
long rod and bore hole are sufficiently long that end effects are not observed by
the coil. Eddy-current coil response to a spherical conductor has been examined
by a few authors [1–3] but the spherical test piece geometry appears to be of lower
practical relevance than flat and rod-like geometries, and is not discussed explicitly
in this text. More complex test-piece geometrical configurations, in particular those
involving layered and truncated media, are considered in Chap.7.

Prior to considering two-dimensional problems of circular coils interacting with
various test-pieces, the one-dimensional configuration of a half-space conductor
excited by a uniform current sheet is treated in Sect. 6.3.1. The solution for this
one-dimensional configuration is important because it reveals the definition of the
electromagnetic skin depth, introduced in Sect. 2.9. It is also helpful for the reader to
understand the solution for the electromagnetic field in the one-dimensional config-
uration before moving to that for the more complex two-dimensional configurations.

In Sect. 6.3.2, two methods for calculating the magnetic field due to a circular
current loop in air is described. These are interesting but not essential to the devel-
opment of probe interactions with a test-piece given in Sect. 6.3.3. From the solution
for the circular current loop, a solution for a multi-turn coil may be obtained in a
straightforward way by superposing N such loops, as shown in Sect. 6.3.4. Building
on the discussion of the multi-turn coil, the improvement in coupling to the test-piece
that can be obtained by use of a ferrite core is considered in Sect. 6.3.5. The treatment
of the surface coil concludes with a discussion of significant sources of noise, such as
coil tilt and nonideal coil behavior due to inter-winding capacitance and finite resis-
tance of the windings, Sect. 6.3.6. A method for correcting for nonideal behavior of
an absolute probe coil is presented that is particularly useful for reducing uncertainty
in benchmark experiments.

Section 6.4 provides a discussion of the impedance due to a tangent coil, whose
axis is tangential to the surface of the test-piece. Tangent coils find special application
as plus-point probes, inwhich two tangent coils are combined (Sect. 8.5). The solution
by which the impedance of a tangent coil can be calculated is a limiting case of the
solution for a tilted coil, Sect. 6.3.6.

In Sects. 6.5 and 6.6, the theoretical description of other commonly employed
configurations, in which the coil axis is parallel to the axis of the test-piece, are
presented. Again, from the solution for the circular current loop, that for a multi-
turn coil may be obtained by superposition. The configuration is relevant to test
scenarios such as a coil encircling a cylindrical rod and a bobbin coil inspecting
the interior of a bore hole or tube. In these systems of cylindrical symmetry, two
sources of geometrical uncertainty exist; coil tilt and wobble. As in the case of the
surface coil, tilt occurs when the coil axis tilts through a finite angle with respect to
the axis of the test-piece—here either a rod or a bore hole. Wobble occurs when the



6.1 Introduction 73

coil axis is laterally displaced from the axis of the test-piece. Both of these effects
are important to understand because they lead to signal noise that might obscure a
genuine indication from a defect or other feature.

6.2 Coil Impedance

The impedance of an eddy current coil, Z , defined in Sect. 4.9, is the quantity mea-
sured in an EC NDE inspection. In Chaps. 2 and 4, we have discussed the fact that
the impedance of an eddy current coil is determined by the value of its resistance,
capacitance, and inductance. For the purposes of ECNDE, the inductance is the most
important of these since it is the circuit quantity that represents the presence of the
magnetic field in the coil, and in EC NDE it is this magnetic field that couples with
the part under test and induces eddy currents in it. An ideal eddy-current coil would
be a pure inductor with inductance L and impedance

Z ideal = jωL . (6.1)

A real coil, however, exhibits resistance R and capacitance C in addition to induc-
tance. Resistance of a real coil arises due to the finite resistivity of the wire used in
the coil windings and cables. Coil capacitance makes a significant contribution to
the probe impedance when the frequency of operation of the probe is increased to
a value that depends upon the particular construction of the coil, i.e., its number of
turns and geometrical parameters. The source of C is the close proximity (to each
other) of the coil windings and connecting wires. Thus, while L is the quantity of
real interest in EC NDE, R and C cannot be eliminated in a real probe and contribute
to its impedance.

6.2.1 Isolated Coil Impedance, Z0

The impedance of an isolated coil, Z0, is the value of impedance of a coil when it is
remote from the test-piece or any other metal. It is also referred to as the impedance
of the coil in air. In general, Z0 = R0 + j X0, where R0 and X0 are the resistance
and reactance of the isolated coil, (4.27). The value of Z0 is primarily determined by
the number of turns on the coil, its shape and dimensions.

If R0 and stray capacitances associated with the probe are considered to be neg-
ligible, which is often approximately true for frequencies well below the resonant
frequency of the coil, then Z0 ≈ jωL0 = j X0 where L0 is the DC inductance of the
coil. This is an “ideal” case for EC NDE because the useful interaction between an
EC probe and a test-piece is mediated by inductance, as mentioned above.

Other measurements of coil impedance, when the coil field interacts with a test-
piece, are often normalized with respect to Im{Z0} = X0.
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6.2.2 Coil Impedance in the presence of a Conductor, Z,
and the Impedance-Plane Plot

When a coil is moved from “air” (its isolated position) to the surface of a conductor,
its impedance changes from Z0 to Z . The precise value of Z depends on geometrical
effects such as the proximity and orientation of the coil with respect to the test-piece,
and the test-piece parameters conductivity and permeability.

In a typical EC inspection, impedance data are displayed in the form of a two-
dimensional plot in which the real and imaginary parts of the coil impedance are
displayed on orthogonal axes. An inspector observes the locus of points traced on
the instrument display as the probe is moved in relation to the test-piece.

The impedance-plane plot sketched in Fig. 6.1 shows several possibilities for the
change in coil impedance Z = R + j X as the coil is moved from air to either a non-
ferromagnetic or a ferromagnetic metal test-piece. These curves may be explained
qualitatively as follows. When a probe is moved from isolation (air) to the surface of
a non-ferromagnetic metal test-piece, its resistance increases whereas its reactance
decreases, as indicated by the symbol Zn− f in Fig. 6.1. The effective coil resistance
increases in response to the fact that eddy currents are now flowing in the nearby
test-piece, extracting energy from the probe and effectively increasing its resistance.
The coil reactance decreases, on the other hand, due to the fact that the eddy currents
induced in the test-piece circulate in a direction opposite to the direction of current
flow in the coil, byLenz’s Law.Consequently, themagnetic induction field associated
with the coil current is effectively reduced by the opposing magnetic induction field
associated with the eddy currents, resulting in an overall reduction of the inductance
of the coil. Example lift-off curves that are generated as an isolated coil is moved to
the surface of a slab of bronze, at three different frequencies, are shown as broken
lines in Fig. 6.2. Similar curves could be plotted as the probe moves from the air

Fig. 6.1 Possible changes in
coil impedance as the coil is
moved from the air point,
where it is isolated from any
conductive material and
exhibits impedance Z0, to
ferromagnetic and
non-ferromagnetic
conductors where its
impedance becomes Z f and
Zn− f , respectively
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Fig. 6.2 Impedance-plane diagram for a surface coil, showing the air point at which the coil is
remote from any test-piece, and impedance values (•) obtained when the coil is in contact with the
surface of various metals. The coil operates at 20 kHz except where indicated. Broken lines (- - -)
represent the impedance as a function of lift-off from the surface of a bronze test-piece, at three
different frequencies

point to the surface of other types of metal, some of which are indicated in the figure.
For any particular coil, the path of the lift-off curve that is observed depends on
the test-piece conductivity and permeability and on the frequency of the inspection.
Note that one practical use of lift-off curves are for determining the thickness of
nonconductive, non-ferromagnetic, surface coatings on a metal substrate. Examples
of such coatings are paints and lacquers.

Considering now the case of a probe moving from isolation to the surface of a
ferromagnetic metal test-piece, indicated by point Z f in Fig. 6.1, the increase in coil
resistance is explained in the same way as for the case of the non-ferromagnetic test-
piece, discussed above. The observed increase in inductance is, however, opposite
in sign to the change observed in the case of non-ferromagnetic test material. This
observation is explained by the fact that the strength of the magnetic induction field
associated with the coil itself now increases when the coil nears the test-piece, due
to the fact that the coil field is strengthened by the ferromagnetism of the test-piece
(Chap. 3). The magnetic induction field associated with the induced eddy currents
still opposes that of the coil, but the increased strength of the coil field dominates,
resulting in an overall increase in the inductance of the coil.

Quite commonly, especially in the case of calculated impedance, values of resis-
tance and reactance are plotted that are normalized with respect to the reactance of
the isolated coil. In other words, the horizontal and vertical axes display the real and
imaginary parts, respectively, of

Z

X0
= R − R0

X0
+ j

X

X0
. (6.2)

It is useful to be familiar with this form of data presentation because in several
aspects it appears different to the impedance-plane plots of Figs. 6.1 and 6.2. Notice
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also that the real part of the isolated coil impedance, R0, is subtracted from R prior
to normalization with respect to X0. This means that, as the lift-off increases, the
curves tend toward the value of the probe impedance in air which is indicated by
Z0/X0 = 0 + j1, Fig. 6.3. This point is the air point, on the normalized Z -plane
plot. If we were to extrapolate the solid lines in Fig. 6.3 to higher frequencies, they

Fig. 6.3 Normalized
impedance-plane diagram for
a surface coil. Normalized
inductive reactance = X/X0
and normalized resistance
= (R − R0)/X0. Solid lines
(—–) represent the complex
impedance of the probe as a
function of frequency.
Broken lines (- - -) represent
the impedance as a function
of lift-off. Dotted lines
(· · ·) indicate the influence
of permeability of the
specimen on the probe
impedance. The point given
by the coordinates (0, 1) is
the air point. For the
particular impedance values
shown in this plot, the probe
parameters are ri = 2 mm,
ro = 4 mm, l = 1 mm and
N = 800, and the test-piece
is a half-space (T → ∞)
with σ = 35.4 MS/m and
μr = 1. Reprinted with
permission from the NDT
Handbook: Electromagnetic
Testing. Copyright ©2004,
ASNT, Columbus, Ohio [4]
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would approach the vertical axis at different points. In fact, in the high- frequency
regime, the curves can be described asymptotically by the relation

X

X0
= R − R0

X0
+ c, (6.3)

which is the equation of a straight line with unit slope and intercept c on the axis of
X/X0. The value of c is given by the ratio X/X0 in the asymptotic (high-frequency)
limit and provides an indication of the strength of coupling between the probe coil
and the test-piece. The larger the value of |c|, the stronger the coupling between the
probe and the test-piece.

6.2.3 Coil Impedance Change Due to a Flaw, �Z

When a coil is moved from a position on an unflawed region of a test-piece, to a
region where the presence of a defect perturbs the induced eddy currents, there is a
change in the impedance of the coil; �Z . This impedance change is defined as

�Z = Z − Zflaw, (6.4)

where Z is the impedance when the coil is on the test-piece but far from a flaw, and
Zflaw is the impedance of the coil in the vicinity of a flaw.

An example of the magnitude of impedance change obtained as a coil scans over
a slot in a metal plate is shown in Fig. 6.4 [5].

Fig. 6.4 Magnitude of the impedance change, |�Z |, obtained by two-dimensional scanning of an
eddy current probe over a through-slot in a metal plate. The physical and geometrical parameters of
the probe, plate, anddefect are given inTable 6.1. Reprinted fromBadics, Z.,Kojima, S.,Matsumoto,
Y., Aoki, K., Nakayasu, F.: Comparison of different “Matrix Multisensor” ECT probe designs by
three-dimensional electromagnetic modeling. In: Collins, R., Dover, W.D., Bowler, J.R., Miya, K.
(eds.) Nondestructive Testing of Materials. Studies in Applied Electromagnetics and Mechanics,
vol. 8, pp. 13–20. IOS Press, Amsterdam (1995), p. 18, Fig. 2 [5], with permission from IOS Press
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Table 6.1 Probe, plate, and defect parameters for the impedance change plotted in Fig. 6.4 [5]. The
probe is formed from two square, printed-circuit coils—one driver and one pick up—separated by
a 0.2-mm-thick substrate. The pick up coil contacts the test-piece. The test-piece is nuclear power
plant steam generator tube material, of type and thickness not specified in the original paper. The
flaw is an electro discharge machined (EDM) notch

Coil parameters Value Flaw parameters Value

do Outer dimension (mm) 2.00 l Length (mm) 3.0

di Inner dimension (mm) 0.72 w Width (mm) 0.2

s Coil stand-off (mm) 0.0 d Depth Through-wall

h Probe lift-off (mm) 0.1

n Number of turns 40

f Inspection frequency (kHz) 200

Many more examples, and techniques for calculating �Z due to various types
of defect, are given in Chap.9. The primary objective of the present chapter is to
describe how Z is computed for various probe types when the probe interacts with
an unflawed specimen.

6.3 Surface Coil

A surface coil is defined as one whose axis is parallel with the direction of the unit
vector normal to the surface being inspected. An air-cored surface probe is shown
schematically in Fig. 1.9. Surface coils can also be used to evaluate test-pieces with
more complicated geometry, such as the interior of a borehole or tube, as shown in
Fig. 6.5. Note that the axis of the coil in this configuration is still perpendicular to
the surface under test. Many different designs of surface probes exist, for different
inspection needs. Surface probes often operate in absolute mode, Sect. 8.2, meaning
that the signal obtained in a measurement is simply the value of the coil impedance
itself. Differential and driver pick up surface probes are also common, described in
Sects. 8.3 and 8.4, respectively.

Anormalized impedance-plane diagramobtained for a surface coil located above a
conductive half-space is shown in Fig. 6.3. In practice, a small part of the impedance-
plane plot is displayed by an oscilloscope (or eddyscope). It is common practice, in
an eddy-current inspection, to “rotate” the display so that the change in Z due to
lift-off variation appears horizontally on the eddyscope display. Then, indications
due to flaws and other features can be easily distinguished from noise due to lift-off
variations or tilt angle of the probe, as it scans the test-piece.
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Fig. 6.5 Sectional view of
the interior of a bore hole or
tube inspected by a rotary
surface coil. Note that the
coil axis is parallel with the
direction of the unit vector
normal to the surface being
inspected, here the
ρ̂-direction. In practice, the
coil would be mounted in a
rotary probe (not shown
here) in order to inspect the
entire interior surface of the
borehole via a helical path

Considering the impedance-plane plot of Fig. 6.3, the solid curves represent the
complex impedance of the probe as a function of frequency. Each solid curve is for a
different value of the probe lift-off, as marked. The broken lines show the impedance
as a function of lift-off from the conductor surface. In Fig. 6.3 the coupling (see
discussion in Sect. 6.2.2) is clearly the strongest for the case in which the coil is
nearest to the test-piece (the lift-off is the smallest) - a result that happily agrees with
common sense! Impedance-plane plots such as this one can be computed or obtained
by experimentation for various coil and test-piece configurations. Looking ahead to
two other examples; it is shown in Fig. 6.14 that coupling increases when a coil is
filled with a ferrite core and, for a coil encircling a rod, Fig. 6.23, coupling increases
as the space between the coil and rod decreases, i.e., as the fill factor increases.

In Fig. 6.2, as well as the effect of lift-off discussed earlier, the effect on the
Z -plane plot of changes in conductivity of the test-piece is shown. Note, the
impedance change due to a change in probe lift-off, and the impedance change due
to a change in conductivity, are more clearly distinguished at the higher frequencies
shown because there is a greater angle between their effects in the Z -plane than
at lower frequencies. At lower frequencies (such as 100 Hz in Fig. 6.3) it is very
difficult to differentiate between lift-off and conductivity changes in Z . This kind
of observation shows how impedance-plane plots can be used to guide the choice
of inspection parameters, such as the frequency of coil operation, to optimize the
sensitivity of an inspection for its particular purpose.
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6.3.1 Excitation of a Half-Space Conductor by a Uniform
Current Sheet

Having examined Maxwell’s equations and the interface conditions on the electro-
magnetic field in Chap.5, we are in a position to solve a problem—our first—in
which an exciting current flowing near to a metal test-piece induces currents in the
metal. The geometry that we shall consider is the simplest one possible; a uniform
current sheet parallel to an infinitely deep (so-called half-space) conductor, as shown
in Fig. 2.5. In this case the properties of the half-space conductor are assumed linear,
isotropic and homogeneous, i.e., σ and μr are everywhere scalar and constant. This is
a one-dimensional problem because the fields vary only in the direction perpendicu-
lar to the conductor surface, the z-direction. The solution of Maxwell’s equations for
this system will reveal the definition and meaning of the electromagnetic penetration
depth introduced in Sect. 2.9. This problem is also a useful introduction to the more
complex, two-dimensional, problem of the excitation of a half-space conductor by a
circular coil, which will be considered in Sects. 6.3.3 and 6.3.4.

This is an artificial problem in the sense that no real coil is an infinite current
sheet, but the solution obtained here may be applicable to real systems under certain
circumstances. For example, parallel windings of a coil around a wide, thick plate
give rise to an approximately uniform current sheet in regions sufficiently far from
the edges. Second, a surface coil wound on a cylindrical former produces a current
density that appears uniform on a scale somewhat less than the coil diameter, as
shown in Fig. 6.6. Further, some coils are purposely designed to induce an eddy
current density that is approximately uniform over a prescribed region of the surface
of a test-piece [6].

Fig. 6.6 A large-diameter
coil shows a region of
approximately uniform
current density J on a scale
somewhat smaller than the
coil diameter
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Governing Equation

We will begin by manipulating Maxwell’s equations to obtain an equation which
governs the behavior of the electric field in the system shown in Fig. 2.5. First, write
down the phasor forms of Faraday’s Law and the quasi-static Maxwell–Ampère Law
as follows:

∇ × E = − jωB, (6.5)

∇ × H = J. (6.6)

Nowwrite J as a sum of the current density in the source coil, Js, and the eddy-current
density induced in the test-piece, Jec. Then,

∇ × H = Js + Jec. (6.7)

Take the curl of Faraday’s Law, (6.5), substitute for B by means of constitutive
relation (2.25) for isotropic permeability and then use (6.7) to obtain

∇ × ∇ × E = − jωμ (Js + Jec) . (6.8)

Make the substitution Jec = σE, (2.15), and employ vector identity (10.46) to obtain

∇∇ · E − ∇2E = − jωμ (Js + σE) . (6.9)

In the case of zero free volume charge, ρv = 0 and ∇ · D = ε∇ · E = 0. That is,
∇ · E = 0 and (∇2 − jωμσ

)
E = jωμJs. (6.10)

This is the governing equation for the electric field. In actual fact it is valid for any
geometrical configuration of current source Js and conductive test-piece, not only
for the one-dimensional system that we are considering at the moment, Fig. 2.5. By
similar steps it can be shown that the magnetic field obeys the governing equation

(∇2 − jωμσ
)
H = −∇ × Js. (6.11)

(The derivation of this equation is the subject of Exercise 1 at the end of this chapter.)
Focusing now on the one-dimensional system shown in Fig. 2.5, in which a uni-

form current sheet in the plane z = h excites a half-space conductor that occupies
z < 0, identify

Js = Iδ(z − h)x̂ (6.12)

where I is the phasor amplitude of the alternating current being carried in the sheet at
z = h. The delta function, δ(x), can be viewed as the derivative of the Heaviside step
function H(x). The delta function displays the following fundamental properties:
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∫ ∞

−∞
f (x)δ(x − x0)dx = f (x0), (6.13)

∫ x0+ε

x0−ε

f (x)δ(x − x0)dx = f (x0), ε > 0, (6.14)

δ(x − x0) = 0, x �= x0. (6.15)

In the context of (6.12), the delta function indicates that the current is confined to an
infinitesimally thin sheet at z = h. Noting that the only variation in the fields is as a
function of z, and that E = Ex x̂ must be x-directed as is the source Js, allows us to
write a simplified form of (6.10) as follows:

(
d2

dz2
− k2

)
Ex (z) = jωμIδ(z − h), (6.16)

where we have identified
k2 = jωμσ (6.17)

and k will turn out to be a complex wavenumber which controls the propagation and
absorption, or loss, of the electromagnetic field in the test-piece. By convention, we
require that k is obtained by taking the root of k2 that has positive real part. That is,

k =
√

ωμσ

2
(1 + j). (6.18)

Equation (6.16) is a simple one-dimensional differential equation. Solve it by
writing down separate equations for the current source region, z > 0, and the con-
ductor region, z < 0. These equations recognize the current source at z = h, located
in a region that is otherwise nonconductive (air), and the conductive nature of the
test-piece in the negative half-space.

d2Ex (z)

dz2
= jωμIδ(z − h), z > 0, (6.19)

(
d2

dz2
− k2

)
Ex (z) = 0, z < 0. (6.20)

Solution

In the conductor, the general solution for Ex (z) is of the form

Ex (z) = E0[e jkz + Ce− jkz] (6.21)

where E0 is the magnitude of the electric field at the conductor surface. Physically,
the field cannot grow as distance from the source current increases (as z → −∞),
so C = 0 and

Ex (z) = E0e
jkz . (6.22)
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This solution reveals that the eddy-current density in this setup decays exponentially
as a function of depth into the conductor. Substituting for k from (6.18) into (6.22)
gives

Ex (z) = E0e
(1+ j)z/δ (6.23)

where the electromagnetic skin depth, or penetration depth, is defined as

δ =
√

2

ωμσ
. (6.24)

This quantity was introduced in Sect. 2.9. The current density in the metal obeys the
same form as the electric field since they are related linearly by the conductivity of
the conductor via Ohm’s law (2.15), so

Jx (z) = J0e
(1+ j)z/δ, (6.25)

where J0 is the magnitude of the current density at the conductor surface. It was
noted in Sect. 2.9, and shown in Fig. 2.6, that the amplitude of the current density
declines exponentially as a function of distance into the conductor. From (6.25), we
see now that there is a linear phase change in Jx as a function of z. For example, at
z = −δ, arg(Jx ) is −1 radian so the phase of Jx at the surface is 1 radian in advance
of that at z = −δ.

6.3.2 Circular Current Loop in Air

Analysis of the electromagnetic behavior of a circular current loop can form the basis
of treatment of a finite eddy current “pancake” coil with multiple windings. In this
section, two derivations of the field of magnetic induction,B, due to a circular current
loop in air are given. These are interesting, and onemethod (that uses the Biot–Savart
Law) can be applied to solve other similar problems. Both methods rely, however, on
symmetry about the plane of the loop and consequently are not useful for deriving an
expression for the electric field due to an eddy-current surface coil interacting with
a test-piece. This more important configuration is treated in Sect. 6.3.3.

Biot–Savart Law

The Biot–Savart Law relates magnetic induction field B to the electric current which
is the source of B. For current I flowing in a conductor as shown in Fig. 6.7,

dB = μ0 I

4π

dl × ı̂r
r2

(6.26)

in differential form, or,
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Fig. 6.7 Schematic diagram
showing one configuration
for application of the
Biot–Savart Law

Fig. 6.8 Schematic diagram
showing configuration for
derivation of B at the center
of a current loop, using the
Biot–Savart Law

B = μ0 I

4π

∫
dl × ı̂r
r2

. (6.27)

In these equations, I dl represents an infinitesimal current element. Each element
makes a contribution dB to B at a field point P located at distance r from the current
element. The element of magnetic induction field dB is directed perpendicular to
the directions of both the current element I dl and that of the radius vector ı̂r , in
accordance with the vector product between them. In order to express B due to
a wire made up of many elements dl, the contribution of the individual elements
is summed, which amounts to integrating over the length of the current wire, as
expressed in (6.27). The direction of the magnetic induction field follows the right-
hand rule and arises from the vector product contained within (6.26) and (6.27).

The current elements that feature in the Biot–Savart Law are assumed to be con-
strained, as if the current was flowing in a wire. This means that the Biot–Savart
Law does not lend itself to calculation of the secondary magnetic induction field
associated with the eddy currents themselves, Bec, because the eddy currents are
distributed and best represented by a spatially varying current density Jec. To express
Bec for a particular test geometry, which may also include a defect of some kind, it is
necessary to solve governing equations of the electromagnetic field for the particular
setup, which can be derived from Maxwell’s equations.

Example: Derivation of B at the center of a current loop, using the Biot–Savart
LawConsider a circular current loop radius a carrying current I , as shown in Fig. 6.8.



6.3 Surface Coil 85

In a cylindrical systemwith coordinates (ρ,φ, z) and axis coinciding with the axis
of the current loop, ı̂r ≡ −ρ̂ and dl ≡ ρ dφ φ̂. Consequently,

B = μ0 I

4π

∫ 2π

0

ρ dφ φ̂ × (−ρ̂)

ρ2

= ẑ
μ0 I

4π

∫ 2π

0
dφ

= ẑ
μ0 I

2a
. (6.28)

This result may be generalized readily to obtain an expression for B along the entire
axis of the wire—see Exercise 2 at the end of this chapter. The limitations of the
Biot–Savart Law may quickly be seen by considering a field point off the axis,
however. In this case, the distance between the current element and field point,
r , varies as contributions from the various current elements around the loop are
considered and we observe that the Biot–Savart Law is useful for obtaining simple
analytical expressions for B only in a limited set of geometrical configurations. It
may be used to evaluate B numerically in more complex configurations, however.

Magnetic Vector Potential

In [7], there is a beautiful derivation of the analytical expression for B at all points
in space due to a current loop in free space. The derivation is reproduced in this
section but, first, the theoretical reasoning that defines the magnetic vector potential
A according to the Coulomb gauge is presented. The potential A was introduced in
Sect. 5.5.1. It is employed in the derivation given in [7] and also in the seminal works
of C. V. Dodd and W. E. Deeds that consider the response of a pancake coil near a
conductive test-piece [8, 9], to be presented in Sects. 6.5 and 6.6 of this text. Despite
the fact that the original solutions were written in terms of Aφ, the solutions are given
in Sects. 6.5 and 6.6 in terms of Eφ directly, via (6.44).

In the absence of magnetic materials, the Maxwell–Ampère Law may be written

∇ × B = μ0J (6.29)

and, as usual,
∇ · B = 0. (6.30)

These governing equations will be solved by introducing the magnetic vector poten-
tial A such that

∇2A = −μ0J (6.31)

with the condition that A is regular at ∞. (A function is said to be regular in a
particular region if it is analytic and single-valued in that region. A complex function
is analytic in a particular region if it is differentiable at every point in that region.)
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Fig. 6.9 Configuration used
in solving for the vector
potential, A, due to a current
loop following path C

Equation (6.31) is obtained by choosing the gauge condition ∇ · A = 0, which is
known as the Coulomb gauge. Equation (6.31) has solution

A(r) = μ0

4π

∫

all space

J(r′)
|r − r′|dV

′ (6.32)

where the prime denotes the source coordinates. Next, replace the volume integral
in (6.32) with a line integral over path C as follows.

A(r) = μ0 I

4π

∫

C

dl′

|r − r′| (6.33)

If C is the loop shown in Fig. 6.9, then dl′ = a ı̂t dφ′ = a φ̂ dφ′, D2 = |r − r′|2 =
a2 + ρ2 + z2 − 2aρ cosφ′ and, noting that A is independent of φ,

A(ρ, z) = φ̂
μ0 I

4π

∫

C

a

D
dφ′. (6.34)

Symmetry shows that the contributions of two current elements positioned symmet-
rically with respect to φ = 0 sum to give a vector whose direction is perpendicular to
the plane, since the parallel components sum to zero. The same argument applies for
all planes of φ = constant which means that (i)A is φ̂-directed (as already written in
the previous equation) and (ii) the magnitude of A, denoted A, can be obtained by
projecting components from two symmetric elements onto their plane of symmetry
and integrating around half the loop C :

Aφ(ρ, z) = μ0 I

4π

∫ π

0

2a cosφ′

(a2 + ρ2 + z2 − 2aρ cosφ′)1/2
dφ′. (6.35)

This expression may be rewritten by introducing the elliptic modulus, k, defined
below. Note, the elliptic modulus is not the same as the complex wavenumber intro-
duced in (6.16)–(6.18) although it shares the same symbol.
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k =
[

4aρ

(a + ρ)2 + z2

]1/2

giving

Aφ(ρ, z) = μ0 I

kπ

(
a

ρ

)1/2 [(
1 − k2

2

)
K − E

]
. (6.36)

In (6.36), K and E are complete elliptic integrals of the first and second kinds defined
by

K (k) =
∫ π/2

0

dθ

(1 − k2 sin2 θ)1/2
(6.37)

E(k) =
∫ π/2

0
(1 − k2 sin2 θ)1/2dθ. (6.38)

Magnetic Induction

In [7, Sect. 6.1], it is shown that B = ∇ × A, as given in (5.18), making it possible
to calculate B via the auxiliary quantity A. Taking the curl of (6.32) gives

B(r) = μ0

4π

∫

all space
∇ × J(r′)

|r − r′| dV
′ (6.39)

= μ0

4π

∫

all space

[
∇ 1

|r − r′| × J(r′)
]
dV ′ (6.40)

= − μ0

4π

∫

all space

(r − r′) × J(r′)
|r − r′|3 dV ′ (6.41)

where identity (10.45), Sect. 10.3, has been used and it has been observed that the
curl of |r − r′|−1 is identically zero. Equation (6.41), unlike the Biot–Savart Law, is
a mathematical expression of Ampère’s Law.

From this expression, the components of the magnetic induction field B can be
calculated and are given as follows—see Exercise 4 at the end of this chapter:

Br (ρ, z) = μ0 I

2π

z

ρ[(a + ρ)2 + z2]1/2
[
−K + a2 + ρ2 + z2

(a − ρ)2 + z2
E

]
(6.42)

Bz(ρ, z) = μ0 I

2π

1

[(a + ρ)2 + z2]1/2
[
+K + a2 − ρ2 − z2

(a − ρ)2 + z2
E

]
(6.43)

Electric Field

Finally, for a time-harmonic current excitation of the form e jωt , Faraday’s Law may
be written as in (6.5). Then, using (5.18), it is found that

E = − jωA. (6.44)
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Equation (6.44) indicates a simple linear relationship between the magnetic vector
potential and the electric field. From this relationshipwe see that, for a time-harmonic
excitation, the solution for the electromagnetic field due to a circular current loop
presented in this section could be equally well formulated in terms of E.

6.3.3 Circular Current Loop above a Half-Space Conductor

In their seminal work published in 1968, C. V. Dodd and W. E. Deeds derived
an analytical solution for the impedance of a surface coil located above a planar
conductor with its axis perpendicular to the conductor surface [8]. Initially, a current
loop with infinitesimal cross section was considered. Ultimately, a semi-analytical
expression for the impedance of a coil with finite cross section was obtained, for the
coil located above a two-layer planar conductor, and for a similar coil encircling a two-
layer conductive rod. Later, a similar solution was published for a coil coaxial with
an arbitrary number of cylindrical conductors [9]. The latter solution can represent
the response of a coil encircling a layered rod, or within a borehole, or a combination
of these.

These different cases are treated in this text as follows. In this section the case of
the current loop and half-space conductor is considered. In Sects. 6.3.4, 6.5.1 and
6.5.2, the coil and half-space conductor, the current loop and cylindrical conductor,
and the coil and cylindrical conductor are considered. Layered conductors are treated
in Chap.7.

Dodd and Deeds’ original solution was formulated in terms ofA although relation
(6.44) prompts formulation in terms of E, which is what we will do here. Once the
solution forE has been obtained, the voltage in the coil can be obtained by integrating
the electric field around the coil windings. The impedance can then be obtained by
means of relation (4.25).

Governing Equation for E

Consider a filamentary circular current loop, radiusa, height h above a planar conduc-
tor with conductivity σ, Fig. 6.10. The conductor in this case is non-ferromagnetic.
As in Sect. 6.3.2, the system is axially symmetric so that the current density in the
loop may be expressed

Js = Jsφφ̂ (6.45)

which immediately implies that
E = Eφφ̂. (6.46)

In this derivation it is also assumed that the conductor is linear, isotropic and homo-
geneous such that constitutive relations (2.25) and (2.33) hold. The consequence
of this assumption in the case of a ferromagnetic conductor is that the relations to
be developed are strictly accurate only for low applied H, due to the assumption
of a linear relationship between B and H. The restriction of low applied H is not
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Fig. 6.10 Cross section through the axis of a circular, infinitesimal current loop, positioned hori-
zontally above a metal half-space

required in the case of non-ferromagnetic conductors. A more detailed discussion of
the nonlinear behavior of ferromagnetic materials is given in Chap.3.

As noted above, the solution can be formulated in terms of the electric field. In
fact, since the system is cylindrically symmetric, only the φ̂-component of the field
is needed, as noted in (6.46). From Maxwell’s equations, the governing equation for
E is as given in (6.10) but here E has only an azimuthal component and

∇2E =
(

∇2 − 1

ρ2

)
Eφφ̂. (6.47)

To obtain (6.47), (10.29) has been applied, noting that derivatives with respect to φ
vanish due to axial symmetry. Expanding ∇2Eφ by use of (10.28) and inserting into
(6.10) gives (

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2

)
Eφ = jωμJsφ (6.48)

where k2 = jωμσ. For phasor current I flowing in an infinitesimal coil that may
be described mathematically by delta functions at ρ = a and z = h, as depicted in
Fig. 6.10, Jsφ = Iδ(ρ − a)δ(z − h) and

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2

)
Eφ = jωμIδ(ρ − a)δ(z − h). (6.49)

This is the equation governing the electric field due to a circular current loop with
axis perpendicular to a half-space conductor, in the quasi-static regime.
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Solution for E

The solution of (6.49) will be found by the method of separation of variables. Every-
where off the current loop, (6.49) may be written as

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2i

)
Ei

φ = 0, (6.50)

where k2i = jωμiσi . The sub- or superscript i may take values 1, 2, and 3, and
refers to regions above the loop (z > h), below the loop but above the conductor
(0 < z < h), and inside the conductor (z ≤ 0), respectively, as labeled in Fig. 6.10.

Suppose the solution is variable-separable, of the form Ei
φ(ρ, z) = R(ρ)Zi (z).

The form of (6.50) indicates that the radial part of the solution does not change from
one region to another, so R(ρ) needs no subscript. Substitute this form into (6.50)
and divide by R(ρ)Zi (z) to obtain

1

R(ρ)

∂2R(ρ)

∂ρ2
+ 1

ρR(ρ)

∂R(ρ)

∂ρ
− 1

ρ2
+ 1

Zi (z)

∂2Zi (z)

∂z2
− k2i = 0. (6.51)

Variables have now been separated; terms in (6.51) depend either on ρ or on z. This
means that (6.51) can be separated into two equations by introducing a variable of
separation, κ, in the following way:

1

R(ρ)

∂2R(ρ)

∂ρ2
+ 1

ρR(ρ)

∂R(ρ)

∂ρ
− 1

ρ2
= −κ2 (6.52)

1

Zi (z)

∂2Zi (z)

∂z2
− k2i = κ2. (6.53)

Equation (6.52) is a first-order Bessel equation with general solution

R(ρ) =
∫ ∞

0
α(κ)J1(κρ)dκ, (6.54)

where J1(u) is the Bessel function of the first kind, of order 1, and α(κ) is a function
of the continuous variable κ whose form is determined according to the boundary
conditions of the system. A term containing Y1(u), the Bessel function of the second
kind, of order 1, is not needed because there is no source at ρ = 0. A discussion of
the properties of Bessel functions is given in the Appendix, Sect. 10.4. Since κ is a
continuous variable, the electric field is obtained by integrating over the range of κ.
Write (6.53) as

∂2Zi (z)

∂z2
− γ2

i Z(z) = 0 (6.55)
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where γi =
√

κ2 + k2i and the root with positive real part is taken. The general solu-

tion of (6.55) contains terms of the form eγi z and e−γi z . Hence, combiningwith (6.54),
the general solution of (6.51) may be written as

Ei
φ(ρ, z) = R(ρ)Zi (z) =

∫ ∞

0

[
Ai (κ)eγi z + Bi (κ)e−γi z

]
J1(κρ)dκ (6.56)

where α(κ) has been incorporated into Ai (κ) and Bi (κ). Consider in turn each of
the three regions labeled in Fig. 6.10. In region 1, above the current loop,

E1
φ(ρ, z) =

∫ ∞

0
B1(κ)e−κz J1(κρ)dκ. (6.57)

In region 2, below the current loop but above the half-space,

E2
φ(ρ, z) =

∫ ∞

0

[
A2(κ)eκz + B2(κ)e−κz

]
J1(κρ)dκ, (6.58)

and in region 3, the conductor,

E3
φ(ρ, z) =

∫ ∞

0
A3(κ)eγ3z J1(κρ)dκ. (6.59)

The coefficients are now determined by applying interface conditions (5.19) and
(5.21) between regions 1, 2, and 3 (see Exercise 5 at the end of this chapter). Note
that imposing continuity of the tangential component of the electric field (Eφ) is
straightforward at both interfaces, whereas the presence of the coil filament comes
into play in application of the condition on the tangential component of the magnetic
field (Hφ). In fact, the resulting interface conditions on Eφ are

E1
φ(ρ, h) = E2

φ(ρ, h), (6.60)

∂

∂z
E1

φ(ρ, z)

∣∣
∣∣
z=h

= ∂

∂z
E2

φ(ρ, z)

∣∣
∣∣
z=h

+ jωμIδ(ρ − a), (6.61)

E2
φ(ρ, 0) = E3

φ(ρ, 0), (6.62)

∂

∂z
E2

φ(ρ, z)

∣∣∣∣
z=0

= ∂

∂z
E3

φ(ρ, z)

∣∣∣∣
z=0

. (6.63)

Finally, the following expressions for Ei
φ are obtained:

E1
φ(ρ, z) = −1

2
jωμ0Ia

∫ ∞

0
J1(κa)J1(κρ)e−κ(h+z)

[
e2κh + (κ − γ)

(κ + γ)

]
dκ,

(6.64)
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E2
φ(ρ, z) = −1

2
jωμ0Ia

∫ ∞

0
J1(κa)J1(κρ)e−κh

[
eκz + (κ − γ)

(κ + γ)
e−κz

]
dκ,

(6.65)

E3
φ(ρ, z) = − jωμ0Ia

∫ ∞

0
J1(κa)J1(κρ)e−κh+γz κ

(κ + γ)
dκ. (6.66)

In these equations, γ3 = √
κ2 + jωμ3σ3 is replaced by γ = √

κ2 + jωμ0σ for sim-
plicity, where the root with positive real part is taken and, as before, ω is angular
frequency, μ0 = 4π × 10−7 H/m is the permeability of free space and σ is the con-
ductivity of the test-piece.

An efficient way of evaluating the integrals in the above equations for Eφ is to
truncate the domain of the electric field at a particular value of r, far from the loop,
where it has decayed to approximately zero. Truncating at approximately ten times
the coil radius usually gives sufficient accuracy. Then, the integral can be written in
terms of a summation based on the set of zeros of the function J1(u). This technique
is used extensively in [10] and references therein.

Calculation of Z

Now that the solution forE has been obtained, (6.64)–(6.66), the self-induced voltage
in the current filament can be obtained by integrating E around the filament. The
impedance can then be obtained by means of relation (4.25); Z = V/I. In general,
the voltage induced by field E in a current filament is, in phasor form,

V = −
∫

E · dl, (6.67)

where the path of the integral follows the current loop. In the case of the axially
symmetric single loop shown in Fig. 6.10,

V = −a
∫ 2π

0
Eφ(a, h)dφ = −2πaEφ(a, h) (6.68)

and V can be obtained immediately by inserting Eφ(a, h) from either (6.64) or (6.65)
into (6.68). Dividing by I then gives the self-induced impedance of the current
filament, Z δ ,

Z δ = jωμ0πa
2
∫ ∞

0
[J1(κa)]2

[
1 + (κ − γ)

(κ + γ)
e−2κh

]
dκ. (6.69)

Examining (6.69) it is seen that Z δ depends on the frequency of operation ω, the
coil cross-sectional area πa2, its position with reference to the sample, h, and the
sample conductivity σ. The above relation has been derived on the assumption of a
non-ferromagnetic test-piece, but if the conductor is ferromagnetic then
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Z δ = jωμ0πa
2
∫ ∞

0
[J1(κa)]2

[
1 + (μrκ − γ)

(μrκ + γ)
e−2κh

]
dκ, (6.70)

with γ = √
κ2 + jωμ0μrσ, and Z δ depends also on the relative permeability μr of

the test-piece. By letting h → ∞ the impedance of an isolated current filament, Z δ
0,

can be obtained readily:

Z δ
0 = jωμ0πa

2
∫ ∞

0
[J1(κa)]2dκ. (6.71)

From (6.70), the self-inductance L of the coil can be obtained via (6.1). Similarly,
the inductance L0 of the isolated coil can be obtained from (6.71).

Comparing (6.71) with (6.70) allows the contribution to Z δ from the test-piece to
be identified, as follows:

Z δ = Z δ
0 + jωμ0πa

2
∫ ∞

0
[J1(κa)]2 (μrκ − γ)

(μrκ + γ)
e−2κhdκ. (6.72)

6.3.4 Coil above a Half-Space Conductor

The impedance of a coil with finite cross section, shown in Fig. 6.11, is of more
practical importance than that for the current loop obtained in the previous section,
but can be obtained from it by the following process of superposition.

Electric Field

By the process of linear superposition, the fields due to n filamentary loops may be
summed to obtain the total field due to a coil with n turns, ET , assuming that the
current in each loop has the same phase and amplitude;

Fig. 6.11 Cross section
through the axis of a circular,
air-cored, eddy-current coil,
positioned horizontally
above a conductive
half-space
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ET (ρ, z) =
n∑

i=1

E(ρ, z|ai , hi ) (6.73)

where E(ρ, z|ai , hi ) is the electric field produced by the i th filamentary loop at
(as, hs). It is convenient to write this summation as an integral over the cross section
of the coil. Todo this, the superpositionof then δ-function coilsmust be approximated
by a continuous current density Js(as, hs) over the coil cross section and

ET (ρ, z) =
∫

coil cross section
E(ρ, z|as, hs)dS, (6.74)

where E(ρ, z|as, hs) is the electric field produced by the equivalent current density
Js in the coil and the subscript s indicates that this is the source current density. The
variables as and hs are, then, continuous variables in the radial and vertical directions,
respectively. For a coil with rectangular cross section and parameters as shown in
Fig. 6.11,

ET (ρ, z) =
∫ s+l

s

∫ ro

ri

E(ρ, z|as, hs)dasdhs. (6.75)

As an example of applying the process of linear superposition consider the electric
field in the region above the coil. This corresponds to region 1 in the case of the
circular current loop treated in Sect. 6.3.3 and shown in Fig. 6.10. Taking the result
for E1

φ(ρ, z) in the case of the δ-function coil, (6.64), and inserting that into integral
(6.75) gives

ET,1
φ (ρ, z) = −1

2
jωμ0I

∫ ∞

0
J1(κρ)

{∫ ro

ri

as J1(κas)das ×
∫ s+l

s
e−κ(hs+z)

[
e2κhs + (κ − γ)

(κ + γ)

]
dhs

}
dκ, (6.76)

where the order of integration has been reversed. Consider first the integral over as.

∫ ro

ri

as J1(κas)das = 1

κ2
J (κri,κro) (6.77)

where

J (x1, x2) =
∫ x2

x1

x J1(x)dx = π

2
x [J0(x)H1(x) − J1(x)H0(x)]

x2
x1 (6.78)

and Hn denotes the Struve function of order n. Guidance on computing J (x1, x2)
efficiently has been provided in [10]. Now consider terms in (6.76) that depend on
hs:
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∫ s+l

s
e−κ(hs+z)

[
e2κhs + (κ − γ)

(κ + γ)

]
dhs. (6.79)

Integrating over this variable is easily accomplished analytically such that, finally,

ET,1
φ (ρ, z) = −1

2
jωμ0I

∫ ∞

0

1

κ3
J (κri,κro)J1(κρ)e−κz

[
eκs(eκl − 1) − e−κs (κ − γ)

(κ + γ)
(e−κl − 1)

]
dκ. (6.80)

Expressions for ET,i
φ , in other regions, may be obtained in a similar manner.

Voltage in a Surface Coil near a Half-Space Conductor

The total voltage induced in a coil of n turns is

V = −2π
n∑

i=1

ai Eφ(ai , hi ), (6.81)

in which 2πai is the circumferential length and hi is the height above the half-space
of the i th current loop, and Eφ(ai , hi ) is the electric field of that loop. It is convenient
to approximate this summation by an integral over a turn density of N turns per unit
cross-sectional area of the coil. To do this it will be assumed that there is a constant
number of turns per unit cross-sectional area of the coil, such that

N = n

l(ro − ri)
(6.82)

where the notation of Fig. 6.11 is employed. Then,

V = − 2πn

l(ro − ri)

∫ s+l

s

∫ ro

ri

asEφ(as, hs)dasdhs. (6.83)

Z for Surface Coil near a Half-Space Conductor

An expression for the impedance of the surface coil near a half-space conductor is
now calculated using relation (4.25); Z = V/I, with V given by (6.83). Note, the
current density of the source in the case of the finite coil is Js = n I/[l(ro − ri)], not
to be confused with Js = Iδ(ρ − a)δ(z − h) as for the infinitesimal current loop.
This must be reflected in the expression for Eφ since E and J are related according
to the point form of Ohm’s Law, relation (2.15). Effectively, I in Eφ as expressed in
(6.64) or (6.65) should be replaced by n I/[l(ro − ri)] in the case of the finite coil
so that

Z = − 2πn2

l2(ro − ri)2

∫ s+l

s

∫ ro

ri

asEφ(as, hs)dasdhs. (6.84)
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Now the integrals with respect to as and hs may be evaluated by inserting Eφ(as, hs)
into (6.84). To do this, the integral over hs is split into regions within the coil below
and above hs. In the region above hs the expression for E1

φ(ρ, z) is inserted whereas
in the region below hs the expression for E2

φ(ρ, z) is used. Explicitly,

Z = − 2πn2

l2(ro − ri)2

∫ ro

ri

as

[∫ hs

s
E2

φ(as, hs)dhs +
∫ s+l

hs

E1
φ(as, hs)dhs

]
das.

(6.85)
Inserting expressions for E1

φ(ρ, z) and E2
φ(ρ, z), the following integrals with respect

to as and hs emerge:

Z = jωμ0πn2

l2(ro − ri)2

∫ ∞

0

∫ ro

ri

[as J1(κas)]
2 das

∫ s+l

s

[
1 + (κ − γ)

(κ + γ)
e−2κhs

]
dhsdκ,

(6.86)
assuming that the current in each loop has the same phase and amplitude.

Treating the integrals in (6.86) as outlined in (6.77)–(6.79) gives the following
expression for the impedance of an air-cored surface coil of finite cross section near
a conductive half-space:

Z = jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ5

(
2l + 1

κ

{
2e−κl − 2

+[e−2κ(l+s) + e−2κs − 2e−κ(l+2s)]
(

γ − κ

γ + κ

)})
dκ. (6.87)

Note, Z depends on the frequency of operation of the probe, ω, the coil dimensions,
ri, ro and l, the square of the number of turns, n2 (as in the case of the long solenoid,
Exercise 3 at the end of this chapter), the coil position with reference to the sample,
s, and the sample conductivity, σ. If the conductive half-space is also ferromagnetic,
with relative permeability μr, then γ = √

κ2 + jωμ0μrσ and the last term in (6.87)
is (γ − μrκ)/(γ + μrκ).

By letting s → ∞ in (6.87), the following expression for the impedance of an
isolated coil is obtained,

Z0 = 2 jωμ0πn2

l2(ro − ri)2

∫ ∞

0

J 2(κri,κro)

κ5

(
l + e−κl − 1

κ

)
dκ. (6.88)

From relation (6.87), the self-inductance of the loop L can be deduced via relation
(6.1). Similarly, from (6.88) the inductance of the isolated loop L0 can be obtained.
Taking (6.87) and (6.88) together, the contribution to the coil impedance of the test-
piece can be isolated.

Z = Z0 + jωμ0πn
2

l2(ro − ri)2

∫ ∞
0

J2(κri, κro)

κ6
[e−2κ(l+s) + e−2κs − 2e−κ(l+2s)]

(
γ − κ

γ + κ

)
dκ.

(6.89)
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Evaluation of (6.87), or of (6.89) with (6.88), for particular coil parameters ri, ro, l
and n2 allows calculation of impedance values such as those plotted as an impedance-
plane plot in Fig. 6.2, in which the effect of different material conductivities, and
of coil frequency, are illustrated. The impedance-plane plot of Fig. 6.3 illustrates
the effect of varying frequency, lift-off and permeability although for this figure the
impedance is plotted in normalized form, as Z/X0.

6.3.5 Ferrite Core

The strength of coupling between an eddy-current surface probe and the test-piece
can be increased by winding the coil around a ferrite core, rather than a purely
dielectric material such as machinable plastic. Ferrite cores are commonly used for
increasing the signal-to-noise ratio of a particular coil configuration. A schematic
diagram of a coil wound around a ferrite core is shown in Fig. 6.12. The ferrite
strengthens themagnetic flux density within the coil in proportion to the permeability
of the ferrite, (2.25) and (4.16), and consequently strengthens the electromagnetic
coupling between the probe coil and the test-piece. Ferrites are low conductivity but
high-permeability ferromagnetic materials. It is important that the core material has
low conductivity because, if it were conductive, eddy currents would be induced
by the coil in the core, as well as in the test-piece. The eddy currents induced in a
conductive corewould have the counterproductive effect of reducing the eddy-current
density in the test-piece, which must be avoided.

Manganese zinc (MnZn) ferrite is commonly used in eddy-current probe cores
and in transformer cores, where it is also desirable to minimize energy losses that
would reduce the efficiency of the transformer. The initial relative permeability of
MnZn ferrite is on the order of 1,000. The resistivity of MnZn ferrite is a function
of temperature and frequency. Resistivity is reduced as temperature increases, and
as frequency increases. Example values of the resistivity of MnZn ferrite are given
in Table 6.2.

Fig. 6.12 Cross section
through the axis of a circular,
ferrite-cored, eddy-current
coil
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Table 6.2 Resistivity as a
function of frequency for
MnZn ferrites [11]

Frequency (MHz) Resistivity (�m)

0.1 ≈2

1 ≈0.5

10 ≈0.1

100 ≈0.01

Fig. 6.13 Self-inductance of
an isolated ferrite-cored coil
as a function of μr of the
core, for core lengths
lc = l, 2l, 4l and for a
semi-infinite core

Fig. 6.14 Normalized
impedance-plane diagram
comparing Z for an air-cored
and a ferrite-cored coil above
a conductive half-space,
where �X = X − X0 and
�R = R − R0

Theodoulidis [12] and Lu et al. [13] have analyzed the impedance of a ferrite-
cored coil utilizing the truncated region eigenfuction expansion (TREE) method,
Sect. 7.3.1. Using this approach, the curves presented in Figs. 6.13 and 6.14 have
been calculated. Parameters of the coil, core and conductive half-space used to obtain
the calculated data plotted in Figs. 6.13 and 6.14 are given in Table 6.3. In Fig. 6.13
the self-inductance of an isolated ferrite-cored coil is plotted as a function of the
relative permeability of the ferrite, and for various core lengths. It can be seen that
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Table 6.3 Parameters for the numerical calculations whose data are presented in Fig. 6.13 and Fig.
6.14. Note that the core length and test-piece parameters are relevant only to Fig. 6.14

Coil parameters Value Ferrite core parameters Value

ro Outer radius (mm) 10.275 rc Core radius (mm) 3.880

ri Inner radius (mm) 5.025 lc Core length (mm) 29.95

l Length (mm) 18.180

s Coil stand-off (mm) 2.650 Test-piece parameters

h Probe lift-off (mm) 0.590 σ Conductivity
(MSm−1)

20.40

n Number of turns 776 μr Relative
permeability

1

L0 increases rapidly at first, as μr,core increases, but the improvement is only slight as
μr,core increases above about 100. Similarly, there is a rapid increase in L0 as the core
length is doubled with respect to the coil length, but lesser improvement is obtained
as the core length is doubled again and then made semi-infinite.

Figure 6.14 reveals the enhancement in Z and coupling parameter c, (6.3), when
a ferrite core with μr = 250 is inserted into the coil. One way of thinking about the
effect of the ferrite core on the coupling between the coil and the test-piece is that
the introduction of a ferrite core into a surface coil has an effect similar to that of
moving the coil windings closer to the test-piece.

6.3.6 Sources of Uncertainty

Nonideal Coil Behavior

It has been discussed in previous sections that an ideal eddy-current coil would be
a pure inductor. The inductance of the coil is the important circuit property as far
as inducing current in a test-piece is concerned, and in detecting perturbations in
the magnetic field associated with the induced eddy currents, due to the presence
of defects. The behavior of a real coil is not that of a pure inductor, due in part to
the fact that the current flowing in an eddy-current coil is not uniformly distributed
over the cross section of the coil. The current is restricted to flow within the coil
windings and, in fact, near the surface of thewindings for higher frequency excitations
(a consequence of the skin effect). These geometrical restrictions on the current
density causes the coil to exhibit inter-winding capacitance. In addition, a real eddy-
current coil exhibits finiteDC resistance due to the resistivity of themetal constituting
the coil windings, usually copper. Additional perturbations to the current density in
the coil arise from irregularity in the windings. Capacitance in the leads connecting
the probe to the power source also makes a significant contribution to the probe
impedance at higher frequencies.
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Fig. 6.15 Equivalent electrical circuit for an eddy current probe coil. R0 and L0 represent the
DC resistance and inductance of the probe coil, respectively. ZC is the impedance due to coupling
with an external conductor (the test-piece). RS and CS represent stray resistance and capacitance,
respectively, in the coil windings. CL accounts for capacitance in the leads connecting the probe
with the power source. Any other unspecified contributions to the impedance of the electrical circuit
are represented by RC . In the right-hand figure, all parallel circuit components are lumped together
in one parallel impedance, ZP [14]

An equivalent circuit that takes into account these various contributions to the
impedance of a real eddy current probe is shown schematically in Fig. 6.15 [14].
This circuit is more complicated than those considered in Chap. 4 but one familiar
feature is that due to the presence of capacitive elements in parallel with series
inductance and resistance, the probe resonates at a certain frequency f0. Resonance
manifesting in measured R and L is shown in Fig. 6.16 for one particular coil [14].
The value of f0 depends on the values of the different circuit components in each
individual coil, but f0 on the order of hundreds of kHz is typical for an eddy-current
coil. In order to avoid large uncertainties in precision eddy current measurements, a
rule of thumb is that the operating frequency of a probe should be less than one-third
of the resonance frequency.

In a routine EC inspection, the nonideal behavior of an EC coil is assumed to be
negligible provided that it is operated at a frequency sufficiently far below f0. For
benchmark experiments in EC research, however, whose purpose is to provide data
that validates a new theoretical treatment of a particular EC inspection, agreement
between theory and experiment is sought to within a few percent. Under these cir-
cumstances it is essential to correct for the nonideal behavior of the coil. A procedure
by which corrections for the nonideal coil behavior can be made was published by
Harrison, Jones, and Burke in 1996 [14]. To follow this procedure for an eddy-current
coil is in fact to characterize that coil since, during the correction procedure, effective
values for the coil’s outer radius and stand-off are determined. Essential steps in the
correction procedure are explained in the following two paragraphs for an air-cored
surface coil above a metal plate. The procedure is not restricted to this probe and
test-piece configuration, however, but may be adapted to work for other canonical
configurations for which impedance formulas are available [10].
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Fig. 6.16 Resistance and inductance of a coil, normalized with respect to the DC values, are shown
as a function of operating frequency. Resonance is observed at 142 kHz for this particular coil [14].
With kind permission from Springer Science and Business Media: J. Nondestr. Eval., vol. 15, 1996,
p. 26, Benchmark problems for defect size and shape determination in eddy-current nondestructive
evaluation, D. J. Harrison, L. D. Jones, and S. K. Burke, Fig. 4. Original caption: Isolated coil
inductance and resistance as a function of frequency. Deviations from the DC values are due to
nonideal coil behavior. The isolated coil resonant frequency is indicated by an arrow

Correction for DC Coil Resistance and Stray Capacitance Following the method
described in [14], the first step in making corrections for nonideal coil behavior is
to adjust experimental impedance measurements to eliminate the effects of stray
capacitance and DC resistance of the coil. The ideal admittance, obtained from the
DC values of coil resistance and inductance, R0 and L0 respectively, is

Yideal = 1

Z ideal
= 1

R0 + jωL0
. (6.90)

Writing Y0 as the experimentally measured admittance in air, where

Y exp
0 = 1

Z exp
0

, (6.91)

and subtracting Yideal gives the admittance of the equivalent parallel network, YP,
where

YP = Y exp
0 − Yideal. (6.92)
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Denoting the uncorrected impedance of the coil, measured with the coil over the
conductive plate, by Z exp

U (with associated admittance Y exp
U ), the corrected impedance

Z exp
C is obtained by subtracting the effect of the parallel circuit,

Z exp
C = 1

Y exp
U − YP

. (6.93)

The corrected impedance change in the coil due to the plate, �Z exp
C , is therefore

�Z exp
C = Z exp

C − Z ideal. (6.94)

In the case that this correction procedure is not followed, the impedance change in
the coil due to the plate is given by

�Z exp
U = Z exp

U − Z ideal. (6.95)

Effective Coil Parameters and Determination of Plate Conductivity Calculating
the self-inductance of an isolated EC coil using (6.88) and (6.1), with macroscop-
ically measured coil dimensions ri, ro and l as inputs, yields a value for L0 that is
typically a few percent higher than the value measured using an impedance analyzer
or other instruments [15]. The discrepancy can be explained by arguing that the
measured value of ro overestimates the equivalent value for an ideal coil, since it
represents the outermost extent of the windings of a nonuniform current distribution.
An equivalent but uniform current distribution would occupy a smaller volume than
the real, nonuniform current distribution in the coil. Perfect agreement between the
calculated and measured values of L0 can be obtained by introducing an effective
value for the coil outer radius, r effo < ro. In the correction procedure, the value of r effo
is determined by varying its value in the calculation of L0 until agreement with the
measured value is achieved.

Again due to nonuniformity of the current density in the coil, it is anticipated
that the measured stand-off of the coil will be smaller than that of an ideal coil for
which other parameters are identical. The coil impedance Z depends strongly on
s which means that this subtle effect is important if precise results are sought. An
effective value of the coil stand-off may be determined by minimizing the root mean
square (RMS) error between the experimentally measured impedance of the coil on
a metal plate, and values calculated using (6.87). The RMS error, ε, is computed
from the following relation, in which the superscript “exp” denotes experimentally
measured values, and “thry” denotes theoretically calculated values. N is the number
of frequency points.

ε2 = 1

N

N∑

j=1

⎧
⎨

⎩

[
�Rexp

j ( f j ) − �Rthry
j ( f j )

�Rexp
j ( f j )

]2

+
[

�Lexp
j ( f j ) − �L thry

j ( f j )

�Lexp
j ( f j )

]2
⎫
⎬

⎭

(6.96)
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Fig. 6.17 Change in coil impedance due to a brass plate, normalized to the ideal isolated coil
reactance X0 = ωL0. Circles (o) represent experimental data corrected for nonideal coil behavior.
Dots (·) represent uncorrected experimental data. Solid lines (—) represent theory with effective
parameters. Broken lines (- - -) represent theory with measured parameters [15]. From: Bowler,
N., Huang, Y.: Electrical conductivity measurement of metal plates using broadband eddy-current
and four-point methods. Meas. Sci. Technol. 16, 2193-2200 (2005), Fig. 2. ©IOP Publishing.
Reproduced with permission. All rights reserved

At the same time, the conductivity of the plate is permitted to varyuntil ε isminimized.
The probe stand-off and plate conductivity may be found simultaneously since ε
shows well-defined minima with respect to variations in both of these parameters
[14], especially at higher frequencies, Fig. 6.2.

In Fig. 6.17, the corrected experimental data, �Z exp
C of (6.94), and uncorrected

experimental data,�Z exp
U of (6.95), are shown for normalized coil impedance change

of a surface coil on a brass plate. For full details of this study see [15]. Also shown
in Fig. 6.17 are curves calculated using (6.87) with measured and effective param-
eters. The improvement in agreement between theory and experiment after making
corrections for DC coil resistance and stray capacitance, and refining coil parameters
ro and s, is dramatic. In Table 6.4, effective parameters obtained by this procedure
for measurements on brass and stainless steel plates are compared with dimensions
measured using digital calipers and conductivities measured using a Zetec MIZ-21A
eddy-current instrument [15]. Notice that the effective outer radius is slightly smaller,
and the effective stand-off is slightly greater, than valuesmeasuredwith calipers. This
is in keeping with the initial hypothesis that an equivalent but uniform current dis-
tribution occupies a smaller volume than the real, nonuniform current distribution
in the coil. The uncertainties in the effective value of s and in the fitted value of σ,
quoted in Table 6.4, were assumed to be given by the RMS error ε, as defined in
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Table 6.4 Measured and effective (or fitted) parameters. Lengths were measured using digital
calipers at appropriate stages during fabrication of the coil. Conductivity σ was measured using a
Zetec MIZ-21A eddy-current instrument

Parameter Measured Effective (geometric)
and fitted (material)

ro Outer radius (mm) 11.84 ± 0.01 11.43 ± 0.06

s Stand-off (mm)

Brass 1.00 ± 0.04 1.06 ± 0.03

Stainless steel 1.00 ± 0.04 1.01 ± 0.02

σ Conductivity (MSm−1)

Brass 16.2 ± 0.3 16.6 ± 0.4

Stainless steel 0.7 ± 0.3 1.31 ± 0.02

(6.96), for each plate. Regarding the significant difference between the measured and
fitted values of σ in stainless steel, given in Table 6.4, an independent measurement
of conductivity by a four-point alternating current potential drop method on the same
sample gave result 1.369 ± 0.007 MSm−1 [15].

Geometrical Sources of Uncertainty

Probably the most significant source of uncertainty in impedance measurements
made using an EC probe operating in absolute mode is the variation in distance
between the probe coil and the test-piece that may occur as the probe scans the
object surface. For a flat test-piece, this variation in probe and part separation may
be described as a variation in the probe lift-off and is often termed lift-off noise. Such
impedance changes are indicated in the impedance-plane plot of Fig. 6.3 which may
be calculated using the theory of Dodd and Deeds [8], Sect. 6.3.4.

Fig. 6.18 Schematic
diagram of surface EC coil
whose axis is tilted at angle
ϕ with respect to the
direction normal to the
test-piece surface
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Fig. 6.19 Normalized impedance-plane plot as a function of coil tilt angle ϕ. Coil and test-piece
parameters for the calculation are listed inTable 6.5.Note that in the axis labels�X here is equivalent
to X and �R here is equivalent to R − R0 as defined in (6.2). Reproduced with permission from
IEEE: IEEE Trans. Magn., vol. 41, 2005, p. 2453, Analytical model for tilted coils in eddy-current
nondestructive inspection, T. Theodoulidis, Fig. 8. Original caption: Impedance change display
showing tilt (•) and lift-off curves (
) in steps of 10◦ and 0.1 mm, respectively. The arc-shaped
curve is produced by varying excitation frequency at zero lift-off and zero tilt angle
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Table 6.5 Parameters for the numerical calculations whose data are presented in Figs. 6.19 and
6.20

Coil parameters Value

ro Outer radius (mm) 4

ri Inner radius (mm) 2

l Length (mm) 2

h Lift-off (mm) 1

n Number of turns 400

Test-piece parameters

σ Conductivity (MSm−1) 18.72

μr Relative permeability 1

A similar source of noise in the signal of an absolute surface probe is tilt of the
probe axis through an angle ϕ with respect to the direction normal to the surface
of the test-piece, as shown schematically in Fig. 6.18. Tilt commonly occurs when
a probe is scanned in contact with the test-piece because the friction between the
probe and test-piece drags upon the probe base, causing the probe to tilt toward the
direction of motion. In the context of Fig. 6.18 this would mean that the probe is
being moved to the right. Theodoulidis analyzed the impedance of a tilted probe [16]
and produced the impedance-plane plot shown in Fig. 6.19 for a coil and test-piece
whose parameters are listed in Table 6.5. From the figure, it can be seen that the
frequency response of Z at a particular angle of tilt gives rise to the same kind of
curve that we are familiar with from the impedance-plane plot for the normal coil,
Fig. 6.3. In Fig. 6.19, increasing the angle of tilt has a very similar effect on Z as
increasing lift-off, which is also plotted.

In Fig. 6.20, eddy current amplitude and streamlines are plotted for a coil tilted at
0, 30, 60 and 90◦ with respect to the normal to the test-piece surface. It can be seen
that the induced eddy currents become concentrated in the region directly below the
coil edge for ϕ = 90◦. This is the tangent coil configuration, which will be discussed
further in Sect. 6.4.

Another source of uncertainty in impedance measurements is the presence of
geometrical features in the test-piece, close to the inspection region. Examples of
these are edges, joints, rivets, metal support structures and rapid changes in geometry
such as corners. At worst, signals from these features completely mask the signal
from the sought defect, rendering it undetectable. Often it is necessary to adjust
the inspection frequency and choice of probe in order to minimize the signal from
geometrical features that may mask the presence of defects. Coil impedance changes
due to certain geometrical features are discussed in detail in Sect. 7.3.
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�Fig. 6.20 Eddy-current amplitude (left) and streamlines (right) by a coil tilted clockwise at 0 (top),
30, 60 and 90◦ (bottom) to the test-piece surface. Coil and test-piece parameters for the calculation
are listed in Table 6.5. Reproduced with permission from IEEE: IEEE Trans. Magn., vol. 41, 2005,
p. 2451, Analyticalmodel for tilted coils in eddy-current nondestructive inspection, T. Theodoulidis,
Fig. 6. Original caption: Amplitude contours (left) and streamlines (right) of eddy currents induced
on the surface of a conductive half-space by a cylindrical coil at various tilt angles. Coil rotation is
clockwise

6.4 Tangent Coil

The tangent coil is oriented such that its axis lies parallel with the surface of the
test-piece, as shown in Fig. 6.21. This is equivalent to tilting the axis of a surface
coil through ϕ = 90◦, Fig. 6.18. Referring to Fig. 6.20 it can be seen that the current
density in the test-piece below a single tangent coil is concentrated below the coil
windings, and is largely unidirectional in that region. Tangent coils are much less
widely used than surface coils due to their significantly poorer coupling with the
test-piece, but they find special application in plus-point probes, which combine two
tangent coils. The plus-point probe is discussed in Sect. 8.5.

The solution by which the impedance of a tangent coil can be calculated is a lim-
iting case of the solution for a tilted coil, which has been analyzed by Theodoulidis
as mentioned in Sect. 6.3.6. Due to the lesser practical importance of the tangent coil
configuration, when compared with the surface- and encircling-coil configurations,
the full theoretical details of the impedance calculation for the tangent coil are not
provided here. It can be observed from Fig. 6.19, however, that the calculated nor-
malized impedance change is reduced by a factor of approximately 10 when a coil is
tilted through 90◦ from the surface- to the tangent coil configuration. The interested
reader is referred to [10] and [16] for further information.
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Fig. 6.21 Cross section through the axis of a circular, air-cored, eddy-current tangent coil, posi-
tioned above a conductive half-space
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6.5 Encircling Coil

Encircling coils couple strongly with rod-like specimens, inducing eddy currents
that flow in an azimuthal direction (circularly) around the rod. The probe is designed
such that the test-piece may be passed through the middle of the coil, as shown in
Fig. 6.22.

The cylindrical test-piece geometry was studied extensively by Friedrich Förster
during the 1940s and beyond. Förster was a visionary who, during a study of ferro-
magnetic properties of metals in 1937, observed the influence of the earth’s magnetic
field on a test coil. This led Förster to develop highly sensitive measuring equipment
for magnetic fields, the scientific basis for which was put into place in the 1950s
and earned him the Victor de Forest Award in 1957. A summary of Förster’s work
relevant to the encircling coil is given in [17, Sect. 5: Analysis of encircling coil tests
of wire, rods and bars].

In contrast with the surface coil and test-piece geometry, there is no lift-off asso-
ciated with the encircling coil. Instead, the fill factor, η, indicates the fraction of the
cross-sectional area of the coil that is occupied by the test object:

η =
(

ρ1

ri

)2

, (6.97)

where ρ1 is the radius of the cylindrical test-piece and ri is the inner radius of the
encircling coil. If the encircling coil is concentric with the test-piece, then the fill
factor is an indicator of the strength of coupling between the coil and the test-piece.
In Fig. 6.23, an example impedance-plane plot for a coil encircling a long, non-
ferromagnetic, cylindrical rod is shown. Note that this impedance-plane diagram is

Fig. 6.22 Cross section
through the axis of a circular
coil with finite cross section,
coaxial with a solid metal
circular cylinder (test-piece)
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Fig. 6.23 Normalized
impedance-plane plot for a
coil with inner radius ri
encircling a cylindrical,
non-ferromagnetic test-piece
with radius ρ1. Solid lines
(—–) represent the complex
impedance of the probe as a
function of rod conductivity,
σ, or frequency, f . Broken
lines (- - -) represent the
effect of increasing the
radius of the encircling coil
ri. Dotted lines (· · · ) indicate
the effect of changing the
sample radius ρ1

presented in a form in which the data is normalized with respect to the reactance
of the isolated coil, X0. Comments made around (6.2) on the general shape of the
normalized impedance-plane plot for a surface coil above a half-space conductor,
Fig. 6.3, are applicable here. Figure 6.23 allows us to predict the way in which the
coil impedance changes if either the sample diameter varies or a coil with different
diameter is used. The outer curved solid line shows the locus of impedance values of
a coil when it is tight to the test-piece (when the test-piece fills the coil and η = 1).
The arrow indicates the way in which the impedance changes as either the test-piece
conductivity or the frequency of the test are increased. From any fixed point on the
outer solid curve, defined by particular values of frequency and conductivity, the
dashed lines show how the impedance of the coil changes (|Z | decreases) as the coil
diameter increases, and the dotted lines show how |Z | decreases as the diameter of
the test-piece decreases.

In Fig. 6.24, an example impedance-plane plot for a coil encircling a long, ferro-
magnetic, cylindrical rod is shown. As for Fig. 6.23, this impedance-plane diagram
is presented in a form in which the data is normalized with respect to the reactance
of the isolated coil, X0. Again, the arrow indicates the way in which the impedance
changes as either the test-piece conductivity or the frequency of the test is increased.
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Fig. 6.24 Normalized
impedance-plane plot for a
coil with inner radius ri
encircling a cylindrical,
ferromagnetic test-piece with
radius ρ1. Solid lines (—–)
represent the complex
impedance of the probe as a
function of rod conductivity,
σ, or frequency of the test, f .
Arrows (→) represent the
effect of increasing the
radius of the test-piece ρ1, or
the test-piece relative
permeability [17]

Amajor difference between these curves and those for the case of non-ferromagnetic
rods is that the magnitudes of both the real and imaginary components of the coil
impedance, for ferromagnetic rods, are increased in proportion to μr � 1. Note
that the air point, corresponding to the absence of any test-piece, is still found at
(0, 1) as in Fig. 6.23 but the scale of the impedance change due to the ferromag-
netic test-piece is much larger than for the non-ferromagnetic case for the reasons
just mentioned. When the fill factor is reduced, the real and imaginary components
of the coil impedance are reduced in direct proportion to the reduction in the fill
factor. This means that a change in impedance due to reduction in fill factor cannot
be separated from a change due to reduction in test-piece permeability. Fortunately,
however, this common direction is usually at a large phase angle compared with
changes due to cracks and other longitudinal discontinuities, allowing the latter to
be detected. Finally, when the fill factor η = 1 the intercept of the impedance locus
with the vertical axis gives an approximate value for the relative permeability μr of
the rod.

In a similar manner to the developments presented in Sects. 6.3.3 and 6.3.4, for
the circular current filament and the coil above a half-space conductor, electromag-
netic analysis of a circular current filament and a coil encircling a solid cylindri-
cal conductor are presented in the following sections. Formulas are developed by
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which the value of coil impedance can be calculated using relevant input parame-
ters. Impedance-plane diagrams such as that shown in Fig. 6.23 can be plotted by
evaluating the formulas obtained.

6.5.1 Circular Current Loop Encircling a Solid Cylindrical
Conductor

Governing Equation for E

Consider a filamentary circular current loop, radius a, exterior to a cylindrical con-
ductor with radius ρ1 and conductivity σ, Fig. 6.25. The conductor in this case is
non-ferromagnetic. As in Sect. 6.3.3, the system is axially symmetric so that the cur-
rent density in the loop is entirely azimuthal, (6.45), immediately implying that the
electric field is also purely azimuthal, (6.46). Again, it is assumed that the conduc-
tor is linear, isotropic and homogeneous such that constitutive relations (2.25) and
(2.33) hold. Formulating the solution in terms of the electric field, (6.48) is obtained
as before. Arbitrarily assigning the plane of the current loop to be z = h, the follow-
ing governing equation for the electric field due to a circular current loop coaxial
with a circular conductive cylinder is obtained in the quasi-static regime;

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2

)
Eφ = jωμIδ(ρ − a)δ(z − h). (6.98)

Solution for E

The solution of (6.98) will be found by the method of separation of variables. Every-
where off the current loop, (6.98) may be written

Fig. 6.25 Cross section
through the axis of a circular,
infinitesimal current loop,
coaxial with a solid metal
cylinder

�

� �

� �

� ��

air

current loop

cylinder

a

z

× z = h

ρ1

region 1 2 1′
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(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
+ ∂2

∂z2
− k2i

)
Ei

φ = 0, (6.99)

where k2i = jωμiσi . The sub- or superscript i may take values 1, 2 and 1′, and refers to
regions within themetal cylinder (ρ < ρ1), outside the cylinder but within the current
filament (ρ1 < ρ < a), and exterior to the current filament (ρ ≥ a), respectively, as
labeled in Fig. 6.25.

Suppose the solution is of the form Ei
φ(ρ, z) = Ri (ρ)Z(z). The longitudinal part of

the solution, Z(z), does not change from one region to another so needs no subscript.
(Note that this case is complementary to the case of the planar conductor, Sect. 6.3.3,
in which the subscript attaches to the longitudinal part of the solution.) Substitute
this form into (6.99) and divide by Ri (ρ)Z(z) to obtain

1

Ri (ρ)

∂2Ri (ρ)

∂ρ2
+ 1

ρRi (ρ)

∂Ri (ρ)

∂ρ
− 1

ρ2
+ 1

Z(z)

∂2Z(z)

∂z2
− k2i = 0. (6.100)

Variables have been separated, i.e., terms in (6.100) depend either on ρ or on z. This
means that (6.100) can be separated into two equations by introducing a variable of
separation, κ, in the following way:

1

Ri (ρ)

∂2Ri (ρ)

∂ρ2
+ 1

ρRi (ρ)

∂Ri (ρ)

∂ρ
−

(
1

ρ2
+ k2i

)
= κ2 (6.101)

1

Z(z)

∂2Z(z)

∂z2
= −κ2. (6.102)

The general solution for (6.102) is conveniently written

Z(z) = A(κ) sin κ(z − h) + B(κ) cosκ(z − h) = B(κ) cosκ(z − h) (6.103)

where A(κ) and B(κ) are functions of the continuous variable κ. I have immediately
put A(κ) = 0 due to the symmetry of the system about the plane of the current
filament, z = h. The form of B(κ) will be determined by other boundary conditions.
The differential equation (6.101) governing the radial term has the following general
solution,

Ri (ρ) = Ci (κ)I1(γiρ) + Di (κ)K1(γiρ) (6.104)

where I1(u) and K1(u) are the modified Bessel functions of the first and second

kinds of order 1, respectively (see Sect. 10.4), and γi =
√

κ2 + k2i where the root

with positive real part is taken. Note, the sign of κ2 has been switched in (6.101)
and (6.102), compared with (6.52) and (6.53), to preserve the definition of γi . One
important consequence of this is that the general solution (6.103) is written in terms
of the sine and cosine dependence on the spatial variable z, rather than in terms of an
exponential dependence on z as in the equivalent general solution for the current loop
above a half-space conductor, (6.56). For similar reasons the general solution (6.104)
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is written in terms of modified Bessel functions rather than Bessel functions as in
(6.54). Since κ is a continuous variable, the electric field is obtained by integrating
over the range of κ. Hence, combining (6.103) with (6.104), the general solution of
(6.100) may be written

Ei
φ(ρ, z) = Ri (ρ)Z(z) =

∫ ∞

0
[Ci (κ)I1(γiρ) + Di (κ)K1(γiρ)] cosκ(z − h) dκ,

(6.105)
where B(κ) has been incorporated into Ci (κ) and Di (κ). Considering in turn each
of the three regions labeled in Fig. 6.25, in region 1—the conductor,

E1
φ(ρ, z) =

∫ ∞

0
C1(κ)I1(γ1ρ) cosκ(z − h) dκ. (6.106)

In region 2, between the current loop and the conductor,

E2
φ(ρ, z) =

∫ ∞

0
[C2(κ)I1(κρ) + D2(κ)K1(κρ)] cosκ(z − h) dκ, (6.107)

and in region 1′, beyond the current loop,

E1′
φ (ρ, z) =

∫ ∞

0
D1′(κ)K1(κρ) cosκ(z − h) dκ. (6.108)

The coefficients are now determined by applying interface conditions between
regions 1, 2 and 1′ in a process analogous to that resulting in (6.60)–(6.63) in
Sect. 6.3.3. In particular,

E1
φ(ρ1, z) = E2

φ(ρ1, z), (6.109)

∂

∂ρ
E1

φ(ρ, z)

∣
∣∣∣
ρ=ρ1

= ∂

∂ρ
E2

φ(ρ, z)

∣
∣∣∣
ρ=ρ1

, (6.110)

E2
φ(a, z) = E1′

φ (a, z), (6.111)

∂

∂ρ
E2

φ(ρ, z)

∣∣∣∣
ρ=a

= ∂

∂ρ
E1′

φ (ρ, z)

∣∣∣∣
ρ=a

+ jωμIδ(z − h). (6.112)

Finally, the following expressions for Ei
φ are obtained:

E1
φ(ρ, z) = − jωμ0Ia

π

∫ ∞

0
K1(κa)I1(γ1ρ)

1

ρ21D
cosκ(z − h) dκ, (6.113)

E2
φ(ρ, z) = − jωμ0Ia

π

∫ ∞

0
K1(κa) {I1(κρ)+

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
K1(κρ)

K1(κρ1)

}
cosκ(z − h) dκ, (6.114)
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E1′
φ (ρ, z) = − jωμ0Ia

π

∫ ∞

0
K1(κa)K1(κρ)

{
1

K1(κρ1)
×

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
+ I1(κa)

K1(κa)

}
cosκ(z − h) dκ, (6.115)

in which

D = 1

ρ1
[κI1(γ1ρ1)K0(κρ1) + γ1 I0(γ1ρ1)K1(κρ1)] . (6.116)

One method for evaluating the integrals in the above equation is mentioned in this
text following (6.66).

Calculation of Z

As developed in Sect. 6.3.3 for a current filament above a half-space conductor, the
self-induced voltage in the current filament coaxial with a cylindrical rod can be com-
puted by integrating E, (6.114) or (6.115), around the current loop. By analogy with
(6.68), and dividing by phasor current I to give impedance, (4.25), the impedance
is then obtained by means of

Z δ = −2πa

I Eφ(a, h). (6.117)

Inserting Eφ(a, h), determined from either (6.114) or (6.115) into (6.117) yields the
self-induced impedance of the current filament, Z δ:

Z δ = 2 jωμ0a
2
∫ ∞

0
[K1(κa)]2

{
1

K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
+ I1(κa)

K1(κa)

}
dκ.

(6.118)
We see that Z δ depends on the frequency of operation ω, the coil cross-sectional
area a2, its position with reference to the sample, ρ1, and the sample conductivity
σ. The above relation has been derived on the assumption of a non-ferromagnetic
test-piece, but if the conductor is in fact ferromagnetic then γ1 should be replaced by
γ′
1/μr1 = √

κ2 + jωμ0μr1σ1/μr1, and Z δ depends also on the relative permeability
of the test-piece, μr1. From relation (6.118) the self-inductance L of the filament
can be easily obtained via relation (6.1). Lastly, the impedance of the completely
isolated current filament (in the absence of a test-piece), Z δ

0, can be obtained by
letting σ1 → 0 in (6.118), i.e., γ1 → κ, to obtain

Z δ
0 = 2 jωμ0a

2
∫ ∞

0
K1(κa)I1(κa) dκ. (6.119)

Comparing (6.119) with (6.118) allows us to separate out the contribution to Z δ from
the test-piece, as follows.
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Z δ = Z δ
0 + 2 jωμ0a

2
∫ ∞

0

[K1(κa)]2
K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
dκ. (6.120)

Lastly, as a point of interest, by comparing result (6.119)with (6.71) it can be deduced
that ∫ ∞

0
K1(x)I1(x)dx = π

2

∫ ∞

0
[J1(x)]2dx .

6.5.2 Coil Encircling a Solid Cylindrical Conductor

Following a process of superposition, the results for the current loop encircling a
solid cylindrical conductor, obtained in the previous section, can be extended to
obtain the impedance of a coil with finite cross section, shown in Fig. 6.22. Much of
this development is similar to that given in Sect. 6.3.4, for a surface coil with finite
cross section positioned above a half-space conductor.

Electric Field

Assuming as before that the current in each loop has the same phase and amplitude,
the electric field due to a coil encircling a solid cylindrical conductor can be written,
similarly to (6.75);

ET (ρ, z) =
∫ h+l

h

∫ ro

ri

E(ρ, z|as, hs)dasdhs (6.121)

wherein as and hs are continuous variables in the radial and vertical directions within
the coil cross section.

Voltage in a Coil Encircling a Cylindrical Rod

The total voltage induced in a coil of n turns is given by (6.81) in which 2πai is
the circumferential length and hi is, in this case, the height of the i th current loop
above the plane z = 0, Fig. 6.22. Eφ(ai , hi ) is the electric field of the i th current
loop. Replacing the summation by an integral over the cross section of the coil, an
equation similar to (6.83) is obtained wherein the notation of Fig. 6.22 is employed:

V = − 2πn

l(ro − ri)

∫ h+l

h

∫ ro

ri

asEφ(as, hs)dasdhs. (6.122)

Z for a Coil Encircling a Cylindrical Rod

Following a development similar to that for (6.84), the following equation for
impedance of a coil encircling a cylindrical rod is obtained:

Z = − 2πn2

l2(ro − ri)2

∫ h+l

h

∫ ro

ri

asEφ(as, hs)dasdhs. (6.123)
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Now the integrals with respect to as and hs may be evaluated by inserting
Eφ(as, hs) into (6.123). To do this, the integral over as is divided into two, cov-
ering coil regions within and beyond as. In the region within as the expression for
E2

φ(ρ, z) is inserted whereas in the region beyond as the expression for E1′
φ (ρ, z) is

used. Explicitly,

Z = − 2πn2

l2(ro − ri)2

∫ h+l

h

[∫ as

ri

asE
2
φ(as, hs)das +

∫ ro

as

asE
1′
φ (as, hs)das

]
dhs.

(6.124)
Inserting expressions for E2

φ(ρ, z) and E1′
φ (ρ, z) into (6.124) and changing the

order of integration, the following integrals with respect to as and hs emerge:

Z = 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

∫ h+l

h

∫ ro

ri
a2s {K1(κas)I1(κas)

+ [K1(κas)]2
K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]}

cosκ(hs − h) dasdhsdκ, (6.125)

assuming that the current in each loop has the same phase and amplitude. Integration
with respect to hs is straightforward and yields the following.

Z = 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

∫ ro

ri

a2s
κ

{K1(κas)I1(κas)

+ [K1(κas)]2
K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]}
sin κl dasdκ. (6.126)

Recognizing that (6.126) can be written as the sum of the impedance of the isolated
coil, Z0, and a term representing the effect of the conductor, the following is obtained.

Z = Z0 + 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

∫ ro

ri

a2s
κ

[K1(κas)]2
K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
sin κl dasdκ,

(6.127)
where

Z0 = 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

∫ ro

ri

a2s
κ
K1(κas)I1(κas) sin κl dasdκ. (6.128)

Finally, the expression for Z can be simplified by expressing the integral with respect
to as as follows. ∫ ro

ri

[asK1(κas)]2das = 1

κ4
K 2(κri,κro) (6.129)

where

K 2(x1, x2) =
∫ x2

x1

[xK1(x)]2dx . (6.130)
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This integral must be evaluated numerically but allows us to write the following
expression for the impedance of a coil of finite cross section coaxial with and encir-
cling a solid cylindrical conductor.

Z = Z0 + 2 jωμ0n2

l2(ro − ri)2

∫ ∞

0

K 2(κri,κro)

κ5

1

K1(κρ1)

[
I1(γ1ρ1)

ρ21D
− I1(κρ1)

]
sin κl dκ.

(6.131)
As already noted in Sect. 6.3.4, Z depends on the probe’s frequency of operation,

ω, the coil dimensions, ri, ro and l, the square of the number of turns, n2, the coil
position with reference to the sample—here specified by ri and ro, and the sample
conductivity, σ. Evaluation of (6.131) for particular coil and sample parameters
allows impedance-plane diagrams such as that shown in Fig. 6.23 to be developed.
The frequency-dependent curves shown in Fig. 6.23 are obtained by varying ω and
the fill factor-dependent curves by varying ri or ρ1 in (6.131).

6.5.3 Sources of Uncertainty

In a system of cylindrical symmetry, such as a coil encircling a cylindrical conductor,
two sources of geometrical uncertainty exist; coil tilt and wobble. Tilt occurs when
the coil axis tilts through a finite angle with respect to the axis of the test-piece
and has been analyzed in detail by Theodoulidis and Skarlatos [18]. Wobble occurs
when the coil axis is laterally displaced from the axis of the test-piece and has been
analyzed by Theodoulidis [19] in the case of a bobbin coil (Sect. 6.6.1).

6.6 Bobbin Coil

Bobbin coils offer effective coupling with the interior of tube-like specimens. A
bobbin coil is oriented with its axis parallel to the axis of the cylindrical cavity
(e.g., a tube interior or a bore hole) in a test-piece and is designed to be threaded
through it. Bobbin probes are very commonly used in differential mode for optimum
defect detection, as discussed in Sect. 8.3. One application in which bobbin probes
are commonly used is in the inspection of nuclear power plant steam generator
tubes. Threading a bobbin probe through a tube offers shorter inspection time than
using a rotating surface probe, which is common in borehole inspection, Fig. 6.5. A
schematic diagram of a bobbin coil coaxial with a borehole is shown in Fig. 6.26.

In a definition analogous to that given in (6.97) for the encircling coil geometry,
the fill factor of the bobbin coil, ηb, is defined as follows, with reference to the
notation of Fig. 6.26.

ηb =
(
ro
ρ1

)2

. (6.132)
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Fig. 6.26 Cross section through the axis of a circular bobbin coil coaxial with the bore of the
test-piece

Since the bobbin coil is primarily applied in tube inspection, rather than in borehole
inspection, a detailed discussion of the impedance calculation for the bobbin coil is
deferred to Sect. 7.2.6 where test-pieces with more than one interface (in this case the
interior and exterior surfaces of the tube) are considered. Example impedance-plane
plots for a bobbin coil internal to a tube are given in Fig. 7.6 for a tube with fixed
ratio of wall thickness to outer diameter, and in Fig. 7.7 for a bobbin coil internal to
a tube with varying ratio of wall thickness to outer diameter. The curves plotted in
those figures are also applicable to coils encircling tube-like test samples.

6.6.1 Sources of Uncertainty

For the configuration of a bobbin probe inserted into a tube or a borehole, a source
of noise in the measurement may be probe “wobble”. This is a type of geometrical
noise, caused by the movement of the probe. Ideally, the coil is coaxial with the tube,
but wobble of the probe may cause the coil axis to shift a finite distance from the tube
axis, as shown in Fig. 6.27. Some of the effects of probe wobble on the impedance-
plane plot are shown in Fig. 6.28, at three distinct frequencies. For comparison, the
effects of 10% inner diameter (ID) or outer diameter (OD) wall thinning of the
tubular test-piece are also shown. Noting that the “ f90” frequency is defined as the
frequency that provides approximately 90◦ phase separation between shallow ID and
OD defects, the three frequencies for which comparisons are plotted in Fig. 6.28 are
f90/2, f90 and 2 f90. The frequency f90 and may be computed using the empirical
expression

f90 = 516σ

T 2
(6.133)
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Fig. 6.27 Cross section through the axis of a circular bobbin coil that is offset by distance d from
the axis of the test-piece bore

where σ is in %IACS, T is the tube wall thickness in mm and the result is in kHz.
Also shown in Fig. 6.28 is the sum of the ID and OD signals with the signal due to

wobble at maximum axis offset. It can be seen that the phase angle between ID and
OD thinning increases as frequency increases and that the amplitude of the OD signal
decreases with increasing frequency due to the skin effect. For OD wall thinning the
deleterious effect of wobble on the flaw signal can be seen clearly at frequency 2 f90,
for which the signal due to probe wobble overwhelms that due to the flaw.

6.7 Summary

This chapter has dealt with classical solutions to canonical problems in the theory of
eddy-current nondestructive evaluation and has examined sources of uncertainty in
ECNDE. The impedance of an EC coil was expressed for test-pieces with half-space
(Cartesian) and rod or borehole (cylindrical) geometries. Upon this foundation, the
effect of introducing additional boundaries to the test-piece is considered in Chap. 7.
Following this approach, the EC inspection of plates, tubes, surface coatings or
material under surface coatings can be modeled. A method for modeling the effect
of test-piece edges on the EC signal is also introduced. The ability to model the effect
of such geometrical features on the EC signal provides a pathway for separating such
effects from a flaw signal.
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Fig. 6.28 �Z due to 10% inner diameter (ID) and 10% outer diameter (OD) uniform thinning,
wobble (WB), and their superposition for maximum offset, at three frequencies: a f90/2, f90 and
2 f90 [19]. With kind permission from Springer Science and Business Media: Res. Nondestruct.
Eval., vol. 4, 2002, p. 120, Analytical modeling of wobble in eddy-current tube testing with bobbin
coils, T. P. Theodoulidis, Fig. 2. Original caption: Impedance changes due to 10%ID and 10%OD
uniform thinning, wobble, and their superposition for maximum offset, at three frequencies: (a)
f90/2; (b) f90; (c) 2 f90

6.8 Exercises

1. Show that the magnetic field in a region of space that contains a phasor current
source Js (varying as the real part of e jωt ) and a conductor carrying induced
eddy-current density Jec = σE, where σ is the conductivity of the metal, obeys
the following governing equation

(∇2 − jωμσ
)
H = −∇ × Js.

Hint: Follow a method similar to that used to determine (6.10), but now begin by
taking the curl of (6.6) rather than of (6.5).
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2. Apply theBiot–Savart Law toobtain the following expression for Bz along the axis
of a circular current loop with radius a carrying current I , whose axis coincides
with that of a cylindrical coordinate system.

Bz = μ0 I

2

a2

(a2 + z2)3/2
(6.134)

3. A long solenoid consists ofn similar loops ofwire, per unit length, eachwith radius
a. The axis of the solenoid coincides with the z-axis of a cylindrical co-ordinate
system. The magnetic field inside the solenoid is uniform over its cross-sectional
area and is given by

Hz = nI, (6.135)

where I is the magnitude of the current flowing in the wire. Show that the induc-
tance per unit length of a solenoid filled with a ferromagnet whose permeability
is μ is given by

L = μπ(na)2 (6.136)

and that the normalized impedance of the coil per unit length is given by

Z

X0
= R0

ωμ0π(na)2
+ jμr (6.137)

where R0 is the DC resistance of the coil. Plot Z/X0 on an impedance-plane plot.
4. Take the curl of the vector potential given in (6.36) to obtain the expressions for

Br and Bz given in (6.42) and (6.43).1 Show that, on the axis, the result for Bz of
(6.43) reduces to that obtained by the Biot–Savart Law, Exercise 2.

5. We know from interface conditions (Sect. 5.6) that the tangential component of
the electric field must be continuous at a boundary. Show that Eφ(r, z) for the
filamentary coil above a half-space conductor in (6.64)–(6.66) is continuous at
z = h and z = 0.

6. Suppose the conductive half-space interrogated by a filamentary current loop, as
in Sect. 6.3.3, now has a surface layer with depth d and conductivity σ3 (region
3, −d ≤ z ≤ 0). The substrate conductivity is now σ4 (region 4, z ≤ −d). Hence
γi = √

κ2 + jωμ0σi with i = 3, 4. In this case,

1Hint: In definitions (6.37) and (6.38), k is known as the modulus of these integrals. The following
functional relations between elliptic integrals are given in Eqs. 8.123.2 and 8.123.4 of [20].

dK (k)

dk
= E(k)

kk′2 − K (k)

k
dE(k)

dk
= E(k) − K (k)

k

In these relations, k′ is known as the complementary modulus and k′ = √
1 − k2; k2 < 1.
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E1
φ(ρ, z) = −1

2
jωμ0 I a

∫ ∞

0
J1(κa)J1(κr)e

−κ(h+z)

×
{
e2κh + (κ + γ3)(γ3 − γ4) + (κ − γ3)(γ3 + γ4)e2γ3d

(κ − γ3)(γ3 − γ4) + (κ + γ3)(γ3 + γ4)e2γ3d

}
dκ.

(6.138)

Identify two limits in which this result should reduce to the result for the half-
space conductor and show that (6.138) does indeed reduce to (6.64) in these limits.

7. Show how the factor μr appears in relation (6.70), in the case of a ferromagnetic
test-piece.
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