
Chapter 5
Maxwell’s Equations

Abstract To describe the electromagnetic behavior of an eddy-current probe coil,
and with the goal of becoming equipped to interpret the measured impedance of an
eddy-current coil, this chapter describes expressions of Maxwell’s equations in full
and under the quasi-static regime that is of direct relevance to eddy-current NDE.
From Maxwell’s equations, equations governing the electromagnetic fields can be
expressed in various ways. Interface conditions on the electromagnetic field is also
provided. The interface conditions are needed, along with the governing equations,
to set up a bounded system of equations that can be solved for the fields generated
by eddy-current probe coils. Similarly, suitable governing equations and appropriate
interface conditions provide the mathematical framework by which the influence of
a test-piece—with or without a defect—on the probe impedance can be described.

5.1 Introduction

JamesClerkMaxwell (1831–1879, Fig. 5.1) was a Scottishmathematician and physi-
cist [1]. Early in life, he showed signs of mathematical talent, contributing an original
research article to the Royal Society of Edinburgh at the age of only fifteen years.
When he was reluctantly appointed as professor of experimental physics at the Uni-
versity of Cambridge (UK) later in life, however, he was not a great success as a
lecturer. His lectures were too difficult for most students to understand and typically
attracted an audience of only three or four. In research, hewas brilliant.Maxwellmade
significant contributions to the understanding and theoretical descriptions of several
important physical phenomena, including the kinetic theory of gases. His crowning
achievement was in the field of electromagnetics, in which he expressed in mathe-
matical form Faraday’s speculations on the existence and effects of magnetic lines of
force (Faraday had very little mathematical knowledge, remember). Maxwell gath-
ered a few relatively simple equations that described the various known phenomena
of electricity and magnetism, and coupled them together. He revealed that electricity
and magnetism could not exist separately from one another but, if one was found,
then the other existed as well. The field of electromagnetism was born.
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Fig. 5.1 James Clerk
Maxwell, Scottish
mathematician and physicist,
1831–1879 [2]

Maxwell showed that the oscillation of an electric charge produced an electro-
magnetic field that radiated outwards from its source at constant speed. This constant
speed turned out to be the speed of light so Maxwell suggested that light itself was
electromagnetic radiation! In addition, since charges could oscillate at any frequency,
it seemed to Maxwell that an entire spectrum of electromagnetic radiation should
exist, of which visible light constituted only a small part. As time went on, the exis-
tence of various other parts of the electromagnetic spectrum has been verified. All
of today’s wireless technology, and myriad other practical devices and theoretical
endeavors, are founded on the work of Maxwell.

In the context of EC NDE, Maxwell’s equations can be used to describe math-
ematically the interactions of a probe field with a test-piece, even to the point of
being able to predict the change in coil impedance due to various types of defect in
a structure. This mathematics is the only way to accurately determine these kinds
of interactions. It is exciting and profound that mathematical physics can be used
to calculate quantities of practical interest, that have a real impact on society in the
context of inspections of aircraft, vehicles, bridges, nuclear power plants, and other
structures whose integrity is critical to human and environmental safety.

5.2 Faraday’s Law

Faraday’s law is the first of Maxwell’s equations that we shall examine. Faraday
discovered that the induced electromotance in a closed circuit is equal to the time
rate of change of the magnetic flux linkage in the circuit:

V = −dλ

dt
= −N

d�

dt
(5.1)
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whereλ = N� is the flux linkage, N is the number of turns in the circuit, and� is the
magnetic flux through each turn. The negative sign is due to Lenz’s Law, and shows
that the induced voltage acts in such a way as to oppose the flux change producing it.
This means that the direction of current flow in the circuit is such that the magnetic
field produced by the induced current opposes the change in the original magnetic
field. One consequence of Lenz’s Law in EC NDE is that the direction of circulation
of the induced eddy currents is opposite to that of the current flowing in the inducing
coil.

From (5.1) a point form of Faraday’s Law can be derived. First, express the right-
hand-side of (5.1) in terms of the magnetic induction field B, by replacing � with
the surface integral given in (4.16). For N = 1,

V = − d

dt

∫
S

B · dS, (5.2)

where S is an open surface bounded by path C that describes the circuit of interest,
such as the circular path made by a loop of wire. The path is closed but permits a
discontinuity in E integrated around that path. The discontinuity is mathematically
necessary, to represent the practical incorporation of a voltage source into a drive
circuit, or to allow for the measurement of a potential drop induced in a pick up
circuit. Imagine a closed loop of wire whose ends are connected via a twisted pair
to the termini of a variable voltage source, or to a voltmeter. The loop is closed, but
a voltage drop exists across the ends of the wire. Expressing the voltage in terms of
the line integral of E, just mentioned, gives

∮
C

E · dl = − d

dt

∫
S

B · dS (5.3)

Noting that it is the magnetic induction field B that is varying with time, rather than
the loop area, we obtain ∮

C
E · dl = −

∫
S

∂B
∂t

· dS. (5.4)

Next apply Stokes’ Theorem, Sect. 10.3.6, to the left-hand-side of (5.4). Stokes’
Theorem requires that E has continuous derivatives on S but this condition does not
exclude the possibility that its line integral (V = ∫

E · dl) is discontinuous—a point
whose necessity was just described. The application of Stokes’ Theorem yields

∫
S
∇ × E · dS = −

∫
S

∂B
∂t

· dS. (5.5)

For these two integrals to be equal, their integrands must be equal and, consequently,

∇ × E = −∂B
∂t

. (5.6)
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Expression (5.6) is Faraday’s Law in point form, and is also one of Maxwell’s equa-
tions. This relation is at the heart of EC NDE, describing the fact that a time-varying
field of magnetic induction, produced by an eddy- current coil, produces an electric
field (and hence induces eddy currents) in a metal test-piece nearby.

5.3 Maxwell–Ampère Law

The second of Maxwell’s equations that we shall examine is the Maxwell–Ampère
Law. This relation was born out of a deficiency that Maxwell perceived in Ampère’s
circuital theorem. Beginning with the latter, Ampère’s circuital theorem states that
the line integral of the magnetostatic field H around a closed path is equal to the net
current I enclosed by the path,

∮
H · dl = I. (5.7)

To obtain Ampère’s circuital theorem in point form, apply Stokes’ Theorem to the
left-hand-side of (5.7) and relate I to the current density as in (2.2). Then

∫
S
∇ × H · dS =

∫
S

J · dS (5.8)

and hence
∇ × H = J. (5.9)

This relation is known as Ampère’s law and tells us that the magnetostatic field H
is not conservative, but that J is its source. (The curl, ∇×, of a conservative field is
identically zero.)

Maxwell recognized that Ampère’s Law is incomplete for time-varying fields,
because it violates the requirement that current be continuous. For more detail, see
[3]. Adding displacement current density Jd = ∂D/∂t to the conduction current
density J already present in (5.9) gives

∇ × H = J + ∂D
∂t

, (5.10)

which is Maxwell’s equation (based on Ampère’s circuital theorem) for a time-
varying field. Displacement current

Id =
∫
S

∂D
∂t

· dS

is the “current” that flows in a dielectric (between the plates of a capacitor, for
example).
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The main relevance of the Maxwell–Ampère law to EC NDE is that it enables
description of the magnetic fields associated with (i) the electric current flowing in
an eddy-current coil and (ii) the eddy currents flowing in a test-piece.

5.3.1 Quasi-static Regime

Despite the fact that eddy currents must be induced by a time-varying field associated
with the current flowing in an eddy-current drive coil, it turns out that the displace-
ment current can be neglected in most EC NDE analyses. The following argument
shows why this is the case.

The total current density in any conductor is the sum of the conduction current
density and the displacement current density, given by

J + Jd =
(

σ + ε
∂

∂t

)
E

where Ohm’s Law (2.15) and constitutive relation (2.33) have been used to form
the above expression. In phasor form, for sinusoidal time variation of the fields, the
above sum can be expressed as (σ + jωε)E. For typical metals tested by EC NDE, σ
is on the order of 10MS/m and themaximum frequency employed is around 10MHz.
Therefore,

|J| ∼ 107|E|

and
|Jd | ∼ 2π × 107 × 8.85 × 10−12|E| ∼ 10−3|E|

This means that |J| � |Jd | and displacement current can be neglected even for the
highest frequencies most commonly employed in EC NDE, to a very good approx-
imation. Under these circumstances, EC NDE operates in a quasi-static regime in
which

∇ × H ≈ J. (5.11)

This relation is obviously equivalent to Ampère’s Law, although we should keep
in mind that strictly Ampère’s Law applies only to magnetostatic fields. The field
produced by an EC coil is necessarily time-varying in order for eddy currents to be
induced in a test-piece at all and the term “quasi-static” is used to remind us of this
fact.

As a related point of interest, radio-frequency EC technology that operates up
to 100MHz has been developed in recent years for inspection of lower conductivity
materials such as carbon–fiber-based composites [4] and ceramic–matrix composites.
As inspection frequency increases and conductivity of the test-piece decreases it is
clear from the above discussion that the quasi-static approximation becomes less
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accurate and, for very low conductivity materials (insulators) it is the displacement
current that dominates [5].

5.4 Gauss’ Law

The third of Maxwell’s equations that we shall consider is Gauss’ Law. Gauss’ Law
states that the total electric flux �e through any closed surface is equal to the total
charge enclosed by that surface, Qenc.

�e =
∮
S

D · dS = Qenc (5.12)

Further,

Q =
∫
V

ρvdV

where ρv is volume charge density (electric charge per unit volume at a point) mea-
sured in Coulombs per meter cubed (C/m3) and V is the volume enclosed by surface
S. Hence, ∮

S
D · dS =

∫
V

ρvdV (5.13)

and, applying the divergence theorem (also of Gauss, (10.48)) to the left-hand side
of (5.13) yields ∫

V
∇ · D dV =

∫
V

ρvdV (5.14)

from which the point form of Gauss’ Law is obtained:

∇ · D = ρv. (5.15)

In other words, the strength of divergence of D from a point is determined by the
electric charge per unit volume at that point. Relation (5.15) allows D, or E by (2.33),
to be determined easily for many symmetric distributions of charge, but note that the
relation always holds irrespective of the particular shape of the charge distribution.

5.5 Gauss’ Law for Magnetic Fields

The fourth and final equation of Maxwell that we shall consider is Gauss’ Law for
magnetic fields; the counterpart of the equation examined in the previous section
(Sect. 5.4) for electric fields. Unlike for D, the magnetic induction field B has no
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sources or sinks. This is a consequence of the fact that the fundamental source of
the magnetic field is charge in motion, which always gives rise to a magnetic dipole
rather than individual “magnetic charges”. To derive Gauss’ Law for magnetic fields,
we can follow a development similar to that in the previous section, but now there is
no “charge” enclosed in surface S and

� =
∮
S

B · dS =
∫
V

∇ · B dV = 0. (5.16)

At a point,
∇ · B = 0 (5.17)

and we see that B is solenoidal (divergenceless). This means that the lines of B are
always closed loops.

5.5.1 Magnetic Vector Potential

The form of Gauss’ Law as written in (5.17) invites the definition of the magnetic
vector potential A such that

B = ∇ × A (5.18)

since, according to identity (10.44), the divergence of the curl of any vector is zero.
One reason for defining the magnetic vector potential is that it is easier, for some
configurations, to solve a problem in terms of the magnetic vector potential than
in terms of the magnetic induction field itself. In this text, A is employed in the
derivation of the analytical expression for B at all points in space due to a current
loop in free space, Sect. 6.3.2.

5.6 Interface Conditions on the Electromagnetic Field

In later sections of this text, we shall see how Maxwell’s equations may be manipu-
lated to provide governing equations for the electromagnetic field in the vicinity of
an eddy-current coil. When an eddy-current coil is brought near to a metal test-piece,
the electromagnetic field due to the coil penetrates the conductor, and the field exists
in more than one material (air and metal) at the same time. The conductor surface is
a boundary or interface between the two dissimilar media, and the electromagnetic
field obeys certain conditions there. These conditions are known as boundary condi-
tions or interface conditions. In order to solve the governing equations and obtain a
mathematical description of the electromagnetic field in a region of space occupied
by more than one medium, we need to know the interface conditions that the fields
must obey. The conditions on the four field quantities E, D, H and B, and on the
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Fig. 5.2 A vector field a at
the interface between two
media with different
dielectric and magnetic
properties. The unit vectors
normal (n̂) and tangential (t̂)
to the interface are shown,
along with the normal and
tangential components of a

current density J, are presented in this section but not derived. For a derivation, see
[3] or any standard undergraduate textbook on electricity and magnetism.

Consider a vector field that is oriented arbitrarily with respect to a boundary
between two media, as shown in Fig. 5.2.

Electric Field It can be shown that the tangential component of E is continuous at the
boundary. This means that the tangential component of E does not change as the
boundary is traversed. Expressing this mathematically,

(E1 − E2) × n̂ = 0 or E1t − E2t = 0. (5.19)

In (5.19), the subscripts 1 and 2 refer to the twomedia and the subscripts n and t refer
to the normal and tangential components of the vector at the interface, respectively.

Electric Displacement If ρs is the surface density of free charge placed deliberately
on the interface, then it can be shown that the jump (discontinuity) in the normal
component of D at the boundary is equal to the free surface charge density on the
boundary:

(D1 − D2) · n̂ = ρs or D1n − D2n = ρs . (5.20)

Magnetic Field If K = K t̂ is a surface current measured in A/m that flows on the
boundary, then the jump in the tangential component of H at the boundary is equal
to the surface current:

(H1 − H2) × n̂ = K or H1t − H2t = K . (5.21)

Magnetic Induction The normal component of B is always continuous across a
boundary:

(B1 − B2) · n̂ = 0 or B1n − B2n = 0. (5.22)

Current Density From (5.19) with Ohm’s law (2.15) the following boundary con-
dition on the tangential component of the current density can be obtained:
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Table 5.1 Interface conditions on the electromagnetic field and current density. The density of
free surface charge at the boundary is represented by ρs (C/m2). The surface current density at the
boundary is K (A/m). In most cases of relevance to EC NDE, ρs and K are zero

Vector field Tangential component Normal component

Electric field, E E1t − E2t = 0 ε1E1n − ε2E2n = ρs

Electric displacement, D D1t/ε1 − D2t/ε2 = 0 D1n − D2n = ρs

Magnetic field, H H1t − H2t = K μ1H1n − μ2H2n = 0

Magnetic induction, B B1t/μ1 − B2t/μ2 = K B1n − B2n = 0

Current density, J J1t/σ1 − J2t/σ2 = 0 J1n − J2n = 0

J1t/σ1 − J2t/σ2 = 0. (5.23)

The normal component of the current density is continuous at the boundary:

J1n − J2n = 0. (5.24)

Looking at continuity conditions (5.20) and (5.21), a parallel with Maxwell’s
equations (5.15) and (5.9) can be seen. In volumetric space, the volume charge
density ρv gives rise to divergence in D as expressed in (5.9), whereas surface charge
density ρs at an interface gives rise to a jump in Dn across the interface, (5.20). The
behavior stems from the fact that ρv and ρs are sources of D. Similarly, the existence
of a surface current K at a boundary gives rise to a jump in Ht across the boundary as
expressed in (5.21), whereas the volume current density J gives rise to a circulating
magnetic field, (5.9). Currents J and K are sources of H.

The constitutive relations (2.25) and (2.33) can be used with the above interface
conditions (5.19)–(5.22) to obtain a full set of conditions on both the normal and
tangential components of all four vector fields. These are given, alongwith conditions
on the normal and tangential components of the current density J, in Table5.1.
Commonly, no surface charge density exists at a boundary and ρs = 0 in the above
relations. Then, Dn is continuous at the boundary. Similarly, there is often no surface
current at a boundary and K = 0. Then, Ht is continuous at the boundary.

Example: Interface conditions on the electric field The electric field just outside
a cylindrical rod whose axis lies along the z-axis is given by E2 = 60ẑV/m. The
conductivity of the rod is 46MS/m. Find the current density in region 1, just inside
the rod.

Solution: In a cylindrical coordinate system, the tangential component of the electric
field at the rod surface is Et = Eφφ̂ + Ez ẑ. Hence, E1z = E2z and Jz = σE1z =
σE2z = 46 × 106 × 60 = 2.76 × 109 A/m2.

Example: Interface conditions on the magnetic field Two extensive homogeneous
isotropic ferrites (which can support no surface currents) meet on the plane z = 0.
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For z > 0, μr1 = 100 and for z < 0, μr2 = 20. A uniform magnetic field H1 = 5x̂ −
2 ŷ + 3ẑ A/m exists for z ≥ 0. Find H2 for z ≤ 0.

Solution: H2 is also uniform. Considering first the component of the field normal to
the boundary, in the z-direction, μ1H1z = μ2H2z which means that

H2z = μr1

μr2
H1z = 100

20
× 3 = 15 A/m.

Tangential to the boundary, in the absence of free surface currents, H1t = H2t . Hence

H1t = 5x̂ − 2 ŷ = H2t .

Putting the tangential and normal components of the field together gives the solution

H2 = 5x̂ − 2 ŷ + 15ẑ A/m.

5.7 Summary

In this chapter, the equations of Maxwell have been described and their relation to
EC NDE has been discussed. For ease of reference, Maxwell’s equations in both
differential and integral form are collected together in Table5.2. It should be noted
that, in most cases of relevance to EC NDE, the quasi-static approximation can be
assumed, which means that |J| � |∂D/∂t | and ∇ × H ≈ J. In conductors, it is also
generally the case that ρv = 0. In this way, two of the four Maxwell’s equations are
simplified in their application to EC NDE.

The boundary conditions that govern the behavior of the electromagnetic fields
and the current density at the interface between twomedia have also been described in
this chapter and are summarized in Table5.1. Again, some simplification is generally
possible in problems of relevance to EC NDE. In particular, it is usually the case that
ρs and K are zero in the treatment of EC boundary-value problems.

The stage is now set for proceeding to develop governing equations and boundary
conditions which can be solved to compute quantities of relevance to EC NDE. This
is the task to which we turn in the next chapter.

Table 5.2 Maxwell’s equations in differential and integral form. ρv is volume density of free charge
(C/m3). J is current density (A/m2). In most cases of relevance to EC NDE,∇ × H ≈ J and ρv = 0

Law Differential form Integral form

Faraday’s law ∇ × E = − ∂B
∂t

∮
C E · dl = − d

dt

∫
S B · dS

Maxwell–Ampère law ∇ × H = J + ∂D
∂t

∮
C H · dl = ∫

S

(
J + ∂D

∂t

)
· dS

Gauss’ law ∇ · D = ρv

∮
S D · dS = ∫

V ρvdV

Gauss’ law for magnetic fields ∇ · B = 0
∮
S B · dS = 0
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5.8 Exercises

1. A long, cylindrical conductor has radius a and carries current I uniformly dis-
tributed over its cross section. Use Ampère’s law to show that, inside the con-
ductor, Hφ = Iρ/(2πa2), ρ < a, where ρ and φ are coordinates of a cylindrical
system whose axis coincides with the axis of the conductor.

2. Beginning with Maxwell’s equations, derive

(a) the magnetic field in air due to an infinitesimally thin, long, straight wire
carrying current I in the z-direction

H = φ̂
I

2πρ
, ρ > 0,

where ρ and φ are coordinates of the cylindrical system and
(b) the electric field in air due to the same infinitesimally thin wire

E = ẑ
I
2π

jωμ0 ln ρ, ρ > 0,

previously given in (2.17) and (2.14), respectively.
3. Explain what is meant by the quasi-static regime in the context of EC NDE.

At frequencies used in EC NDE, for what class of materials is this (a) a good
approximation and (b) a poor approximation?

4. If a B-field is specified everywhere by Bx = ky, By = −kx , Bz = 0, k being
constant, find an expression for the current density J which would give rise to it.

5. The electric field just outside a cylindrical rod whose axis lies along the z-axis is
given by E = 15ẑV/m. The conductivity of the rod is 43MS/m. Find the current
density just inside the rod.

6. Two extensive homogeneous isotropic ferrites (which can support no surface
currents) meet on the plane z = 0. For z > 0, μr1 = 50 in medium 1 and for
z < 0, μr2 = 5 in medium 2. A uniform magnetic field H1 = 3x̂ − 4ŷ + 2ẑ A/m
exists for z ≥ 0. Find H2 for z ≤ 0.
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